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The limit of high spatial dimensions d, which is well-established in the theory of classical and localized spin models, is 
shown to be a fruitful approach also to itinerant fermion systems, such as the Hubbard model and the periodic Anderson 
model. Many investigations which are prohibitively difficult in finite dimensions, become tractable in d = 30. At the same 
time essential features of systems in d = 3 and even lower dimensions are very well described by the results obtained in 
d = cc. A wide range of applications of this new concept (e.g., in perturbation theory, Fermi liquid theory, variational 
approaches, exact results, etc.) is discussed and the state-of-the-art is reviewed. 

1. Introduction 

Theoretical investigations of correlated ferm- 
ion systems are generally exceedingly difficult 
owing to quantum statistics and the many-body 
nature of the problem. Even standard methods 
like perturbation theory and variational ap- 
proaches meet with severe technical problems 
when it comes to explicit evaluations. It is there- 
fore of essential importance to find non-trivial 
limits where such treatments are manageable at 
all. In this respect the lowest spatial dimension, 
d = 1, is a standard dimension for quantum- 
theorists, since in d = 1 there exist powerful tech- 
niques (Bethe-Ansatz, bosonization, etc.) which 
in many cases allow one to derive exact results. 
By contrast, in classical statistical physics the 
limit of large spatial dimensions is well-estab- 
lished, since exact solutions for spin lattice mod- 
els in d = ~0 are intimately connected with the 
respective mean field theories (MFT) [l]. 

It is therefore natural to ask whether the limit 
of d = x also helps to gain insight into systems 
with itinerant quantum mechanical degrees of 
freedom, e.g. fermionic lattice models. In fact, 
Metzner and Vollhardt [2] recently showed that 
in the limit d+ OJ Hubbard-type models (if prop- 
erly scaled) and their correlations remain nontri- 

vial, while investigations become substantially 
simpler. 

2. Fermionic lattice models in d = ofr 

The Hubbard model is used in various areas of 
condensed matter theory (e.g., itinerant magnet- 
ism, metal-insulator transition, high-T, super- 
conductivity) because of its relative simplicity 
and generic nature. It describes electrons with 
spin CT = t, 4 on a lattice with a short-range 
(effectively zero-range, i.e., on-site) interaction 

where fii, = e,‘,eiC, such that b is the number 
operator for doubly occupied sites in the system. 
The electrons can have a general kinetic energy 

fir = c t,qgj, ) (lb) 
(ii) ,u 

with hopping matrix element t,. If nearest-neigh- 
bor interactions are included, e.g. by Z?” = 
CC,, C,,. V~~~fiiCfijv~, a generalized, one-band 
Hubbard model may be written as 

&“b = A, + 8, + k” . (14 
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to a factor ( g2 - 1). Both, the one-particle den- 
sity matrix P,, = ( c,tcjm) (which yields the 
kinetic energy (fir), eq. (lb)) and the on-site 
interaction (A, ), eq. (la), are completely de- 
termined by S,,. In the limit d+ 0~ the evalua- 
tion of the diagrams for Snij is tremendously 
simplified due to the fact that Pi, vanishes as 

(6) 

where ) i - j( = Cf=, ] i, - jlI. This implies a drastic 
collapse of those diagrams in which two vertices 
are joined by more than two different paths (see 
fig. 1). This is the case, in particular, for the 
proper self-energy Szij, which is the sum over all 
one-particle irreducible self-energy diagrams. 
Consequently, S;T, is site-diagonal in d = 00, 

szij = s;,,s, (7) 

Given a starting wave function /I&,) in eq. (5) 
the evaluation of, say, the ground state energy 
(H,,,) can be performed explicitly in d = x [a]. 
In this case only diagrams with bubble structure 
remain, i.e., correlation functions acquire an 
overall RPA structure. 

As shown by Gebhard [9] the above formalism 
can be further simplified by a slight redefinition 
of the wave function I+!+,) in eq. (5). Thereby 
results in d = 30 can be obtained without having 
to calculate a single graph. In particular, the 
ground-state energy for eq. (lc) or eq. (2) can 
now be obtained in closed form for arbitrary 
]I&). The result is found to be identical to an 
earlier one obtained by Kotliar and Ruckenstein 
LlOl3 who used a saddle point approximation 
within a slave boson approach. Thus the d = ‘x: 

Fig. 1. Collapse of a typical irreducible self-energy diagram 
in d = a. 

limit reveals an intimate connection between two 
seemingly different approaches. - Contact with 
finite dimensions can be made by explicit l/d 
expansions [7, 91. In many cases already the l/d 
correction, together with the appropriate DOS in 
d dimensions, yields excellent agreement with 
known results in dimensions as low as d = 1. In 
general, results in d = 3 are already found to be 
very well approximated by those for d = ~0. 

It is interesting to observe that in the case of 
the Gutzwiller wave function [6] the results of 
the exact evaluation of the ground state energy 
of the Hubbard mode1 in d = = [2] are identical 
to those obtained within the so-called Gutzwiller 
approximation [ll]. The latter corresponds to a 
semi-classical approximation, which evaluates 
matrix elements by calculating the classical statis- 
tical weights of spin configurations, thereby neg- 
lecting spatial correlations [ 121. At half-filling 
(n = 1) the G u zwiller t approximation leads to a 
localization transition at finite U (Brinkman- 
Rice transition [13]). It yields simple, physically 
sensible results in a number of problems (e.g., 
metal-insulator transitions [13], normal-liquid 
3He [12, 141) and allows contact to be made with 
Fermi-liquid theory. The transition itself is an 
artefact of d = 00, which is not removed by finite 
orders of l/d corrections [8, 91. However, in 
d = 3 the approximation is indeed excellent if 
one is not too close to this transition, and is even 
better for II < 1. 

For the investigation of the periodic Anderson 
model a VWF has been proposed [15] where 
I&,> in eq. (5) g’ IS iven by the exact ground state 
wave function for U = 0, with the hybridization 
amplitude between the c- and f-electrons taken 
as a variational function. The correlator g” in 
eq. (5) then only acts on the f-electrons. Such an 
Ansatz is motivated by VWFs used in the single- 
impurity problem. An exact evaluation of the 
ground-state energy E [16], correlation functions 
[17], etc. is again possible in d = 00, the result for 
E being identical to that obtained by a Gut- 
zwiller-type approximation. In fig. 2 we show the 
spin-spin and density-density correlation func- 
tion for the f-electrons as calculated analytically 
in d = x and evaluated with the DOS in d = 1 
11’71, and compare with the results in d = 1 ob- 
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(d=m result in 
(VMC in d=l) 
(d==> result in 
(VMC in d=l) 

Fig. 2. Variational evaluation of the spin-spin (C”( 4)) and density-density (C”“( 4)) correlation function for f-electrons in the 
periodic Anderson model. Analytic results for d = 3~ (evaluated with the one-dimensional DOS [ 171) arc compared with 
variational Monte Carlo (VMC) results in d = 1 [18]. P, drameters: n = 1.75. U = z, E, = 0. t = I, V=O.S. 

tained by variational Monte Carlo [18]. Obvious- 
ly the two agree extremely well. This shows that 
the d = x limit can even give valuable insight 
into dimensions as low as d = 1. 

4. Weak coupling perturbation theory 

The diagrammatic collapse discussed above, 
and the substantial simplifications deriving from 
it [2], actually occur in any standard perturba- 
tional treatment of fermionic lattice models in 
d = x. The propagator (Green function) of the 
noninteracting system always obeys eq. (6), 
which is a consequence of the scaling t+ Tim 
[19]. Therefore, within a site representation, two 
vertices in a diagram collapse, if they are con- 
nected by more than two lines: for nearest neigh- 
bor sites a propagator is of order d I’?, and there 
are of order d sites which are to be summed; 
hence the contribution to a diagram, in which 
two vertices are on different sites and are joined 
by three and more lines, vanishes unless the two 
sites coincide. In particular, e.g. for skeleton 
diagrams, the irreducible self-energy Czij, this 
collapse involves all vertices, i.e., the contribu- 

tion is purely site-diagonal (‘local’) as given by 
eq. (7) [3, 191. 

A simple illustration of these simplifications is 
provided by weak coupling expansions, e.g. for 
the correlation energy E, = E,,,,, - E,, for the 
Hubbard model [2], which is the difference be- 
tween the exact ground-state energy and the 
Hartree-Fock energy. Within Goldstone pertur- 
bation theory the second-order contribution to 
EC is given by Ef’ K U’, which is an integral over 
four momenta k,, i = 1, . ,4, which are con- 
strained by momentum conservation (thus yield- 
ing a 3d-fold integration). This constraint (a 
a-function) can be expressed as a lattice sum 
(effectively the sum over the relative position 
f = i - j of the two vertices i and j of the diag- 
rams on the lattice). In d = 30 the collapse implies 
i = j and hence only the term f = 0 contributes. 
This may be interpreted as an irrelevance of 
momentum conservation at vertices, because the 
a-function is replaced by a constant [3]. Thus the 
evaluation of E’,” in d = m reduces to a one- 
dimensional integral over probability functions 
and is therefore the simplest of all dimensions. 
The density dependence of El”’ is shown in hg. 3 
and is compared with the respective numerical 
results for d = 1 and 3. Clearly the result for 
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Fig. 3. Second-order correlation energy for the Hubbard 
model, eZ =2(El”/lE,()l(Ul(E,I)‘, as a function of the den- 
sity n for several dimensions d; I& is the kinetic energy for 
U = 0 [2]. 

d = x, which is easily obtained, is seen to pro- 
vide a very good approximation for the case in 
d = 3, whose evaluation involves considerable 
numerical efforts. It should be noted that the 
neglect of the terms f # 0 in the above lattice 
sum (‘local approximation’) has already been 
used earlier [20] as a pragmatic approximation 
within a perturbational treatment of transition 
metals in d = 3. This approximation is now un- 
derstood to be exact in the limit d+ XI. 

It should be noted that the collapse not only 
occurs in one-particle quantities; the totally ir- 
reducible part of the two-particle vertex function 
also collapses completely, i.e., becomes indepen- 
dent of momenta (but care has to be taken at 
relative momenta q = 0 and Q). Hence the 
momentum dependence of the two-particle prop- 
agator is given by the parquet equations [21]. 
There is, however, no collapse concerning the 
time variable, i.e., energy, such that the unsue- 
ing problem, e.g. the calculation of response and 
correlation functions, is still complicated. It 
should also be mentioned that, provided pertur- 
bation theory is valid at all, the contribution to 
the electrical conductivity due to vertex correc- 
tions vanishes for d = x, so that the conductivity 
is given by the ‘zeroth-order bubble’, owing to 
the odd parity of the current vertex [22]. 

An immediate consequence of the proper self- 
energy being site-diagonal is that its Fourier 
transform is momentum independent, i.e., only 
depends on frequency w [3] 

_Z(k, ,)‘% (w) . (8) 

The one-particle propagator thus has the form 

G(k, W) = [w - c(k) + E, - Z(w)]-’ , (9) 

and depends on k only via the c(k). As pointed 
out by Miiller-Hartmann [19] this has several 
very interesting implications concerning a Fermi- 
liquid description of the lattice models under 
consideration, some of which we list below. 
(Note, that for an A-B lattice and nearest neigh- 
bor hopping the Hubbard model has a ‘perfect- 
nesting’ instability at half-filling, leading to an 
insulating state with antiferromagntic correla- 
tions independent of d; in this case the system is 
of course not a Fermi liquid. However, by in- 
cluding hopping to next-nearest neighbors one 
may open a ‘Fermi liquid window’ at small U, 
such that the above considerations apply; here 
we assume that the symmetry also remains un- 
broken otherwise): 

(i) For w + 0 the system has quasiparticle 
properties, owing to 

Im Z(w) m w2. (10) 

(ii) Since c(k) - E, + X(O) = 0 determines the 
Fermi surface (reducing to I = E”, in the non- 
interacting case) the k-independence of C(0) im- 
plies that its shape is not changed by the inter- 
action. (This shape may be quite complicated 
due to the lattice structure.) The Fermi surface 
volume hence does not change (Luttinger 
theorem). 

(iii) The DOS at the Fermi surface is not 
renormalized. 

(iv) The mass renormalization is simply given 
by 

m* 
-=1-g =“G=l. 
m ” (11) 
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We note, that in microscopic calculations the 
k-dependence of 2 is frequently neglected for 
simplicity. For lattice models this approximation 
is seen to be exact in d = x. 

(v) The momentum distribution nk = n(e,) has 
a discontinuity at E, given by 

n(E, - 0) - n(E, + 0) = 

In d = 2, 3 weak coupling expansions of the 
self-energy etc., are very complicated to com- 
pute explicitly, owing to the large number of 
momentum integrations. In particular, self- 
consistent, numerical calculations turn out to be 
prohibitively difficult for this reason, even using 
the largest computers. Here the limit of large 
dimensions opens a new avenue. Indeed, the 
simplifications arising from the collapse of diag- 
rams and the ensueing momentum independence 
of the proper self-energy allows one to perform 
self-consistent calculations for the first time. In 
the case of the Hubbard model Miiller- 
Hartmann (211 performed conserving approxima- 
tions within second-order perturbation theory 
and thereby extracted the Fermi-liquid parame- 
ters FF, and FII from the respective charge- and 
spin-susceptibilities X,/X,,, = (m* im) I(1 + F:,) 
and x,/x,, = (m*/im)/(l + Fy,). One finds that, 
compared with Hartree-Fock, m* im and Fi, are 
strongly enhanced, while 1 Fi( becomes smaller. 
In fact, Fit levels off at - -0.4, rather than 
approaching - 1, and thus stabilizes the 
paramagnetic phase. By the same method partial 
summations, e.g. of bubble and ladder diagrams 
to the self-energy, can also be calculated explicit- 

1Y PI. 
The periodic Anderson model was studied by 

Schweitzer and Czycholl [24], who performed 
the first fully selfconsistent calculation of the 
f-electron self-energy and spectral function to 
second order in U, including their temperature 
and density dependence. The self-consistency 
guarantees that all Luttinger sum rules are fulfil- 
led. In this model, which is used to describe 
heavy fermion systems, perturbation theory 
should be particularly valuable since in the 
Kondo limit the effective mass can become arbit- 

rarily large even for small repulsion [25]. These 
authors also showed how the d = = limit can be 
employed to determine the full k-dependent self- 
energy in low dimensions (d = 1, 2, 3) [26]. For a 
given dimension d they started from the ‘local 
approximation’ (see the beginning of this section) 
and then included the contribution from nearest, 
next-nearest neighbors, etc., until convergences 
was reached. This corresponds to an effective 
1 /d-expansion and converges even in d = 1. In 
fig. 4 we show their results for the f-electron 
spectral function in d = 3. where the result for 
d = m is compared with that for the k-dependent 
self-energy obtained by summation up to the 
third neighbor shell. Clearly, the d = x result 
already provides a very good approximation. 

5. Exact solutions 

In spite of the diagrammatic simplifications 
occurring in d = m, fermionic lattice models such 
as eqs. (lc) and (2), remain non-trivial and so far 
an exact solution for the Hubbard model in 
d = x has not been possible. However, a sim- 
plified Hubbard model, where only one of the 
two spin species can hop (i.e., tT = 0 and tl = -t 
in eq. (lb)) and which serves as a model for 
semiconductor-metal transition or, alternatively, 
for crystallization, has been solved by Brandt 

p(E) / 

1. 

Fig. 4. f-electron spectral function of the periodic Anderson 
model in d = 3. Parameters: II = 2. U = 1. E, = -0.5. t = 116. 
V= 0.3. Dashed line: result with full k-dependent self-ener- 
gy; full line: result for d = = [26]. 
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and Mielsch [27]. They made explicit use of the 
fact that in d = CC the proper self-energy is site- 
diagonal and can itself be expressed by the site- 
diagonal propagator. Hence they showed that it 
is sufficient to solve an atomic problem in a 
generalized time-dependent external field. 

There arises a fundamental question here: in 
what sense has the exact solution in d = x of a 
fermionic lattice model with on-site interaction a 
‘mean field’ character, and how does this mean 
field theory look like? (Note that the on-site 
interaction is the only dynamical interaction in 
d = ~0 [3] and that Hartree-Fock cannot become 
exact in d = ~0 because it decouples this inter- 
action [28].) An answer was recently provided by 
van Dongen and Vollhardt [28] who showed that 
even for models with an on-site interaction a 
mean field Hamiltonian can be constructed, 
which-in analogy with spin lattice models - 
becomes exact in d- ~0. Here, ‘mean fields’ are 
collective fermion operators, rather than num- 
bers. The solution shows that the issue of mean 
field theories is much more subtle in this class of 
problems than in the case of classical and local- 
ized models. 

6. Discussion 

Within a short time investigations of lattice 
fermion systems in the limit of high spatial di- 
mensions have yielded new insight into the prop- 
erties and the behavior of Hubbard-type models. 
Provided that the kinetic energy is scaled proper- 
ly, these models and the correlations described 
by them remain non-trivial even in d = =. At the 
same time perturbational calculations become 
much simpler than in finite dimensions. This 
property makes variational calculations, micro- 
scopic many-body methods, etc. tractable in d = 
~0 which are prohibitively difficult in lower di- 
mensions. Most importantly, many essential fea- 
tures of systems in d = 3, and even lower dimen- 
sions, are very well described by the results in 
d = m or expansions around this limit. In this 
sense d = 3 may already by considered a ‘high 
dimension’. Indeed, on a lattice the important 
quantity is not so much d itself, but the number 

of nearest neighbors (2 = 2d on a hypercubic 
lattice). The limit of large d also allows one to 
understand the nature of mean field theories for 
fermionic lattice models, which is much more 
subtle than in classical systems. The investigation 
of Hubbard-type models in high dimensions has 
only begun. There are still many open questions, 
whose answer will help to provide a better un- 
derstanding of these important models. 
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