High dimensions —a new approach to fermionic lattice models
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The limit of high spatial dimensions d, which is well-established in the theory of classical and localized spin models, is
shown to be a fruitful approach also to itinerant fermion systems, such as the Hubbard model and the periodic Anderson
model. Many investigations which are prohibitively difficult in finite dimensions, become tractable in d = . At the same
time essential features of systems in d =3 and even lower dimensions are very well described by the results obtained in
d=c«. A wide range of applications of this new concept (e.g., in perturbation theory, Fermi liquid theory, variational
approaches, exact results, etc.) is discussed and the state-of-the-art is reviewed.

1. Introduction

Theoretical investigations of correlated ferm-
ion systems are generally exceedingly difficult
owing to quantum statistics and the many-body
nature of the problem. Even standard methods
like perturbation theory and variational ap-
proaches mect with scverc technical problems
when it comes to explicit evaluations. It is there-
fore of essential importance to find non-trivial
limits where such treatments are manageable at
all. In this respect the lowest spatial dimension,
d=1, is a standard dimension for quantum-
theorists, since in d = 1 there exist powerful tech-
niques (Bethe-Ansatz, bosonization, etc.) which
in many cases allow one to derive exact results.
By contrast, in classical statistical physics the
limit of large spatial dimensions is well-estab-
lished, since exact solutions for spin lattice mod-
els in d=o are intimately connected with the
respective mean field theories (MFT) [1].

It is therefore natural to ask whether the limit
of d == also helps to gain insight into systems
with itinerant quantum mechanical degrees of
freedom, e.g. fermionic lattice models. In fact,
Metzner and Vollhardt [2] recently showed that
in the limit d — « Hubbard-type models (if prop-
erly scaled) and their correlations remain nontri-

vial, while investigations become substantially
simpler.

2. Fermionic lattice models in d = «

The Hubbard model is used in various areas of
condensed matter theory (e.g., itinerant magnet-
ism, metal-insulator transition, high-7, super-
conductivity) because of its relative simplicity
and generic nature. It describes electrons with
spin o0=1,] on a lattice with a short-range
(effectively zero-range, i.e., on-site) interaction

Hy=U2 hyh, =UD, (1a)
€., such that D is the number

operator for doubly occupied sites in the system.
The electrons can have a general kinetic energy

where 7, =¢é. ¢,

A e

Ht— E to'cio'cjtr L4 (1b)
(j).o

with hopping matrix element 7, . If nearest-neigh-

bor interactions are included, e.g. by H, =

Ly Loor Voo iigh,, a generalized, one-band

Hubbard model may be written as

Hy.=H+H,+H,. (1c)
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In the original Hubbard model V. =0 and ¢, =
—t. Another important, somewhat related two-
band model is the periodic Anderson model
(PAM) involving c- and f-electrons

HPAM = Hi + Ij{tf + 1:1{/' + 2 (ka;(réktr + h‘c') -
k.o
(2)

which are hybridized via the last term (here V is
the hybridization matrix element and f;, , ¢,, .
etc. are expressed in momentum representation).
The hopping corresponds to an energy dispersion
e(k), which on a hypercubic lattice has the form

((y=t,=~1)

z ek i) = 94 2 cos k; . 3)
L (i)

Here L is the number of lattice sites and the
lattice constant is taken as unity. In the limit of
large dimensions, d— =, e(k) is not of the order
of td, as might be naively expected from eq. (3).
In fact, for a randomly chosen momentum eq.
(2) vields (k)= —td'"* for large d [2] (excep-
tions are k =0 and k= @ (haif a reciprocal lat-
tice vector), but these momenta have zero mea-
sure), and the central limit theorem determines
the density of states (DOS) as

d—= 1 _[E/ ,f_ 2
N(E) g 2 e [E/(20Vd)] (4)

This is a Gaussian DOS, free of van Hove
singularities, which is finite only if ¢ is rescaled
as t—1/V2d, whereby N(E)—(Qmt>) '
exp(— £/217) (henceforth f=1). Only this scal-
ing with 1/Vd leads to a finite Kinetic energy in
the limit d — > and hence to a non-trivial limit
for the Hubbard model, in which kinetic energy
A, and interaction F,, (which needs no rescaling
because of its local nature) truely compete. If, in
addition, V__, #0 in eq. (1¢), it has to be scaled
according to V— V/2d, because the interaction
involves the densities of nearest neighbors, their
number being of order 2d. For other types of
lattices and/or range of hopping the scaling of
the kinetic energy still has to be performed as

discussed above, but the DOS is then in general
no longer Gaussian [3]. From the above discus-
sion it is clear that the limit of high dimensions
only applies to lattice models.

3. Variational wave functions

In view of the substantial difficulties involved
in any exact treatment of fermionic many-body
systems, variational wave functions { VWFs) have
always played an important role in the investiga-
tion of such systems. VWFs provide an approxi-
mate, but explicit and intuitive approach to the
understanding of correlations and, in particular,
go beyond standard perturbation thecory [4]. In
the case of fermionic lattice models with on-site
interaction as in eqs. (1a) and (2), the reduction
of doubly occupied sites is of particular impor-
tance. This is achieved by a Gutzwiller-type
wave function [5]

lo) =g lwy) =1111=(1 - D). (5)

where D, = ”m”rl g €10, 1] is a variational pa-
rameter and |¢,) is an arbitrary one-particle

wave function. The projector g” reduces the
amplitude of those spin configurations with too
many doubly occupied sites. When [,) is taken
as the (paramagnetic) Fermi sea, eq. (5) reduces
to the well-known Gutzwiller wave function [6].
More generally, |,) can, e.g., be chosen as a
spin density wave with antiferromagnetic long-
range order, a BCS-wave function or—in the
case of eq. (2) - the wave function for the hy-
bridized ground state of ¢- and f-electrons at
U =0 [5]. In spite of the apparent simplicity of
eq. (5), the analytic evaluation of the expecta-
tion value (O) of an operator O in terms of eq.
(5) is in general not tractable in finite dimen-
sions. However, using a perturbational didgram—
matic approach similar to that used in a ¢*-
theory an exact evaluation of ( Q) is possible in
the limit d— = [2, 7]. In this approach diagrams
are conveniently expressed by the self-energy S, ;;
m position space, with lines corresponding to
P, .= (¢, ¢, 1) and vertices corresponding




to a factor (g° — 1). Both, the one-particle den-
sity matrix P, = (c,,c m) (which yields the
kinetic energy (H. ), eq. (1b)) and the on-site
interaction (H,,), eq. (1a), are completely de-
termined by S . In the limit d— o the evalua-
tion of the diagrams for S, 1s tremendously
simplified due to the fact that P Vamshes as

ry=el(z) ] ©

where |i — j| = £{_, |i, — j,|. This implies a drastic
collapse of those diagrams in which two vertices
are joined by more than two different paths (see
fig. 1). This is the case, in particular, for the
proper self-energy 87, which is the sum over all
one-particle irreducible seclf-energy diagrams.
Consequently, S* .. is site-diagonal in d = o,

aij

Sy =800y - N
Given a starting wave function |¢,) in eq. (5)
the evaluation of, say, the ground state energy
(H,,,) can be performed explicitly in d = o [8].
In this case only diagrams with bubble structure
remain, i.e., correlation functions acquire an
overall RPA structure.

As shown by Gebhard [9] the above formalism
can be further simplified by a slight redefinition
of the wave function |¢,) in eq. (5). Thereby
results in d =% can be obtained without having
to calculate a single graph. In particular, the
ground-state energy for eq. (Ic) or eq. (2) can
now be obtained in closed form for arbitrary
[h,). The result is found to be identical to an
carlier one obtained by Kotliar and Ruckenstein
[10], who used a saddle point approximation
within a slave boson approach. Thus the d ==

\—..‘

Fig. 1. Collapse of a typical irreducible self-energy diagram
in d=o.
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limit reveals an intimate connection between two
seemingly different approaches. — Contact with
finite dimensions can be made by explicit 1/d
expansions [7, 9]. In many cases already the 1/d
correction, together with the appropriate DOS in
d dimensions, yields excellent agreement with
known results in dimensions as low as d =1. In
general, results in d = 3 are already found to be
very well approximated by those for d = .

It is interesting to observe that in the case of
the Gutzwiller wave function [6] the results of
the exact evaluation of the ground state energy
of the Hubbard model in d =2 [2] are identical
to those obtained within the so-called Gutzwiller
approximation [11]. The latter corresponds to a
semi-classical approximation, which evaluates
matrix elements by calculating the classical statis-
tical weights of spin configurations, thereby neg-
lecting spatial correlations [12]. At half-filling
(n =1) the Gutzwiller approximation leads to a
localization transition at finite U (Brinkman-
Rice transition [13]). It yields simple, physically
sensible results in a number of problems (e.g.,
metal—insulator transitions [13], normal-liquid
*He [12, 14]) and allows contact to be made with
Fermi-liquid theory. The transition itself is an
artefact of d =, which is not removed by finite
orders of 1/d corrections [8, 9]. However, in
d =3 the approximation is indeed excellent if
one is not too close to this transition, and is even
better for n <1.

For the investigation of the periodic Anderson
model a VWF has been proposed [15] where
|4,) in eq. (5) is given by the exact ground state
wave function for U =0, with the hybridization
amplitude between the ¢- and f-electrons taken
as a variational function. The correlator g” in
eq. (5) then only acts on the f-electrons. Such an
Ansatz is motivated by VWFs used in the single-
impurity problem. An exact evaluation of the
ground-state energy E [16], correlation functions
[17], etc. is again possible in d = oo, the result for
E being identical to that obtained by a Gut-
zwiller-type approximation. In fig. 2 we show the
spin—spin and density—density correlation func-
tion for the f-electrons as calculated analytically
in d =%« and evaluated with the DOS in d=1
[17], and compare with the results in d =1 ob-
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Fig. 2. Variational evaluation of the spin—spin (C**(g)) and density—density (C°°(g¢)) correlation function for f-electrons in the
periodic Anderson model. Analytic results for d =< (evaluated with the one-dimensional DOS [17]) are compared with
variational Monte Carlo (VMC) results in d = 1 [18]. Parameters: n =175, U==, E, =0, =1, V=0.5.

tained by variational Monte Carlo [18]. Obvious-
ly the two agree extremely well. This shows that
the d == limit can even give valuable insight
into dimensions as low as d = 1.

4. Weak coupling perturbation theory

The diagrammatic collapse discussed above,
and the substantial simplifications deriving from
it [2], actually occur in any standard perturba-
tional treatment of fermionic lattice models in
d ==. The propagator (Green function) of the
noninteracting system always obeys eq. (6),
which is a consequence of the scaling t— t/V2d
[19]. Therefore, within a site representation, two
vertices in a diagram collapse, if they are con-
nected by more than two lines: for nearest neigh-
bor sites a propagator is of order d ''?, and there
are of order d sites which are to be summed;
hence the contribution to a diagram, in which
two vertices are on different sites and are joined
by three and more lines, vanishes unless the two
sites coincide. In particular, e.g. for skeleton
diagrams, the irreducible self-energy X7, this

collapse involves all vertices, i.e., the contribu-

tion is purely site-diagonal (‘local’) as given by
eq. (7) [3, 19].

A simple illustration of these simplifications is
provided by weak coupling expansions, e.g. for
the correlation energy E = E, . — E, for the
Hubbard model [2], which is the difference be-
tween the exact ground-state energy and the
Hartree—Fock energy. Within Goldstone pertur-
bation theory the second-order contribution to
E_ is given by E?) o U, which is an integral over
four momenta k,, i=1,...,4, which are con-
strained by momentum conservation (thus yield-
ing a 3d-fold integration). This constraint (a
8-function) can be expressed as a lattice sum
(effectively the sum over the relative position
f=1i—j of the two vertices i and j of the diag-
rams on the lattice). In d = » the collapse implies
i =j and hence only the term f=0 contributes.
This may be interpreted as an irrelevance of
momentum conservation at vertices, because the
8-function is replaced by a constant [3]. Thus the
evaluation of E* in d =% reduces to a one-
dimensional integral over probability functions
and is therefore the simplest of all dimensions.
The density dependence of E” is shown in fig. 3
and is compared with the respective numerical
results for d =1 and 3. Clearly the result for
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Fig. 3. Second-order correlation energy for the Hubbard
model, e, =2(E1£,1)/(U/]&,]), as a function of the den-
sity n for several dimensions d; |&,| is the kinetic energy for
U=0[2].

d ==, which is easily obtained, is seen to pro-
vide a very good approximation for the case in
d =3, whose evaluation involves considerable
numerical efforts. It should be noted that the
neglect of the terms f# 0 in the above lattice
sum (‘local approximation’) has already been
used earlier [20] as a pragmatic approximation
within a perturbational treatment of transition
metals in d = 3. This approximation is now un-
derstood to be exact in the limit d— .

It should be noted that the collapse not only
occurs in one-particle quantities; the totally ir-
reducible part of the two-particle vertex function
also collapses completely, i.e., becomes indepen-
dent of momenta (but care has to be taken at
relative momenta ¢=0 and Q). Hence the
momentum dependence of the two-particle prop-
agator is given by the parquet equations [21].
There is, however, no collapse concerning the
time variable, i.e., energy, such that the unsue-
ing problem, e.g. the calculation of response and
correlation functions, is still complicated. It
should also be mentioned that, provided pertur-
bation theory is valid at all, the contribution to
the electrical conductivity due to vertex correc-
tions vanishes for d = =, so that the conductivity
is given by the ‘zeroth-order bubble’, owing to
the odd parity of the current vertex [22].
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An immediate consequence of the proper self-
energy being site-diagonal is that its Fourier
transform is momentum independent, i.e., only
depends on frequency w [3]

3k, 0)='% (@) (8)
The one-particle propagator thus has the form
Gk, ) =[w — e(k) + Ep = 2(0)] ', 9

and depends on k only via the e(k). As pointed
out by Miller—-Hartmann [19] this has several
very interesting implications concerning a Fermi-
liquid description of the lattice models under
consideration, some of which we list below.
(Note, that for an A—-B lattice and nearest neigh-
bor hopping the Hubbard model has a ‘perfect-
nesting’ instability at half-filling, leading to an
insulating state with antiferromagntic correla-
tions independent of d; in this case the system is
of course not a Fermi liquid. However, by in-
cluding hopping to next-nearest neighbors one
may open a ‘Fermi liquid window’ at small U,
such that the above considerations apply; here
we assume that the symmetry also remains un-
broken otherwise):

(i) For @ —0 the system has quasiparticle
properties, owing to

Im 3(w)*w’. (10)

(ii) Since &(k) — E,. + 3(0) = 0 determines the
Fermi surface (reducing to (k) = E} in the non-
interacting case) the k-independence of 3(0) im-
plies that its shape is not changed by the inter-
action. (This shape may be quite complicated
due to the lattice structure.) The Fermi surface
volume hence does not change (Luttinger
theorem).

(iii) The DOS at the Fermi surface is not
renormalized.

(iv) The mass renormalization is simply given
by

-r;:l——- =1. (11)
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We note, that in microscopic calculations the
k-dependence of 3 is frequently neglected for
simplicity. For lattice models this approximation
is seen to be exact in d = .

(v) The momentum distribution #n, = n(e, ) has
a discontinuity at E. given by

w1
m*

n(EF—O)wn(EF—i—()):(;;) . (12)

In d =2, 3 weak coupling expansions of the
self-energy etc., are very complicated to com-
pute explicitly, owing to the large number of
momentum  intcgrations. In  particular, self-
consistent, numerical calculations turn out to be
prohibitively difficult for this reason, even using
the largest computers. Here the limit of large
dimensions opens a new avenue. Indeed, the
simplifications arising from the collapse of diag-
rams and the ensueing momentum independence
of the proper self-energy allows onc to perform
self-consistent calculations for the first time. In
the case of the Hubbard model Miller—
Hartmann [21] performed conserving approxima-
tions within second-order perturbation theory
and thereby extracted the Fermi-liquid parame-
ters F,, and F} from the respective charge- and
spin-susceptibilities  x./x., = (m*/m)/(1 + F})
and x/x,, = (m*/m)/(1+ F(). One finds that,
compared with Hartree~Fock, m*/m and Fy are
strongly enhanced, while |F;| becomes smaller.
In fact, F}, levels off at ~ —0.4, rather than
approaching —1, and thus stabilizes the
paramagnetic phase. By the same method partial
summations, €.g. of bubble and ladder diagrams
to the self-energy, can also be calculated explicit-
ly [23].

The periodic Anderson model was studied by
Schweitzer and Czycholl [24], who performed
the first fully selfconsistent calculation of the
f-electron self-energy and spectral function to
second order in U, including their temperature
and density dependence. The self-consistency
guarantees that all Luttinger sum rules are fulfil-
led. In this model, which is used to describe
heavy fermion systems, perturbation theory
should be particularly valuable since in the
Kondo limit the effective mass can become arbit-

rarily large even for small repulsion [25]. These
authors also showed how the d = limit can be
employed to determine the full k-dependent self-
energy in low dimensions (d = 1, 2, 3) [26]. For a
given dimension d they started from the ‘local
approximation’ (see the beginning of this section)
and then included the contribution from nearest,
next-nearest neighbors, etc., until convergences
was reached. This corresponds to an effective
1/d-expansion and converges even in d =1. In
fig. 4 we show their results for the f-electron
spectral function in d =3, where the result for
d = = is compared with that for the k-dependent
self-energy obtained by summation up to the
third neighbor shell. Clearly, the d = result
already provides a very good approximation.

5. Exact solutions

In spite of the diagrammatic simplifications
occurring in d = o, fermionic lattice models such
as egs. (1c) and (2), remain non-trivial and so far
an exact solution for the Hubbard model in
d = has not been possible. However, a sim-
plified Hubbard model, where only one of the
two spin species can hop (i.c., 1, =0and 1| = —¢
in eq. (1b)) and which serves as a model for
semiconductor—metal transition or, alternatively,
for crystallization, has been solved by Brandt

o(E)

Lo
-1.0

Fig. 4. f-electron spectral function of the periodic Anderson
model in d = 3. Parameters: n =2, U=1, E,=~-05,t=1/6,
V=0.3. Dashed line: result with full k-dependent self-ener-
gy; full line: result for d == [26].



and Mielsch [27]. They made explicit use of the
fact that in d = « the proper self-energy is site-
diagonal and can itself be expressed by the site-
diagonal propagator. Hence they showed that it
is sufficient to solve an atomic problem in a
generalized time-dependent external field.

There arises a fundamental question here: in
what sense has the exact solution in d =2 of a
fermionic lattice model with on-site interaction a
‘mean field’ character, and how does this mean
field theory look like? (Note that the on-site
interaction is the only dynamical interaction in
d =« [3] and that Hartree—Fock cannot become
exact in d =o because it decouples this inter-
action [28].) An answer was recently provided by
van Dongen and Vollhardt [28] who showed that
even for models with an on-site interaction a
mean field Hamiltonian can be constructed,
which —in analogy with spin lattice models -
becomes exact in d — «. Here, ‘mean fields’ are
collective fcrmion operators, rather than num-
bers. The solution shows that the issue of mean
field theories is much more subtle in this class of
probiems than in the case of classical and local-
ized models.

6. Discussion

Within a short time investigations of lattice
fermion systems in the limit of high spatial di-
mensions have yielded new insight into the prop-
erties and the behavior of Hubbard-type models.
Provided that the kinetic energy is scaled proper-
ly, these models and the correlations described
by them remain non-trivial even in d = ». At the
same time perturbational calculations become
much simpler than in finite dimensions. This
property makes variational calculations, micro-
scopic many-body methods, etc. tractable in d =
o which are prohibitively difficult in lower di-
mensions. Most importantly, many essential fea-
tures of systems in d = 3, and even lower dimen-
sions, are very well described by the results in
d == or expansions around this limit. In this
sense d =3 may already by considered a ‘high
dimension’. Indeed, on a lattice the important
quantity is not so much d itself, but the number
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of nearest neighbors (Z=2d on a hypercubic
lattice). The limit of large d also allows one to
understand the nature of mean field theories for
fermionic lattice models, which is much more
subtle than in classical systems. The investigation
of Hubbard-type models in high dimensions has
only begun. There are still many open questions,
whose answer will help to provide a better un-
derstanding of these important models.
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