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Abstract. We develop an adaptive finite element method for a class of dis-
tributed optimal control problems with control constraints. The method is
based on a residual-type a posteriori error estimator and incorporates data os-
cillations. The analysis is carried out for conforming P1 approximations of the
state and the co-state and elementwise constant approximations of the control
and the co-control. We prove convergence of the error in the state, the co-
state, the control, and the co-control. Under some additional non-degeneracy
assumptions on the continuous and the discrete problems, we then show that
an error reduction property holds true at least asymptotically. The analysis
uses the reliability and the discrete local efficiency of the a posteriori esti-
mator as well as quasi-orthogonality properties as essential tools. Numerical
results illustrate the performance of the adaptive algorithm.
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1. Introduction

We present a convergence analysis of adaptive finite element approximations of
a distributed optimal control problem with control constraints. In particular, as-
suming Ω ⊂ R2 to be a bounded, polygonal domain with boundary Γ := ∂Ω and
given data yd ∈ L2(Ω) and f ∈ L2(Ω), ψ ∈ H1(Ω)∩L∞(Ω) as well as a parameter
0 < α ≤ 1, we consider the following distributed optimal control problems with
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bound constrained controls

minimize J(y, u) :=
1
2
‖y − yd‖2

0,Ω +
α

2
‖u‖2

0,Ω (1.1a)

over (y, u) ∈ H1
0 (Ω) × L2(Ω),

subject to − ∆ y = f + u , (1.1b)

u ∈ K := {v ∈ L2(Ω) | v ≤ ψ a.e. in Ω} . (1.1c)

It is well known (cf., e.g., [15, 20, 21]) that (1.1a)–(1.1c) admits a unique solution
(y, u) ∈ H1

0 (Ω) × L2(Ω). The optimality conditions involve the existence of a co-
state p ∈ H1

0 (Ω) and a co-control σ ∈ L2
+(Ω) such that y, p, u, σ satisfy

a(y, v) = (f + u, v)0,Ω , v ∈ H1
0 (Ω) , (1.2a)

a(p, v) = − (y − yd, v)0,Ω , v ∈ H1
0 (Ω) , (1.2b)

u =
1
α

(p− σ) ∈ K , (1.2c)

(σ, u− v)0,Ω ≥ 0 , v ∈ K . (1.2d)

Here, (·, ·)0,Ω refers to the standard L2 inner product and a(·, ·) stands for the
bilinear form

a(w, z) :=
∫
Ω

∇w · ∇z dx , w, z ∈ H1
0 (Ω) .

We note that the variational inequality (1.2d) can be equivalently stated as the
complementarity condition

σ ∈ L2
+(Ω) , ψ − u ∈ L2

+(Ω) , (1.3)
(σ, ψ − u)0,Ω = 0 .

We define the active control set A(u) as the maximal open set A ⊂ Ω such that
u(x) = ψ(x) f.a.a. x ∈ A and the inactive control set I(u) according to I(u) :=⋃

ε>0 Bε, where Bε is the maximal open set B ⊂ Ω such that u(x) ≤ ψ(x) − ε
for almost all x ∈ B. Further, we refer to F(u) := ∂A(u) as the free boundary
between the active and inactive sets.

The control problem (1.1a)–(1.1c) will be approximated by Lagrangian type
finite elements with respect to an adaptively generated hierarchy of simplicial tri-
angulations of the computational domain. We note that adaptive finite element
methods (AFEM) are efficient and reliable algorithmic tools in the numerical so-
lution of partial differential equations. AFEMs typically consist of successive loops
of the sequence

SOLVE → ESTIMATE → MARK → REFINE . (1.4)

Here, SOLVE stands for the numerical solution of the finite element discretized
problem, ESTIMATE requires the a posteriori estimation of the global discretiza-
tion error in some appropriate norm or with respect to a goal oriented error func-
tional. The step MARK is devoted to the selection of elements and edges for
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refinement, and the final step REFINE takes care of the technical realization of
the refinement process.

The development, analysis and implementation of efficient and reliable a pos-
teriori error estimators has been the subject of intensive research in the past two
decades and has actually reached some level of maturity (see, e.g., the monographs
[1, 3, 4, 14, 25, 26] and the references therein). On the other hand, a rigorous con-
vergence analysis of (1.4) relying on appropriate error reduction properties has
so far only been done for conforming AFEMs [8, 13, 24] and, very recently, by
Carstensen and the second author for mixed and nonconforming finite element
methods in [10, 11] as well as for edge element methods for eddy current equations
in [12].

As far as the a posteriori error analysis of adaptive finite element schemes
for optimal control problems is concerned, the unconstrained case has been con-
sidered in [4, 6], whereas residual-type a posteriori error estimators in the control
constrained case have been derived and analyzed in [17, 19, 21, 22]. No convergence
analysis has been addressed so far.

This contribution aims to provide a convergence analysis of AFEM for (1.1a)–
(1.1c). The paper is organized as follows:

In Section 2, we consider the finite element approximation of (1.1a)–(1.1c)
and present details of the adaptive loop (1.4) focusing on a residual-type a poste-
riori error estimator in the step ESTIMATE and a bulk criterion for the selection
of edges and elements for refinement in the step MARK. The reliability of the
estimator and its discrete local efficiency are shown in Section 3. In Section 4, we
prove convergence of the discrete states and co-states in H1

0 (Ω) and of the discrete
controls and co-controls in L2(Ω). Under the assumptions of strict complementar-
ity and non-degeneracy, in Section 5 we show that an error reduction property
holds true at least asymptotically. Finally, Section 6 illustrates the performance of
the estimator by an illustrative numerical example.

2. Finite element discretization

For the finite element discretization of (1.1a)–(1.1c) we assume that T� is a shape-
regular simplicial triangulation of Ω. We refer toN�(D), E�(D), and T�(D) , D ⊆ Ω,
as the sets of vertices, edges and elements of T� inD ⊆ Ω. We set h� := max{hT |T ∈
T�} where hT stands for the diameter of an element T ∈ T� and we denote by hE

the length of an edge E ∈ E�. Further, we refer to gT as the integral mean of
g ∈ L2(Ω) on T ∈ T�, i.e., gT = |T |−1

∫
T g dx. We denote by

V� := { v� ∈ C0(Ω) | v�|T ∈ P1(T ) , T ∈ T� } ,

the standard conforming P1 finite element space and by

W� := { w� ∈ L2(Ω) | w�|T ∈ P0(T ) , T ∈ T� }
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the linear space of elementwise constant functions on Ω. We refer to y� ∈ V�

and u� ∈ W� as finite element approximations of the state y and the control u,
respectively. The upper obstacle ψ is approximated by the elementwise constant
function ψ� ∈ W� with ψ�|T := ψT , T ∈ T�.

Then, the finite element approximation of the distributed optimal control
problem (1.1a)–(1.1c) reads as follows:

minimize J�(y�, u�) :=
1
2
‖y� − yd‖2

0,Ω +
α

2
‖u�‖2

0,Ω , (2.1a)

over (y�, u�) ∈ V� ×W� ,

subject to a(y�, v�) = (f + u�, v�)0,Ω , v� ∈ V� , (2.1b)

u� ∈ K� := {w� ∈W� | w�|T ≤ ψT , T ∈ T�} . (2.1c)

The optimality conditions for (2.1a)–(2.1c) again give rise to the existence of a
co-state p� ∈ V� and a co-control σ� ∈ W� such that

a(y�, v�) = (f + u�, v�)0,Ω , v� ∈ V� , (2.2a)

a(p�, v�) = − (y� − yd, v�)0,Ω , v� ∈ V� , (2.2b)

u� =
1
α

(M�p� − σ�) ∈ K� , (2.2c)

(σ�, v� − u�)0,Ω = 0 v� ∈ K� . (2.2d)

Here, M� : H1
0 (Ω) →W� stands for the operator given by

(M�v)T := vT = |T |−1

∫
T

v(x) dx , T ∈ T� . (2.3)

As in the continuous case, (2.2d) can be stated as the complementarity condition

σ� ≥ 0 , ψ� − u� ≥ 0 , (2.4)
(σ�, ψ� − u�)0,Ω = 0 .

We define A(u�) and I(u�) as the discrete active and inactive control sets accord-
ing to

A(u�) :=
⋃

{ T ∈ T� | u�|T = ψ�|T } , (2.5a)

I(u�) :=
⋃

{ T ∈ T� | u�|T < ψ�|T } (2.5b)

and refer to F(u�) := ∂A(u�) as the discrete free boundary between the discrete
active and inactive sets.

We note that the discrete state and co-state y�, p� ∈ V� may also be considered
as finite element approximations of an auxiliary state y(u�) ∈ H1

0 (Ω) and an
auxiliary co-state p(u�) ∈ H1

0 (Ω) as given by the coupled elliptic system

a(y(u�), v) = (f + u�, v)0,Ω , v ∈ H1
0 (Ω) , (2.6a)

a(p(u�), v) = − (y(u�)− yd, v)0,Ω , v ∈ H1
0 (Ω) . (2.6b)
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Obviously, we have the Galerkin orthogonality

a(y� − y(u�), v�) = 0 , v� ∈ V� . (2.7)

Furthermore, there holds

|y(u�) − y|1,Ω ≤ cF (Ω) ‖u− u�‖0,Ω , (2.8a)

|p(u�) − p|1,Ω ≤ cF (Ω) ‖y − y(u�)‖0,Ω , (2.8b)

where cF (Ω) > 0 is the constant in the Poincaré-Friedrichs inequality

‖v‖0,Ω ≤ cF (Ω) |v|1,Ω , v ∈ H1
0 (Ω) . (2.9)

Throughout the rest of this paper, we assume that the coupled system (2.6a),
(2.6b) is H1+γ-regular for some γ > 0 which implies the existence of a constant
Cr > 0, depending only on the shape regularity of the triangulations, such that

‖y� − y(u�)‖0,Ω ≤ Crh
γ
� |y� − y(u�)|1,Ω . (2.10)

3. The adaptive loop

In the step SOLVE of the adaptive loop, for the computation of the solution of
(2.1a)–(2.1c) we use the primal-dual active set strategy as described in [7]. In the
step ESTIMATE, we use the residual type error estimator

η :=
(
η2y + η2p

)1/2

, (3.1)

ηy :=
( ∑

T∈T�

η2y,T +
∑

E∈E�

η2y,E

)1/2

, (3.2)

ηp :=
( ∑

T∈T�

2∑
i=1

(η(i)p,T )2 +
∑

E∈E�

η2p,E

)1/2

. (3.3)

The estimator consists of easily computable element residuals and edge residuals.
In particular, for T ∈ T� the element residuals ηy,T and η(i)p,T , 1 ≤ i ≤ 2, are as
follows

ηy,T := hT ‖f + u�‖0,T , (3.4)

η
(1)
p,T := hT ‖yd − y�‖0,T , (3.5)

η
(2)
p,T := ‖M�p� − p�‖0,T , (3.6)

whereas for E ∈ E� the edge residuals ηy,E , ηp,E are given by

ηy,E := h
1/2
E ‖νE · [∇y�]‖0,E , (3.7)

ηp,E := h
1/2
E ‖νE · [∇p�]‖0,E . (3.8)

Here, E = T1 ∩ T2, Tν ∈ T�, 1 ≤ ν ≤ 2, and νE is the exterior unit normal vector
on E directed towards T2, whereas [∇y�] and [∇p�] denote the jumps of ∇y�,∇p�
across E.



52

Moreover, the convergence analysis invokes data oscillations in yd, f and ψ

osc�(yd) :=
( ∑

T∈T�

oscT (yd)2
)1/2

, oscT (yd) := hT ‖yd − yd� ‖0,T , (3.9a)

osc�(f) :=
( ∑

T∈T�

oscT (f)2
)1/2

, oscT (f) := hT ‖f − f�‖0,T , (3.9b)

osc�(ψ) :=
( ∑

T∈T�

oscT (ψ)2
)1/2

, oscT (ψ) := hT ‖∇ψ‖0,T . (3.9c)

where yd� ∈W� and f� ∈W� with yd� |T := ydT , f�|T := fT , T ∈ T�.
Given universal constants Θi, 1 ≤ i ≤ 2 with 0 < Θi < 1, in the bulk criterion
of step MARK we select a set of edges ME

� ⊂ E� and a set of elements MT
� :=

Mη,T
� ∪Mosc,T ⊂ T� such that

Θ1

∑
E∈E�

(η2y,E + η2p,E) ≤
∑

E∈ME

(η2y,E + η2p,E) , (3.10)

Θ2

( ∑
T∈T�

(η2y,T + (η(1)p,T )2 + (η(2)p,T )2)
)

≤
∑

T∈Mη,T

(η2y,T + (η(1)p,T )2 + (η(2)p,T )2) .
(3.11)

The bulk criteria are realized by a greedy algorithm (cf., e.g., [17]).
In the final step REFINE, an element T selected in the bulk criterion is refined

by successive bisection such that at least one interior nodal point is generated
(‘interior node property’). If two or three edges of an element have been marked
for refinement, the triangle is subdivided into four subtriangles by joining the
midpoints of the edges, whereas simple bisection is used, if only one edge has been
selected in the bulk criterion. Bisection is also used in case of newly created nodes
at midpoint of edges not contained in ME in order to provide a geometrically
conforming new triangulation T�+1. Setting

osc� :=
(
osc2

�(y
d) + osc2

� (f) + osc2
�(ψ)

)1/2
, (3.12)

we assume that T�+1 is such that there exists 0 ≤ ρ2 < 1 satisfying

osc2
�+1 ≤ ρ2 osc2

� . (3.13)

In practice, the oscillation term osc� is included in the bulk criteria of step MARK
(cf., e.g., [24] for a thorough discussion of the oscillation term and see [17] for
details of the algorithmic realization).
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4. Reliability and discrete local efficiency

The reliability of the estimator has been established in [17].

Theorem 4.1. Let (y, p, u, σ) and (y�, p�, u�, σ�) be the solutions of (1.2a)–(1.2d)
and (2.2a)–(2.2d), and let η and µ�(ψ) be the residual error estimator and the data
oscillations as given by (3.1) and (3.9c), respectively. Then, there exists a constant
C1 > 1, depending only on α and on the shape regularity of the triangulations, such
that

|y − y�|21,Ω + |p− p�|21,Ω + ‖u− u�‖2
0,Ω (4.1)

+ ‖σ − σ�‖2
0,Ω ≤ C1

(
η2 + osc2

�(ψ)
)
.

For the discrete local efficiency of the estimator we have to show that for
refined elements T and edges E the local components of the estimator can be
bounded from above by the norms of the differences of the fine and coarse mesh
approximations on T and the patches ωE , respectively.

Lemma 4.2. For a refined element T ∈ T� there holds

η2y,T � |y� − y�+1|21,T + h2T ‖u� − u�+1‖2
0,T + osc2

T (f) , (4.2)

(η(1)p,T )2 � |p� − p�+1|21,T + |y� − y�+1|21,T + osc2
T (yd) , (4.3)

(η(2)p,T )2 � |p� − p�+1|20,T + α2‖u� − u�+1‖2
0,T + ‖σ� − σ�+1‖2

0,T . (4.4)

Proof. Let ϕa
�+1 ∈ V�+1 be a nodal basis function associated with an interior point

a ∈ N�+1(T ) and Da := supp(ϕa
�+1). Then, the function z�+1 := (fT + u�)ϕa

�+1

satisfies

‖fT + u�‖2
0,T � (fT + u�, z�+1)0,T , (4.5)

‖z�+1‖0,T � ‖fT + u�‖0,T , |z�+1|1,T � h−1
T ‖fT + u�‖0,T . (4.6)

Using (4.5) and (4.6) we find

η2y,T = h2T ‖fT + u�‖2
0,T � h2T (f + u�+1, z�+1)0,T (4.7)

+h2T
(
‖u� − u�+1‖0,T ) + ‖f − fT ‖0,T

)
‖z�+1‖0,T .

Since z�+1 is an admissible test function in (2.5a) (with � replaced by � + 1), we
have

a(y�+1, z�+1) = (f + u�+1, z�+1)0,T .

Observing ∆y� = 0 on T and z�+1|∂Da = 0, a simple integration by parts shows

a|T (y�, z�+1) =
∑

T ′∈T�+1(Da)

∫
T ′

∇y� · ∇z�+1 dx

= −
∑

T ′∈T�+1(Da)

∫
T ′

∆y�z�+1 dx+
∫

∂Da

ν∂Da · ∇y�z�+1 ds = 0 .
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Consequently, we obtain

h2T (f + u�+1, zh)0,T (4.8)

= h2Ta(y�+1 − y�, z�+1) ≤ h2T |y�+1 − y�|1,T |z�+1|1,T .

Inserting (4.8) into (4.7) and using (4.6) as well as Young’s inequality gives the
assertion.

The proof of (4.3) follows by similar arguments, this time choosing z�+1 =
(yd� − ŷ�)ϕa

�+1, where ŷ� is the integral mean of y� on T .
For the proof of (4.4), the triangle inequality readily gives

η
(2)
p,T ≤ ‖M�p� −M�+1p�+1|0,T + ‖p� − p�+1‖0,T + ‖M�+1p� − p�‖0,T . (4.9)

Using the relationship (2.2c) both for the coarse and the fine mesh, for the first
term on the right-hand side in (4.9) we obtain

‖M�p� −M�+1p�+1|0,T ≤ α‖u� − u�+1‖0,T + ‖σ� − σ�+1‖0,T . (4.10)

For the third term on the right-hand side in (4.9), there exists 0 ≤ q < 1 such that

‖M�+1p� − p�‖0,T ≤ q ‖M�p� − p�‖0,T . (4.11)

Taking advantage of (4.10), (4.11) in (4.9) yields

η
(2)
p,T ≤ 1

1 − q
(
‖p� − p�+1‖0,Ω + α‖u� − u�+1‖0,Ω + ‖σ� − σ�+1‖0,Ω

)
.

�

Lemma 4.3. For a refined edge E ∈ E� there holds

η2y,E � |y� − y�+1|21,ωE
+ h2T ‖u� − u�+1‖2

0,ωE
+ η2y,ωE

, (4.12)

η2p,E � |p� − p�+1|21,ωE
+ |y� − y�+1|21,ωE

+ η2p,ωE
. (4.13)

Proof. Let ϕmidE

�+1 ∈ V�+1 be the nodal basis function associated with mid(E) ∈
N�+1(Ω). Then, the function z�+1 := [νE · ∇y�]ϕmidE

�+1 satisfies

‖[νE · ∇y�]‖2
0,E � ([νE · ∇y�], z�+1)0,E , (4.14)

‖z�+1‖0,ωE � h
1/2
E ‖[νE · ∇y�]‖0,E , (4.15)

|z�+1|1,ωE � h
−1/2
E ‖[νE · ∇y�]‖0,E . (4.16)

Using (4.14)–(4.16) and the fact that z�+1 is an admissible test function in (2.5a)
(with � replaced by �+ 1), we find

η2y,E = hE‖[νE · ∇y�]‖2
0,E � hE([νE · ∇y�], z�+1)0,E (4.17)

= hE

(
a|ωE (y� − y�+1, z�+1) + (u� − u�+1, z�+1)0,ΩE − (f + u�, z�+1)0,ΩE

)
� h

1/2
E ‖[νE · ∇y�]‖0,E

(
|y� − y�+1|1,ωE + hT ‖u� − u�+1‖0,ωE + ηy,ωE

)
,

which immediately leads to (4.12). The estimate (4.13) is shown in exactly the
same way. �
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Summarizing the results of Lemma 4.2 and Lemma 4.3 and taking account
that the union of the patches ωE has a finite overlap, we obtain

Theorem 4.4. Let (y, p, u, σ) and (yk, pk, uk, σk), k ∈ {�, � + 1}, be the solutions
of (1.2a)–(1.2d) and (2.2a)–(2.2d), and let η and osc�(yd), osc�(f) be the residual
error estimator and the data oscillations as given by (3.1) and (3.9a), (3.9b),
respectively. Then, there exists a constant C2 > 1, depending only on the constants
Θi, 1 ≤ i ≤ 2, in the bulk criteria (3.10), (3.11), and on the shape regularity of the
triangulations, such that∑

T∈MT
�

(
η2y,T + (η(1)p,T )2 + (η(2)p,T )2

)
+
∑

E∈ME
�

(
η2y,E + η2p,E

)
≤ C2

(
|y� − y�+1|21,Ω + |p� − p�+1|21,Ω + α2‖u� − u�+1‖2

0,Ω

+ ‖σ� − σ�+1‖2
0,Ω + osc2

�(y
d) + osc2

�(f)
)
. (4.18)

5. Convergence result

In this section, we will prove convergence of the discrete states, co-states, controls,
and co-controls to its continuous counterparts.

The reliability (4.1), the bulk criteria (3.10), (3.11), and the discrete local
efficiency (4.18) imply

|y − y�|21,Ω + |p− p�|21,Ω + ‖u− u�‖2
0,Ω + ‖σ − σ�‖2

0,Ω

≤ C3

(
α|y� − y�+1|21,Ω + |p� − p�+1|21,Ω

)
+ C4

(
α2‖u� − u�+1‖2

0,Ω

+ ‖σ� − σ�+1‖2
0,Ω

)
+ C5

(
osc2

�(y
d) + osc2

�(f) + osc2
�(ψ)

)
, (5.1)

where C3 := C1C2α
−1, C4 := C1C2 and C5 := max(C1, C2).

Now, using the fundamental relationships

|s� − s�+1|21,Ω (5.2)

= |s− s�|21,Ω − |s− s�+1|21,Ω + 2a(s− s�+1, s� − s�+1) ,

‖w� − w�+1‖2
0,Ω (5.3)

= ‖w − w�‖2
0,Ω − ‖w − w�+1‖2

0,Ω + 2(w − w�+1, w� − w�+1)0,Ω

for s = y, sk = yk and s = p, sk = pk and for w = u,wk = uk and w = σ,wk =
σk, k ∈ {�, �+ 1}, we would be able to deduce not only convergence, but even an
error reduction property, if we had Galerkin orthogonality of the AFEM. However,
Galerkin orthogonality does not apply here. Instead, we will establish some quasi-
orthogonality properties which allow to prove convergence.

Lemma 5.1. Let (y, p, u, σ) and (yk, pk, uk, σk), k ∈ {�, �+ 1}, be the solutions of
(1.2a)–(1.2d) and (2.2a)–(2.2d), and let y(u�+1) ∈ V be the auxiliary state as given
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by (2.6). Then, there holds

α a(y − y�+1, y� − y�+1) + a(p− p�+1, p� − p�+1) (5.4)

= (y�+1 − y(u�+1), p� − p�+1)0,Ω + (y(u�+1) − y, σ� − σ�+1)0,Ω

+ (y(u�+1) − y, (I −M�)p� − (I −M�+1)p�+1)0,Ω

+ α (u�+1 − u, (y(u�) − y�) + (y�+1 − y(u�+1))0,Ω ,

α2 (u− u�+1, u� − u�+1)0,Ω + (σ − σ�+1, σ� − σ�+1) (5.5)

≤ α (σ, u�+1 − u�)0,Ω + α (σ�+1 − σ, ψ� − ψ�+1)0,Ω

+ α (σ, ψ� − ψ�+1)0,Ω + α (σ�+1 − σ�, u− ψ)0,Ω

+ α (σ� − σ�+1, ψ�+1 − ψ)0,Ω + (p−M�+1p�+1,M�p� −M�+1p�+1)0,Ω.

Proof. In view of (1.2a), (2.2a) and (2.6), (2.7), we readily get

αa(y − y�+1, y� − y�+1) (5.6)
= αa(y − y(u�+1), y� − y�+1) = α(u− u�+1, y� − y�+1)0,Ω .

On the other hand, observing (1.2b), (1.2c) and (2.2b), (2.2c) as well as (2.8), we
find

a(p− p�+1, p� − p�+1) = (y�+1 − y(u�+1), p� − p�+1)0,Ω (5.7)
+ (y(u�+1) − y, σ� − σ�+1 + (I −M�)p� − (I −M�+1)p�+1)0,Ω

+ α(y(u�+1)− y, u� − u�+1)0,Ω .

Moreover, since y(u�+1)−y = (−∆)−1(u�+1−u) and (−∆)−1(u�−u�+1) = y(u�)−
y(u�+1), we obtain

α(y(u�+1) − y, u� − u�+1)0,Ω (5.8)
= α(u�+1 − u, y(u�) − y(u�+1))0,Ω = α(u�+1 − u, y� − y�+1)0,Ω

+ α(u�+1 − u, (y(u�)− y�) + (y�+1 − y(u�+1))0,Ω .

Using (5.8) in (5.7) and combining (5.6) and(5.7) results in (5.4).
As far as the proof of (5.5) is concerned, using again (1.2c), (2.2c), we find

α2(u− u�+1, u� − u�+1)0,Ω + (σ − σ�+1, σ� − σ�+1) (5.9)
= α(σ�+1 − σ, u� − u�+1)0,Ω + α(u − u�+1, σ�+1 − σ�)0,Ω

+ (p−M�+1p�+1,M�p� −M�+1p�+1)0,Ω .

For the first term on the right-hand side in (5.9), we obtain

α(σ�+1 − σ, u� − u�+1)0,Ω (5.10)
= α(σ�+1, u� − ψ�)0,Ω + α(σ�+1, ψ� − ψ�+1)0,Ω

+ α(σ�+1, ψ�+1 − u�+1)0,Ω + α(σ, u�+1 − u�)0,Ω

≤ α(σ�+1, ψ� − ψ�+1)0,Ω + α(σ, u�+1 − u�)0,Ω ,
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where we have used that due to (2.4)

(σ�+1, u� − ψ�)0,Ω ≤ 0 and (σ�+1, ψ�+1 − u�+1)0,Ω = 0 .

For the second term, similar arguments yield

α(σ�+1 − σ�, u− u�+1)0,Ω (5.11)
= α(σ�+1 − σ�, u− ψ)0,Ω + α(σ�+1 − σ�, ψ�+1 − ψ)0,Ω .

Using (5.10), (5.11) in (5.9) gives the assertion. �
For the terms in (5.4), (5.5) involving the averaging operators M� and M�+1

we provide the following result.

Lemma 5.2. Under the assumptions of Lemma 5.1 there holds

(y�+1 − y, (I −M�)p� − (I −M�+1)p�+1)0,Ω (5.12)

� h2�
(
|y − y�+1|21,Ω + |p− p�|21,Ω + |p− p�+1|21,Ω

)
+ µ2

� (p) ,

(p−M�+1p�+1,M�p� −M�+1p�+1)0,Ω (5.13)

� h2�
(
|p− p�|21,Ω + |p− p�+1|21,Ω

)
+ µ2

� (p) ,

where
µ�(p) :=

(∑
T∈T�

µ2
T (p)

)1/2
, µT (p) := hT |p|1,T . (5.14)

Proof. We split the left-hand side in (5.9) according to

(y�+1 − y, (I −M�)p� − (I −M�+1)p�+1)0,Ω

= (y�+1 − y, (I −M�+1)(p� − p�+1))0,Ω

+ (y�+1 − y, (M�+1 −M�)p�)0,Ω .

For T ∈ T�+1 we set ŷ�+1 := |T |−1
∫

T (y�+1−y)dx. SinceM�+1)(p�−p�+1) has zero
integral mean on T ∈ T�+1, an elementwise application of Poincaré’s inequality
and of Young’s inequality gives

(y�+1 − y, (I −M�+1)(p� − p�+1))0,T

= (y�+1 − y − ŷ�+1, (I −M�+1)(p� − p�+1))0,T

� hT |y − y�+1|1,T hT |p� − p�+1|1,T

� h2T |y − y�+1|21,T + h2T |p� − p�+1|21,T .

Summing over all T ∈ T�+1, we obtain

(y�+1 − y, (I −M�)p� − (I −M�+1)p�+1)0,Ω

� h2�
(
|y − y�+1|21,Ω + |p� − p�+1|21,Ω

)
.

Moreover, using similar arguments

(y�+1 − y, (M�+1 −M�)p�)0,Ω

� h2�
(
|y − y�+1|21,Ω + |p− p�|21,Ω

)
+ µ2

�(p) .

Combing both inequalities proves (5.12). The proof of (5.13) is along the same
lines. �
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Since the | · |1,Ω-norm of the co-state p can be bounded from above by means
of the given data of the problem (cf., e.g., [20]), we may interpret µ�(p) as a data
term. As far as the reduction of that data term is concerned, we may assume the
existence of 0 ≤ ρ3 < 1 such that

µ2
�+1(p) ≤ ρ3 µ2

� (p) . (5.15)

For the convergence proof, we set z := (y, p, u, σ), z� := (y�, p�, u�, σ�), � ∈ N0, and
introduce the norm

|||z − z�||| :=
(
|y − y�|21,Ω + |p− p�|21,Ω + ‖u− u�‖2

0,Ω + ‖σ − σ�‖2
0,Ω

)1/2
. (5.16)

We establish convergence with respect to ||| · ||| in the sense that the sequence
{|||z − z�|||}N0 belongs to �2.

Theorem 5.3. Let (y, p, u, σ) and (y�, p�, u�, σ�) be the solutions of (1.2a)–(1.2d)
and (2.2a)–(2.2d) and let osc�(yd), osc�(f), osc�(ψ), µ�(p) be the data oscillations
and data terms given by (3.9a)–(3.9c) and (5.14). Assume that (3.13) and (5.15)
are satisfied. Then, there exists a constant Λ > 0, depending on the data of the
problem, the constants Θi, 1 ≤ i ≤ 2, in the bulk criteria (3.10), (3.11) and on the
shape regularity of the triangulations, such that

∞∑
�=0

|||z − z�|||2 ≤ Λ . (5.17)

Proof. In addition to Lemma (5.2), we provide further estimates for the remaining
terms on the right-hand side in (5.4). In particular, by means of (2.8a), (2.9) and
(2.10), setting cΩ := max(1, cF (Ω)) we obtain

(y�+1 − y(u�+1), p� − p�+1)0,Ω ≤ CrcΩh
γ
�

(
|y − y�+1|1,Ω (5.18)

+ |y − y(u�+1)|1,Ω

)(
|p− p�|1,Ω + |p− p�+1|1,Ω

)
≤ 1

2
CrcΩh

γ
�

(
|y − y�+1|21,Ω + 4|p− p�|21,Ω + 4|p− p�+1|21,Ω

)
+

1
2
Crc

2
Ωh

γ
� ‖u− u�+1‖2

0,Ω ,

α(u�+1 − u, (y(u�) − y�) + (y�+1 − y(u�+1))0,Ω (5.19)

≤ αCrh
γ
� ‖u− u�+1‖0,Ω

(
|y − y�|1,Ω + |y − y�+1|1,Ω

+ cΩ (‖u− u�‖0,Ω + ‖u− u�+1‖0,Ω)
)

≤ αCrh
γ
�

(
|y − y�|21,Ω + |y − y�+1|21,Ω

+ c2Ω ‖u− u�‖2
0,Ω + (1 + c2Ω) ‖u− u�+1‖2

0,Ω

)
.

Moreover, in view of (2.8a), (2.9) and Young’s inequality

(y(u�+1) − y, σ� − σ�+1)0,Ω ≤ c2Ω‖u− u�+1‖0,Ω‖σ� − σ�+1‖0,Ω (5.20)

≤ ε1 ‖u− u�+1‖2
0,Ω +

c4Ω
4ε1

‖σ� − σ�+1‖2
0,Ω ,
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where ε1 > 0 can be arbitrarily chosen. Likewise, for some arbitrary ε2 > 0 we get

α(σ�+1 − σ, ψ� − ψ�+1)0,Ω

≤ α‖σ − σ�+1‖0,Ω

(
‖ψ − ψ�‖0,Ω + ‖ψ − ψ�‖0,Ω

)
(5.21)

≤ ε2 ‖σ − σ�+1‖2
0,Ω +

α2

4ε2
(1 + ρ2) osc2

� (ψ) ,

α(σ� − σ�+1, ψ�+1 − ψ)0,Ω (5.22)

≤ ε2
(
‖σ − σ�‖2

0,Ω + ‖σ − σ�+1‖2
0,Ω

)
+
α2

2ε2
ρ2 osc2

�(ψ) ,

where we have used (3.13) in both estimates.
Now, we choose ε1 > 0, ε2 > 0 according to

ε1 := α/(16C4) , ε2 := α/(16C4(α+ 4c4Ω))

and h∗ ∈ R+ by means of

h∗ := (α/(120C4max(C6, C7, Cr)c4Ω))1/γ .

Then, there exists �∗ ∈ N such that h� ≤ h∗ for � ≥ �∗. If we take advantage of
(5.18)–(5.22) as well as (5.12), (5.13) from Lemma 5.2 in (5.4), (5.5) and use the
result in (5.1), setting C8 := 4C3c

4
Ω + C4α

2 and C9 := 4C3c
4
Ω + C4, for � ≥ �∗ we

get

|||z − z�|||2 ≤ (C4 +
1
12

)|y − y�|21,Ω − (C4 −
1
4
)|y − y�+1|21,Ω (5.23)

+ (C3 +
1
4
) |p− p�|21,Ω − (C3 −

1
4
) |p− p�+1|21,Ω

+ (C8 +
1
4
) ‖u− u�‖2

0,Ω − (C8 −
1
4
) ‖u− u�+1‖2

0,Ω

+ (C9 +
1
2
) ‖σ − σ�‖2

0,Ω − (C9 −
1
4
) ‖σ − σ�+1‖2

0,Ω

+ C10 (osc2
� +µ2

�(p)) + 2α(σ, u�+1 − u�)0,Ω

+ 2α(σ, ψ� − ψ�+1)0,Ω + 2α(σ�+1 − σ�, u− ψ)0,Ω ,

where C10 := C5 + 2C3C6 + 2C9(C7 + 4(1 + ρ2)). We define constants 0 < κi ≤
1, 1 ≤ i ≤ 3, and 0 < ρ1 < 1 according to

κ1 :=
C4 − 1/4
C9 − 1/4

, κ2 :=
C3 − 1/4
C9 − 1/4

, (5.24)

κ3 :=
C8 − 1/4
C9 − 1/4

, ρ1 :=
C9 − 1/2
C9 − 1/4

(observe C4 < C9, C3 < C9, and C8 ≤ C9). We further introduce the weighted
norm

|||z − z�|||κ :=
(
κ1|y − y�|21,Ω + κ2|p− p�|21,Ω + κ3‖u− u�‖2

0,Ω + ‖σ − σ�‖2
0,Ω

)1/2
.

(5.25)
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Then, from (5.23) we deduce that

|||z − z�+1|||2κ (5.26)

≤ ρ|||z − z�|||2κ + 2α(σ, u�+1 − u�)0,Ω + 2α(σ, ψ� − ψ�+1)0,Ω

+ 2α(σ�+1 − σ�, u− ψ)0,Ω + C11

(
osc2

l +µ2
�(p)
)
,

where C11 := C10/(C9 − 1/4). Summing in (5.26) over � from � = �∗ to � = n > �∗

results in

(1 − ρ)
n−1∑
�=�∗

|||z − z�+1|||2κ + |||z − zn+1|||2κ ≤ ρ|||z − z�∗ |||2κ (5.27)

+ 2α(σ, un+1 − u�∗)0,Ω + 2α(σ, ψ�∗ − ψn+1)0,Ω

+ 2α(σn+1 − σ�∗ , u− ψ)0,Ω + C7

n∑
�=�∗

(
osc2

� +µ2
�(p)
)
.

Now, taking (1.3) and (2.4) into account, we have

(σ, un+1 − u�∗)0,Ω + (σ, ψ�∗ − ψn+1)0,Ω ≤ (σ, ψ�∗ − u�∗)0,Ω ,

(σn+1 − σ�∗ , u− ψ)0,Ω ≤ (σ�∗ , ψ − u)0,Ω .

Moreover, due to (3.13) and (5.15)
∞∑

�=�∗

(
osc2

� +µ2
�(p)
)
≤ C7

1 − ρ2
osc2

�∗ +
C7

1 − ρ3
µ2

�∗(p) .

Using the preceding estimates in (5.27) implies the existence of a constant ϑ such
that

min
1≤i≤3

κi

∞∑
�=0

|||z − z�|||2 ≤ ϑ ,

which gives the assertion. �

Corollary 5.4. Under the assumptions of Theorem 5.3 there holds

|y − y�|1,Ω, |p− p�|1,Ω, ‖u− u�‖0,Ω, ‖σ − σ�‖0,Ω → 0 as �→∞ . (5.28)

6. Error reduction property

An error reduction property of the adaptive finite element approximation of the
obstacle problem in the weighted norm ||| · |||κ can be established under some
additional assumptions. In particular, we suppose that the sequence {W�}N0 of
spaces of elementwise constants is limit dense in L2(Ω) in the sense

(L) For each w ∈ L2(Ω), there is a sequence {w�}N, w� ∈ W�, � ∈ N, such that
w� → w in L2(Ω) as �→∞.
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We further assume strict complementarity of the continuous problem
(C) σ|I(u) > 0 ,
as well as the following non-degeneracy properties of the discrete control problems:
(N1) There exist ε∗1 > 0 and C1 > 0 such that for all 0 < ε < ε∗1 and for all

sufficiently large � ∈ N

meas({x ∈ I(u�) | 0 < ψ�(x) − u�(x) < ε2}) ≤ C1 ε .

(N2) There exist ε∗2 > 0 and C2 > 0 such that for all 0 < ε < ε∗2 and for all
sufficiently large � ∈ N

{x ∈ I(u�) | 0 < ψ�(x) − u�(x) < ε2} ⊆ {x ∈ I(u�) | dist(x,F�) < C2ε} .
(N3) There exist ε∗3 > 0 and C3 > 0 such that for all 0 < ε < ε∗3 and for all

sufficiently large � ∈ N

{x ∈ I(u�) | dist(x,F�) < ε} ⊆ {x ∈ I(u�) | 0 < ψ�(x) − u�(x) < C3ε
2}.

The error reduction property holds asymptotically, i.e., once the continuous free
boundary has been sufficiently resolved by its discrete counterpart. We enhance
the resolution of the free boundary by an extension of the bulk criteria. To this
end, we define the sets

Â(u�) := int
(⋃

{T ∈ T� | u�|T ′ = ψ�|T ′ , T ′ ∈ T�, T
′ ∩ T = ∅}

)
, (6.1)

Î(u�) := int
(⋃

{T ∈ T� | ψ�|T − u�|T ≥ ε̂ > 0}
)
, (6.2)

F̂(u�) := Ω \
(
Â(u�) ∪ Î(u�)

)
(6.3)

for some ε̂ > 0 in (6.2). Then, the extension of the bulk criteria (3.10)–(3.11) is as
follows:
(E) In the step ‘MARK’ of the adaptive loop, all edges E ∈ E�(F̂�) are marked

for refinement.

Proposition 6.1. Assume that the discrete problem (2.2a)–(2.2d) satisfies (N1),
(N2) and that the refinement is done based on the bulk criteria (3.10), (3.11) and
its extension (E). Then, there exists a subsequence N∗ ⊂ N such that for all � ∈ N∗

Î(u�) ⊆ Î(u�+1) , Â(u�) ⊆ Â(u�+1) , (6.4)

F̂(u�+1) ⊂ F̂(u�) . (6.5)

Proof. If the assertion does not hold true, we have Î(um+1) ⊂ Î(um) and
Â(um+1) ⊂ Â(um) for m > � which implies F̂(um) ⊆ F̂(um+1). Hence, in view of
(N1) and (E), there exists T ∈ F̂(um) such that dist(x,F(um)) > τ, x ∈ T , where
τ > C2hm with C2 from (N2), and 0 = ψm(aν) − um(aν) < ψm(aµ) − um(aµ)
for some vertices aν , aµ, ν = µ, of T . Then, we find U(aν) := {x ∈ T ′|0 <
ψm(x) − um(x) < h2m} and (N2) implies dist(x,F(um)) < C2hm < τ contra-
dicting dist(x,F(um)) > τ, x ∈ U(aν) ⊂ T . Note that (6.5) is a direct consequence
of (6.4). �
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Proposition 6.2. Assume that (1.2a)–(1.2d) and (2.2a)–(2.2d) satisfy (S) and
(N1), (N2), (N3), respectively, and that (L) holds true. Then, there exists �∗ ∈ N
such that

Î(u�) ⊆ I(u) for all � ≥ �∗ . (6.6)

Proof. If (6.6) does not hold true, there is a subsequence N′ ⊂ N such that Î(u�)∩
A(u) = ∅ for all � ∈ N′. Hence, we find D� ⊂ A,meas(D�) = 0 such that D� ⊂
Î(u�), � ∈ N′. If D := ∩�∈N′D� is such that meas(D) = 0, for w ∈ L2(D)+, w ≡ 0,
there is {w�}N′ with w� ∈ L2(Î(u�))W� ∩ L2(Î(u�)), � ∈ N′, such that w� → w in
L2(Ω) as �→∞ whence

〈σ�, w�〉∗,Î(u�)
→ 〈σ,w〉∗,D as �→∞ .

But 〈σ�, w�〉∗,Î(u�)
= 0, � ∈ N′, due to (2.4), and hence, 〈σ,w〉∗,D = 0 contradicting

σ|D > 0, D ⊂ A (cf. (C)). If meas(D) = 0, for the Hausdorff distance dH(F , ∂N̂�)
we must have dH(F , ∂N̂�) → 0 as � → ∞ whence dH(F ,F�) → 0 as � → ∞,
since otherwise we arrive at a contradiction to (6.5). Consequently, there exist
x� ∈ N̂�, � ∈ N′, such that u�(x�) − χ(x�) ≥ ε > 0 and dist(x�,F�) → 0 as � → ∞
contradicting (N3). �

We are now in a position to prove an error reduction property. The essential
ingredient is a refined quasi-orthogonality property that can be derived by a more
subtle treatment of the terms α(σ� − σ, u� − u�+1)0,Ω and α(σ�+1 − σ, u− u�+1)0,Ω

in (5.6) of the proof of Lemma 5.1.

Lemma 6.3. Under the same assumptions as in Proposition 6.1, for any ε > 0 and
� ≥ �∗ there holds

α(σ� − σ, u� − u�+1)0,Ω ≤ αε
(
‖u− u�‖2

0,Ω + ‖σ − σ�+1‖2
0,Ω

)
(6.7)

+ α(ε+
1
4ε

)‖σ‖2
0,F̂(u�)

+
1
4ε
(
osc2

�(ψ) + osc2
�+1(ψ)

)
,

α(σ�+1 − σ, u− u�+1)0,Ω (6.8)

≤ αε
(
‖σ − σ�‖2

0,Ω + ‖σ − σ�+1‖2
0,Ω

)
+

1
4ε
(
‖ψ − u‖2

0,F̂(u�)

+ osc2
�+1(ψ)

)
.

Proof. Taking advantage of the complementarity conditions (1.3), (2.4), we obtain

α (σ�+1 − σ, u� − u�+1)0,Ω = α (σ�+1, ψ�+1 − u�+1)0,Ω (6.9)
+ α (σ�+1, u� − ψ�)0,Ω + α (σ, u�+1 − ψ�+1)0,Ω

+ α (σ�+1 − σ, ψ� − ψ�+1)0,Ω + α (σ, ψ� − u�)0,Ω

≤ α (σ, ψ� − u�)0,Ω + α (σ�+1 − σ, ψ� − ψ�+1)0,Ω ,

where we have used that the first term after the equality sign is zero, whereas the
second and the term is non-positive.
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The first term on the right-hand side is obviously zero in I(u) and in Â(u�).
Due to Proposition 6.1 we thus have

(σ, ψ� − u�)0,Ω = (σ, ψ� − u�)0,F̂(u�)
.

We further get

(σ, ψH − uH)0,F̂(u�)
= (σ, u − uH)0,F̂(u�)

+ (σ, ψH − ψ)0,F̂(u�)
, (6.10)

where we have used that (σ, ψ − u)0,F̂(u�)
= 0 due to (1.3). Using (6.10) in (6.9)

and applying Cauchy’s and Young’s inequality results in (6.7).
The proof of (6.8) is done by similar arguments. �

In view of Lemma 6.3, we define

µ�(u, σ) :=
( ∑

T∈F̂(u�)

(‖σ‖2
T + ‖ψ − u‖2

T

)1/2

. (6.11)

We assume that the sequence {T�}N of triangulations, generated by (3.10), (3.11)
and (E), is such that there exists 0 ≤ ρ4 < 1 satisfying

µ2
�+1(u, σ) ≤ ρ4 µ2

�(u, σ) , � ∈ N
∗ . (6.12)

Theorem 6.4. Let (y, p, u, σ) and (y�, p�, u�, σ�) be the solutions of (1.2a)–(1.2d)
and (2.2a)–(2.2d) and let osc�, µ�(p), µ�(u, σ) be the data oscillations and data
terms given by (3.12), (5.14) and (6.11). Assume that (2.10), (L),(C), (N1) − (N3)
and (3.13), (5.15), (6.12) are satisfied. Then, there exist constants 0 ≤ ρ1 < 1 and
Λ > 0, depending on the data of the problem, the constants Θi, 1 ≤ i ≤ 2, in the
bulk criteria (3.10), (3.11) and on the shape regularity of the triangulations, such
that ⎛⎜⎜⎝

|||z − z�+1|||2κ
osc2

�+1

µ2
�+1(p)

µ2
�+1(u, σ)

⎞⎟⎟⎠ ≤

⎛⎜⎜⎝
ρ1 Λ Λ Λ
0 ρ2 0 0
0 0 ρ3 0
0 0 0 ρ4

⎞⎟⎟⎠
⎛⎜⎜⎝

|||z − z�|||2κ
osc2

�

µ2
� (p)

µ2
�(u, σ)

⎞⎟⎟⎠ .
Proof. Using the results of Lemma 6.3, as in the proof of Theorem 5.3 we find
constants 0 < κi < 1, 1 ≤ i ≤ 3, and 0 ≤ ρ1 < 1 such that for some Λ > 0

|||z − z�+1|||2κ ≤ ρ1 |||z − z�|||2κ + Λ
(
osc2

� +µ2
�(p) + µ2

� (u, σ)
)
. �

7. Numerical results

We provide numerical results that illustrate the performance of the adaptive finite
element approximation for a distributed optimal control problems where the data
are given as follows

Ω = (0, 1)2 , ud = f = 0 , ψ = 1 , α = 10−k , 1 ≤ k ≤ 5 ,

yd :=
{

200x1x2(x1 − 1/2)2(1 − x2) , 0 ≤ x1 ≤ 1/2
200(x1 − 1)x2(x1 − 1/2)2(1 − x2) , 1/2 < x1 ≤ 1 .
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Figure 1 shows a visualization of the optimal state and the optimal control for
various values of α. The flat region in the visualization of the control corresponds
to the active set.

Figure 1. Visualization of the optimal state y and the optimal control
u for α = 0.01 (top), α = 0.001 (middle) and α = 0.00001 (bottom)

The initial simplicial triangulation T0 was chosen according to a subdivision
of Ω by joining the four vertices resulting in one interior nodal point and four
congruent triangles. Since ud, f and ψ are constant, we have osc�(ud) = osc�(f) =
osc�(ψ) = 0, � ∈ N0.

For various values of α, Figure 2 displays the adaptively generated triangu-
lations after six refinement steps with Θi = 0.6, 1 ≤ i ≤ 2, in the bulk criteria. In
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Figure 2. Adaptively generated grids after 6 refinement steps (α =
0.01 (top left), α = 0.001 (top right), α = 0.0001 (bottom left) and
α = 0.00001 (bottom right))

case α = 0.01, the elliptically shaped area in the left part represents the active set.
We observe that the active set is growing for decreasing α. The continuous free
boundary between the active and inactive sets, displayed by a black curve, is well
resolved by the adaptive refinement due to the extension (E) of the bulk criteria.

More detailed information is given in Table 1–Table 3. In particular, Table 1
displays the error reduction in the total error

‖|z − z�|‖ := (|y − y�|21,Ω + |p− p�|21,Ω‖u− u�‖2
0,Ω + ‖σ − σ�‖2

0,Ω)1/2

and the errors in the state, the co-state, the control, and the co-control, whereas
the actual element and edge related components of the residual type a posteriori
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Table 1. Total discretization error, discretization errors in the state,
co-state, control, and co-control (α = 0.01)

l Ndof ‖|z − z�|‖ |y − y�|1 |p− p�|1 ‖u − u�‖0 ‖σ − σ�‖0
1 13 9.38e-02 5.69e-02 3.18e-02 4.17e-01 1.37e-03
2 41 5.37e-02 3.35e-02 1.76e-02 2.07e-01 6.63e-04
3 134 3.02e-02 1.89e-02 9.67e-03 1.30e-01 3.24e-04
4 319 2.24e-02 1.39e-02 7.47e-03 8.07e-02 1.98e-04
5 795 1.47e-02 9.14e-03 4.84e-03 5.92e-02 1.10e-04
6 1998 1.02e-02 6.35e-03 3.33e-03 3.87e-02 9.16e-05
7 4373 7.16e-03 4.46e-03 2.37e-03 2.69e-02 6.70e-05
8 10612 4.93e-03 3.08e-03 1.61e-03 1.83e-02 4.60e-05
9 23019 3.44e-03 2.14e-03 1.13e-04 1.32e-02 3.24e-05

Table 2. Components of the error estimator and data oscillations (α = 0.01)

l Ndof ηy,T,� ηp,T,� ηy,E,� ηp,E,� osc�(yd)

1 13 2.54e-01 2.23e-01 1.56e-01 9.97e-02 9.76e-02
2 41 1.70e-01 1.10e-01 1.09e-01 6.50e-02 2.88e-02
3 134 1.03e-01 5.86e-02 6.63e-02 3.63e-02 1.03e-02
4 319 6.43e-02 3.83e-02 4.74e-02 2.63e-02 5.09e-03
5 795 4.18e-02 2.48e-02 3.25e-02 1.78e-02 2.21e-03
6 1998 2.80e-02 1.66e-02 2.30e-02 1.24e-02 1.02e-03
7 4373 1.90e-02 1.15e-02 1.64e-02 8.95e-03 5.01e-04
8 10612 1.28e-02 7.63e-03 1.15e-02 6.14e-03 2.53e-04
9 23019 8.75e-03 5.30e-03 8.35e-03 4.41e-03 1.30e-04

Table 3. Percentages of elements/edges selected for refinement by the
bulk criteria and its extension (α = 0.01)

l Ndof Mη,T Mη,E Mosc,E Mfb,E

0 5 50.0 75.0 75.0 0.0
1 13 25.0 20.0 43.8 0.0
2 41 23.4 20.5 29.7 21.9
3 134 18.8 20.6 10.3 13.2
4 319 17.5 13.2 8.7 10.4
5 795 16.0 13.6 6.6 8.2
6 1998 15.4 11.8 5.8 6.4
7 4373 16.3 13.0 5.0 5.8
8 10612 15.7 12.5 2.6 4.7
9 23019 15.2 11.8 1.8 4.4

error estimator are given in Table 2. Table 3 contains the percentages of elements
and edges that have been marked for refinement according to the bulk criteria
and their extension (E). Here, Mη,T stands for the level l elements marked for
refinement due to the element residuals and the data oscillations. On the other
hand,Mη,E,Mosc,EandMfb,E refer to the edges marked for refinement with regard
to the edge residuals, data oscillations and the extension (E) of the bulk criteria
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(resolution of the free boundary). On the coarsest grid, the sum of the percentages
exceeds 100 %, since an edge may satisfy more than one criterion in the adaptive
refinement process. The refinement is initially dominated by the resolution of the
free boundary and the data oscillations, whereas at a later stage edge and element
residuals dominate.
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