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We discuss two different 1limits where correlated lattice
fermions are explicitly tractable: that of infinite range
hopping and that of high dimensions. While in the first case
results are almost trivial, the latter 1limit turns out to be
particularly significant, since in 4 = = theoretical invest-
igations are enormously simplified, while at the same time
correlations remain non-trivial. Contact to finite dimensions
can be made via systematic 1/d-expansions. We review the
state-of-art of this approach.

INTRODUCTION

Fermions obey the Pauli exclusion principle. Accordingly,
their wave function must be antisymmetric. This basic
underlying property implies that microscopic investigations of
systems with many fermions are faced with a catastrophic
"inflation of minus-signs", which leads to immense, in general
untractable, technical problems. Indeed, the antisymmetry
requirements lead to substantial spatial correlations even in
a Fermi gas. Interactions, particularly those of short range,
then introduce additional subtle phase relations. Although
these problems are known for a long time, they have received a
wide attention only in recent years in the context of strongly
correlated Fermi systems such as heavy fermions and high-T,
superconductivity.
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Oof all analytic methods for the investigation of the
ground state of interacting Fermi systems, the Bethe-ansatz is
the most successful. Unfortunately, this approach only works
for some particular guantum pechanical models in 4 = 1 di-
mensions. By contrast, standard many-body perturbation
techniques can be applied in all dimensions; in practice,
however, they are limited to certain parameter ranges, e.g.
very weak or very strong interactions, low densities etc. At
the same time mean field theories, slave boson approaches or
variational methods are more easily tractable and often
provide valuable insight; nevertheless their actual validity
is usually hard to estimate. While these problems apply to all
Fermi systems, they are most severe in the case of systems
with itinerant degrees of freedom as in the Hubbard model,
because one then has to work explicitly with fermion
operators. The case of localized degrees of freedom, where the
spins have a fixed position as in the Heisenberg model, is -
relatively speaking - considerably simpler, since this only
involves spin operators. In the present paper we will mainly
address the former case, i.e. itinerant spin systens.

In view of the theoretical difficulties mentioned above
it is of considerable help if one is at least able to obtain
exact results for a model in certain extreme 1limits of the
parameters of the model. If a solution is possible at all, it
often turns out that perturbation techniques etc. are able to
connect this solution to more realistic parameter values.

THE HUBBARD MODEL AS A GENERIC MODEL

The Hubbard model! combines the Xkinetic energy of
electrons, i.e. band behavior, with a highly simplified
description of the (strongly screened) Coulomb interaction
between up/down spins on a lattice. Its Hamiltonian is given

by

H = HO+HI (la)
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where
Hy = ”ZG: tjcfeCjo = ;’: & Akodko (1b)
H; =U 2. ﬁIT ﬁi' =0 Z ﬁk‘l b'k‘ (1c)
i k

Here ctgs(cy) are creation (annihilation) operators of a o-spin
(¢ = T,l) on site i, whose Fourier transforms are a}qs(as). The
kinetic energy H,, (1b), is due to quantum mechanical hopping
between sites i and j, which is described by the matrix
element t;j,whose Fourier transform is the energy dispersion eg,.
Usually hopping is considered to occur only between nearest
neighbors ("tight binding"). The interaction H;, where fij; =
ctgCg, Only acts on the same site and only for opposite spins;
hence D, = ﬂf ﬁ% is the operator for double occupancy. This
particular interaction is an essential part of many model
Hamiltonians. In (lc) #, is the electron density operator

Prog = = Z ajodq+k o (2

VI 9 !
At U = 0 one has a free gas of lattice electrons, while at U=«
the spins are localized. In fact, in the limit (U -» «) and for
n, = n, = n/2 (half filling) the Hubbard model for nearest
neighbor hopping transforms into the antiferromagnetic
Heisenberg model
2
Hieis = E%‘ 5:: Si -5 (3)
<ij>

In spite of almost three decades of work on the Hubbard
model, only very few exact results for the thermodynamic limit
are known (for reviews see, for example, refs. 2,3,4). Of
these the exact solution in d = 1 for the ground state by Lieb
and Wu® is the most important. It should be noted that even
the mean field theory for the Hubbard model is non-trivial and
cannot be solved in generality.
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LIMIT OF INFINITE RANGE HOPPING (tii = = t)

The Hubbard model, (1), can be solved exactly if the
zero-range interaction, (lc), is replaced by an interaction of
infinite range. In this case one obtains a trivial mean field
model, whose wave function is simply that of the noninter-
acting Fermi sea (naive Hartree-Fock).

A much less obvious 1limit is that where the gquantum
mechanical hoppin of the electrons is assumed to be
unconstrained, i.e. is taken as infinite ranged (t;j = - t for
all i # j). In this situation the model clearly no longer
depends on the dimension or the lattice structure. The energy
dispersion is then given by

where L is the number of lattice sites. The model takes the
form

H=-tL3 fg o+ U 2 By bok =k 2 fyo (5)
o k

k, O

where we included a chemical potential for generality. It
should be noted that the kinetic remains extensive, 1i.e.
scaling with L is not required. (This is a consequence of the
fact that the operator a,.g¢= L Y2Lc; still obeys Ferni
statistics). Hence the two electrons with k = 0 carry the

complete kinetic energy of the system. -

The Hubbard model for infinite range hopping, (4), has
recently been solved exactly for all temperatures by van
Dongen and Vollhardt® using standard methods of many-body
theory. In essence the solution is made possible by the fact
that the momentum state X = 0, which rules the kinetic energy,
does not play a preferred role in the interaction term, i.e.
is only one of the O(L) many states and may therefore be
neglected. Consequently, the two parts of the Hamiltonian (4)
commute and may be diagonalized separately. The partition
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function can then be found exactly for all temperatures T.
This yields the exact grand canonical potential as®

@=rL[-2t -8 In 1 +2z+2 eV ] (6)
where 71 = kgT and 2 = eBr jis the fugacity. In particular, the
expectation value of the interaction term, <Hp> = 1ud, where

d(U,T) is the density of doubly occupied sites, is determined
by the equation

d(1-n,-n, +d)

= —— =eR (7)
(n,~d) (n, -d)

which for n,= n = % reduces to d = %(1 + efU2)=1  The general
result, (7), is seen to have the form of the law of mass
action, which determines the equilibrium state of a reversible
chemical reaction of the type
D+ E > 5.+S, (8)

On the left hand side of the reaction, D (denoting the doubly
occupied sites) has a concentration d and E (denoting the
empty sites) has a concentration 1- n,- n + d; D and E may
"react" to form two singly occupied sites Sy, 8§, of opposite
spin and with a concentration (n, -d) and (n¥ -d), respec-
tively. The equilibrium is determined by the Boltzmann factor
e BV, The form of (7) is typical for a result obtained within
the "quasi-chemical approximation" in the theory of mixtures.
The fact that this approximation yields the exact result for
the model under consideration is not surprising. In the model
with infinite range hopping every site can be reached without
obstruction due to other sites, thus leading to a perfectly
homogeneous "mixture" of site occupations at arbitrary
interactions and temperatures. Thus the assumption underlying
the quasi-chemical approximation becomes exact here. - It is
interesting to note that (7) is also obtained within the
wellknown Gutzwiller approximation? to the conventional
Hubbard model, if e BU is replaced by g2, where g is a
variational parameter entering the trial wave function in this
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approach. As will be discussed below the latter approximation
is exact in the limit of infinite dimension.®

The ground state of the model with unconstrained hopping
is somewhat pathological. One finds d(U) = 0 for n € 1 and
d(U) = n-1 for 2 » n » 1, i.e. the system has a ground state
with the least possible number of doubly occupied sites,
irrespective of the strength of the interaction. Therefore
d(U) has a kink at n = 1. On the other hand, for T > 0 the
U-dependence of d is precisely what one expects from the

n and an exponential

conventional Hubbard model, i.e. d(0) = n.n,

decrease for U » =.6

The kink in d(U) at n = 1 implies that in the ground
state there occurs a metal-insulator transition at this

density for all U > 0, i.e. at n = 1 the ground state is
always insulating but is conducting otherwise.® It is
remarkable that a model, which in view of [Hy,, HJ] = 0 is
essentially trivial, is nevertheless able to describe a
transition which is known to occur also in the exact ground
state of the ordinary Hubbard model in 4 = 1% (and most
probably also in d > 1 in the case of bipartite lattices). The
origin of the transition is, of course, quite different in the
two cases, being the conse- quence of antiferromagnetic
correlations in the latter case.

LIMIT OF INFINITE DIMENSIONS (4 = =)

In classical statistical physics the 1limit of infinite
spatial dimensions is well established, since it often allows
for exact solutions. This is due to the fact that for 4 -+ =
the number of nearest neighbors grows proportional to d, thus
making fluctuations unimportant. As a consequence there is an
intimate connection between solutions in 4@ = « and mean-
field-type solution. The same is basically true for quantum
mechanical systems of localized spins. For example, in d = =
the Neél-state becomes the exact ground state of the
Heisenberg model.9
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The question then arises how interacting, jitinerant Fermi
systems - such as the Hubbard model - behave, and whether they
become simple, or even trivial, in 4 = «. Until most recently
there existed virtually no results for such models in this
limit. In this situation one may in particular ask whether
mean field solutions (e.g. unrestricted Hartree-Fock) become
exact in d = =,

With these questions in mind Metzner and Vollhardt®
recently introduced the concept of infinite dimensions for
itinerant lattice fermion systems. They showed that, provided
the kinetic energy is scaled properly, correlations remain
non-trivial even in the limit 4@ = <, In particular, it was
found that diagrammatic treatments become very much simpler
than in finite dimensions. This property makes exact analytic
calculations tractable in d = ®, which are prohibitively
difficult in 1lower dimensions. Indeed, within a very
shortwhile the limit of high dimensions for lattice fermions
has proved its usefulness in a number of different problems.
In the following we will review the main features of this
approach and will at least outline the results obtained within
the last nine months by the author’s group and various other
researchers.

The energy dispersion g, for nearest neighbor hopping on a
d-dimensional hypercubic lattice, which enters the kinetic
energy operator, (1b), has the form

-t ik(R;"R
g = — E e (RiTA) (%9a)
L <ij>
d
= -2t Z cos k; (9b)

i=1

From (9) one might naively expect that for 4 - = ¢, was typi-
cally of the order of td, such that ¢, had to be scaled with
1/d to obtain a finite kinetic energy. However, this is wrong.
For a randomly chosen vector k (9b) vields skﬁl—tJE. Indeed,



2196 D. Vollhardt

from the central 1limit theorem one finds for the density of
states (DOS) in the limit @ » «

N(E) = (10)

1 E 2
2tind P T "zﬁ]

This clearly shows that only the scaling t - t/JEE , such that
N(E) - N*(E) = exp(-E2/2t2)/V2nt, leads to a finite kinetic
energy and thereby to a non-trivial quantum mechanical model,
(1), where both the kinetic energy and the interaction energy
are of the same order of magnitude. With the naive scaling

t » t/24 the kinetic energy would vanish for d -» e« and one
would obtain a trivial model of localized spins. We will now
discuss several applications of the <concept of high

dimensions.

Weak Coupling Correlation Enerqgy

The correlation energy E, is defined as the difference
between the exact energy E and the naive Hartree-Fock energy

Enr
E; = Eexact — Enr (11)

In the case of the Hubbard model Ey = %, + Unfn&, where T, is
the energy of the non-interacting particles. As shown by
Metzner and Vollhardt'® the result for E, in weak coupling

(U » 0) can be calculated within ordinary Goldstone per-
turbation theory in any dimension d. The 1lowest order
contribution to E, in U is given by

4 0 0,,_.0 0
E, = wz_ 5o [T aex MyNp (1703 ) (1=T) ik +kp vy +hy) f
(2")4d i i =1 e1+ 82_ 83_ 84
(12)

where ¢, = £y and n? = 1 for ¢ < Er and zero elsewhere. The
sum on the Fourier factor over all lattice sites £ is
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equivalent to a &-function, which guarantees conservation of
crystal momentum at the vertices, i.e. Lk = 0. One can now
show?® that in & = = only the term with £ = 0 gives a finite
contribution to (12), and that nearest neighbor contributions
etc. only contribute terms of order 1/d or smaller. This has
the following reason: at a vertex Iy, (q), where two momenta

k, = k £ g/2 enter and two momenta ki leave, the momenta

kX, k’, q may be chosen arbitrarily; now, in 4 = « the corres-
ponding energies g, etc. are randomized by Umklapp-processes,
which are generated when the lattice momenta, having infinite
number of components, are added. 1In this situation the
energies are no longer related to the initial momenta - they
become mutually independent. Equivalently, one may say that in
d = = momentum conservation at the vertex becomes unimportant,
such that (2n)d 8(k)= I;e*f can be replaced by 1. Clearly, this
is identical to setting £ = 0 in the sum. (For a more general
discussion of this point, see Miller-Hartmann'V) The integrand
in (12) now depends on the momenta k; only via the energies c¢;.
Using the DOS (10) one can therefore replace the momentum
integrations by energy integrations and obtains® for

nT= n = n/2

Ep/LU 2 = - fd)\ €22’ p2 (B~ N\) P2(-E ;- A) (13)
0

where P(x) is the probability function. Hence in d = =« the
expression for E, is found to have the simplest structure of
all dimensions. ~ It is interesting to note that E,, (12), had
been obtained before by Kajzar and Friedel'? who evaluated this
expression in 4 = 3 by introducing a single site approxi-
mation, where only the term with f = 0 was considered in the
lattice sum. This "local approximation" has since become a
standard approximation scheme in metal physics.d .14 Here we
have found that this approximation is exact in the 1limit
d » «». In fig. 1 E, is shown as a function of density n in
dimensions d = 1, 2, 3, «.8,1 Clearly, the result for d = 3,
which can only be calculated by considerable numerical effort,
is very well approximated by that for 4 = «, which is given by
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the single integral in (13). In fact, for n < 0.8 even the
result for 4 = 2 is well represented by that for 4 = « (the
deviation for n g 1 is due to the logarithmic divergence of
the DOS for n = 1). The fact that E, = U2 even in d = =, shows
that unrestricted Hartree-Fock theory cannot be exact in

d = =, This mean field theory 1leads to a non-analytic

dependence even of the 1leading contribution to E, on U for
small U.
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(a) (b)
Fig. 1 Lowest order contribution in U to the correlation

energy for the Hubbard model E, = L &,(U/2t)2 N*(E;), as a
function of the density n for several dimensions d.

Variational Wave Functions

Variational wave functions (VWF) play an important role
in the investigations of interacting many body systems, and of
strong correlated Fermi systems in particular.4 They provide
an approximate, but explicit and physically intuitive tool for
the treatment of correlations and quite generally go beyond
the range of perturbation theory.
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In the case of spin models with strong on-site repulsion,
(1c), the suppression of doubly occupied sites is of prime
importance. This suppression is achieved by a wave function of

the form
=5
o> =g | (9> (14a)
=T 11-@-9) 51 1%> (14b)

where )Iif)i= D is the number operator for doubly occupied sites,
0 € g £ 1 is a variational parameter and |®,> is an arbitrary
one-particle wave function. The projector gb reduces the
amplitude of those spin configurations in |$,> with too many
doubly occupied sites. With |#,> as the simple Fermi sea, (14)
reduces to the Gutzwiller wave function (GWF).!) In spite of
the formal simplicity of this wave function, evaluations of
expectation values <0> = <¥|0|¥>/<¥|¥> in terms of |¥> are not
at all simple and had not been possible for a long time.
However, recently a new analytic, diagrammatic approach has
been formulated, which allows one to evaluate the ground state
energy of the Hubbard model in terms of the GWF exactly in

d = 1. The calculation of correlation functions then showed
that the GWF is indeed an excellent wave function for this
model in d = 1. In fact, for g = 0 the GWF is the exact wave
function for an S = % antiferromagnetic Heisenberg model with

1/r?2 interaction.¥®

Using standard field-theoretical methods expectation
values <0> can be written in this approach'®) as a power series
in (g?-1) whose coefficients correspond to diagrams. The
structure of these diagrams 1is identical +to that for
propagators in a ¢4-theory.19.1) Diagrams are conveniently ex-
pressed by the self-energy S4, in position space, with lines
corresponding to Pd,, = <®,lcjscpol®,> and vertices corresponding
to a factor (g2-1). Both the one-particle density matrix
Py ¢n = <CjsCphe>, Which yields the kinetic energy <H,>, (1b), and
the on-site interaction <H;»>, (lc), are completely determined
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Ground State Energies

Given the starting wave function [%,> in (14), the
evaluation of, say, the ground state energy of (1) can be
performed explicitly in 4 = «, We mention three examples.

(i) l#;> is chosen as the Fermi sea, |9;> = |FS>. Then |¥>
corresponds to the GWF.1.7) Because of translational invariance
of |®y>, Sgy is independent of f, i.e. Sgy = Sy for all f. Thus
the problem reduces to calculating the number S*. The results
obtained thereby are ©precisely those provided by the
Gutzwiller approximation”), which corresponds to a (semi)-
classical counting method of spin configurations. This shows
that the results of this approximation for <H>, (1), in terms
of the GWF become exact in d = «_ 8,16,19)

(ii) To take into account the antiferromagnetic tendencies of
the Hubbard-model for n = 1, |®;> may be chosen as the
unrestricted Hartree-Fock wave function

i9,> = -ll:l; [cosekak’f, + o sinBaj,q. ¢ ] | o> (17)

where the function ©, has to be determined variationally,

Q = (n,...,n) is half a reciprocal lattice vector and [0> is
the vacuum. The ground state energy E{g,6,) = <H>, which is a
functional of g and 6, , can be calculated and minimized in

closed form.®:1' one finds that the optimal ©, is in general
more complicated than the Hartree-Fock form often used for
simplicity in numerical calculations.?) The ground state energy
is identical to that calculated by Kotliar and Ruckenstein,?2)
who used a slave boson approximation. The results of Ref. 8
and 19 now provide the explicit wave function ((14) with (17))

for which the slave boson result is exact in 4 = «. They also
yield the magnetization phase diagram as a function of
interaction U and particle density. The wave function
considered here combines the virtues of the GWF (U2-dependence
of the correlation energy for s=mall U) with the exact
antiferromagnetic behavior of (18) at large U.



2202 D. Vollhardt

(iii) The periodic Anderson model (PAM) involves almost
localized f-electrons (f,,) on a periodic lattice in a sea of
conduction electrons (3,,), which may hybridize with the f’s. A
wave function of type (14) with g » 0 has been suggested for

this investigation,?? where

18,> = '[Ta [1+A(, (K) £t gk o ]Ich> (18)

Here A, (k) describes the hybridization and |cFS> is the Fermi
sea of the conduction electrons. As shown by Gebhard and the
author #) the ground state energy of the PAM in terms of (14)
with (18) can be evaluated exactly in @ = =, The results agree
in detail with those obtained earlier by semi-classical
counting arguments & la Gutzwiller,??.29.25) and those of a slave

boson approach.?

Correlation Functions

The diagrammatic methods discussed above have been used
by van Dongen, Gebhard and the author?® +to calculate
correlation functions for Hubbard-type models in terms of
projected wave functions. Again the explicit calculation
becomes especially simple in 4 = «. In this 1limit only
diagrams with bubble-structure remain, such that correlation
functions acquire an overall RPA-type form. For example, using
the GWF the spin-spin correlation function C(n,g) =
LT'L<stst, > - (L7'L<s?>)2, with St= my - n, , can be evaluated in
closed form; its Fourier transform is given by

Css(k:n,1)
Css(k:n = 19
{ /9) 1-v, o (k;in, 1) (19)
with V, as a renormalized coupling constant, V, = (n-2d,) !

-(n-2d)"'" and d = <D>/L, G, = n,n, . The transformation into
position space is quite delicate; for next neighbor (n.n.)
positions j = *+ & one finds that Cj* is proportional to its

value in the noninteracting case (g = 1)



Limits for Correlated Lattice Fermions 2203

s, (n9) = G Cig(n1) (20)
Here g, (n,g) = [(n-2d)/(n-2dy)]2 is a renormalization factor

describing an enhancement of the spin correlations relative to
the non-interacting case. This result had been obtained
earlier by Zhang et al.?) using semi-classical counting
arguments in the spirit of the Gutzwiller approximation.”
Note, that (20) only holds for n.n. positions. It must be
stressed that the enhancement discussed above 1is only a
relative effect. In fact, n.n. ‘spin correlations are only of
the order of the inverse dimensicn, i.e. vanish for d - «, 20
Hence the GWF, which is excellent in 4 = 1, is clearly
inadequate in high dimensions, since for U » = the Néel-state
is known to become the exact ground state.9 More refined
starting wave functions |®,>, such as (17), have to be used in
this case. It should be pointed out, however, that counting
methods are then generally no longer applicable (see below).

Using the exact results for Cj* in terms of the GWF in
d = 1 and d = =, and employing rather general scaling argu-
ments, one can show?®) that the Brinkman-Rice transition,28) i.e.
the localization of particles at finite U which is obtained
within the Gutzwiller approximation?’), is absent in any finite
dimension.

The formalism described above is exact and complete and
may be used for arbitrary |$,>. Nevertheless, an explicit
evaluation of the proper self-energy Sgﬂ,(ls), is still rather
involved when it comes to somewhat more refined wave functions

I2,> . To overcome these difficulties Gebhard® has worked out
a particularly economic method for the calculation of expecta-

tion values in terms of variational wave functions in d = =.
He realized that calculations in d = « would become even
simpler if diagrams not only collapsed, but vanished

altogether in this 1limit. This would be the case if lines in
the diagrams corresponded to a one-particle density matrix
BPYyn = <®lcfgope 1¥,>, with 33" = 0. The latter property can in-
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deed be fulfilled if the arbitrary, normalized one-particle
wave function Iif»is chosen as (see (14))

-2 Mg NiotLimy

|$>=g 1.© |9, > (21)

where pg,, n» are explicit functions of ;?J-E <5%I&c|3%> and g.
The diagrammatic calculations are identical to those in ref.
8,19 but the vertices are given by a new value and lines now
correspond to i% ft k- This approach has the considerable ad-
vantage that results in d = = are obtained without having to
calculate a single graph. In particular, for arbitrary l;6> one
finds a generalization of the result of the quasi-chemical

approximation (7)

=@ (22)

which is seen to be valid even locally. The result of the
Gutzwiller approximation”? for the translationally invariant
GWF 1is a special case of (192). - All results for VWFs
discussed by the method of ref. 8,19 can also easily be
derived within the formalism of ref. 29. Based on his exact
optimization of VWFs in d = =, Gebhard?) has proposed explicit,
but simple VWFs for the Hubbard, the t-J model?) and the
Heisenberg model which can be used for numerical calculations
(variational Monte-Carleo) in finite dimensions and which are
expected to yield very good results for the ground state
energy.

RESULTS FOR FINITE DIMENSIONS BY (1/d)-EXPANSION

It is natural to extend the above formalism, developed
for d = =, to finite dimensions by expanding around d = =,
This can be achieved by different methods. For example, in the
case of the GWF Metzner' expanded the proper self energy Sg(k)
around its value in d = e, Sj. Thereby one can easily
reproduce the results obtained for the GWF by variational
Monte Carlo in d = 2,3, e.g. for <D>.% Even the exact result
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for

d = 1 is well reproduced. This also shows that in 4 = 3 and
for n = 1 the Gutzwiller approximation is indeed excellent for
all g » 0.05 (at g = 0 there occurs the localization
transition?®), and that it is even better for n < 1.

A different avenue to d4 < = 1is that of a direct
1/d-expansion 2% as worked out systematically by Gebhard.?®) He
finds that all numerical results?).30) obtained with the GWF in
d = 2,3, and even in 4 = 1, (e.g. for <D> or the kinetic
energy of holes) are very well described by the analytic
expansion up to order 1/d. - It is interesting to note that
finite orders of perturbation theory in 1/d do not remove the

Brinkman-Rice transition, which should only exist in
d = &.26):29)

The analysis of 1/d corrections also shows that semi-

classical counting arguments, which - as explained above -
yield the exact result for the GWF in d = =, 8.1 fail if |¢y>
in (14) has a broken symmetry (e.g. as in (18) or in the case
of a BCS wave function). In particular, simple dependences
such as (20), where the correlated quantity is given by the
uncorrelated one multiplied by an amplification factor, are in
general incorrect for several reasons:
(i) the correlated quantity is usually the sum of different
terms each of which has its own amplification factor and, (ii)
the 1/d dependence cannot be obtained consistently.? on the
other hand, counting arguments are still applicable in the
case of single-particle quantities if [$;> in (14) is written
in the form (21). This is already evident from the fact that
the quasi-chemical approximation, which can be obtained by
semi-classical counting, is valid in this case (see (22)).

THE USE OF GREEN’S FUNCTIONS IN d = =«

Inmediately after the d = = limit for correlated lattice
fermions had been introduced by Metzner and the author,® it
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became clear that ¢the 1limit of high dimensions leads to
considerable simplifications also for other models and
theoretical approaches. Mialler-Hartmann'!! observed that the
irrelevance of momentum conservation in those Feynman
diagrams, where the number of internal lines is greater than
twice the number of relevant vertices, has far-reaching
implications for a general Green’s function approach. For
example, the self-energy becomes momentum-independent in
d = » (see (15)). Not only is Fermi liquid theory therefore
obeyed in 4 = «, it is much simpler than even for an isotropic
system in 4 = 3. Furthermore, interactions between particles
on dif- ferent sites were found to simplify to their Hartree
substitute. He then formulated a self-consistent weak coupling
theory which could easily be solved numerically.3V The results
show all Fermi liquid features of a correlated Fermi system.

Similarly, Schweitzer and Czycholl3 investigated the
periodic Anderson model within a self-consistent perturbation
theory in the on=-site Coulomb correlation between the

f-electrons in d = =, Such an investigation had not been
feasible before, not even in 4 = 1, since this requires an
enormous numerical effort in finite dimensions. The

simplification arising in @ = « reduced these difficulties by
several orders of maghitude. At the same time the essential
physical behavior (Fermi 1ligquid properties, sum rules,
f-electron self-enegy etc.) was found to be essentially the
same as in finite dimensions.32

The simplifying features arising in d = = also made
possible the exact solution of the Falikov-Kimball model (a
Hubbard model where only one of the two spin-species can
move) . Making explicit use of the DOS, (10), and of the fact
that in d = = the proper self-energy I,;, becomes site-diagonal,
as expressed by (15) and discussed in refs. 11,31,32, Brandt
and Mielsch3) showed that I, can be expressed by the site-dia-
gonal Green’s function. To obtain I;; it is then sufficient to
solve the atomic problem in a generalized time-dependent
external field. This they were able to do and thereby they



Limits for Correlated Lattice Fermions 2207

obtained the temperature dependence of the equilibrium Green’s
function and of several correlation functions for this model
ind = and T > T,. '

Finally, Metzner3 explicitly calculated the Green’s
function for the Hubbard model ind = « at n =1 and T = 0 in
the strong coupling 1limit up to third order in t/U,
starting from the Néel-state (i.e. the exact ground state for
t/U » 0 9). This yields the first terms of a (t/U)-expansion
of the ground state energy, sublattice magnetization and
momentum distribution.

DISCUSSION

In the absence of tractable and systematic theoretical
techniques for the investigation of quantum mechanical
many-body systems, it is useful to find particular 1limits in
which these systems can be treated exactly. In this paper we
discussed two such 1limits: infinite range hopping and high
dimensionality. Within a short time the 1limit of infinite
dimensions for correlated lattice fermions has turned out to
be an especially fruitful approach. While correlations in the
many-body system remain non-trivial, theoretical investiga-
tions become significantly simpler than in finite dimensions.
This fact, in conjunction with explicit 1/d-corrections, gives
rise to great hopes for the success of future theoretical
investigations of correlated many-body systems in dimensions
1 <d«< =,
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