Interacting Fermions: Correlation Functions Obtained with the Gutzwiller Wave Function
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A recently developed analytic approach is used to calculate correlation functions for interacting
spin-1/2 fermions on a lattice in terms of the Gutzwiller wave function. In one dimension the
evaluations are performed analytically and without any approximation. Whenever possible com-
parison with exact results (Hubbard-model, spinless fermions) is made.

The well-known difficulties involved in the
theoretical treatment of interacting Fermi
systems, especially those with a strong, short-
range repulsive interaction, have made variational
methods particularly attractive [1]. In order to
study a lattice model of itinerant electrons with
an on-site interaction [2,3] ("Hubbard-model")
Gutzwiller [ 2] introduced a variational wave
function ]¢3>, which controls local (on-site)
density fluctuations in the ground state wave
function of the non-interacting Fermi gas, |¢O>,

lve> = Ti[[l-(l-g)Di]HJO> (1)
Here D. = n.,n., is the number operator for

doubleloccuéanéy of a lattice site ("D-site")

and 0 < g <1 is a variational parameter. The

projection operator in (1) merely reduces the

number of D-sites (where the interactions occur)

of the spin configurations contributing to v >.-
Athough I¢G> is simple in structure, exact
evaluations of expectation values <X> =

gl X[vg>/Wglvg> of an operator X have not

been possible for a long time. Therefore ex-

pansion techniques [4], mean field-type approx-
imations [5] and numerical methods were employed

[6-9]. Most recently, however, a new, analytically

tractable approach to the problem was developed

by Metzner and Vollhardt [10], which is based

on a somewhat unconventional combination of

Wick's theorem and well-known diagrammatic

techniques. Expectation values are expressed

as a series in powers of 1-g?, whose coefficients

can be calculated to any order - at least in

one dimension. In higher dimensions numerical

methods have to be used. In this way the ground

state energy of the d=1 Hubbard-model in terms

EF %wg> has been obtained without approximation
10].

We now go on to calculate correlation
functions (CFs) [11]. In lattice models with
itinerant up/down spins a site may be occupied
by single spins, D-sites and empty sites ("ho-
les"). Introducing number operators at site
i for the spin (S% = nj4 - njy), density (N; =
ni4 + nj}y), D-sités (Dj = nj4njy) and holes
(Hy = (l—ni¢)(l—ni¢)) we want to calculate the
CFs
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where L is the number of lattice sites,
X = L7lgx. etc. and x3,Yi = S, Ni, Dy,
Hi.Thisldefines 10 CFs. For ny = n, = n/2,
with n = N/L < 1 as the particle density, there
remain only seven, four of which are independent.
We choose CSS, cNN, chHH and cPH since they
have a direct physical significance. We note
that for X = Y the 5 = 0 limit of the Fourier
transform of (2), C*X(g=0) = <X2?> - <X>2,
is a measure for the fluctuations in the number
<X> around its average. In the present case,
where a fixed number of particles <N> = n
and a total sRin <5%4> = 0 is considered,
055(4=0) = cWN(§=0) = 0, while cPP(3=0) % O
because there is no conservation law for D-sites
or holes. -

In the following we limit our discussion
to d = 1 dimension and n = 1 unless stated
otherwise. 55

1) The spin-CF C3~ is of particular inter-
est, because the results obtained with (1)
may be compared with the exact results for
j = 1,2 in the d = 1 Hubbard-model in the
atomic limit [12]. One obtains CSS(q) =
—(1-g2)-lonF(Q) where F(x) = 1-(1-g2)x and
Q= ?q|/ﬂ. In the atomic (g = 0), CSS(q:ZkF)
is seen to diverge logarithmically, implying
an anti-ferromagnetic transition. In real space

1
Ss _ 1 sin(mjy) .
Cj = -0 J dy Fly) o d >0 (3)
[s]

so that for g = 0 one finds

cSS| o (opd Sid) (4)
) ‘9:0 E
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In Fig. 1 C:~ is plotted for different values
of the corrélation parameter g. The (-1)3/j
dependence has already been suggested earlier
[7]. The numerical calculations for j =1
[6-8] and j = 2 [7] are seen to be very
accurate. The results obtained from (4) are
also in very good agreement with exact [12]
and numerical [13] results for the antiferro-
magnetic Heisenberg chain. Hence we see that
for n = 1 the Gutzwiller wave function des-
cribes spin correlations in the interacting
system very well.
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Fig 1. The magnltude of the spin-correlation
function C3 separation j for different
correlation parameters g.

2) The density-CF is found as CNN(q) =
[g’/(l—gz)]QnF(—Q/gz). The additional g®-factor,
as compared to C°°, reflects the suppression
of density fluctuations for g » O.

3) For g = 0 and n < 1 holes act as spinless
fermions whose number is conserved [8]. In this
limit the hole-CF CHH is given by cgﬂ = e,
while its exact value is given by
CHUl with n,kp replaced by the hole concen-
tration ny = 1-n and kF = Tnh, respectivel
It turns out [11] that'cHHy obtained with Tw >
describes the overall features of the exact
result (correlation hole of width 1/2ny, os-
cillations etc.) very well as was already con-
cluded from Monte-Carlo calculations [8]. -

4) For n = 1 the CF between D-sites and

holes is given by 1 = ¢t = 1 cW oich that

1 oM 2

for g~ 0 CDH(q) = - (g). Since correlations

in (1) merely tend to smoothen out the dis-
tribution of particles on the lattice, the
latter result implies that there is only an
average correlation between D-sites and holes,
resembllng the non 1nteract1ng case. In Fig. 2
we show C3j" = (cbH 4 g2 )/d, the probability

for flndlng a hoie at distance j from a D-site,
normalised to the non-interacting case, which
clearly shows this feature. On the other hand,
for strong interactions this probability should
be higher than in the uncorrelated case, be-
cause this would make a decay of a high-energy
D-site easier. As discussed earlier [6] the
lack in spatial correlation appears to be the
main origin for the rather high ground state
energy of the d = 1 Hubbard-model obtained
with |¢G> at strong interactions U, which is
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Fig. 2. The probability for finding an empty
site at separation j from a doubly occupied
site, normalized to the non-interacting
case, for different correlation parameters g.

caused by logarithmic corrections to the usual
-t?/U-dependence [10].

The above results may be directly used to
diagonalize Hubbard-type models with more com-
plicated than on-site interactions. -

We thank W. Metzner for useful discussions.
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