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Foreword

These notes on the physics of the metal-
insulator transition in disordered systems are based
on a series of lectures which the author gave at the
"NORDITA Spring School on Condensed Matter Theory" at
Tvarminne (Finland) in April 1984. Nevertheless, the
detailed manuscript presented here was only worked out
most recently in the course of my preparation for the
"Spring School on Disordered Systems" at Jiilich
in March 1985.

The lectures address graduate students and,
in general, non-specialists. Therefore no previous
experience with the matter is assumed (except for a
general familiarity with the basics of quantum mechanics
and condensed matter physics). One of the focal points
of the lectures is a detailed ("anschauliche") discussion
of the scattering effects responsible for localization
and interaction effects as worked out by the Russian
school. Quite generally no knowledge of advanced theoret-
ical methods (e.g. Green's functions, Feynman diagrams etc.)
is expected. In the two instances where diagrams ‘are
actually used they appear as a "sign-language" to illustrate
the use of perturbation theory and the concept of time
reversal invariance. (It seemed to be important to at

least mention these ideas on which a large part of the
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actual research is based.) Within this task it was
unfortunately not possible to discuss any of the field-
theoretical methods which have proven to be of fundamental
importance for the development of the subject. Instead

a detailed discussion of the scaling theory by Abrahams

et al. is given.

These lecture notes do not present a review of
the subject. They only attempt to be an introduction —
a fact which is certainly reflected in the number of
references. Furthermore several topics and techniques
have not been mentioned at all, while others have been
discussed at greater length. This does not reflect the
author's opinion about the importance of those methods
and results that cannot be found here, but only the
author's capability of presenting the matter within a
given frame of depth and length.

Finally I would like to express my deep
gratitude to all my friends and colleagues, who helped
me to learn about localization and the metal-insulator
transition. In particular, I am grateful to Elihu
Abrahams and Peter Wolfle for many inspiring and

enjoyable discussions.




I. Introduction

A metal-insulator transition separates two
physical regions, which fundamentally differ in their
electrical dc-conductivity oc(w=0): while a metal has
a finite dc-conductivity (o (0) > 0), an insulator is
characterized by o(0) = 0.

Such a transition does not only occur in
disordered systems. In fact, it can also take place in
very  clean, purely crystalline materials, in which the
particles that are responsible for the current, intexact
via a Coulomb-interaction. In such systems an overlap
of energy bands can lead to a metal-insulator transition.
Yet another cause for a transition may be due to a
structural change of a crystal leading to a new lattice
periodicity. Indeed there exist completely different
physical reasons for the occurrence of a metal-insulator
transition [1]. We will here confine ourselves to the

metal-insulator transition in disordered systems, i.e.

where the "disorder™ is ultimately responsible for the
transition. By "disorder" we mean, e.g. the distufbance
of a strict lattice periodicity due to impurities or
defects. Our understanding of the physics of disordered
systems, in particular of their transport properties

and the metal-insulator transition, has greatly changed

and substantially deepened in the last 5-6 years [2,3].
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In the first part of these lectures we will

concentrate on the behavior of non-interacting, quantum

mechanical particles in a disordered environment. In
the second part we will also take into account the

effects of a mutual interaction between the particles.

II. Non-Interacting, Quantum Mechanical Particles in

Disordered Systems

Of three-dimensional systems (i.e. those with
space dimension d= 3) we know, that at temperatures
T=0 there exist neither lattice vibrations (phonons)
nor any inelastic processes. In fact, in an unbounded,
perfect lattice (Fig. la) no scattering occurs at all.
This is a consequence of quantum mechanics. Consequently
such a system has an infinite dc-conductivity. One may
equally well say, that the characteristic collision
time T of the particles due to scattering off defects
etc. is infinitely long (t=«). In the case of Fermions
(and those we only consider here) it follows, that the
mean free path & = Vet of the particles is also infinite

(2 =»); here v, is the Fermi-velocity. The wavefunction

F
of a particle is then characterized by a strict spatial
phase coherence.

In a lattice, which is weakly disturbed by

impurities or defects (Fig. 1lb}, the situation is different:
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Fig. 1l :(a) perfect lattice, (b) imperfect lattice
(presence of defects, impurities etc.)

the scattering of the particles off the defects implies
a finite collision time 1 and thereby a finite mean free
path £ . The dc-conductivity is therefore also finite

and is given by

0"(5) = o5\s

T
Ehwr @
- m
where e and m are the charge and the mass of the
particles (e.g. electrons), respectively and n is the
density. The quantity o, is often called "Boltzmann -

conductivity", because (1) is a direct result of the
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Boltzmann transport theory.
The scattering of the particles leads to
diffusion (Fig.2), i.e. to a diffusive motion. The

phase coherence of the wave functions is thereby limited;

Fig. 2 : Diffusion of a particle in a disordered system

nevertheless the wavefunction \P(FU of the particle

is still extended, i.e. one has

lim  [@]" <o (2)

=0

When the disorder is increased (e.g. by choosing a
higher impurity concentration) it may happen that the

wave function becomes localized, such that
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o™~ e_r/f

where £ is the so-called "localization length". However,
it is not a priori clear how to quantify this vague
statement. To gain insight, we therefore want to discuss
the one-dimensional case (d=1) first [1].

As a model we consider a generalized Kronig-
Penney model, namely a chain of §-function potentials

(Fig. 3) at locations ¥; with strength V, and

Fig. 3 : One-dimensional model of a disordered system

separations a; - The potential is then given by
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~~
from which k and o can be obtained as functions of k .

For a chain of potentials we may conclude from (6) that

a wave function will only be periodic (and the state
extended) if the separations aQ; between the potentials
are all equal (q\- =a) and if, at the same time, all
potentials V' also have the same strength (V{ < V) .
Otherwise all physically sensible wave functions fall

off exponentially, i.e. represent localized states. This
means that even an arbitrarily small statistical spread
of the values of a; and \/; léads to loéalized solutions
of the Schr&dinger equation only.

The first quantitative definition of "localiza-
tion" dates back to Anderson in 1958 [4]. He investigated
a three-dimensional model, namely a regular point lattice,
where on each lattice site 1 an atom with an energy V(
was located (Fig.4). Now one considers a quantum mechanical
particle (e.g. an electron), which (i) hops from one site
to the next neighbor site (kinetic energy) and (ii)
experiences the potential \/; on site i (potential
energy). The question is, how the particles are influenced
by these potentials. 1In the special case that all V|
are equal (Vi = V) one of course obtains a sharply
bounded energy band, whose width we characterize by an
energy B. This situation is changed when the V.. are
statistically distributed (Fig.5) , e.g. with a rectangular

distribution

(7)

e el

/o) else

J
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Fig. 4 : Disorder model due to Anderson

3izpgxe

(npgons

E ot yd

T pPs 916
| Wi2

3 =T | ¥ = vabayuod
0

_________ Yplens
- WL

Fig. 5 : Example of the energy distribution of the atoms
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For an unbounded system one may now ask: How large is
the. probability P for a particle to return to a parti-
cular lattice site in the limit of long times (é“**)?
In the case P=0 the particle has "disappeared" in the
system; hence it will be characterized by an extended
state. In the case P> 0, i.e. finite return probability,
we speak of "localization", i.e. the particle is described
by a localized state.

The answer to the above question depends on
the ratio of the maximal energy difference of the atoms,
W, to the band width B of the undisturbed system, i.e.
on W/B. This number (!) is a measure of the strength of
energy fluctuations in the system, i.e. a measure of the
disorder. The quantitative answer [4] is, that for
wWe =5 one finds P=0 while for W/B X2 &
one obtains P> 0. In between there is a sharp transition,
the "Anderson transition". In other words: if the energy
E of the particle lies below a certain critical energy
E, (which is determined by the strength of the disorder,
QN/B)C = 5 ), it is localized, while for E>E_ the
energy fluctuations of the system will not be able to
dominate the particle such that it is described by an
extended state. In the first case one deals with an
insulator, in the second one with a metal. Since
electrons in a metal have a characteristic energy EF
(Fermi energy), the Anderson transition may be induced

by changing EF .
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What does the transition actually look like?
According to Mott [5] it originally was supposed to be

discontinuous. This expectation was based on the follow-

ing arguments. The dc-conductivity o, (1) of a

d-dimensional system can be written as

2 2-d
e el (Jrftdsstl 4
7 ‘(h) ™ a 'O_'Z (8)

(o}

where we made use of l’\lFT , Ve = t\kp/m

and where the density of a Fermi gas has been expressed
as h = a‘d (here kF is the Fermi wave number
which is connected with a , the average distance of
the particles, by Rg = m/a ) . The conductivity

Oa is an essentially universal quantity — it is
independent of the disorder in the system. The disorder-
dependence only enters via the mean free path £, i.e.
the ratio 2%/a . When the disorder increases, & and
hence ca, decrease. On the other hand, (1) and (8)

have been derived within the Boltzmann transport theory.
So, for these equations to be valid at all, % always has
to be greater than the average particle distance a
(Ioffe-Regel criterion); shorter 2 makes no sense. Mott
therefore postulated a "minimal metallic conductivity"”
Oin which is essentially given by O (more precisely,

G'Mh‘ = C 0:._' , where C =~ 0,08- 0.3 is a nonuniversal

constant which is due to a réeduction of the density of
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states of the electrons at the Fermi surface compared

to the Fermi gas). He argued that — as the metal-insulator
transition was approached from the metallic side — the
conductivity 00 would decrease proportional to & and
then, at L= a , would drop discontinuously from

Onmin tO zero (Fig. 6) . However, already at this point

[
7

disordev

Fig. 6: Possible shape of the conductivity curve as
a function of the disorder,

we should like to mention that this concept does not
hold — in spite of many experimental results which
appeared to support it for a long period of time. Indeed,

in the last 3-4 years low temperature experiments have




88

measured metallic conductivities much below Omin and have
thereby falsified the concept of a minimal metallic
conductivity [6]. We will later come back to that

problem.

Theoretical Description of Disorder

In the model originally discussed by Anderson,
a particle moves on a regular lattice, the energy of the

lattice points being statistically distributed (Fig. 7a).

Fig. 7: Disorder and motion of a particle in the model
of (a) Anderson, (b} Edwards.

The "disorder" is then exclusively due to the energy
state of the lattice sites. An alternative model goes

back to Edwards [7]. In his model particles of identical
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energy are scattered off randomly distributed scattering
centers of equal potential (Fig. 7b}. The disorder is
then due to the spatial distribution of the scatterers.
While the first model starts from the localized regime, .
the starting point of the Edwards model is the regime of
extended states (weak scattering). The latter model is
particularly suitable for the formulation of a systematic
perturbation theory which starts from the undisturbed,
metallic regime and then inéludes a small impurity
concentration, i.e. weak disorder. The following
investigations are based on the Edwards model. For this
we consider (i) non-interacting particles, which (ii)

are scattered by pointlike, randomly distributed scatter-
ing centers of equal strength. We are interested in the
conductivity ¢ or the diffusion coefficient D of such
a disordered system. The two quantities are actually

related by the Einstein relation
D (9)

where N, is the density of states at the Fermi surface.

We will measure the disorder by a dimensionless
parameter A with A ﬂiniV:., i.e. > is essentially
given by the impurity concentration h. and the scatter-
ing strength V:' of the scatterers. The parameter

is often called "coupling constant”.




In the case d=1 we saw that even arbitrarily
weak disorder ()’90) leads to localization. The
"critical" value of the disorder, )c, above which one
finds localization is therefore given by A¢.==O .

On the other hand, in the case d=3 A, is different
from zero ()‘c »>6) . For A<M, one finds metallic
behavior, which is described by a finite dc-conductivity
00 (or diffusion constant DO). For A‘>>\. one deals
with an insulator. Here ¢, =0 ; instead, an insulator
has a finite polarizability, i.e. dielectric constant &, .
At \ =)_ the Anderson transition is located.

Apparently, the case d=2 (very thin films)
marks a marginal dimension. The question is now, whether
there is an Anderson transition or not in two dimensions,
i.e. whether A\, =6 or A¢ >0 . 1In other words, one
may ask an almost trivially sounding question: "Is there
metallic conductivity in very thin films at 1=0 2" Or
is there, for example, a minimal metallic conductivity?
The answer to this seemingly simple question has only
been found in recent years. It led to unexpected insights
into the physics of disordered systems and their transport

properties.

The "Weakly" Localized Regime

We first consider the case of very weak disorder
(X.Q‘i). Therefore the starting point is the metallic

regime. We want to understand how a small concentration

90
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of impurities affects the metallic behavior. Since we

are far away from the actual Anderson transition itself,

these effects can be treated by means of a perturbation theory
in the disorder parameter A << {1 . Weak disorder means

that the mean free path 2 is much greater than the

average particle distance Clﬂvk;i , i.e. kFﬁ |

or, equivalently, EFT'?bi . We will therefore

choose

|
A = - (10)

ZTTEFT
as our (small) perturbation parameter. Starting from
the metallic regime we want to consider the precursor
effects of localization, i.e. the corrections 8§56 to the
metallic conductivity

= 0,+8C | §al <€ G (11)

These perturbational effects are commonly called "weak
localization". Our aim is to calculate &¢ = ‘F(L'wl T/ H)
as a function of several external parameters like the

system's size L , the frequency (v , the temperature T

or the magnetic field H .




Diffusion of Classical and Quantum Mechanical Particles

As mentioned before, the conductivity g, , (1)

U; s v (12)
A
is a result of the Boltzmann transport theory. In this
theory consecutive collisions of particles are assumed
to be independent of each other, i.e. collisions are
uncorrelated. This implies that multiple scattering
of a particle at a particular scattering center is not
taken into account. Consequently, if there is a finite
probability for the repeated occurrence of such multiple
scatterings, the basic assumption of the independence of
scattering events breaks down and the validity of the
result for 9, in (1) becomes, at least, questionable.
To investigate this fundamental point we
consider the diffusive behavior of a particle in a d-
dimensional disordered system. Let the particle be

—9

located at ¥, at time + =0 (Fig.8a). Due to its

-—
diffusive motion the particle moves away from V. .

(4
At some later time t we will only be able to make a
probability statement about its position: it will be
located within some smooth volume (Fig. 8b) whose size is

determined by the probability distribution P(Vif) '

which is the solution of the diffusion equation

X _p VP =0 (13)
ot

92
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can take place vi? aift

&g are sl

t=0 t>t
. T, |
(@) (&)

Fig. 8: Probability distribution of a diffusing
particle: (a)t=0 , (b) t>t .

The diffusion constant Do is given by 'Do = V;Lr/;l ’
where Vg is the characteristic velocity of the

particles. The explicit solution of (13) is given by

\Ir-r,\
T dpt
e
P{Y,'l’) =~ (4."_]) .Hd/z (14)

At times T>T  the exponential in (1l4) is unimportant,

so that




P7 ) = -
Hormn™ as

- U/pt  a=2

A 5
‘/(Dbf)s/ 4=3 (15)

dlo
We observe that \Q;ﬂ: ‘=(D;f) is the d-dimensional
volume into which the particle has diffused after time t.
These considerations are purely classical. To
understand the differences in the diffusive behavior of
classical and quantum mechanical particles, we take a
look at the path of a particle diffusing from point A

to point B (Fig. 9] [8].

v %o B

Fig. 9: Possible paths of a particle diffusing from A to B.

94



This transport can take place via different trajectories
(in Fig. 9 four examples are shown). The trajectories,
or "tubes", have a typical width given by the Fermi

wavelength
'XF = I‘_ (16)

In the classical case th=c>) these paths are arbitrar-
ily sharp (XF:=<>) — in the quantum mechanical case,
however, one has %g = k;-’ ~ a , i.e. the tubes have
a finite diameter. We now assume that (i) the disorder A
is very small (?\F/,Q < XA «1) and that (ii) the
temperature is low enough such that inelastic processes,
characterized by an inelastic scattering time T +
occur only very rarely (T;, ®T).

Since the transport from A to B may take place
along different trajectories, there is a probability
amplitude An connected to every path L . The total

probability W to reach point B from A is then given by

the square of the magnitude of the sum of all amplitudes:

W = \i" A;]z (17a)

b lA. b L *
? ol 2, Ak

i#) (17b)

The first term in (17b) describes separate, i.e. non-

95
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interfering paths — this is the classical case, in
which the tubes are infinitely sharp. On the other
hand, the second term represents the contribution due
to interference of the path-amplitudes,which is therefore
an exclusively quantum mechanical effect. 1In the
Boltzmann theory these interference terms had been
neglected. In most cases this is in fact justified:
since the trajectories have different lengths the
amplitudes ‘AC carry different phases. On the average
this leads to destructive interference. Hence the
guantum mechanical interferences in Fig. 9 are generally
unimportant.

There is, however, one particular exception to

this conclusion, namely if point A and B coincide (Fig. 10)!

A=13

Fig. 10: Return of a particle to its starting point.
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In this case starting-point and end-point are identical,
such that the path in between can be traversed in two
opposite directions: forward and backward. The
probability to go from A to B is then nothing but
the return-probability to the starting-point. Since
paths 1 and 2 in Fig. 10 are equal, the Amplitudes A,
and A; have a coherent phase relation. This leads to

constructive interference, such that the quantum mechanical

contribution to W becomes very important. Eqg.(l17b)
then tells us that for A‘ = A.,_ = A the classical
return probability (due to the neglect of the interference

2
terms) is given by W = 2]Al , while the guantum

tlass
2 >k 2
mechanical case yields qu = Z|A|IT + 'ZA,A,_ = 44",
Hence one obtains
qu = chlass (18)

The probability for a quantum mechanical particle to
return to some starting point is hence seen to be
twice that of a classical particle. One might say
"quantum-diffusion" is slower than classical diffusion
because in the first case there exists a more effective
back scattering effect. In other words: quantum
mechanical particles in a disordered medium are (at low
temperatures] less mobile than classical particles.
This in turn leads to a correspondingly lower conduc-

tivity O .
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To estimate this effect on 0 we consider the
change &8¢ relative to the metallic conductivity ¢ ,
i.e. &T/G; . Because of the expected lowering of @,
the sign of ST/O; will be negative. Furthermore,
the change will be proportional to the probability that
during diffusion a closed path as in Fig. 10 occurs at
all. (This is the probability to find a particle in a
closed tube, i.e. the probability for the trajectory to
intersect itself during the diffusion.) Let us therefore

have a look at a d-dimensional tube (Fig. 1ll) with dia-
ne!

meter ‘XF' , i.e. cross-section F . During

\

a-
Cross sechion ~ '7\F

Fig. 1ll: Enlarged section of a quantum mechanical
trajectory.

the time interval ot the particle moves a distance

Al = Ve dt , such that the corresponding volume-
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d-1
element of the tube is given by dV = thdi'x .
On the other hand, the maximally attainable volume for
the diffusing particle is given by (15), i.e. by
diz .
==(th) . The above mentioned probability
for a particle to be in a closed tube is therefore given

by the ratio of these two volumes. We find

Tin . -1 L5, .
a el
W = f Groawds . vpRp [ dh
T VJ;# T (D,t) -t

where we have integrated over all times T £t ST
T is the microscopic time for a single elastic
collision (shorter times are not sensible), while T,
is the shortest inelastic relaxation time in the system.
It determines the maximal time during which coherent
interference of the path-amplitudes is possible.

Because of D, o¢ '/)‘ and % ~*h we obtain

(Iu”PF)M1) a=1

dT
g s >\* T A (tl'n [1‘)' d4=2L (20)

g,
2 /4
HTnft)™  a=2-
If we assume, that for [ 0 the inelastic relaxation

rate vanishes with some power of T , i.e. lfti ol j—P '
n

where P is a constant, (20) is given by




Aa=

I ANSZEI t/%
t > o (21)

t\’z Tf/l) d=3

We observe the following: (i) the conductivity
decreases for decreasing temperature, (ii) the relative
correction SVU/U; is linear in the disorder para-
meter A & i (lowest order in )\ ), (iii) except
for d=1, these corrections are of quantum mechanical
origin, i.e. they disappear for K — 0 . (In the case
d=1 the "tube" in Fig. 11 has no finite diameter —
just as in the classical situation; furthermore, since
in d=1 there is only forward and backward scattering
all paths are trivially "closed".)

In d= 2 one therefore obtains a logarithmic

temperature dependence of the conductivity correction
Sv. We note that the elastic scattering due to the
disorder in principle leads to a divergent temperature
behavior of &C in d< 2 . For the initial
assumption 15@-} < 7, to remain valid, the results
in (21) for o £21L may therefore not be used at too low
temperatures. In particular, (21) does not allow to draw
conclusions about 6¢ at exactly T=0 !

Finally, it should be pointed out that the

results in (21) have been derived with a tacit assumption:

100
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namely that the path-amplitudes A; and A, in Fig. 9

were perfectly coherent (A. = Az) . So we actually
—
took for granted that particle states with momentum K

__)
and -k are equivalent. Such a "time reversal invariance"

is given if there are no external magnetic fields and if
the impurities are non-magnetic. Otherwise a new situa-
tion arises which we will discuss later.

We should like to stress once more, that (20)
and (21) are based on the explicit consideration of
backscattering effects, i.e. multiple scattering and
the correlation of consecutive collisions. Thus they
cannot be obtained within the framework of the Boltzmann
transport theory. Also CPA ("coherent potential approx-
imation" [9]), an almost classical approximation method
in problems involving disorder, is not able to obtain
these results because it makes similar assumptions as

the Boltzmann theory ("single site approximation", etc.).

Systematic Calculation of Corrections to the Conductivity

The arguments leading to (21) already contain
the essential physics. They enabled us to understand
the tempefature dependence of S¢'. On the other hand,
we cannot deduce more than proportionality relations
from them. For example, the precise prefactors in (20)
can thereby not be determined. Furthermore, the pertur-

bation theory cannot be extended beyond first order in .
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For this we need a systematic approach. This involves
calculational methods which can only be formulated
within a certain mathematical framework which we cannot
discuss here. To obtain a precise calculation of XO‘

we will therefore "use" methods without really explain-
ing their theoretical background. The necessary concepts
and terms will thus only be mentioned by appealing to
their plausibility.

In spite of all quantum mechanical effects the
functional form of theresults expressed in (21) are due
to the diffusive behavior of the particles. Their
probability distribution P(¥,+) , (14), is deter-
mined by the diffusion equation (13). Fourier-transforming
(13), or P(¥, ¢) , leads to P(C—I',w) . Using (13)
plus proper boundary conditions one can easily convince

oneself that one finds

=5 |
P(g ) =< (22)

”’l‘LJ + D°‘17—

P d
This is called a "diffusion pole", because P/ﬁ,bo)
diverges for q , L O . 1Its origin is exclusively
due to particle conservation during the diffusion.

The knowledge of P(?,(-) , which is a

local quantity describing a density distribution, or
of P(%:uﬁ is not sufficient, however, if we want to

know a dynamical quantity like the conductivity
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—y
or the diffusion coefficient ])(7)&) . For this one
needs a more general function, e.g. the so-called

. . . o §
"density-density correlation function" 7((Y} ) . It
describes the dependence of a density distribution at
one point in space and time on that at some other point
in space and time. Its Fourier transform

has the general structure [10]

. . _  DFwq .
(X(ﬂ'm — (L + D(‘i,w)ﬁz X[ﬁ’o) e

i.e. it also has a diffusion pole, where D (ﬁ’,w)

is now a ﬁ and bs-dependent diffusion coefficient.
Once we know 'Y (q,w) we of course also know D(Zi",w) .
This quantity is therefore of fundamental importance

for a systematic calculation of corrections 5}', §D

to G,, DL due to the impurity scattering. It can be
derived within a perturbation theory using a diagrammatic
"sign language" (Feynman diagrams) [11]. In this way
themicroscopic scattering processes are described
graphically: (i) the motion of a particle is characterized
by a line with an arrow ("propagator"), while (ii) the
sCattering at an impurity is symbolized by a dashed line
with a cross. An example is shown in Fig. 12. The

upper line, pointing to the right, describes a "particle"

with energy EF~+Q) and momentum P + q/&_ '

while the lower line, pointing to the left, describes



Fig. 12: Particle-hole ladder diagrams describing
diffusion.

a "hole" with energy EF and momentum T)’ - —ﬁa/:L .
In this way the density-density correlation of a
particle-hole pair due to the usual diffusion (namely
a sequence of independent collisions) is described by
means of intuitiyely appealing diagrams. It should be
pointed out that the dashed line describes only a

correlation and not an interaction (which so far has

not been considered at all) between particle and hole.
The arrows carry the initial and final momenta of the

particle and the hole.
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The diagrams in Fig. 12 can easily be summed

up. In the case of small energy - and momentum differences
between particles and holes (i.e. (D<€ Ep ’)4! &K P = tke )

one finds

V,T

—{w=+ D, r.il

© /s
FT’F’ (7»“') - (24)
where VL is the potential energy of the scatterers.
So, as expected, we have obtained a diffusion pole.

To understand the properties of the correlation
leading to (24) wenote that a particle-hole pair with
small energy - and momentum difference can be graphically

represented in momentum space as shown in Fig. 13.

particle (E+uws, F‘ih)

hole (E) F“.ih)

Fig. 13: Particle~hole excitation at the Fermi surface
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The partners of such a pair always propagate in the
same direction, experience the same collisions and are
hence correlated for all time. This is a consequence
of particle number conservation and this is the reason
why the diffusion pole (24) always exists — even in the
case of inelastic processes.

In the presence of time reversal invariance
(which, by the way, does not refer to a global invariance
of the whole system but to that of single-particle
states!), particle states with momenta Z’ and -:E
are equivalent. It means that we may invert the momentum
of one of the arrows ("propagators"), i.e. replace Z?
by —l:, without changing anything. To understand its
consequences we now consider the particle-hole ladder
in Fig. 11: we first turn around all the lower
propagators and at the same time invert all the momenta
as mentioned | F"_f/i - “?*'_%i: etc). 1In this way
(Fig. 14) we again arrive at a diagrammatic ladder but
this time both arrows point into the same direction
("particle-particle ladder"). To obtain the usual
particle-hole picture we merely have to turn around the
total lower half of all diagrams, thereby arriving at ;
strangely looking, seemingly complicated, "maximally
crossed", i.e. fan-like, diagrams [12]. Their contri-
bution [13] is easily obtained once we remember that
they originated from a particle-hole ladder (24) in

which, howeyver, the momentum transfer is now given by




Fig. 14:

Application of time reversal invariance for

calculating the "maximally crossed" diagram.

(F+3h) — -P+1R) =

Their sum Ao?’F’ (_ci"u)

ey
*P

is then found to be

instead of q [14]7.

VoT
-(w + D, ,‘)’—f}f’) z

(25)
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The essential difference to the particle-hole diffusion
pole in (24) is, that the diffusion pole in (25) is no
longer due to particle number conservation. This implies
that, for example, inelastic processes (during which
particles change their energy state) will destroy
("cut off") the pole structure in (25). This property
will later become very important.

The contribution to the conductivity due to
the scattering processes described by the diagrams in
Fig. 14 is given by the "Kubo-formula" [11], i.e. by

an integral over (25); more precisely by

6G = JAFYAF’ PP (26)
—(w  + D°(F+P

(Note, that the particle-hole diffusion pole, (24),
when integrated over as in (26), does not contribute
because the integrand is then odd in 'F and f” :
The main contribution of the integrand in (26) comes
from the region ’—):’+f)°/zo , i.e. F'-= ~-F

and is hence due to backscattering. The contribution

considered here is in fact identical to one previously
discussed, which we had obtained by calculating the
return probability of a particle to its starting point.
Clearly, a pronounced back scattering will favor
localization. Since all scattering processes take place

very close to the Fermi-surface (|F’ ~ ‘kk,—;)
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backscattering means that one deals with a momentum
change of Zi:kp . One therefore often speaks of
“2kF-wscattering". Here we encounter an essential
similarity with Cooper pairing in superconductors, where
particles with momenta .E and ;F couple, i.e. where
one also has a particle correlation across the whole
Fermi sphere. For this reason the particle-particle
diffusion pole in (25) is often called "Cooper-pole" or
"Cooperon", while the particle~hole diffusion pole in
(24) is simply referred to as "diffuson".

Taking into account all prefactors in (26) and

- ] T
using the substitution P'*P :=k one obtains a

frequency dependent correction to the conductivity [151]

)
2-d 2
-1
G  — e (27)
o Tm > ~1L>*]Lkz
The negative sign, indicating a lowering of the
conductivity, is due to the minus sign in 'ﬁ'=-P-+k '
i.e. is due to the back scattering. In d=2Z one finds

[ b I
T BT e . o
S 2w { )’é" T (28)

S*Vw

For 9 —> 0 the conductivity indeed decreases.




= 0 [i . Zf\ﬂv\({'@)J (30b)

i.e. the correction Sa/ 7, is linear in )\ &« 1
and has a negative sign. The conductivity thus
decreases when the system's size is increased — this
is the precursor effect of localization.

How can one check these results experimentally?
Well, we first have to bear in mind that all experiments
are performed at finite temperatures. So, besides the
elastic impurity scattering, one will also always have
inelastic processes, which are described by some
inelastic scattering time T3,  and for which we again
assume that T};' e« TP . 1In this way a new energy
scale T};' enters the problem. As a consequence the
energy —(w in (27) is replaced by =tw + thri.
The particle-particle diffusion pole is then cut off,
such that Ww->0 does not lead to a divergence
anymore. In turn, the frequency dependence in (28),
An (L/wT) is replaced by -An (‘L“-h [t) = (n (t/kBtT)
i.e. by a temperature dependence just as in (20), (21).
Alternatively one may say, that the inelastic processes
introduce a new length scale, an "inelastic diffusion
length", L;, =(£%Tfh)”& , the so-called "Thouless-
length". It provides the length scale on which a

particle suffers an inelastic process and is scattered



out of its energy state. For L;. <L the size of the
system is quite irrelevant: a particle will then only
experience L;h as the relevantvlength. In this way L
has to be replaced by» Lm in (29), (30) which leads to
exactly the same temperature dependence of &¢ as in
(20), (21).

A decrease of the conductivity A(kgT < 0)
is equivalent to an increase of the resistancé (SR >C)) .
The corresponding logarithmic temperaturg'dependence of
the resistance of very thin films (d==2) , as shown in

Fig. 15, has been found in numerous experiments (for a

-

Wy ns

0
LQGyo(T/1K)

Fig. 15: Logarithmic temperature dependence of the
resistivity of thin Au-Pd films [16].

review see [17]).
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The preceding discussion was limited to the
so-called "normal" scattering, i.e. scattering by non-
magnetic impurities. Therefore the spin of the
particles was unimportant. However, in the case that the
impurities carry a magnetic moment, spin scattering will
occur, causing the spin of the particles to flip. There-
fore the particles experience something similar to a
fluctuating magnetic field. The time reversal invariance
is then lifted so that the Cooperon (25) does not diverge
any longer (the pole is cut off by a constant term ’(FS '
where Tg 1is a characteristic collision time for spin
scattering [18]). Field theoretical investigations
[19,2Q], which we cannot discuss here in spite of their
fundamental importance [21], have shown, that nevertheless
even in this new situation one finds a logarithmic
correction in d =2 just as in (30b]. However, now
the prefactor goes like A" instead of A , i.e.
the correction is even smaller than in thé case of normal
scattering. Since Cooperons no longer yield a divergent
contribution, these logarithmic corrections must be due
to diffusons only, i.e. due to the usual diffusion
process., It has not yet been possible to understand
this result by means of the'simple probability arguments
used before in the case of normal scattering.

Impurities with a heavy nucleus lead to yet
another type of scattering, namely to spin-orbit scattering

of the particles. Theoretical investigations [20,22]



have again predicted a logarithmic correction for

as in (30b) — but this time with a positive sign. The
conductivity therefore increases with decreasing
temperature! A simple quantum mechanical explanation,
and experimental results fully supporting these findings,

can be found in [17].

The Influence of a Magnetic Field on Localization

In the case of normal impurity scattering the
localization effects originate from the guantum coherence
of paths 1 and 2 in Fig. 10, i.e. from their ability to
interfere. Therefore they are very sensitive to any kind
of disturbance of time reversal invariance of the
momentum states ]: and -:E . Such a perturbation is,
for example, caused by a magnetic field. In its presence
a state is no longer characterized by a momentum -: ’
but rather by the electromagnetic momentum E’- Ze;\. .
Here, A is the vector potential and the factor 2¢
(instead of simply € ) is due to the correlation of two
particles just as in superconductivity. If we now let

-

—,
k go into —h , the momentum states, i.e. the paths 1

and 2 in Fig. 10, are no longer equivalent. Mathematically
speaking this is a consequence of the fact, that now the
amplitudes A; and A; carry field dependent phase factors

[8]:
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A, — A exr[éz—ﬁdf-lz\‘}

Aexp [ietS/c ] (31)
A, = AT

(

The phases are given by the line integral over the
vector potential 7: , i.e. by the magnetic flux HS '
where H is the magnetic field and S is the area of the
closed path in Fig. 10 ( ¢ = velocity of light). Since
the motion of the particles is diffusive, S is given
by S =D,t . The return probability W, of a particle
to its starting point in the presence of a magnetic

field is again given by (17). One therefore obtains
= p
W, = Z[Al [1 + cos (2eHD,%/c)] (32)

1f H=0 , we find the old result Wyeo = 4|A’l .
The conductivity correction in the presence of a
magnetic field, ‘ SO'(H) , is again determined by
the return probability VVH . The total change of the
conductivity due to a magnetic field, Ad¢(H) =
Sa(H) - §a(o) , therefore depends on the prob-
ability difference AW = W, -Wy-¢ '

such that
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Cin
A e
Ao-(H) = -St\/;txp (-]':—:“%)7/2 [LoS(ZQHDo‘(‘/C) “1] (33)

In d=2 (33) can be written as AG‘(H) = e*F(x) ,

where X = ZeHD, T, /('_ . The function F(Xx)

has the limits

2
Fix) = <" x=«{
(34)
Flx).= b x,  x»i
For weak magnetic fields X<« one therefore
finds
2_0
Ac(H) < Kt (35)
while stronger fields x> 1 give rise to a

logarithmic field dependence
AclH) < L [HT,) (36)

In any case, AT is always positive. (AR < o) ,

so the resistance decreases with increasing magnetic

field ("anomalous magnetoresistance")[20]. The reason
lies in the disturbance of ‘the phase coherence by the

magnetic field, leading to a weakening of the localization



117

effects. The "critical" field }*c , determined by
, T
¥=), at which the change from the H to the [ H
behavior occurs, depends on T;, and thus on temperature.
At temperatures commonly used in experiments, Hc is
of the order Hc = 100-500 Gauss (~:-t 10 -50 W\T) .
This should be contrasted with the classical result
2

(Av(“)/o‘o) ~ ~(L.)l_‘c) , which is not only many orders
of magnitude smaller but also has a different sign (Lo,
is the Larmor frequency)! So we see that even very
small magnetic fields have a drastic influence on

localization.

The Anderson transition

We have. so far calculated small corrections

to the metallic conductivity T due to the elastic
impurity scattering. These corrections are the result
of a perturbation theory and are lowest order in the
disorder parameter A« 1 . On the other hand, for
d <2 we found that, in spite of the smallness of M\,
the corrections diverge in the limits «w or T —0
or L ~—e | 1In this situation the perturbation theory
bréaks down, i.e. fails because the condition
|sal <« 7, is no longer fulfilled. What now?
One could try to calculate higher order corrections
in )\ , but that doesn't get us very far and is also

yvery complicated. Besides that, a phase transition and
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the critical behavior can never be obtained by a finite
order perturbation theory. Since an exact solution of
the problem does not a priori appear to be possible, one
has to use other methods. Two such possibilities will
be discussed here: (i) a scaling theory, which is based
on renormalization group ideas and which determines

and (ii) a self-consistent approach which calculates T{w).

Scaling Theory

A very successful scaling theory of the
Anderson localization problem was introduced in 1979
by Abrahams et al. [13]. These authors developed a
one-parameter scaling theory for the so-called
"conductance" g of a d-dimensional system and connected
it to a perturbation theory, in which the previously
discussed length dependence of the correction §¢  was
calculated for the first time.

The conductance g of a d-dimensional hyper-

cube of side length L 1is given by

4 , .

R
AT rie

where R is the resistance and ¢ is the conductivity.

(37)

The conductance g is a number, i.e. a dimensionless

parameter, whose relevance for the localization problem



(particularly that of its length dependence) had first
been recognized and discussed by Thouless [23] in
several very important papers. In the metallic regime
where Ohm's law holds, the conductivity is by definition
length independent, so that the conductance is given by
% d‘Ldﬁz . On the other hand in the insulating regime
the wave functions fall off exponentially; one would
therefore also expect an exponential length dependence
of < and thus of CJ , i.e. % K F = exP [—L/E) ’
where § is an unknown "localization length". What now
is the length dependence of g in between these limiting
cases? To answer this question, we take hypercubes
of side length L and build up a larger hYpercube with
side length b-:L . Now we ask how the conductance of
the larger system, 3(LL) , depends on the conductance
of the initial cube, i.e. 5(1_) . In principle g (bL)
could be a function of %(L) ,L ,L and also all
kinds of non-universal properties of the material
(X, Rf, m etc.). The heart of the argument proposed
by Abrahams et al. now is, to assume that the old 8
was in fact the only relevant parameter of the system

that would determine the new 3 , i.e. to have a relation

5(LL) = L[4, 3(1_)] (38a)

or, equivalently,
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q (L) = £, 3(1_/6)] (38b)

where f 1is some, yet unknown, function. In this way
microscopic details are assumed to be unimportant. Eq.
(38b) may be called a "scaling equation". Since the
relation is supposed to hold for any value of b, we
differentiate (38b) by b and then set "b=1 . Then

we obtain

)
d In L 7[ [5 ]
where { is a function involving -F . The logarithmic

derivative of 3 with respect to L therefore turns out
to be a function of only 3 itself. To take a
logarithmic instead ofkthe usual derivative is indeed

a convenient trick: one thereby achieves that length
scales of L (e.g.® or¥ in L[Q, L[E ) which we
do not know anyhow, drop out! Abrahams et al. [13] now

defined a so-called "B-function”

- L d9 o dbg
A J dbul i L Ffﬁ/u] o

which is essentially given by (39) and which is also

only a function of 3(L) . 'Its behavior under a change
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of 3(L) determines the conductivity behavior of the
system.

Starting from what we already know, we can
easily calculate the limiting cases of Q . In the
localized regime 8(< 1 , with ra o< e‘L/-E , we

find

f@ d (n 3 (41)

while in the metallic regime % 1 we have G =
0’; + 60 , where &0 is given by (29a). Combining
(37) and (40) one arrives at
Cq e

(&T d-2 - 5— +O(3z> (42)
The first term in (42), i.e. d-2 , represents Ohm's
law (purely metallic conductivity) while the ’/g
correction term follows from the perturbation theory for
the conductivity.

By means of (41), (42) which describe fg in the
limits %C<f_ and 3>>i we may try to draw conclusions
about the shape of # for all 9 . This is shown in
Fig. 16, where F(Z) has been plotted versus b\3 .

The calculated limits of ﬁ for the insulating and the
"metallic" regime are shown by full curves. Note the
important fact, that for 3 >> 4 all B-curves are

smoothly bending upward — a consequence of the negative
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Fig. 16: The B-function for 4 = 1,2,3 dimensions

sign of the 1/g correction in (42). So, as g becomes 4
smaller, the B-curves move away from the limiting value ~
A-2 . One may therefore make a sensible assumption

about the unknown region in between: namely, that also

there the B-curves have a smooth and monotonous shape ;
as shown by the dashed curves in Fig. 16. This figure
corresponds to a "flow diagram", which reflects the

behavior of the system under changes of the system's

size. For o< 2L this behavior is characteristically
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different from the one for d>2Z : (i) d g 2 ; in

this case B is always negative. Since ﬁ describes

the change of the conductance g with the systemhd :

size L, this implies ds /dL <0 . BAn enlargement

of the system therefore always leads to a decrease of

g: the curves in Fig. 16 always "flow" to the left

into the insulating regime. This tells us that for

d<2 and L— all states are localized. The system
is always an insulator. Of vthe curves that always have

a negative B the case d=2 is obviously srpecial ("marginal"):
the curve approaches g = 0 for 8» L but never reaches
B8=0Q at finite g ; so even here the states of the infinite
system are always localized. This provides the answer

to our initial question about the possibility of metallic
conductivity of very thin films (cl=‘l) at T = 0: we now
find that a truely metallic conductivity in d=2 is
never possible! (ii) d > 2 ; here two possibilities,

B< 0 and B> 0, exist since the B-function has a zero

at cjr Ye - For systems with an initial value of the
conductance (:‘) <3t (i.e. with a disorder A >Ac¢ ,
where 5()& = Je ) we find ﬁ<0 . Therefore an
enlargement of the system again leads to an insulating
behavior (flow of the curve to the left). However, for
an initial value 3>3Q (i.e. A< A. ) one has F>O /
such that increasing the size of the system drives it

to the right, i.e, into the metallic regime. The point

ﬁ(f)c) =0 is called "fixed point", because g stays




fixed when L is changed. This point represents the
Anderson transition. So we find that for 4 > 2 there
exists a transition at a finite Je - i.e. at a finite
value of the disorder, AQ . Depending on the disorder
( P )\Q) states are either extended (metal) or
localized (insulator).
In the vicinity of the transition, F(B)Q:o ,

the B-function may be linearized:
2eqy IS
ﬁ = M (43)

where 1/v 1is the slope of B at g=49, in Fig. l6.

Eqg. (43) can be integrated and yields

E; - (30—_2; >" (44)
where ‘302‘{)(‘—«») .

In the localized regime (3 ' 9o < 3¢.)

P

one finds

F L [1 -(%)l/v] (45)

where '§ has been introduced as a "localization
length". If we define a parameter + =

(cj‘, - 3@)/91 oc (X “Ne )/ Ae , which measures
the disorder of the system relative to the corresponding

critical value, i.e. the distance from the critical
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point, then (44), (45) imply
2%
T < ¢ (46)

Thus the number Y turns out to be the critical exponent
of the localization length S . Eq.(46) says that ¥
diverges as the disorder approaches the critical value
Xc and is then the only relevant length in the problem.
In contrast, the metallic side (3 ' > 5()
is characterized by a finite dc-conductivity G{O).
Using (37) and (44) we find

-2
(o) < f‘)(d ) (47)

The critical exponent of Gfb) , Which is usually

referred to as S , is therefore given by

s = (d-2)V (48)

This relation connects two critical exponents, one of
which describes the behavior on the metallic side (S),
while the other one determines the critical behavior on
the insulating side (V) . This scaling relation was

first derived by Wegner [24] already in 1976, who showed
(in a paper of fundamental importance for the Anderson
localization problem) that there exists a close connection

to the problem of critical phenomena.
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Integration of (42) leads to an explicit
value for S , namely S=1 . wWithin the approxima-
tions used, this result is valid at least close to Z
dimensions. ( € = d-L <<_1) , but it appears to hold
even in d=3 .

Field theoretical methods have also led to a
scaling theory in the case of magnetic impurities [19-22].
The results are qualitatively very similar to the ones
obtained in the previously discussed case. In particular,
one again expects an Anderson transition,for' d>2L '
while for d<2 all states are localized. The fact that
the perturbational corrections due to the spin scattering
are proportional to A& (instead of A\ as for normal
scattering) is also reflected in the critical properties:
the conductivity exponent S is here found to be S=’AL
instead of S=1.

Eq. (47) implies that the dc-conductivity

goes to zero continuously as the transition is approached. =

This finding contradicts Mott's concept of a "minimal I

metallic conductivity" and the related discontinuous

transition. The experimental confirmation of the

continuous behavior will be discussed later.

The Method of Selfconsistency

The theoretical approach [13] as described

above is based on the assumption of a one-parameter



scaling relation (40), whose validity cannot be further
proven within this very framework.

Quite a different theoretical concept, which
may be used to describe the conductivity behavior as
well as the transition and the critical properties
and which does not rely on a scaling assumption, is that
of "selfconsistency" [25]. Within this method one
attempts to express the frequency dependent conductivity
a(w) (or the diffusion coefficient D(w)) by means of a
non-trivial, generally approximate, relation which
itself involves this quantity. So one wants to find an

equation of the form

D(w) = F[ D{w] | (49)

whose "self-consistent" solution then yields D(bﬁ)
for all (3 and all disorder-parameters M . For this
to be successful it is necessary to start from known
limiting cases (e.g. (49) has to agree with perturbation
theory for A <« 1 ) such that the theory can be
anchored to an exact result [14]. The selfconsistency
is then used to go beyond perturbation theory, i.e.
to the transition itself (and even beyond). It is
therefore used as a substitute for an (infeasible)
perturbation theory to infinite order.

since D(w) vanishes at the transition, its

inverse Do /D [w) correspondingly diverges at that
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point. Within a diagrammatic perturbation theory it
has been shown that a selfconsistent calculation of
the latter quantity can be performed by summing up the
largest (i.e. most divergent) contributions of pertur-
bation theory [14,26]. 1In this way one can indeed
derive a selfconsistent equation. It has the simple

structure

,E%i = | + _J__ Cu: (
'D(w) TrNF j(?fr\d(_('w “b(bo)kZ) (50)

where DO/D(w) is given by the integral over a
diffusion pole involving the diffusion coefficient

itself rather than the diffusion constant Do . This
relation can also be obtained by other methods [27-30].
Its solution can easily be obtained: one finds that

for d <2 the dc-conductivity (7'(0) is always zero,
irrespective of how small the disorder is (insulating
behavior] . However, in dimension cl=2 ‘the localization
length § is exponentially large for A<«{ [14]:

/2
Siee € (51)

For d>2 there exists a critical value of the

disorder below which @ (o) is finite (metallic regime),
while for larger values it vanishes (insulating regime).
Since the limit (v —>0 can be explicitly performed

within this theory one obtains results which go beyond
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the range of applicability of the scaling theory
described above (W0 means, that one leaves the
critical regime). Besides that one obtains complete
agreement with the results of the scaling theory. In
particular one also finds the scaling relation (48)
and the value S$S=1 for dimensions 2 <d < 4 . In
fact one can show that (50) itself possesses scaling
properties and therefore naturally leads to a scaling
theory [26,28,31,32]. Perférming the integral in (50)
and choosing appropriate units such that one obtains
dimensionless quantities G and 24 instead of D ana w ’

(50) can be written as [26]

-d 2-d
d-Z ~ _ i =

where the plus (minus)-sign corresponds to the metallic
(insulating) regime and P) is a dimension-dependent
constant. In (52) no material dependent parameters

(k, , m , A etc.) are explicitly involved. It is

F
therefore indeed a "scaling equation" which establishes
a universal dependence of the conductivity or frequency.
Its solution determines a complete and smooth curve for
the B-function (40) [32].

A field theoretical analysis [30] of the pre-
sent problem shows that, if a perturbational treatment

is valid at all, (52) is an exact relation — at least

close to two dimensions [33].



In conclusion we may say, that in spite of a
few still open questions, the problem of Anderson
localization, i.e. the behavior of non-interacting
particles in a disordered medium, is basically well

understood.

IITI. Interacting, Quantum Mechanical Particles in

Disordered Systems

The theory discussed so far only involved the
elastic scattering of non-interacting, quantum mechanical
particles due to impurities. If, on the other hand, one
wants to check the results experimentally, one always

deals with systems, in which the particles also mutually
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interact. The most important example is that of electrons in

a disordered metal. Even if one was always allowed to
assume the Coulomb interaction between the electrons to
be strongly screened, one would still have to know about
its actual qualitative and quantitative influence compared
with the effects of localization [3, 34].

Pure electron-electron interaction is strictly
momentum conserving and therefore does not contribute
to the metallic resistance. So, as much as before, the
momentum change of particles due to impurity scattering

is essential. To understand the combined effects, we
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take a look at the inelastic interaction among the
electrons themselves [35]. It is characterized by a
momentum transfer q ( with qﬂ <¢{ ) and an energy
transfer tw  (with (vT <« 1 ), where X and T are
the mean free path and the average collision time of the
electrons due to the impurities. One may then define
an "“interaction time" 4, = ?W(w ; obviously

tE,>T . This means that during the time +,
many scatterings between electrons and impurities occur,
leading to a qualitative change of the interaction itself.
The "bare" interaction therefore becomes an "effective"
interaction whose character depends on the energy
transfer hw . These effects lead to corrections &G
and SN of the (metallic) conductivity and of the density

of states close to the Fermi surface, respectively.

Estimating the Corrections

Calculating the corrections to ¢ to lowest
order in the disorder ) , Altshuler and Aronov [35],
found the surprising result, that they had the same
structure as those in the non-interacting case. 1In
particular, there is again a logarithmic temperature
dependence of £¢ in d= 2, although the guantum mechani-
cal interference processes that led to (19),(21)
had not been considered by these authors at all: If

initially one perhaps believed in an obscure coincidence,
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we now know that these results are solely due to the
disorder in the system. It leads to a diffusive behavior
of the particles and thereby to a change of the inter-
action due to density fluctuations. In this way the
naked, long range interaction between the electrons
becomes an effective interaction of short range.

To study the implications we now investigate
the inelastic scattering of two electrons (more precisely:
of a particle~hole pair) with energy € (relative to
the Fermi surface) in which an energy transfer ho = e
is assumed to occur [36]. According to the uncertainty
principle the particle and the hole remain in mutually
coherent states up to times t =h /G , during which
interference is possible. However, in the case of a
short range interaction it is necessary that the particles
actually meet at the same position during that time. The
probability for this to happen we call W(€). The short

range interaction ]\ is thereby changed to ‘

Nepp = A(1+ W) (53)

To estimate VV(G)we observe once more that the motion

of the particles is diffusive, i.e.

e l
dt W (54)

wo= |

¢
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The integrand is thus given by iV/VAWF , (15),
just as in the localization problem. Consequently the
integral leads to the same dimension dependent expression

as in (20). In d=2 one obtains

W(e) =< (’ﬁ/er) (55)

We now assume that the relative corrections of physical
quantities to lowest order in A due to these effects are

given by the change in the interaction, i.e. by

¢ SN(¢) )
7! g eiobliegp BeltWE) veu 5

For example, the correction to the density of states

in d=3 is then given by
EN(O =< A\l (57)

In the case of repulsive interaction ( A §>())

the density of states is hence found to decrease in the
vicinity of the Fermi surface, having a downward, non-
analytical cusp at Ep (i.e. €=0 ). This behavior
has in fact been ohserved in tunnel experiments [37]
where the tunnel conductance til/dV , which is
proportional to the density of states, is measured as

a function of the voltage V (instead of the energy € );

see Fig. 17.




dI/dV (arbitrary units)

0
V (millivolts)

Fig. 17: Behavior of the density of states close to
the Fermi energy in d=3 [37].

To obtain the conductivity correction at finite
temperatures the energy € is replaced by T in (54):
It
u(—-——— A4=2

é:g,c/\ keT /
>}

T%-j A#42 (58

The temperature dependence of 80 is therefore
identical to the one previously found in the localization
problem, although the quantum mechanical interference

due to backscattering (58) is not involved at all. Only
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the diffusive behavior of the electrons is of importance.
In fact, inclusion of the "Cooperons" only leads to an
insignificant change of the results in (58) [38].

The singularities in the density of states and
other physical quantities show that, in fact, the
disorder leads to essential changes of the properties
of a Fermi liquid, thus disproving long held, opposite
views,

In the meantime there even exists an exact
solution of the interaction problem to lowest order in

A<<1 [39] which can also be understood within Fermi
liquid theory [40]. Therefore, in the case of weak

disorder, again a satisfactory situation has been reached.

The Metal-Insulator Transition

To go beyond perturbation theory and to be
able to study the metal-insulator transition (including
its critical properties), one needs a scaling theory or
some other high-power mathematical method. At the
present time field theoretical investigations as well
as renormalization group treatments of the transition
close to d=2 dimensions are performed [41,42]. However,
only in a few special cases (strong external magnetic
field and magnetic spin scattering, respectively) have
they led to definite conclusions. In these cases one

finds that, just as in the localization problem, a
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transition will only occur above d=2 dimensions.

Close to the transition the dc-conductivity is expected

to vanish linearly in Xt;-k (i.e. with critical
exponent S=1{, like in Anderson localization without
magnetic field or spin scattering). However, the
general behavior is still unknown. 1In fact, in the case
of zero external magnetic field the renormalization-
group analysis breaks down before the transition is
reached [41,42]. This is due to the appearance of local
magnetic moments (strong spin fluctuations) which lead
to a divergence of the spin susceptibility for 1 —>0 .
Furthermore, the quantum interference effects
due to backscattering which are responsible for the
transition in the non-interacting system have not yet
been fully considered. Therefore there remains a lot
to be understood about the metal-insulator transition

of the interacting system.

Experimental Results and Theoretical Conjectures

In an experiment the transition is usually not
approached by increasing the disorder A to A. but

rather by decreasing the particle density w . 1In

semi-conductors this can be achieved by a change of
the doping concentration; in this way the energy of

the particles
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T 2
Eates cilis (27n) 4 (59)

m

is lowered. If the critical energy at which the transi-
tion takes place is denoted by Ec = E("c) , the
system will be in the metallic regime for h > N¢
(i.e. E>Ee¢ ) and in the insulating regime for %< MWe
(i.e. E<E. ).

As the details of the transition have not yet
been understood, the corresponding experiments have
also not been explained conclusively [43]. In three-
dimensional samples one finds for example that there
is one group of systems (e.g. amorphous NB* gﬁ—x
or compensated Ge-Sb ) where 040) vanishes linearly
with hW-vi (i.,e. S=! ; see Fig. 18a) while in another
group (e.g. Si:P  or uncompensated Ge-Sb ) one finds
a root-behavior (i.e. S =14 ; see Fig. 18b). (Note,
that in both cases the conductivity goes to zero

continuously; furthermore, in both cases conductivities

significantly below the postulated minimal metallic
conductivity ¢, .  (see the arrows in Fig. 18a,b’)

have been measured.) The reason for this different
critical behavior is still not really clear. However,
the two groups of materials differ in one essential
point and this has led to certain conjectures concerning

the underlying physics [45,46]. The systems exhibiting
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Fig. 18: Dc-conductivity of different systems close

to the metal-insulator transition:
S’%L[43].

(b)

(a) Exponent

S'=’é_ possess one valence electron per scattering

center. (In the case of S{.P every P-atom contributes

one additional valence electron to the electronic system,

while the remaining P-ions represent the random potentials

by which the electrons are scattered).

In contrast to

this, in the systems with S=1 there are several electrons

per scattering center.

Ge:Sb equal amounts of Sb and R

(In the case of compensated

are added, which then
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exchange an electron; so they do not contribute
additional charge carriers but only scattering centers.)
One may now speculate that these additional scatterers
lead to an increased scattering of the electrons and
that therefore the conductivity behavior with S+ i
is essentially that of the Anderson transition. On the
other hand s={ is also cqmpatible with the interaction
theory for systems with strong spin scattering.
The situation in the group of materials with

S ='/1 is even more unclear. The behavior S=’/:_ has
so far only been found for non-interacting systems with
strong spin scattering. However, in S.: P only the
electrons carry a spin. Now, it might just be so that
the local magnetic moments (spin fluctuations), which
the renormalization group calculations for the inter-
acting system come across (and which lead to their
ultimate breakdown) act as spin scattering centers

themselves [46]. The interaction would then, through

a collective behavior of the electrons, provide
magnetic moments on which the electrons themselves
scatter. Apart from that the electrons would "feel"

a non-interacting system. Within this concept one
would be sble to understand S'=/AL . In fact this
picture is supported by measurements of the specific
heat and the spin susceptibility of these systems [43].
In the limit T — O one finds that both quantities

strongly increase — an effect that appears to be
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explicable by means of a strongly enhanced effective
mass. Here now seems to be a close connection to the
theory of strongly correlated ("almost localized") Fermi
systems, which already has found application in the
theory of liquid °He [47]. 1In this way several
remarkable connections between seemingly very different
areas of condensed matter physics have recently emerged:
connections between the problem of disordered systems,
of Fermi liquid theory, of the theory of strongly
correlated Fermi systems and also of superconductivity.
We can be sure that a great deal of new and unexpected
physics will evolve from the combination of these

concepts.
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