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A general theory for the correlation functions of superfluid 3He which takes 
into account rigorously the magnetic dipole interaction is developed. The 
resulting equations are solved for the Anderson-Brinkman-Morel (ABM)  
state and for wave vectors q oriented parallel to the energy gap axis. Then the 
dispersion relations of low-frequency modes, including Fermi liquid cor- 
rections and damping due to pair breaking, are calculated in the zero- 
temperature and zero-field limit. There are two real frequency modes arising 
from each of the longitudinal and transverse spin density correlation functions : 
a spin wave and an orbit ware, both exhibiting a frequency gap where that of 
the spin ware is somewhat modified in comparison to the unperturbed lon- 
gitudinal nuclear magnetic resonance frequency [l ABM L . The orbit ware is 
damped rauch more strongly than the spin wave. Further, there are two real 
frequency modes arising from the density correlation function : the sound 
ware, having a frequency gap of the order ~~BM and an orbit ware, exhibiting a " ABM gap m ware number of order ~L ~vF.--The NMR frequency undergoes a 
smaU splitting, which is the result of the splitting of the energy gap due to 
the dipole interaction. One of the two gaps still has nodes. In addition to 
these low-frequency modes our equations yield resonances at frequencies 
of the order of the gap frequency Ao/h, i.e., at to = 1.22 Ao/h and at to = 
1.58 Ao/h. The damping and the oscillator strengths of these resonances are 
calculated. 

1. INTRODUCTION AND DISCUSSION OF RESULTS 

The interaction between the magnetic dipoles of the nuclei in superfluid 
3He is known to determine the equilibrium configuration of the multicom- 
ponent order parameter and to give rise to the phenomenon of a longimdinal 
nuclear magnetic resonance (NMR). That the dipole interaction can lead to 
other important effects was demonstrated first by Tewordt et al.1 (hereafter 
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referred to as TFDE) and by Tewordt and Einzel. 2 In the infinite- 
wavelength limit (q ~ 0) the dipole interaction gives rise to resonances at 
frequencies w of the order of the gap A for instance, at to = (8/5)~/2k in the 
Bal ian-Werthamer  (BW) state and at about to = 21/2A in the Anderson-  
Br inkman-Morel  (ABM) state. 1,4 That  the dipole interaction is responsible 
for these modes can be seen from the fact that the oscillator strengths of 
these high-frequency resonances go to zero if the dipole interaction goes to 
zero. Further,  2 in the ABM state the dipole interaction leads to a gap in the 
wave spectrum of sound waves , which is about to -~ 
(1 +FO~)a/412ABM/(1 +F~) 1/2. Here Fg and F~ are Landau parameters and 
~ A B M  L is the longitudinal NMR frequency. 

While the dipole interaction has been considered within the "adiabatic" 
approximation in the work of Leggett  and Takagi, 3 which is closely related 
to the present work, it has been neglected in most of the other  studies of 
collective modes. 5'7-9 This is understandable since the dipole interaction 
introduces a coupling of the many (22) degrees of f reedom in this system and 
thus gives rise to extremely complicated equations of motion. In the present 
paper the dipole interaction will be taken into account rigorously. This is 
necessary, for instance, in order to determine the oscillator strengths of the 

~ A B M t  x high-frequency modes at q = 0 (and also for q <- SLL ~rE). The inclusion of 
the dipole interaction is also the only way to see which of the low-frequency 
modes are the true Goldstone-boson modes (q-~0, to ~0 ) ,  which are 
associated with the broken overall rotational symmetry and with the broken 
gauge symmetry. We shall see that none of the real frequency modes found 
in this calculation are true Goldstone modes, because the dipole interaction 
gives rise either to a frequency gap or to a wave number gap in the dispersion 
curves of these modes. Therefore  we have to conclude that the Goldstone 
modes must have imaginary or complex frequencies. In the present work we 
have calculated only the real frequency modes. 

First we generalize the equations of T F D E  1 for the correlation func- 
tions, which have been derived in the presence of the dipole interaction, to 
include states having an anisotropic energy gap like that of the ABM state 
(the equations of T F D E  are strictly valid only for the BW state) and, further, 
to include finite wave vectors q. Then we specialize these equations to the 
ABM state and to orientations of q parallel to the equilibrium axis I of the 
energy gap. This is because we are interested in analytic results and the 18 
linear equations describing the order parameter  fluctuations can only be 
solved analytically for qU 1. Explicit expressions for the various suscep- 
tibilities, frequency gaps, and damping terms, and figures for the dispersion 
curves will be given only for the zero- temperature  limit, where some analytic 
results can be obtained. From these exact results we can see dear ly  how the 
collective modes in 3He-A should be classified and what their physical 
meaning is. 
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In calculating the collective modes by this method it is essential to stay 
within the framework of the self-consistent random phase approximation, 
which means in the first place that the nine equations for the nine equili- 
brium order parameter components have to be solved self-consistently in 
the presence of the dipole interaction. Starting from the Leggett configura- 
tion of the ABM state, 6 which minimizes the dipole energy, it is found that 
this stare is slightly modified such that it is no longer unitary. 2 This has the 
consequence that the pair average spin is no longer zero. We shall calculate 
the two quasiparticle energies corresponding to quasiparticle spin along or 
against the direction of the pair average spin. 6 The interesting result is that 
one of the two energy gaps (which differ by terms of the order of the dipole 
shift) still has nodes along I. It turns out that this splitting of the energy gaP 
leads to a splitting of the NMR frequency (and all the other frequency gaps) 
which is of the order of a few tenths of a percent. Thus it is unlikely that this 
splitting can be observed. The reason for this splitting is that the dynamical 
properties depend sensitively on the detailed structure of the energy gap for 
k in the vicinity of i. 

For qlll the 18 linear equations for the 18 components of the order 
parameter fluctuations are found to decouple into two sets of five and two 
sets of four equations. The order parameter fluctuations involved in the two 
sets of five equations couple to the longitudinal and transverse spin density 
fluctuations, respectively. We consider the limiting case where the magnetic 
field (pointing along the z direction while ! is in the y direction) goes to zero. 
Since the direction of the field is implicitly given by our representation of the 
order parameter, we still can speak of longitudinal and transverse polariza- 
tion. Then, in the zero-field limit, the dispersion relations for the collective 
modes arising from the solutions of these two sets of five equations become 
the same. We find two real frequeney modes arising from each of the 
longitudinal and transverse spin density correlation functions (see Fig. 3): 

(a) The spin wave dispersion curve (lower curve in Fig. 3) tends to 
to = ( l + F ô ) l / 2 v F q / x / 3  for large q, and to goes to a finite value at q = 0, 

~-~ A B M  which is somewhat below the original NMR frequency L . This is an 
effect due to the coupling to the orbit wave. The corresponding order 
parameter deviations from equilibrium are shown in Fig. 2a. These devia- 
tions are represented in terms of deviations of the vectors d, m, n, and 1 
from equilibrium, where d determines the spin axes and where n, m, and 
1 = m x n determine the orbital axes of the Cooper-pair wave function. The 
frequency gap is due to oscillations of the vector d about I and the fact that 
the dipole interaction is proportional to - ( d .  I) 2. The corresponding dis- 
persion curve of the original order parameter mode that induces this spin 
density mode is shown in Fig. 1 (lower solid curve). 

(b) The dispersion of the orbit ware (upper curve in Fig. 3) tends 
approximately to to = vFq for large q, and to again goes to a finite value of the 
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~-~ABM order L as q tends to zero. The deviations of the order parameter  
components from equilibrium for this mode are shown in Fig. 2b. Now the 1 
vector oscillates about the fixed d vector, thus producing a frequency gap. 
The dispersion curve of the original order  parameter  mode that induces this 
spin density mode is shown in Fig. 1 (upper solid curve). The damping of this 
orbit wave is several orders of magnitude larger than that of the spin wave in 
(a). 

It is satisfying that out  equation determining the wave spectra of the 
order parameter  modes coupling to spin density (Fig. 1) can be written in a 
form which is quite similar to that of the phenomenological theory of 
Leggett  and Takagi 3 describing the resonance between the orbital mode and 
the NMR mode. However,  our expression for the "Cooper-pai r  orbital 
susceptibility" Xorb and the "normal locking energy constant" gn describing 
the inertia and the depth of the potential weil for the oscillations of 1 are 
generalized to include the to and q dependence and also the imaginary parts 
arising from pair breaking and Landau damping processes. In particular, at 
q = 0 and T = 0 we find that Xorb - N ( 0 )  In (Te~to) and that toz and toTK are 
both of the order In (Te~w). Here  ~" and ~'K are the two relaxation times which 
have been introduced phenomenologically in Ref. 3 to describe the damping 
of the orbital motion, and to is the frequency gap of the orbit wave, which is 
of the order of the dipole shift. 

Next we consider those order parameter  fluctuations that couple to the 
density fluctuations. These are given by the solutions of one set of four 
equations, while the solutions of the other set of four equations vanish 
identically. We find two real frequency modes arising from the density 
correlation function (see Fig. 6): 

(c) For the lower dispersion curve in Fig. 6 the frequency to tends 
approximately to vvq for large q, and to goes to zero as q tends from above to 
a certain finite value q0, being of the order ABM • • ~'~L /V F. For q < q0 thls solutlon 
disappears, and therefore this mode has a true gap with respect to wave 
number. 

(d) The upper dispersion curve in Fig. 6 tends to to = (1 +F~)l/2vFq/x/3 
for large q (sound wave dispersion), and to becomes finite and of the order 
~ABM L at q =0 .  

The dispersion curves of the original order  parameter  modes that 
induce the density modes of Fig. 6 are shown in Fig. 4. The deviations of the 
order parameter  components from equilibrium that are involved in the 
Anderson-Bogol iubov phonon mode 1°'11 (see lower solid curve in Fig. 4) 
are shown in Fig. 5a. One sees that the vectors tl, n, and m maintain their 
equilibrium directions but  oscillate in magnitude. The deviations of the 
order  parameter  components from equilibrium that are involved in the orbit 
wave (upper solid curve in Fig. 4) are shown in Fig. 5b. It should be pointed 
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out that the order parameter modes corresponding to Figs. 5a and 5b by 
themselves would not lead to a frequency gap or a wave number gap, 
because the vectors d and ! do not move apart from each other. The 
corresponding dispersion curves are the dashed curves in Fig, 4. However, 
these modes are coupled via the dipole interaction and this gives rise to the 
frequency and wave number gaps in the solid curves in Figs. 4 and 6. 

The coupling of the Anderson-Bogoliubov phonon mode (Fig. 4, lower 
solid curve) to the density changes the asymptotic behavior for large q from 
oo = vvq/~/3 to o~ = (1 +F~)l/Zvvq/~/3. Since the Fermi liquid parameter F~ 
is very large (F~ =90 ,  see Ref. 12), the latter dispersion curve would 
intersect that of the orbit wave (upper solid curve in Fig. 4). This gives rise to 
hybridization between the sound wave and the orbit wave, the effect being 
that the sound wave acquires a frequency gap and the orbit wave acquires a 
wave number gap. 

In addition to the low-frequency resonances (oJ OABM~ L j, the equations 
determining the poles of the spin density, density, and order parameter 
correlation functions yield high-frequency resonances (oJ ~ A). At  T = 0 and 
q = 0 the latter become equal to 1.50A and 1.93A for the spin density 
correlation functions, and there is only one resonance at 1.93A of the density 
correlation function. 4 The damping of these modes is given explicitly by our 
results for the imaginary parts of the susceptibilities, which are valid for all 
frequencies (see Appendix B). From these results we estimate that co~- - 1. In 
Ref. 1 only approximate values for the high-frequency resonances were 
obtained, since the anisotropy of the gap was neglected. These estimates 
gave values of 2A 1/2 and 2A, which have to be compared with the correct 
values, i.e., 1.50A and 1.93A. The modes at 1.50A = 1.22Ao and 1.93A = 
1.58Ao are nothing else than Wölfle's "clapping" and "superflapping" 
modes. 5 Here A0 is the amplitude of the gap parameter in the ABM state and 
A is the average value of the gap [they are connected by the relation 
Ao = (3/2)1/ZA]. The "clapping" and "flapping" motions of the vectors m 
and n are shown in Figs. 2a and 2b, respectively. For q = 0, and more 
generaUy for q[[/, the oscillator strengths of these modes are found to be 
smaller by a factor of order (f~~BM/Æ)Z than those of the low-frequency 
modes. 

At first sight the results of this paper seem to be of purely academic 
interest because some of the new effects shown to be caused by the dipole 
interaction become important only at temperatures where the normal 
locking energy is smaller than the dipole energy, that is, for T~< 10-2Te. 
Here we note that out  calculation refers only to zero temperature and zero 
magnetic field. From the phenomenological theory of Leggett and Takagi 3 
one can infer, however, that the resonance between the transverse NMR 
mode and the orbital mode (see the two curves in Fig. 3) can be shifted into 
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an experimentally accessible temperature range by means of a finite mag- 
netic field. Thus, for comparison with experiment it is desirable to generalize 
the present theory to include a magnetic field and to work out the general 
expressions given in this paper for finite, temperatures. It would be also 
interesting to see what happens to the coupling effects between the sound 
wave and the orbit wave (see Fig. 6) when the temperature increases. 

In Section 2 the general theory of the random phase correlation 
functions is developed, valid for anisotropic energy gaps, finite ware vectors 
q, all frequencies, and all temperatures. In Section 3 this theory is specialized 
to the ABM state and to qlll- Wave spectra of low-frequency modes and 
high-frequency resonances are calculated explicitly at T = 0. 

2. G E N E R A L  T H E O R Y  

In Eqs. (33)-(35) and Fig. 1 of Ref. 1 general equations have been 
presented which describe the coupling between the spin fluctuations (four- 
point function T) and the order parameter fluctuations (four-point functions 
T' and T"). The four-point interaction function I" contains the spin-ex- 
change interaction of strength I, the BCS pairing interaction of strength g, 
and the dipole interaction of strength 3/2. Inserting into these equations the 
expansions of the functions F, T, T', and T" with respect to spin and orbital 
space, one finds 22 coupled linear equations for the four components of T, 
t~» (p = 0, 1, 2, 3, and/~ fixed), and the 18 components of T' and ù ,i T , t~~, and 
t'~ (1, = 0, 1, 3, and i = x, y, z, and/.~ fixed). The subscripts u and/~ refer to 
the Pauli matrices ~« (including the unit matrix for v = 0), and thesuper- 
scripts i refer to the components with respect to the direction eosine kl of the 
momentum k. Since the subscript ~ is fixed and the same for all the 
components, it can be considered as a dummy variable in the following 
equations. The physical meaning of the components t~~ is that too describes 
the density oscillations while the components t11, t22, and t33 describe the 
spin fluctuations. The components t 'i correspond to small deviations of 
the order parameter components from their equilibrium values da, and the 

Bei the t~». Note, however, that o~components t~» are the conjugate complex of 'i t" 
is the deviation of '~ ' " t '~ gives the deviation of d~2, t~» is the devlation of dl3, and 3» 
d~ 1 since the gap matrix is defined by Ä = l~~d~~oxi~ "2. 

In Ref. 1 the dependence of the square of the energy gap, la (~) l  = o n  t~ 
was neglected, and further, the wave number q of the modes was taken to be 
zero. In this paper we present the generalized equations needed to deal with 
the ABM state and finite q. The coeflicients of the first set of equations [see 
Eq. (51), Ref. 1], i.e., 

a ~ t ~ » - k ~ t ~ ~ = A i ~ ~  (1) 
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have to be modified as follows: 

i j  - -  v l i l  - a,.ù - 8~ù~i j + , nX«j 
y A 2 -q K 2 n j  k ~  = ,z,lpnv u,y"mAO, 12 Tr (¢ ~" "r z r "r )Kpm 

Ai _ 2w,iJuz .1 ½ Tr ('rv'rs~-"i'r2)t/ù v B -  "~ V v3,  r r  jlC,~h? 

(2) 
(3) 
(4) 

Here the v 'ic are the potentials, either proportional to g or to yz [see Eq. • /J ' l /  

(47), Ref. 1], and 

f C dl~ ~ ~ (io)~ +ek)(kom-n +ek-«) 2tj(q, ioom)=N(O)T Y. d e k  J - g - ~ k , k ,  2 2 2 2 (5) ~o~ (tOn + Ek)(tOm-n + Ek-q) 
A A A A 

Kpm(q, ito,,) = N ( 0 ) T  Y~ dek d a  kpkmknkj 
~,~ 4zr (ton + Ek)(tOm-n + Ek-q) 

f l d f ~ ^ ^  ioon+ea Wj,(q, k o m ) = 3 N ( 0 ) T E  dek ~ k j k ,  2 2 2 + 2 (7) 

Ek=ek+[A(k)] ,  and f~ is the solid angle in the direction of/~. Further, 2 2 "~ 2 

Neglecting the 1~ dependence of the energy gap and going to the limit q ~ 0, 
one recovers the expressions in Eqs. (56)-(58) of TFDE. 1 

The second set of equations is obtained from Eq. (1) by taking the 
complex conjugate of this equation and making use of the relation ,i tvt~ =-" 
(#  ~* Instead of these two sets of equations, one can also use Eqs. (60) and ~/)b6, ,  • 

(61) of TFDE 1 for Re ,i t,i t~~ and Im v». 
The third set of equations describing the coupling between the spin 

fluctuation components t~» and the order parameter fluetuations ,i • • tv» IS glven 
by 

1 tv» = ~V~~3~» + Vù~(Xao3~~ + X~)t~» + Ev» + H~» (8) 

where according to the spin-fluctuation model, Vll = V22 = V33 = - V o o  ~- 
(1/2)L The susceptibilities for the particle-hole channel occurring in Eq. (8) 
are defined in terms of the Green's functions G, F, and ff  as follows: 

XGG(q, kom) = -2N(O)T ~ I dek f ~ G(k, ko . )G(k+q ,  i~,+,n) (9) 

X~¢F(q' ~ " I I dl~4zr wJm) = 2N(0)T Y. dek 
t o n  

1 x -  Tr [~-~t'ff(k + q, itoù,+n)r"F(k, i~on)] (10) 
2 
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The coupling terms in Eq. (8) are equal to 
E»u. ( H , , ~ ) * - 2 , z  Tl/" a** 'J  1 = - ~ v  . . . .  ii~,in~~~~Tr('r%%2i~ "')  (11) 

The  " • ii diagonal coefficmnts a~ù can be simplified by making use of the gap 
equation. For this it is essential to stay in the framework of the self- 
consistent approximation for the random phase correlation function, that is, 
the Hartree-Fock approximation for the self-energy. Including the dipole 
interaction, the latter leads to the following nine equations for the order 
parameter components d~j (see Ref. 2): 

-d»~&3 + id,y&o + d,~& a = - V'~(-di~6»3 + idjy6»o + dj~~» l)(~o)ùj (12) 

Here 

(~o)u=N(O)T ~ I dek 3 -~~ w~ff-Ek (13) 
\ 

Negleeting the/~ dependence of the energy gap, one recovers Eqs. (62) and 
(63) of TDFE.1 

3 .  C O L L E C T I V E  M O D E S  I N  T H E  A B M  S T A T E  

For the ABM state we take the representation where dxy =-idzy = 
(3/2)~/2A----Ao. It has been shown in Ref. 2 that self-consistency of Eq. (12) 
can be achieved only by allowing dyx and drz to be different from zero. The 
gap equation becomes then 

1 = - [ g  - (12/5) rry 2](~o),~ (14) 

For zero temperamre one finds that dyx/dxy = dyffdzy = 3 / ,  where /z = 
367r72/5N(O)g 2 ~  10 -6 is a measure of the dipole eoupling strength. This 

• • f t state is no longer umtary. The elgenvalues o AA are given by 
ja(~)l" ~ ^2 "2 - 2  ^ 2  1 / 2  - ^ =Ao[(k,,+k~+l,* ky) - , -~ lk , , I ]  2 (15) 

Here the /~i are the direcfion cosines of the wave vector k and/2 = 3/z. 
According to Leggett, 6 these eigenvalues correspond to the energy gaps for 
quasiparticle spin along or against the direction of the "pair average spin." It 
is interesting to notice that the energy gap corresponding to the lower sign 
still has nodes along the equilibrium direction of the order parameter axis ! 
(in our representation given by I/~y[ = 1,/~, =/~z = 0). 

We consider now the 18 linear equations for the order parameter 
fluctuations Re t~~, and Im t~» [see Eqs. (60) and (61) of TFDE1], which arise 
from Eq, (1) and its complex conjugate. The coefficients occurring in these 
equations are defined in Eqs. (2)-(7). In eliminating the term 1 in the 
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diagonal components a~~ [see Eq. (2)], it is essential to use the seff-consistent 
gap equation (14). While we consider in this paper the dipole interaction 

i] • o contributions to the coefficients av,~ anslng from the potentials v'U. ~,7 [see Eq. 
(47) of TFDE~], we neglect these contributions in the coefficients k~ n. This 
means that we neglect strong coupling corrections of order N(O)g [actually, 
of order 10-aN(0)g] in comparison to one. 

The resulting 18 linear equations for the order parameter fluctuations 
Re t~~, and Im t~(» are found to decouple into two sets of five and twosets of 
four equations if the wave vector q is parallel to I (here along the y axis). In 
this paper we shall treat only this special case. To save space, we shall not 
write down these equations explicitly but discuss the solutions separately. 

3.1. Order Parameter Modes Coupling to Spin Fluctuations 

The two sets of five equations involve the order parameter fluctuations 
Re '* '* '~ t '~ 'Y t '* Re t;~, Im t;~, '~ Im töt, t~», Im Im Re to~, and Im 1 ,  t3~, Re t3m 1~,, Real,, 
respectively. The first set of fluctuations couples to the spin fluctuation 
component t33, and the second set couples to t11. The denominators of both 
sets of solutions are identical. Setting this denominator equal to zero, we 
obtain the following equation for the poles with respect to frequency o) at 
given wave number q: 

2 2 2 

/z 2 5 / =  0 (16) D e t ~ ( a x - 3 / z  a; ~_-~~)(a2-lzz)-4b2(ax-lz at- 

The terms a~ and ay arise from the diagonal coefficients a~~~~ in Eq. (2) 
[divided by (1/2)N(O)g] by making use of the gap equation (14): 

ax --= 2[N(0)]- ~[,~xx - (Xo)~~ ]

ay ~ 2{N(0)]-l{[2y , - (Xo)yy ] -  [(Xo)~x - ~o)yy ]} 

(17) 
(18) 

The quantities/x = 367r~/2/5N(0)g 2 are due to the dipole interaction con- 
o arising from the potentials V~ in Eq. (2) tributions to the coefficients a ~  

[see Eq. (47) of TFDE~]. The term b arises from the coefficients k ö in Eq. 
(3) and thus from the quantities Kp"~ defined in Eq. (6) [again divided by 
(1/2)N(O)g]i 

b - 3[N(0)]-IA2(K~~ - K~z*) = 6[N(0)] -~ A 2 K~x~z (19) 

Carrying out the frequency sums over wn [see Eqs. (5) and (6)], we find that 
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all quantities ax, a•, and b can be expressed in terms of a single function F :  

ax = f d~q/~2[toz_v~(~ - 2 • q ) ~ -  2la(k) I ]F  (20) J 4fr 

a, = I - ~  fc2 {[to2-v~k . q)2]F 

- 2lA(E)[ ~ F + cosh -~ - tanh (21) 
i .  JO -¢-'L~ k ' z ' *  / . , J t  Z.,, 1 / J  

d l1 -5  * 2 
b = f ~ kx[A(k)l F (22) 

where df~ is the solid angle in the direction of/~. The function F is equal to 

F(/~; q, w) = co dek [(w +i6) 2 -  (Ek +Ek-q)2][(to +i8)2--(Ek --Ek-q) 2] 
er' ,2 r':,2 2 2 E k  __«) ]tZk-«--ek--to Ek E2-E2-«-oJ t a n h - ~ -  

× / ~ k  tanh ~-~ q 2Ek-q (23) 

The function F and its angle averages occurring in Eqs. (20)-(22) are treated 
in Appendix A for the zero-temperature limit. The integral over ek in Eq. 
(23) is carried out analyfically, but for the remaining integrals over x-= 
cos 0 =/~y we have to restrict ourselves to numerical computation. 

It is interesting that Eq. (16) can be rewritten in a form which is similar 
to that of the phenomenological theory of Leggett and Takagi 3 describing 
the resonance between the orbital mode and the NMR mode. To see this, we 
denote the expressions multiplying to 2 in Eqs. (20) and (21) for ax and ay by 
Xspin/N(O)A 2 and Xorb/N(O)A 2, respectively, and we denote the second term 
in Eq. (21) involving IA(k)l 2 by -gJN(O)A 2. In fact, in the limit q-+ 0 and 
to --> 0 these quantities essentially reduce to the corresponding quantities in 
Ref. 3. The physical meaning of Xspin and Xorb as transverse and longitudinal 
susceptibilities with respect to I is obvious because these terms arise from 
X~~- 0(o)x and )(yr- (,('0)y [see Eqs. (17) and (18)]. However, the "normal 
locking term" gù originates in our microscopic theory from rnaking use of 
the correct gap equation (14), which leads to a term proportional to 
(X0)~-(X0)y [see second term in Eq. (18)]. Since the gap equation cor- 
responds to the minimum of the energy of the system, gn is indeed a measure 
of the energy change as ! is rotated at fixed quasiparticle occupationl 7,s 

Expanding Eq. (16) up to and including terms of order 1.2, we obtain the 
equation 

(a,, + 2b - /*)  (ay - 2/* ) = ½/* 2 (24) 
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Expressing in Eq. (24) the quantities ax + 2b and ay in terms of the quantities 
Xspin, Xorb, and gù as defined above, we obtain 

Xspin J L Xorb X--~rb "J 

1 2 [N(0)A2] 2 (25) 
Œ ~ ~.L Xspin)(orb 

Here the brackets ( )i denote averages over the solid angle of/~, where the 
weighting function is equal to/~~F. In comparison to Eq. (9) of Rel. 3, our 
Eq. (25) is specialized to zer0 field, but it is generalized to finite q[[/. 

In our theory the coupling of the N M R  mode and the orbital mode is 
given explicitly by the relation 'y " 'x '~ to~, = --l/~ (t3t~ -- tl•)/(ay -- 2/z). Indeed, tó~ is 
an "orbital" fluctuation component,  giving rise to oscillations of the order 
parameter axis i about  its equilibrium position, while the other fluctuation 
components t'~~, tä~, t'l~, and t~~ do not change the direction of I. This can be 
seen from the fact that for I~yl-- 1, ~~ = kz -- 0, only the deviations t'~ of the 
order parameter components from their equilibrium values can make the 
energy gap different from zero. 

We have calculated numerically all dispersion relations arising from Eq. 
(16) in the zero-temperature limit with the help of Eqs. (20)-(22) for a~, ay, 
and b, by inserting into the integrands the expression for F as given in Eqs. 
(A4), (A13), and (A18), and then numerically carrying out the integrations 
over x ---- cos 0 = ky. The results are shown in Fig. 1 (solid curves), where 
0)/lz ~/2Ao is plotted vs .  qt)F/I.1.1/2A o. One sees that both modes exhibit gaps at 
q = 0, one at 0)1 - 2/~ 1/2A o and the other at 0) 2 ~ 0.7~[Z 1/2Æ O. With the help of 
Eqs. (25), (30), and (31), we find the following approximate expressions for 
these frequency gaps: 

( 0)1 ]2 { 0)2 '~2 3(21n/z-1)-1 (26) ~ 1  = 1+(2  In/z-1)-1; \2/x 1/2Ao} 

For large q, 0) tends approximately to v~/ (orbit wave 3's'9) and to vgl/x/3 
(spin wave), respectively. More exactly, the values of ~o of the orbit wave for 
qv«/t~ 1/2Ao » 1 are given b y  Eq. (46). It is obvious from Fig. 1 that both 
modes are strongly coupled with each other. To see this more elearly, we 
have plotted also the wave spectra of the uncoupled spin and orbit waves 
arising from the equation a~ + 2b = ~ (spin wave, see dashed curve in Fig. 1 
tending to the straight line of slope 1/-,/3) and from the equation ay = 2/z 
(orbit wave, see dashed eurve in Fig. 1 tending approximately to a straight 
line of slope 1). 

The quantities a~ + 2b and ay and thus the dispersion relation in Eq. 
(16) are determined mainly by the susceptibilities Xw~n and Xorb and by the 
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Fig. 1. Dispersion curves of order parameter 
modes coupling to spin density. We use re- 
duced frequencies w/l*l/2Ao and reduced 
wave numbers qvF/t*l/2~ where Ao is the 
gap parameter,/* (=  10 -~) is the dipole in- 
teraction strength, and vv is the Fermi 
velocity. The upper curve is the orbit wave 
and the lower curve is the spin wave. Dashed 
curves hold in the absence of the dipole coup- 
ling. 

normal locking term gù. From the definitions given above for these quan- 
tities we obtain with the help of Eqs. (20), (21), and (A4) the following 
integrals over x = cos 0 =/~y : 

Xspin A z ; q, w)  = 6 dx (1 - x 2)F(x ; q, o3) (27) 
N(0)  1 

Xorb ~ A  z /" d ~  *2 " 1 f~ l  
N(O) J-4-~~k'F(k;q'°~)=3 J-1 dxx2 f f ' ( x ;4 '~õ)  (28) 

where 05-= tO/Ao and ~ =--qVF/Ao, and at T = 0 the normal locking term 
becomes equal to [see Eq. (21), second term] 

g n f + _  1 { 1 1 } = d x x 2 ( 1 - x  2) / ~ ( x ; 4 , 0 5 ) - ~ 1 _ x 2  (29) N ( 0 )  A2 1 

In the limit q -+ 0 we have obtained analytic expressions for the different 
x integrals over Re Æ and Im P occurring in Eqs. (27)-(29). The results are 
given in Appendix B. Wi[h the help of these results we find, to leading order 
with respect to expansions in terms of the small quantity co/Ao, 

R e  Xspin 1 
N ( 0 ) - - 6 '  

R Xorb _ 1.  e N(0)  = g i n  [16(~2)2] ;  

Re N(0)A2 = 64 In 16 ; 

Im N(0)  -- 72 

Im Xorb ~r 
N-(Ö) --- 12 

Im g" 2 ~ ~ ( ° ° )  z 
N(0)A 12 \Ao/ 

(30) 

It is interesting to see from Eq. (30) that Xorb is much larger than Xspin: 
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Re Xorb even diverges for oJ ~ 0, and Im [Xorb/N(0)] ~ 1. This result is clearly 
due to the nodes of the energy gap, as can be seen from Eqs. (27) and (28) 
and the fact that/~ as a function of x =/~y diverges as x tends to one. It should 
be pointed out that the expressions for the frequency gaps ¢ol and o~2 in Eq. 
(26) have been calculated from Eqs. (25) and (30) by neglecting all im- 
aginary parts and also Re gù. The latter approximation means that we have 
neglected in Eq. (25) the term g,,/Xorb ~-- (3/16)OJ 2 in comparison to the term 

2 
60 . 

Comparing Eqs. (25) and (30) with Eq. (8) of Rel. 3, we find that the 
phenomenological relaxation times r r  and ~- introduced in Ref. 3 to describe 
the damping of the orbital motion are given by 

Re Xo~~ ~ 2 In 16 
oJ~'r = Im X o r b  - -  q]" 

(31) 
Re g , ,  9 [16(A°]  z] 

o~~" = Im gù = ~ In I_ \w- /  _1 

Responsible for these damping terms is the pair-breaking mechanism [see 
the denominator  in the expression for F, Eq. (23)], which takes place in the 
vicinity of the nodes of the energy gap where the gap is smaller than oJ. For 
to = oJ1 or to = oJ2 the values of oJzK and wr are about 10 and 3, respectively. 

A physical explanation of the properties of the different order 
parameter  modes derived above can be obtained by considering the nature 
of the deviations of the order parameter  from equilibrium that are 
generated, for instance, by the set of components Re t~~, Im t 'x3~,, Re t 'z3~,, 
Im t 'zl~,, and Re töt,; For  an interpretation of these components we write the 
order parameter  components in the form dia = Ao(nj + imj)da, where n i and 
mj are the components of the vectors n and m determining the orbital axes 
and where da are the components of the vector d determining the spin axes. 
The vector ! is given by 1 = m x n. For equilibrium we have in our represen- 
tation n = ~, m = 2, and d = Y- Then one sees from the definition of the t~» 
that Im t~~, generates a deviation of the vector m lying in the xz  plane, and 
simultaneously it generates a deviation of the vector d lying in the xy plane 
(see Fig. 2a). Further,  the component  Re t~~, generates a deviation of n lying 
in the xz  plane, and simultaneously it leads to a deviation of d lying in the xy 
plane (see Fig. 2a). The direction of ! = m x n stays fixed along the y axis for 
both components Im t~~ and Re t~ ,  while the vector d moves in the xy plane. 
Therefore,  since the dipole interaction is proportional to - ( d .  I) 2, this leads 
to a gap of the order of the dipole shift in the wave spectrum of the 
corresponding mode, provided that n and m move in phase (n .m = 0). If n 
and m move in counterphase, orte has the "clapping mode"  whose frequency 
is of the order of A0. This mode is also a solution of Eq. (16) and it will be 
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~11 ~ zm t L~'~ 
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A 
Z 

~If R~ ~'~ 
V Fig. 2. Deviations of vectors d, n, m, and i = mxn from 

equilibrium (where fl determines the spin axes and n, m, 
and 1 determine the orbital axes of the Cooper-pair 
wave function), for order parameter fluctuations cor- 
responding to (a) spin wave and (b) orbit wave coupling 
to spin density. 

,x R t 'z discussed below. As we shall see later, the components  Im t3» and e 3»
couple to the spin fluctuation component/33.  

We consider now the orbital component  Re  töt. This generates  a 
deviation of m lying in the yz plane, and simultaneously it generates an 
oscillation of d in the direction of the y axis (see Fig. 2b). Since l = m x n 
moves away from the y axis and thus f rom the direction of tl, this mode  again 
acquires a gap. The strong coupling of these modes for small q which is 
evident f rom Fig. 1, originates in the relation Re tóB= 

Im . . . . . .  - 2 t z )  between the orbital and the spin components .  B (Im t ~ » -  ~l,A/~ay 
Here  the remaining components  in our  set of five fluctuation components ,  
i.e., Re  t 'xl» and Im t~~, are smaller by a factor/~ than the three components  
discussed above and therefore they can be neglected in this context. 

The results for the wave spectra of the order pa ramete r  modes shown in 
Fig. 1 have been calculated by using the zeroth order  energy gap, [A(/~)[ z = 

2 2 A2 Ao(kx+k~)=A2(1-x2). We have also calculated these wave spectra by 
using the two self-consistent energy gaps given in Eq. (15) or Eqs. (A2) and 
(A3). The  result is that the effect of the correction terms of order /x  on the 
wave spectra is negligible, because the splittings of both frequency gaps to 1 
and to2 turn out to be about  0.2% for /z  = 10  -6.  

We consider now the coupling of these modes of the order  pa ramete r  to 
the spin fluctuations. It turns out that for the A B M  state only the coupling 
terms E~~ +H,.~ for v = 1 and 3 occurring in the equations for the spin 
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fluctuation components t n  and t33 [see Eq. (8)] become different from zero. 
In the latter the components Re t~, and Im t~, enter. Inserting these 
solutions into Eq. (11), we find the following expressions for the "fluc- 
tuation '~ susceptibility X~ a: 

E33 +/-/'33 = _ 8 [ N ( 0 ) ] _  1A 2 W 2  D e t  -1 
X33~-~ V33t33 

2 2 
X{(ax-2 /z  ayl~2lz)(ax+tz)+(a,,-3t~ a~2-~lz)ax 

2 

-4b(ax-I.~ ay~ 2/z) } (32) 

Here the expression for Det is given in Eq. (16). The term W= is defined in 
Eq. (7); it can be expressed in terms of the function F:  

I W~(q,o))= N(0)oJ --~k~F(k;q,~o) (33) 

According to Eqs. (8) and (32), the poles of t33 are given by the equation 
l - ½ I ( x ~ -  33_ 3 ~ ,  *X~F±Xn ) = 0 (34) 

Here we have set V33=(1/2)I, where I is the spin fluctuation model 
parameter. The fluctuation susceptibility Xf~ 3 is defined in Eq. (32)r The 
susceptibility J~ Xpt: arising from two anomalous propagators in the particle- 
hole channel is defined in Eq. (10). Again it can be expressed in terms of the 
function F defined by Eq. (23): 

I d f l  A 2 A x~q, co)=X°~(q, co)=2N(O) ~--~-IA(k)[ F(k;q,¢o) (35) 

Most crucial in Eq. (34) is the particle-hole susceptibility XGG defined by Eq. 
(9), which reduces in the limit Ao--> 0 to the Lindhard function X,. The 
evaluation of XGG is rather involved. For the zero-temperature limit it is 
carried out in Appendix C. For the real part we obtain [see Eq. (C3)] 
Re Xc~ (q, to) = Re X, + 2N(0) 

I da~+v~(~.q) 2 ,, ~ 
× 4= ¢02- v~(k. q)Z lafk)l Ffk; q,,o) (36) 

We have calculated numerically from Eq. (34) with the help of Eqs. 
(16), (32), (33), (35), and (36) all dispersion relations in the zero-tem- 
perature limit. T h e  results are shown in Fig. 3 for a spin fluctuation 
parameter [=--N(O)I, which is taken to be equal to the Landau parameter 
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- F g  ~ 0.75. The two resulting wave spectra having finite frequency gaps at 
q = 0 are induced by the term X~ 3 in Eq. (34) and thus by the modes of the 
order parameter whose dispersion relations are shown in Fig. 1 (solid 
curves). The new frequency gaps occurring in Fig. 3 are modified in 
comparison to the frequency gaps oJ1 and ~0z of the order parameter modes 
[see Eq. (26)] by the quantity (1 - D- This can be seen from our approximate 
analytic expressions for these frequency gaps, which have been derived from 
Eq. (34) with the help of Eq. (30) and the fact that for ~o >0 ,  q ~0 ,  
Re X~--~N(0) and Re x~o--~N(0) [see Eqs. (35) and (36)]. Then we find 
that the new frequency gaps are given by the solutions of the following two 
equations corresponding to the two signs: 

(o~/2/z ~/2Ao)2 = ½(1 - D + [in (16AoZtO-2)]-' 

+ ½({(1 - D - [ln (16A~w-2)]'li2 

+ 3 [ln (16A2oo~ -2)]-2)2 (37) 
A B M  • It should be noticed that the ordinary longitudinal NMR frequency, f~L , lS 

1.0- 
J / 

0,0 

3 . 0 -  

to 
¢ff/~o 

2. 9 - 

0.0 1.0 2,0 3.0 
q~F 

y-#-zx 0
Fig. 3. Dispersion curves of low-frequency modes aris- 
ing from spJ, n density correlation functions, in reduced 
units (see Fig. 1), for a spin fluctuation parameter  [ =  
- F ~  = 0.75. Upper  curve: orbit wave. Lower curve: spin 
wave. The arrow indicates the unper turbed  longitudinal 
N M R  frequency f~L ABM, which is given by ~BM/~ 1/2Ao = 21/2(1 _ [)1/2. 
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given by 1 f~LABM//Z 1/ZAo = [2(1 --f)]1/2 ~ 0.71 for f = - F g  = 0.75. Thus the 
ratio of the actual NMR frequency (see gap in Fig. 3) to OL aBM (see arrow in 
Fig. 3) becomes 0.61/0.71----0.86. This effect is apparently due to the 
coupling between the spin wave and the orbit wave. 

It should be emphasized that the poles of the order parameter fluc- 
tuation components ,x Im t3~, t3~, Re ta~,, 'x Re '~ Im t~ ,  and Re t ~  are in reality 
not given by Eq. (16), that is, Det = 0, but by Eq. (34), and therefore these 
poles are identical to those of t3a. This is because our solutions for these 
order parameter fluctuation components contain the term t33/Det as a 
factor. The poles of the other five order parameter fluctuation components 
that couple to the spin density component t~ are found to be the same as 
those of t33. 

The coupling between the spin wave and the orbit wave becomes 
vanishingly small as the temperature increases once the normal locking part 
of  ay becomes much larger than the dipole term /~. According to our 
estimate of g,, this occurs for T/Tc >> 10 -2. The reason for the smallness of 
the coupling is that for ay >>/~ the terms l~2/(ay- 2/z) in Eq. (16) become 
much smaller than/~. Under these conditions the zeros of Eq. (16) are given 
to a good approximation by the equations ax + 2b =/z (spin wave) and 
ay = 2/.~ ("normal flapping mode"5). 

In addition to these low-frequency resonances (to ~ /z  1/2A), Eqs. (16) 
and (34) yield high-frequency resonances (to - A). To zeroth order in 3, 2 or/x 
we obtain these high-frequency resonances from Eq. (32) for the fluctuation 
susceptibility X~/3 by multiplying this expression by (ay -- 2/x) and then going 
to the limit/z ~ 0. The denominator of the resulting expression becomes 
equal to a~ay(ax- 2b)(a~ +2b).  The equation a ~ - 2 b  = 0 has no solution. 
The equation ax + 2b = 0 has for q ~ 0 the solution w ~ 0, which goes over 
into the longitudinal NMR frequency if/z becomes finite. Finally, we have to 
consider the following two equations: 

a~ = 0 (38) 

a r = 0 (39) 

In the zero-temperature limit and for q ~ 0 we obtain analytic expressions 
for ax and ay by inserting into Eqs. (20) and (2i) the corresponding x 
integrals over x2"F(x;gl, g~) given in Appendix B. Then the following 
solutions of Eqs. (38) and (39) are found4: 

to = 1.50A = 1.22Ao [from Eq. (38)] (40) 

to = 1.93A = 1.58Ao [from Eq, (39)] (41) 

Here ho--(3/2)1/2A is the amplitude of the ABM gap parameter. For the 
damping 1/r of these modes we find with the help of the results of Appendix 
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B that tor ~ 1. In Ref. 1 resonances were found at to = 21/2A and at to ~< 2A by 
using an angular average of the ABM gap and neglecting to occurring in the 
function F in Eq. (23). One sees that these estimates are rather dose to the 
accurate values given in Eqs. (40) and (41). The numerical value of 1.22Ao is 
identical to that obtained by Wölfle 5 in the absence of dipole forces for his 
"clapping mode,"  and the value 1.58A0 is close to the value (12/5)~/2Ao for 
his "super-flapping mode."  

Howéver, in the absence of the dipole interaction and for q[ll these 
high-frequency modes do not couple to the spin fluctuations. This can be 
seen from the coupling term E 3 3 + H 3 3  in Eq, (32): Multiplying this ex- 
pression by a r - 2~ and going to the limit/z -~ 0 leads to a numerator which 
contains a~ and ay as factors. This means that the residues for the poles given 
by Eqs. (40) and (41) vanish. Therefore it is necessary to go to the next 
higher order in/z. This has the effect that the residues of t33 at these new 
resonance frequencies become finite and of order tz 2. 

3.2. Order Parameter Fluctuafions Coupling to Densi ty  Fluctuations 

The two sets of four equations for the order parameter fluctuations 
involve the components Im t '~ Re to~, Im t~~, 'Y t 'x t '= o~, ,z Re t3•, and Re o~, Im o~, 
Re '• 'Y tlù, Im t3ù, respectively. The solutions of the seeond set of equations are 
identically zero, and the solutions of the first set are given by 

Im tó~ = 4IN (0)]- lA0 W~x (Det') -1 (at +/.~ a)too 

Re too- ~[N(O)]-~AoWxx (Det')-1(ar +/.t 2)to o 
(42) 

Im t~ y = 4[N (0)]-IAoW~~ (Det')-l/z (1 + ax + 2b)too 

Re t; y = -~[N(0)]-IAoWx~ (Det')-~tz (1 + a~ + 2b)to0 

The poles of these solutions are given by setting the denominator deter- 
minant, Det', equal to zero. This yields the equation 

Det'  =--- (ax + 2b)ay - / z  ~ = 0 (43) 

The quantities a~, ay, and b a r e  defined in Eqs. (20)-(22). 
The order parameter fluctuation components given by Eqs. (42) couple 

to the density fluctuation component too. The coupling term Eoo +Hoo [see 
Eq. (11)] occurring in the equation for too [see Eq. (8)] is determined by 
Im tó~ and Re töt. The explicit expression for the corresponding "fluc- 
tuation" susceptibility X °° is given by 

16 a r + tx 2 
X°°=--E°°+H°° = [N(0)]-~ A2 W~x (ax + 2b)a r - / x  (44) 

Vootoo 2 
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The relations between the "orbital" fluctuation components in this set of 
solutions [see Eq. (42)] that change the direcfion of i and those that leave i 
unchanged are approximately given by Im t~~ ~ -/z Re too/ay'Z and Re t3o 'y = 
-/z Im tóB/ay. 

In the zero-temperature limit we obtain numerically from Eq. (43) with 
the help of the expressions tor ax, a•, and b in Eqs. (20)-(22) and F as given 
in Eq. (A13) or (A18) the two wave spectra as shown in Fig. 4 (solid curves). 
Again we have plotted to//x 1/2Ao vs. VFq/lz 1/2Ao. One sees that one mode 
exhibits a frequency gap at q = 0, being of the order of the dipole shift, 
to3-/~ 1/2Ao. Our approximate analytic expression, which is obtained from 
Eq. (43) with the help of Eq. (30), becomes 

(to3/2/x 1/2A0)2 ~ (In/z -1)-1/2 (45) 

For qvF/I.~ 1/2Ao » 1, to tends approximately to vvq. Analytically we find 

to -- vFq{1 + [6 In (v ~q 2/4A2)]-1}1/2 (46) 

The second mode shown in Fig. 4 exhibits a gap with respect to wave number 
q which is of the order qo ~ lz 1/2Ao/VF, and to tends asymptotically to VFq/~/3 
for large q. For comparison we have plotted also in Fig. 4 the wave spectra of 
these modes in the absence of the dipole interaction, which are given by the 
equation ay = 0 [dashed curve having a slope of ab0ut 1 for large q, more 
exactly, Eq. (46)], and by the equation ax + 2b = 0 (dashed straight line of 
slope l/x/3). 

A physical explanation of the properties of these modes can be achieved 
again by considering the nature of the deviations of the order parameter 
components from their equilibrium values, which are generated by the 
components of this set of equations [see Eq. (42)]. The component Re tó~~, 

Fig. 4. Wave spectra of order parameter 
modes eoupling to density, in reduced units 
(see Fig. 1). Upper two curves: orbit wave. 
Lower two curves: Anderson-Bogoliubov 
phonon mode. Dashed eurves hold for 
vanishing dipole interaction. 
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generates an oscillation in magnitude of m in the direction of the z axis, and 
simultaneously it leads to an oscillation in magnitude of d along the y axis 
(see Fig. 5a). And Im tó~ generates a similar oscillation of n in the direction 
of the x axis, and simultaneously it leads to an oscillation of d in the direction 
of the y axis. Thus we see that these two components, Re töt, and Im töt, 
which are coupled to the density fluctuation component  too (see the dis- 
cussion given above) must give rise to a mode having no frequency gap at 
q = 0. This mode corresponds to the dashed straight line of slope 1 /43  in 
Fig. 4. 

Next we consider the components Re t~~, and Im t~~. The first com- 
ponent  generates a deviation of n lying in the xy plane, and simultaneously it 
gives rise to a deviation of d lying in the xy plane (see Fig. 5b). The 
component  Im t~r~ leads to a deviation of m lying in the yz plane, and 
simultaneously it generates a deviation of d lying in the yz plane (see Fig. 

• r y  5b). But smce Re t3~ = - I m  t~L, one always has n -  m = 0, which means that 
the distorted order parameter  stays within the ABM manifold of states. 
Further,  the vector 1 = m x n and the vector d maintain the same directions 
and therefore these two components themselves would not lead to a 
frequency gap. The resulting mode corresponds to the upper dashed curve in 
Fig. 4. 

Z 

- y 

Im to~. 
X 

a 

Z 

b 

Fig. 5. Deviations of spin axis vector d and orbital axis 
vectors n and m from equilibrium for order parameter 
fluctuations corresponding to (a) Anderson-Bogoliubov 
phonon mode and (b) orbit wave coupling to density. 
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However, in the presence of the dipole interaction the two modes 
Py tX discussed above are coupled via the relations Re t3o------/.L Im too/ay and 

Im t~~=-/~ Re t~o/ar. Since tx/ay becomes of order 1 if ~o//z ~/2Ao and 
vFq/tz ~/2Ao are of order 1, one can understand why these modes acquire a 
frequency gap and a wave number gap, respectively (see Fig. 4, solid curves). 

According to Eqs. (8) and (44), the poles of the density fluctuation 
component too are given by the equation 

I+½F~[N(O)]-I(Xoo. oo_ oo, -rX;r-rXf~ ) = 0 (47) 

Here we have set Voo = -F~/2N(O) such that Eq. (47) reduces for the 
normal phase to the equation determining the dispersions of sound waves in 
terms of the Landau parameter F~. We have calculated numerically from 
Eq. (47) with the help of Eqs. (33), (35), (36), (44), and Appendix A all 
dispersion relations in the zero-temperature limit. The results are shown in 
Fig. 6 for a Landau parameter Fô = 90 (see Rel. 12). The dispersion curve 
exhibiting a finite frequency gap and the dispersion curve having a finite 
wave number gap correspond to the two dispersion curves of the order 
parameter modes coupling to density that are shown in Fig. 4 (solid curves). 
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Fig. 6. Wave spectra of low-frequency modes arising 
from density correlation function, in reduced units (See 
Fig. 1), for a Landau parameter böo = 90. Upper  curve: 
sound wave. Lower curve: orbit wave. 
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The frequency gap of the upper curve in Fig. 6 is modified by the quantity 
+ s i / 4  . . . .  (1 Fo) m companson to the frequency gap ~o3 of the orblt wave glven by 

Eq. (45). Analytically we find from Eq. (47) together with Eqs. (33), (35), 
(36), and (44), by taking the limit q->0 (o~ >0) and using Eq. (30), the 
following equation for this frequency gap: 

(oJ/2/z 1/2AO)2 ~-- (1 +Fg)l/2[ln (16Agw-2)] -1/2 (48) 
This result for the sound wave gap, apart from the factor of order 
[ln ~-1]-1/2 _ 1 on the right-hand side of Eq. (48), has been derived älreädy 
in Ref. 2 [see Eq. (9) in Ref. 2, where (1 + I )  1/2 in the numerator corresponds 
to ( I+F~)  1/z in Eq. (48), and where AB~ 2 ( ~ q L )  = 2(/zl/26o)2(1- f ) ] .  The 
asymptotic behavior of the upper curve in Fig. 6 for large q is that of the 
sound wave, i.e., o~ = (1 +F~)l/2vFq/~/3. 

The wave number gap of the lower curve in Fig. 6 corresponds to that of 
the lower curve in Fig. 4 (the Anderson-Bogoliubov phonon mode) while 
the asymptotic behavior of the lower curve in Fig. 6 for large q, i.e., o) ---- VFq, 
corresponds to that of the upper curve in Fig. 4 (the orbit wave). Apparently 
the dispersion curves of Fig. 6 arise from those of Fig. 4 by hybridization 
between the sound wave and the orbit wave because, due to the large value 
of the Fermi liquid parameter F~ (~90, see Ref. 12), the sound wave 
dispersion curve would intersect the orbit wave dispersion curve. 

It should be pointed out that in reality the poles of the order parameter 
fluctuation components are not given by Eq. (43), that is, Det' = 0, but by 
Eq. (47), and thus these poles are identical to the poles of t00. This can be 
seen from Eq. (42) because all solutions of the order parameter fluctuation 
components contain to0/Det' as a factor. 

In addition to these low-frequency modes (o9 - / z  1/2A), we again find a 
high-frequency mode (w - A) from Eqs. (43) and (47). To zeroth order in tz, 
this is obtained from the expression for the coupling term E00 + Hoo in Eq. 
(44) by going to the limit tz -> 0. Then the denominator becomes equal to 
(ax + 2b)ar For q = 0 the equation a~ +2b = 0 has only a zero at ~o = 0. But 
the equation ay = 0 [see Eq. (39)] yields the solution for the super-flapping 
mode given by Eq. (41) for q = 0 and T = 0. Of course, the residue of this 
resonance frequency is zero. For finite Ix, however, the pole of t "°° and thus 
of to0 is shifted from the value given in Eq. (41) by an amount of order/z and 
this has the effect that the residue becomes finite and of order tz 2. This 
vanishing of the strength of the coupling between the super-flapping mode 
and the sound wave for qtli in the absence of the dipole interaction is in 
agreement with the result of Rel. 5. Finally, Eq. (44) shows that there exists 
no clapping mode at all [see Eqs. (38) and (40)] for this set of order 
parameter fluctuations if qlll- The damping of these modes can be calculated 
easily with the help of Eqs. (B11)-(B13). 



                                                         141 

APPENDIX A. INVESTIGATION OF THE FUNCTION F 

The function F(/~; q, to), which arises basically from the integration and 
summation over the product of two anomalous Green's functions, is of 
major importance. This is so because all the quantities ax, ay, b, Wx,, Xc, G, 
and )(PF considered in this paper [see Eqs. (20)--(22) and (34)-(36)] can be 
expressed in terms of F. This function is obtained from the analytical 
continuation to real frequencies (ito,,--> to +i8)  of the following function: 

I 1 (A1) F(~; q, itom)= T ~ ~ù Ek)(tom-ù + Ek-«) 

where toù (2n + 1)~-T and E 2 = 2 = e k+ [A(/~)[ 2. After carrying out the sum- 
mation and after analytical continuation we obtain the expression for F as 
given in Eq. (23). 

We now concentrate on T = 0. Further, we specialize to directions of q 
along the nodes of the energy gap, that is, in our representation [see Eq. 
(15)], q along the y axis. We choose polar coordinates O and ~b in such a way 
that the polar axis is in the direction of the y axis. Thus the direction cosines 
of the momentum k become ~~ = (1 - - X 2 )  1/2 COS t~, ~z = (1 -x2)  1/2 sin ~b, 
]~y = x, where x = cos 0. Then the energy gaps in Eq. (15) become equal to 

Aop, (A2) 

where 

o~ = [ ( 1 -  x:  + ¢~~~)~n + ~ IxL] ~ (Aa) 

The expression for F in Eq. (23) can now be transformed into 

F(/~; q, to)= (1/Ao2)Æ(x; q, 03) (A4) 

where t~ and 03 are reduced variables, i.e., 

4 - VFq/Ao, 03 -- to/Ao (A5) 

and where F is equal to the following integral over u = ek/Ao: 

P(x; 4, ,õ)= [foo du V_ 2 _ V 2  - (.Õ 2

V [(V_+ V)2-(03+iS)=][(V_- V)2-( tõ+iS) 2] 
(A6) 

Here we have introduced 

V 2 2 2 --u +p,; V2-- (u -4x)2+p~ (A7) 
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The real and imaginary parts of Eq. (A6) become equal to 

I +~ du [(#x) 2 -  o32 - 2qxu] 
R e F ( x ; q ,  O3)=P ~ (u 2_ 2,1/2 + 

- *Px)  4 [ ( q x ) Z - o 3 Z ] ( u - u x ) ( u - u ~ )  
(AS) 

+co du ~_)2__ 
Im F(x" q, o3) = rr _ 2",1/2 [(qx) 2 -  24xu] 

" - -  . - o e  ( U 2 " i - p x )  

x sgn {o32 - [u 2 + (u - 4x) 2 + 20~]} 

x 6{4[(qx) 2 - o5 2](u - u+~)(u - u2)} (A9) 

Here  u~ + and u2 are the roots of the denominator  expression in Eq. (A6), 
which is a second-order polynomial in u: 

ux =-~[q x q2x2_~2 } d (A10) 

For simplicity we specialize now to p~ = 1 - x  2, that is, we neglect the 
correction terms of order tL in the expressions (A2) and (A3) for the energy 
gap. It is not difficult to generalize the following steps to include the full 
energy gap expression in Eq. (A3), It is important to differentiate between 
the two cases where O3 > q  and where o3 <# .  The roots given in Eq. (A10) 
become real only if one of the following two conditions is satisfied: 

1 - ( o 3 2 - # 2 ) / ( 4 - q 2 ) < x  2<- 1 (o3 > q )  ( A l l )  

(gffq)2<x2<- 1 (o3 < q )  (A12) 

If either one of the inequalities (A 11) or (A 12) is satisfied, the evaluation of 
the integrals over u in Eqs. (A8) and (A9) leads to the expressions 

ReP(x; q, O3)= ~ o32_lq2x 2
x [O3(1 4PZ~ \-I/2(S+~-S~+q'x(S+~+ $2)] + q~=_;,~) (A13) 

where 

:~ ± 2 2 1 / 2  
~ ~ - 1 / =  l"~-[(u~) +P~] ,I S. =[(u~)  +P, ]  In ~ ± a 2 1/2 lu~+[(u~) +pd I (A14) 



                                                         143 

and 

Im ff'(x; ~, o3) = 

where 

zr 1 { ( 4p~ ~ - '/z 
4 I~Õ 2 2X2[ O3 14 ~12X-"~S¢~)2] 

[ sgn + sgn~ ] 
X ' + 2 2 1/2 "l [(Ux) +PA [(u;)2+P~] ~/U 

+ 
+qx[  u + ~ 2 1 / a  sgn; ]~ [( ) ] [(Ux)2 +p211/2j j (A15) 

± ~2 ±2 ± ~ 2 sgn~ = sgn{w - [(u~) - (ux - qx) + 2p~]} (A16) 

It turns out that Im _P given by Eqs. (A15) and (A16) vanishes exactly if 
the condition in Eq. (A12) is satisfied. However, if the condition in Eq (A11) 
is met, Im Æ becomes finite. Analytical evaluation of Eq. (A 15) leads then to 
the values of the x integrals given by Eqs. (Bll)-(B13) for the limit ~ ~ 0 
(,õ > 0). 

Finally, we quote the results where the conditions (Al l )  and (A12) are 
not satisfied. Then the roots of the denominator polynomial in Eq. (A6), ± Ux~
become complex conjugate, i.e., 

± 1 . " 1 4P~Z ~1/21 =-~[ «x + i[wl ( -~ (A17) 

Then Im P- -  0, and Re P becomes equal to 

1 4 { ( o . ~  2 2X2 4g 2 [)--1/2 } Reff'(x;q, o3)=Œ 6 1-~ gl2X__~õ2 ImS++q'x ReS  + 

(A18) 

where 

for 

S=--[(u=) +p=] In ~ t\p=/ ~ j 

--lrl {~x++ r ( u + ) 2 +  111'2}) 
L \ p x /  

(A19) 

0,~ 2-- ~ 2 
0--<x2<l 4_~2 (o3 > t~) (A20) 

O<-x2<(~õ/4) z (03<4) (A21) 
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The expressions for Re F given by Eqs. (A13) and Eq. (A18), respec- 
tively, have been inserted into the x integrals for ax, ay, and b given by Eqs. 
(20)-(22) and then these integrals have been carried out numerically. 

A P P E N D I X  B. A N G L E  A V E R A G E S  OF F 

In calculating Xspin, Xorb, and gn [see Eqs. (27)--(29)] we need integrals of 
x2"Æ(x; gl, 03) over x =cos  0 =/~r from x = - 1  to x = +1. These integrals 
have been carried out analytically in the limit 4-+ 0 (but o3 > 0). The 
dominating contributions to the real parts of these integrals arise from the 
region of x where 0 -< x 2 < 1 - (03/2) 2 [see Eq. (A20)], where Re F is given by 
Eq. (A18). In the limit 4 ~ 0 this yields the following integrals: 

I~m) 1 fo a X 2m i(a2--x2)i/2--(03/2) = -~ dx (aZ_x2)1/2 Im in (B1) i(a 2 -  x2) 1/z + (03/2) 

where a 2 _  1 -(o3/2)  2. The results of these integrals for m = 0, 1, and 2 are 
given in terms of the following functions of 03/2a: 

f -= In {(03/2a) + [1 + (~õ/2a)2] a/2} 
[1 + (o3/2a)2] ~/2 + 1 

g ------ In [1 + (o3/2a)2] ~/2 - 1 (B2) 

_ ~ 2 - 2  2k 
h =  l ~  ~e2k +a (03<2) 

k=o (2k + 1)! *'zkj 

where the B2k a r e  Bernoulli numbers. Then we have 

i[o) = 03-1fg + 2o3-1h (B3) 
i~l) = 1 ~-1 2re , ~w a * I *  (03/2a)[1 + (03/2a)211/2}g +03-1a2h - l a  (B4) 
i ~=~=  - - 1  4 3 o) a {~f+[~+ä(o3/2a)Z](o3/2a)[l+(o3/2a)2]l/2}g 

+303-1a4h - ( 1 7 / 2 4 ) a  3 - ~-6ao32 (B5)  

The remaining contributions to the x integrals over x2,~ Re/~  are 
determined by Eq. (A13). In the limit 4 ~ 0 (03 > 0) we obtain with the help 
of Eqs. (A10), ( A l l ) ,  and (A14) the  contributions 

_1 fl x2" 1 (o3/2)+(x2-a Z)1/2 
I~"°=-o3 ja dx (x2_a2)l/2 n (03/2)_(x2_a 2)1/2 (B6) 

The results for m = 0, 1, and 2 are found to be 

1 ~ ( _ l ) ù ( m 2 ½  03 2ù 
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where 
i~ 1 - t Lù = dt (1 -  t2)" In 1 +----~ (B8) 

For Lù we find the following recursion relation: 

2n~-2 L 1 
Lù+I=~~--~ nq (n +l)(2n +3) (n=0 ,  1,2 . . . .  ) (B9) 

It is Lo = - 2  In 2. 
For the low-frequency modes (03 -',/-~ß« 1) the contributions to Xspiù, 

Xorb, and gn arising from the terms 12 (") can be neglected in comparison to the 
contributions due to the terms ~"). However, for the high-frequency modes 
(o3 - 1) the I2 (") are of the same order of magnitude as the/1(''). 

The imaginary part of Æ is given by Eq. (A15). In the limit ~ -> 0 (03 > 0) 
it is different from zero only for values of x satisfying the inequality 
a 2 < x z <- 1 [see Eq. (A1 1)]. With the help of Eqs. (A10) and (A16) we find 
from Eq. (A15) 

~ ,n" 1 
Im Æ(x; 0, ~ o ) = ~  (x 2_ a2) 1/2 

This yields 

(BIO) 

/ .  1 1 + (o3/2) 
2 Ja dx Im P = B ln (Bl l )  

1 (o3/2) I 

Io ~ ~-[ !+_~~~~~1 ~~~~~ 2 dxx  2 Im/~=~-- d O3 + ( 1 - - ~ ) I n  1-(o3/2)1 

I2 7r 3 "z I2 2 dxx4lmff,'=-ff+-~(1--~)2 dxx2Im; (B13) 

With the help of Eqs. (Bll)-(B13) we obtain for 03 « 1 the results for 
Im Xspin, Im Xorb, and Im gn as given in Eq. (30). 

A P P E N D I X  C.  C A L C U L A T I O N  O F  T H E  S U S C E P T I B I L I T Y  X t «  

Carrying out the frequency sums in the expression for X6o in Eq. (9), we 
find after analytical continuation of ioJ,ù to (~o + i6) 

f a- ~«~- oo [(co + i8) 2-  (Ek +Ek+«)2][(co + iS) 2 -  (Ek+« --Ek) 2] Xoo(q, o)) N(0) 

x tanh 2 2 2 2 [ ( E k + « ÷  E k  -- to )(Et -- ek+«ek ) 

- 2E2(E2+«- ek +«ek)] 
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1 E~c+q 2 2 2 2 + ~ tanh ~ [(Ek+q + Ek -- oJ )(Ek+q-- ek+qek) 

- 2Ek÷q(E~, - ek+qek)] (Cl) 

In this paper we specialize Eq. (C1) to T -+ 0 and to qlIl. We make use of the 
fact that the denominator expression in the integrand of Eq. (C1) is identical 
to that of the function F, Eq. (23). This denominator is a second-order 
polynomial in the reduced energy variable u -= ek/A0. The upper and lower 
limits of the u integral are set equal to U and - U ,  and at the end of the 
calculation the limit U-> oo is taken. Then we can rewrite X66 as follows: 

u+~,x du  2 , , 1 /2  Xoo(q,~o)= N(O) ~ dx , -u  du+j_ ) (u=+p~) 

{. 4xu 03~ +(qx) ~ 
x \(4x)2 _ (03 + i8) 2 ~ [(03 - i6) 2 -  (4x)21 px 

X [ ( q x  ) 2  - -  03 2 - -  24xu ] 

× {4[(4x) 2 -  (03 + ia)2][u 2 -  4xu] 

+ [(4x) 2 - (03 + ia)2] 2 -  4p~(03 + ia)=} -1) (c2) 

Here p2 is the reduced energy gap squared [see Eq. (A3)], and 4 and 03 are 
the reduced wave number and frequency variables [see Eq. (A5)]. The first 
term on line 2 in Eq. (C2) yields the Lindhard function and the second term 
on line yields, apart from a factor, the function/~ given by Eq. (A6). In this 
way we obtain for the real part of X~G 

o~ + vFq ] 
R e x ° ° ( q ' ~ ) = N ( O ) [ 2 - L  ln oa-v~q J 

+ 1  ~ 2  ~ 2 
+ N ( O ) p I _  , o~ +(qx)  2,-, F ( x ; g 0 3 )  (C3) 1 ax032-(4x)-----~P'~ Ke 

The imaginary part of XoG consists of the well-known imaginarypart  of the 
Lindhard function plus a rather complicated expression due to F which we 
shall not write down. 

ACKNOWLEDGMENTS 

We are grateful to D. Einzel for assistance in the early stage of this 
work. We also profited from discussions with D. Fay, P. Kumar, A. J. 
Leggett, K. Maki, S. Takagi, and P. W61fle. 



                                                       147 

R E F E R E N C E S  

1. L. Tewordt, D. Fay, P. Dörre, and D. Einzel, J. Low Temp. Phys. 21,645 (1975) (hereafter 
referred to as TFDE). 

2. L. Tewordt and D. Einzel, Phys. Lett. 56A, 97 (1976). 
3. A. J. Leggett and S. Takagi, Phys. Rer. Lett. 36, 1379 (1976). 
4. L. Tewordt and D. Einzel, Bulletin Früh]ahrstagung Deutsche Physikalische Gesellschaft, 

Freudenstadt (April 1976). 
5. P. Wölfle, Phys. Rev. Lett. 37, 1279 (1976); and to be published. 
6. A. J. Leggett, Rer. Mod. Phys. 47, 331 (1975). 
7. M. C. Cross, J. Low Temp. Phys. 26, 165 (1977). 
8. R. Combescot, Phys. Rer. Len. 35, 1646 (1975). 
9. B.R. Patton, in Proc. of the 14th Int. Conf. on Low Temp. Phys., Otaniemi, Finland, 1975, 

M. Krusius and M. Vuorio, eds. (North-Holland, Amsterdam, 1975), Vol. 1, p. 17. 
10. P. W. Anderson, Phys. Rer. 112, 1900 (1958). 
11: N. N. Bogoliubov, V. V. Tolmaehev, and D. N. Shirkov, New Method in the Theory of 

Superconductivity (English transl.: Consultants Bureau, New York, 1959). 
12. J. C. Wheatley, Rer. Mod. Phys. 47. 415 (1975). 


