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1. Introduction

Nearly a century has passed since Eugene Wigner constructed
a representation of the density operator as a real function, which
allows for the evaluation of the expectation value of observ-
ables as if they were classical phase space averages [1]. The
full quantum nature of the Wigner function is given away by
the negative values that it assumes for nearly all pure density
operators, but the quantum essence of mixed states may not
be revealed so explicitly. Indeed, the thermal Wigner function
that represents the Gibbs ensemble, or the canonical ensemble,
of quantum states in thermal equilibrium with the environment
is typically positive, though it leads to strong deviations from a
classical average for observables at low temperatures. In the limit
of high temperatures, the Wigner function is indistinguishable
from its classical counterpart, so the first aim of this paper is
to show how quantum corrections creep in as the temperature
is lowered. A connection with the underlying classical system
is still tenable at temperatures that reach down to the ground
state energy, but the semiclassical theory for this, which we
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ere develop, requires either the complexification of the classical
amiltonian, or the duplication of the real phase space.
The classical canonical ensemble is characterized by the ther-

al probability density: Given the Hamiltonian, H(x), for a physical
ystem with N degrees of freedom, defined in the 2N-dimensional
hase space with coordinates x = (p, q) = (p1, . . . , pN , q1,
. . , qN ), the probability density is

β (x) ≡
exp{−βH(x)}∫
dx exp{−βH(x)}

. (1.1)

verall, the classical motion is assumed to be bounded, with
n absolute minimum for the Hamiltonian. The only free pa-
ameter is β = 1/κBT , where T is the temperature and κB is
oltzmann’s constant. Physically, the thermal distribution results
hrough equilibrium with an external environment, which need
ot be further invoked here. Since 1/β is the half-width of the en-
rgy distribution, it is evident that Pβ (x) becomes quite irrelevant
or the description of the true physical system, if κBT is lower than
he first excitation energy of the corresponding quantum system.

The thermal density operator

ˆβ ≡
1
Zβ

e−βĤ , (1.2)

replaces the thermal probability density in the quantum descrip-
tion of the canonical ensemble of states in thermal equilibrium;

mailto:ozorio@cbpf.br
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he partition function being defined as

β ≡ tr e−βĤ . (1.3)

his is a mixed state of the eigenstates |j⟩ of the Hamiltonian Ĥ ,
hich is constrained here only by its energy spectrum, assumed
o be discrete, countable and bounded from below. Choosing the
equence of eigenenergies Ej to be non-decreasing with the index
, the spectral decomposition,
−βĤ

=

∑
j

e−βEj |j⟩⟨j|, Zβ =

∑
j

e−βEj , (1.4)

eveals that at low temperatures ρ̂β has no relation to the classi-
al distribution Pβ (x). Instead it is dominated by the ground state
0⟩ and the lowest excited states.

This paper deals exclusively with the equilibrium of quantum
ystems for which the correspondence principle ascribes a unique
lassical Hamiltonian as described above. The typical picture cor-
esponds to a few particles or a few degrees of freedom, coupled
ith a heat bath, and whose Hamiltonian can be developed in the
icinity of one of its critical points.
It is important to note that, even though Planck’s constant h̄

oes not appear explicitly in (1.2), it fundamentally affects both
he eigenstates and the density of states. Indeed, it can be an
dvantage to consider the non-normalized thermal operator as
continuation of the unitary evolution operator

ˆ t = e−itĤ/h̄ (1.5)

or the imaginary thermal time t = −iθ with θ = h̄β . Thus, by
ormally relaxing β to be positive or negative, these operators also
orm a group in one-to-one correspondence with the group of
nitary evolution operators. There may be no physical relevance
or the group properties of the entire set of thermal operators,
ut Feynman [2] employs their Abelian subgroups, which share
he same constant Hamiltonian, to construct path integrals for the
hermal operators with finite β .

Of course, Planck’s constant is fixed, but the ratio of h̄ to
n appropriate action of the system is the standard parameter
or semiclassical (SC) approximations to the evolution operator
nd so it is considered here. There are several methods for the
onstruction of SC approximations, including the stationary phase
valuation of path integrals (see e.g. [3]). It is curious that Feyn-
an never explored these possibilities, neither for the evolution
perator, nor as an approximation to the thermal operator, such
s presented in [4]. This extension, our present concern, requires
ttention to the delicate interaction of both parameters, β and

¯ . Indeed, it is somewhat paradoxical that one should consider
he thermal time within the classical Hamiltonian flow itself, even
hough θ = h̄β , that is, the time which parametrizes the un-
erlying classical motion depends on the fundamental quantum
onstant.
The standard choice for the investigation of the properties

f the density operator is the position representation, that is,
he density matrix, as in [2]. Even so, it is the Weyl representa-
ion, which best spans the deep gulf between the classical and
he quantum regimes. Observables Ô are represented by real
unctions O(x), which usually equal (or closely approximate) the
orresponding classical variable, whereas the density operator is
ortrayed by the Wigner functions W (x), so as to evaluate the
uantum expectation value as

Ô⟩ = tr ρ̂ Ô =

∫
dx W (x) O(x). (1.6)

or a pure state |ψ⟩ the density operator is the projector, ρ̂ =

ψ⟩⟨ψ |, whereas a mixed state is a superposition of projectors
nto orthogonal states, weighed by their probability. Given that
 t

 

he identity operator, Î , has the Weyl representation I(x) = 1, so
hat

Î⟩ = tr ρ̂ Î =

∫
dx W (x) = 1, (1.7)

he usual convention for the normalization of the Wigner function
iffers from the Weyl representation of ρ̂: ρ(x) = (2π h̄)NW (x).
Often, observables correspond closely to classical phase space

unctions,1 so that the integral in (1.6) may well wash away
etailed oscillatory structures of the Wigner function. But Ô may
lso stand in for another projector, |φ⟩⟨φ|, so that here ⟨Ô⟩ =

r(φ), the probability of finding the system in the state |φ⟩. In
articular, for |φ⟩ = |X⟩, the coherent state centred on the phase
pace point X, for which

X(x) =
1

(π h̄)N
exp −

(x − X)2

h̄
, (1.8)

so that one can choose O(x) = (2π h̄)NWX(x), the integral for
he probability Pr(X) will pinpoint a classically minute (possibly
egative) region of the Wigner function.
Last but not least, the Hermitian reflection operator, around

he point X, is given in terms of the vector operator x̂ = (p̂, q̂) as

ˆX =

∫
dx

(4π h̄)N
exp

i
h̄
x ∧ (x̂ − X) , (1.9)

ntroducing the wedge product ξ∧x = (Jξ) ·x, where the standard
ymplectic matrix in Hamilton’s equations is

=
0 −1
1 0 (1.10)

n terms of (p, q) blocks. Also known as the parity operator
round X, it is a bona fide observable, experimentally measured
n quantum optics [5], and it is the defining operator for the Weyl
epresentation and the Wigner function [6–8]2:

(X) ≡
1

(π h̄)N
tr ρ̂ R̂X. (1.11)

he fact that the Wigner function itself may be considered as
he average of the parametrized observable R̂x exemplifies the
uantum richness of this seemingly classical phase space repre-
entation.
The subject of our study is the thermal Wigner function, Wβ (x),

he appropriately normalized Weyl representation of the thermal
ensity operator (1.2). In its spectral decomposition, we then
ave

β (x) =
1
Zβ

∑
j

e−βEj Wj(x), (1.12)

here Wj(x) is the pure state Wigner function which repre-
ents the eigenstate |j⟩ in phase space. In the following section
schematic overview of the thermal Wigner function discusses

he extreme regimes: At very low temperatures energy scales
re accessed where it depends only on h̄, whereas one reaches
purely classical dependence on β at very high temperatures.
he objective is to present a full SC theory that bridges these
egimes. It will be shown that the first simple correction to the
igh temperature limit depends on a dimensionless parameter,
hich combines the product of both basic physical parameters,

orming the thermal time, together with a further local frequency,
iven by a local minimum of the classical Hamiltonian.

1 For the Hamiltonians that follow, we will not distinguish the classical from
he Weyl functions.
2 The review [8] expounds the general background for the interplay of

lassical and quantum mechanics within SC approximations that is here adapted
o the thermal context.
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In Section 3, we exploit the direct course of extending ana-
ytically the evolution operator within the Weyl representation,
.e. the Weyl propagator [8,9], in terms of the imaginary thermal
ime. This is achieved for quadratic Hamiltonians for which the
C approximation is closed and exact. Not only does this proce-
ure provide the low temperature limit of the thermal Wigner
unction for a generic Hamiltonian with a quadratic minimum,
ut a local expansion sheds light on the high temperature limit
f the SC approximation. A further employment of analytical
ontinuation in Section 4 also allows for explicit formulae for the
C approximation for a Hamiltonian in its normal form, including
he Kerr Hamiltonian [10] as a special case. It should be noted
hat the exposition up to this section already supplies valuable
orrections to the classical high energy approximation, which do
ot depend on the intricacies of the full SC approximations, which
hen follow.

The direct course is then to push through the SC approxima-
ion of the Wigner function, relying on the trajectories within a
omplexified phase space, previously developed in the context of
he evolution of Markovian quantum systems [11]. This is con-
ained in the recent paper dealing with the SC approximation for
he quantum Jarzynski equality [12] and it is not reproduced here.
t should be noted that the need of finding classical trajectories,
hich are only implicitly defined by boundary conditions, faces
ere the increased difficulty of a search in the complex phase
pace.
The new development is the expression of the SC Weyl prop-

gator in a doubled real phase space, which proceeds by splitting
ach classical trajectory into a pair of half trajectories moving
ackwards and forwards in time. Again, this is also based on
previous SC treatment for the quantum Markovian evolution
f the Wigner function [13], but we shall point out important
ifferences involved in this change of context. Presented in Sec-
ion 5, the ordinary phase space variables, x = (p, q), take on
he role of double positions. To this one adds a (2N)-dimensional
pace of double momenta, y, so that the relevant classical motion
s generated by a double Hamiltonian H(x, y) constructed from
(x). In Section 6 the complexification of time is incorporated
ithin an imaginary double momentum, following which we
etrieve a real double phase space. Here the relevant classical
otion is generated by a new real double Hamiltonian.
In Section 7 the partition function and the thermal average

f an arbitrary observable Ô in (1.6) are then obtained in terms
f initial values for the pair of forward and backward trajecto-
ies. This eliminates the search for trajectories satisfying implicit
oundary conditions, which plagues the practical application of
tandard SC methods. Saddle point approximations for the par-
ition function and expectations are then considered, pointing to
he absence of periodic orbit contributions in the neighbourhood
f the minima of the Hamiltonian. Thus, the SC partition function
voids the elaborate resonant structure of the trace of the SC
ropagator in real time.
The SC scenario in which the thermal Wigner function ef-

ects a pseudo-evolution in thermal time is then discussed in
ection 8. Appendix A presents the SC version of some standard
hermodynamic relations and Appendix B discusses the accuracy
f the approximation, explicited in the case of a normal form
amiltonian.

. Overview of the thermal Wigner function and its parame-
ers

Even though we will not work with the spectral decompo-
ition of the thermal Wigner function directly, it does provide
rough guide to the various regimes. Let us place the absolute
inimum of the classical Hamiltonian H(x) at the origin of phase
 w

 

pace with H(0) = 0. This stable equilibrium has generically the
owest Taylor approximation

(x|H) ≡
1
2

x · H x , (2.1)

real positive quadratic form defined by the Hessian matrix of
he Hamiltonian, whatever the number of degrees of freedom.
t will be important here to consider (homogeneous) quadratic
amiltonians as a class on their own, parametrized by the matrix
. This generates the class of all linear canonical, i.e. symplectic
ransformations.

If h̄ is small enough, the lowest eigenenergies lie in the
uadratic region and, in the limit of extremely low temperature,
he spectral decomposition (1.12) is dominated by the ground
tate of the quantized version of (2.1). The explicit form of this
igner function is reduced in the following section to that for
N-dimensional harmonic oscillator, that is, WX=0(x) in (1.8).

ncreasing β beyond this point does not affect the thermal Wigner
unction, which is only parametrized by h̄. On the other hand, if
slight increase of temperature brings in just a few significant
tates within the spectral decomposition (1.12), while still lying
ithin the quadratic region of the Hamiltonian, these will be
ock states, with Wigner functions given by their Grönewold
xpression [14]

j(x) =
(−1)j

π h̄
e−x2/h̄Lj

2x2

h̄
, (2.2)

where Lj is the j’th Laguerre polynomial, so that there are concen-
tric positive and negative rings within the quantized energy level.
urther decrease of β allows states at higher energy, for which the
uadratic approximation of H(x) no longer holds, to participate
n the expansion (1.12) for the thermal Wigner function, but an
ntegrable approximation via normal forms can still be quite accu-
ate [15,16]. This is the regime where the SC approximation [17]
see also [18]) constructs each Wj(x), the Wigner function for a
nearly) integrable eigenstate, in terms of the Airy function, en-
eloping each Bohr-quantized torus. For even smaller β , energies
orresponding to a saddle point of H(x) may be accessed, or in any
ase, chaotic motion may well become prevalent, so that the point
s reached where no SC approximation for an individual state is
vailable any longer.
Notwithstanding this basic difficulty, one may still have re-

ourse to Berry’s semiclassical approximation for amicrocanonical
nsemble of states, coarse grained over an energy window that
s classically very narrow, but which still contains many eigen-
tates, due to their high semiclassical density [19]. Then one is
reed from the details of the classical motion, whether integrable,
haotic or mixed, and the basic feature is a single Airy function
hat reaches a maximum very near the classical energy shell,
ecays outside of it and oscillates inside (reaching into a rich
tructure of caustics [8]). Crudely, this microcanonical Wigner
unction can be approximated as a Dirac delta-function over the
nergy shell, which, even so, gives reasonable averages (1.6) for
mooth classical observables.
In any case, a general feature is that each contribution to the

pectral sum (1.12) hardly affects the thermal Wigner function
utside its corresponding energy shell. This indicates that the
lassical approximation, Wβ (x) ≈ Pβ (x) given by (1.1), is at least
n envelope for the thermal Wigner function at the high energies
ccessed by a high temperature. But the same result follows
rom keeping just the first term in the power expansion of the
xponential operator exp{−βĤ} in the Weyl representation. Such
n expansion requires a high temperature, but the full validity of
his approximation will be seen to depend on the smallness of
he thermal time θ = h̄β , together with a local classical frequency,

hich will be introduced shortly.
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. Analytic continuation of the Weyl propagator

The quantum flow Ût generated by a Hamiltonian Ĥ may
e SC-approximated in terms of the classical canonical flow
− ↦→ x+(t) generated by the corresponding classical Hamilto-
ian H(x). The Weyl propagator, its Weyl representation, has the
C-approximation [8,9]

t (x) ≈
2N

|det(I + Mt )|1/2
exp

i
h̄
(St (x)) , (3.1)

in the simplest instance. The geometric part of the centre (or
eyl) action St (x) is just the symplectic area between a trajectory
rc centred on x, that is, with endpoints x± satisfying 2x =

+ + x−, and its geometric chord ξ = x+ − x−, as shown in
ig. 1. From this, one subtracts Et , where E = H(x−) = H(x+)
and generally E ̸= H(x)). For short times, it is guaranteed that
here exists a single trajectory satisfying the boundary condition.
ventually, the amplitude may become singular (at a caustic);
eyond this, there is more than one chord for each centre, so that
he propagator becomes a sum over terms like (3.1). Each term
hen has an extra Maslov phase in the exponent, just a multiple
f π in the present context [20].
The trajectory x̃(t ′, x−), such that for the full interval x+ =

˜(t, x−), is generated by Hamilton’s equations

˙ = J
∂H
∂x
, or ṗ = −

∂H
∂q

and q̇ =
∂H
∂p
. (3.2)

Then the explicit expression for the centre action is

St (x) =

∫ t

0
p̃(t ′, x−) · ˙̃q(t ′, x−) dt ′ − p · (q+ − q−) − tH(x−). (3.3)

The classical role of the centre action is that of a generating
function of the canonical transformation x−

↦→ x+, indirectly
through [8]

ξ = −J
∂St
∂x

and x+ = x +
ξ

2
, x− = x −

ξ

2
. (3.4)

The linear approximation of this transformation near the x-
centred trajectory is defined by the symplectic monodromy matrix
Mt . This has the Cayley parametrization [8]:

Mt = [I + JBt ]
−1

[I − JBt ], (3.5)

in terms of the symmetric Hessian matrix

Bt (x) ≡
1
2
∂2St (x)
∂x2

(3.6)

and the identity matrix I. This allows for the alternative form of
the SC propagator (3.1) as [8]

Ut (x) ≈ |det(I ± JBt (x))|1/2 exp
i
h̄
(St (x)) . (3.7)

A fundamental property of the centre action is that it is an
odd function of time, that is, S−t (x) = −St (x), since S0 = 0 and
the exchange x+ ↔ x− merely reverses the sign of ξ in (3.4).3 It
follows from the first of these equations that the local plane wave
approximation of the action is

St (x′) ≈ St (x) + ξ ∧ (x′
− x), (3.8)

so that Jξ(x)/h̄ is the local wave vector in phase space of the Weyl
propagator. The full expansion of the centre action as a power
series in time has only odd terms and hence the complexification
it (x) is a purely imaginary function for all real centres, x.

3 The reversal of ξ and of S(t) with time follows straight from the definition
f the chord of a trajectory in phase space. Hence, there is no restriction
o the more familiar notion of time invariance, which concerns trajectories in
onfiguration space.
 

Fig. 1. The action, St (x), is just the symplectic area between the trajectory from
− to x+ and its chord ξ, from which one subtracts Et , where E is the energy
f the trajectory.

The difficulty is that the centre action is not generally ex-
ressed as a power series, so that one cannot immediately con-
inue analytically the SC expression e−βH (x) ≈ U−ih̄β (x), in terms
f the complex thermal time t ↦→ −ih̄β = −iθ , except in simple
ases. In the short time limit, one can neglect the curvature of the
rajectory, thus replacing the trajectory arc by the chord itself,
hatever the Hamiltonian. In other words, one has ξ ≈ t ẋ, so
hat St (x) ≈ −tH(x) and Mt ≈ I. For the imaginary thermal time
= −ih̄β , one then retrieves the classical high temperature limit
f the thermal Wigner function: Wβ (x) ≈ Pβ (x).
The Weyl propagator for the harmonic oscillator (N = 1)

h(x) =
ω

2
(p2 + q2) (3.9)

rovides an illuminating example. After a time t the Cayley
atrix for this archetypical elliptic propagator will be Bt =

tan(ωt/2)I [8,20], so that St (x) = −x · tan(ωt/2)x and the full
eyl propagator is

t (x) =
1

cos(ωt/2)
exp −

i
h̄
tan(ωt/2) (p2 + q2) . (3.10)

ere, the monodromy matrix, Mt , does not depend on x, leading
o the simple form taken by the square root in the amplitude of
3.1). In general, the SC expressions for propagators generated by
uadratic Hamiltonians are exact and here it is easy to proceed
o the analytic continuation for the imaginary thermal time, t =

iθ . Thus, the exact expression for the Weyl exponential of the
amiltonian is

−βHh (x) =
1

cosh(ωθ/2)
exp −

1
h̄
tanh(ωθ/2) (p2 + q2) . (3.11)

he equality of this analytic continuation of the Weyl propagator
ith the spectral sum for the thermal Wigner function, summing
ver the eigenstates given by (2.2), follows simply from the
dentity:
∞

j=0

t j Lj(x) =
1

1 − t
exp −

tx
1 − t

, (3.12)

ith the choice t = − exp(−βh̄ω).
One should observe that the Weyl propagator for the inverted

armonic oscillator,

(x) =
ω

(p2 − q2), (3.13)

2



                                                                  

i

U

a
t
a

p
i
t
t
t
o
(
f

U

a
0
g

e

g

p

e

i
o
s
h
e

a

S

a
h
D
e

t
t
H
I
q

H

w
s
c
H

H

b

γ

O
o
x
f
t

x
o
a
o
H
t
a
e

e

=

w
q

w
c
t
d
t

e

T
W

∆

s
p
c
d
m
t
W
c
o
t
b

s

t (x) =
1

cosh(ωt/2)
exp −

i
h̄
tanh(ωt/2) (p2 − q2) , (3.14)

so that (3.11) is a curious blend of the expressions for the har-
monic oscillator and its inverse.4 In this case, the Hamiltonian can
be obtained from a Lagrangian. Its thermal properties are then
obtained from the real time propagation in the inverted oscilla-
tor [4]. Our treatment of general Hamiltonians in Section 6 may
be considered to be a further generalization, since it also replaces
stable equilibrium by an unstable point. First we deal here with
he more restricted class of general quadratic Hamiltonians (2.1)
nd its quantization.
A crucial characteristic of the Weyl representation is its sym-

lectic invariance, that is, the functions that represent operators
n phase space are invariant under linear canonical transforma-
ions of its arguments (see e.g. [18]). Indeed these classical-like
ransformations are just a particularly apt expression of similarity
ransformations by the quantum metaplectic group of unitary
perators [20–22]. These are generated by the quantization of
2.1), such that the SC form is exact, that is, for a single degree of
reedom the Weyl propagators for the metaplectic operators are

t (x|H) =
1

cos(Ωt/2)
exp −

1
h̄
tan(Ωt/2)

x · H x
Ω

, (3.15)

where Ω2
≡ detH.

Thus, the unitary metaplectic operators have the same gen-
eral form as those which may evolve them through a similar-
ity transformation. This is not so for their analytic continuation
s non-normalized thermal Wigner functions, provided Ω2 >
. Rather, these metaplectic Wigner functions become the exact
eneralization of (3.11):

−βH (x|H) =
1

cosh(Ωθ/2)
exp −

1
h̄
tanh(Ωθ/2)

x · H x
Ω

(3.16)

with θ = h̄β . So one may include, for instance, a constant
magnetic field for a charged harmonic oscillator. Extending to
β < 0, the complete set of operators exp[−β x̂ · Hx̂/2] form a
roup that is isomorphic to the metaplectic group.
In the case of a free particle, such that Ω → 0 as x · H x →

2/2m, one obtains

−βH (x) = exp −
β

2m
p2 , (3.17)

a non-normalized version of Pβ (x). So one encounters the gen-
eral rule that the Weyl representation of any operator that is a
function either exclusively of the momenta, or exclusively of the
positions, has exactly its classical form.

For N > 1 the transformation which diagonalizes the symmet-
ric matrix H in the positive quadratic Hamiltonian also places the
matrix JH in its Williamson normal form (see e.g. [15]), so that this
transformation is symplectic. The only option of the normal form,
f the Hamiltonian is bounded from below, is that all degrees
f freedom are elliptic. Thus the thermal Wigner function at
ufficiently low temperature reduces to a product of N individual
armonic oscillator Wigner functions (3.11) with frequencies ωn,
ach in its own phase plane.
The lowest correction to the action for a general Hamiltonian

t short times is

t (x) ≈ −tH(x) −
t3

24
ẋ ∧ ẍ = −tH(x) −

t3

24
ẋ · Hx ẋ ; (3.18)

4 Unlike the harmonic oscillator action, which is singular at ωt = π , the
ction for its inverse stabilizes smoothly due to the relevant trajectory merely
ugging the stable and the unstable manifold closer and closer as t increases.
ue to structural stability, this also holds for nonlinearly deformed unstable
quilibria.
 p

 

he first version derived in [19], whereas the second in [8] evinces
he connection with the local quadratic approximation of the
amiltonian in terms of its Hessian matrix Hx = ∂2H(x)/∂x2.
ndeed, following the appendix in [8] the local inhomogeneous
uadratic approximation to the Hamiltonian

(2)(x′
|x) ≡ H(x) + hx · (x′

− x) +
1
2

(x′
− x) · Hx (x′

− x), (3.19)

here hx is the local gradient of the Hamiltonian, generates a
ymplectic flow in a kind of tangent space, with points (x′

−x). We
an now reexpress this in terms of the homogeneous quadratic
amiltonian (2.1)
(2)(x′

|x) = [H(x) − H(x − γx|Hx)] + H(x′
− γx|Hx), (3.20)

y defining the local centre of curvature:

x ≡ x − Hx
−1hx. (3.21)

ne should notice that (3.20) holds even for x′
→ x, so that

ne may evaluate the time derivatives ẋ = JHx(x − γx) and
¨ = JHxJHx(x−γx) at the centre x itself. But for a single degree of
reedom, (JHx)2 = −Ω2

x I, so that the acceleration always points
o the local centre of curvature: ẍ = −Ω2

x (x − γx).
The quantization of the approximate Hamiltonian (3.20), with

kept as a constant and further parametrized by the local centre
f curvature γx, then identifies the correction to the short time
pproximation for the centre action (3.18) as merely the third
rder expansion in time of the action generated by a quadratic
amiltonian: tan (for real time) and tanh (for imaginary thermal
ime). For a general Hamiltonian one thus obtains the short time
pproximation of e−βH (x) as the generalization of the third order
xpansion of the action in (3.16), i.e.

−βH (x) ≈
1

1 + (h̄βΩx)2/8
exp −βH(x) −

h̄2β3

24
ẋ · Hx ẋ (3.22)

1
1 + (h̄βΩx/2)2/2

× exp −βH(x) −
(h̄βΩx/2)3

3
(x − γx) · Hx (x − γx)

h̄ Ωx
.

The second form is less convenient for calculations, since it re-
quires the evaluation of the local centre of curvature γx, but it
clearly evinces the dimensionless expansion parameter (h̄βΩx/2),
here h̄β = θ is the thermal time, while Ωx is the angular fre-
uency of trajectories within the local quadratic approximation.
A final step follows from the recognition that, to be consistent

ith the local quadratic approximation to the Hamiltonian, one
an keep the whole series for tanh and cosh instead of just
he third order in the dimensionless parameter. This leads to a
ampened version of the metaplectic Wigner function (3.16) with
he origin displaced to the centre of curvature γx:
−βH (x) ≈ e−∆(x) e−βH (x − γx|Hx). (3.23)

he exponent of the attenuation factor in this local metaplectic
igner function is

(x) = β
(
H(x) − H(x − γx|Hx)

)
= βH (2)(γx|x), (3.24)

o that quantum effects are only represented within the meta-
lectic Wigner function itself, the second factor in (3.23). One
an then picture a tangent space at each point x as holding a
isplaced generalized harmonic oscillator, from which the local
etaplectic Wigner function is constructed. This alternative form

hen consists of a classical attenuation of a fully quantum thermal
igner function, replacing the quantum correction to the classi-

al distribution obtained in (3.22). It is not evident a priori, which
f these approximations will best extend to increasing thermal
ime. One should note that (3.23) is nonsingular for all time,
ut its real time version will have the singularities of the Weyl
ropagator for the harmonic oscillator.
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. Normal forms and the Kerr Hamiltonian

For a temperature that includes energies beyond the range of
alidity of the quadratic approximation, the region surrounding
he absolute minimum of the Hamiltonian can be transformed to
ts Birkhoff normal form [15,16], that is, for N = 1,

Bir (x) = ω
p2 + q2

2
+ H2

p2 + q2

2

2

+ H3
p2 + q2

2

3

+ · · · ≡ F
x2

2
, (4.1)

which simply separates into polynomials Fn
(
x2n/2

)
for higher

egrees of freedom. Generally, for N > 1, the infinite series
as no hope of converging, because the integrable normal form
annot cope with the intricate KAM-type motion that surrounds
he equilibrium, but a higher truncation than the simple quadratic
an lead to a great improvement in the accuracy of trajectories for
finite time. Evidently this approximation cannot be extended
p to a saddle point, if it arises in the Hamiltonian, but the
lassic expansion by Gustavson [23] for the Hénon–Heiles Hamil-
onian [24], below the energy of its three saddles, supplies good
rajectories for a finite time.

We cannot use the normal form transformation to transport
xactly a Wigner function, because this is a nonlinear transfor-
ation, even if it can be chosen to be canonical. Nonetheless,

his is just the truncated Wigner approximation [25,26] (TWA, also
eferred to as LSC-IVR [27]). It is widely used and adequate for
igner functions that are not highly oscillatory, as here, for the
ibbs ensemble. Specially interesting is the Kerr Hamiltonian

K (x) = ω
p2 + q2

2
+
ω2 p2 + q2

2

2

, (4.2)

where ϵ has the dimension of energy, for the single photon Kerr
ffect [10,28], i.e. simply the harmonic oscillator coupled to its
quare, so that it arises naturally as an exactly truncated normal
form. The quantum evolution of a Kerr system is not governed
y an ordinary second order Schrödinger equation, even though
ts quantum evolution is known exactly [29,30]. The SC treatment
elies on a closed expression for the action and, in the case of the
omogeneous limit where ϵ → 0, such that effectively HK (x) ∝

h(x)2, it has been verified in detail [31].
Before considering the analytic continuation of the SC Weyl

ropagator with an imaginary thermal time for a normal form, let
s discuss its fully quantum spectral decomposition in the simple
ase where N = 1. The only dependence on the function F in
he definition of the normal form (4.1) lies in the eigenenergies
j = F

(( 1
2 + j

)
h̄
)
determining the weight of the Wigner functions

j(x) for the eigenstates. That the latter are exactly harmonic
scillator eigenstates is not discrepant with the SC approximation
f Berry [17], since it builds each of these Wigner functions
elying only on the geometry of the energy level curve, which is
ere a circle for any form of F .
However, the lowest states are poorly represented by this SC

pproximation and it is far off from the Gaussian ground state
hat dominates the thermal Wigner function in the limit of very
ow temperatures. Indeed, for the exponent in the first term of the
pectral sum to be already large, we have βF (h̄ω/2) ≫ 1. For a
onotonically increasing function F , this would imply that either
or h̄ is large. But for the normal form to be dominated by its

irst harmonic term, h̄ should be small, as expected within usual
C approximations. Then the condition for the thermal Wigner
unction to be effectively reduced to that of the harmonic oscil-
ator ground state is expressed in terms of the thermal time as
≫ 2/ω. In the extreme case of the homogeneous Kerr system,
 w

 

he correct quantum expression for this low temperature Wigner
unction still portrays the ground state of the harmonic oscillator,
o that correspondence with the classical quartic oscillator is
eopardized.5

Even if the energy is too high for individual states to be
seful, the normal form may still extend smoothly the picture of
he motion beyond the quadratic approximation. For simplicity,
he discussion is again limited to a single (typical) degree of
reedom. The classical trajectories generated by the normal form
re identical to the arcs of concentric circles for the harmonic
scillator, but the angular frequency of each arc depends on its
nitial value: ω(X) = F ′(X2/2), in terms of the derivative of F with
espect to its scalar argument. Let us run forward and backward
n time a pair of trajectories from a given point X for the duration
/2. Then the chord joining the endpoints of the full trajectory arc,
panning the angle tF ′(X2/2), is centred on

= cos
t
2
F ′

X2

2
X. (4.3)

he area of the triangle formed by these endpoints with the origin
s just sin[tF ′(X2/2)] X2/2, which must be subtracted from the arc
rea tF ′(X2/2) X2/2 to obtain the area between the trajectory arc
nd the chord. Finally, subtracting tH(X) = tF (X2/2), one obtains
he implicit expression for the action (3.3) as

t (x(X)) = tF ′
X2

2
− sin tF ′

X2

2
X2

2
−t F

X2

2
. (4.4)

he analytic continuation of the action for imaginary thermal
ime −iθ = −ih̄β is then

θ (x(X)) = θF ′
X2

2
− sinh θF ′

X2

2
X2

2
− θ F

X2

2
.

(4.5)

he explicit expression obtained by substituting X by x is gener-
lly much messier but, for the harmonic oscillator one has simply
′

= ω, so that only the central term survives and the actions
ecome

t (x) = − tan(tω/2) x2 and Sθ (x) = − tanh(θω/2) x2, (4.6)

n line with (3.10) and (3.11).
The amplitude of the thermal Wigner function is again more

imply expressed in terms of the centre of the trajectory (see
ppendix B):

1

cosh θ
2 F ′ X2

2

√
1 + θ F ′′ X2

2
X2

2 tanh θ
2 F ′ X2

2

. (4.7)

In practice there is no advantage in working out the full explicit
expression for the thermal action in terms of the centre x, since
he expectation of observables can be computed by integrating
irectly over the trajectory midpoint X, as will be discussed in
ection 7. On the other hand, it is illuminating to consider the
ong thermal time limit of Sθ (x). Recalling the identity sinh 2x =

sinh x cosh x and that, fixing x, X → 0 exponentially with
ncreasing thermal time according to the analytic continuation of
4.3), one obtains in the limit a single term

θ (x) → − tanh(h̄βF ′(0)/2) x2. (4.8)

ut F ′(0) = ω, so that the SC approximation for the normal form
ollapses into the thermal Wigner function for the harmonic os-
illator just as discussed above. The case of the homogeneous Kerr

5 One should note that no such prevalence of the ground state arises in
he spectral decomposition of the evolution operator in real time, because the
eight of each state is just a phase factor.
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amiltonian is anomalous, since there is no limiting quadratic
ehaviour.
One should contrast this straightforward SC scenario of the

hermal Wigner function for the normal form with the one for
he Weyl propagator. The latter has singularities in its action (4.4)
nd the amplitude of the SC propagator, i.e. caustics, which are not
feature of the exact quantum propagator. They subdivide the
hase space into distinct regions to be traversed with caution, as
xemplified in the case of the Kerr Hamiltonian in [31]. Thus, in
omparison, the thermal Wigner function is remarkably well be-
aved for Hamiltonians with a single minimum. See Appendix B.
The further pursuit of analytic continuation of the classical

entre action for general Hamiltonians would be an uncertain
nterprise, due to the reliance on approximately integrated tra-
ectories. We henceforth embark on the alternative adaptation of
he SC approximation directly to the thermal context. In passing,
t should be recalled that for ordinary Hamiltonians, with both
he classical and the Weyl form

s(x) =
p2

2m
+ V (q), (4.9)

the classical dynamical system can be derived directly from a
agrangian function. This allows for a remarkable simplification
f the thermal density matrix in the position representation,
hrough the expedient of redefining the momenta: Imaginary
ime entails an imaginary velocity in the Lagrangian [4] and hence
ne deals with imaginary momentum pi in the Hamiltonian, such
hat ipi

≡ p, so that the only vestige of the complexification
s that p2

↦→ −(pi)2.6 This turns stable equilibria into unstable
oints and vice versa, generalizing the outcome for the harmonic
scillator. Our purpose here is to mimic such a procedure for
he Lagrangian, but through a complexification of phase space
ariables for arbitrary Hamiltonians, so as to obtain a general real
C approximation for the thermal Wigner function.

. Double phase space

The simple artefact of defining an imaginary momentum does
ot guarantee that trajectories centred on arbitrary phase space
oints will be real, even for Hamiltonians of the form (4.9).
onetheless, the doubling of the phase space does allow for an
nalogous procedure for general Hamiltonians. Let us first de-
cribe this for the Weyl propagator, by breaking up the quantum
volution operator into half-times:
−itĤ/h̄

= e−itĤ/2h̄ Î e−itĤ/2h̄
= e−itĤ+/2h̄ Î e+itĤ−/2h̄ (5.1)

ith Ĥ± = ±Ĥ . In this last form, one immediately recognizes
he operator ÎL(t), which propagates the quantum Loschmidt echo
r the fidelity, that is, the overlap of two different evolutions of
he same initial state [32]. In the present particular case the pair
f quantum evolutions are merely the forward evolution in the
nterval (0, t/2) and its time reversal (0,−t/2) with the same
amiltonian Ĥ .
The corresponding classical echo matches the outcome of the

ollowing procedure: One picks a real initial value X and evolves
his forwards and backwards in time, 0 ≤ t ′ ≤ t/2, forming
he trajectories x̃+(X, t ′) and x̃−(X,−t ′). One can then picture
he centre and the chord, defined in (3.4), as having evolved
ontinuously in time, from the initial conditions x̃(0) = X and

˜(0) = 0 respectively, so that

˜(t ′) =
x̃+(t ′) + x̃−(t)

2
, ξ̃(t ′) = x̃+(t ′) − x̃−(t ′), or (5.2)

x̃±(t ′) = x̃(t ′) ±
ξ̃(t ′)
2
.

6 The switch q̇2
↦→ −(q̇i)2 in the Lagrangian is already a part of Feyman’s

daptation of the path integral for the density matrix, though the SC limit is
ot considered in [2].
 i

 

Fig. 2. The action for a doubled time, S2t (x(X)), is now built up from the forward
nd backward trajectories, with X as their initial value.

hen one obtains the action in (3.3) as simply

t (x(X)) =

∫ t/2

0
dt ′ ξ̃(t ′) ∧ ˙̃x(t ′) − tH(X), (5.3)

At this stage, it is advantageous to define a new variable y ≡

ξ. This is the true conjugate variable to x in the double phase
pace that arises in the semiclassical theory of open quantum
ystems [11] and superoperators [33]. In this expanded classical
icture x = (p, q) stands for a double position, whereas y =

yp, yq) assumes the role of its canonical double momentum. Thus,
he wedge product in (5.3) reduces to an ordinary dot product.
urthermore, it is now possible to define the double Hamiltonian

(x, y) ≡ H+(x −
Jy
2
) − H−(x +

Jy
2
) = H(x+) + H(x−) (5.4)

uch that Hamilton’s equations in the enlarged phase space pro-
ide the appropriate equations of motion for the centre and chord
rajectories in (5.3):

∂H

∂x
=
∂H+

∂x+

−
∂H−

∂x−

= −J(ẋ+ − ẋ−) = −Jξ̇ = −ẏ (5.5)

∂H

∂y
=

J
2
∂H+

∂x+

+
J
2
∂H−

∂x−

=
ẋ+ + ẋ−

2
= ẋ.

One should comment that the equalities for both ξ̇ and ẋ may
eem to subvert intuition for chords and centres for a single
volution generated by H(x), but they are the consequence of
aking H−(x) = −H+(x) = −H(x). Just consider that, for the
nitial point x̃+(0) = x̃−(0) = X, one has ξ̇ = ẋ+ − ẋ− = 2Ẋ,
hereas ẋ = (ẋ++ ẋ−)/2 = 0 as depicted in Fig. 2. Nonetheless, ẋ

s only instantaneously zero, so that x̃(t ′) is not constant, because
enerally the curvature of the trajectory is nonzero.7 In conclu-
ion, the double Hamiltonian allows us to express the action in
ts standard form, as an integral involving the (double) position
and its conjugate (double) momentum y, evaluated on half the

ime interval:

t (x(X)) =

∫ t/2

0
dt ′ ỹ(t ′) · ˙̃x(t ′) −

t
2
H(X). (5.6)

The fact that the action is determined by the trajectory mid-
oint, X, and is here dependent only indirectly on the centre, x,

7 In previous definitions of a double Hamiltonian [11,13], y = 0 was an
nvariant plane, but not so here.
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ay seem to be a disadvantage. On the contrary, it allows us
o dispense completely with the root search for trajectories in
mportant applications. Indeed differentiating the first equation
n (5.2) leads to

∂ x̃
∂X

(t/2) =
1
2
(Mt/2 + M−t/2), (5.7)

so that, recalling that M−t = (Mt )−1 and that detMt = 1 for
all t , the Jacobian determinant for the change of variables X →

x̃(t/2) = x is

|det
∂x
∂X

| =
1

22N |det(I + Mt )|. (5.8)

But this is just the square of the inverse amplitude of the Weyl
propagator (3.1)!

Let us consider the overlap of an initial function |ψ⟩ with its
evolution |ψt⟩ = Ût |ψ⟩. In terms of the corresponding Wigner
function Wψ (X), the exact expression is

⟨ψ |ψt⟩ = tr Ût |ψ⟩⟨ψ | =

∫
dx Wψ (x) Ut (x). (5.9)

Hence, the change of variable x → X leads to the SC approxima-
tion

⟨ψ |ψt⟩ ≈

∫
dX |det

∂x
∂X

|

1/2

exp
i
h̄
(St (x(X))) Wψ (x(X)) . (5.10)

There is no extra integration and no worry about amplitude
singularities at caustics, because these are cancelled by the new
Jacobian factor in the integral. In this way there is no search
for trajectories, even though the Weyl propagator itself is not an
initial value representation (IVR), such as for instance the Herman–
Kluk propagator [27,34]. One should note that previous treat-
ments of time evolution of overlaps within the Weyl–Wigner
representation [35] dealt only with its square-modulus, that is,
the self correlation of the evolved state.

6. Complexified and decomplexified double phase space

The complexification of time as t ↦→ −ih̄β , which has been
dopted so far, leads to results that are equivalent to choos-
ng the real thermal time, θ ≡ h̄β , together with the complex
amiltonian
i(x) ≡ −iH(x). (6.1)

This is imaginary for real x, so that then ẋ is imaginary and all
rajectories depart from the real plane. Such an option is verified
o be legitimate in the short time limit of the action (3.18) and
ne can always build the actions for longer times from the short
ime trajectory segments [8]. In other words, whereas the SC
pproximation for the Weyl propagator results from a formally
xact path integral by stationary phase integration, its analytic
ontinuation, which we now present, follows from the saddle
oint approximation to the same path integral with imaginary
ime. The essential common feature is that the action defined
n terms of the set of paths, which share the given centre x, is
tationary for classical trajectories.
For a general point in the complex phase space x → z ,

amilton’s equations become

˙ = J
∂H i

∂z
= −iJ

∂H
∂z
. (6.2)

Evaluated at the complex conjugate point z∗, one obtains ż(z∗) =

−[ż(z)]∗, which is the velocity for the reverse trajectory in time,
leading in particular to an imaginary velocity whenever z = z∗.
eiterating the process, z̈(0) will be real, and, more generally,
he odd time derivatives will be imaginary whereas the even
 S

 

nes will be real. As a consequence, if we evolve the real phase
pace point X forwards and backwards in time, 0 ≤ θ ′

≤ θ/2,
orming the trajectories z̃(X, θ ′) = z(0) + θ ż(0) +

θ2

2 z̈(0) + · · ·

and z̃(X,−θ ′) = z(0) − θ ż(0) +
θ2

2 z̈(0) + · · ·, then z̃(X,−θ ′) =

z̃(X, θ ′)]∗ and one can define the evolving chord and centre:

x̃(X, θ ′) =
z̃(X, θ ′) + z̃(X,−θ ′)

2
= Re z̃(X, θ ′) = xr

ξ̃(X, θ ′) = z̃(X, θ ′) − z̃(X,−θ ′) = 2i Im z̃(X, θ ′) = −iξi,

(6.3)

where xr and ξi are real. Thus, one guarantees that the evolving
entre trajectory remains real for all time, whereas the chord is
lways imaginary. But this is just what one should obtain from
he complexification of the time in (3.4): the action being an odd
unction of time, it becomes purely imaginary for imaginary time
nd the chord must follow suit.
This preliminary remark sets up the option to map the com-

lexified double phase space into a real double phase space.
ssuming analyticity of the action with respect to time, we ex-
end the expression (5.6) to an imaginary time t = −iθ , with
∈ R, and write

−iθ (x(X)) =

∫
−iθ/2

0
dt ′ ỹ(t ′) · ˙̃x(t ′) −

−iθ
2
H(X, 0), (6.4)

with the complex time generalization of (5.6),

y(0) = 0

x(0) = X
dy

d(−iθ )
= −

∂H

∂x
(x, y)

dx
d(−iθ )

=
∂H

∂y
(x, y).

(6.5)

The preliminary remark suggests the replacement of x by xr and
by −iyi, leading to

yi(0) = 0

xr (0) = X
dyi

dθ
= −

∂Hr

∂x
(xr , yi)

dxr

dθ
=
∂Hr

∂yi
(xr , yi).

(6.6)

with

H
r (xr , yi) = H(x, y) = H(xr + i

Jyi

2
) + H(xr − i

Jyi

2
). (6.7)

Notice that Hr (xr , yi) is real if xr and yi are real, and therefore,
since xr and yi are initially real, Eqs. (6.6) ensure that they will
tay real for any θ , thus confirming the preliminary remark.
In its essence, the scenario depicted here is equivalent to our

revious treatment of the complex action [12], but it is worth
nvestigating it further. The full trajectory in double phase space
ay be considered as combining both segments of z̃(X,±θ ′) with

′
≥

θ
2 , or, which is equivalent, the single phase space trajectory

˜(z−, θ
′), with θ ′

≥ θ , generated by H i(z), starting at z− up to X,
nd then on to its final point: z̃(z−, θ ) = z+. The real part of this
rajectory is just xr (θ/2 − θ ′) from x(X) to X and then it exactly
etraces itself, whereas the imaginary part is Jyi(θ/2− θ ′)/2. This
imple behaviour is not the general rule for arbitrary initial points
−, so that it is an asset to be able always to start instead at the
eal midpoint, X.

With these new real variables, one can see explicitly that the
ction (6.4) is purely imaginary, that is

(x(X)) = (−i)S i (x(X)) (6.8)
θ θ
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here the real action S iθ (x(X)) is defined by

i
θ (x(X)) =

∫ θ/2

0
dθ ′ yi(θ ′) · ẋr (θ ′) −

θ

2
H(X, 0). (6.9)

In other words, the actual exponent of the thermal Wigner func-
ion is S iθ (x(X))/h̄, and it is built on the dynamics of a trajectory
n the real phase space

(
xr , yi

)
, so that here xr is the generalized

osition and yi is the generalized momentum. Even so, it should
e recalled that the double Hamiltonian is entirely specified by
(x) and Hr (X, 0) = 2H(X). Viewed as a function of the centre x,
ather than the midpoint X of the full trajectory generated by the
ouble Hamiltonian Hr (xr , yi), one should note that S iθ (x) is ex-
ctly portrayed by (3.3), so that this trajectory satisfies the centre
ariational principle [8,36]: In short, the action is stationary with
espect to infinitesimal changes of the path in phase space, which
reserve its centre x (as opposed to the trajectory midpoint X).
As an example to help overcome the unfamiliarity of these

ouble phase space expressions, let us return to the simple har-
onic oscillator. Feeding its Hamiltonian (3.9) into the general
xpression for the double Hamiltonian (6.7), while leaving aside
he labels r and i to alleviate notation, leads to

r
h(x, y) = ω x2 −

(y2
4

= − ω
y2p
4

− p2
)

− ω
y2q
4

− q2
)
, (6.10)

recalling that here one interprets the centre, x = (p, q), as
a double phase space position, whereas the (rotated) chord,
y = (yp, yq), stands for the momentum. So we recognize that
(6.10) is akin to the Hamiltonian for a double inverted oscillator
(3.13) (moving backwards). Resolution of (6.6) gives x(X, θ ) =

cosh(ωθ/2) X and brings the harmonic oscillator action (4.6).
The close connection established in Section 2 between the

thermal Wigner function for the harmonic oscillator and the third
order short time approximation for general Hamiltonians clearly
implies that one can also generalize the procedure above, so as
to obtain this approximation within the double phase space ap-
proach. Indeed, it is interesting that the original derivation in [19]
for the Weyl propagator already makes use of a construction
around the midpoint of the trajectory at t/2, here labelled X.

A further example of a double Hamiltonian is obtained for the
err system (4.2), for which Hr

K (x, y) ̸= [Hr
h(x, y)]

2. Indeed, in the
omogeneous limit of small

r
K (x, y) =

ω2

2ϵ

[
p2 −

y2p
4

2
+ q2 −

y2q
4

2

+ 2 p2 −
y2p
4

p2 −
y2p
4

− (qyp − pyq)2
]
, (6.11)

which has a nonquadratic equilibrium at the origin. In spite of the
increased complexity, note that Hr

K (x, y) = 0 along x = ±y, so
preserving something of the hyperbolic structure of Hr

h(x, y).

7. Traces, averages and saddle points

It is important to realize that the explicit action in terms of
the trajectory midpoint X, instead of the centre x at which the
thermal Wigner function is evaluated, is no drawback for the
evaluation of thermal averages. Indeed, the only difference with
respect to the previous case of the wave function overlap at the
end of Section 5 is that the real double Hamiltonian, which gener-
ates the classical trajectories for the real thermal time θ = h̄β/2
is expressed as (6.7), instead of (5.4). Hence, the same change
of integration variable, x = x̃(θ/2) → X with Jacobian (5.8),
 

allows for the full semiclassical thermal average of an arbitrary
bservable Ô to be expressed as a simple modification of (5.10):

Ô⟩β ≈
1
Zβ

∫
dX |det

∂x
∂X

|

1/2

exp
1
h̄
(S ih̄β (x(X))) O(x(X)). (7.1)

Here, the partition function Zβ is evaluated by a similar inte-
ral in which O(x) = 1. For high temperatures corresponding to
hort imaginary times there will be no caustics, but even if these
hould arise, they would only be zero curves, or more general
ero manifolds, of the Jacobian determinant. Should they arise,
he residual task is then to evaluate an overall sign, which is the
nly remnant of Maslov phases in the Weyl propagator [20] if
austics separate the domain of integration.
The expectation of functions of the energy itself ⟨F (Ĥ)⟩β are

mportant examples of the general SC formula (7.1). They are
elated by standard thermodynamical relations, which are not
uite obvious within the SC approximation, as we discuss in
ppendix A.
The exact expression (3.11) supplies the partition function for

he harmonic oscillator:

β =

∫
dx e−βH (x) (7.2)

1
cosh(h̄βω/2)

∫
dx exp −

1
h̄
tanh(h̄βω/2) (p2 + q2)

π h̄
sinh(h̄βω/2)

.

his diverges for β → 0 as the classical high temperature
pproximation Zβ = 2π/βω, but then it decays exponentially.
eing that the exponent of the thermal Wigner function for the
armonic oscillator is already quadratic, one may identify the
bove partition function with its own saddle point approxima-
ion. For a general Hamiltonian, the validity of this approximation
epends on large β so as to confine the thermal Wigner function
lose to the saddle point at the origin, just the opposite of the
igh temperature approximation. But this is just the condition for
he normal form approximation for the thermal Wigner function
n Section 4 to hold, so that it merely collapses onto the central
armonic oscillator.
There is no saddle point contribution to the trace from pe-

iodic orbits in the classical flow generated by the hyperbolic
ouble Hamiltonian (6.10), except for the equilibrium point at
he origin itself. For the normal form approximation in Section 4
he same is true. A saddle point evaluation of the expectation
f an observable, Ô, according to (7.1), would be merely O(0),
ts Weyl value at the origin, which is obviously unsatisfactory at
igh temperatures, for which the thermal Wigner function is not
oncentrated near the origin.
Thus, in the limit of low temperatures, one loses the com-

lexity of the full semiclassical theory of the thermal Wigner
unction when evaluating the thermal average of smooth ob-
ervables. It is required that the energy has a minimum for any
hermal average even to be considered. Then this minimum will
orrespond generically to an elliptic equilibrium, whatever the
umber of degrees of freedom; the linearization of the flow (the
uadratic approximation of the Hamiltonian) close to this origin
rovides a (multidimensional) harmonic oscillator. The corre-
ponding double Hamiltonian will then be a (multidimensional)
nverted harmonic oscillator, so that we are guaranteed the ab-
ence of any periodic orbits in the saddle point approximation of
he trace, or the expectation of any smooth observable.

The special case of the Kerr Hamiltonian (4.2) reminds us
hat there may be no quadratic approximation in the homoge-
eous limit, but still there is a minimum. In this case, the high
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emperature approximation is

=

∫
dx exp{−β[(ω/2) (p2 + q2)]2} =

π

ω

√
π

β
. (7.3)

In contrast, the equilibrium of the quartic double Hamiltonian
(6.11) is not a minimum (or maximum), just as that of a hy-
perbolic Hamiltonian, so that even in this special case there are
o periodic orbits, which could contribute to the semiclassical
artition function.
Further results on the partition function for the Kerr Hamilto-

ian are presented in Appendix B.

. Discussion

The density operator is the appropriate description of a system
hat is not isolated. Indeed, a system described by an initially
ure state, the projector corresponding to a vector in Hilbert
pace, is known to evolve into a mixed state, losing quantum
oherence due to contact with an external environment. Once the
quilibrium of the system with the environment is achieved, it
s characterized by the overall temperature T = 1/κBβ , so that
he resulting mixed state can be identified with the one defined
y the canonical ensemble, provided that the coupling to the
nvironment is sufficiently weak.
The observation that the product h̄β ≡ θ has the dimen-

ion of time, a thermal time, permits an analogy of the static
hermal density operator to the outcome of a pseudo-evolution
n θ . The semiclassical approximation of the thermal Wigner
unction breathes life into this metaphor, with the added quirk
hat one moves in thermal time from the initial classical canonical
istribution, with no trace of Planck’s constant, into the quantum
ealm.

Hamilton’s equations and the entire classical pseudo-motion,
n which the SC approximation is based, are parametrized by
hermal time. For small θ , the classical trajectories are short,
o that the semiclassical approximation depends only on a lo-
al quadratic approximation of the Hamiltonian. This provides
he lowest quantum corrections to the high temperature limit.
ncreasing thermal time requires the action of a longer trajec-
ory, either immersed in a complexified phase space [12], or in
he real doubled phase space presented here. The fact that the
ppropriate double Hamiltonian has a saddle point instead of a
table equilibrium prevents the relevant trajectory from growing
eyond the constraint provided by the pair of stable and unstable
anifolds. This limits the action, which converges for large θ to

he exponent of the Wigner function of the dominant ground
tate in the low temperature limit. Therefore our semiclassical
pproximation bridges the entire range, effectively anchored at
oth the very high and the very low temperatures. It remains to
erify computationally how well it behaves in the intermediate
emperature range, that is, intermediate thermal time, given that
hysically h̄ is a constant.
Having indulged in the metaphor of a thermal–dynamical sys-

em, we must reiterate that only strictly equilibrium properties
ave been here considered. Some of our results can be extricated
rom a previous paper on the complexified semiclassical approx-
mation of quantum work and its employment in the Jarzynski
quality [12]. But that was fundamentally a dynamical context,
ven if it may be considered in an adiabatic, quasi-statical limit.
o it is important to gain a full clear view of the rich underlying
ure statics. It should be pointed out that the present approx-
mations are insensitive to any small effect of tunnelling under
addle points on steady states, if the Hamiltonian has more than
ne minimum.
Digging deeper, one may even question the central assumption

hat the thermal equilibrium of the system can be independent
  
f the (in most cases) uncontrollable environment and their cou-
ling, when viewed in a full quantum scenario. After all, the
ystem Hamiltonian does not in general commute with the total
amiltonian, which includes the system, the environment and
heir coupling, so one is implicitly assuming the limit of weak
oupling. Indeed, the damping strength, characteristic of dissipa-
ive quantum evolution, will appear in the equilibrium state. In
he partition function, this dependence on the damping strength
s to be expected because it reflects the broadening of discrete
igenstates [4,37].
Notwithstanding the complexity of the general features of

uantum equilibrium and the processes by which it is attained,
t is of fundamental importance to be able to deal with ther-
al quantum systems on their own, described in their simplest

orm by the canonical density operator, that is, the quantum
ibbs ensemble. The thermal Wigner function presents this in a
ery convenient form, permitting the evaluation of the partition
unction and thermal averages as classical phase space integrals.
he semiclassical approximation to the thermal Wigner function
resented here bridges its extreme limits, while leading to simple
uantum corrections to the classical high temperature limit. We
ave shown that attempting further saddle point approximations
ould discard most of the information contained in the full semi-
lassical theory. On the other hand, it is revealed that full content
s preserved by a mere shift of the integration variable of a ther-
al average, which has the offshoot of dispensing with laborious
earches for trajectories that are indirectly defined. No restriction
o systems that satisfy the ordinary second order Schrödinger
quation impinges on the present semiclassical approximation for
he density operators of the canonical ensemble.
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ppendix A. Thermodynamic relations

The SC expectation of a smooth function of the Hamiltonian is
special case of (7.1), that is,

F (Ĥ)⟩β ≈
1
Zβ

∫
dX |det

∂x
∂X

|

1/2

exp
1
h̄
(S ih̄β (x(X))) F (H(x)),

(A.1)

or equivalently the SC approximation to the thermal Wigner
unction is inserted directly in (1.6) to provide a macroscopic
roperty of the system in complete thermal equilibrium with
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ts environment. In the case of the exact thermal average of the
amiltonian itself the relation

Ĥ⟩β = −
1
Zβ

dZβ
dβ

(A.2)

is widely employed, even though there is an implicit assumption
of an evolution of the temperature through the derivative, just
as with the Jarzynski equality discussed in Section 8. Then, the
trength of the coupling to the environment becomes relevant
nd indeed, one should restrict (A.2) to the limit of weak coupling
38]. In any case it is easily seen to hold formally, whereas it is
ore problematic within the full SC approximation.
Even though (A.2) is readily verified for a quadratic Hamilto-

ian (as it should, since here SC is exact), there are two major
ifficulties for general Hamiltonians. The first is that the ampli-
ude of the Wigner function depends on β , not just its action.
he amplitude cannot be taken out of the integral, since it also
epends on x, so that, on taking the derivative within the integral,
here is a second term beyond the derivative of the exponential.
he second problem is that, in taking the derivative of the expo-
ent Srh̄β (x(X)) itself, one obtains H(X) instead of H(x), together
ith the derivative of the integral in (6.9), which depends non-

inearly on β . Thus, the approximate satisfaction of the relation
A.2) depends on the counterbalancing of several terms and the
irect evaluation of (A.1) should be preferred to the RHS of (A.2).
Curiously, both approximations (3.21) and (3.23), which ac-

ount for the lowest quantum correction to the non-normalized
hermal Wigner function, accommodate a version of the relation
A.2). Indeed, separating the exponent in the former into its linear
nd nonlinear parts,

−βH (x) ≈
exp [−β1H(x)]

1 + (h̄β2Ωx/2)2/2

× exp −
(h̄β2Ωx/2)3

3
(x − γx) · Hx (x − γx)

h̄ Ωx β1=β2=β
,

(A.3)

one obtains a double-β partition function

Z(β1,β2) ≡

∫
dx

exp [−β1H(x)]
1 + (h̄β2Ωx/2)2/2

× exp −
(h̄β2Ωx/2)3

3
(x − γx) · Hx (x − γx)

h̄ Ωx
(A.4)

and thus a lopsided version of (A.2):

⟨Ĥ⟩β ≈ −
d log Z(β1,β2)

dβ1 β1=β2=β
. (A.5)

This same equality results from the isolation of the linear part
of the exponent in the metaplectic Wigner function, with the
lternative definition of a double-β partition function as

(β1,β2) ≡

∫
dx exp[−β1H(x)] exp[β2H(x − γx|Hx)] e−β2H (x − γx|Hx).

(A.6)

Either of these definitions of a double-β partition function will
again introduce a first quantum correction to further thermody-
namic relations. The definition of the heat capacity again implies
a dynamic (even if quasi-static) process of feeding in heat and
for finite coupling to the environment its definition is no longer
nique [38]. However, the assumption of weak coupling to the
nvironment allows to relate the heat capacity to the second
erivative of the partition function,

≡
d⟨Ĥ⟩β

=
−1 d⟨Ĥ⟩β
dT kBT 2 dβ
  
=
1

kBT 2

[(
1
Zβ

dZβ
dβ

2

−
1
Zβ

d2Zβ
dβ2

]
=

1
kBT 2

[
⟨Ĥ2

⟩β − ⟨Ĥ⟩
2
β

]
. (A.7)

he SC quantum correction at high temperatures is obtained as

≈
1

kBT 2

[(
1

Z(β1,β2)

dZ(β1,β2)
dβ1

2

−
1

Z(β1,β2)

d2Z(β1,β2)
dβ2

1

]
β1=β2=β

.

(A.8)

Again, at lower temperatures where one needs a full SC approx-
imation for the thermal Wigner function, the relation for the
pecific heat is not transparently reproduced. Nevertheless, the
ariance of the energy, given by the final equality in (A.7), is
asily obtainable through the general formula for expectations
7.1), whilst recalling that the Weyl representation H2(x) of Ĥ2

nly equals the classical function (H(x))2, within a correction of
rder h̄.

ppendix B. Comparing the semiclassical Wigner function
ith the exact one

.1. Expression of the Wigner function for a normal form Hamilto-
ian

To evaluate the prefactor of the Weyl symbol of exp (−βĤ),
ith Ĥ = F ( x

2

2 ), we use the expressions (4.5) and (5.8), leading
o

−βH (x (X)) ≃
e

i
θ
θF ′ X2

2 −sinh θF ′ X2
2

X2
2 −

θ
h̄ F

X2
2√

| det
(
∂x
∂X |

, (B.1)

here X is the starting point for the pair of arcs evolving forward
nd backwards in time, and x is the middle of the chord joining
he tips of that arc. In order to evaluate the above prefactor, we
ake the imaginary time version of the identity (4.3),

= cosh
θ

2
F ′

X2

2
X, (B.2)

nd we take its derivative with respect to X = (P,Q ). We obtain

∂x
∂X

= cosh
θ

2
F ′

X2

2
I +

θ

2
F ′′

X2

2
sinh

θ

2
F ′

X2

2
XX⊤,

(B.3)

which is of the form
∂x
∂X

=
C + SP2 SPQ
SQP C + SQ 2 , (B.4)

nd whose determinant is therefore

et
∂x
∂X

= C2
+ CS(P2

+ Q 2), (B.5)

o we have

et
∂x
∂X

= N
X2

2
(B.6)

ith

(R) = cosh2 θF ′ (R)
2

+ θRF ′′ (R) cosh
θF ′ (R)

2
sinh

θF ′ (R)
2

,

(B.7)
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nd the expression of exp(−βĤ) follows

−βH (x (X)) ≃
e
1
h̄ θF ′ X2

2 −sinh θF ′ X2
2

X2
2 −

θ
h̄ F X2

2

cosh
[
θ
2 F ′ X2

2

]√
1 + θ X2

2 F ′′ X2
2 tanh

[
θ
2 F

′ X2
2

] .
(B.8)

On the other hand, we can have an expression for the exact
Weyl symbol by using its decomposition in the basis of the
harmonic oscillator {|n⟩}, that is

e−βĤ
=

∞∑
n=0

e−βF h̄ n+ 1
2 |n⟩⟨n| (B.9)

with

x2

2
|n⟩ = h̄ n +

1
2

|n⟩, (B.10)

then, knowing that the Weyl symbol of |n⟩⟨n| is given by (2.2),
we have

e−βH (x) =

∞∑
n=0

e−
θ
h̄ F h̄ n+ 1

2
(−1)n

π h̄
e−

x2
h̄ Ln

(
2x2

h̄
. (B.11)

Now, to compare (B.8) with (B.11), we need to put the latter with
the same variable X, which requires to use expression (B.2),

e−βH (x (X)) =

∞∑
n=0

(−1)n

π h̄
e
−
θ
h̄ F h̄ n+ 1

2 −
1
h̄ X

2 cosh θ
2 F

′ X2
2

2

× Ln
2
h̄
X2 cosh

θ

2
F ′

X2

2

2
)
. (B.12)

B.2. Partition function

The partition function in the Weyl–Wigner representation is
given by

Tr e−βĤ
)

=
1

2π h̄

∫
e−βH (x) d2x. (B.13)

To benefit from the simple expression of the action used in this
article, we change the variable from the midpoint x of the chord
to the starting point of the arc X, related by (B.2), and obtain

Tr e−βĤ
)

=
1

2π h̄

∫
e−βH (x (X)) | det

∂x
∂X

| d2X. (B.14)

Then, noticing that the Jacobian of this change of variable is the
square of the inverse of the prefactor which appears in (B.1), the
semiclassical expression for e−βH (x (X)), we get Tr e−βĤ

≃ Zsc
with

Zsc =
1

2π h̄

∫
e

1
h̄ σθ

X2
2

√
| det

∂x
∂X

| d2X, (B.15)

with

σθ
X2

2
= θF ′

X2

2
− sinh θF ′

X2

2
X2

2
− θF

X2

2
.

(B.16)

Then, according to (B.6),

Zsc =
1
∫

e
1
h̄ σθ

X2
2

√
N

X2
d2X. (B.17)
2π h̄ 2

  
Fig. B.1. Ratio Zsc/Zq as a function of ϵ, for h̄ = 0.2 and ω = 0.5. The
emiclassical partition function Zsc deviates from the exact quantum one, Zq ,
n the homogeneous limit ϵ → 0. The ratio of the classical partition function Zc
o the latter is also shown.

pplying the change of variables, X =
√
2u cosφ,

√
2u sinφ , so

that u = X2/2, one has d2X = dudφ, and, integrating over φ, we
are left with a single integral

Zsc =
1
h̄

∫
∞

0
e

1
h̄ σθ (u)

√
N (u) du. (B.18)

n the other hand, the exact partition function is given by

q =

∞∑
n=0

e−βF h̄ n+ 1
2 =

∞∑
n=0

e−
θ
h̄ F h̄ n+ 1

2 . (B.19)

s a comparison, the classical partition function is

c =

∫
∞

0
e−

θ
h̄ F (y) dy. (B.20)

otice that Zsc contains the integrand of Zc , but multiplied by a
function, that is

Zsc =
1
h̄

∫
∞

0
e−

θ
h̄ F (u)e

1
h̄∆θ (u)

√
N (u) du, (B.21)

ith

θ (u) = u
[
θF ′ (u)− sinh

(
θF ′ (u)

)]
. (B.22)

.3. Some example

Let us take, as an example, a general nonhomogeneous Kerr
scillator, that is

(x) = ω
x2

2
+
ω2 x2

2

2

. (B.23)

his corresponds to

(u) = ωu +
ω2

u2 F ′(u) = ω + 2
ω2

u F ′′(u) = 2
ω2
, (B.24)
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o the semiclassical partition function writes

sc =

∫
∞

0
e

u
h̄

θω2u
−sinh θω+

2θω2u

cosh
θω

2
+
θω2u

×

√
1 +

2θω2u tanh θω
2 +

θω2u
du
h̄
. (B.25)

Fig. B.1 compares the semiclassical, the quantum and the classical
partition function as a function of ϵ. Obviously the semiclassical
pproximation loses accuracy for the purely Kerr Hamiltonian.
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