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Deformation of a graphene sheet: Interaction of fermions with phonons
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We construct an effective low-energy Hamiltonian, which describes fermions dwelling on a deformed honey-
comb lattice with dislocations and disclinations, and with arbitrary hopping parameters of the corresponding tight
binding model. Despite the presence of dislocations and disclinations, the tight binding Hamiltonian preserves
the connectivity number 3 at each lattice site. This construction is related to fermions with a two-dimensional
gravity. The effective theory has a local SU(2) gauge invariance of the group of rotations. We reformulate the
model by fermions interacting with the deformation as a fermion lattice model with a phonon field and calculate
the response of the fermion currents to the external deformation or phonon field. This indicates a Z2 anomaly.
This can be detected experimentally.
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Introduction. The physics of electronic properties of
strained [1–8] or lattice deformed graphene [9–15] is an
interesting problem, which reveals how concepts of two-
dimensional (2D) gravity can penetrate into the condensed
matter area. Usually, one argues that deformations and strains
give rise to the curvature of the surface of a 2D crystal, which
is equivalent to the presence of gravity in a two-dimensional
world [16–18]. Moreover, it was argued by Vozmediano
et al. [9–12] that besides the metric (or gravitational) field,
a U(1) gauge field emerges as well. The dynamics of elastic
deformations, dislocations, and disclinations of lattices was
studied and an effective action for phonons was derived in
Refs. [19,21]. In [19], a crumpling phase transition was an-
alyzed. The appearance of 2D gravity in similar problems
is not surprising. It is based on the paradigm that any rea-
sonable definition of physical observables on random lattices
should be covariant under the appointment of a coordinate
system. In other words, the system should be invariant un-
der reparametrization, which leads to the emergence of 2D
gravity. Moreover, any other degree of freedom, based on
distortions, disclinations, dislocations, and other lattice irreg-
ularities, should be governed by reparametrization invariance
and the fields describing them should have appropriate trans-
formation properties.

It is known from differential geometry [22] that each ran-
dom surface can be uniquely parametrized by a field of normal
vectors n̂(ξ̂ ), where ξ̂ are elements of a two-dimensional
coordinate system, and a three-component metric field gαβ ,
which can be combined into the so-called conformal factor
ρ(ξ̂ ). The surface normal vector has two degrees of freedom,
which together with ρ(ξ̂ ) give a dual version of three degrees
of freedom, �X (ξ̂ ), of the surface. The normal vector n̂(ξ̂ )
can be identified by the factor SU(2)/U(1) of 3D rotations
over O(2) rotations around normal. Therefore, one could ex-
pect that the fermions living on the surface should have the
reparametrization (2D gravity) and 3D rotational symmetries.

In Refs. [23,24], such theory of Dirac particles, induced from
the Clifford algebra in 3D, was constructed. The appearance
of SU(2) gauge symmetry in Refs. [23,24] essentially differs
from the approach developed in Refs. [9–15] where, besides
the gravity, only a U(1) gauge group is present.

We used the induced Dirac action in [25] to study the trans-
port properties of fermions on arbitrary surfaces. However,
no formal arguments were given there that the Dirac action
is linked to a hopping model on arbitrary bipartite lattices
embedded in three spatial dimensions. In this Letter, we will
argue that the physics of fermions hopping with arbitrary pa-
rameters on a deformed bipartite lattice leads indeed to a Dirac
theory [23,24], using an arbitrary lattice with connectivity
number 3 at all sites as an example. Considering deformations,
disclinations [see Fig. 1(a) as an example], and dislocations
[Fig. 1(b)] of a bipartite lattice as an elastic field of phonons,
we reduce the problem to the interaction of fermions with
phonons and define the corresponding Hamiltonian. We an-
alyze the emerging Z2 anomaly [34,35,36,39] of this model
and show how phonons may produce an anomalous current,
which, in principle, can be detected experimentally [26,27].

Model for random deformations of a graphene sheet. We
depart from an arbitrary deformation of the honeycomb lat-
tice. For our consideration, it is not important to have an exact
honeycomb lattice. We consider a deformed surface which
consists of sites with three attached links everywhere, while
facets are not necessarily hexagons (there can be all possible
n̂-polygons); see Fig. 2

as an example. At each vertex, we consider three indepen-
dent hopping parameters t j (ξ̂ ), j = 1, 2, 3 for the fermions
with the Hamiltonian

H =
∑

j,ξ̂

t j{ψ+
A [ �X (ξ̂ + μ̂ j )]ψB[ �X (ξ̂ )]

+ψ+
B [ �X (ξ̂α )]ψA[ �X (ξ̂ + μ̂ j )]}, (1)
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FIG. 1. (a) A disclination leading to the appearance of a pentagon
and (b) a dislocation created by a pentagon/heptagon pair.

where A and B refer to the natural partition of the honeycomb
lattice into sublattices and �X (ξ̂ ) is a 3D coordinate vector of
2D lattice site ξ̂ . Vector μ̂ j connects neighboring sites on the
parametric space and represents the difference of the coordi-
nates of neighboring sites in a patch. Because we are going
to consider arbitrarily deformed lattices, it is not possible
to introduce any unique 2D Cartesian coordinate system for
the entire lattice. As for the manifolds, we cover the whole
lattice by a system of patches Ua, in which each of them
envelops three neighboring sites. They may have an overlap
region Ua ∩ Ub covering neighboring links or a single site. An
example of such coverings U1,U2 is presented in Fig. 2. Inside
of each Ua, we have Cartesian coordinate systems which are
connected by differentiable functions, ξ̂ (a) = f (ab)[ξ̂ (b)]. This
reparametrization transformation defines the gluing rules of
the points in the overlap region. Because we are going to
formulate a reparametrization invariant theory, it will have a
well-defined Hamiltonian, which depends on points, but not
on the coordinate system. This also means that we will have
a 2D gravity theory. An important remark is in order here: In
place of the honeycomb lattice, other bipartite lattices can be
considered within this very formalism. The Hamiltonian (1)
can be generalized for this case using an arbitrary connectivity
l , i.e., the number of lattice links associated with lattice site ξ̂ ,
which is not necessarily 3 as for the honeycomb lattice. Then
the sum over j in Eq. (1) and in all the formulas below should
run from 1 to l . In the subsequent discussion, however, we will
focus on the honeycomb lattice.

It is clear that by two local rotations in 3D along the
hopping links, we can make triangles in each patch paral-
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FIG. 2. (a) An example of a random honeycomb lattice in 3D
with two patches U1 and U2, which cover neighboring vertices 1 and
2. The link (1,2) is common for two patches. (b) Three-dimensional
vertex �X (ξ̂ ) (black) and its projection on a flat space by rotation (red).
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FIG. 3. Flattened random honeycomb lattice (red) and its
reparametrization (deformation) to a regular one (red). Dotted black
lines emphasize patches U1,U2,U3, which cover vertexes 1, 2, 3
together with associated links.

lel to the (x, y) plain. Each of such links contains a pair
of fermions, �[ �X (ξ̂ )] = {ψA[ �X (ξ̂ )], ψB[ �X (ξ̂ )]}, in the corre-
sponding Ua. As pairs of complex numbers, ψA,B form the
space of spinor representations of the rotation group SU(2),
where group elements �a[ �X (ξ̂ )] act in each patch a. Gener-
ally, the rotations on different patches are different. But in
the overlap region, they are connected by rotations �ab =
�b[ �X (ξ̂ (b))]�−1

a [ �X (ξ̂ (a))], which gives rules of gluing of the
tangential vectors on different patches. For some types of
disclinations and dislocations, which locally break the (A,B)-
bipartite division of the lattice, i.e., when the (A,B)-notion
of the sites 1 and 2 of the common link of patches U1 and
U2 [see Fig. 1(a)] becomes incompatible, the gluing field
�1[ �X (ξ̂ (1))] will contain a 3D rotation eiπσ1/2 = iσ1, which
changes the helicity on the 2D patch and ensures the correct
gluing. Therefore, besides the reparametrization symmetry,
our Hamiltonian should also have a local gauge SU(2) sym-
metry. In Fig. 3, we visualize the flat projection of the random
lattice surface in 3D (marked red), which can be reparame-
terized as a regular honeycomb lattice (marked blue). Black
dotted lines emphasize the open disk patches of the Cartesian
coordinate systems.

After a rotation, the 3D lattice becomes a flat but deformed
lattice in 2D with connectivity 3, while our Hamiltonian (1) in
a 2D basis space becomes

H = 1

2

∑
ξ̂

3∑
j=1

t j� ′+(ξ̂ )�+[ �X (ξ̂ )]σ1

×[e−←−
∂ ·μ̂ jσ3 + eσ3μ̂ j ·−→∂ ]�[ �X (ξ̂ )]� ′(ξ̂ ), (2)

where left/right arrows above the partial derivative operators
point into the direction of their action and σ1,3 are Pauli
matrices. It is important to emphasize here that fermions in (1)
live in three dimensions and, after the rotation of A and B sub-
lattice points on a surface in 3D with coordinates �X (ξ̂ ), they
become �[ �X (ξ̂ )] = �[ �X (ξ̂ )]� ′(ξ̂ ) (below we omit the notion
prime in � ′). Any deformation of the surface from X1(ξ̂ ) to
X2(ξ̂ ) in Eq. (2) can be expressed by the transformation

�[ �X2(ξ̂ )] = �[ �X1(ξ̂ ), �X2(ξ̂ )]�[ �X1(ξ̂ )] (3)

L201104-2



DEFORMATION OF A GRAPHENE SHEET: INTERACTION … PHYSICAL REVIEW B 103, L201104 (2021)

of the fermionic fields, with

�[ �X1(ξ̂ ), �X2(ξ̂ )] = �[ �X2(ξ̂ )]�−1[ �X1(ξ̂ )]. (4)

This demonstrates the presence of hidden SU(2) invariance of
the Hamiltonian (1). In general, a conditional expression for
the existence of a pair of Dirac nodes on such random lattice
reads

3∑
j=1

t jeiμ̂ j · �K = 0, (5)

with the local, patch-dependent momentum �K . In the
Supplemental Material [20], we demonstrate, by an explicit
calculation, the existence of �K for a randomly deformed
honeycomb lattice. The analysis presented there can also be
extended to larger connectivity.

The local definition (5) can be approximated by assuming
only small deformations. Then we could expand around the
�K and �K ′ points of the regular honeycomb lattice [9–15]. In
the following, we will not employ such an approximation,
but expand the fermion field in low-energy modes around the
nodes defined in Eq. (5). Then we shift the derivatives in
the exponents in (2) by θ j = μ̂ j · �K and replace μ̂ j · −→

∂ →
iθ j + μ̂ j · −→

∂ and −μ̂ j · ←−
∂ → iθ j − μ̂ j · ←−

∂ . By doing this
and taking into account that the vectors μ̂ j are proportional
to the minimal length scale of the lattice ε, we can expand

the translation operators e−←−
∂ ·μ̂ j and e

−→
∂ ·μ̂ j and keep only the

linear terms.
In order to expand the exponent, one should first decouple

in the exponential term θ j from the derivatives by using the
Campbell-Hausdorff formula [22]. Then a commutator term
will appear. However, the commutator terms from the two ex-
ponents cancel each other. Eventually, by taking into account
that the constant term in this expansion is zero due to Eq. (5),
the low-energy Hamiltonian becomes

H = i

2

∑
j,ξ̂

�+(ξ̂ )�+[ �X (ξ̂ )]t j (cos θ jσ2 − sin θ jσ1)

×[μ̂ j · −→
∂ − ←−

∂ · μ̂ j]�[ �X (ξ̂ )]�(ξ̂ ), (6)

which depends on the nodes of the randomly deformed hon-
eycomb lattice θ j . The θ j-dependent terms can be cast into the
new parameters

εê2 =
∑

j

t jμ̂ j cos θ j,

εê1 = −
∑

j

t jμ̂ j sin θ j, (7)

where we can consider elements of êa, a = 1, 2 as tetrads of
2D gravity. Then the fermionic Hamiltonian reads

H = iε

2

∑
ξ̂

e�+(ξ̂ )�+[ �X (ξ̂ )]σ α

×(−→
∂ α − ←−

∂ α

)
�[ �X (ξ̂ )]�(ξ̂ ), (8)

where e is the determinant of the tetrads element eαa and ε

is the minimal length scale of the lattice and σ α = eαaσa.
By using an ambiguity of the coordinate vectors μ̂ j , one can

associate tetrads eαa with the induced metric of the surface,
gαβ = ∂α �X∂β �X . Namely, we can fix the coordinate vectors μ̂ j
in such a way that

∂α �X∂β �X =
∑

a=1,2

ea
αea

β , (9)

where ea
α = [eαa]−1, defined in Eq. (7).

The Hamiltonian (8) coincides with the Hamiltonian of
the Dirac theory on 2D random surfaces induced from 3D
flat Dirac theory with an Euclidean metric defined in Refs.
[23,24]. It was shown that by defining the induced gamma
matrices as γ̂α = ∂α �X �γ (�γ are 3D Dirac γ -matrices) and a 3D
rotation, one arrives at the simpler Hamiltonian

H = i

2

∫
d ξ̂

√
g�+(ξ̂ )γ̂ α

(−→
∂ α − ←−

∂ α

)
�(ξ̂ ), (10)

where g = det[gαβ]. This expression shows that besides 2D
gravity, we also have local 3D rotations, which induce a non-
Abelian SU(2) gauge field. Transforming the left differential
in (10) to the right one, we obtain

H = i
∫

d ξ̂
√

g�+(ξ̂ )

(
γ̂ α∂α + 1

2
∇α γ̂ α

)
�(ξ̂ ), (11)

where ∇α is a covariant derivative defined by Christoffel sym-
bols [22]. The term ∇α γ̂ α = √

ghα
α n̂ is connected with the

second quadratic form hαβ = �n∇α∂β �X , where �n = √
g∂1 �X ×

∂2 �X is the vector normal to the surface at ξ̂ . In Ref. [25],
Hamiltonian (11) was used to calculate the optical conduc-
tivity of the fermions on a random surface.

Phonon-fermion interaction. Our goal is to understand how
the Hamiltonian (11) on a deformed lattice can be related to
static phonons, interacting with fermions on a graphene sheet.
The phonon field is the field of elastic deformations of the
graphene sheet, �X (ξ̂ ) [11,12,28]. On a flat regular honeycomb
lattice background, we write

�X (ξ̂ ) = ξ a�aa + �u(ξ̂ ), (12)

where �aa, (a = 1, 2) are two basic vectors on a flat plane
and �u(ξ̂ ) is the phonon field. The differential operator
D = γ̂ α∂α + 1

2∇α γ̂ α , which appears between fermionic fields
in the Hamiltonian (11), reads, in lowest order of the
phonon field,

√
g D = iT σa∂a + iT j

a σ j∂a + σaAa + σ3M. (13)

Here the coefficient T reads

T = 1 + uaa + 1

2

(
u3

a

)2 + 1

2

(
ua

aub
b − ua

bub
a

) + O(u3), (14)

and the middle term with the gradient deformation tensor is

T j
a = (

1 + ub
b

)
∂au j − u j

b

(
ub

a + ua
b

) + O(u3), (15)

while
√

g = 1 + uaa.
The covariant derivatives of Eq. (13) coincide with those

proposed in the model of electron-phonon interaction in Refs.
[29,30]. Here and below, the repeated indices denote summa-
tions over a, b = 1, 2 and i, j = 1, 2, 3, respectively.

Formally, M can be considered as a mass term, while
Aa, a = 1, 2 are components of a U(1) gauge field that

L201104-3



A. SEDRAKYAN, A. SINNER, AND K. ZIEGLER PHYSICAL REVIEW B 103, L201104 (2021)

FIG. 4. One-loop Feynman diagram for 〈 j3 j3〉 correlator.

emerged due to the deformations of the honeycomb lattice.
These quantities read, up to second order in the field u,

M = 1
2

[
∂2

a u3 + ∂aua∂2
a u3 − ∂2

a ubu3
b

]
, (16)

Aa = − 1
2

[
∂au3∂2

b u3 + ∂2
b uσ (∂auσ + ∂σ ua)

]
. (17)

One recognizes that the lowest linear order in the phonon field
u contributes only to the mass term, while the emerging U(1)
gauge field appears in quadratic order of u.

The mass term Mσ3 in Eq. (13) can be interpreted as a
current j3 that couples to the fermions. In order to get an effec-
tive functional integral for the phonon field, we integrate over
the fermion field. Adopting the dimensional regularization
scheme, one obtains, in one-loop order (cf. Fig. 4 [31–33]),

SN (M ) = 1

8

∫
d3k

(2π )3

√
k2

0 + k2 MkM−k . (18)

In deriving this expression, one has to keep in mind that
σ3 does not commute with the fermionic propagator; cf. the
Supplemental Material [20]. Plugging the Fourier transformed
M from (16) into (18), we get the contribution to the phonon
action induced by the fermion-phonon interaction. The lead-
ing order in this action is quadratic in phonon field u coming
from the linear term in (16). Another contribution to the ef-
fective action of phonons from quantum fluctuations comes
from the anomalous current-current correlators 〈 ja jb〉, corre-
sponding to the remaining two spacelike components of the
gauge field Aa=1,2. According to the seminal works of Redlich
[31,34], Semenoff [35], and Jackiw [36], the effective action
reads

SA(A) = −isgn(m)εab

∫
dτd2x Aa∂τ Ab, (19)

where sgn(m) refers to an infinitesimally small, bare mass
parameter m, which was introduced to regularize the infrared
divergence and sent to zero after the integration. Plugging (17)
into SA(A), we will get another term in the effective action
of phonons, which is quartic in u, coming from the leading

quadratic order of Aa. This term is generated by a chiral Z2

anomaly. The variation of the action given by Eq. (19) with
respect to Aa creates an anomalous current,

ja = −isgn(m)εab∂τ Ab. (20)

The sign (or Z2) ambiguity of the mass reflects the fact that
the mass parameter must not necessarily be positive. As is
always the case with anomalies in perturbative approaches,
the anomalous current given by Eq. (20) appears because the
regulator violates the chiral symmetry of the model given
by Eq. (11) explicitly. Due to the finite bandwidth of our
lattice model, there is no need for an ultraviolet regularization
here. In this case, the chiral symmetry is preserved and the
anomalous currents cancel each other due to fermion species
doubling [37]. However, if the dynamics of the phonons is
included in the model, the breaking of the chiral symmetry
can occur spontaneously, provided that the phonon-phonon
interaction strength exceeds a certain critical value. Then there
will be no cancellations between the �K and �K ′ points. This
mechanism was recently investigated by two of us in Refs.
[29,30,38].

Conclusions. In this Letter, we construct a low-energy
theory of fermions interacting with deformations of the hon-
eycomb lattice. In contrast to similar studies reported recently
in Refs. [9–15], where fermions are bound to the flat but dis-
torted sheets, we investigate the case when the effective gauge
fields are induced by embedding of a two-dimensional surface
into a three-dimensional Euclidean space [23,24]. In addition
to the U(1) gauge fields and interaction with 2D gravity of the
former approaches, our effective theory reveals a non-Abelian
SU(2) gauge field. We reduce the 2D gravity (metric) field to
deformations of the 3D lattice, which forms three-dimensional
phononic fields. The calculation of a Z2 anomaly links the
current of the fermions with phononic field strength, which,
in principle, can be detected experimentally. It remains for the
future to extend the formalism presented here to the curved
spaces. The ultimate goal may be to establish an effective
low-energy field theory of phonons in the spirit of effective
Liouville actions [16,40] accompanied by induced topological
(Chern-Simons or Hopf) terms [23,24]. To an extent, a number
of intermediate ideas in terms of mathematical modeling and
its effect on transport were successfully realized in [25].
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