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Abstract

We estimate future changes in precipitation over the entire Indus basin of

Pakistan with a particular focus on the high-elevation upper indus basin

(UIB). A statistical downscaling approach is used. We consider the spatial vari-

ability of observed precipitation on seasonal scales. Large-scale atmospheric

patterns are employed for general circulation model (GCM) selection and sub-

sequent projections. Firstly, we identify the precipitation governing predictors

from ERA-Interim reanalysis. We further quantify the robustness of governing

predictors against other reanalysis datasets (ERA5 and NCEP-NCAR-II) to

assess future projections' fidelity. We perform S-mode Principal Component

Analysis on predictor fields and compare loading patterns using Taylor dia-

grams to assess predictor correspondence between different reanalysis. Simi-

larly, we compare ERA-Interim variables with model-simulated fields during

the historical period to select better performing GCMs and quantify model

uncertainty. The regional suitability of available GCMs in our study is also

demonstrated. Ensemble (median) changes in regional precipitation derived

through atmospheric fields show an elevation-dependent response of the UIB

at representative concentration pathway (RCP) scenarios RCP4.5 and RCP8.5,

where increased precipitation will mostly fall at high elevations. However, the

positive signals are more distinct during the winter and monsoon seasons, par-

ticularly over the central Karakoram. Meanwhile, a decrease in precipitation is

robust during the pre-monsoon period, particularly over the northwestern

regions. These signals intensify and become more robust during 2071–2100
under RCP8.5, and the better-performing models and signal-to-noise ratios fur-

ther support this finding. The spatial patterns of projected changes suggest

stronger (weaker) and further northward penetrating westerly systems during

the winter (pre-monsoon) season. Increased warming will also strengthen

monsoon circulations, and these will penetrate further into the northwestern

and trans-Himalayan regions. The Lower Indus shows a mixed seasonal

response that is more uncertain. The present analysis provides an alternative
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perspective to the ongoing research of assessing climate responses in complex

regions.

KEYWORD S

atmospheric patterns, CMIP5, downscaling, model uncertainty, precipitation, reference
uncertainty

1 | INTRODUCTION

The Indus River system originates within the massifs of
the Hindukush, Karakoram, and Himalayans (HKH),
which contains the largest non-polar cryosphere
(e.g., Bocchiola et al., 2011; Soncini et al., 2015). The
River system provides water, renewable energy, food
security, and other ecological services to sustain millions
of downstream population (Archer and Fowler, 2004).
Complex processes involving an interplay of synoptic-
scale circulations (i.e., the western disturbances and
Indian summer monsoon) with HKH topography largely
govern precipitation within the upper indus basin (UIB)
that varies in space and time, and with elevation
(e.g., Hewitt, 2005; Bolch et al., 2012). In contrast, the
Lower Indus (LI) has an arid to semi-arid climate and
depends heavily upon the meltwater from the UIB
(Immerzeel et al., 2015).

Projected global warming and changes in large-scale
circulations will impact the Indus hydrology by altering
input precipitation and glacier contributions (e.g., De
Souza et al., 2015). An increase in water demand due to
rapidly growing population (UN, 2019) and future envi-
ronmental conditions will also disrupt the hydrological
balance at the basin-level (e.g., Lutz et al., 2016b). There-
fore, a pragmatic assessment of the basin's climate
response towards projected global warming is essential to
support integrated water management.

Precipitation projections are fundamental to assess
future water availability, cryosphere stability, and irriga-
tion demand across the basin. Presently, such projections
can only be derived by downscaling, either statistically or
dynamically, the output of general circulation models
(GCMs, e.g., Wilby et al., 2000). Both downscaling
methods have been adopted within the UIB to estimate
future precipitation (e.g., Akhtar et al., 2008; Lutz
et al., 2016b; Khan and Koch, 2018). Nonetheless, uncer-
tainty about projected precipitation (signal strength and
direction, seasonality, spatial patterns, temporal evolu-
tion, and cryosphere stability) remains high (e.g., Gebre
and Ludwig, 2014; Ali et al., 2015; Khan et al., 2015;
Hasson, 2016; Su et al., 2016). Such uncertain scientific
feedback can undermine the policy response to minimize
the projected vulnerability of a large population.

Most uncertainty in downscaling studies stems from the
choice of models (e.g., Heo et al., 2014), how precipitation is
derived from these models (Pomee et al., 2020), and adopted
observations (e.g., Palazzi et al., 2013). For example, the lat-
est GCMs in the Coupled Model Intercomparison Project
Phase 5-CMIP5 (Taylor et al., 2012) still show major limita-
tions in representing critical dynamic and thermodynamic
processes over this complex region (e.g., Sperber et al., 2013;
Ashfaq et al., 2017). Regional Climate Models (RCMs) often
provide improved simulations, but the evaluation of the
CORDEX-SA experiments (e.g., Kulkarni et al., 2013;
Mishra, 2015; Hasson et al., 2019) has shown only limited
success over this region. Therefore, using an arbitrarily
selected single model to simulate precipitation over topo-
graphically heterogeneous UIB (e.g., Akhtar et al., 2008;
Mahmood and Babel, 2012; Khan et al., 2015) may lack
fidelity for regional adaptations.

Model ensembles encompassing a broader uncer-
tainty (e.g., Gleckler et al., 2008; Sperber et al., 2013) are
more useful for such complex regions. Nevertheless, the
selection of representative models is a challenge due to
rapidly growing climate models. For example, the
CMIP3 (Meehl et al., 2007) contains 25 GCMs, whereas
more than 60 GCMs are available in the CMIP5 archive.
Different model ranking metrics are available for
ensemble selections. For instance, the past performance
criterion identifies models demonstrating better skills in
reproducing past climate (e.g., Christensen et al., 2010;
Biemans et al., 2013). The so-called envelope approach
only considers the range of projected changes in the
variable(s) of interest during ensemble selections
(e.g., Sorg et al., 2014; Warszawski et al., 2014). Some-
times both approaches are combined to select models
that better simulate the observations and encompass
broader future evolutions (e.g., Giorgi and Mearns, 2002;
McSweeney et al., 2015). Issues like subjective decisions
during the model rankings, the choice and effectiveness of
performance metrics, and inter-model similarities can still
induce uncertainty in these ensembles (e.g., Knutti
et al., 2017). Therefore, a thoughtful model selection to
better serve the intended objectives is still an ongoing
research challenge.

Within the UIB, some studies used ensemble
approaches by either using the past performance
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(e.g., Hasson, 2016) or a combination of future spread
and past simulations (e.g., Immerzeel et al., 2013; Lutz et
al., 2016a; Khan and Koch, 2018). However, using precip-
itation for model ranking and subsequent projections
remains common, which may induce significant uncer-
tainties since even the latest GCMs do not reliably simu-
late precipitation due to complex generating mechanisms
and high spatiotemporal variability (Trigo and
Palutikof, 2001; Mueller and Seneviratne, 2014). Such
model deficiencies further manifest over high-mountain
regions like the UIB, where orography causes additional
precipitation variability. Without long-term, reliable, and
consistent observations to account for regional orography
of the UIB (e.g., Immerzeel et al., 2015; Pomee
et al., 2020), even the bias-corrected model precipitation
may lack reliability.

While additional data availability is still an ongoing
issue, the methodological considerations can reduce
some uncertainties. For instance, using large-scale atmo-
spheric fields instead of precipitation to develop down-
scaling models offers one such promising alternative. The
latest GCMs show better skills in simulating these pat-
terns than raw precipitation output (e.g., Kaspar-Ott
et al., 2019). We used such atmospheric variables for pre-
cipitation analysis over the entire Indus basin by focusing
on the UIB. Firstly, we identify precipitation-governing
variables from ERA-Interim reanalysis within a robust
statistical downscaling framework by accounting for sea-
sonality and spatial variability of the observed precipita-
tion. For GCM ranking, we quantify the correspondence
between ERA-Interim predictors and corresponding
CMIP5- simulations during the historical period using
Taylor diagrams (Taylor, 2001). During GCM selection,
we also consider predictor influence on precipitation by
weighing the GCM predictors with downscaling models'
regression coefficients. The sub-regional approach further
helps to evaluate model performance over multiple
regions.

Given the regional complexity, we also evaluate ERA-
Interim predictors' robustness against two additional
reanalysis datasets (NCEP-NCAR-II and ERA5) to quan-
tify the reference uncertainty. Finally, we use governing
predictors to derive ensemble precipitation changes over
the study basin for selected radiative-forcing scenarios.
We also evaluate the robustness of the change signals by
using signal-to-noise-ratio (SNR). The extension of analy-
sis further to the LI helps to analyse the supply–demand
perspective for water management at the basin-scale.

In summary, we consider predictor (multiple
reanalyses), predictand (homogeneous and long time-
series stations), and GCM (ensemble) levels to provide a
more realistic precipitation assessment for the Indus
basin during the 21st century. To our knowledge, such

fine-scale analysis has never been performed in this
region, and hence a different simulation perspective is
provided. Our methodology can also facilitate climate
assessment studies elsewhere.

2 | STUDY AREA

The present study focuses on the Indus basin of Pakistan,
covering an area of 1.31 million km2 (FAO, 2011), which
ultimately drains into the Arabian Sea (Figure 1a).
Although the Indus River system originating within high-
mountains of the HKH region also shares its UIB
(4.03 × 105 km2, Dahri et al., 2018) with China, India, and
Afghanistan (Figure 1b), we could not include these
regions in our analysis due to constraints on updated data
availability. The Indian summer monsoon, western distur-
bances, and the Tibetan anticyclone (e.g., Wake, 1989)
largely govern the basin-wide precipitation that varies sig-
nificantly over the UIB. Besides, moisture recycling within
the Indian subcontinent and HKH region also plays a sig-
nificant role in annual precipitation (e.g., Curio and
Scherer, 2016). The LI (0.72 million km2) depends heavily
on seasonal water supplies from the UIB.

3 | DATA AND METHODOLOGY

This study builds on previous work (Pomee et al., 2020),
where predictor-predictand relationships are used to
model observed precipitation at sub-regional scales over
the study basin. The present study concentrates on quan-
tifying reference uncertainties, GCM ranking, and precip-
itation downscaling results under future climate change
constraints using previously identified predictors and sea-
sonal precipitation characterization of the basin. In the
following sections, we provide a brief description of
the data, the adapted regionalization scheme, and the
model development process to give the necessary back-
ground. More detailed information can be found in
Pomee et al. (2020).

3.1 | Precipitation: data and
regionalization

We use monthly precipitation time series of 58 meteoro-
logical stations located across the study basin (Figure 1b).
These stations provide historical (35 stations, 1979–2015)
and relatively short-term data (23 stations, 1994–2015)
over the lower-elevation and high-elevation (HA) regions
of the UIB, respectively. The HA stations (average
data length of 17 years) have considerably expanded
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spatial-altitudinal coverage within the UIB to provide
valuable insights about regional orography that governs
the basin hydrology. Most study stations are located in

the UIB to account for topographic complexity and its
significance for Indus flows. More information about the
study stations is available in Table S1.

FIGURE 1 (a) The

transboundary Indus River basin

and demarcation of the study

area, where the shading

differentiates between the Upper

Indus Basin and Lower Indus

regions. (b) The locations of the

meteorological stations

(numbered) used in our study.

The circles represent the long

time series (1979–2015), and
triangles show the recent high-

altitude stations with shorter

series (1994–2015). Note that, the
shading scheme in (b) represents

the altitudinal variations

(elevations above mean sea level)

within the study basin. Table S1

of the Supporting Information

provides more information about

these stations. Refer to the online

version for information on the

shading schemes adopted in the

figure [Colour figure can be

viewed at wileyonlinelibrary.com]
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Based on observations, we identify three major pre-
cipitation seasons for further analysis. These include the
winter season-WS (DJFM), pre-monsoon-PMS (AMJ),
and monsoon season-MS (JAS), respectively. We group
the time series of study stations into these seasons and
check data for completeness (Moberg et al., 2006). We
use four different statistical procedures to test homogene-
ity of the time series after Wijngaard et al. (2003).

We employ K-means cluster analysis on all 58 stations
to identify precipitation regions with similar covariance
using Spearman correlation as a distance measure
(Wilks, 2006). We set the objective function during clus-
tering to maximize (minimize) correlation within (across)
the regions to define sharp regional boundaries. Consid-
ering more uncertainty over the HA, we perform another
regionalization experiment covering only elevated parts
of the UIB. Our regionalization schemes identify, on
average, four precipitation clusters within the UIB,
accounting for the high spatial variability. These regions
represent precipitation dynamics in the southern Himala-
yans, trans-Himalayans (including the Karakoram), and
northwestern parts of the UIB during each season.
Besides, on average, two regions describe LI precipitation
variability. Regional representative (RR) stations for each
precipitation cluster are selected through multiple con-
siderations (including homogeneity) and serve as
predictands. The seasonal precipitation regionalizations
for both experiments are shown in Figures 2 and 3.

3.2 | Predictors: data and principal
component analysis (PCA)

We use variables from ERA-Interim reanalysis (Dee
et al., 2011) at different pressure levels to identify major
dynamic and thermodynamic drivers of regional precipi-
tation. We consider a larger domain for circulation-
dynamic variables (10–100�E, 10–60�N, spatial resolution
2� × 2�) compared to the domain for thermodynamic
fields (64–80�E, 22–40�N) to account for large-scale
dynamical and more localized thermodynamic influences
on precipitation. We did not use ERA5, as its data was
not publically available at the beginning of our research
during early 2016.

We perform S-mode Varimax-rotated Principal Com-
ponent Analysis (S-mode PCA) on each predictor field for
dimension reduction (e.g., Preisendorfer, 1988). Follow-
ing the modified dominance criterion (Philipp, 2003)
with some additional constraints (Pomee et al., 2020), we
retain a maximum of 20 PCs to explain the predictor vari-
ance adequately. The resulting PC scores serve as predic-
tor time series, and corresponding PC loadings define the
centres of predictor variations.

3.3 | Generalized linear models and
statistical downscaling framework

We adopt a generalized linear model (GLM)
framework (Mc Cullagh and Nelder, 1989) to model
predictor-predictand relationships within a robust cross-
validation setting. For those predictand cases containing
exact zeros in their time series, Tweedie exponential dis-
persion models (e.g., Dunn, 2004) and otherwise GLM
gamma models are used. We use mean squared error
skills scores (MSESS) as a performance criterion
(Wilks, 2006) and consider multicollinearity among pre-
dictors to identify predictor combinations that best
resolve the observed precipitation. The information about
identified governing predictors and the regression
models' statistical performance is provided in Tables 1,
S2, and S3, respectively. Appendix S1 provides details of
the downscaling framework after Pomee et al. (2020).

3.4 | GCMs: data and precipitation
downscaling

We first consider all CMIP5 GCMs (Taylor et al., 2012).
However, the availability of governing predictors
(Table 1) in the historical period restricts this number to
29. Due to high mountains in our study domain, only
eight of those 29 GCMs could provide complete spatial
coverage of the required predictors. Many GCMs do not
provide spatially complete lower-tropospheric predictors
over the high mountains due to the intersection of pres-
sure coordinates with mountain elevations. These spa-
tial inconsistencies may emerge as many modelling
centres avoid employing any vertical interpolation
(or extrapolation) algorithms over the mountain regions
when transforming data from the model to pressure
levels. These data gaps are too large to be effectively
filled with an interpolation scheme at the end-user level
and restrict the computation of spatially consistent his-
torical and future predictor PCAs. Therefore, we could
only analyse the output of eight models during the his-
torical (1976–2005) and two future time-periods, cover-
ing the mid (2041–2070) and end-of-the 21st century
(2071–2100) for precipitation downscaling. We could
not consider model independence (e.g., Sanderson and
Wehner, 2017) in detail due to the smaller ensemble but
investigated its influence over a sample region in
Section 4.3.

We consider RCP4.5 and RCP8.5 scenarios for precip-
itation projections. RCP4.5 portrays a future where tech-
nological advancements will help stabilizing greenhouse-
gas emissions after 2,100. Conversely, RCP8.5 depicts a
populous world without abatement efforts where
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FIGURE 2 Precipitation regionalization of the entire Indus Basin of Pakistan using K-means cluster analysis on seasonal scales. Different

colours represent the identified regions. The circles with the same colour show similar precipitation variability and thus belong to one precipitation

region. The numbered circles indicate the location of regional representative (RR) stations of the respective precipitation regions. Triangles

represent those stations that could not be clustered to any of the identified precipitation regions. The WS (a), PMS (b), and MS (c) regionalization.

Source: Adapted from Pomee et al. (2020) [Colour figure can be viewed at wileyonlinelibrary.com]
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radiative forcing reaches the maximum of 8.5 watts/m2

in 2100 (Van Vuuren et al., 2011). These RCPs cover a
plausible range of radiative forcing (Sanford et al., 2014)
to support adaptations and comparison with previous
studies. We only consider the first realization (‘r1i1p1’)
of these GCMs during the historical and future periods.
Table 2 provides information on the CMIP5 models used
in our study.

Before downscaling, the GCM data is conservatively
re-gridded (2� × 2�) to match the adopted ERA-Interim
resolution. The modelled predictors are standardized over
the historical and future time-slices (separately for each
scenario) and then projected onto the corresponding
loading patterns of the ERA-Interim variables to generate
new predictor time series (more details on this method
are available in Von Storch and Zwiers, 1999). These new
predictor time series are used in the regression models (-
Tables S2 and S3) to derive downscaled historical and
projected precipitation totals. The difference between
downscaled precipitation during the historical and two

future time-slices (separately for each RCP and time
slice) is used to compute median precipitation changes
across the basin.

We further evaluate the robustness of projected change
signals in light of observational uncertainty by computing
a signal-to-noise ratio (SNR). The ratio uses median pre-
cipitation changes (signal) simulated by the individual
models and their ensembles and corresponding standard
deviations of the historical period (noise). SNR >1 indi-
cates that the change signal exceeds the internal climate
variability.

3.5 | GCM ranking process

A stepwise procedure is used to rank the GCMs according
to their ability to simulate precipitation-governing vari-
ables of the ERA-Interim reanalysis during the historical
period. ERA-Interim reanalysis provides simulations
from 1979 onwards; hence, we could only compare the

FIGURE 3 Same as Figure 2 but showing the seasonal precipitation regions identified under the HA-UIB regionalization experiment.

Source: Adapted from Pomee et al. (2020) [Colour figure can be viewed at wileyonlinelibrary.com]
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reference-model predictors during the overlapping histor-
ical period (1979–2005).

(I) Initially, S-mode PCA is performed (Section 3.2)
for every governing predictor (Table 1) of each individual
GCMs to extract the same number of PCs as from ERA-
Interim.

(II) Subsequently, the model PC loadings are com-
pared with corresponding ERA-Interim loadings (sepa-
rately for each GCM) using Taylor diagrams. A simple
performance score (PS) derived using two of the three
summary statistics of Taylor diagrams is computed to

quantify the predictor correspondence. Mathematically,
the PS is:

PS= CRj j− jNSD−1 j ð1Þ

where PS = performance score. For a perfect predictor
agreement, PS = 1. CR = pattern correlation between the
reference (ERA-Interim) and model (GCM) loadings. For
a perfect phase match, CR = 1. NSD = normalized ratio of
variance (standard deviation of the reference and model
loadings). Ideally, the NSD should also take the value 1.

TABLE 1 The predictors frequency (in %) in final seasonal precipitation models for different sub-regions of Pakistan's Indus Basin

Predictors (1) WS (%) (2) PMS (%) (3) MS (%) (4) Basin-wide seasonal average (%) (5)

va200 20.0 19.4 32.5 24

ua200 0.0 0.0 2.5 0.8

zg200 0.0 0.0 0.0 0.0

zg500 0.0 0.0 0.0 0.0

zg700 20.0 0.0 0.0 6.7

hus700 0.0 0.0 2.5 0.8

hur 700 0.0 9.7 0.0 3.2

hur1000 8.6 16.1 2.5 9.1

hus1000 5.7 0.0 0.0 1.9

va500 0.0 0.0 2.5 0.8

ua500 0.0 0.0 2.5 0.8

ua700 14.3 0.0 0.0 4.8

va700 0.0 22.6 0.0 7.5

va850 31.4 12.9 52.5 32.3

ua850 0.0 19.4 0.0 6.5

psl 0.0 0.0 2.5 0.8

Total 100 100 100 100

Note: Column 1 provides the list of large-scale predictors used in this study where zg, va, ua, hur, hus, and psl denote geopotential heights, meridional wind,
zonal wind, relative humidity, specific humidity and, mean sea level pressure fields, respectively. The number after each predictor reflects the atmospheric
level (pressure level in hPa). Columns 2–4 represent the seasonal frequencies of different predictors chosen to resolve observed precipitation dynamics over the

study basin. The last column shows the average predictor frequencies over different seasons. Source: Pomee et al. (2020).

TABLE 2 The CMIPP5-GCMs used for precipitation analysis in this study

No. Model ID Horizontal resolution (lon. × lat.) in degrees Modelling centre Key reference

1 CMCC-CMS 1.875 × 1.875 CMCC Davini et al. (2013)

2 CMCC-CM 0.75 × 0.75 CMCC Scoccimarro et al. (2011)

3 CNRM-CM5 1.40625 × 1.40625 CNRM-CERFACS Voldoire et al. (2013)

4 Can-ESM2 2.8125 × 2.8125 CCCMA Arora et al. (2011)

5 MPI-ESM-LR 1.875 × 1.875 MPI-M Giorgetta et al. (2013)

6 MPI-ESM-MR 1.875 × 1.875 MPI-M Giorgetta et al. (2013)

7 Nor-ESM-ME 2.5 × 1.9 NCC Bentsen et al. (2013)

8 Nor-ESM-M 2.5 × 1.9 NCC Bentsen et al. (2013)
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Under ideal conditions, the PS will attain its
highest unit value due to maximization of the phase
correspondence (i.e., CR = 1) and the same magnitude
of predictor spread (i.e., the term NSD − 1 becomes
zero) between the reference and model simulations.
Similarly, a smaller PS value will show a weaker pre-
dictor correspondence. The PS magnitude will also
intuitively influence the third summary statistics
(i.e., standardized RMSE), where its maximum value
(PS = 1) will ensure zero error. Conversely, the smaller
values (PS <1) will reflect higher errors, though not
following a clear linear trend due to the typical rela-
tionship among these three summary statistics (see
Taylor, 2001). Thus, the PS contains useful informa-
tion about the strength of correspondence between the
reference and model-simulated fields and can be used
to identify the best-matching pairs for every governing
predictor.

(III) We draw two separate sets of Taylor diagrams for
each precipitation region and season. In the first set of dia-
grams, a given reference PC is compared with all modelled
PCs (separately for each GCM) to compute the
corresponding PS. The reference-model pair demonstrating
the maximum PS among all PCs of a GCM is selected as
the best GCM-PC for that particular reference. Thus, each
GCM has one best corresponding PC for a given reference.

This process is repeated for all other PCs and predictors
of the regression models. Subsequently, all best-matching
(individual) PCs of different predictors are grouped into the
second set of Taylor diagrams (separately for each GCM) to
assess the ability of individual GCMs in representing ERA-
Interim precipitation-governing predictors over a region.
The summary statistics of the second Taylor diagrams are
used to compute the average unweighted PS for each GCM.
The PS is termed unweighted due to equal PC weighting in
the computation.

(IV) Given that each PC has a different influence in a
regression model, we further adopted (absolute) regres-
sion coefficients of the PCs as weights and computed the
weighted PS. Thus, a model with the highest (lowest)
weighted PS score can be identified as the best (worst)
GCM due to its improved (poor) simulations for more
important predictors.

This process (Step I–IV) is repeated for all sub-regions
to identify the best regional GCM in different seasons.

(V) Finally, we consider GCM performance over
multiple regions to identify models that show superior
simulations over the whole spatial scales of the UIB and
LI, respectively. We prefer a GCM demonstrating better
simulations over multiple sub-regions. Spatial consider-
ation is important since an outlier may strongly influence
a model's overall PS (e.g., very high PS just over one sub-
region).

3.5.1 | GCM ranking: an example

We demonstrate the above procedure over a sample
WS region (R6). Six PCs from two different predictors
(hur1000 and zg700) were selected to skillfully resolve
observed precipitation over this region (Table S2). We
represent these as reanalysis predictors 1 (R1) and
2 (R2), respectively, and construct three different sets
of Taylor diagrams to illustrate each selection step.
Firstly, the Taylor diagrams (Figure 4) visually outline
the best-matching pairs of the reanalysis PC1 of the
first predictor, that is, hur1000 (‘R1.1’), and modelled
PCs of this predictor for every GCM. We use these Tay-
lor diagrams' statistics to identify the best PC match
(for every GCM) using the PS and plot them through
the second set of Taylor diagrams (Figure 5). We repeat
this process for the remaining five PCs to identify best-
matching pairs for each GCM (not shown). Subse-
quently, we group all six best-matching pairs of each
GCM into a third set of Taylor diagrams (Figure 6).
Finally, we compute the weighted PS (from the statis-
tics of Figure 6) using regression coefficients (absolute)
as weights to identify the best-performing model. In
this example, CMCC-CM appears as the best model
due to its highest average PS of 0.78 (see Table 3).

3.6 | Quantification of reference
uncertainty

We further consider governing predictors (Table 1) from
the latest ERA5 (Hersbach et al., 2020) and from NCEP-
NCAR-II (Kalnay et al., 1996) reanalysis datasets to eval-
uate the usefulness of ERA-Interim for precipitation
modelling. After re-griding to a common spatial resolu-
tion (2� × 2�), the predictors from these additional
reanalysis datasets were subjected to a similar S-mode
PCA. The resulting PC loadings are compared (sepa-
rately for each reanalysis) with ERA-Interim using the
procedure described in Section 3.5 (without Step V).
Thus, the weighted PS of these other two reanalyses can
define the range and average magnitude of reference
uncertainty.

4 | RESULTS AND DISCUSSION

4.1 | Reference uncertainty

Table 3 quantifies the strength of ERA-Interim predic-
tors' correspondence with the other two reanalysis
datasets (ERA5 and NCEP-NCAR-II) and each avail-
able GCM in different precipitation seasons. The
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regions are grouped into the UIB and LI scales to esti-
mate ERA-Interim predictors' spatial effectiveness
(uncertainty) against each dataset by computing aver-
age PS over these two regions.

First, we use the output of Table 3 to quantify refer-
ence uncertainty. Generally, the three reanalysis datasets

indicate more robust simulations of the various dynamic
drivers compared to the thermodynamic drivers of
regional precipitation (Table 1). The reliability of ERA-
Interim predictors varies with season, reanalysis, and
over the regions. For example, ERA-Interim predictors
show more robust correspondence with ERA5 (NCEP-

FIGURE 4 Identification of the best-matching pairs of the reference (ERA-Interim) and model (GCMs) simulated PCs of a given

predictor using Taylor diagrams. Each Taylor diagram elaborates the PC matching process separately for each GCM by comparing all

modelled PCs of a predictor field with a given reference PC. In this example, we use reanalysis PC1 of hur1000 to identify the best matching

PC of hur1000 as simulated by different GCMs. The letter R (M) and associated numbers represent the reference (model) related PC

information for a given predictor field in the legend key. For instance, in the text ‘R1.1’, the letter ‘R1’ stands for the first reference predictor
(i.e., hur1000), and the following number (‘.1’) reveals the identification of its PC (i.e., PC1 of hur1000). Similarly, in the text ‘M1.1’, the
letter ‘M1’ and the following number (‘.1’) show the first GCM (CMCC_CM) and the identification of its simulated PC (i.e., PC1) of the

predictor field (i.e., hur1000), respectively. Likewise, The letter ‘M2.6’ shows the second GCM (CMCC_CMS) and its simulated PC (i.e.,

PC6). Thus, identifying the modelled PC that best corresponds to PC1 of the reanalysis predictor (hur1000) can be seen in each of the above

Taylor diagrams. In the case of GCM4 (CanESM2), among all six modelled PCs, its first PC (M4.1) better corresponded to the given

reanalysis PC (R1.1) [Colour figure can be viewed at wileyonlinelibrary.com]
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NCAR-II) over five different UIB regions during the MS,
as indicated by a higher average PS of 0.84 (0.72). Consid-
ering the mountainous terrain and MS complexity, repre-
sented by a set of diverse predictors located across the
troposphere (see Table S1), the strong predictor

correspondence justifies ERA-Interim use for precipita-
tion modelling over the UIB.

Similar predictor robustness is noticed over two LI
regions (ERA5 = 0.81 and NCEP-NCAR-II = 0.70) and
demonstrates the ERA-Interim predictors' reliability for

FIGURE 5 Effectiveness of the PS in identifying the best reference-model PC combinations of Figure 4. The other details are the same

as in Figure 4. The statistics of Figure 4 are used to compute the PS for all modelled PCs (separately for each GCM). The model simulated PC

that shows the maximum PS is identified and plotted through separate Taylor diagrams of Figure 5. As the best PCs in Figures 4 and 5 are

precisely the same; therefore, the PS can be used to identify such pairs numerically [Colour figure can be viewed at wileyonlinelibrary.com]
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the basin-wide MS precipitation analysis. ERA-Interim
also shows strong predictor similarities with ERA5 and
NCEP-NCAR-II during the WS (0.83 and 0.74) and PMS
(0.76 and 0.71) over multiple UIB regions. A similar pre-
dictor correspondence over different LI regions during
these two seasons further highlights the effectiveness of
ERA-Interim for westerly-dominated regimes.

Although governing predictors are robust among dif-
ferent reanalyses datasets, still some interesting patterns
emerge. For example, free atmospheric predictors that
largely dominate the seasonal precipitation models
(e.g., MS-R3, PMS-R1, and WS-R1 in Table S2) show
more similarities among reanalysis datasets, partly
because the atmospheric boundary layer exerts lesser

FIGURE 6 Final Taylor diagrams representing all six modelled PCs (separately for each GCM) of the two governing predictors (i.e.,

R1 = hur1000 and R2 = zg700) that show maximum correspondence with ERA-interim simulated PCs. The statistics of these Taylor

diagrams are used to compute the PS, and the model that shows the maximum weighted PS (across all six PCs) can be identified as the best

model. In this example, GCM2 (CMCC-CM) shows the highest PS (see Table 3) and hence selected as the best GCM for this particular WS

region. Visual inspection of these Taylor diagrams also confirms this selection, where its modelled PCs show higher correspondence with

reanalysis data than other GCMs [Colour figure can be viewed at wileyonlinelibrary.com]
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TABLE 3 Quantification of the reference and model predictor correspondence on seasonal scales across the Indus Basin of Pakistan

using weighted PS [Colour table can be viewed at wileyonlinelibrary.com]

Seasons Regions

Reanalysis GCMs

ERA5 NCEP-II
CMCC-
CMS

CMCC-
CM

CNRM-
CM5

Can-
ESM2

MPI-
ESM-LR

MPI-
ESM-MR

Nor-
ESM1-ME

Nor-
ESM1-M

MS UIB

R1 0.76 0.59 0.40 0.30 0.37 0.33 0.31 0.13 0.36 0.20

R3 0.96 0.82 0.70 0.56 0.58 0.40 0.38 0.54 0.66 0.62

R4 0.91 0.76 0.53 0.52 0.45 0.41 0.36 0.51 0.36 0.58

R5 0.77 0.67 0.41 0.53 0.45 0.38 0.46 0.39 0.41 0.37

R7 0.81 0.74 0.48 0.52 0.55 0.43 0.40 0.45 0.35 0.42

Avg. PS, UIB 0.84 0.72 0.50 0.49 0.48 0.39 0.38 0.40 0.43 0.44

Avg. Uncer., UIB (%) 16 28 50 51 52 61 62 60 57 56

LI

R2 0.87 0.79 0.50 0.42 0.62 0.33 0.69 0.56 0.45 0.30

R6 0.75 0.60 0.37 0.41 0.36 0.26 0.34 0.36 0.41 0.40

Avg. PS, LI 0.81 0.70 0.44 0.42 0.49 0.30 0.52 0.46 0.43 0.35

Avg. Uncer., LI (%) 19 31 57 59 51 71 49 54 57 65

PMS UIB

R1 0.88 0.74 0.53 0.52 0.54 0.57 0.51 0.43 0.41 0.44

R3 0.84 0.69 0.28 0.4 0.41 0.45 0.35 0.39 0.35 0.24

R5 0.69 0.71 0.69 0.73 0.78 0.47 0.75 0.71 0.49 0.57

R7 0.64 0.70 0.72 0.71 0.71 0.46 0.75 0.69 0.48 0.6

Avg. PS, UIB 0.76 0.71 0.56 0.59 0.61 0.49 0.59 0.56 0.43 0.46

Avg. Uncer., UIB (%) 24 29 45 41 39 51 41 45 57 54

LI

R4 0.92 0.89 0.59 0.61 0.5 0.72 0.59 0.61 0.58 0.64

R6 0.60 0.61 0.66 0.64 0.63 0.38 0.72 0.63 0.36 0.49

Avg. PS, LI 0.76 0.75 0.63 0.63 0.57 0.55 0.66 0.62 0.47 0.57

Avg. Uncer., LI (%) 24 25 38 38 44 45 35 38 53 44

WS UIB

R1 0.89 0.72 0.58 0.60 0.62 0.48 0.69 0.46 0.51 0.42

R3 0.84 0.73 0.56 0.67 0.46 0.48 0.64 0.45 0.31 0.30

R5 0.77 0.77 0.55 0.57 0.59 0.47 0.68 0.56 0.59 0.66

Avg. PS, UIB 0.83 0.74 0.56 0.61 0.56 0.48 0.67 0.49 0.47 0.46

Avg. Uncer., UIB (%) 17 26 44 39 44 52 33 51 53 54

LI

R4 0.94 0.91 0.58 0.62 0.71 0.58 0.43 0.61 0.67 0.60

R6 0.51 0.72 0.72 0.78 0.63 0.66 0.76 0.72 0.60 0.66

Avg. PS, LI 0.73 0.82 0.65 0.70 0.67 0.62 0.60 0.67 0.64 0.63

Avg. Uncer., LI (%) 27 19 35 30 33 38 41 34 37 37

Note: The reference correspondence is estimated by comparing ERA-Interim patterns with ERA5 and NCEP-NCAR-II reanalysis datasets separately to evaluate
their effectiveness for precipitation modelling. Columns 1 and 2 give the sub-regions of the basin for each season. Avg. PS, UIB (Avg. PS, LI) shows the average
PS across all individual regions within the UIB (LI) in different seasons. Similarly, Avg. Uncer., UIB (Avg.Uncer., LI) outlines the magnitude of predictor
uncertainties ((1 − weighted PS) *100) in percentage over the UIB (LI) scales, respectively. The blue (bold), brown (italic bold), and yellow (italic) shades
represent the best, second best, and worst models with respect to their predictor correspondence with ERA-Interim. For better interpretation, refer to the

online version.
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influence over these predictors, and most of the predictor
PCs are located outside the mountain region (not shown).
Therefore, their simulations are more robust across dif-
ferent numerical models. Conversely, the simulations of
near-surface predictors (notably hur1000) show larger
differences (e.g., PMS-R6 and WS-R6), which may arise
due to the stronger influence of the atmospheric bound-
ary layer. Note that, all thermodynamic PCs are located
over and in the surrounding of high mountains due to a
reduced predictor domain for these variables. Differences
in the numerical models and interpolation issues for the
near-surface variables over the mountains (e.g., Palazzi
et al., 2013) may further add to such simulation dispar-
ities. The contribution of hur1000 in precipitation models
is low, and the weaker correspondence is mainly limited
to some LI regions, particularly during the PMS and
WS. Such region-specific discrepancies may not substan-
tially influence the overall regional suitability of ERA-
Interim, particularly over the UIB that controls river
flows during all seasons.

Another pattern relates to the seasonal out-
performance (higher PS) of ERA5 over NCEP-NCAR-
II (except the WS-LI regions due to more differences
in simulations of hur1000). That seems logical as both
ERA-Interim and ERA5 are ECMWF reanalysis and
share more similarities in their simulation schemes.
However, we purposefully select NCEP-NCAR-II that
shares the same temporal resolution with ERA-
Interim (from 1979 onward), maximizes the use of
post-70s satellite measurements, and provides the
opportunity to assess ERA-Interim variables more
independently.

The difference between a perfect predictor match
(PS = 1) and actual correspondence among reanalysis
data can define the reference uncertainty range. ERA5
mostly defines the lower, and NCEP-NCAR-II outlines
the upper bound of such uncertainty. Table 3 provides
reference uncertainty during the MS (16–28%), PMS (24–
29%), and WS (17–26%) over the UIB. The corresponding
LI uncertainty ranges from 19% to 30%, 24% to 25%, and
18% to 27%, respectively. Considering regional heteroge-
neity, such strong predictor correspondence (low uncer-
tainty) of ERA-Interim with different reanalysis datasets
fully justifies its use for constructing downscaling
models.

4.2 | GCM ranking

Similarly, we identify better-performing GCMs using
weighted PS. During the MS, all GCMs show relatively
low correspondence with ERA-Interim predictors over
different UIB regions (Table 3). Such poor predictor

similarities (except for R3) highlight the MS complexity
and its highly uncertain representation in most GCMs
(e.g., Ashfaq et al., 2017). Among available models,
CMCC-CMS turns up as the best single model (PS = 0.50
over five UIB regions). This model outperforms over two
larger sub-regions (R1 and R3; see Figure 3c for regional
identification) and appears the second-best model for the
northwestern region (R4). Moreover, its performance
over the remaining two UIB regions (R5 and R7) is com-
parable with other GCMs. Therefore, its use for MS pro-
jections over the entire UIB seems more justified among
available models. Although this model only shows 50%
predictor correspondence, a high reference uncertainty
(up to 28%) also needs to be considered for judging its
true fidelity. In contrast, Can-ESM2 and MPI-ESM-LR
show the least predictor correspondence over the UIB.
The MS predictors for two LI regions are better simulated
by MPI-ESM-LR (PS = 0.52).

All GCMs showed relatively high predictor correspon-
dence with ERA-Interim during the PMS. However,
CNRM-CM5 offers more consistent performance over
four UIB regions (PS = 0.61). In contrast, MPI-ESM-LR
better represents the LI predictors. Both models provide
improved simulations of hur1000, a primary predictor to
simulate precipitation over R5 and R6 regions (Tables S2
and S3). Consequently, the basin-wide compatibility of
these models with ERA-Interim predictors improves
significantly.

During the WS, most ensemble members demonstrate
the highest PS. Among these, MPI-ESM-LR shows maxi-
mum predictor correspondence over the UIB (PS = 0.67)
by outperforming predictor simulations over the two
large and cryosphere-dominated regions in trans-
Himalayans (R1 and R5). It also shows comparable per-
formance with other GCMs over the third UIB region
(R3). As before, a different model (CMCC-CM) provides
better simulations of the governing predictors over two
LI regions.

In summary, no single model can effectively simulate
precipitation dynamics at the basin-level without making
significant compromises. However, our model ranking
process can identify models demonstrating spatially con-
sistent performance over the UIB (LI) with tolerable
uncertainties. Significantly improved representation of the
westerly circulations in our ensemble may increase our
understanding and confidence about projected cryosphere
dynamics that largely influence basin sustainability.

It is important to note that our model rankings only
rely on predictor correspondence during the historical
period and require a stationarity assumption for their
future validity (e.g., Lanzante et al., 2018). The
stationarity considerations may induce some addi-
tional uncertainties, as the predictor-predictand
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relationships and the models' ability for their simula-
tions may alter in the future (e.g., Hertig et al., 2017).
Stationarity violation may particularly happen in high-
mountain regions, where numerous feedback mecha-
nisms exert influence on regional climate, and their
future evolution may substantially differ from the
observations.

4.3 | Diversity of the GCM ensemble

Only eight GCMs in our study may not adequately repre-
sent the entire CMIP5 simulation diversity. Using litera-
ture review and exploratory quantitative analysis, we
evaluate our ensemble's regional efficacy. For instance,
Khan and Koch (2018) assess the entire CMIP5 dataset
under RCP4.5 and RCP8.5 scenarios to shortlist the
GCMs defining a so-called full spectrum of future climate
over the UIB. Their final models explaining Warm-Wet
(Can-ESM2), Dry-Cold (MPI-ESM-LR), and mean climate
(Nor-ESM1-ME) are available in our ensemble. Besides,
our ensemble also includes their secondary consider-
ations for Dry-Warm (CMCC-CMS) and Wet-Cold
(CNRM-CM5) regional future (see Table 2). Similarly, the
14-model CMIP5 ensemble of Ali et al. (2020) also con-
tains almost all our models. Such ensemble similarities
justify the regional relevance of our models, despite its
smaller sample size.

We further performed an additional analysis over a
sample MS-UIB region (R3) whose precipitation predic-
tor (va200) was available in most CMIP5 GCMs. We
selected 15 GCMs belonging to 13 different modelling
centres (Table 4) to cover most of the remaining institu-
tional spread in the CMIP5. The historical uncertainties
of these additional GCMs were similarly computed (see
Section 3.5) and compared with the 8-model ensemble
using the box and whisker plots (Figure 7). The ensem-
ble comparison shows that nearly all 15 GCMs lie
within the uncertainty spectrum defined by the
8-models; the medians are similar, and the best GCM
(lower outlier of the 8-model ensemble) remains the
same. The reduced uncertainty among the new GCM
ensemble suggests close similarities between these
models for MS simulations instead of providing a signifi-
cantly different perspective. Therefore, both literature
review and sample analysis demonstrate the regional
suitability of our 8-model ensemble.

We also investigate the influence of model unique-
ness (Sanderson et al., 2017) over the sample MS
region. We computed historical uncertainties using
23 GCMs (model democracy) and compare them with
18 GCMs belonging to different modelling centres
(model independence; see Tables 1 and 4). Using the
box and whisker plots (not shown), we could not find
significant differences in the two distributions.
Besides, similar uncertainty estimates of the

TABLE 4 Details of the additional GCMs used to evaluate the CMIP5 representativeness of the 8-model ensemble (Table 2) in our study

No. Model ID Horizontal resolution (Lon. × Lat.) in degrees Modelling centre PS Uncertainty (%)

1 ACCESS1-0 1.875 × 1.25 CSIRO-BOM 0.54 46

2 ACCESS1-3 1.875 × 1.25 CSIRO-BOM 0.56 44

3 BCC-CSM1-1 2.8125 × 2.8125 BCC 0.64 36

4 BNU-ESM 2.8125 × 2.7906 BNU 0.53 47

5 CCSM4 1.25 × 0.9 NCAR 0.55 45

6 FGOALS-g2 2.8125 × 2.8125 LASG-CESS 0.49 51

7 GFDL-ESM2G 2.5 × 2 GFDL 0.46 54

8 GISS-E2-H 2 × 2.5 NASA 0.54 56

9 aHadCM3 2.5 × 3.5 MOHC 0.60 40

10 HadGEM2-AO 1.875 × 1.24 MOHC 0.65 35

11 INM-CM4 2 × 1.5 INM 0.49 51

12 IPSL-CM5A-MR 2.5 × 1.2587 IPSL 0.36 64

13 MIROC5 1.40625 × 1.40625 MIROC 0.54 46

14 MRI-CGCM3 1.125 × 1.12148 MRI 0.55 45

15 CSIRO-Mk3-6-0 1.875 × 1.875 CSIRO-QCCCE 0.63 37

Note: Like in Table 3, the PS and uncertainty estimates are computed and denote the strength of reference-model predictor correspondence over the sample MS
region (R3) during the overlapping historical period.
aFuture predictors from this model are not available.
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independent models and the 8-model ensemble over
the sample region also induce confidence in our
ensemble simulations.

4.4 | Downscaled future precipitation
changes

We use available GCMs to compute the median precipita-
tion changes for two future periods (2041–2071 and
2071–2100) relative to the historical period (1976–2005)
under RCP4.5 and RCP8.5. Figure 8 shows sub-regional
multi-model ensemble (MME) and individual GCM sim-
ulated precipitation changes during the end of the 21st
century (2071–2100) under both RCPs. The inter-model
spread defines the range of uncertainty around MME sig-
nals. The corresponding changes during 2041–2071 are

quantitatively different but show similar spatial patterns
(not shown).

4.4.1 | WS projections

The WS projections under both RCPs (Figure 8a,b) show
considerable positive changes (MME) over large parts of
the UIB, covering mainly the HA regions of the trans-
Himalayan and northwestern Hindukush (R5, R1; refer
to Figure 2a for regional location). The positive signals
are robust (all models project positive changes) and much
stronger over the central Karakoram (R1) than the north-
western and eastern regions (R5) under both scenarios.
Some precipitation decrease appears along the lower ele-
vations of the northwestern and southern Himalayans
(R3) under RCP4.5 (Figure 8a), but it will eventually sta-
bilize under RCP8.5 forcing. The precipitation changes
suggest that increased warming (RCP8.5) will promote an
elevation-dependent response in the UIB, where HA
regions will receive more precipitation. The best seasonal
model (MPI-ESM-LR) demonstrating high predictor cor-
respondence during the historical period further supports
these ensemble signals, particularly for RCP8.5. The like-
lihood of decreasing precipitation over the UIB remains
low, as mainly negative signals are projected by two Nor-
wegian models that demonstrate the lowest historical
performance (Table 3). The large inter-model spread
reflects a highly uncertain future over the UIB.

The westerlies approaching the UIB bifurcate into
northern and southern branches along the Himalayans
(e.g., Pang et al., 2014). Increased strength and more north-
ward penetrating westerlies at the end of the 21st century
may increase dynamic forcing over the UIB to explain the
typical spatial changes under warming scenarios. Note that
circulation-dynamic predictors (Table S1) mainly govern
the regional precipitation. The strong and northward
located westerlies may continue to support the regional
cryosphere and anomalous behaviour of the Karakoram.

Conversely, the precipitation changes are subtler
over the two LI regions (R6 and R4) under both RCPs.
For instance, the MME change over the upper irrigated
plains (R6) shows some robust decrease (many models
show negative signals), which confirms the weakening
of the southern westerly limb. Meanwhile, the lower
irrigated plains (R4) indicate strongly positive and
robust changes under both RCPs. Local feedback
mechanisms may strongly influence the future precipi-
tation changes over this region. Overall, some decrease
in LI precipitation seems plausible (though with more
uncertainty) due to quantitatively more negative
changes over a large region (R6) than the positive sig-
nals over R4.

FIGURE 7 Comparison of the two GCM ensembles for

simulating precipitation predictors (seven PCs of va200) over a

sample MS region (R3) during the overlapping historical period

(1979–2005). The uncertainties along the y-axis reflect the degree of
mismatch between the ERA-Interim reanalysis's predictor and

corresponding simulations of every available GCM (black dots) in

the two ensembles. The GCM uncertainty is computed using the

mathematical relationship (1 − PS)*100 [Colour figure can be

viewed at wileyonlinelibrary.com]
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4.4.2 | PMS projections

PMS changes (MME) show a decrease in precipitation
over all four UIB regions (R1, R5, R3, R7; see also
Figure 3b) that further intensify with increased warming
(Figure 8c,d). These changes exhibit spatial variability,
and strongly negative signals (up to 25%) are noticeable

in the lower northwestern regions (R5 and R7). Most
individual models also project negative changes for these
regions except Can-ESM2, but it shows the lowest predic-
tor correspondence in the historical period. However, a
large HA part of the trans-Himalayans region
(R1) indicates a lesser decrease and more uncertainty
(some models even project similar positive signals) under

FIGURE 8 Downscaled unweighted seasonal precipitation changes in % over the Indus Basin of Pakistan during the future period

(2071–2100) relative to the historical period (1976–2005) under RCP4.5 and RCP8.5. The y-axis shows the identified precipitation regions and

the corresponding range of regional altitudes that decreases from top to bottom. The regional altitudes are expressed as the elevations above

mean sea level (m-amsl). The WS, PMS, and MS precipitation changes under RCP4.5 and RCP8.5scenarioes are shown by the subplots (a,b),

(c,d), and (e,f), respectively. The coloured circles (triangles) show the individual GCM (MME) simulated precipitation changes. The solid

blue line indicates no change compared to the historical period. Note that, the range of the x-axis (i.e., precipitation changes) is different in

these panels [Colour figure can be viewed at wileyonlinelibrary.com]
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both scenarios. Moreover, a wetter northeastern region
(R3) shows nearly neutral changes, and the best seasonal
model (CNRM-CM5) instead projects a slight increase in
regional precipitation. Generally, a precipitation decrease
is more robust over the UIB, though its intensity and reli-
ability reduce with elevation and over eastern parts. The
decreasing trend is also visible over large parts of
the southwestern highlands and the LI plains (R6). In
contrast, the upper irrigated plains and northeastern
rainfed regions (R4) show some precipitation increase
that becomes stronger under RCP8.5. Generally, a
smaller inter-model spread suggests more robustness of
the sub-regional signals during the PMS.

Weaker and more northward oriented westerlies
may reduce the moisture advection to reduce future
precipitation, particularly over the lower northwestern
regions, where relative humidity has a strong impact
(Table S2). Alternatively, the projected seasonal
warming (e.g., Ashfaq et al., 2020) may reduce the satu-
rated atmospheric moisture content (i.e., relative
humidity) to delay precipitation onset.

4.4.3 | MS projections

We assess an overall precipitation increase over the entire
Indus basin under both RCPs (Figure 8e,f). Most individ-
ual models, including the best seasonal models, further
support these sub-regional trends that intensify
further under RCP8.5. However, the change signals sig-
nificantly vary over different UIB regions (R7, R6, R1,
R3, R5; see Figure 3c). For example, the highest eleva-
tions towards the Karakoram–West (R7) show some con-
sistent decrease (MME = approx. −8%). In contrast, a
northwestern region (R4) and a larger area around the
central Karakoram (R1) depict an up to 12% increase in
future precipitation. Similarly, a large and the wettest
part along the southern Himalayans (R3) also shows
increased precipitation (MME = � 4%) in both scenarios.
Another northwestern region representing the lower ele-
vation of the Hindukush (R5) also indicates some positive
signals (up to 2%). These distinct precipitation changes
(predominantly positive) support the monsoon system's
strengthening and further penetration into the North-
western and trans-Himalayans regions under increased
warming scenarios. Such intense MS circulations may
continue to support the regional cryosphere and down-
stream water needs in the future. More uncertainty over
the magnitude and the direction of precipitation signals
highlights the complex interplay between the MS cur-
rents and UIB topography.

Similarly, two LI regions (R6 and R2), covering spate
irrigation in the southwestern mountains, irrigated
plains, and coastal areas, mainly project positive changes

under both RCPs. Therefore, increased water develop-
ment potential in spate-regions and a slight decrease in
net irrigation over the plains are likely under future
warming. Compared to the UIB, the inter-model agree-
ment over the LI precipitation changes is high.

4.5 | Impact of model weighting on
ensemble changes

Figure 9 shows the impact of model weighting (Table 3)
on sub-regional ensemble changes during 2071–2100
under both RCPs. Generally, better-performing models
(models with higher weights) have a relatively small
impact on change signals due to the adopted weighting
scheme (maximum value of 1) and intermodel similari-
ties in our ensemble. Still, the weighting has demon-
strated refinement of the change signals by altering
magnitude in many cases. For instance, the model
weighting shows maximum influence during the MS sea-
son (Figure 9c) by mainly strengthening positive changes
over the UIB under RCP8.5. A considerable increase in
precipitation over the central Karakoram and northwest-
ern HA, including the wettest part (R3) in the UIB, is
apparent. This pattern also continues into the southern
highlands (R6) and irrigated plains (R2) in the LI. The
strengthening of MS circulations appears more in better-
performing models under the intense warming (RCP8.5)
than RCP4.5 forcing, where a mixed response mostly
prevails.

In contrast, the model weighting increases PMS dry-
ness over most of the UIB for both scenarios (Figure 9b).
Thus, the weakening of the westerly system during PMS
is more consistent among better-performing GCMs, par-
ticularly under RCP8.5.

During the WS, the model weighting has mainly
enhanced the positive signals over the UIB (Figure 9a) to
indicate a slight strengthening of the westerly circula-
tions in better performing models. Since HA regions
receive much higher precipitation (e.g., Immerzeel
et al., 2015; Pomee et al., 2020), even a slight increase in
precipitation signals during the main seasons (MS and
WS) can substantially increase the actual precipitation
over the UIB under RCP8.5.

Using model weights in an ensemble setting can
explain additional insights about projected changes in
complex regions to assess confidence in projected signals
despite the lesser impact.

4.6 | Robustness of the change signals

We use SNR to evaluate the strength of projected
signals over the observational uncertainty, which
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remains very high over this complex region. Figure 10
shows the WS distribution of SNR as a function of
regional elevations during 2071–2100 under RCP scenar-
ios. Generally, the sub-regional ratios are higher under
RCP8.5 forcing than under the RCP4.5 scenario, con-
firming the positive role of increased warming on
regional precipitation changes. These ratios also demon-
strate elevation dependency of future changes by
depicting positive (strong) signals over HA regions com-
pared to negative (weak) values over low elevations. The
spatial patterns of SNR further support future strengthen-
ing and the northward oriented westerly regimes that
will induce distinct positive changes over the HA-UIB.

The other seasons also show similar patterns for both
RCPs (not shown).

4.7 | Downscaled precipitation: HA-UIB
regionalization scenario

We also separately compute precipitation changes, model
weighting, and SNR over HA regions of the UIB.
Figure 11 only shows the precipitation changes during
2071–2100 under RCP8.5. These seasonal changes further
confirm our previous findings (Section 4.7) about the
strengthing and northward penetrating westerlies during

FIGURE 9 Impact of the model weighting on ensemble precipitation changes (i.e., MME) during 2071–2100 under RCP4.5 and RCP8.5

scenarios. (a) The WS, (b) the PMS, and (c) the MS sub-regional changes under both RCPs. In the legend, the ‘unw’ stands for unweighted,
and ‘w’ represents the weighted ensemble changes for each RCP simulation [Colour figure can be viewed at wileyonlinelibrary.com]
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the WS and easterlies during the MS to promote positive
precipitation changes over the high-elevation UIB. The
PMS dryness over large parts of the UIB is also verified,
indicating a future weakening of the westerly circulations
during this season. The magnitude of changes differs, but
the spatial patterns are similar for RCP4.5 (not shown).

4.8 | Further discussions

Our main findings support the results of some earlier
studies. For example, Ali et al. (2015) and Khan and
Koch (2018) also reported elevation-dependent precipita-
tion changes over the UIB. Similarly, Lutz et al. (2016b)
concluded a drying (increased precipitation) during the
PMS (MS and WS) months. Although their changes were
different in details, the spatial patterns of increasing pre-
cipitation from west-to-east confirm our findings. Bokhari
et al. (2018) also estimated a reduction in future precipita-
tion over the Kabul river basin, located in the northwest-
ern UIB. Studies of Archer and Fowler (2004), Khattak
et al. (2011), and Forsythe et al. (2014) also projected
increased precipitation during the main seasons.

However, our findings contrast to Palazzi et al. (2013,
2014), who found insignificant WS changes over the

UIB. Using direct GCM precipitation, which contains
significant wet biases over the region, in these studies
may reduce signal strength. A bias-corrected analysis,
despite some criticism (e.g., Ehret et al., 2012; Mezghani
et al., 2017), may sharpen or even reverse the signal
direction (e.g., Hagemann et al., 2011; Navarro-Racines
et al., 2020).

Similarly, the intensity of drying (Khan and
Koch, 2018) and a remarkable increase of projected pre-
cipitation over the UIB, particularly during PMS months,
as shown by Hasson (2016) under RCP8.5, are not in
agreement with our analysis. Surprisingly, both studies
used the output of CORDEX-SA experiments but con-
cluded a contrasting regional outlook, mainly due to dif-
ferences in the reference datasets. For example,
Hasson (2016) only used three short-term HA stations
located along the Karakoram for scaling, which might
induce a wet bias. In contrast, the adopted climatology of
Khan and Koch (2018) could produce a dry tendency, as
some recent studies (e.g., Immerzeel et al., 2015; Dahri
et al., 2018) showed much higher precipitation over the
UIB compared to the precipitation amounts used in their
study.

Using the so-called model democracy (e.g., Knutti, 2010)
and appreciating the complexity and future uncertainty of

FIGURE 10 WS

distribution of the SNR to

evaluate the robustness of

projected precipitation changes

under RCP4.5 (a) and RCP8.5

(b) scenarios over Pakistan's

Indus Basin. The ratios are

computed by dividing median

changes (signal) during 2071–
2100 with standard deviations

(noise) of the historical period

(1976–2005). The absolute value
of the SNR along the Y-axis

indicates the magnitude of

signal strength. The blue

horizontal line serves as a

reference and indicates no

strength of the projected signal.

The precipitation regions are

shown along the x-axis and

arranged in decreasing altitudes

from left to the right [Colour

figure can be viewed at

wileyonlinelibrary.com]
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the climate system, some studies criticize model rankings
(e.g., Chiew et al., 2009; Hasson et al., 2019). We argue that
some known model performance may reduce future climate
uncertainties.

We also analysed future precipitation changes over
the sample MS region (R3) during 2071–2100 under
selected RCPs using the 8- and 14 model ensembles
(Table 4). The two ensembles showed strong similarities
(not shown). Outliers in the 14-model ensemble were
mostly those GCMs that demonstrated the lowest histori-
cal performance (e.g., IPSL-CM5A-MR, GFDL-ESM2,
FGOALS-g2, and INMCM4). These models are known
for their poor MS simulations over the study region
(e.g., McSweeney et al., 2015) and could have been elimi-
nated during the model ranking process. In summary,
the 8-model ensemble adequately captures the future

simulated by a larger CMIP ensemble and stands useful
for precipitation analysis over the region for practical
purposes.

Model-uniqueness influence on future precipitation
signals over the sample region also remains negligible
(not shown).

5 | SUMMARY AND
CONCLUSIONS

We assessed future precipitation changes over Pakistan's
Indus basin that primarily derives runoff from cryosphere-
dominated watersheds in the UIB. Large-scale atmospheric
patterns were used as predictors for constructing downscal-
ing models, uncertainty quantification, GCM selection, and

FIGURE 11 Downscaled unweighted precipitation changes from 1976–2005 to 2071–2100, using the HA-UIB regionalization

experiment's output under RCP8.5. Subplots (a), (b), and (c) represent sub-regional precipitation changes over the UIB during the WS, PMS,

and MS, respectively [Colour figure can be viewed at wileyonlinelibrary.com]
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subsequent projections, as raw precipitation of the GCMs
still lacks reliability. Such GCM limitations manifest over
high-mountain regions like the UIB, where complex pro-
cesses govern precipitation variation at sub-grid levels.

Firstly, we identify precipitation-governing predictors
from ERA-Interim reanalysis within a robust statistical
downscaling by accounting for spatial variability of the
observed precipitation on seasonal scales. K-means clus-
ter analysis was used for basin characterization. We fur-
ther evaluated ERA-Interim predictors' robustness
against two other reanalysis datasets (ERA5 and NCEP-
NCAR-II) to demonstrate their usefulness for precipita-
tion modelling.

We also identified better-performing GCMs by com-
paring model-simulated predictors with ERA-Interim
variables during the overlapping historical period. On a
seasonal scale, the MS governing predictors were more
diverse, indicating their poor representation by most
GCMs. Some earlier studies (e.g., Ashfaq et al., 2017) also
reported major shortcomings of the GCMs in simulating
MS dynamics over this region. We argue that a high ref-
erence uncertainty may restrict an accurate model assess-
ment during the MS. In contrast, the available GCMs
better simulated westerly-dominated seasons that
account for more than two-thirds of the HA precipitation
(Hewitt et al., 1989). Our analysis further showed that no
single model could effectively simulate the basin-wide
precipitation during different seasons. However, within a
season, our model ranking process could identify models
that provide improved simulations for influential predic-
tors over multiple sub-regions. Such better-performing
models can also guide the selection of driving GCMs in
the scope of dynamic downscaling in this region.

Concerning future changes, the ensemble medians
showed an elevation-dependent response of the UIB
towards projected warming, where HA regions will
mostly receive more precipitation. These positive signals
were distinct during the main precipitation seasons
(i.e., WS and MS), particularly over the central
Karakoram. A decreasing precipitation pattern also
emerged during the PMS, particularly towards the north-
western regions. These positive and negative signals fur-
ther intensify under RCP8.5 at the end of the 21st
century.

The projected spatial changes suggest a strengthening
(weakening) and further northward penetration of the
westerly system during the WS (PMS). Similarly,
the future MS circulations will also intensify and pene-
trate further into the northwestern and trans-Himalayan
regions. However, the LI regions showed a mixed sea-
sonal response, where MS precipitation will primarily
increase.

We also evaluated the impact of model weighting on
ensemble signals, which generally was small and more
prominent during the MS. In many cases, the model
weighting refined the change signals by assigning more
importance to better-performing models. For example,
the weighting indicated a further strengthening of the
WS westerlies and MS circulations and increased dryness
during the PMS under RCP8.5. As the GCMs that per-
form better during the historical period may also provide
reliable projections (e.g., Shukla et al., 2006), using his-
torical weights in an ensemble setting can be advanta-
geous (e.g., Kaspar-Ott et al., 2019).

We used SNR to assess the robustness of change sig-
nals and demonstrated the significance of positive
changes over observational uncertainty, particularly at
HA regions. The HA-UIB analysis further supported
elevation-dependent precipitation changes. Our precipita-
tion projections support augmentation of the existing
cryosphere and continuing anomalous behaviour of the
Karakoram (e.g., Bashir et al., 2017) even under
the extreme warming scenario during the end of the 21st
century.

Although we used predictor, predictand, and model
level considerations to improve the quality of projected
precipitation, some issues may still affect our analysis. For
example, the absence of a large number of CMIP5 models
and the existence of inter-model similarities in our ensem-
ble may induce additional uncertainties. Although we
demonstrated the usefulness of our 8-model ensemble
through literature review and sample analysis, additional
GCMs may differently model other precipitation predic-
tors. Stationarity assumption may induce uncertainties not
estimated in our analysis. Quantifying such uncertainties
is difficult, but some studies (e.g., Merkenschlager
et al., 2017) suggested mechanisms of non-stationarity con-
siderations in statistical downscaling. Such analysis is,
however, beyond the scope of the present work.

We also assume our regionalization scheme's effec-
tiveness to extend precipitation inferences beyond the
observations and draw conclusions over the trans-
boundary basin regions not covered in our analysis
(Pomee et al., 2020). Since our projection patterns are pri-
marily in line with those studies that employ glacial and
transboundary information (e.g., Lutz et al., 2016b), our
assumptions regarding inferences beyond the observa-
tions seem justified.

Despite some limitations, our study presented an
alternative and realistic perspective to assess precipitation
changes over a complex, highly uncertain, and yet enor-
mously important river basin. Our approach will open
new avenues of regional research and has the potential
for replication in other regions. However, for the correct
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assessment of future water availability and cryosphere
stability, temperature modelling is similarly required.
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