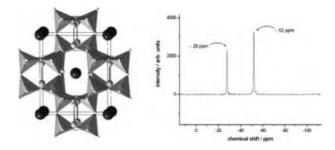
SrSi₆N₈ – ein reduziertes Nitridosilicat mit Si-Si-Bindungen

H. A. Höppe, F. Stadler, O. Oeckler, W. Schnick


Department Chemie und Biochemie, Lehrstuhl für Anorganische Festkörperchemie, Ludwig-Maximilians-Universität München, Butenandtstraße 5-13 (D), D-81377 München

Keywords: Nitridosilicates; ²⁹Si-NMR; Reduced Compounds

Oxo- und Nitridosilicate zeichnen sich normalerweise durch Si/X-Anionenverbände ecken- oder kantenverknüpfter SiX_4 -Tetraeder (X = O, N) aus, in denen die Si- und X-Atome streng alternierend auftreten [1, 2].

Durch Umsetzung von Sr mit Si(NH)₂ im Hochfrequenzofen bei etwa $1650\,^{\circ}$ C haben wir nun ein neues Nitridosilicat mit der Summenformel SrSi₆N₈ synthetisiert. Die Einkristall-Röntgenstrukturanalyse (*Imm*2 (Nr. 44), a=785.5(2), b=926.0(2), c=480.1(1) pm, Z=2, $R_1=0.0239$, $wR_2=0.0487$) ergab zwei kristallographisch unterscheidbare Si-Atome, von denen eines (Wyckoff-Lage 8e) im Zentrum eines SiN₄-Tetraeders liegt, während das andere (Wyckoff-Lage 4d) von drei N und einem Si koordiniert ist (Abb. 1, links). Es bilden sich somit Disilan-analoge N₃Si-SiN₃-Einheiten mit einer Bindungslänge Si-Si von 235.9(2) pm. Die N₃Si-SiN₃-Einheiten sind über sämtliche N-Atome mit benachbarten SiN₄-Tetraedern verknüpft [3].

Im 29 Si-MAS-NMR-Spektrum von SrSi $_6$ N $_8$ wurden zwei scharfe Resonanzen beobachtet, deren integrierte Intensitäten (Verhältnis 1:2) genau den beiden Wyckoff-Positionen 4d und 8e entsprechen. Ihre chemischen Verschiebungen (-28 und -52 ppm) sind typisch für die kristallographisch identifizierten Koordinationen (Abb. 1 rechts).

Abb. 1 links: Kristallstruktur von SrSi₆N₈, Blick entlang [001] (Sr dunkelgrau, Si hellgrau, N weiß); rechts: ²⁹Si-NMR-Spektrum von SrSi₆N₈.

Mit $BaSi_6N_8O$ konnten wir zudem ein zu $SrSi_6N_8$ homöotypes Oxonitridosilicat darstellen und charakterisieren(Imm2 (Nr. 44), a=806.3(2), b=966.5(2), c=483.1(1) pm, $Z=2, R_1=0.0628, wR_2=0.0791$), dessen $[Si_6N_8O]^{2-}$ -Gerüst durch Insertion je eines O-Atoms in jede Si-Si-Bindung von $SrSi_6N_8$ verstanden werden kann.

- [1] F. Liebau, Structural Chemistry of Silicates, Springer, Berlin, 1985
- [2] H. Huppertz, W. Schnick, Chem. Eur. J. 1997, 3, 679.
- [3] H. A. Höppe, F. Stadler, O. Oeckler, P. Kroll, W. Schnick, Veröffentlichung in Vorbereitung.

DOI: 10.1002/zaac.200470073