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Unlike classical systems, a measurement performed on a quantum system always alters its state. In
this work, the impacts of two diagnostic schemes to determine the performance of quantum Otto heat
engines are compared: In one scheme, the energy of the engine’s working substance is measured after
each stroke (repeated measurements), and in the other one, the energies after each stroke are recorded
in one or two pointer states and measured only after the completion of a prescribed number of cycles
(repeated contacts). A single pointer state suffices if one is only interested in either work or heat. For joint
work and heat diagnostics, two pointers are needed. These schemes are applied to Otto engines, whose
working substance consists of a two-level system. Depending on the engine protocol, the duration of a
single cycle may be infinite or finite. Because in the repeated contact scheme, the number of measurements
is drastically reduced compared to the repeated measurement scheme, the quantum coherence after and
during the contact diagnostics is much better maintained than for repeated measurements that destroy
any coherence at the end of each stroke. We demonstrate that maximum power, reliability, and efficiency
of the engine in the presence of repeated contacts typically outperform these figures of merit of repeated
measurements. Due to the improved coherence persistence, heat engines with a finite cycle duration require
a larger number of cycles to reach a periodically asymptotic state. Overall, our results document the
importance of taking into account the particular nature of diagnostic tools for monitoring and testing
purposes but also for feedback control, both in theory and experiment.
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I. INTRODUCTION

Heat engines have not only been important devices from
a technological perspective, but they also played a sig-
nificant role in establishing and examining the laws of
thermodynamics [1]. Remarkably, with the extension of
thermodynamics from macroscopic to ever smaller sys-
tems during the past decades, the interest in the same
paradigmatic model systems such as Carnot and Otto
engines has revived, with efficiency and power as figures
of merit. A particular aspect of small engines results from
the generic randomness of their dynamics due to the cou-
pling of the microscopically small working substance with
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heat baths at different temperatures [2]. Already shortly
after the invention of the maser the similarity of its action
principle with a heat engine was noted [3]. Apart from
scattered early considerations [4–6], it took about 40 years
until this concept gained broader interest and the idea of
quantum Carnot and Otto engines was further elaborated
[7,8]. Since then basically all of the distinguishing features
of quantum systems have been investigated in view of their
potentially beneficial or possibly detrimental aspects for an
engine, such as coherence [9–13], discreteness and spac-
ing of energy levels [14–16], quantum correlations and
entanglement [17,18], Fermi versus Bose statistics [19],
and projective measurements as an energy source [20,21].
Experimental investigations of quantum heat engines were
suggested in Ref. [22] and realized using trapped ions
[23,24], optomechanical systems [25], nitrogen-vacancy
centers [26], and NMR techniques [27].

So far, the monitoring of engines has found only rel-
atively little attention, be it as a merely diagnostic tool
or as a basic element of a feedback control device [28].
The functioning of four stroke Otto-like engines during a

2691-3399/21/2(4)/040328(21) 040328-1 Published by the American Physical Society

https://orcid.org/0000-0002-0236-5017
https://orcid.org/0000-0001-5512-3954
https://crossmark.crossref.org/dialog/?doi=10.1103/PRXQuantum.2.040328&domain=pdf&date_stamp=2021-11-09
http://dx.doi.org/10.1103/PRXQuantum.2.040328
https://creativecommons.org/licenses/by/4.0/


SON, TALKNER, and THINGNA PRX QUANTUM 2, 040328 (2021)

single cycle was tracked in Refs. [21,29,30] by projective
energy measurements of the working substance immedi-
ately after the completion of each stroke. From these four
measured values the energy changes during work strokes
and thermalization strokes corresponding to work and heat,
respectively, were characterized by their joint statistics.
The reduction of the engine’s working substance state with
respect to the instantaneous energy basis specifying each
measurement, in general alters the subsequent dynamics
and hence may influence the resulting energy differences
between subsequent measurements. This total suppression
of coherence is specific for the two-point projective mea-
surement scheme of work [31–33] and has often been
interpreted as a deficiency [34,35]. On the other hand,
the traditional assignment of average work done on a
thermally closed system by a control parameter change
as the difference of the average energies calculated after
and before the forcing [4,36] cannot be extended to the
definition of a proper random variable [37–40]. Only if
the interference of the system with a particular monitoring
device is specified, e.g., in terms of two projective energy
measurements in the two-point measurement scheme or by
two subsequent interactions of the system with the same
pointer state of a measurement apparatus [38], or by any
other generalized measurement scheme [41], work can be
properly specified as a random variable at the price that
its probability distribution depends on the chosen mea-
surement procedure. This principle restriction still leaves
the possibility to look for detection schemes that opti-
mize particular features such as the accuracy or the amount
of back action on the system, to name just two possibly
complementary criteria.

For the diagnostics of a reciprocating engine such as an
Otto engine, the monitoring of the energy of the work-
ing substance several times during a single cycle is crucial
in order to be able to infer the total performed work and
the consumed heat during a single cycle, and also over
many cycles. With projective energy measurements any
coherence possibly built up during a work stroke [11] or
after a thermalization stroke [42] would be completely
removed with an impact on the performance of the sub-
sequent strokes. The coherencies of the bath have been
identified as a potential boost to the performance of an
engine [9], while those built up in the working substance
have been found as potentially detrimental [8,11,43,44].

In the present paper we adapt a recently proposed
method to determine the sum of an observable by means
of repeated contacts [45] to find the total work and the heat
supplied to an engine in a prescribed number of cycles.
We compare the obtained results with those from repeated
measurements and demonstrate that the repeated contact
method is in general less invasive and also leads to a better
performance of the engine.

We organize the paper as follows: In Sec. II we intro-
duce the general quantum Otto engine and formulate the

repeated contact and repeated measurement schemes. Gen-
eral expressions for the joint work and heat probability
density functions (PDFs) are presented for both schemes.
In Sec. III, a two-level system, i.e., a single qubit, is
considered as the working substance for which general
expressions for the work strokes are presented. For the heat
strokes we consider perfect thermalization beyond weak
system-bath coupling and alternatively finite-time thermal-
ization at weak system-bath coupling. We compare our
analytic expressions of work and heat PDFs as well as
the second moments resulting from the two measurement
schemes for a single engine cycle. In Sec. IV numerical
results for several cycles are presented. Finally, in Sec. V,
we draw our conclusions.

II. QUANTUM OTTO ENGINES

A. Mode of operation

For the sake of concreteness we consider an Otto engine
with a quantum-mechanical working substance, which
later will be specified as a two-level system. The subse-
quent four strokes constituting a full cycle of the engine
consist in compressing, heating, expanding, and cooling
the working substance, see Fig. 1. The compression and
expansion strokes are caused by changing a control param-
eter of the working substance in thermal isolation. There-
fore, the energy change of the working substance during
these strokes can be referred to as work. The parameter
change in the compression stroke is designed such that the
energy-level distances of the working-substance Hamil-
tonian increase. Hence, the time evolution of the density
matrix caused by the compression is determined by a uni-
tary operator U with ρ2 = Uρ1U†, with ρk = ρ(tk), k =
1, 2, . . ., denoting the density matrices at the times indi-
cated in Fig. 1 evolving without pointer contacts, whereby
times tk with k = 1, . . . , 4 specify instants within the first
cycle, with k = 5, . . . , 8 within the second cycle, etc. For
the sake of simplicity, the expansion is assumed to be the
time-reversed protocol of the compression. Therefore, the
unitary operator giving the corresponding transformation
can be written as Ũ = K∗U†K with K∗ being the adjoint of
the antiunitary time-reversal operator K (K∗K = KK∗ =
1), [46], such that ρ4 = Ũρ3Ũ†. The relation between Ũ
and U† holds as long as K∗H(t)K = H(t) for all times
t during the work strokes with H(t) being the time-
dependent engine Hamiltonian. During the second and the
fourth stroke the working substance is brought into con-
tact with a hot and a cold heat bath, respectively, while its
Hamiltonian remains unchanged. These two heat strokes
are characterized by trace preserving, positive, linear maps
�h and �c relating the respective density matrices of the
working substance at the beginnings and the ends of these
strokes according to ρ3 = �h(ρ2) and ρ5 = �c(ρ4). Later,
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Expt.

Expt.

FIG. 1. Illustration for repeated measurements and two-
pointer repeated contacts applied to quantum Otto engines
running for N cycles. The top panel illustrates repeated measure-
ments with 4N pointers, five pointers of which are shown. Each
pointer is initialized in the same state σ . The measurements are
taken at the beginnings and the end of the work strokes when the
working substance is thermally isolated. The results of the mea-
surements are symbolically presented at the right margin. The
registered pointer states can be used to calculate heat and work.
The lower panel illustrates the repeated contact scheme with two
pointers, the upper one for the work and the lower one for the
heat. Again both pointers are initialized in the same state σ . Here
the actions of the contacts on the two pointers are accumulated
with appropriate signs, see Sec. B for the details, and read out
by a projective position measurement after a prescribed number
of engine cycles is completed. Between subsequent contacts the
states of the two pointers do not evolve.

we give explicit expressions specifying the unitary opera-
tor U, Ũ and the maps �h and �c for the case of a two-level
system as the working substance.

B. Diagnostic means I: Repeated measurements

The central quantities characterizing the performance of
an engine are the total work W performed on and the total
heat Q supplied by the hot bath to the working substance
during N cycles. Both quantities follow from the sequence
of energies e = (e1, e2, . . . , e4N ) of the working substance
taken at the beginning and the end of each work stroke
when the working substance is decoupled from either heat
bath, see Fig. 1 yielding

W =
4N∑

k=1

(−1)kek, (1)

Q =
4N∑

k=1

μkek, (2)

where μ1+4l = μ4+4l = 0, μ2+4l = −1, μ3+4l = 1 with
l = 0, . . . , N − 1.

In the repeated measurement scheme the energies ek
are measured individually by bringing the working sub-
stance for a short time into contact with the pointer of a
measurement apparatus [47]. This contact causes a uni-
tary transformation of the joint state of the pointer and the
working substance given by

Vk = e−iκHk⊗Pk , (3)

where Hk is the working-substance Hamiltonian at the
start of the kth stroke, i.e., H1 = H4 = H5 = · · · = Hc
and H2 = H3 = · · · = Hh, see also Fig. 1; furthermore, Pk
denotes the momentum operator conjugate to the pointer
coordinate of the kth measurement apparatus. The parame-
ter κ results as the product of the strength and the duration
of the contact, which is assumed to be so short that the
free motion of the working substance appears as frozen.
Above, and throughout this work we set � = kB = 1.
Before the kth interaction, the working substance and the
respective pointer are uncorrelated. The latter resides in a
Gaussian pure state σk with vanishing mean value and vari-
ance �2. Its position matrix element σ(x, y) = 〈x|σk|y〉 is
independent of k and is given by

σ(x, y) = 1√
2π�2

exp
[
−x2 + y2

4�2

]
. (4)

If, after the contact has taken place, the pointer position is
measured projectively at a position x, the non-normalized
density matrix of the working substance becomes

φx(ρ) = 〈x|Vkρ ⊗ σkV†
k |x〉

=
∑

m,m′
Pm

k ρPm′
k σk

(
x − em

k , x − em′
k

)
, (5)

where em
k and Pm

k denote the eigenvalues and eigenpro-
jectors of the Hamiltonian Hk =∑m em

k Pm
k and ρ denotes

the density matrix of the working substance before the
contact. For the sake of simplicity and without restric-
tion of generality, the pointer position is measured in units
of energy such that κ = 1. The subsequent measurements
of the energies ek during N cycles, giving rise to the
pointer positions �xN = (x1, . . . , x4N ), lead to a mapping
of the initial working-substance density matrix ρ onto the
non-normalized density matrix φRM

�xN
(ρ) given by

φRM
�xN

(ρ) =
∑

�mN , �m′
N

D �mN , �m′
N (ρ)

4N∏

k=1

σ
(

xk − emk
k , xk − e

m′
k

k

)
,

(6)

where the sum runs over all possible sequences �m(′)
N =

(m(′)
1 , m(′)

2 , . . . , m(′)
4N ) of quantum numbers m(′)

k labeling
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the eigenstates of the Hamiltonian Hk. The operator
D �mN , �m′

N (ρ) describes the action of the alternating time-
evolution operators characterizing the subsequent strokes
and the interrupting projections due to the energy measure-
ments on the initial density matrix ρ. They are recursively

given by

D �mN+1, �m′
N+1(ρ) = Sm,m′ (

D �mN , �m′
N (ρ)

)
, (7)

where the sequences �m(′)
N+1 = �m(′)

N ⊕ m(′) denote the concatenation of �m(′)
N and m(′) = (m(′)

4N+1, . . . , m(′)
4(N+1)). Further-

more, the map Sm,m′
acts as

Sm,m′
(ρ) = �c

[
Pm4(N+1)

1 ŨPm4N+3
2 �h

(
Pm4N+2

2 UPm4N+1
1 ρPm′

4N+1
1 U†Pm′

4N+2
2

)
Pm′

4N+3
2 Ũ†Pm′

4(N+1)

1

]
. (8)

Taking the trace of φRM
�x (ρ) one obtains for the joint

PDF p(�x) to find the pointers at the values given by the
components of the vector �x the formal expression

p(�x) = Tr
[
φRM

�x (ρ)
]

. (9)

For Gaussian pointers as specified in Eq. (4) this PDF can
be written as

p(�x) =
∑

�m, �m′
D �m, �m′

e
−1/8�2∑4N

k=1

(
e

mk
k −e

m′
k

k

)2 4N∏

k=1

g�2

×
[

xk − 1
2

(
emk

k + e
m′

k
k

)]
, (10)

where g�2(x) = (2π�2)−1/2 exp[−x2/(2�2)] denotes a
Gaussian PDF with vanishing mean value and variance �2.
The coefficient D �m, �m′

is defined as

D �m, �m′ = Tr[D �m, �m′
(ρ)]. (11)

In order not to overburden the notation we omit the index
N in the vectors �m(′) and �x.

Identifying the components xk as the measured ener-
gies, one obtains for the joint probability of work and heat,
PRM(W, Q), the expression

PRM(W, Q) =
∫

d4N x δ

(
W −

4N∑

k=1

(−1)kxk

)

× δ

(
Q −

4N∑

k=1

μkxk

)
p(�x). (12)

Going to the characteristic function GRM(u, v) =∫
dWdQeiuWeivQPRM(W, Q) one can perform the 4N -fold

x integration to find

GRM(u, v) =
∑

�m, �m′
D �m, �̃m′

e
−1/8�2∑4N

k=1

(
e

mk
k −e

m′
k

k

)2

× eiuW �m, �m′
eivQ �m, �m′

e−N�2(2u2−2uv+v2), (13)

where

W �m, �m′ = 1
2

4N∑

k=1

(−1)k
(

emk
k + e

m′
k

k

)
, (14)

Q �m, �m′ = 1
2

4N∑

k=1

μk

(
emk

k + e
m′

k
k

)
, (15)

with μk as defined below Eq. (2). This characteristic
function corresponds to a linear superposition of Gaus-
sian PDFs gM(W − W �m, �m′

, Q − Q �m, �m′
) with mean values

〈W〉 = W �m, �m′
and 〈Q〉 = Q �m, �m′

and with the covariance
matrix M given by

M =
(〈(δW)2〉 〈δWδQ〉

〈δWδQ〉 〈(δQ)2〉
)

= 2N�2
(

2 −1
−1 1

)
,

(16)

with δX = X − 〈X 〉 (X = W, Q). Hence, the PDF is
given by

PRM(W, Q) =
∑

�m, �m′
D �m, �m′

e−1/8�2∑4N
k=1(e

mk
k −e

mk ′
k )2

× gM(W − W �m, �m′
, Q − Q �m, �m′

). (17)

All diagonal coefficients with �m = �m′ are non-negative
whereas nondiagonal contributions with �m 
= �m′ may
assume complex values. Yet, by construction, the total
sum is guaranteed to be always non-negative. Moreover,
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the nondiagonal contributions are suppressed by exponen-

tial factors exp[−∑4N
k=1

(
emk

k − e
m′

k
k

)2
/(8�2)]. When the

pointer-state variance �2 is sufficiently small compared
to the minimum squared energy-level distance of either
Hamiltonian Hc or Hh, all nondiagonal elements are negli-
gibly small and hence only Gaussians having a maximum
at W �m, �m,Q �m, �m contribute. Due to the N dependence of the
covariance matrix the widths of each of the contributions
grow proportionally to the square root of the number of
cycles. The marginal work and heat PDFs result as

PRM(W) =
∑

�m, �m′
D �m, �m′

e−1/8�2∑4N
k=1(e

mk
k −e

mk ′
k )2

× g4N�2(W − W �m, �m′
), (18)

PRM(Q) =
∑

�m, �m′
D �m, �m′

e−1/8�2∑4N
k=1(e

mk
k −e

mk ′
k )2

× g2N�2(Q − Q �m, �m′
). (19)

The more pronounced broadening of the Gaussian con-
tributions in the marginal work PDF compared to the
marginal heat PDF is caused by the twofold number of
energy measurements required for the work compared to
the heat.

C. Diagnostic means II: Repeated contacts

Instead of registering each of the 4N energy values in a
separate pointer state one may follow the idea of Ref. [45]
and subsequently transfer the actual energy value at the
beginning of each stroke with the appropriate sign accord-
ing to Eqs. (1) and (2) to two pointer states, one for work
and the other one for heat. The transfer of information from
the working substance to the pointer states is mediated in a
similar way as for repeated measurements by a sufficiently
short interaction causing a unitary transformation Vk of the
form

Vk = eiκHk⊗[(−1)kPW+μkPQ], (20)

acting on the joint Hilbert space of the working substance
and the two pointer states. Here PW and PQ denote the
momentum operators that are canonically conjugate to the
position operators of the work and heat pointers, respec-
tively. In contrast to the repeated measurement scheme, the
pointers are only read out by a projective position measure-
ments after the completion of N cycles. Again, the pointers
are assumed to be gauged in units of energy. Between two
subsequent contacts the working substance does not inter-
act with the two pointers but their states remain correlated
as a result of the previous contacts. To simplify the fur-
ther analysis we assume that the pointers have no own
dynamics, i.e., they change their states only due to the

interactions as specified by the unitary operators defined
in Eq. (20). The subsequent strokes and contacts, resulting
after the completion of N cycles in pointer state posi-
tions at specific values W and Q, lead to a non-normalized
reduced density matrix of the working substance, which is
given by

φRC
W,Q(ρ) =

∑

�m, �m′
D �m, �m′

(ρ)σ (W − W �m, W − W �m′
)

× σ(Q − Q �m, Q − Q �m′
), (21)

where ρ denotes the initial density matrix of the work-
ing substance and individual work and heat outcomes are
denoted as

W �m =
4N∑

k=1

(−1)kemk
k , (22)

Q �m =
4N∑

k=1

μkemk
k , (23)

with μk as defined below Eq. (2). The joint PDF PRC(W, Q)

of finding these work and heat values is given by the trace
of φRC

W,Q(ρ) yielding

PRC(W, Q) =
∑

�m, �m′
D �m, �m′

e−1/8�2(W �m−W �m′)2

× e−1/8�2(Q �m−Q �m′)2
g�2(W − W �m, �m′

)

× g�2(Q − Q �m, �m′
). (24)

As for repeated measurements it is a linear superposition
of Gaussian PDFs with weights D �m, �m′

, however, with the
following differences:

1. for repeated contacts the contributing Gaussians for
work and heat factorize while for repeated measure-
ments they are correlated;

2. the widths of the contributing Gaussians are inde-
pendent of N given by � whereas those for repeated
measurements are proportional to

√
N�;

3. for repeated contacts nondiagonal contributions are
exponentially suppressed by rates [(W �m − W �m′

)2 +
(Q �m − Q �m′

)2]/(8�2) while for repeated measure-
ments the suppression is determined by rates of the

form
∑4N

k=1(e
mk
k − e

m′
k

k )2/(8�2).

Therefore, for repeated contacts only contributions with
different sequences �m and �m′ leading to different values of
work and heat are penalized while in the repeated measure-
ment approach deviations of individual components lead to
a suppression of coherences due to the monitoring.
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For repeated contacts with a nonselective heat measure-
ment the marginal PDF PRC,2P(W) defined as

PRC,2P(W) =
∫

dQPRC(W, Q)

=
∑

�m, �m′
D �m, �m′

e−1/8�2(W �m−W �m′)2
e−1/8�2(Q �m−Q �m′)2

× g�2(W − W �m, �m′
) (25)

differs by the extra factor of exp[−(Q�m − Q �m′)2/(8�2)]
from the PDF resulting from a mere work measurement
performed with a single pointer state. In the latter case one
obtains

PRC,1P(W) =
∑

�m, �m′
D �m, �m′

e−1/8�2(W �m−W �m′)2

× g�2(W − W �m, �m′
). (26)

For repeated contacts the same type of contextuality, i.e.
the dependence of the observed results on the presence of a
nonselective measurement, also holds for the marginal heat
PDF. In both cases it is more pronounced for rather impre-
cise registration, i.e., for pointer states with relatively large
variances �2. For repeated measurements the joint work
and heat PDF [see Eq. (17)] results according to Eq. (12)
in a classical way from the joint PDF p(�x) of all individual
energies. Therefore, repeated measurements do not present
this particular contextuality feature.

Once the work and heat PDFs are known for a specified
diagnostic method, the performance of the engine can be
characterized by its efficiency η and reliability R, which
are defined as

η = −〈W〉
〈Q〉 , (27)

R = − 〈W〉√
〈W2〉 − 〈W〉2

, (28)

where 〈·〉 denotes the average of the indicated quantity with
respect to the PDF of the considered diagnostic method.
While the efficiency provides a standard figure of merit of
engines, the reliability has been introduces as an impor-
tant performance measure only recently [21]. Higher-order
efficiencies as introduced in Ref. [48] can be obtained from
higher-order moments of work and heat. Also a fluctuating
efficiency, W/Q, can in principle be determined [49], but
is not considered here.

III. TWO-LEVEL SYSTEM AS A WORKING
SUBSTANCE

A. Work strokes

The general formulation outlined in Sec. II can be
applied to any working substance undergoing adiabatic

or nonadiabatic protocols. For a numerically feasible but
yet representative example, we use in this and subsequent
sections a two-level system as the working substance and
allow for nonadiabatic work strokes, i.e., strokes compris-
ing shifts of the instantaneous energy eigenstates and tran-
sitions between them during the unitary evolution. Without
specifying the time-dependent Hamiltonian in detail, the
system Hamiltonians Hc and Hh before and after the first
work stroke, respectively, are written as

Hc = εc (|+c〉〈+c| − |−c〉〈−c|) ,

Hh = εh (|+h〉〈+h| − |−h〉〈−h|) , (29)

where |−u〉 and |+u〉 denote the ground and the excited
states, respectively, of the Hamiltonian Hu with u = h, c.
The most general form of the unitary evolution, during the
work stroke, then reads

U = √
1 − α

(
e−iϕ|+h〉〈+c| + eiϕ|−h〉〈−c|

)

− √
α
(
|+h〉〈−c| − |−h〉〈+c|

)
, (30)

Ũ = √
1 − α

(
e−iϕ|+c〉〈+h| + eiϕ|−c〉〈−h|

)

+ √
α
(
|+c〉〈−h| − |−c〉〈+h|

)
. (31)

Above Ũ ≡ C∗U†C is the evolution operator for the time-
reversed protocol with the antiunitary operator K chosen
to be the complex conjugation operator C. Here α ∈ [0, 1]
is the transition probability between the ground and the
excited states and ϕ is the corresponding phase (both
parameters depend on the stroke protocol and in partic-
ular on its duration). The limiting case α = 0 refers to
an adiabatic process while α = 1 corresponds to a swap.
For example, a Landau-Zener protocol is described by the
time-dependent Hamiltonian

H(t) = −vt
2

σz − εcσx, (32)

where the velocity of the drive, v = 4
√

ε2
h − ε2

c /T1, is cho-
sen such that the eigenvalues of the Hamiltonian change
from ±εc at t = 0 to ±εh at t = T1/2, the time corre-
sponding to the duration of a work stroke. The parameters
specifying the unitary operator U are given in Ref. [50,51]
by

α = e−2πδ , δ = εcT1

4
√

(
εh
εc

)2 − 1
,

ϕ = π

4
− δ(log δ − 1) − arg�(1 − iδ), (33)

where �(z) denotes the Gamma function. For other proto-
cols characterized by a single parameter see Ref. [52] and
for more general cases Refs. [53,54].
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In the first instance we do not refer to a particular work
protocol and use the general form of a unitary time evo-
lution U as specified by Eq. (30). Before we do so, we
consider the heating and cooling strokes of the two-level
working substance that are achieved by a coupling to the
heat reservoirs at temperatures Th and Tc, respectively.
Depending on the duration and the strength of the respec-
tive contacts perfect or imperfect thermalization of the
two-level system can be reached.

B. Perfect thermalization

Provided that the contact between the working substance
and the heat bath is sufficiently long, the finally reached
reduced state of the two-level system is always the same,
dependent on the temperature of the heat bath and the
strength of the interaction but independent of its state ρ

at the beginning of the contact. Hence, the operation �u,
u = h, c describing a perfect thermalization stroke is given
by the projection onto the final state ρβ and can be written
as

�u(ρ) = ρuTr[ρ]. (34)

Only for weak coupling ρu, u = h, c coincides with the
Gibbs state ρu ∝ exp[−βuHu] defined by the Hamilto-
nian of the two-level system at the inverse temperature
βu. While these states lack coherence the latter may be
found in generalized Gibbs states resulting from the partial
trace of the total system’s Gibbs state with respect to the
bath [40,42]. For a perturbative treatment in the coupling
strength up to second order see Appendix A.

In the asymptotic limit of an initially sharp pointer state
with � = 0 the joint work and heat PDFs characterizing
a single cycle are identical for repeated measurements and
repeated contacts (two-pointer scheme), i.e., PRM

1 (W, Q) =
PRC

1 (W, Q). The first two moments can be expressed as

〈W〉 = Ac,h εh + Ah,c εc, 〈W2〉 = 2Bc,h
(
ε2

c + ε2
h

)

+
[

1 − Bc,h

1 − 2α
− (1 − 2α)

(
1 + Bc,h

)]
εcεh, (35)

〈Q〉 = −Ac,h εh, 〈Q2〉 = 2Bc,h ε2
h , (36)

〈WQ〉 = −2Bc,h ε2
h

− 1
2

[
1 − Bc,h

1 − 2α
− (1 − 2α)

(
1 + Bc,h

)]
εcεh,

(37)

with Ac,h = 2 (α + dc − dh − 2αdc) and Bc,h = 1 − (1 −
2α)(1 − 2dc)(1 − 2dh). Here, dc and dh denote the pop-
ulations of the exited states of the cold and the hot

density matrices, respectively, see Eqs. (A4) and (A5) in
Appendix A. Even when the Gaussian pointer has a finite
width � 
= 0, the differences between repeated measure-
ments and contacts in the average values of work and
heat are of the order exp[−ε2

c(h)/(2�2)], which could be
extremely small for a precise measurement apparatus, i.e.,
if εc(h) < �. On the other hand, the second moments dif-
fer by 3�2 + O(exp[−ε2

c(h)/(2�2)]), which is dominated
by the 3�2 term arising due to the difference in the num-
ber of measurements. Accordingly, also the reliability [see
Eq. (28)] differs for repeated contacts and repeated mea-
surements. Overall, however, even though the two mea-
surement schemes are quite different they do not show
major significant differences for a perfectly thermalizing
quantum Otto engine.

C. Imperfect thermalization

Perfect thermalization requires long times during which
the working substance is coupled to one of the two heat
baths, leading to long cycle periods and correspondingly
small power output of the engine. The dynamics of the
relaxation process in general is very complicated. A sub-
stantial simplification occurs only at weak coupling in the
Markovian limit in which the dynamics is governed by a
Lindblad equation

ρ̇u(t) = −i[Hu, ρu] + �+
u D+

u [ρu] + �−
u D−

u [ρu], (38)

with the subscript u = c, h, the dissipators D±
u [ρu] =

2L∓
u ρuL±

u − {L±
u L∓

u , ρu}, the rates �±
u = γ εu/(1 + exp

[∓2βuεu]), and the Lindblad jump operators L±
u =

|±u〉〈∓u|. The Hamiltonians Hu are given by Eq. (29).
Even though the stationary solutions of the master equa-
tions for the hot and the cold heat baths are given by
the Gibbs states, corresponding to the Hamiltonians Hu
at the respective temperatures βu and hence do not pos-
sess any coherence, the solutions of the master equa-
tions at any finite time in general do contain coher-
ences. This leads to differences between repeated mea-
surements and repeated contacts even in the limit of
infinite precision (� → 0). For a single cycle, starting
at some initial state ρ = d|+c〉〈+c| + (1 − d)|−c〉〈−c| +
[q|+c〉〈−c| + h.c.] one finds the following expressions for
the first two moments of work and heat for a small pointer-
state variance including leading-order O(�2) corrections:

〈W〉RM = 2α(1 − α)
[
εh tanh (βhεh) (1 − e−2γ θ )

+ εc(1 − 2d)(1 + e−2γ θ )
]

+
∑

j =0,1

[
(−1)j εh + εc

] [
1 + (−1)j (2α − 1)

]2

×
(

e(−1)j βhεh

eβhεh + e−βhεh
− d

)
(
1 − e−2γ θ

)
, (39)
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〈W〉RC = 〈W〉RM − 4εcα(1 − α)(1 − 2d)e−γ θ cos [2(θ + ϕ)] , (40)

〈W2〉RM = 4
(
ε2

h + ε2
c

) {
(α + d − 2αd) + [(1 − 2d)(1 − 2α) − 2α2d

] e−βhεh

eβhεh + e−βhεh

} (
1 − e−2γ θ

)

+ 8εhεc

{
α2(1 − 2d) − (1 − 2α)d − [(1 − 2d)(1 − 2α) − 2α2d

] e−βhεh

eβhεh + e−βhεh

} (
1 − e−2γ θ

)

+ 4ε2
c α(1 − α)e−2γ θ + 4�2, (41)

〈W2〉RC = 〈W2〉RM − 8ε2
c α(1 − α)e−γ θ cos [2(θ + ϕ)] − 3�2, (42)

〈WQ〉RC = −4ε2
h

{
(α + d − 2αd) + [(1 − 2d)(1 − 2α) − 2α2d

] e−βhεh

eβhεh + e−βhεh

} (
1 − e−2γ θ

)

− 4εhεc

{
α2(1 − 2d) − (1 − 2α)d − [(1 − 2d)(1 − 2α) − 2α2d

] e−βhεh

eβhεh + e−βhεh

} (
1 − e−2γ θ

)
, (43)

〈WQ〉RM = 〈WQ〉RC − 2�2, (44)

where θ = εhτh with τh being the duration of the hot
bath stroke. A dependence of the moments on the ini-
tial coherence parameter q is only seen in higher-order
�2 corrections. From the expressions of these moments
the according variances and the covariance of work and
heat can be obtained. Instead of these bulky expressions
we present the variances and covariances for the two
monitoring schemes in Figs. 2(a) and 2(b) as functions
of θ . The difference between repeated measurements and
repeated contacts is governed by damped oscillations stem-
ming from the e−γ θ cos [2(θ + ϕ)] term in the deviation of
the first two work moments, see Eqs. (40) and (41) and
Figs. 2(c) and 2(d). Yet, the maximal amplitude of these
oscillations is rather small rendering the (co)variances
for repeated measurements and repeated contacts almost
identical.

The moments of heat can be obtained by setting εc = 0
and multiplying appropriate global signs (negative for odd
order moments and positive for even ones) in the expres-
sions for the moments of work. As seen from the above
equations, this also implies that the average heat for two-
pointer repeated contacts and repeated measurements are
the same, i.e., 〈Q〉 = 〈Q〉RM = 〈Q〉RC. The variances of the
heat behave in a similar way as those of the work as pre-
sented in Fig. 2 with solely a constant difference of 3�2

between repeated measurements and repeated contacts and
therefore are not extra displayed. Note that the engine may
starts at an arbitrary initial state specified by the parame-
ters d and q. Here and in the following examples, however,
we initiate the monitored sequence of N cycles with the
invariant state ρ∗ of the map F , i.e.,

ρ∗ = FRC(ρ∗), (45)

where

FRC(ρ) = �c[Ũ�h(UρU†)Ũ†] (46)

describes the dynamics of a complete cycle in the absence
of any monitoring.

Furthermore, we note that the master Eq. (38), which
governs the thermalization strokes of the engine, leads to
decoupled equations of motion for the populations and
coherences. Hence, the thermalization maps �u resulting
as the solutions of the master Eq. (38) obey the conditions

Tr[L±
u �u(Pk

u )] = Tr[Pk
u�u(L±

u )] = Tr[L±
u �u(L∓

u )] = 0,
(47)

with swap operators L±
u = |±u〉〈∓u|, as defined below

Eq. (38), and Pk
u = |ku〉〈ku| with k = ±, denoting the

projection operators onto the eigenstates of the Hamilto-
nian Hu. Due to this decoupling, the work PDFs for one-
and two-pointer repeated contacts become identical and
we denote the average value as 〈W〉RC (see Appendix B
for more details). In the limit θ → ∞, � = 0, and ρ =
ρc, which leads to perfect thermalization, Eqs. (39)–(42)
match Eqs. (35)–(37). For a highly nonadiabatic work
stroke (α large) the cosine terms in the expressions for the
first two moments play a significant role. Then the sign of
cos[2(θ + ϕ)] determines which one of the two monitor-
ing schemes leads to a larger work on average for a single
cycle. This affects also the efficiency of the engine because
the average heat is the same for either scheme.

IV. NUMERICAL RESULTS

For a working substance with a d-dimensional Hilbert
space, the number of possible realizations of (�m, �m′)
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(a) (b)

(c) (d)

FIG. 2. Variance of work 〈δW2〉 = 〈W2〉 − 〈W〉2 and the
covariance of work and heat, 〈δWδQ〉 = 〈WQ〉 − 〈W〉〈Q〉, for
repeated contacts and repeated measurements for a single cycle
as a function of the dimensionless time of contact with the heat
baths, θ = εhτh = εcτc are drawn in (a) and (b), respectively. The
dashed horizontal lines represent the asymptotic values in the
perfect thermalization limit θ → ∞. In both of the plots, the dif-
ferences, which are almost imperceptible in (a) and (b), can be
divided into two parts. The first part is the constant shift pro-
portional to �2 in Eqs. (41) and (42). The remaining nontrivial
differences (NTDs), which are plotted in (c) (for 〈δW2〉) and (d)
(for 〈δWδQ〉), result from the terms proportional to cos[2(θ + ϕ)]
in Eqs. (40) and (41). The engine parameters are as follows: The
initial half energy gap εc = 1, the final half energy gap εh = 3.7,
and the Gaussian width of the measurement is � = 0.2. The
work strokes are characterized by α = 0.1 and ϕ = 0. The imper-
fect thermalization strokes follow a master-equation dynamics,
which asymptotically approaches Gibbs states at the tempera-
tures βc = 0.25, βh = 0.025 at the relaxation rate γ = 0.025.
The engine is started in the invariant state ρ∗ [Eq. (43)] of the
unobserved cycle dynamics given by Eq. (B20).

increases exponentially as d8N , and so do the coefficients
D �m, �m′

. Hence, the computational resources (CPU time and
RAM) required to track the individual coefficients become
inaccessible even for d = 2 already at a moderately large
number of cycles. To avoid this numerical impossibility,
we device a scheme to reduce the computational complex-
ity to N 2 by grouping terms according to their work values.
The scheme (see Appendix C for details) is restricted to
a two-level working substance undergoing thermalization
strokes that are governed by decoupled population and
coherence dynamics as specified by Eq. (45). Under these
conditions the method is exact and allows us to obtain the
work distributions for a large number of cycles such that
the asymptote can be reached.

A. One cycle, perfect thermalization

Figure 3 presents the joint and marginal work and heat
PDFs of an engine with perfect thermalization for a sin-
gle cycle (N = 1). Panel (a) displays the work PDFs for
repeated measurements and repeated contacts for adiabatic
work strokes, i.e., for α = 0. In this case, there is no differ-
ence between the marginal two-pointer work PDF given
by Eq. (25) and the one-pointer work PDF Eq. (26) as
explained in Appendix D. In accordance with Eq. (26) the
PDF consists of three peaks located at W = 0 and W =
±2(εc − εh) because transitions between different energy
levels are impossible for adiabatic work strokes. These
peaks are broader for repeated measurements compared to
repeated contacts. This feature prevails for nonadiabatic
work strokes. In (b) we present the results for moderately
and strongly nonadiabatic work strokes. In order not to
clutter the plot we present only the work PDFs result-
ing from repeated contacts. With decreasing adiabaticity
(increasing α) six further peaks appear in accordance with
Eq. (26) accompanied by a decrease of the weights of the
three adiabatic peaks. At the same time the weights of
those peaks at positive work values may increase to such
an extent that the average work becomes positive. That
means that the engine consumes only energy rather than
to perform work. As for classical engines any nonadia-
baticity is detrimental with respect to the efficiency but
must be accepted to achieve finite power. The same fea-
tures as described for repeated contacts also hold for the
repeated measurement PDFs with the only difference that
their peaks are broader.

Figures 3(c) and 3(d) present the joint work and heat
PDFs for repeated measurements and contacts, respec-
tively. In the case of repeated measurements, each individ-
ual Gaussian contribution contains a negative covariance
indicating an anticorrelation of the according work and
heat contributions. In contrast, for repeated contacts the
individual Gaussian contributions are isotropic. In both
cases the main contribution to the covariance of work and
heat results from the linear superposition of the individual
Gaussian distributions.

B. N cycles, imperfect thermalization

Numerical results for adiabatic and nonadiabatic work
strokes and imperfect thermalization are presented in
Fig. 4. Panels (a) and (b) display the work PDFs for
repeated measurements and repeated contacts for two dif-
ferent numbers of cycles N . For the smaller number of
cycles, N = 5, still several peaks are visible in the repeated
measurements work PDF. Because their widths grow as√

N this multiply peaked structure disappears with increas-
ing number of cycles to finally approach a Gaussian shape,
which in the present case is virtually indistinguishable
from the exact PDF for N = 30. In contrast, the fine struc-
ture of the repeated contact work PDF remains visible
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(a) (b)

(c) (d)

2P

FIG. 3. (a),(b) The PDFs of work for adiabatic work strokes
(α = 0) and different measurement schemes (a) as well as for
different nonadiabatic work strokes (b). Solid lines represent
two-pointer repeated-contact PDFs, and the dashed line presents
the PDF for repeated measurements. One-pointer results are not
drawn since they are exactly the same as for the two-pointer
scheme for α = 0 and have a negligible difference for α 
= 0. (c)
The joint PDF of work and heat calculated for repeated measure-
ments, and (d) the joint PDF calculated for two-pointer repeated
contacts. The PDFs are computed for perfect thermalization with
thermal baths at inverse temperatures βc = 0.25, βh = 0.025,
both characterized by the the same Ohmic spectral density
with Lorentz-Drude cutoff frequency ωD = 0.2, system operator
S = σz + σx, and damping coefficient γ = 0.5. This results in
density matrices with an excited-state probability dc = 0.37759
and dh = 0.45388, and coherence qu = 〈+u|ρu|−u〉 given by
qh = −1.9205 × 10−6 and qc = 5.0813 × 10−5 (see Appendix A
for details). The phase during the nonadiabatic evolution is set to
ϕ = 0 in all cases, and the joint PDF is shown for α = 0.1. The
engine is started in the generalized Gibbs state of the cold bath
with parameters dc and qc. All other parameters are the same as
in Fig. 2.

also for large numbers of cycles due to the fact that the
widths of the individual Gaussian contributions are solely
determined by the initial pointer state and hence are N
independent.

In Fig. 4(c) the average work per cycle is displayed as
it results as a function of the number of cycles both for
repeated measurements (red closed circles) and repeated
contacts (blue crosses). The initial state of the working
substance is chosen as the asymptotic state of an unob-
served engine reached after sufficiently many cycles. Only
for a single cycle (N = 1) the average work for repeated

(a) (b)

(c) (d)

FIG. 4. (a) Plot of the work PDFs for repeated measurements
(red) and repeated contacts (black) for N = 5 cycles and (b)
does so for N = 100. Two-pointer and one-pointer repeated
contacts give exactly the same PDFs of work due to the dynam-
ical decoupling between populations and coherences during the
thermalization process (see text for details). While for repeated
contacts separate sharp lines with N -independent widths remain
visible also for large numbers of cycles, the according terms for
repeated measurements contribute with a width ∝ √

N and hence
merge in a broad, practically Gaussian PDF. (c),(d) The average
work output per cycle and the engine’s reliability, respectively.
The horizontal black dashed lines in (c) correspond to the asymp-
totic values of the average work per cycle obtained from the
analytic maps described in Appendix B. The reliability scales as
the square root of the cycle number N for large N . The repeated
measurement scheme has a detrimental impact on the engine
in terms of both average work output and reliability. The work
strokes are characterized by nonadiabatic parameters α = 0.05,
ϕ = 0. The energy gaps are chosen as εc = 1 and εh = 3.7. The
bath parameters are βc = 0.25, βh = 0.025, the coupling con-
stant γ = 0.025, and the thermalization times is taken such that
θ = εcτc = εhτh = 8. All pointer states initially are Gaussian
with a width of � = 0.2. The engine is started in the according
invariant state ρ∗ [Eq. (43)] of the unobserved cycle dynamics
given by Eq. (B20).

measurements is larger than that for repeated contacts. For
any larger number of cycles the repeated contact scenario
outperforms the repeated measurements both with respect
to the average work [see (c)] and the reliability [see (d)]. As
a function of the number of cycles, the work behaves like
a biased random walk in that its first and second moments
asymptotically grow in proportion to the number of cycles
yielding a constant work per cycle and a reliability that
increases as the square root of the number of cycles.

For repeated measurements a map can be constructed
that assigns the density matrix of the working substance

040328-10



MONITORING QUANTUM OTTO ENGINES PRX QUANTUM 2, 040328 (2021)

after a cycle to any initial density matrix. The map pos-
sesses a unique invariant state describing the asymptotic
regime of a large number of cycles. This state can be used
to calculate the asymptotic average work per cycle, see
Appendix B. Even though such a map of the reduced work-
ing substance density matrix does not exist for repeated
contacts, in the special cases of the Lindblad Eq. (38)
that dynamically decouples populations and coherences,
the asymptotic value of the average work can be deter-
mined from the asymptotic density matrix in the absence of
any contacts or measurements, see Appendix B. This unob-
served asymptotic density matrix of the working substance
can again be obtained as the invariant state of a quantum
map in the absence of contacts as considered in Ref. [55].
The resulting average works are presented in (c) as dashed
black lines.

C. Power of a Landau-Zener engine

So far we have characterized the two work strokes by the
Hamiltonians of the expanded and the compressed working
substances [see Eqs. (32) and (33)] and unitary operators
specifying the changes of its state, however, without spec-
ifying a particular forcing protocol. As a consequence,
the duration of the work strokes is not specified. In gen-
eral, determining the unitary time-evolution operator for
a particular forcing protocol of given duration presents a
nontrivial task [52,54]. In order to also have full control
over the duration of an engine cycle we consider a forc-
ing protocol with a linear driving as specified in Eq. (32).
The unitary time evolution for a work stroke of the dura-
tion T1/2 is then determined by the parameters as given
in Eq. (33). The duration of the thermalization strokes,
τh and τc are assumed to be fixed by a single parameter
θ = εcτc = εhτh, resulting in the total thermalization time

T2 = τc + τh = θ(1/εh + 1/εc). (48)

Therefore, a single cycle takes the time T1 + T2. The power
of the engine is given by

P = − 〈W〉
T1 + T2

, (49)

where 〈W〉 denotes the average work performed on the
working substance per cycle.

In Fig. 5 the power and the efficiency for repeated con-
tacts and repeated measurements as well as for different
numbers of cycles are presented as functions of the dura-
tion of the work and thermalization strokes. The variance
of the pointer states is chosen relatively small such that
coherences that may build up during the nonadiabatic work
strokes and also partially during an imperfect thermaliza-
tion, are almost completely suppressed by repeated mea-
surements while they can partly survive in the presence of
repeated contacts. Because the generation of coherences is

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

(j) (k) (l)

FIG. 5. Power per cycle (a)–(f) and average efficiency (g)–(l)
as a function of work and heat-stroke durations T1 and T2 with
cycle number N = 1 (a),(d),(g), and (j), N = 20 (b),(e),(h), and
(k), and N = ∞ (c),(f),(i), and (l); see Appendix B. (a)–(c) and
(g)–(i) are for the engine measured via repeated contacts whereas
the other panels are for repeated measurements. The white region
in all panels correspond to the dud regime of the engine. The
extended dark red regions in (g)–(l) indicate regimes with effi-
ciencies close to the ideal Otto engine value 1 − εc/εh ≈ 0.73.
Fixed parameters are εc = 1, εh = 3.7, θ = εcτc = εhτh = 8,
βc = 0.25, βh = 0.025, γ = 0.025, and � = 0.2. The engine is
always started in the invariant state ρ∗ [Eq. (43)] of the according
unobserved cycle dynamics given by the Eq. (B20).

further suppressed in the limit of adiabatic work processes
as well as for perfect thermalization, one finds substantial
differences between repeated measurements and repeated
contacts for small values of T1 and small to intermedi-
ate values of T2. As already observed in Sec. A, the total
average work performed on the working substance in a
single cycle becomes positive for perfect thermalization
and work strokes with a sufficiently large parameter α and
hence for a sufficiently short duration of the work strokes.
This feature of a dud engine with formally negative power
and efficiency persists for imperfect thermalization and
also for any numbers of cycles at sufficiently small values
of the work-stroke duration T1 indicated as white regions
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(a)

(b) (c)

FIG. 6. Maximum power P∗, with respect to durations T1 and
T2, of the engine as a function of cycle number N for both
repeated contacts and repeated measurements, blue and red sym-
bols, respectively (a). The dashed lines represent the asymptotic
values of maximum power of the engines in their periodic state
asymptotically reached after many cycles, see Appendix B. The
deviations of the engine from this limiting behavior decay expo-
nentially as the cycle number increases. (b) The slowest decaying
factor �2 (see Appendix B last paragraph for definition) in
engines monitored by repeated contacts, while (c) is the corre-
sponding plot of engines being repeatedly measured. The initial
condition for the engine in (a) is again given by the according
invariant state ρ∗ as in the previous figures. The other parameters
εc = 1, εh = 3.7, θ = εcτc = εhτh = 8, βc = 0.25, βh = 0.025,
and γ = 0.025 are the same as in Fig. 5.

in Fig. 5. The border between the regions of a properly
working and a faulty engine displays well-pronounced
oscillations as a function of T2 for any number of cycles
in the case of repeated contacts. The fact that these oscil-
lations are visible in the case of repeated measurements
only for a small number of cycles indicates that they are
caused by coherences, which are suppressed by repeated
measurements.

The dependence of the maximal power P∗ = maxT1,T2 P
on the number of cycles for repeated measurements and
contacts is displayed in Fig. 6(a). This maximum is chosen
from the set of all engines with variable stroke times T1 and
T2 and with all other parameters fixed. In both cases, the

power approaches an asymptotic value at large numbers of
cycles. While the asymptotic limit is reached from above
already after a few cycles for repeated measurements, it is
approached considerably slower from below for repeated
contacts. The asymptotic values are indicated as broken
horizontal lines. In both cases, these values can be deter-
mined from the respective invariant solutions of the maps
that propagate the density matrix cycle by cycle. For the
repeated contact scenario, the map describes the dynamics
in the absence of any monitoring, while for the repeated
measurement scenario it describes the single-cycle engine
dynamics in the presence of nonselective energy measure-
ments at the times indicated in Fig. 1. For a more detailed
description we refer to Appendix B.

For the considered parameter values of the engine, the
position where the maximum power is assumed in the T1-
T2 plane turns out to be almost independent of the number
of cycles. Therefore, the convergence speed of the map
as it is iterated, mainly determines the convergence of
the power with increasing number of cycles as it can be
seen in Fig. 6(a). For sufficiently many cycles the conver-
gence speed is ruled by the second largest eigenvalue of
the respective map, while its largest eigenvalue is given
by �1 = 1. It is nondegenerate for all engines with a pos-
itive thermalization time T2 > 0. The dependence of the
second largest eigenvalue �2 as a function of T1 and T2
is exemplified in Figs. 6(b) and 6(c). In both scenarios
the second eigenvalue converges for large thermalization
times to zero, however, much faster for repeated mea-
surements than for repeated contacts in agreement with
the faster convergence of the maximal power towards its
asymptotic limit, i.e., �RM

2 < �RC
2 . Outside the regime of

short work strokes, the second eigenvalue is almost inde-
pendent of T1 as it is primarily determined by the duration
and strength of the thermalization strokes.

V. CONCLUSIONS

In this paper, we compared two different monitoring
schemes, both designed to record the statistics of work
performed on and heat supplied to a quantum Otto engine
over a specified number of engine cycles. Based on these
statistics, we investigated the performance of such engines
running subject to different modes of operation, such as
different work strokes ranging from adiabatic to sudden
compression and expansion of the working substance,
and different types of heating and cooling strokes. The
method was formulated for general working substances
and exemplified for a two-level system acting as working
substance.

Apart from the joint and marginal work and heat
PDFs, we studied performance measures such as effi-
ciency, power, and reliability that are all determined by
the first two moments of work and heat. For an engine
that performs N cycles, the two monitoring schemes are
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based on contacts of the working substance with one, two,
or 4N pointers, depending on the particular scheme. These
engine-pointer contacts are supposed to be so short that the
dynamics of the working substance is frozen during these
moments but effective enough to induce a change of the
pointer state depending on the actual energy of the system.

For the repeated measurement scheme each contact is
immediately followed by a projective measurement of the
pointer state whose value corresponds to the energy of the
working substance at the instant of the contact, hence rep-
resenting a generalized energy measurement according to
the von Neumann scheme. The precision of the measure-
ment can be controlled by the position variance �2 of
the initial pointer states, which we supposed to be Gaus-
sian and identical for all employed pointers. From the
joint statistics of all measured energy values, the joint and
marginal PDFs of work and heat can be found. These PDFs
result as linear superpositions of Gaussian contributions
with centers at work and heat values given by proper sums
and differences of the 4N energy values but also fictitious
values resulting from a double set of energies. The latter
though are exponentially suppressed provided the variance
�2 is sufficiently small. All contributing Gaussians are of
the same shape with a variance growing proportionally
to the number of cycles leading to a smeared out, almost
Gaussian PDF for sufficiently large numbers of cycles.

For repeated contacts there are just two pointers one
being associated to work and the other one to heat. These
pointers are “kept on” during the whole monitored period
of cycles. At each contact the pointer state is modified
according to the present energetic state of the working sub-
stance, left unchanged during the strokes and read out by
projective position measurements only after the comple-
tion of N cycles. The energetic states at the subsequent
contacts are inscribed with alternating signs in the work
pointer. For the heat pointer only those contacts before
and after a heat stroke are registered with appropriate
signs. It is interesting to note that the marginal distri-
butions of work obtained from the joint work and heat
PDF in general differ from the work PDF of a repeated-
contact scheme with only the work pointer but without the
heat pointer. The same holds for the heat PDFs obtained
either as the marginal of the joint work and heat PDF or
as the outcome of a single-heat-pointer repeated-contact
scheme. This aspect of quantum contextuality is absent
in the repeated-measurement scheme. It indicates a higher
sensitivity of the repeated-contact scheme to the quantum-
ness of a process as compared to the repeated-measurement
scheme.

The higher sensitivity of the repeated-contact scheme
is closely related to the lesser back action of the sole
contacts as compared to the individual readout of the
pointer-state position for repeated measurements lead-
ing to different suppression factors making long-lived
coherences possible. In the example of an Otto engine with

a two-level system working substance and imperfect ther-
malization strokes this manifests itself in an average work
per cycle that first increases with the number of cycles
and finally saturates at a constant value for repeated con-
tacts. In contrast, for repeated measurements, the average
work per cycle decreases towards an asymptotic value that
is smaller than that for repeated contacts. Accordingly,
the power but also the efficiency as well as the reliabil-
ity of the work, defined as the ratio of the average work
and its root-mean-square deviation, are larger for repeated
contacts than for repeated measurements provided that the
engine protocol allows coherences being still present after
a cycle. Due to the less strong back action imposed by
repeated contacts in comparison to repeated measurements
these coherences may subsist leading to a better perfor-
mance of a repeated-contacts-monitored engine. We expect
that this behavior is not restricted to the special case of a
two-level working substance but that it prevails in general.

In a recent work, Watanabe et. al. [56] studied the
amount of energy a quantum Otto engine may deposit
into an external system over several engine cycles. The
comparison of the amount of out-coupled energy into a
“flywheel” with the energy produced by the free engine
according to a repeated contact diagnostic scheme may
provide further insight into the effectiveness of charging
and discharging strategies of quantum batteries.
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APPENDIX A: GENERALIZED GIBBS STATE

The generalized Gibbs state can be obtained up to sec-
ond order in a system-bath interaction using canonical
perturbation theory [42]. In this Appendix we omit the sub-
scripts c or h used in the main text for the cold and hot
reservoir for notational simplicity. The generalized Gibbs
state

ρ = TrB
[
e−βHtot

]

Tr
[
e−βHtot

] , (A1)

can be interpreted as the reduced density matrix of an
extended system governed by the total Hamiltonian Htot =
HS + HB + V in a canonical state at the inverse tempera-
ture β. Here, HS and HB, denote the Hamiltonians of the
proper system and the bath, respectively, and V denotes
the interaction. We assume that the bath is composed of
independent harmonic oscillators of frequency ωn and the
system-bath interaction takes the form V = −S ⊗∑n cnxn,
with S being a system operator and xn being the position
operator of the nth mode of the bath coupling to the sys-
tem via strength cn. Performing a perturbative expansion
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upto second order in V we obtain

ρ = e−βHS

ZS
+ D

ZS
− e−βHS Tr[D]

Z2
S

. (A2)

Above ZS = Tr[exp(−βHS)] is the system partition func-
tion of the bare system and the operator D encodes
information about finite system-bath coupling, i.e.,

D = e−βHS

[ ∫ β

0
dβ1

∫ β1

0
dβ2 S̃β1 S̃β2C[−i(β1 − β2)]

]
.

The operator S̃x = exHS Se−xHS is the imaginary-time free
evolution of the system operator and the force-force corre-
lator C(τ ) =∑n,n′ cncn′Tr[e−βHB x̃n(τ )xn′]/Tr[e−βHB] with
x̃n(τ ) = eiτHBxne−iτHB . The force-force correlator can be
expressed in terms of the spectral density of the bath,

J (ω) = π
∑

n

c2
n

2mnωn
δ(ω − ωn), (A3)

as

C(τ ) =
∫ ∞

0
dω

J (ω)

ω

[
coth

(
βω

2

)
cos(ωτ) − i sin(ωτ)

]
.

For our perfectly thermalizing two-level Otto engine dis-
cussed in Sec. III we use the system operator S = σz + σx
such that the density matrix

ρ = d|+〉〈+| + (1 − d)|−〉〈−| + [q|+〉〈−| + h.c.],
(A4)

with

d = e−βε

ZS

(
1 + 4

∫ β

0
dλ

(β − λ) sinh(2ελ)

(1 + e−2βε)
C(−iλ)

)
,

q = e−βε

ZS

∫ β

0
dλ

e2βε(e−2ελ − 1) + (e2ελ − 1)

ε
C(−iλ),

(A5)

with ZS = eβε + e−βε . Throughout this work we have used
an Ohmic spectral density with Lorentz-Drude cutoff as
J (ω) = γω/(1 + ω2/ω2

D) for all our numerical simula-
tions.

APPENDIX B: REDUCED MAPS FOR MEASURED
ENGINES

In this section, we present the methods to determine the
map for the average work performed in the (N + 1)th cycle
based on the knowledge of the average work performed
during N cycles. In the case of repeated measurements,
the map fully captures the distribution of work performed

at any (N + 1)th cycle, whereas for repeated contacts we
introduce a fictitious work distribution whose average is
equivalent to the asymptotic average work per cycle. The
method is explained for work performed in the last cycle
but can likewise be applied for the heat absorbed in the last
cycle.

1. Repeated measurements

First, we consider the case of repeated measurements.
As described in Sec. B, in this case after every stroke a new
Gaussian pointer is adopted, brought into contact with the
engine, and measured. We begin with the non-normalized
density matrix for (N + 1) cycles, using Eq. (6),

φRM
�xN+1

(ρ)

=
∑

�mN+1, �m′
N+1

D �mN+1, �m′
N+1(ρ)

4(N+1)∏

k=1

σ
(
xk − emk

k , xk − e
m′

k
k

)
.

(B1)

Utilizing the relation in Eq. (7), splitting the product above
into one for N cycles and the other for the (N + 1)th cycle,
and using the non-normalized density matrix for N cycles
[Eq. (6)] we can rewrite the above equation as

φRM
�xN+1

(ρ) =
∑

m,m′
Sm,m′ [

φRM
�xN

(ρ)
]

×
4(N+1)∏

k=4N+1

σ
(

xk − emk
k , xk − e

m′
k

k

)
. (B2)

The work performed in the (N + 1)th cycle is given by

W(N+1) =
4(N+1)∑

k=4N+1

(−1)kek, (B3)

and its corresponding PDF is

PRM(W(N+1)) =
∫

d4(N+1)x δ

(
W(N+1) −

4(N+1)∑

k=4N+1

(−1)kxk

)

× p(�xN+1), (B4)

with p(�xN+1) = Tr[φRM
�xN+1

(ρ)] according to Eq. (9). Not-
ing that the integration variables within the delta function
depend only on the (N + 1)th cycle pointer positions xk,
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the integral can be split as

PRM(W(N+1)) =
∫

dx δ

(
W(N+1) −

4(N+1)∑

k=4N+1

(−1)kxk

)

×
∫

d4N x p(�xN+1), (B5)

with x defined by �xN+1 = �xN ⊕ x. All information about
the previous N cycles is contained in the rightmost integral
above. Hence, using Eq. (B2) this integral can be expressed
as
∫

d4N x p(�xN+1) =
∑

m,m′
Tr
[

Sm,m′
(∫

d4N x φRM
�xN

(ρ)

)]

×
4(N+1)∏

k=4N+1

σ
(

xk − emk
k , xk − e

m′
k

k

)
.

The simplification on the rhs implies that as long as
we know the map Sm,m′

and the state it acts on, i.e.,∫
d4N x φRM

�xN
(ρ), we can evaluate the work distribution

PRM(W(N+1)). Thus, the task reduces to finding the map
FRM, such that,
∫

d4N x φRM
�xN

(ρ) = FRM
(∫

d4N−4x φRM
�xN−1

(ρ)

)
. (B6)

Using Eq. (B2) with N → N − 1 and integrating both
sides we can easily obtain the map,

FRM(�) =
∑

m̃,m̃′
Sm̃,m̃′

(�)

4N∏

k=4N−3

e
− 1

8�2

(
e

mk
k −e

m′
k

k

)2

, (B7)

where � = ∫ d4N−4x φRM
�xN−1

(ρ), m̃(′) are defined by the

sequence �m(′)
N = �m(′)

N−1 ⊕ m̃(′). Note the difference between
m̃(′) and m(′) is that N is replaced by (N + 1) in the con-
catenation. The map FRM is Markovian since it gives us
the state at the N th cycle given the state at N − 1 [see
Eq. (B6)]. Overall, in the case of repeated measurements
since the map FRM is known it is straightforward to obtain
the work PDF for the work performed in the (N + 1)th
cycle using Eqs. (B5)–(B7).

2. Repeated contacts

In the case of repeated contacts, one cannot assign a
value of work to each individual cycle as we did with
W(j ) for repeated measurements by using the classically
stored information about the outcomes of the sequence
of energy measurements for N cycles. To circumvent this
problem we restrict our consideration to engines with a
working substance consisting of a two-level system and

moreover being subject to thermalization strokes obeying
the decoupled population and coherences dynamics spec-
ified by Eq. (45). In this case we are able to introduce a
fictitious work PDF that can be computed recursively and
that determines the average work per cycle in the limit of
large cycle numbers when the engine has reached a steady
mode of operation.

In order to proceed, we begin with the work PDFs
defined in Eqs. (25) and (26),

PRC,2P(W) =
∑

�m, �m′
D �m, �m′

e−1/8�2(W �m−W �m′)2

× e−1/8�2(Q �m−Q �m′)2
g�2(W − W �m, �m′

),

PRC,1P(W) =
∑

�m, �m′
D �m, �m′

e−1/8�2(W �m−W �m′)2
g�2(W − W �m, �m′

).

(B8)

In the case of dynamical decoupling between popula-
tions and coherences for a two-level working substance,
Eq. (45), only the terms with

em2i
2i − e

m′
2i

2i = em2i+1
2i+1 − e

m′
2i+1

2i+1 (B9)

∀i = 1, . . . , 2N − 1 contribute to the work distributions
(see Appendix 3 for details). This simplifies the exponents
[see Eq. (22) and (23)] appearing in the work distributions,
namely,

W �m − W �m′ = −em1
1 + e

m′
1

1 + em4N
4N − e

m′
4N

4N , (B10)

Q �m − Q �m′ = 0. (B11)

Thus, for the models considered in Secs. B and C the one-
and two-pointer work PDFs always coincide. Moreover,
using the above simplifications one can easily identify the
non-normalized reduced density matrix for the working
substance as,

φRC
W (ρ) =

∑

�m, �m′
D �m, �m′

(ρ) e
−1/8�2

(
e

m1
1 −e

m′
1

1

)2

× g�2

(
W − W �m, �m′)

=
∑

�m, �m′
D �m, �m′

(ρ̃)g�2

(
W − W �m, �m′)

. (B12)

Here we also omit the only remaining contribution em4N
4N −

e
m′

4N
4N to the exponential factor e−(W �m−W �m′

)2/(8�2) because

the terms D �m, �m′
with em4N

4N 
= e
m′

4N
4N vanish in the final

trace operation applied to obtain the work PDFs from
the non-normalized reduced density matrices. In addi-
tion, we made use of the fact that the innermost part
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of the telescopic action of the map D �m, �m′
on ρ is given

by Pm1
1 ρPm′

1
1 , see Eq. (7). Splitting the density matrix

ρ into its diagonal part ρd =∑m=1,2 Pm
1 ρPm

1 and the
remaining coherence contribution ρc = ρ − ρd one obtains

exp
[
−(em1

1 − e
m′

1
1 )2/(8�2)

]
Pm

1 ρPm′
1 = Pm

1 ρ̃Pm′
1 where

ρ̃ ≡ ρd + e−ε2
c /2�2

ρs. (B13)

Note that the map ρ → ρ̃ preserves the trace and the
positivity.

Next we introduce the fictitious work distribution

P̃RC(W(N+1)) =
∫

dx δ

(
W(N+1) −

4(N+1)∑

k=4N+1

(−1)kxk

)

×
∫

d4N x p̃(�xN+1), (B14)

which exactly resembles Eq. (B5) with,

p̃(�xN ) =
∑

�mN , �m′
N

Tr
[
D �mN , �m′

N (ρ̃)
] 4N∏

k=1

g�2

[
xk − 1

2

(
emk

k + e
m′

k
k

)]
. (B15)

The average work from the fictitious distribution,

〈W(N+1)〉 =
∫

dW(N+1) W(N+1)P̃RC(W(N+1)), (B16)

represents the difference of the average work performed by the engine in the (N + 1)th and N th cycle, i.e., 〈W(N+1)〉 =
〈W〉N+1 − 〈W〉N (this relation follows from the definitions of the individual quantities as explained below). As the moni-
tored engine reaches its asymptotic state, 〈W(∞)〉 represents the average work performed by the engine per cycle, similarly
to the repeated-measurements case, because the monitoring process on average has the same effect on the engine state in
the N th and (N + 1)th cycle after sufficiently many cycles.

The average work performed in (N + 1) and in N cycles can be written as

〈W〉N+1 =
∫

dW W
∑

�mN+1, �m′
N+1

Tr
[
D �mN+1, �m′

N+1(ρ̃)
]

g�2(W − W �mN+1, �m′
N+1)

=
∫

dW W
∑

m,m′
Tr
{

Sm,m′

⎡

⎣
∑

�mN , �m′
N

D �mN , �m′
N (ρ̃)

⎤

⎦
}

g�2(W − W �mN , �m′
N − Wm,m′

),

〈W〉N =
∫

dW W
∑

m,m′
Tr
{

Sm,m′

⎡

⎣
∑

�mN , �m′
N

D �mN , �m′
N (ρ̃)

⎤

⎦
}

g�2(W − W �mN , �m′
N ).

The third line holds because the nonselective map FRC that is defined as

FRC(�) =
∑

m̃,m̃′
Sm̃,m̃′

(�), (B17)

in accordance with Eq. (46). It preserves the trace so that

∑

m,m′
Tr
{

Sm,m′

⎡

⎣
∑

�mN , �m′
N

D �mN , �m′
N (ρ̃)

⎤

⎦
}

=
∑

�mN , �m′
N

Tr
[
D �mN , �m′

N (ρ̃)
]

.
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Now the difference �W = 〈W〉N+1 − 〈W〉N becomes

�W =
∑

m,m′
Tr
{

Sm,m′

⎡

⎣
∑

�mN , �m′
N

D �mN , �m′
N (ρ̃)

⎤

⎦
}∫

dW W
[
g�2(W − Wm,m′

) − g�2(W)
]

=
∑

m,m′
Tr
{

Sm,m′

⎡

⎣
∑

�mN , �m′
N

D �mN , �m′
N (ρ̃)

⎤

⎦
}
Wm,m′

,

where we shift the integrand by the amount of W �m, �m′
and use the normalization of the Gaussian distributions. On the other

hand,

〈W(N+1)〉 =
∫

dW(N+1) W(N+1)P̃RC(W(N+1))

=
∫

dW(N+1)

∫
dx W(N+1)δ

(
W(N+1) −

4(N+1)∑

k=4N+1

(−1)kxk

)
∑

�mN+1, �m′
N+1

Tr[D �mN+1, �m′
N+1(ρ̃)]

×
4(N+1)∏

k=4N+1

g�2

(
xk − 1

2
(emk

k + e
m′

k
k )

)
.

Integrating x first, we get

〈W(N+1)〉 =
∫

dW(N+1) W(N+1)
∑

m,m′
Tr
{

Sm,m′

⎡

⎣
∑

�mN , �m′
N

D �mN , �m′
N (ρ̃)

⎤

⎦
}

g(W(N+1) − Wm,m′
)

=
∑

m,m′
Tr
{

Sm,m′

⎡

⎣
∑

�mN , �m′
N

D �mN , �m′
N (ρ̃)

⎤

⎦
}
Wm,m′ = �W.

Furthermore, using a fictitious non-normalized density
matrix, similar to Eq. (B1),

φ̃RC
�xN+1

(ρ̃) =
∑

�mN+1, �m′
N+1

D �mN+1, �m′
N+1(ρ̃)

4(N+1)∏

k=1

σ̃
(

xk − emk
k , xk − e

m′
k

k

)
, (B18)

with the fictitious pointer state

σ̃
(

xk − emk
k , xk − e

m′
k

k

)
= g�2

⎛

⎝xk − emk
k + e

m′
k

k

2

⎞

⎠ ,

(B19)

we can replicate the proof presented for repeated measure-
ments in Appendix 1, Eqs. (B5)–(B7) leading to the con-
clusion that the fictitious energy PDF p̃(�xN ) [Eq. (B15)]
entering the fictitious work PDF P̃RC(W(N+1)) [Eq. (B14)]

is determined by the invariant state ρ∗ of the map FRC, i.e.,
by the solution of the equation

FRC(ρ∗) = ρ∗, (B20)

where FRC is defined in Eq. (B17). Comparing the above
equation with Eq. (B7) we notice the missing exponential
terms in the map. This is simply because the exponen-
tial terms in the case of repeated contacts get simpli-
fied, see Eq. (B12), and they only affect the initial state
of the engine. In other words, in the case of repeated
measurements to obtain the state of the engine after N
cycles we apply the map FRM N times on the initial den-
sity matrix ρ whereas in the case of repeated contacts the
map FRC is applied N times on the fictitious initial density
matrix ρ̃.

As trace- and positivity-preserving maps, FRC and FRM

possess at least one invariant solution. The uniqueness
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of the invariant solution is guaranteed by the dissipa-
tive nature of the thermalization strokes. As a conse-
quence, the invariant densities can be iteratively reached
as ρ∗ = limN→∞(FX )N (ρ), where X = RC, RM. Accord-
ingly, the spectra of these maps contain one nondegenerate
eigenvalue �1 = 1 and the absolute values of all other
eigenvalues are smaller than one.

In Figs. 6(b) and 6(c), the second-largest eigenvalues �2
of the maps FRC(RM) are displayed as functions of the dura-
tions T1 and T2. When �2 is close to 1, the engine needs
a long time to converge to the asymptotic cycle and vice
versa.

3. Simplification due to dynamical decoupling

In order to prove Eq. (B9) we consider the coefficient,

D �m, �m′

= Tr[Pm4N
4N · · ·Pm2i+1

2i+1 �u

(
Pm2i

2i · · · ρ · · ·Pm′
2i

2i

)

× Pm′
2i+1

2i+1 · · ·Pm′
4N

4N ], (B21)

and focus on the terms involving 2i + 1 and 2i subscripts.
Now, two alternative cases exist:

1. m2i = m′
2i and

2. m2i 
= m′
2i,

for which we study the central term in Eq. (B21) within the
trace, i.e.,

〈m2i+1|�u

(
Pm2i

2i · · · ρ · · ·Pm′
2i

2i

)
|m′

2i+1〉 ∝ A, (B22)

with A = 〈m2i+1|�u
(|m2i〉〈m′

2i|
) |m′

2i+1〉.
For case (i), we could have either m2i+1 = m′

2i+1 or
m2i+1 
= m′

2i+1. For m2i+1 = m′
2i+1, Eq. (B9) is satis-

fied. Whereas for m2i+1 
= m′
2i+1, A = Tr[Lm2i+1

u �u(Pm2i
2i )],

which is zero due to Eq. (47). Hence, for case (i) only when
Eq. (B9) is satisfied we have a contribution to the work
distributions.

For case (ii), we divide into three subcases: (iia) m2i+1 =
m′

2i+1 for which A = Tr[Pm2i+1
2i+1 �u(L

m2i
u )] is again zero due

to Eq. (47), (iib) m2i = m′
2i+1 and m′

2i = m2i+1 for which
A = Tr[L±

u �u(L∓
u )] = 0, and (iic) m2i = m2i+1 and m′

2i =
m′

2i+1 for which Eq. (B9) is satisfied. All other cases like
m2i = m2i+1 and m′

2i 
= m′
2i+1 reduce to case (iia) since we

deal with a two-level working substance.
This exhausts all possible cases and overall only when

Eq. (B9) is satisfied we get a contribution to the work
distribution.

APPENDIX C: REDUCTION IN
COMPUTATIONAL COSTS

In this section, we device a computational scheme to
reduce the complexity from exponential (d8N with d being

the dimension of working substance Hilbert space and N
being the number of cycles) to quadratic (N 2) as proposed
in the main text. Our proof below focuses on the work
PDFs given by Eqs. (18) and (26),

PRM(W) =
∑

�mN , �m′
N

D �mN , �m′
N e−1/8�2∑4N

k=1(e
mk
k −e

mk ′
k )2

× g4N�2(W − W �mN , �m′
N ),

PRC(W) =
∑

�mN , �m′
N

D �mN , �m′
N e−1/8�2(W �mN −W �m′N )2

× g�2(W − W �mN , �m′
N ). (C1)

Above we have reintroduced the subscript N indicating the
cycle number, which was suppressed in the main text. The
scheme for the heat PDFs can be derived in exactly the
same way. The above equations can be rewritten as

PX (W) =
∑

WN

DX
WN

g�2
X
(W − WN ), (C2)

where X = RM, RC stands for repeated measurements
or repeated contacts. The variances of the superimposed
Gaussians depend on the type of monitoring with �2

RM =
4N�2 and �2

RC = �2. The sum runs over all possible val-
ues of WN = W �mN , �m′

N and the coefficients DX
WN

are given
by

DX
WN

= Tr[DX
WN

(ρ)]. (C3)

The operators DX
WN

(ρ) are defined as

DRM
WN

(ρ) =
∑

�mN , �m′
N

WN =W �mN , �m′
N

D �mN , �m′
N (ρ)e

−1/8�2∑4N
k=1

(
e

mk
k −e

m′
k

k

)2

,

DRC
WN

(ρ) =
∑

�mN , �m′
N

WN =W �mN , �m′
N

D �mN , �m′
N (ρ)e

−1/8�2
(

e
m1
1 −e

m′
1

1

)2

.

(C4)

In the case of repeated contacts, the general expres-
sion reduces to the above due to the dynamical decou-
pling between populations and coherence [see Appendix 2
Eq. (B12)]. The reduction in computational resources
occurs because we need only to compute the coefficients
for a fixed WN that scale as N 2 rather than the exponential
scaling of d8N .

In order to see this reduction in computational resources,
let us apply the map Sm,m′

, defined in Eq. (8), to both sides
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of Eq. (C4), giving,

Sm,m′ [DRC
WN

(ρ)
] =

∑

�mN , �m′
N

WN =W �mN , �m′
N

Sm,m′ (
D �mN , �m′

N (ρ̃)
)

.

(C5)

Here we derive the scaling reduction for the case of
repeated contacts and the proof for repeated measurements
can be obtained in the same spirit. The exponential terms
appearing in Eq. (C4) have been absorbed in the effective
initial density matrix ρ̃ [see Eq. (B13)] since they depend
only on the first contact (m1 and m′

1), hence, only alters
the initial state. It is important to note here that our proof
works only if the exponentials appearing in Eq. (C1) can
be expressed as a product of exponentials implying that
such a dramatic reduction is always possible for repeated
measurements and is impossible if the populations and
coherence do not dynamically decouple in the case of
repeated contacts. Using Eq. (7) on the rhs we obtain

Sm,m′ [DRC
WN

(ρ)
] =

∑

�mN , �m′
N

WN =W �mN , �m′
N

D �mN+1, �m′
N+1(ρ̃). (C6)

Recall that m(′) arises from the sequence �m(′)
N+1 = �m(′) ⊕

m(′), defined below Eq. (7). Summing both sides of
Eq. (C6) over m(′) and WN (constrained by WN+1 =
W �mN+1, �m′

N+1 = WN + Wm,m′
) we obtain

∑

m,m′ ,WN
WN+1=WN +Wm,m′

Sm,m′ [DRC
WN

(ρ)
]

=
∑

�mN+1, �m′
N+1

WN+1=W �mN+1, �m′
N+1

D �mN+1, �m′
N+1(ρ̃)

= DRC
WN+1

(ρ). (C7)

Therefore, the operator DRC
WN+1

(ρ) is obtained recursively
from DRC

WN
(ρ) in terms of a sum over m, m′, and WN . The

required number of computations does not scale with N
(for m(′) we have 24 terms for d = 2) and the sum over
WN scales as N 2. Thus, the computations performed, due
to the grouping with fixed work values, reduces from an
exponential scaling of 28N (d = 2) to a quadratic N 2.

APPENDIX D: EQUIVALENCE BETWEEN ONE-
AND TWO-POINTER WORK PDFS FOR A

PERFECTLY THERMALIZING ADIABATIC
ENGINE

In this section, we show that for a perfectly thermaliz-
ing adiabatic engine diagnosed via repeated contacts the

one- and two-pointer work PDFs are equal independent of
the dimensionality d of the Hilbert space of the working
substance. In order to achieve our objective, we begin with
the one- and two-pointer work PDFs as defined in Eqs. (25)
and (26), i.e.,

PRC,1P(W) =
∑

�m, �m′
D �m, �m′

e−1/8�2(W �m−W �m′)2
g�2(W − W �m, �m′

),

PRC,2P(W) =
∑

�m, �m′
D �m, �m′

e−1/8�2(W �m−W �m′)2

× e−1/8�2(Q �m−Q �m′)2
g�2(W − W �m, �m′

).

Comparing the above equations, it is easy to see that the
PDFs are equal when either Q �m = Q �m′ or when D �m, �m′ = 0.

We restrict ourselves to a single cycle (N = 1) per-
fectly thermalizing engine, such that the elements of
�m(′) = (m(′)

1 , m(′)
2 , m(′)

3 , m(′)
4 ). To proceed, we consider all

possible relations between the elements of �m and �m′, i.e.,

1. m2 = m′
2 and m3 = m′

3 (independent of m(′)
1 and

m(′)
4 ),

2. m2 
= m′
2 and m3 = m′

3 (independent of m(′)
1 and

m(′)
4 ), and

3. m3 
= m′
3 (independent of m(′)

1 , m(′)
2 , and m(′)

4 ),

and show that they can be classified into one of the two
categories (Q �m = Q �m′ or D �m, �m′ = 0).

Case (i) (Equality due to matching heat outcomes):
For a single cycle considered herein the heat outcomes

Q �m = em3
3 − em2

2 and Q �m′ = e
m′

3
3 − e

m′
2

2 , using Eq. (23).
Since m2 = m′

2 and m3 = m′
3, clearly Q �m = Q �m′.

Case (ii) (Equality due to perfect thermalization):
For a single cycle engine, the explicit expression for the
coefficient D �m, �m′

reads

D �m, �m′ = Tr[Pm4
4 ŨPm3

3 �h

(
Pm2

2 UPm1
1 ρPm′

1
1 U†Pm′

2
2

)

× Pm′
3

3 Ũ†Pm′
4

4 ], (D1)

with the operators Pmj
j projecting into the eigenstates of

Hamiltonian Hj , ρ being the density matrix of the working
substance, and U (Ũ) being the unitary forward (reversed)
time-evolution operators. Since the engine is perfectly
thermalizing, �h(ρ) = ρhTr[ρ] using Eq. (34), we obtain

�h

(
Pm2

2 UPm1
1 ρPm′

1
1 U†Pm′

2
2

)

= ρhTr[Pm2
2 UPm1

1 ρPm′
1

1 U†Pm′
2

2 ] = 0. (D2)

The rightmost equality is because we consider m2 
= m′
2 in

this case giving us the trace in the middle term to be zero.
Therefore, for case (ii) D �m, �m′ = 0.
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Case (iii) (Equality due to adiabaticity): We further
subdivide case (iii) into two subcategories: (a) m3 
= m4 or
m′

3 
= m′
4 and (b) m3 = m4 and m′

3 = m′
4.

For case (iiia), since the evolution during the work
strokes is adiabatic, i.e., if the system starts in an eigenstate
of the initial Hamiltonian, it will end in the corresponding
eigenstate of the final Hamiltonian, either

Pm4
4 ŨPm3

3 = 0 when m3 
= m4 or

Pm′
3

3 Ũ†Pm′
4

4 = 0 when m′
3 
= m′

4. (D3)

In either case the coefficient D �m, �m′ = 0 [see Eq. (D1)].
For the case (iiib), since m3 
= m′

3, m3 = m4, and m′
3 =

m′
4 implies m4 
= m′

4. Therefore, again D �m, �m′ = 0 due to
the overall trace in Eq. (D1). Thus, overall for case (iii)
D �m, �m′ = 0.

Overall, with the three cases above, all possible combi-
nations of �m and �m′ are excluded that would lead to a dif-
ference between the one- and the two-pointer work PDFs.
Moreover, our proof does not depend on the working sub-
stance of the engine and hence holds for all thermalizing
adiabatic quantum Otto engines diagnosed via repeated
contacts.
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