
Research and Development of
Interoperability Concepts for IoT

Platforms

Inaugural dissertation presented for the degree of
Doctor rerum naturalium (Dr. rer. nat.) at the
Faculty of Applied Computer Science of the

University of Augsburg

by Denis Kramer

2021

2

Primary reviewer: Professor Dr. Jörg Hähner
Secondary reviewer: Professor Dr. Bernhard Bauer

Date of oral examination: 21. June 2021

3

Abstract

The Internet of Things (IoT) has transformed already many areas of our modern life. IoT devices are
being connected through IoT platforms and new applications & services are created based on IoT
data to provide added value for customers. Interoperability between di�erent IoT platforms is still
one of the most important gaps inside the Internet of Things. Current interoperability solutions
are still largely driven by static & in�exible interoperability mechanisms originating from the past
webservice-era which do not �t the characteristics of modern IoT ecosystems. Such static, design-
time approaches su�er from scalability issues since they are not suitable for large, distributed
systems and their real-time constraints. A new, dynamic approach is required, which requires
IoT system design to be reconsidered, enabling properties of autonomy and intelligence. This
thesis addresses interoperability from such a dynamic perspective, based on Organic Computing
concepts. An architecture for a self-adaptive IoT system will be presented which is able to maintain
and improve runtime interoperability in an IoT ecosystem autonomously.

4

Acknowledgments

I would like to thank the following people who have helped me undertake this research:

My supervisors at the Bosch.IO GmbH, Mr. Patrick Ackerer, Dr. Nikolaos Oikonomidis and Dr.

Abdelmajid Khelil, for their support, encouragement and patience;

My colleagues in the Engineering and Digital business department at the Bosch.IO GmbH for their

insights and help regarding all IoT related topics;

The members of the Department for Organic Computing chair at the University of Augsburg for

their input and support especially on XCS and Reinforcement learning.

And last but not least I want to give special thanks to my parents for always supporting and

encouraging me throughout this journey.

Contents

I Introduction and Background 15

1 Introduction 16

1.1 Research problem statement . 16

1.2 Conceptual approach and thesis structure . 22

2 Background 23

2.1 Aim . 23

2.2 A de�nition of the "Internet of Things" . 23

2.2.1 Related concepts . 25

2.2.2 Sociotechnical aspects . 26

2.2.3 IoT characteristics . 27

2.2.4 The architecture of the Internet of Things 28

2.3 IoT Platforms . 30

2.3.1 Platforms . 32

2.3.2 Types of IoT platforms . 33

2.4 IoT platform ecosystems . 37

2.5 Interoperability . 40

2.5.1 De�ning interoperability . 40

2.5.2 Platform interoperability . 43

2.5.3 Metrics for interoperability . 44

2.5.4 Interoperability - temporal axis . 51

2.6 Summary . 52

3 Related work 53

3.1 Aim . 53

5

CONTENTS 6

3.2 Standardization bodies for IoT interoperability . 53

3.3 Software based approaches for IoT platform interoperability 55

3.3.1 Service oriented middleware . 57

3.3.2 Semantic interoperability solutions . 59

3.3.3 Solutions to address pragmatic interoperability 60

3.4 Summary and gaps in current interoperability research 62

II Building the interoperability model 64

4 A conceptual model of IoT ecosystems 65

4.1 Aim . 65

4.2 Modeling theory . 65

4.2.1 Systems of systems . 65

4.2.2 Digital service ecosystems . 68

4.3 Conceptualization of IoT ecosystems from a DSE perspective 71

4.3.1 Motivating examples . 72

4.3.2 Smart city - Environmental-aware routing service 74

4.3.3 Core concepts . 77

4.3.4 Roles & interactions inside the IoT ecosystem 81

4.3.5 IoT Ecosystem properties . 86

4.3.6 Centralized vs. de-centralized ecosystems 91

4.4 Summary . 93

5 A concept for runtime interoperability in IoT ecosystems 94

5.1 Aim . 94

5.2 Runtime interoperability in the context of IoT ecosystems 95

5.3 Requirements on IoT system design for runtime interoperability 101

5.4 A model for runtime interoperability . 110

5.4.1 The AC module . 111

5.4.2 The interoperability module . 112

5.5 The transaction optimization problem . 116

5.5.1 Optimization criteria . 121

5.6 Quanti�cation of the interoperability state . 123

CONTENTS 7

5.7 Related work . 128

5.8 Summary . 130

6 An architectural approach to solve runtime interoperability 131

6.1 Aim . 131

6.2 Interoperability module implementation . 132

6.2.1 Matchmaking functionality implementation 134

6.2.2 Negotiation functionality implementation 135

6.2.3 Transaction functionality implementation 137

6.2.4 Advantages & Disadvantages of a centralized implementation 138

6.3 AC module implementation . 139

6.3.1 Background on Organic Computing . 139

6.3.2 Runtime interoperability and self-adaptive IoT systems 143

6.3.3 Architecture of the AC module . 145

6.3.4 Architectural integration . 155

6.4 Summary . 159

III Evaluation 160

7 Empirical evaluation of the I-IOP agent architecture 161

7.1 Aim . 161

7.1.1 Approach . 162

7.2 Feasibility study design . 162

7.2.1 Problem de�nition . 163

7.2.2 Simulation model . 167

7.2.3 IoT ecosystem simulation implementation 171

7.2.4 Veri�cation & Threats to validity . 173

7.3 Results . 175

7.3.1 Scenario S_1 results . 176

7.3.2 Scenario S_2 results . 178

7.3.3 Scenario S_3 results . 180

7.3.4 Scenario S_4 results . 182

7.3.5 Scenario S_F results . 187

CONTENTS 8

7.3.6 Scenario S_P results . 190

7.3.7 XCS training performance . 192

7.4 Summary . 194

8 Discussion 195

8.1 Aim . 195

8.2 Revisiting the research questions . 195

8.3 Evaluation of the I-IOP agent . 197

8.3.1 E�ort and performance analysis . 204

8.4 Summary . 206

IV Conclusion 208

9 Conclusion & Outlook 209

9.1 Future work . 210

A Appendix 211

A.1 Detailed XCS training results - DSC . 215

A.1.1 XCS 1k - no GA . 215

A.1.2 XCS 1k . 215

A.1.3 XCS 5k - no GA . 215

A.1.4 XCS 5k . 219

A.1.5 XCS 10k - no GA . 219

A.1.6 XCS 10k . 222

A.1.7 XCS 25k - no GA . 223

A.1.8 XCS 25k . 226

A.1.9 XCS 50k - no GA . 227

A.1.10 XCS 50k . 230

A.2 XCS training results - DSP . 231

A.2.1 XCS 1k - no GA . 231

A.2.2 XCS 1k . 231

A.2.3 XCS 5k - no GA . 231

A.2.4 XCS 5k . 235

CONTENTS 9

A.2.5 XCS 10k - no GA . 235

A.2.6 XCS 10k . 238

A.2.7 XCS 25k - no GA . 239

A.2.8 XCS 25k . 242

A.2.9 XCS 50k - no GA . 242

A.2.10 XCS 50k . 245

A.3 Training summaries . 246

A.3.1 XCS training summary - DSC . 246

A.3.2 XCS training summary - DSP . 247

A.4 Con�gurations . 248

A.4.1 Simulator con�guration . 248

A.4.2 XCS con�gurations . 255

List of Figures

1-1 Methodological approach for this thesis . 22

2-1 Social and technological aspects a�ected by the IoT 27

2-2 IoT device heterogeneity from cloud to device level 28

2-3 The IoT reference architecture . 29

2-4 Example of an industrial IoT ecosystem . 38

4-1 A Smart farming use case description . 73

4-2 A Smart production use case description . 74

4-3 A Smart city use case description . 76

4-4 Schematic description of the service transaction model between IoT systems. . . . 82

4-5 A domain model for IoT ecosystems . 85

4-6 Dynamics and characteristics of an IoT ecosystem 86

4-7 IoT ecosystem properties of the Smart production use case 90

4-8 IoT ecosystem properties of the Smart farming use case 90

4-9 IoT ecosystem properties of the Smart city use case 91

5-1 Visualization of an IoT system and the I-IOP agent 110

5-2 Visualization of the interoperability lifecycle between IoT systems 112

6-1 Centralized implementation of the interoperability functionality 132

6-2 Semi-decentralized implementation of the interoperability functionality 133

6-3 Decentralized implementation of the interoperability functionality 134

6-4 Sequence diagram of a negotiation protocol . 136

6-5 The Observer-controller reference architecture . 140

6-6 Architecture of the AC module of an I-IOP agent 147

10

LIST OF FIGURES 11

6-7 The interoperability state analysis process inside an AC module 150

6-8 The process of the XCS online classi�er system 154

6-9 The integration of the I-IOP agent concept in the BIG IoT architecture 158

6-10 Interaction diagram of the BIG IoT lifecycle implementation 159

7-1 Interoperability related situations in an IoT ecosystem 164

7-2 Description of the interoperability scenarios 1-3 165

7-3 Description of the interoperability scenarios cntd. 166

7-4 The activity diagram of the feasibility study . 168

7-5 The con�guration space of the simulator . 170

7-6 The UML diagram for the IoT ecosystem simulator 172

7-7 Interoperability analysis for scenario S_1 . 176

7-8 Aggregated interoperability results for scenario S_1 176

7-9 Interoperability analysis for scenario S_2 . 178

7-10 Aggregated interoperability results for scenario S_2 178

7-11 Interoperability analysis for scenario S_3 . 180

7-12 Aggregated interoperability results for scenario S_3 180

7-13 Interoperability analysis for scenario S_4 . 182

7-14 Aggregated interoperability results for scenario S_4 182

7-15 Interoperability analysis for scenario S_4 - XCS comparison 183

7-16 Aggregated interoperability results for scenario S_4 - XCS comparison 183

7-17 Interoperability analysis for scenario S_4 - XCS comparison 184

7-18 Aggregated interoperability results for the second run of scenario S_4 - XCS com-

parison . 184

7-19 Interoperability analysis for scenario S_4 - XCS comparison 185

7-20 Aggregated interoperability results for the third run of scenario S_4 - XCS com-

parison . 185

7-21 Interoperability analysis for scenario S_F . 187

7-22 Aggregated interoperability results for scenario S_F 187

7-23 Interoperability analysis for scenario S_F - XCS comparison 188

7-24 Aggregated interoperability results for scenario S_F - XCS comparison 188

7-25 Interoperability analysis for scenario S_P . 190

LIST OF FIGURES 12

7-26 Aggregated interoperability results for scenario S_P 190

7-27 Interoperability analysis for scenario S_P results - XCS comparison 191

7-28 Aggregated interoperability results for scenario S_P - XCS comparison 191

List of Tables

5.1 Mapping of runtime interoperability requirements to existing interoperability so-

lutions in the IoT space. 128

6.1 Advantages and disadvantages of centralized, semi-decentralized and decentral-

ized interoperability lifecycle implementations. 138

7.1 The con�guration space for the SUOC . 170

7.2 Veri�cation criteria for the IoT ecosystem simulator 174

7.3 Experiment summary for scenario S_1 . 177

7.4 Experiment summary for scenario S_2 . 179

7.5 Experiment summary for scenario S_3 . 181

7.6 Experiment summary for scenario S_4 . 186

7.7 Experiment summary for scenario S_F . 189

7.8 Experiment summary for scenario S_P . 192

8.1 Achievement evaluation of the I-IOP agent architecture 206

A.1 Summary of XCS training performance for the DSC agent, listing the training time,

�tness, number of learned situations and �tness/situation performance 246

A.2 Summary of XCS training performance for the DSP agent, listing the training time,

�tness, number of learned situations and �tness/situation performance 247

A.3 Action identi�ers and description for the I-IOP agent in the IoT ecosystem simulator. 247

A.4 Con�guration space of the IoT ecosystem simulator. 248

A.5 Simulator con�guration of scenario S_1 . 249

A.6 Simulator con�guration of scenario S_2 . 250

A.7 Simulator con�guration of scenario S_3 . 251

13

LIST OF TABLES 14

A.8 Simulator con�guration of scenario S_4 . 252

A.9 Simulator con�guration of scenario S_F . 253

A.10 Simulator con�guration of scenario S_P . 254

A.11 XCS con�guration space . 255

A.12 XCS con�guration space 50k . 256

A.13 XCS con�guration space 5k . 257

Part I

Introduction and Background

15

Chapter 1

Introduction

The advent of the Internet of Things (IoT) provides a disruptive potential to the world of com-

munication similar to the disruption of the World Wide Web in the early 1990s. The underlying

idea of the IoT is to attach communication technology to physical objects, to become online even if

they were not initially designed with this capability in mind. This will extend the current reach of

the Internet, from interconnected computational machines to cars, buildings and home appliances

(among others) and thus embedding technology in every aspect of our modern life essentially

blurring the boundary between the physical and virtual worlds. An Internet of Things can be de-

�ned as a "world-wide network of interconnected objects with unique identi�cation and addressability

based on standard communication protocols" [AIM10] which implies a potentially enormous num-

bers of objects involved. This vision of the IoT promises exciting innovation opportunities in any

domain, from smart homes to smart cities to Industry 4.0 and is sometimes extended to the idea

of a "Internet of Everything" where any combination of sensors, actuators and computing devices

are connected with or without humans in the loop [Ini15]. The Internet of Things thus allows

people and things to be connected "anytime, anyplace, with anything and anyone, ideally using

any path/network and any service" [VF13].

1.1 Research problem statement

To achieve the vision of the IoT, devices and other desirable IoT resources need to be identi�able

and have the ability to communicate and interact with other devices and resources in the global

IoT network [MSDC12]. Early development in the IoT space thus focused on the development of

RFID tags, sensors and actuators. Also, increased focus was put on the research for wireless and

16

1.1. RESEARCH PROBLEM STATEMENT 17

wired networks, especially with regards to the speci�c resource constraints of IoT enabled devices

which typically operate in low-powered settings.

Early on, the need for IoT platforms has been recognized as a foundation for the IoT [IoT16]. IoT

platforms are the logical development arising from the trend of more and more IoT devices and

heterogeneous IoT deployments. IoT platforms make it easier for administrators to access and

manage IoT resources and for developers to develop services based on legacy technology. Due to

their importance in the IoT, there has been a trend to implement IoT platforms of various scale

and technological sophistication [IoT16] with nearly every IoT domain and every IoT vendor de-

veloping their own platform [Brö17][GPP+16] which resulted in the introduction of over 450 IoT

platforms (as of 2019). This naturally led to the development of IoT solutions built in vertical silos,

which means, solutions are contained in their desired domains. This means, that device vendors

create their own custom solutions by integrating devices into proprietary software and hardware

stacks. Since multiple vendors create similar sensors, actuators and platforms, this creates a land-

scape of IoT islands that prevents devices and platforms from communicating among each other

due to di�erent standards [GPP+16].

For an IoT solution provider, who does not develop its own IoT platform it is important to

choose among these platforms the one which allows for future-proof and e�cient development of

IoT applications of services. This task is impeded by the abundance of platforms [Brö17]. Not only

the amount of platforms but also the missing uniform terminology and comparability makes the

choice of the right platform di�cult. Current IoT solutions are thus still mostly developed as closed

systems around vendor-speci�c platforms with little interoperability between the platforms. This

is opposed to the vision of the IoT as a global ecosystem of interconnected devices through the

digital infrastructure [AIM10]. The current state of the Internet of Things thus consists of isolated

software ecosystem, i.e. IoT applications and services that are restricted to a particular platform

ecosystem. Hence it is vital to �nd solutions that are able to connect these separate IoT silos across

platforms, but currently there is no uniform solution available.

In the context of smart homes and smart cities, in recent years the trend went towards more and

more IoT providers which enter the market which requires more and more systems to interoperate

[Sma18]. Only a small amount of smart home providers o�er advanced interoperability support

while most providers still refrain to provide information about their APIs which is necessary to

connect smart home platforms [Sma18]. The role of IoT platforms in these ecosystems is to provide

the services and the infrastructure at the same time.

1.1. RESEARCH PROBLEM STATEMENT 18

" Middleware platforms provide interoperability capabilities and abstractions over phys-

ical devices and services to applications and/or end-users, as well as means of managing

the increasingly myriad of IoT devices associated to the systems that use data provided

by them " [MCG+14].

A gap analysis on IoT platforms by [MMST16] identi�ed four aspects related to interoperabil-

ity. They identi�ed that the interoperability gap in the IoT can be broken down into "ecosystem

formation" [MMST16] and "formation of IoT marketplaces" [MMST16]. "Ecosystem formation" deals

with the need to consider the current divergent IoT verticals as a coherent ecosystem to provide

new and innovative services. Currently it is impossible for developers to integrate multiple foreign

devices into their IoT applications. It is still similar to the problem of trying to install a software on

Mac that is only available for Windows and vice versa. But, when every piece of data can be read

and interacted by every other device and service, the power of the Internet of Things emerges.

Vertical isolated systems should be able to collaborate to achieve a higher purpose in di�erent

scenarios. Vendors of IoT solutions need a single uni�ed framework for design and development

that can interoperate across diverse data environments and under widely di�ering usage scenar-

ios. However, it is unrealistic that there will be one standard that will prevail in IoT [SZZ+16],

which results in the current landscape of multiple disparate standards.

In practice, most existing systems specify and implement interoperability in the syntactic and con-

nectivity categories in detail, dealing with the organizational and semantic categories essentially

at the documentation level.

"IoT architectures are built on heterogeneous standards, for example, the Constrained Ap-

plication Protocol (CoAP),Message Queuing Telemetry Transport (MQTT), LightweightM2M

(LWM2M), Sensor Web Enhancement (SWE), oneM2M or even proprietary interfaces"

[Brö17]

In contrast with today’s applications, where data is usually consumed by single applications, data

in the IoT will be shared among di�erent IoT applications, thus requiring a greater interoperability

[Bor14].

The second mentioned gap relates to missing IoT marketplaces that "facilitate the discovery,

purchase and distribution of the applications" [MMST16]. These marketplaces are important as a

driver for a vibrant ecosystem of interoperable IoT services, e�ectively disrupting IoT platform

1.1. RESEARCH PROBLEM STATEMENT 19

boundaries. The previously introduced vision of an IoT ecosystem, enabling new business oppor-

tunities and value added services, is deeply connected with the availability of open IoT markets.

The true value of the IoT lies in an open IoT ecosystem of IoT vendors that allows dynamic, adap-

tive and environmental-aware applications that are formed of IoT devices and software [Brö17].

In other words, this vision can be described as a composition of independent software services and

applications resulting in a so called systems-of-systems.

The interoperability barriers regarding di�erence between hardware and software are partic-

ularly visible in the IoT. In order to provide a running IoT solution, an IoT vendor needs to cover

the whole IoT stack from the device level to the software level, which creates high costs even for

simple solutions. Thus, the market entry barriers are still too high for smaller vendors to sell their

products and o�er applications and services on top of existing IoT solutions. Also ine�ciency in

IoT solutions cannot be prevented that results from similar sensors being deployed by di�erent

vendors at the same location [SZZ+16]. We can compare the Internet of Things with the early

days of the Internet. Imagine it would still consist of unconnected intranets; Facebook, Twitter or

Google that connect billions of people today would not have been possible. Interoperability con-

cepts are necessary that can bridge the gap that is increasingly growing between on the one hand

cloud based IoT platforms with endless computing resources and systems-on-a-chip solutions that

operate under high uncertainty with regards to power, connectivity and computing resources.

Since the IoT is developing at a rapid pace, interoperability solutions need to be �exible enough,

to also cover future systems. This raises doubts concerning standards based approaches, since the

process is generally too time consuming for the fast pace of IoT development and is bound to the

design time of systems.

In current IoT ecosystems we observe the following interoperability related problems which

occur repeatedly:

• Interoperability problem 1: Identifying the right interoperation partner is only possible when

the partner is known at design time and the interface is known. If the partner fails or dis-

connects at runtime, the partnering application will fail to operate since alternative partners

can not be integrated without manual e�ort.

• Interoperability problem 2: Data formats between IoT applications and services are usu-

ally exchanged in their native formats through some standardized communication protocol

1.1. RESEARCH PROBLEM STATEMENT 20

and format (e.g. XML/JSON). In the IoT, due to its heterogeneous device data and domain

penetration, this results in incompatible data items. Di�erent IoT services are not able to

automatically process this information, thus approaches that introduce an abstraction level

are necessary. Ontologies and semantics look to be promising in this respect [Bor14].

• Interoperability problem 3: A manual integration approach of multiple IoT applications leads

to tightly coupled applications which results in failure prone and rigid application structures.

If the interface speci�cation of the interoperation partner changes, manually changing the

integration code is necessary which results in high costs, in�exible agreements of semantics,

standards & QoS. Therefore it is cumbersome, for example, to exchange services at runtime.

Besides, if the interface description on one of the systems in the collaboration changes, the

consuming system is not functional anymore (except the providing systems does not o�er

any functional related data). This prevents the development of ad-hoc, innovative solutions

and also cause problems when sub-systems versions change (what they will eventually do).

Also, extensive testing is necessary since automated testing is di�cult in manual integration

approaches [CFMP05].

If we can solve these issues, we can envision the future Internet of Things consisting of a complex

system of systems where systems of di�erent scales and capabilities are connected in a cross-

domain, cross-platform manner to create new applications that perform tasks in order to improve

human life. Interoperability acts as the "glue" between these disparate systems. It enables new

gains in terms of business and technology and serves as an enabler for digital IoT ecosystems.

1.1. RESEARCH PROBLEM STATEMENT 21

This thesis will focus on the interoperability aspects of IoT platforms and to which extend ex-

isting interoperability solutions from the IoT domain and other domains already address di�erent

parts of these aspects and what is still missing. In particular, the following research questions are

in focus:

1. What is the current state of the art of interoperability in IoT ecosystems?

2. What are the reasons that existing interoperability solutions did not yet solve the problem

of interoperability inside the IoT space?

3. What is a proper concept of interoperability in IoT ecosystems?

4. What are the requirements to establish interoperability in IoT ecosystems?

5. How do IoT systems need to be designed in order to implement this model of interoperability

and thus addressing the requirements for interoperability?

By answering these questions the thesis will contribute to existing interoperability research

by providing a theoretical model of runtime interoperability as well a practical architectural ref-

erence to implement interoperability solutions in existing IoT systems. In particular it will show

that interoperability between IoT platforms is essentially a Systems-of-Systems problem and can

thus be described using terminology from Systems-of-systems and Digital service ecosystems re-

search. Since this is a unique perspective on the interoperability problem it will provide a thorough

analysis of the interoperability de�cits of existing solutions to derive a formal theory of runtime

interoperability. This formal theory helps system analysts and designers to understand and plan

according to the unique interoperability problems in IoT solutions since it covers all the major

aspects to be considered. Especially, semantic and pragmatic interoperability will be presented as

important concepts of which pragmatic interoperability has previously been neglected in interop-

erability research. For the IoT practitioners a self-adaptive IoT reference architecture is proposed

and evaluated to proof the bene�ts of designing runtime interoperability solutions in practice. To

aid in this process, proper metrics are introduced as well, to make the interoperability problem

measurable. The reference architecture will also demonstrate the merging of two, before seem-

ingly unrelated, areas of software and systems engineering: IoT and Organic computing. The the-

sis will present the bene�ts of applying Organic Computing research knowledge to overcome the

IoT interoperability gap and showcase the advantages compared to previous IoT interoperability

solutions.

1.2. CONCEPTUAL APPROACH AND THESIS STRUCTURE 22

1.2 Conceptual approach and thesis structure

To address the research questions, the following methodological approach is pursued (�gure 1-1)

Domain
of

interest

Metaphor
(informal)

abstraction
Theoretic

model

4

5

Architectural
model

Model implementation

6

verification

7

Figure 1-1: Methodological approach for this thesis. The numbers correspond with the chapters.

In chapter 2 the necessary background knowledge for a conceptual model on IoT interoperabil-

ity will be established. Chapter 3 will summarize existing work in the context of IoT platform in-

teroperability before in chapter 4 an informal conceptualization of IoT ecosystems and interactions

in IoT ecosystems is presented. This conceptualization forms the basis for the next contribution -

a theory of runtime interoperability in IoT ecosystems in chapter 5. The runtime interoperability

theory models the runtime interoperability problem which gives input to the third contribution

in chapter 6: a model architecture to implement the runtime interoperability theory. The imple-

mentation of this model will be evaluated in a feasibility study in chapter 7. The �nal part of the

thesis comprises a critical discussion of the results and an outlook for future work.

Chapter 2

Background

2.1 Aim

Research on Interoperability and the Internet of Things has spawned a large body of theories and

concepts through various disciplines in the recent past. This chapter will give a general overview

about the state of the art in the Internet of Things and interoperability research sector. This is

important in order to understand, �rst of all, the problem of interoperability between IoT platforms

more clearly and also to grasp the lacks of existing solutions for cross-platform interoperability.

The �rst section present a summary about the most important concepts in the IoT space followed

by an introduction to the concept of "cross-platform interoperability" and why it is important.

Then, the necessary background around the complex topic of interoperability is addressed.

2.2 A de�nition of the "Internet of Things"

" The Internet of Things can be de�ned as a global information infrastructure enabling

advanced services by interconnecting physical and virtual things based on interoperable

information and communication technologies" [Gmb16]

The �rst origins of the IoT can be found in M2M telecommunications and RFID technology, with

the latter even dating back to the second world war [Gmb16][Ini15]. RFID technology largely con-

siders the remote identi�cation of objects through radio frequency communication systems, with

M2M being a generic term to comprise all kinds of telecommunication technologies to identify and

control remote machines. In the past, these M2M systems were built by large organizations, such

as oil & gas companies or other well-�nanced organizations due to the high costs and expertise

23

2.2. A DEFINITION OF THE "INTERNET OF THINGS" 24

required [Gmb16]. However, in the recent decades, M2M technology has spread into more and

more industrial and consumer sectors. So why do we experience this transformation of originally

seperated M2M solutions into world-wide networks of devices, interconnected through the Inter-

net? According to a recent report by [IoT16], there are several reasons for this. First of all, the

cost of hardware has decreased over the last decade while at the same time hardware has become

smaller and more powerful. This has increased the trend towards ubiquitous computing, where we

�nd sensors and actuators in more and more everyday devices and products. This has positioned

the IoT from originally industry/vertical speci�c solutions into the mass consumer markets since

more and more vendors advertise their products as being "IoT enabled". The widespread use of In-

ternet services has further accelerated the mass market adoption. In addition, Big data and cloud

platforms provide the necessary infrastructure to handle the increasing load of IoT sensor data.

The core elements of M2M, remote monitoring and control, data collection & analysis have found

applications in logistics/ industrial automation/ health care / city administrations etc. [Gmb16].

To draw a line between M2M and the IoT is challenging, therefore these terms are sometimes used

synonymously. Generally M2M solutions restrict to vertical domains while IoT solutions focus on

integrating sensors and information systems from multiple domains to cross verticals [Gmb16].

The Internet of Things could be described as an evolution of the M2M sector with the focus on

crossing vertical boundaries and gaining insights from multiple sources for the purpose improving

or customizing products and services or supporting decision making [Gmb16].

" The Internet of Things (IoT) in its essence describes how the physical world is being

connected to the Internet " [IoT16].

The Things in IoT refers to any physical object that is relevant from a user or application per-

spective and is uniquely identi�able. The Internet serves as the network to connect these physical

objects together.

" The interconnected things have physical or virtual representation in the digital world,

sensing/actuation capability, a programmability feature and are uniquely identi�able.

The representation contains information including the thing’s identity, status, location or

any other business, social or privately relevant information. The things o�er services, with

or without human intervention, through the exploitation of unique identi�cation, data

capture and communication, and actuation capability. The service is exploited through

the use of intelligent interfaces and is made available anywhere, anytime, and for any-

2.2. A DEFINITION OF THE "INTERNET OF THINGS" 25

thing taking security into consideration" [Ini15].

Ubiquity is a major feature of an IoT system, indicating a network which is available anywhere and

anytime. But in the context of IoT, the concepts of "anywhere" and "anytime" need not necessarily

refer to "globally" and "always" but rather to "where" and "when" it is needed [Ini15].

2.2.1 Related concepts

The concept of an "Internet of Things" was not "invented" but rather emerged from di�erent, re-

lated disciplines in the Computer science / systems engineering and Information systems. Most

importantly, these are: cyber-physical systems, ubiquitous and pervasive computing.

Cyber-physical systems Cyber-physical systems and the Internet of Things are two concepts

closely related, sometimes used interchangeably. As with the IoT the idea behind cyber-physical

systems is to embed the physical environment with computing and communication capabilities in

order to change the way humans interact with the world [RLSS10]. Examples for such systems

can be found in all domains, from healthcare to industry , from buildings to military systems.

The every increasing trends of smaller and smaller form factor microcontrollers and sensors, im-

proved energy e�ciency and abundant network bandwith and connectivity are the driving forces

behind cyber-physical systems. They are build out of an amalgamation of embedded systems, real-

time systems, distributed sensors and controls connected through a network backbone [RLSS10].

Cyber-physical systems are formed to build clusters of wireless or wired networks based out of

sensors and actuators [RLSS10], the same principle underlying the Internet of Things concept. The

promise behind this lies in new and innovative solutions that will solve essential present and future

sociotechnical problems. Due to the closeness of the two terms, this thesis will not di�erentiate

between CPS and IoT systems and assume that concepts for the Internet of Things are similarly

applicable to cyber-physical systems.

Ubiquitous computing and pervasive computing Two other concepts that are related to the

Internet of Things are ubiquitous and pervasive computing. Compared to cyber-physical systems,

they describe a broader view on the merger between computing technology and society. "Ubiqui-

tous computing" was coined in the beginning of the 2000s, as a term for the increasing trend that

computing devices become more and more embedded in everyday life and at the same time seem

2.2. A DEFINITION OF THE "INTERNET OF THINGS" 26

to "disappear" since the are simply available anytime, anywhere without e�ort [LY02]. The trend

started with computing machines becoming smaller and smaller in form factor while at the same

time becoming more and more capable for complex computations, resulting in a society where

"computers will be embedded in our natural movements and interactions with our environments -

both physical and social"[LY02]. Ubiquitous computing can be understood as combining the ar-

eas of pervasive and mobile computing, where mobile computing is concerned with the increased

mobility of computing devices and pervasive computing which is the capability of computing

devices to sense the environment and use the sensed information to build computing models of

its surroundings to become "intelligent" [LY02]. This de�nes ubiquitous computing as "[...] any

computing device, while moving with us, can build incrementally dynamic models of its various en-

vironments and con�gure its services accordingly" [LY02]. As it was shown by the smartphone

trend since the late 2000s, computers with large degrees of computing power comfortably �t into

a pocket and are able to assess and interact with the environment, essentially manifesting the idea

behind ubiquitous computing as a prime example.

Cooperative objects Various research projects in the past have already achieved tremendous

breakthroughs in the area of wireless sensor networks, IoT and CPS solutions. One of them is the

Cooperative Hybrid Objects in Sensor Networks project (CHosen)[HS11] driven by the European

commission which was operated between 2008 and 2011 with the goal of designing wireless com-

munication technology for highly challenging domains in aircrafts and automotive [HS11]. The

main outcomes of the project were a new RF transceiver concept, a new class of wake-up receiver

and a new protocol processing unit [HS11]. The project could demonstrate that these new tech-

nologies were able to overcome the demanding challenges in the named domains. This is a prime

example for the need for further research in the IoT space, as the pervasive nature of connected

solutions also has to cope with the various, speci�c domain requirements. However, summarizing

all of the extensive research body in the IoT sector is beyond the scope of this thesis. Relevant

projects to the topic of interoperability in the IoT will be described in the proceeding chapters.

2.2.2 Sociotechnical aspects

Figure 2-1 expresses areas that are in�uenced or in�uencing the IoT as de�ned by [Ini15]. Enabling

technologies for the IoT contain hardware, gateways, protocols and sensor networks. These en-

abling technologies form the foundation on which services and applications are built for speci�c

2.2. A DEFINITION OF THE "INTERNET OF THINGS" 27

Services
&

applications

Software
architecture

Social impacts

Business models
&

ecosystems

Enabling
technologies
and system
architecture

Management

Security
&

Privacy

Figure 2-1: Social and technological aspects a�ected by the IoT [Ini15]

domains (smart cities, smart homes,...) using software architectures and technologies, in particu-

lar APIs, cloud computing and middleware. The IoT enables entirely new business models and the

creation of new ecosystems and value chains. It’s social aspects lead to changes in the ways peo-

ple interact and live with technology. However, this puts new challenges on security and privacy,

since technology is even more integrated in our everyday lives.

2.2.3 IoT characteristics

[RMjP15] distinguish between IoT characteristics for IoT infrastructure and IoT applications. Gen-

erally, the IoT infrastructure, as already described, can be made up of the heterogeneous and re-

source constrained devices from multiple vendors that are integrated with traditional computing

hardware through the Internet. The IoT makes up an ultra large scale, dynamic network of con-

nected Things with unique characteristics, from very small RFID/NFC tags to high-end computing

devices. An important aspect to consider (compared to other Internet service) is that since Things

are real world objects, they exhibit spontaneous interactions with other Things since a large num-

ber of devices are mobile and move around thus coming in contact with other devices [RMjP15].

Figure 2-2 illustrates the large heterogeneity of devices that appear in the IoT space as outlined

in [RMjP15]. Things are embedded with sensors and actuators to perform the sensing/actuation

which enables the smartness of the IoT. The Things have communication capabilities embedded,

usually based on standard and low-level communication protocols in order to be networked among

2.2. A DEFINITION OF THE "INTERNET OF THINGS" 28

Internet or
Cloud

High-end computing
devices

Middle-end computing
devices

Low-end computing
devices

Wireless sensors and
actuators networks

RFID / NFC
tags or devices

Resource constraints become more scarce and dynamism increases

Figure 2-2: Device heterogeneity in the Internet of Things, from cloud level to device level
[RMjP15]

another. They are furthermore programmable.

"At the simplest level, a programmable device is one that can take on a variety of behav-

iors at a user’s command without requiring physical changes whereas on a higher level,

devices can be programmed to control other devices or systems autonomously. The scope

of an IoT system varies from a small system which contains uniquely identi�able things

and small sensors to a system that interconnects millions of things with a capacity to

deliver complex services" [Ini15].

IoT applications are built as a composite of traditional software and Things, a�ecting the state

of the real world. They can be characterized, according to [RMjP15], as diverse and real-time

sensitive. IoT devices are used in various domains as part of IoT applications, hence the space

of application is very diverse. Applications can be built to provide real-time services since IoT

devices o�er real-time sensing, or aggregate IoT data in a non real-time setting. As more and more

Things are connected, more services will be built on these devices, thus transforming monolithic

applications into service agglomerations that are reusable in di�erent contexts. The exposure of

real world devices to the Internet increases the security and privacy attack surface even more

compared to the already large surface with smartphones and PCs. Hence security and privacy are

important areas of ongoing research and technological advances in the IoT space.

2.2.4 The architecture of the Internet of Things

The following �gure 2-3 provides an overview of the state of the art IoT reference architecture

according to the reference architecture presented in [GBF+18].

Devices (i.e. Things) serve as the connection between the physical and the virtual world, since

they are on the one side connected to sensors and actuators via drivers and on the other side pro-

vide processing and connection capabilities to the IoT middleware [GBF+18].

2.2. A DEFINITION OF THE "INTERNET OF THINGS" 29

Sensor Actuator

Driver

Device

Gateway

IoT integration middelware

Application/service

Driver

Figure 2-3: The IoT reference architecture from application/service level to device/sensor level
[GBF+18]

2.3. IOT PLATFORMS 30

A gateway provides a way for devices to connect to other systems if they do not possess the

capabilities themselves. IoT gateways have various IoT protocols implemented and thus can for-

mat communication between devices and other systems [GBF+18].

The IoT integration middleware layer (or simply IoT middleware) is a "software artifact

between the application layer and the infrastructure support (communication, processing, and sens-

ing) o�ering a standardized means to access data and services provided by the smart objects via a

high level interface" [Bat13]. Speci�cally it o�ers (i) "receiving data from the connected Devices"

[GBF+18], (ii) "process the received data" [GBF+18] , (iii) "provide the received data to connected Ap-

plications" [GBF+18] , and (iv) "control devices" [GBF+18]. Such a middleware also promotes the

reuse of generic services that can be composed and con�gured to make easier the development

of applications in a highly distributed and heterogeneous environment. Middleware solutions are

common methods to improve interoperability (on various levels), since speci�cs of the technolog-

ical layer, such as heterogeneous protocols, formats or other details can be abstracted towards the

application layer. This makes it easier and faster to create new applications on this stack. On the

highest level, applications and services are built based on the middleware services, gateway and

devices. The IoT reference architecture is usually implemented through IoT platforms, hence the

next section will give a thorough introduction to the IoT platform concept.

2.3 IoT Platforms

Increasingly complex IoT solutions require more advanced communication platforms and middle-

ware that provides seamless integration of devices, networks and applications. This has led to

a considerable increase in development activities for IoT platforms in the recent years. IoT plat-

forms are a new kind of software platform, speci�cally tailored for the characteristics of the IoT

[IoT16]. IoT platforms are a relatively new development and feature a great diversity in terms of

functionality and sophistication [Gmb16]. Thus, over 450 [IoT16] platforms have been developed

over the years which cover di�erent parts of the IoT reference architecture. The advantages of

using an IoT platform are reduced cost and faster development times due to standardized compo-

nents for typical IoT problems, such as device connectivity, remote management or digital identity

management. An IoT platform represents a software artifact of a digital platform that is usually

diverse and specialized in its application scope. In very general terms, an IoT platform is a software

2.3. IOT PLATFORMS 31

backend that can be seen as the central backbone of an IoT infrastructure. Usually IoT platforms

host a list of common services that are used either by IoT applications, such as database solu-

tions, device connectivity services or externally facing API gateways. The services are typically

delivered over a Wide Area Network (WAN) or the Internet using IP based transports such a TCP

or UDP or higher level protocols using these as the underlying transport. Thus the services that

constitute a platform are essentially subsystems of the platform that work together to o�er the

platforms capabilities. They facilitate the connection between the embedded hardware in the IoT

(sensors, actuators, microprocessors) and the application level by providing interoperability and

connectivity among billions of connected devices. Hence they form an integral part of the IoT. This

explanation explains why "IoT platform" and "IoT middleware" are usually used synonymously.

IoT platforms o�er more than just connectivity. Furthermore they provide services for device man-

agement, action management, analytics & visualization and integration with external interfaces

and web services. The platform allows to integrate data from multiple smart objects and aggre-

gate and clean that data before providing it to the outside via interfaces. An IoT platform o�ers

software components in order to enable interaction with Smart Objects, to access or manipulate

information or to control them. This functionality is oftentimes referred to as services. Moreover,

the platform monitors/manages and controls various types of endpoints. Also, it can feed its ser-

vices with the data from the smart objects, but also with data from other platforms. This �exibility

and power makes IoT platforms the key asset to unlock the real value of IoT, since smart objects

themselves are rather a utility due to their limited performance and capabilities. Only through the

combination of multiple smart object sources, useful services can be created. [IoT16] describe the

following, general capabilities of IoT platforms:

• Provisioning and management of IoT endpoints (things) and gateways

• Customizing and building applications (software development kit [SDK], application server,

integrated development environment [IDE] and others)

• Event processing: event stream and data aggregation, stream analytics, storage and man-

agement, and information management (often collectively referred to as "data digestion")

• Decision processing: rule engines, orchestration of work�ows and business process man-

agement (BPM)

• Analysis: IoT data analysis and visualization (including dashboards)

2.3. IOT PLATFORMS 32

• Cybersecurity: authentication, encryption, certi�cate management (among others)

• IoT device communications (such as MQTT or HTTP)

• Integration: API publish and subscribe, protocol hopping, scalable transformation and adapters

to connect to business applications and data sources, cloud services, mobile apps, legacy

• Providing protocol adapters

• Providing user interfaces for both end users and developers

IoT platforms are a software-oriented manifestation of the well-known platform concept [GC13],

and are a manifestation of the digital platform concept [CHP18]. Hence, it is worth to provide a

brief introduction on the topic of (digital) platforms �rst to understand the context and origins of

IoT platforms.

2.3.1 Platforms

The interest in the development of platforms in the digital age has risen signi�cantly in the recent

years [CHP18] which triggered increasing research interest. The term platform is used in so many

di�erent areas with �uid interactions between research domains such as Computer science, infor-

mation science, and economic research. This thesis deals with the area of digital platforms, more

speci�cally to digital software-based platforms which incorporate various modules that extend

the functionality of a software product [dRSB17]. Digital platforms are omnipresent in the current

digital age [dRSB17], from the popular Arduino hardware platform for building small hardware

devices, to Apple’s IOS platform which runs applications on Apple IPhones, to the ITunes market-

place which serves a platform to distribute applications to customers inside the Apple ecosystem to

Amazon’s AWS platform which serves the most advanced on-demand computing platform to date.

Digital platforms exist on di�erent levels and in di�erent scales, from these technical software plat-

forms to peer-to-peer digital platforms such as Uber and AirBnB. They have spawned new business

opportunities mainly evolving around platform business models. At the same time, research on

platform-related topics has matured and experienced increasing formalizations [dRSB17].

Still, because the platform concept is used in a lot of di�erent domain and contexts, it is impossible

to �nd an all comprising de�nition of the platform concept since it would need to be so general,

that it would be utterly useless. Thus it is always important to consider, in what type of context the

2.3. IOT PLATFORMS 33

term platform is used. In very general terms, a multi-sided platform mediates di�erent groups of

users, such as buyers and sellers. Platforms exhibit network e�ects, which means that the useful-

ness of the platform increases with the number of users of the platform [dRSB17]. Digital platforms

can be considered as multi-sided business platforms, where we will focus on the technical aspects

of digital platforms, considering them as technical artifacts. In technical discussions, one often

speaks of computing platforms or more speci�cally of software platforms. Computing platforms

however are also referred to on di�erent abstractions. The most intuitive example of a comput-

ing platform is an operating system (OS) that abstracts underlying hardware by o�ering generic

commands to the developer of software on this particular OS. Common examples for computing

platforms have become Cloud Computing / PaaS o�erings, software frameworks or virtual ma-

chines such as Java or .NET. A de�nition of a digital software-based platform which comes closest

to the idea of IoT platforms is provided by [TKB10]:

"Software-based external platforms consisting of the extensible codebase of a software-

based system that provides core functionality shared by the modules that interoperate

with it and the interfaces through which they interoperate" [TKB10]

IoT platform can be considered a concrete expression of a digital software-based platform [dRSB17].

2.3.2 Types of IoT platforms

Similar as with the distinction inside digital platforms, one can distinguish di�erent levels of IoT

platforms. The IoT platform stack usually covers three general levels as described in [WF15]: The

"device level", "connectivity level" and "application level". IoT platforms are accordingly clustered

into: (i) "device level platforms", (ii) "connectivity management platforms" and (iii) "Application en-

ablement platforms" by [Gmb16]. But, this does not mean that platforms only implement one type.

Rather, more sophisticated platforms usually cover all levels, from device to the application/cloud

level.

Devicemanagement platforms Starting from the bottom of the IoT platform stack, the "device

level" connects "IoT-speci�c hardware, such as sensors or actuators and embedded software which is

used to integrate new devices or operate the functionality of the physical thing" [WF15]. Device

management platforms sit on top of hardware/devices and allow to manage them remotely such

as upgrading software, checking health and/or adding or removing a device.

2.3. IOT PLATFORMS 34

Connectivity management platform Connectivity management platforms CMP provide a

way for devices to connect with each other (local network of all sensors or devices in my home

or o�ce or industry) and/or when they directly or through a controller or gateway connects to

Internet using standard communication protocols, such as MQTT or LORA [WF15]. They also

o�er device and subscription management features. According to [Gmb16], the market of CMPs

has featured a platform diversi�cations with dedicated solutions for di�erent markets.

Cloud level / application enablement IoT platforms The highest sophistication of IoT plat-

forms is reached at the "cloud level", also referred to as "IoT application enablement platform"

[IoT16], which solves the main tasks of bringing together di�erent communication streams and

devices for rapid IoT application development and provision. The name "application enablement"

already hints to the core value proposition of cloud level IoT platforms, i.e providing common hor-

izontal components that can be re- used across industries and market segments and tools, frame-

works and APIs for event processing and business logic implementation [Gmb16]. Hence, cloud

level IoT platforms are the most prominent type of IoT platform due to their ease of development

and non-existing resource constraints [MMST16]. They are provisioned in terms of PaaS o�erings

(provide cloud computing services for IoT devices and data, e.g. storage facilities, device man-

agement, device connectivity,...) or SaaS o�erings, focuses on the mashup of data using cloud

computing capabilities. [MMST16] further identify the following trends among cloud level IoT

platforms:

• Platforms commonly use REST APIs. Current IoT services will tend to become more and

more like traditional web services

• APIs support interaction with the connected devices on the platform as well as the manage-

ment of these devices

• IoT service mashups and data analytics will be key integrators for the future of IoT tech-

nologies

• Few platforms have service discovery mechanisms

• Data ownership is a common problem

Since "cloud level" platforms are the most complex breed of IoT platforms and IoT platforms are

not standardized, a large variety of architectures have been developed, from the most simple ones

2.3. IOT PLATFORMS 35

just providing connectivity, to full-�edged platforms such as the Bosch IoT suite 1 or ThingWorks

PTC 2. Hardly any vendor can develop a true end-to-end IoT platform able to support any major

vertical industry or application today. Most vendors are focusing on speci�c market segments,

or rely on partner ecosystems to provide the full set of components necessary to enable a given

customer solution.

The advantages of using IoT application enablement platforms for development in the IoT are man-

ifold. First of all, applications that need to connect to hundreds or thousands of di�erent devices

from di�erent manufactures can make use of IoT platform’s device management features. This

spares the developer of an IoT application of creating that infrastructure himself. Since the main

purpose of an IoT application is to connect with IoT Things, this building block is essentially a

part of every IoT solution, thus all IoT platform providers o�er this functionality. Also integration

of database technology and application logic UI is facilitated by using platform standard solutions.

IoT analytics is also an important and speci�c part to IoT solutions and platforms o�er common

libraries and frameworks with pre-built algorithms that reduce the amount of time, comparing to

building such a system from scratch signi�cantly. The platform furthermore provides the capa-

bility to monitor IoT event streams; enables data aggregation, specialized analysis and application

development; and engages back-end IT systems or services. It typically plays a vital role in provid-

ing functionality for provisioning, controlling and even changing the endpoints to support IoT

solutions. The distributed IoT platform responsibilities may be ful�lled, in part, near the devices

or in a public or private cloud.

Current IoTplatform landscape The current landscape of IoT platforms is highly sophisti-

cated and diverse. There is a wide range of IoT platforms available, distinguished into applications,

enablement and building blocks. A comprehensive overview of available IoT platforms is outside

the scope of this thesis, hence only some of the most popular IoT platforms are presented based

on the analysis already performed and cited by [GBF+18]. For a more detailed analysis of current

IoT platforms, the reader is referred to [GBF+18].

FIWARE 3 is a middleware platform and open source framework whose development has

been sponsored by the EU and Europen commission [GBF+18]. It consists of 52 components in 6

groups. The platform is built based on an OpenStack based cloud hosting rich library of modules
1BoschIoTSuite
2ThingWorksReference
3https://www.�ware.org

2.3. IOT PLATFORMS 36

o�ering various added-value services. These modules (termed Generic Enablers (GEs)) ful�ll all the

required capabilities of an IoT platform, i.e. device management, device discovery and brokerage.

A gateway is responsible for managing the communication of devices with the IoT backend. The

data context broker is another important component of the main functionality of FIWARE, to

connect further components to the platform .

OpenIoT 4 is an open source, middleware infrastructure providing the the collection and pro-

cessing of data from virtually any sensor in the world, including physical devices, sensor process-

ing algorithms, social media processing algorithms and more. OpenIoT facilitates the following

essential IoT-related activities: the integration of sensors; semantically annotating sensor data;

streaming data of various sensors to a cloud computing backend; dynamically discovering/query-

ing sensors and their data; composing and delivering IoT services that comprise data from multiple

sensors; visualizing IoT data based on appropriate mashups (charts,graphs, maps etc.); optimizing

resources within the OpenIoT middleware and cloud computing infrastructure. These core ac-

tivities of OpenIoT correspond with the basic IoT platform stack as shown earlier. The OpenIoT

platform is universally applicable in di�erent domains, with a particular focus on providing e�-

cient ways to use and manage cloud environments for IoT entities and resources such as sensors,

actuators and smart devices and has been validated in di�erent environments (CSIRO, Fraunhofer

IOSB).

The Bosch IoT Suite 5 is an open standards and Open Source based platform as a service

(PaaS) to realize cross-domain applications (among others in the domains of Smart Home, Smart

City, Connected mobility and Industry 4.0). It has been released in 2014 and is still actively de-

veloped, with more than 250 customers operating on the platform. The core components of the

Bosch IoT suite are : Bosch IoT Analytics for analytic services on top of device data, Bosch IoT Hub

for the integration of devices into the platform, Bosch IoT Permissions for permission handling ,

Bosch IoT Remote Manager for performing remote updates of IoT devices , Bosch IoT Rollouts for

performing over the air �rmware updates and Bosch IoT Things for device management We can

observe, that these core components refer to the IoT platform stack.
4http://www.openiot.eu
5www.bosch-si.de, accessed on 24.12.2019

2.4. IOT PLATFORM ECOSYSTEMS 37

2.4 IoT platform ecosystems

A platform ecosystem can be de�ned as: "the extensible codebase of a software-based system that

provides core functionality shared by the modules that interoperate with it and the interfaces through

which they interoperate" [GC02] Platform ecosystem formation has been identi�ed as one of the

most pressing gaps in the IoT at the moment by [MMST16] in order to create a socioeconomic

environment of buyers, suppliers and makers that create IoT applications and services. While the

early stage of the IoT has largely taken place in closed, isolated environments, the recent trends

and developments [MMST16] have given rise to the assumption that this trend is changing and

there is a continuing interest towards large scale/open environment scenarios. In [MMST16] the

authors expect "ecosystem formation" through the following achievements: (i) "easily expandable

platforms", (ii) "cross-platform sharing of applications and services" and (iii) "local composition of

services". A motivation for such an ecosystem formation activities can be seen in the IoT scenario

of - smart parking. In the smart parking scenario the goal is to connect physical parking spots,

why parking sensors with apps or vehicle control units in cars so that the parking journey for

customers is enhanced. A car manufacturer does not operate an infrastructure of parking spaces

in cities but builds applications for embedded devices inside cars that need to contact parking spot

- providers in di�erent cities. The same applies for an App developer who distributes a "smart

parking" app. Since each city usually has their own IoT platform for managing parking spots in

place, the manufacturer and/or developer needs to integrate with many di�erent parking platform

operators so that the autonomous cars (or the app) can use information about parking spots from

multiple platforms. But forming bilateral contracts between each and every parking spot provider

does not scale, which is why a such open IoT platform ecosystems are necessary.

Closed and open IoT ecosystems Current IoT platform ecosystem largely do not ful�ll all (or

any) of the requirements proposed by [MMST16]. This is generally because of silos of platform-

centric solutions and the inability to aggregate data of multiple platforms into a single application

[MMST16]. Also, proprietary platforms, as opposed to open source platforms, do not allow to add

reusable components or add-ons to the platform [MMST16]. Consider for example the case of a

smart production system which is a use case from the Industrial IoT domain, visualized in �gure

2-4.

As shown in the �gure, the industrial IoT environment is occupied by a multitude of stake-

holders such as industry service providers, plant operators, machine providers and customers but

2.4. IOT PLATFORM ECOSYSTEMS 38

Service
provider

Supplier Producer Customer

Operator

Value creation

Figure 2-4: Example for an industrial IoT ecosystem of multiple machine contributors, contractors
and customers, based on [aH15]

also new roles such as intermediaries. Due to this heterogeneity, multiple ecosystems develop,

inside and across company borders [aH15]. But, as per the current Industry 4.0 / Industrial IoT

state, the desired properties for IoT ecosystem formation, as postulated by [MMST16] do not hold.

There are information silos alongside the horizontal and physical value chains [aH15], since plant

operators manage business partner manually and bilateral and do not exchange data. Operational

machine data is thus not used su�ciently enough. There is a low transparency about available data

o�erings and service o�erings in the market, making cross-platform sharing and composition of

services di�cult or even impossible and leading to silos of platform-centric solutions, as described

by [MMST16]. More generally, we can identify that the IoT is diverse and includes "individual

entrepreneurs, small communities, public sectors and large organizations from large industries (some

of them with leading roles in the second and third industrial revolutions)" [NHRdR18] with diverse

organizational logics. Open IoT platform ecosystem would allow for the exchange of platform

data and services across platform boundaries through service platforms where intermediaries act

as trusted instances for collaboration inside the ecosystem [aH15].

IoT marketplaces Intermediaries are often assumed to take on the role of marketplaces, to

discover, share and purchase these IoT data and services. A marketplace is de�ned by its allocation

and pricing rules, and its technical infrastructure and business models (e.g., providers have to

pay a fee to participate in the market). Marketplaces allow for monetization opportunities which

2.4. IOT PLATFORM ECOSYSTEMS 39

are currently still missing from the IoT [MMST16], and hence inhibit ecosystem formation and

building sustainable IoT solutions. IoT marketplaces address various customer demands, on the

one hand they o�er application and service providers a platform to share their services and reach

a large target audience on the other hand they o�er IoT customers to �nd providers for services

among a large range of IoT platform providers.

"From the perspective of a service provider who o�ers one or multiple services on such a

marketplace, the question is which service con�guration and price it has to o�er in order

to be allocated to consumer requests. This is a complex problem, as it not only depends

on the speci�cs of the requests, but also on the o�ers and con�gurations of competitors."

[CN15]

Marketplaces form small economies which are mainly governed by supply and demand and thus

exhibit their own market dynamics. The main di�culty with marketplaces usually stems from the

"chicken-egg-dilemma" which in simple terms deals with the problem, that a marketplace needs a

minimum amount of momentum of consumer-provider interactions to get started. If there is no

supply on the marketplace, no consumer will join and if there are no consumers to buy a product,

no provider will o�er their product on the marketplaces.

Although the dynamics of marketplaces are a fascinating topic in their own right, this thesis fo-

cus does not focus so much on the business aspects of marketplaces but more on the technological

aspects, thus referencing the so called "Software application marketplaces" [MMST16]. However,

overlaps to the business domain are not inhibited. Indeed, one can also conclude, that the techni-

cal and business oriented de�nitions have some overlap, as the technical platform also connects

consumers and producers, i.e. developers and resources.

Ecosystem formation Open ecosystems and cross-vertical, cross-value chain collaboration are

crucial in the IoT because much of the proposed innovation and value is based on integration of

data from diverse sources [Luc16]. Concretely, in the Smart production use case, this leads to

production optimizations for the plant operator and increased customer satisfaction, since cross-

company data can be analyzed and used for example for services such as predictive maintenance

[aH15]. However, missing interoperability between IoT platform providers prevents the bene�ts of

service co-creation to be reached. Hardly any vendor can develop a true end-to-end IoT platform

able to support such cross-vertical services and applications today. Most vendors are focusing

2.5. INTEROPERABILITY 40

on speci�c market segments, or rely on partner ecosystems to provide the full set of components

necessary to enable a given customer solution. There are a range of generic functionalities that

application enablement platforms should support to enable rapid development of IoT solutions

that can adapt to the customers’ evolving business requirements.

As explained before, the dynamics inside the IoT platform ecosystems generally tend towards

cooperation and joint service co-creation. Because of the close relation between IoT platform

ecosystems and general platform ecosystems, literature has discussed challenges in the formation

of these ecosystems for a long time. One of the main challenges for the creation of these IoT

platform ecosystems is interoperability. Interoperation in the IoT will involve cooperative inter-

actions among various heterogeneous systems that satisfy purposes, goals, or mission objectives

that are shared by the participating constituents.

2.5 Interoperability

In this section the problem of interoperability, in particular in the context of IoT platforms, which

was introduced in the previous chapter is explicated in detail. Interoperability and methods to

solve it are the main focus area of this thesis. The section thus gives a thorough introduction to

interoperability as it has been researched for decades in various disciplines and plays an increas-

ingly important role in IT and the Internet of Things in particular. Relationships between systems

become increasingly necessary, as more and more systems are deployed and required to operate

in the same space or even co-operate, for example in Smart Cities or Smart Home environments.

Interoperability is a special form of relation between systems that allows them to work together

[CFMP05]. For the realization of a true vision of the IoT, one major challenge is achieving interop-

erability between the various IoT enabling technologies. Additionally, the main issue is not only

in simply building an IoT system that connects various IoT devices together, but in maintaining

scalable, private, secure and trustworthy operations on the IoT.

2.5.1 De�ning interoperability

De�ning interoperability is a di�cult problem, comparable to de�ning the Internet of Things.

Since interoperability has a long history in systems and software engineering, there exist a broad

range of available de�nitions in literature, that range from very generic to very domain speci�c

ones.

2.5. INTEROPERABILITY 41

"In a very general sense, Interoperability can be de�ned as to allow some form of inter-

action between two or more systems so as to achieve some goal without having to know

the uniqueness of the interacting systems" [Asu10].

According to the o�cial IEEE de�nition1, interoperability is de�ned as: "the ability of two or more

systems or components to exchange information and to use the information that has been exchanged".

A more detailed de�nition was given by [CFMP05]:

"The ability of a collection of communicating systems to (a) share speci�ed information

and (b) operate on that information according to a shared operational semantics in order

to achieve a speci�ed purpose in a given context. To interoperate, a system must provide

a service that is used by another" [CFMP05].

Traditionally, interoperability is considered from a communication centric perspective. This how-

ever is a rather limited approach. In its purest form, interoperability is of course highly connected

to communication, there are more factors to consider. As suggested in the following, more general,

de�nition: "An interoperability problem appears when two or more incompatible systems are put in

relation. Interoperability per se is the paradigm where an interoperability problem occurs" [NLGC10].

One can distinguish between a systems structure and systems behaviour when considering an in-

teroperability problem. The structure de�nes the system’s organization and relationships. The

behaviour describes how the systems acts and reacts, where most often the structure de�nes the

behaviour [NLGC10]. Since interoperability is a problem that pervades multiple domains such as

enterprise systems, military systems, medical systems, systems theory has spawned a large num-

ber of research on interoperability. In [NLGC10] a generic, scienti�c approach to formalize inter-

operability based on systems theory is created in which the authors also refer to di�erent facets

of interoperability. Their contribution is an ontology that describes interoperability problems in

a formal way and provides a framework for describing problems and related solutions pertaining

to the interoperability domain. It builds on two models: a systemic model, for which they provide

de�nitions of each important concept; and a decisional model that provides the basis to draw con-

clusions regarding problems occurring on systems [NLGC10]. The ontology is not domain speci�c

and thus considers the interoperability problem from a systems point of view. They assume, that

interoperability is a requirement inside a system and its maturity depends on the interaction or

composition of its elements. This means, in order to reach the di�erent levels of interoperability,
1IEEE.org

2.5. INTEROPERABILITY 42

certain properties need to be enabled in order for systems to work together. A very detailed de�-

nition from the systems theoretic standpoint is found in [CD12], which is also form the basis for

the interoperability considerations in this thesis:

"Interoperability of a system S is the set of abilities and capabilities of S to interact with

other interfaced systems requesting (resp. providing) services or products provided (resp.

requested) by S with the help of enabling systems. This interaction is requested in order

to �ll, in harmony, a common mission re�ecting the expectations of all the stakeholders

in any situation and possibly for a limited time. Achieving these capabilities and abilities

should not induce inappropriate e�ects or feared (failures, risks, failure to satisfy other

functional or non functional requirements)" [CD12]

More domain speci�c de�nitions can be found in various literature sources. In the enterprise

systems context for example, interoperability is "the capability of enterprise information systems to

collaborate in such a fashion that eventually either their mutual goals become ful�lled or their co-

operation is dissolved in a controllable manner in case of a fault. Interoperability problems can range

from simple technological incompatibilities to con�icts between business strategies."[RK09].

Another aspect that is important in the IoT is that of autonomous systems that can act on their

own. [BD15] provide a �tting de�nition for interoperability of autonomous systems in this regard:

"The ability of connected, autonomous, loosely coupled and possibly heterogeneous sys-

tems to coexist, to interoperate and to exchange �ows (data and services, material or en-

ergy) to and from other systems while continuing their own logic of operation preserving

their autonomy."[BD15]

For the creation of interoperable systems it is important to determine, what the optimal level of

interoperability is, i.e. in what ways should the systems work together and in what ways they

should not. For example, if two systems interoperate by using a subset of their functionality, they

should restrict to this subset and not exchange data at will, since that could impact privacy and

security of users [GP12]. However it is still unclear, how the optimal level of interoperability can be

determined and be made sustainable in IoT. We also need to distinguish between interoperation and

cooperation. While interoperability is a capability that is necessary for interoperation it is by no

means su�cient to guarantee cooperation, however a necessary prerequisite [Mun02]. However,

in this thesis we try to investigate systems that not only interoperate but are also able to cooperate,

towards a common goal and based on agreements.

2.5. INTEROPERABILITY 43

2.5.2 Platform interoperability

This work speci�cally focuses on the interoperability concepts for IoT platforms. Why is inter-

operability of IoT platforms actually important? Why does one not only consider interoperability

between IoT devices or sensors? As already motivated in section 2.3, nowadays, IoT platforms

perform a central role in the engineering of IoT systems. Popular platforms allow to connect an

abundance of sensors and devices in order to integrate them into new IoT solutions. Considering

the fact, that IoT solutions would be build directly through addressing individual devices/sensors

is unrealistic due to scalability and maintenance reasons. Therefore, solving interoperability for

IoT platforms in the end also solves the problem of interoperability between connected sensors as

well, but on another abstraction level.

Since IoT platforms are a natural evolution from the popular Cloud Computing (CC) paradigm

that arose during the last decade, it is interesting to observe how this closely related domain han-

dles the problem of platform interoperability. Interestingly, in Cloud Computing (CC), platform

interoperability between di�erent CC platforms is currently experiencing the same attention as

IoT platform interoperability, which hints that indeed this problem is not solved for generic Cloud

platforms. Looking back at the section about IoT platforms, it is clear that the majority of IoT

platforms are deployed in the Cloud since they were e�ectively developed with the help of Cloud

Computing technologies for the IoT domain. In the context of CC, interoperability is conceived

as the capability of public or private clouds, and other diverse systems within the enterprise to

understand each other’s application and service interfaces, con�guration, forms of authentication

and authorization, data formats etc. in order to cooperate and interoperate with each other 6. In

CC, di�erent layers of interoperability can be distinguished: (i) Application interoperability, (ii)

Service interoperability and (iii) Platform interoperability [Hoa16]. Application interoperability,

addresses application components, regardless on which level (SaaS,PaaS,IaaS) they are deployed

to collaborate across di�erent platforms to either deliver existing or new functionality [Hoa16].

These applications components can be of any scope, i.e. a monolithic application or a service that

is used as part of a distributed application [KGR16].

Service interoperability is the ability of using services across di�erent platforms through a

uni�ed interface [Hoa16]. Service interoperability e�ectively merges with platform interoperabil-

ity, if the platform components that are supposed to interoperate are deployed as services. PaaS
6http://www.cloud-council.org/deliverables/CSCC-Interoperability-and-Portability-for-Cloud-Computing-A-

Guide.pdf), accessed on 21.12.2019

2.5. INTEROPERABILITY 44

components help developers in the complete lifecycle of building and delivering applications. Plat-

form interoperability is the ability of using these platform components to interoperate [Hoa16].

Examples for platform components of CC platforms are [Gmb16]:

• Host environment

• Middleware

• Assembly and Integration environment

• Asset management

• Discovery & Publishing

• Protocols for web service

• Identity management

• Management at service level

• Measurement & monitoring

Comparing this list to the common reference architecture for IoT platforms in section 2.3, it

becomes obvious that all of these components can be found in IoT platforms as well. The com-

ponents are deployed as-a-service which e�ectively means, that the components are only used

and o�ered on a as-needed-basis, which is usually a way to reduce costs. The service exposes

information that can be used by service consumers to determine if the service is appropriate for

their needs [Muf09]. Although multiple IoT platform provides can o�er the same services through

their platform for IoT developers, the underlying implementation of the service can vary between

platform providers. As we will later discover, this a�ects interoperability and dependability of the

system during runtime.

2.5.3 Metrics for interoperability

Clearly, with regard to the range of available interoperability de�nitions it is di�cult to address

it from a technical viewpoint. Usually interoperability is described inside a layer-based architec-

ture. Various studies have already provided an adequate overview on interoperability assessment,

2.5. INTEROPERABILITY 45

speci�cally [LGP16][For08][FCGD07] and [Gué14]. [LGP16] also provides a classi�cation of as-

sessment methods alongside the four interoperability levels. According to the review of interop-

erability measurement models by [FCGD07], there are 14 di�erent interoperability measurement

models of which only one is completely quantitative. In the years after this report, however, addi-

tional models have been developed that provide qualitative as well as quantitative measurements

as described later. Therefore, assessment of interoperability can be loosely divided into two classes:

qualitative level assessment (section 2.5.3.1) and quantitative assessment (section 2.5.3.2).

2.5.3.1 Qualitative assessment

According to [SBC+15], interoperability can be conceptualized into four dimensions:

Technical Interoperability is typically associated with hardware/software components, sys-

tems, and platforms that enable machine-to-machine communication. "This kind of interoperability

is often centered on (communication) protocols and the infrastructure needed for those protocols to op-

erate" [GMLF18].

Syntactic interoperability is the ability to exchange data. This type is usually associated

with the de�nition of common data formats such as XML or JSON.

Semantic interoperability builds on the syntactic layer and requires a common understand-

ing of the underlying data between the two interacting parties. On this level, ontologies are used

to achieve the desired common understanding.

Organizational interoperability as the highest level, is concerned with the "ability of or-

ganizations (in the enterprise context) to e�ectively communicate and transfer meaningful data (in-

formation) despite the use of a variety of information systems over signi�cantly di�erent types of

infrastructure" [Gué14]. In some literature sources, the syntactic and semantic interoperability

layers are combined as "conceptual interoperability" [LGP16]. This makes sense, since usually syn-

tax and semantic are closely related.

Interoperability barriers are further elaborated in [BPGG11], who provide a conceptual overview

of di�erent technical interoperability solutions in complex distributed systems. One can dis-

tinguish between the following interoperability barriers: "data", "middleware", "application" and

2.5. INTEROPERABILITY 46

"non-functional heterogeneity". While the data level concerns syntax and semantic barriers, the

middleware layer concerns heterogeneous protocols, applications with di�erent use of underly-

ing middleware and APIs and �nally non-functional heterogeneity with all other properties that

are relevant for interoperability, e.g. reliance on message latency. The proposed solutions by

[BPGG11] will be explained in more detail in the next chapter.

The most popular metrics with regards to assessing the level of interoperability from a quali-

tative level are the LISI, LCIM and MMEI metric [FCGD07].

LISI The LISI metric for measuring interoperability maturity was proposed in 1998 by the MITRE

Corporation [FCGD07]. It contains 5 levels of maturity: Isolated, Connected, Functional, Domain,

Enterprise. Interoperability between systems is analyzed by an interoperability matrix. The matrix

is created manually based on the generic interoperability level of each system and the speci�c inter-

operability level system pair [Gué14]. LISI only covers the technical interoperability layer, not the

organisational and conceputal aspects. Therefore LISI was extended by the LCIM metric[LGP16].

MMEI [Gué14] propose a maturity based measure that covers multiple interoperability aspects

(Maturity model for Enterprise interoperability (MMEI)). It addresses the main concepts of exist-

ing interoperability maturity models and tries to integrate them into one coherent framework. It

is based on the Enterprise Interoperability Framework (FEI) [CDE06]. However, the authors men-

tion that this model is still under development and can serve as a basis for further research and

development. It covers the following maturity levels for enterprises: unprepared, de�ned, aligned,

organized, adapted. For each level, they characterize the properties of interoperability concerns

and barriers that are speci�c for this level.

LCIM The LCIM metric is one of the most cited metrics for interoperability in literature and

was proposed in [FCGD07]. It is also the basis for the interoperability conceptualization in IoT

ecosystems in this thesis. It de�nes six levels of interoperability: no interoperability, technical,

syntax, semantic, pragmatic, dynamic and conceptual. These levels address di�erent focus areas,

where syntax and semantic deal with the format and content of information exchanged, prag-

matic interoperability deals with the context of information, dynamic interoperability with the

e�ect of exchanged information and lastly conceptual interoperability with a documented con-

2.5. INTEROPERABILITY 47

ceptual model [TC09]. The model was originally developed for the Modeling&Simulation domain,

however by now it is also used by other communities [TC09]. LCIM has a descriptive role that

de�nes how interoperability looks like on each level and a prescriptive role that serves as a require-

ment set in order to reach the respective levels [TC09]. For example, in order to reach pragmatic

interoperability, a method for sharing meaning of terms and methods for anticipating context are

required [TC09]. With regards to the interoperability concerns, LCIM however only considers the

data aspect [Gué14].

The LCIM metric is used as the baseline metric in this thesis due to its descriptive and pre-

scriptive role. Also, it has been developed for the software design process [NDBC16], which is

important to connect the metric to existing work in IoT interoperability and especially work on

semantic interoperability. At the same time it allows to highlight the de�cits with existing in-

teroperability solutions with regards to the levels above semantic interoperability. It is however

unclear how this framework connects to the runtime aspect of interoperability [NDBC16]. Hence,

we will look in more detail into the background of the higher levels of interoperability in the LCIM

metric (semantic,pragmatic) since they are the focus of attention during the rest of this thesis.

2.5.3.2 Semantic interoperability

Semantic interoperability describes a common understanding about the meaning of content that

is shared between a group of entities [SBC+15]. According to the de�nition in the LCIM model,

semantic interoperability is reached when "the meaning of the data is shared; the content of the

information exchange requests are un-ambiguously de�ned" [TDT07]. Semantic web technologies

play a crucial to reach semantic interoperability. Semantic web technologies originate from the

Semantic Web movement in the 2000s where semantic web agents were supposed to understand

the content of web pages. The developed technologies are now used in the IoT context where they

should lead to "interoperability among IoT resources, information models, data providers and con-

sumers, and facilitate e�ective data access and integration, resource discovery, semantic reasoning,

and knowledge extraction" [Ini15]. Reaching a common meaning of data is usually achieved with

the help of ontologies. An ontology describes the knowledge about a certain domain by dividing

it into relations between these concepts. They allow information exchange between systems on

di�erent levels of abstraction which is vital in the IoT context [SBC+15]. Also, they play an im-

portant role throughout the whole semantic interoperability stack, from annotation to managing

access and resource discovery [GPP+16]. An ontology is used by annotating terms (e.g. data items)

2.5. INTEROPERABILITY 48

with semantic knowledge, thus making the data interoperable between multiple systems (assum-

ing a common understanding of the underlying ontology). A formal introduction to ontologies is

given by [DMA13]. There are a large number of ontologies developed already for the IoT space.

An overview about popular ontologies from di�erent domains is given in [SBC+15] and [GPP+16].

However, most of the IoT ontologies are still in prototypical stage, since they originate from the

research domain [GPP+16]. An exception is the SSN ontology 7, representing the most important

core vocabulary for sensing data. It de�nes the notion of sensor and physical devices in general,

therefore formally the concept of a virtual sensor as a subclass of the sensor concept as de�ned in

the SSN ontology [SBC+15].

Di�erent speci�cations have been developed in order to create a formal language for the spec-

i�cation of ontologies. RDF - Resource description framework is a generic syntax in order to

display data data on the Web. It is recommended by the W3C as a language to describe resources.

Information in RDF is represented as triples in the form of subject, predicate and object or directed

graphs, so called RDF-graphs. In order to retrieve information from RDF-based ontologies, the

query language SPARQL 8 can be used which resembles the popular SQL database query lan-

guage. The Web Ontology Language (OWL) is a family of knowledge representation languages

for creating and publishing ontologies. It is about describing domain terms in a formal way so

that software agents can understand them. A widely used serialization of ontologies is JSON-LD,

which is an extension of JSON and RDF speci�cally suited to serialize ontologies to make them

interoperable usable.

2.5.3.3 Pragmatic interoperability

In abstract terms, pragmatic interoperability ensures that a message intention and the e�ects of

the message exchange between two systems is understood. Pragmatic interoperability is achieved

when the use of the data is known to the inter-operating systems. The underlying theoretical

model of pragmatic interoperability can be rooted (similarly to semantic interoperability) in the

linguistic traits of pragmatics. Pragmatics is a sub�eld of linguistics and semiotics that studies the

ways in which context contributes to / or changes meaning. In pragmatics as opposed to seman-

tics, the meaning of an utterance is not objectively de�ned but created during the conversation in

context. Pragmatics is about non-literal meaning - it concerns with what is intended, even when
7https://www.w3.org/TR/vocab-ssn/, accessed on 21.12.2019
8http://w3.org/TR/rdf-sparql-query/, accessed on 21.12.2019

2.5. INTEROPERABILITY 49

no explicit intention is stated. Pragmatics is more concerned with the meanings that utterances

in fact convey when they are used, or with intended speaker meaning. Context of an utterance

consists of a speaker, the sentence which is uttered, the act performed in the uttering of a sentence

and the hearer. The meaning of an utterance may include certain intended e�ect on the hearer, by

for example implicit requests.

Moving from the linguistic to the computational world, the context of pragmatic considerations

changes. For example, in [RK09] pragmatic interoperability is de�ned as achieved "if the intentions,

business rules, and organizational policies of collaborating parties are compatible with each other"

[RK09]. [TDT07] argues that for pragmatic interoperability, sender/receiver pairs are "aligned"

about the expectations of the message exchange. Systems share an understanding of the context of

the data exchanged and the associated information exchange can be characterized as data exchange

for the right purpose. There may be implicit expectations about what content is sent/received

and in what order. [Asu10] identi�ed the following four aspects which need to be considered in

pragmatic interoperability:

• Message exchange - the pre-requisite for any communication

• Message intention - the desired possible state of the world which a message sender can

achieve through collaboration with a receiver

• Message use - how a receiver interprets the intention of the communicated information on

message receipt - how the receiver acts upon the message to realize the intention of the

sender

• Message context - the importance of context in the use, interpretation and understanding

of the message is regarded by most authors as a core concept in pragmatic interoperabil-

ity. Context helps in the correct interpretation of the meaning of the message request so

that only the relevant information or relevant actions are used to accomplish the sender’s

intention [ABI+11]

These aspects add the importance of the user context in achieving pragmatic interoperabil-

ity which is a topic that will be referred to later when discussing the runtime interoperability

problem. Context information can consist of information about the system itself, goal, purpose,

theme, time, location, etc. [LLL14]. Such kinds of context-awareness in processing data is what

2.5. INTEROPERABILITY 50

is currently missing from IoT middleware solutions [RMjP15]. Pragmatic interoperability gener-

ally aims to meet users expectations in a collaborative processes [NDBC16], although it is to be

de�ned who these users are. Another distinction can be made between the system and business

levels. While on the system level, "pragmatic interoperability deals with sharing the same under-

standing of the intended and actual use of exchanged system message in a given context" [Asu10],

on the business level it "goes beyond service use, by considering also the compatibility of business

intentions, business rules, organizational policies, and the establishment and maintenance of trust

and reputation mechanisms between collaborating business parties" [Asu10].

To summarize, we can understand the di�erence between semantic and pragmatic interoperability

as such:

• Semantic interoperability deals with the objective meaning of data

• Pragmatic interoperability deals with the subjective meaning of data, in other terms a mu-

tual agreement on the use of the data

2.5.3.4 Quantitative assessment

A measurement metric serves an important guideline for interoperability related decisions. Quan-

tifying interoperability is an important concept that is still not fully explored and only few solu-

tions exist. Compared to the qualitative approaches, quanti�cation can be considered a detailed

measurement of the underlying interoperability between systems. Here also the di�culty for de-

signing such a metric lies. Even within the same domain di�erent parameters are more or less

important for the interoperability between systems. There are no uniform requirements even

within domains. The key to measuring interoperability of systems lies in determining the basis

of the measurement [FGCJ08]. In [FCGD07], the authors propose the "i-score"-metric which they

later improve in [FGCJ08]. It is a mathematical method for measuring interoperability between

various kinds of systems. This means, it was not speci�cally designed to be used by a particular

domain such as enterprise, military or IoT. It is computed based on a so called "operational thread"

[FCGD07], i.e. the sequence of interoperation between di�erent systems. Furthermore it can com-

pute the maximum possible interoperability and determine ways to close the interoperability gap

between the current and the optimum level [FCGD07]. The advantage of this method is its en-

tirely mathematical background, making it possible for optimization criteria to use this metric at

runtime. [Nay15] create the Interoperability index model which is an improvement of the "i-score"-

2.5. INTEROPERABILITY 51

metric by [FCGD07]. It improves the i-score in three areas: (i) They consider direct and indirect

interfaces, (ii) they consider weights for interfaces, (iii) they de�ne the interoperability index that

is related with how the interoperability between systems in the operational thread is calculated.

[JWDM13] developed a method that measures interoperability based on a reliability measurement

which works at the system pair level and also at the system of systems level. The interoperability

measurement is intended to be applied at the conceptual design phase to analyze interoperability

between di�erent system architectures. They analyze other measurement approaches and com-

pare their approach with the "i-score" method by [FCGD07] to conclude, that the "i-score" does not

measure the quality of interoperation but only the compatibility. [YAP12] focus on the conceptual

layer and propose a method to quantify the semantic gap between conceptual models of Coop-

erative Information Systems.[JB12] present an approach for interoperability evaluation based on

causal performance measurement models to graphically represent and measure the interoperabil-

ity. Finally, another way to measure interoperability using Petri net models is given by [GW12].

This overview shows that indeed, measuring interoperability is a di�cult and domain-subjective

problem, where solutions are not easily portable. While the qualitative level is still rather general,

the quantitative level relies on speci�c points of measurements which might not be available in

other domains.

2.5.4 Interoperability - temporal axis

We can distinct interoperability on the temporal axis between design-time and runtime interoper-

ability. [Wei14] consider the interoperability dimension of "interoperability solution timing",

that distinguishes between "a-priori solutions" and "a-posteriori solutions" to interoperability. Solu-

tion timings determine when the interoperability problem should be addressed. A-priori solutions

comprise approaches that try to anticipate problems and to overcome barriers before systems are

build, i.e. design-time approaches. A-posteriori solutions on the other hand are approaches that

allow to identify and correct problems at runtime and thus support the formation and robustness

of dynamic systems. In the context of this thesis, this fourth dimension is particularly relevant

as discussed in later chapters. A-priori interoperability requires the interacting systems to agree

up front on a particular level of interoperability. Usually, these agreements are only applicable to

closed systems and exhibit rigidness since the interoperability requirements are �xed at design-

time. An example of this type of interoperability would be an approach solely based on standards

that de�nes the valid ways systems are supposed/allowed to interoperate. Systems that adhere

2.6. SUMMARY 52

to the standard are a priori interoperable. This process requires a lot of foresight by the standard

bodies and developers of the systems. Hence it is generally considered a quite slow design-time

process. A-posteriori interoperability on the other hand involves continually adapting systems

(components) to the current operational context. This is especially important in dynamic environ-

ments where it is unclear at design-time, which systems will actually work together. As we will

see in the next section, the IoT generally constitute such dynamic environments, hence we will

speci�cally concentrate on a posteriori solutions.

In systems theory, a posteriori solutions can be classi�ed into three divisions: (i) exclusion, (ii)

domination or (iii) adjustment. Adjustment is the most desired solutions since it places the least

amount of restrictions on the systems operation, however it requires systems to be adaptable. Ex-

clusion works as a protective mechanism, so that systems can be excluded from a collaboration

when they show defective behaviour. Domination limits systems in their abilities which can help

to prevent interoperability problems by restricting systems to a subset of functionality. All these

approaches are classi�ed under the umbrella term coordination[NGC09].

2.6 Summary

This chapter presented an overview about the two main topics of this thesis: IoT platforms and

interoperability. The goal in the next chapters will be to connect the two concepts, i.e. deriving

solutions for interoperability of IoT platforms. Therefore, in the next chapter we will review ex-

isting work on interoperability between IoT platforms before a practical approach to this problem

is presented in the following chapters.

Chapter 3

Related work

3.1 Aim

We will review the state of related work in interoperability conceptualizations and solutions and

will analyze how the existing methods relate to interoperability between IoT platforms. This serves

as a state-of-the art analysis in order to evaluate why existing solutions have not yet solved the

problem of interoperability between IoT platforms. In general we can distinguish between two

broad classes of intertwined approaches: (i) standardization activities and (ii) software based so-

lutions.

3.2 Standardization bodies for IoT interoperability

Standardization has always been the driving force behind interoperability and is considered the

"go-to method" to achieve interoperability in distributed systems [Gas15]. Standards can be char-

acterized as a collaborative approach towards higher levels of interoperability by multiple parties

and can be distinguished as either open or closed which a�ects how accessible and widespread the

standards can be used [Gas15]. If two systems adhere to the same standards, they are guaranteed

to work together to the extent of the standard. Nonetheless in the IoT, standardization is not as

easily achieved as in other domains which can be seen by the already large quantity of standards

developed that lead to the problem of creating methods to bridge standards. E�orts on standard-

ization have been spent by standard developing bodies, such as industry alliances, special interest

groups and open communities [Gmb16]. However, their solutions are usually bound to speci�c

areas or domains.

53

3.2. STANDARDIZATION BODIES FOR IOT INTEROPERABILITY 54

Standards and reference architectures are being created on several layers of the complete IoT tech-

nology stack, mainly on the communication, application and service layer [Gmb16]. While the

communication level deals with accommodating communication standards for the IoT, the applica-

tion level deals with device management and protocols (IEEE,Bluetooth SIG,...) and on the service

level we �nd models and reference architectures on how to design IoT systems. This is possible

since many core-level IoT services remain similar across verticals and solutions, so that it makes

sense to standardize them although at the same time, a lot of IoT solutions rely on customizations

which contradict this motion. Popular examples for service level standardizations are the AllSeen

Alliance, Industrial Internet Consortium (IIC), oneM2M, OCF and FiWare’s NGSI [Gmb16].

These working groups develop best practices and frameworks for the IoT space and consists of

consortia of academic and industrial partners such as Microsoft, LG, Sony, among others [Gmb16].

Despite these e�orts, a lot of challenges remain that concern privacy and con�dentiality of ex-

changed data, standardized data exchange formats and interfaces within and across industry do-

mains which are not yet solved by existing standards [Gmb16]. It is doubtful that there will be a

universal standard for IoT that will cover all topics, but rather there will be a selection of standards

and ecosystems that will become dominant in various segments [Gmb16]. Thus, the IoT has seen

increased e�orts trying to bridge standards.

Standardization is a double-edged sword in the IoT because, on the one hand, if all parties agree

to standards, they provide a solid basis for interoperability. On the other hand, the standardization

process is usually time consuming, complex and costly [Gas15] which is a particular problem in

the open and fast paced IoT environment. Since the speed in which IoT technology develops is

increasing rapidly, standards based on outdated assumptions might restrict future developments

due to historical limitations [Gas15]. Standards speci�cations have to anticipate all possible future

scenarios which is, to say the least, very di�cult inside highly dynamic environments. As already

proposed by [CFMP05], interoperability becomes a runtime problem which is especially true for

IoT.

In summary, the standardization model in the IoT fails due to the following reasons:

1. Scalability: The number of IoT systems and platforms rises rapidly [IoT16] and e�orts needed

to adhere to new standards is not scalable due to development and synchronization e�orts.

Thus, the IoT standard landscape currently follows the same fait as previous standardiza-

tion e�orts from other domains - More and more standards are developed which are not

3.3. SOFTWARE BASED APPROACHES FOR IOT PLATFORM INTEROPERABILITY 55

interoperable amongst another [IoT]

2. Requirements: Since in the IoT, systems are interconnected in various ways, it is di�cult to

foresee from a standard-development standpoint, how the systems will work together and

thus, what capabilities the standard needs to have.

3. Time: Standardization is usually a long and time-consuming process. This approach does

not work in the short-lived, rapidly evolving space of the IoT.

3.3 Software based approaches for IoT platform interoperability

Software-based approaches for IoT platform interoperability promise to o�er more �exible and

dynamic solutions compared to standards. Although there are a plethora of solutions, the most

common solutions in the IoT are middleware based solutions. This is because middleware gen-

erally acts as an abstraction layer towards heterogeneity on the platform or application level and

provides a key set of layers in distributed architectures since the early 90s, originating from basic

client/server models to service oriented architectures and new communication concepts such as

publish-subscribe patterns or message queues [BST16]. But research on which type of middle-

ware architecture is the most promising in the IoT is still ongoing due to the following, IoT related

challenges on the usual middleware approach according to [BST16]:

• (i) massive scale of IoT devices results in dependability, discovery and stability issues

• (ii) complex event processing and system architectures

• (iii) heterogeneity of IoT systems

• and (iv) privacy, trust and safety for accessing IoT data.

Traditional middleware approaches achieve interoperability by relying on all systems to be

implemented on the same middleware architecture. Each peer uses the same middleware layer

for communication, so that interoperability can be guaranteed. This is essentially equivalent to

people agreeing on speaking a common language. Common examples for such communication

layers are: RPC based systems (e.g. CORBA [VF13]) , message-based, publish-subscribe and tuple

spaces [BPGG11]. A disadvantage of this approach in dynamic environments is the requirement

that every application needs to implement the same middleware [BPGG11]. Another approach is

3.3. SOFTWARE BASED APPROACHES FOR IOT PLATFORM INTEROPERABILITY 56

the use of interoperability platforms, that follow a translation approach guaranteeing that appli-

cations can interoperate with all services irrespective of the employed middleware architecture.

The platform provides an API for developers and a substitution mechanism to translate between

disparate protocols between middlewares. Software bridges are third party infrastructure that fa-

cilitate translation between di�erent legacy middleware and "act as a one-to-one mapping between

domains; it will take messages from a client in one format and then marshal this to the format of the

server middleware; the response is thenmapped to the original message format" [BPGG11]. A particu-

lar example of a software bridge is the Enterprise service bus (ESB) which o�ers a N-1-M mapping

between di�erent messaging systems. Yet another approach (logical mobility) relies on clients

downloading code fragments for integration to be interoperable with other systems [BPGG11].

This encapsulates any implementation details of other services and spares the developer of the

client application to implement them himself. Instead, the downloaded code will be used as is to

handle all interoperability related functionality. The downside is, that there needs to be a common

platform to run the code on (e.g. a common agent platform) which weakens the interoperability

potential [BPGG11].

Overview over IoT middleware landscape The landscape of IoT middleware is as diverse

as the IoT platform landscape with a recent comprehensive overview given by [RMjP15]. They

show that IoT-middleware is usually applied on two di�erent levels: middleware hosted in the

cloud (commonly refereed to as IoT platform) and middleware that is using a backbone network.

Inside these levels there has been a plethora of middleware solutions, developed using di�erent

design approaches [RMjP15]. The general distinction is between event-based, service-oriented,

VM-based, agent-based, tuple-based, database-oriented and application speci�c middleware solu-

tions [RMjP15], with hybrids among these approaches. Service-oriented approaches have become

the most popular approach, hence they are focused in later sections. The reason is that the IoT does

not only concern data that is exposed to the outside, but also resources such as sensors, actuators

or entire networks. Recently, a trend can be observed to abstract IoT resources as services, where

services provide an interface towards the resources, acting as virtual counterparts of physical de-

vices. This achieves a common communication layer that can abstract device heterogeneity and

also join with other data sources easily. By implementing the service interface, resources provide

and consume capabilities to the outside [Del13]. Services in this context can be formally de�ned as:

"coarse-grained, discoverable, and self-contained software entities that interact with applications and

3.3. SOFTWARE BASED APPROACHES FOR IOT PLATFORM INTEROPERABILITY 57

other services through a loosely coupled, often asynchronous, message-based communication model"

[CFMP05]. This view merges the Internet-of-Things with the Future Internet vision of the Internet-

of-Services and porting existing technologies that were originally developed for the service domain

to be used in IoT.

The following list contains some of the more prominent examples of IoT middleware:

• UBIWARE: UBIWARE is an agent-based middleware where each resource is modeled as a

software agent. The agent monitors the conditions of the resource and enables the resource

to interact with other elements. In general, UBIWARE allows the automated discovery, or-

chestration, choreography, invocation and execution of IoT resources [Bat13].

• HYDRA: HYDRA is a service-oriented architecture which uses web service for the discovery

and description of IoT resources based on XML and web protocol standards [RMjP15].

• OpenIoT: OpenIoT is an open-source middleware which follows the idea of on demand

access to IoT services which are o�ered as cloud services. OpenIoT refers to this as the

’Cloud-of-things’ [Bat13]. OpenIoT resources are addressed through URIs as OpenIoT ad-

heres to the REST paradigm. Interactions with the IoT resources are then o�ered as RESTful

web services [Bat13].

• Hypercat: Hypercat provides a hub-based approach to solve IoT interoperability through

an IoT catalogue speci�cation [BL15]. They describe a mechanism to adapt an existing IoT

platform to use the HyperCat speci�cation. The IoT platform thus becomes a hub that ex-

poses Smart objects through a well-de�ned RESTful API, and a common hypermedia speci-

�cation (HyperCat). HyperCat is an outlier among the other frameworks as it only focuses

on discovery. This functionality, however, is solved in a very lean and lightweight manner.

3.3.1 Service oriented middleware

The most frequently used type of middleware architecture in the IoT space is the Service ori-

ented architecture (SOA) originating from the service oriented computing (SOC) domain [AIM10].

Service-Oriented Computing (SOC) is a computing paradigm that utilizes services as fundamental

elements to support rapid, low-cost development of distributed applications in heterogeneous en-

vironments [PG03]. The SOA architecture makes it possible to decompose monolithic applications

3.3. SOFTWARE BASED APPROACHES FOR IOT PLATFORM INTEROPERABILITY 58

into �ne-grained, independent services that do not possess any references to other services which

provides dynamic business processes and more agile applications even across organizations and

computing platforms that can adapt at runtime [PG03]. Interoperability is achieved through SOC

by abstracting speci�c characteristics of each individual system through a common service layer

[PG03].

In SOA and web services, two roles are di�erentiated: a service requester (client) and a service

provider, which communicate via service requests. A role thus re�ects a type of participant in an

SOA. The design principles of an SOA are independent of any speci�c technology, such as Web

Services or J2EE Enterprise Java Beans. In particular, any technology that complies with WSDL

and communicates with XML messages works with SOA, however web services have become the

preferred implementation technology for realizing SOAs. SOA have been used in the past success-

fully to develop interoperating web-service architectures [Muf09]. Key factors that SOA contribute

to enhanced interoperability are: standard interfaces, dynamic binding at runtime, loose coupling,

dynamic service contracts & �exibility.

Recent IoT middleware architectures often follow the Service Oriented Architecture (SOA)

approach [AIM10], notably Hydra, MUSIC, SenseWrap among others. However their focus on

how to enable interoperability di�ers, with some approaches abstracting devices while others ab-

stract data/information[THIG11]. An IoT middleware needs to ful�ll various requirements, among

other things the discovery and management of IoT resources and devices, data and events while

achieving scalability, reliability and availability [RMjP15]. On an architectural level, an IoT mid-

dleware needs to provide interoperability through programming abstractions, such as service-

oriented technologies, be service-based and provide distributed context-awareness [RMjP15]. A

common point of agreement is the use of semantics and metadata to overcome heterogeneity issues

[THIG11].

Another interoperability approach which has been becoming more and more popular, espe-

cially in the early 2010s during the Cloud Computing boom, is the Service brokering platforms.

A service broker is a speci�c type of middleware, that mediates between service consumers and

producers by o�ering search, aggregation, integration and security for customers of cloud ser-

vices. Naturally this �ts the introduction of service oriented architecture in which everything is

o�ered and provided as services. The advantage of the service broker is that the consumer has

easier access to a broader rage of services compared to manual search. The service broker ad-

3.3. SOFTWARE BASED APPROACHES FOR IOT PLATFORM INTEROPERABILITY 59

dresses interoperability by reducing the complexity of integration of other services and reducing

operational problems. But the service broker model also features a couple of disadvantages such

as: (i) the reliance on a centralized entity in order to �nd and aggregate services and (ii) �xed roles

of the involved actors. Therefore, alternative solutions to the broker model should be considered

as well.

3.3.2 Semantic interoperability solutions

Semantic interoperability is recognized within the IoT domain as an important problem to solve

due to the inherent heterogeneity of communication protocols, standards and methods[SBC+15].

The view of a "Semantic oriented" IoT vision has thus emerged in recent years, with a plethora of

solutions addressing semantic interoperability. It is a common point of agreement that semantic

technologies provide the necessary foundation for interoperability in the IoT and at the time of

writing, there are a lot of research e�orts dedicated to semantic interoperability in order to im-

prove the exchange of machine interpretable information between IoT devices and platforms.

Semantic technologies have experienced extensive research to achieve web service interoperability

in the early 2000s (Semantic web services). The goal of semantic web services are self-describing

services with rich semantic capability descriptions that are automatically discoverable and com-

posable. Approaches for semantic interoperability are closely linked to the Semantic Web activi-

ties, which serves as a framework to achieve semantic interoperability. Semantic Web technologies

such as the Resource description framework (RDF), RDF- Schema and the Web Ontology Lan-

guage(OWL) are increasingly used within IoT [SBC+15]. The Semantic Web community also es-

tablished the ideas of Linked Data for structuring data so that it can be interlinked[SBC+15], as well

as OWL-S, a powerful set of ontologies to describe and reason over service descriptions "through a

representation of the semantics of the operations and the messages of the service" [BPGG11]. Middle-

ware architectures and service brokers which are utilizing semantic technologies for data exchange

and discovery are called semantic middleware. Semantic middleware creates a common framework

that enables data sharing and exchange across distributed devices, applications and locations. In

this way, semantic middleware establish semantic interoperability. Semantic interoperability is

not only important for describing data and metadata but also for the di�erent IoT components or

services to be discoverable, accessed and manageable. Semantic interoperability will establish the

"e�ective discovery, query, interpretation and integration of the IoT data" [VF13].

3.3. SOFTWARE BASED APPROACHES FOR IOT PLATFORM INTEROPERABILITY 60

[SBC+15] provide a detailed overview about semantic interoperability challenges and solutions

and give hints how to solve these by providing an extensive research roadmap. They describe se-

mantics as the starting point of semantic interoperability, with future research needed on semantic

reasoning and interpretation on the data for automated processing. Since these techniques are no-

toriously challenging to realize on constrained devices and platforms, there are approaches needed

in order to improve the performance and resource consumption of these concepts. Ontologies are

a solid basis for semantic data exchange but ontology encoding is still quite time consuming and

current solutions are not applicable for real-time constraints [BI15]. Ontology matching solutions

appear as a promising solution to overcome ontology heterogeneities but they are more complex

than pure ontology encoding, therefore not yet widely available. [VF13] list among the essential

challenges for semantic interoperability the integration of multiple interconnected smart objects

(sensors & actuators), automated linking of relevant data sources (annotation), creation and man-

agement of virtual smart objects, discovering smart objects, data sources and analysis and reason-

ing.

Technical and semantic interoperability has also received much attention among European re-

search projects and also standardization committees such as the W3C WoT 1. These projects can be

classi�ed into two groups which either work on architectures or communication protocols to solve

semantic interoperability [Bor14]. An overview of research achievements by 12 EU projects given

by [SBC+15] describes in detail the contribution of each project to the challenge of IoT semantic

interoperability. Comparing the approaches, only OpenIoT 2 has addressed all requirements for

semantic interoperability that were described earlier in [SBC+15].

3.3.3 Solutions to address pragmatic interoperability

Besides semantic interoperability, pragmatic and dynamic interoperability also play an important

role in the IoT space since it aims to meet users expectations in the collaborative processes. As

outlined in the previous chapter, pragmatic interoperability is achieved when the use of the data

is understood by the interoperating systems [AV11], i.e. the context of the application of data is

clearly speci�ed. Pragmatic interoperability builds on top of semantic interoperability and can be
1https://www.w3.org/WoT/, accessed 24.12.2019
2http://www.openiot.eu/, accessed 24.12.2019

3.3. SOFTWARE BASED APPROACHES FOR IOT PLATFORM INTEROPERABILITY 61

considered a more sophisticated way for services to choose other service in SOA [Muf09]. How-

ever, as discussed in [Muf09] and [NDBC16], there is still little work done to technically realize

pragmatic interoperability in addition to a lack of experimental studies. At the time of writing there

are currently no solutions yet that speci�cally deal with pragmatic interoperability in the IoT on

an implementation ready basis. Service discovery, composition and/or selection and ontologies

are among the most common tools to achieve pragmatic interoperability as of now[NDBC16].

Furthermore, the most frequent application domain is e-business with currently no existing ap-

proaches for the IoT. Ontologies and metamodels are used to represent pragmatic knowledge which

is further used by service brokers to �nd appropriate (web)-services that match user expectations.

[Liu07] propose an evolution from the semantic web to pragmatic web. They postulate that prag-

matics, concerned with the use of information in relation to the context and intended purposes,

is extremely important in web service and applications. In a pragmatic web, the web services

need to be able to facilitate communication and negotiate between service consumers and ser-

vice providers. After reviewing the current work in pragmatic web, the paper presents a semiotic

approach to website services, particularly on request decomposition and service aggregation and

present a new design for pragmatic webservices. The pragmatic web covers the semantic web

drawbacks of missing the user intentions and intended purposes and e�ects of communication

and put ontologies into context to deal with partial, contradicting ontologies. This makes it a rel-

evant related domain to be considered in an IoT context! [TE06] provide a semantic resolution of

web service requests. Even if potentially matching webservices, are matched based on semantic

knowledge they might still not be compatible if used in a di�erent situational context. Collab-

orators therefore have to continuously communicate and share background/context knowledge.

During the web service discovery, they propose a pragmatic methodology which captures the con-

text of the web services usage. According to this methodology, the context of web services’ usage

can be determined by considering the context of collaborators themselves. They argue that the

context of collaborators must be well de�ned at the time of o�er/demand de�nition for web ser-

vices. To model such a context they propose the exchange of standard XML-based message types

that are to be interpreted identically by all collaborators.

3.4. SUMMARY AND GAPS IN CURRENT INTEROPERABILITY RESEARCH 62

3.4 Summary and gaps in current interoperability research

IoT ecosystems are especially challenging for interoperability since they are complex systems, due

to the massive scale of devices, complex event processing and heterogeneous system architectures.

There is a general consensus in the analyzed literature, that semantic technologies and service-

oriented based middleware are a favorable approach. However, the literature also points to the

abundance of existing standards and middleware solutions which have not yet su�ciently solved

all aspects of the interoperability problem. Furthermore, IoT interoperability solutions are usually

domain speci�c. If a domain-independent, universal interoperability solution would be possible is

still an open question. Dynamic solutions (possibly machine learning supported) are still not used

in production and only developed in research prototypes. The promise of such dynamic interop-

erability solutions would be a reduction in complexity due to the increased automation.

Achieving semantic interoperability in the IoT is a multi-step process and still automatic so-

lutions are missing for parts of the process [GPP+16]. Also, most of the analyzed service binding

methods in current SOA architectures are performed at design-time which does not yield the full

potential of SOA [Muf09]. Ontology mismatches between and within domains are the main reason

for this. This is especially problematic, when we consider the goal for dynamic interoperability

solutions in IoT.

Yet, semantic interoperability is only one part of realizing true interoperability in the future

Internet of Things. There are still no interoperability projects addressing higher levels of interop-

erability such as pragmatic interoperability. This is likely because the di�culty of interoperability

increases with the considered level [Muf09] and clear requirements for pragmatic interoperabil-

ity are still missing [NDBC16]. It is also still an open issue, how to map the business/process

and organizational levels of interoperability to IoT. The framework provided by [DM14] from en-

terprise systems engineering is a good starting point, as it already covers the three dimensional

interoperability problem space. However, this framework is still bound to design-time analysis.

Additionally, interoperability assessment is still an open issue in future enterprise systems, which

makes it also a problem for IoT ecosystems [PZJGR16] .

There is generally no approach to consider interoperability from a formalized perspective, as

3.4. SUMMARY AND GAPS IN CURRENT INTEROPERABILITY RESEARCH 63

proposed in [NLGC10]. Although the qualitative partitioning into layers makes interoperability

more accessible, it is still vague what system requirements are derived from this. Also a more �ne

granular distinction in between the classes of interoperability might be necessary for the IoT. Ac-

cording to the work by [LGP16], the MMEI framework is the only method that su�ciently covers

all conceptual, technical and organizational interoperability aspects. However the analysis, as with

all the other maturity models is performed at design-time, before the actual interoperation starts.

This makes the metrics not directly applicable for the dynamic interoperability assessment for IoT

systems at runtime. Since MMEI measures interoperability before partners are known, while other

methods only measure interoperability after the partners are known but only for speci�c aspects,

there still exists a gap that needs to be �lled [LGP16].

To summarize, the main weaknesses of existing interoperability solutions are:

• The main focus is on design-time approaches

• Existing solutions are mainly domain speci�c

• Higher interoperability levels have not yet been considered

• Interoperability formalization & assessment missing

The remainder of this thesis addresses these open issues to close the interoperability gap be-

tween IoT platforms and to develop solutions that provide reliable interoperability in IoT ecosys-

tems.

Part II

Building the interoperability model

64

Chapter 4

A conceptual model of IoT ecosystems

4.1 Aim

How interoperability between di�erent heterogeneous IoT platforms operated by di�erent orga-

nizations, needs to be designed so that it leads to a working IoT ecosystem is an open issue. To

address this issue �rst of all requires a proper concept for what an IoT ecosystem actually is. To

conceptualize an open IoT ecosystem requires �rst to take a deeper look at the individual ele-

ments and components of such a system. After the content of an IoT ecosystem is understood,

the next hurdle is to actually model it so we can evaluate theories and implementations through

it. The �rst section 4.2 wdill introduce the reasoning behind the theoretical concepts to model

IoT ecosystems, in particular systems-of-systems and digital service ecosystems theory. Section

4.3 will then present a conceptual model of cross-platform IoT ecosystem using these theoretical

concepts. The model will be validated using existing literature from the IoT domain. The �nal sec-

tion 4.3.6 then compares the properties of traditional centralized to decentralized IoT ecosystems

and the implications on interoperability and explains why existing interoperability solutions are

not su�cient in this model. The IoT ecosystem conceptualization will guide the development of

interoperability concepts in the remainder of this thesis in the preceding chapter.

4.2 Modeling theory

4.2.1 Systems of systems

If the vision of the IoT will be successful that it will connect the physical and virtual world and

that it will make knowledge widely reusable, IoT will inevitably become a giant system of systems.

65

4.2. MODELING THEORY 66

Therefore, understanding the Internet of Things from a system of systems standpoint is not only

an academic undertaking but has practical relevance as well. Many colossal challenges remain

among which many relate to system-of-systems engineering. Systems of systems or complex sys-

tems theory are two (sometimes interchangeably used terms) to describe complex systems that are

formed of independent constituent systems. In the context of IoT ecosystems, this theory becomes

more and more relevant due to the tremendous growth in devices and platforms in the IoT which

need to be managed.

"System of systems research is about how to design, engineer, maintain and evolve

a composition of subsystems while acknowledging the fact that these subsystems re-

main independent, are serving their own functions, and have their own management

and lifecycles" [Luk16].

A System of systems (SoS) is more than a collection of subsystems, since the subsystems form

their own connections and through diversity of the components and emergent behaviour new ca-

pabilities are established that ful�ll rising demands inside a SoS [BS06]. Many of the established

assumptions in classical system design, such as that the scope of the system is known, that the

design phase of a system is terminated by an acceptance test or that faults are exceptional events,

are not justi�ed in a SoS environment[CBF+16] . The most in�uential assumptions that SoS en-

gineering addresses are the system scope, the clearly bounded design-phase of the system and

exceptions that occur during systems operation [CBF+16]. Also system boundaries, that separate

the system from its environment are dynamic in SoS which makes it hardly possible to de�ne a

stable boundary. The term of Systems of systems has developed out of the emerging complexity

in traditional systems engineering. It originally derived from the military domain, where a lot of

complex military systems such as missile systems and command and control systems had been

developed separately to ful�ll a speci�c purpose. When the need arose to connect them with the

goal of creating a better system that has capabilities, none of the single systems had, the term

system of systems was created [SBV10].

The �rst formal de�nition for System of systems (SoS) was provided by [Mai98]. Fundamen-

tally, SoS are structured around a collaborative rather than a directed structure and are not char-

acterized by central management.

4.2. MODELING THEORY 67

"A SoS is an integration of a �nite number of constituent systems (CS) which are inde-

pendent and operable, and which are networked together for a period of time to achieve

a certain higher goals. The systems that are at the bottom of this hierarchy are called

components" [CBF+16].

To understand a SoS, �rst of all it is necessary to interpret the term system. [HF56] introduced

one of the oldest de�nition of a system in a general sense:

"A system is a set of objects together with relationships between the objects and between

their attributes, where objects are components of a system in unlimited variety, attributes

are properties of objects and relationships tie the system together" [HF56].

The environment of a system contains the entities and their actions that are not part of a sys-

tem but have the ability to interact with the system. The system boundary marks a dividing line

between two systems or between a system and its environment. A system is assembled to ful-

�ll a purpose! The purpose, or sometimes called objective of a system is the systems goal at any

given time. Oftentimes it is composed of sub-objectives that can change according to the situation

[NGC09]. The goal of a system directly in�uences its thinking, structure and function [NGC09].

A paradigm that is usually addressed when discussing systems is the continual �ow of input →

throughput (processing) → output → feedback. The outputs directly a�ects the purpose of sys-

tem, either positively or negatively. Another distinction can be made between open and closed

systems. Closed systems do not interact with their environment. Since these systems are rather

limited in functionality, they will not be addressed in this thesis since this would not be a rea-

sonable assumption for IoT systems. In contrast, open systems receive information to interact

dynamically with their environment.

A SoS is in itself a system and only the unique characteristics of SoS distinguish it from a normal

system [Mai98]. As the constituent systems of a SoS are independently developed and operated,

SoS can thus be considered as distributed systems. Consider for example an intelligent vehicle in-

frastructure that consists of vehicle-to-vehicle communication and vehicle-to-infrastructure com-

munication as presented in [Luk16]. A vehicle itself would not constitute a system of system as it

does not consist of systems that could be operated alone. But, a vehicle-to-vehicle communication

scenario would in fact describe a system of system, since each vehicle is a system that possesses

operational & managerial independence from its peers in a system-of-system. However, when

4.2. MODELING THEORY 68

considering such communications, emergent behaviour can result from this interaction, that could

easily be dangerous if not controlled. Also the geographically distribution of this system of sys-

tem becomes apparent when considering all vehicles in a district, for example, that communicate

among each other. Once we introduce vehicle-to-infrastructure communication, the complexity of

the SoS increases dramatically, for instance when vehicles communicate among themselves and

among the surrounding tra�c lights in order to collaborate to provide a common goal that could

shorter stopping times for all. But if the SoS is disassembled, the vehicles still drive and the tra�c

lights are still regulating tra�c, i.e. the distinct systems still achieve their purpose.

Since SoS are applied in a variety of domains, this work restricts to software intensive SoS,

since IoT systems are to a large extend software based. Software intensive SoS are a subclass of

generic SoS, where software is a dominant factor in its composition [GCB+14].

SoS characteristics Due to the relative youth of SoS research, the area still su�ers from a lack

of appropriate formalism [DV15]. Generally, SoS are de�ned along two dimensions, the �rst one

describing types of SoS while the second one describes typical characteristics of SoS [GCB+14]

which are according to [DV15]:

• "Operational & Managerial independence of the constituent elements"

• "Evolutionary development"

• "Emergent behaviour"

• "Geographic distribution"

• "Coopetition" (cooperation of competitors for mutual bene�ts)[Coo]

4.2.2 Digital service ecosystems

"A Digital Ecosystem is a self-organizing, scalable and sustainable system composed of

heterogeneous digital entities (species) and their interrelations focusing on interactions

among entities to increase system utility, gain bene�ts, and promote information shar-

ing, inner and inter cooperation and system innovation. The main characteristics of dig-

4.2. MODELING THEORY 69

ital ecosystems are : (i) self-organization, (ii) scalability, (iii) sustainability and (iv) dy-

namism" [LBB12]

Digital ecosystems are a manifestation and extension of the SoS concept and provide a solid

scienti�c foundation for the generation of new hypotheses regarding delivery of value-added ser-

vices inside IoT (cross-platform) ecosystems. The term digital ecosystem is inspired by analogies

with natural ecosystems and was introduced in the mid-2000s. It has emerged due to software sys-

tems that grew more and more complex, and hence were increasingly di�cult to manage [AO16].

Inspiration for digital ecosystems originates from biological ecosystems that can form tough and

robust architectures hence the motivation to create dynamic/ robust and adaptable software in-

frastructures to design heterogeneous digital systems. An introduction to the characteristics of

digital ecosystems is provided by [CW06]. Similar to the SoS introduction, a digital ecosystem can

be divided into two key elements: species and an environment. "The environment of a system is a

set of elements and their relevant properties, which elements are not part of the system but a change

in any of which can produce a change in the state of the system."[Ack71]. To draw a clear distinction

between the entities in the environment of the system and the entities within the system itself is

usually not possible, since it depends on the point of view of the observer [Ack71]. The species

interact with each other through the environment, which provides the "infrastructure that sup-

ports the description, compositions, evolution, integration, sharing and distribution of its components"

[LBB12]. This infrastructure is provided by an infrastructure provider through the use of support-

ing services. It forms the foundational living environment for digital species but on the other

hand digital species also enrich their environment by proving technologies to the environment

[LBB12]. The environment of a digital ecosystem is realized by technologies which are, according

to [LBB12], extended web architecture, ontology based knowledge sharing, swarm intelligence archi-

tecture. Ontology based knowledge sharing already refers to the concepts described in section 2.5:

it is supposed to provide ontological concepts that are used to share knowledge between the digital

species.

A digital service ecosystem (DSE) is a digital ecosystem where the species are modeled as

services [IOKP16]. It is formally de�ned as "being an open, loosely coupled, domain-clustered,

demand-driven, self-organizing agents’ environment, in which each species (human, economic species

and digital species, i.e. computer, software and application) is proactive and responsive for its own

bene�t or pro�t" [IOKP16]. A DSE allows a more �ne grained distinction of its constituents into

4.2. MODELING THEORY 70

the following elements: "ecosystem members" (service providers & consumers, service brokers and

infrastructure providers), "ecosystem capabilities" and "digital services" which are produced/con-

sumed by the ecosystem members [AO16]. The capabilities represent the properties of the ecosys-

tem and how they are implemented by the ecosystem supporting services that are provided by the

infrastructure provider. "A digital service is any added-value that is delivered digitally" [IOKP16].

It is automated entirely and ideally controlled by the customer of the service [IOKP16].

Each member inside a digital service ecosystem performs dual roles, i.e. they act both as clients

and servers at the same time. This already shows the di�erence compared to traditional system ar-

chitectures, where the roles of participating systems are �xed at design-time or integration time. A

self-organizing system consists of multiple components that can change their interrelations. The

self-organizing nature leads to di�erent architectural models through group intelligence, where

local interactions between agents determine the global behavior. As an example, [CW06] describe

the formation of "hierarchy of swarms", "sequential work�ow interaction" or "circular architec-

tures". Collaboration between species is usually due to mutual interest, rather than forced/pre-

determined collaboration. Since digital ecosystems rely heavily on such collaborations, [CW06]

speci�cally point to the evolution of digital ecosystem architecture and explain the di�erences

to classical architectural patterns such as centralized (client-server), distributed (P2P) and loosely

coupled (SOA). For example, unlike in web service based architecture with centralized brokers and

distributed service requesters and providers, in digital ecosystems there is no such centralized con-

trol or �xed roles [CW06]. Collaboration in digital ecosystems relies on "swarm based behaviour",

i.e. populations of simple agents that interact locally with one another and their environment.

Essentially, a digital service ecosystem does not require a shared development platform for all

members, compared to software ecosystems [IOKP16]. This opens the possibility to distribute the

service ecosystem infrastructure.

Summarizing, digital service ecosystems provide a scienti�c and technological founded paradigm

to design autonomic software systems for dynamic collaborations. However the concept has not

yet properly been applied to the Internet of Things context which will thus be explained in the

next section.

4.3. CONCEPTUALIZATION OF IOT ECOSYSTEMS FROM A DSE PERSPECTIVE 71

4.3 Conceptualization of IoT ecosystems from a DSE perspective

Applying the previously introduced theory allows to conceptualize IoT ecosystems from a digital

service ecosystem perspective.This conceptualization is important in order to grasp the complex-

ity of interoperability in the IoT, with regards to the open environment view, so that a proper

interoperability conceptualization for cross-platform ecosystems can be derived. This helps to un-

derstand why existing approaches are not su�cient to achieve interoperability in such complex

ecosystems. The conceptualization thus provides answers to the second research question of this

thesis. For comprehension, exemplary use cases is introduced, partially originating from the use

cases envisioned and evaluated in the European Horizon 2020 project BIG IoT project [IoT]. The

conceptualization establishes three key elements: (i) the core system components, (ii) the roles&

tasks inside the ecosystem and the interactions among the species and (iii) the properties of the

IoT-DSE.

[MCG+14] present an overview about the current scenarios and approaches in the development

of IoT-based SoS. They identi�ed a couple of research challenges, since the combination of both

worlds is still quite new and several open challenges remain. IoT-based SoS are highly heteroge-

neous in terms of physical devices and the surrounding systems which make up the ecosystem

[MCG+14]. For instance, from a SoS standpoint, traditional software and systems engineering

methods are inadequate for addressing the interoperation of the constituent systems of a SoS

mainly due to their inherent emergent behavior and operational and managerial independence

[MCG+14]. They conclude by highlighting the importance of middleware platforms to abstract

away the heterogeneity and interoperability issues regarding physical devices, from the IoT per-

spective, and the heterogeneous constituent systems, from the SoS perspective thus combining the

importance of platforms for the IoT and the SoS perspective. [BST16] discussed such middleware

for System of systems (SoS), however they concluded that research in this domain is just starting to

emerge. A number of European projects have also been established to investigate an IoT systems

of systems perspective but the distributed systems view is not always fully represented in these

projects.

4.3. CONCEPTUALIZATION OF IOT ECOSYSTEMS FROM A DSE PERSPECTIVE 72

4.3.1 Motivating examples

The following exemplary use cases showcase di�erent compositions of IoT systems into com-

plex IoT ecosystems and are used throughout this thesis to explain the theoretical concepts in a

practical, real-world context. The use cases can be clustered into the following three domains:

Agriculture, Industry & Smart city. These examples highlight the general trend in the Internet of

Things towards service-oriented applications and integration of third-party services over the In-

ternet. As a consequence, the capabilities and quality of service-oriented systems more and more

will depend on the quality of its third-party services. Speci�cally, this means that service-oriented

systems have to become resilient against failures of their third-party services and proper integra-

tion and interoperability has to be made sure.

4.3.1.1 Agriculture - Smart farming use case

More and more the digitalization reaches out of the smart cities and into the farming areas. Farmers

more and more see the bene�ts of connecting the multitude of their machines in order to gain

bene�ts in e�ciency, cost or yield production. As this trend increases, the interoperability problem

here becomes more and more apparent since usually a farm employs a large set of heterogeneous

machines which are connected to di�erent software backends for data collection and aggregation

which means, for a fully connected farm management system, these various data sources need to

be connected.

In this exemplary use case, a farm manager is interested in monitoring and doing task management

with arable farming machines from di�erent manufactures. The goal is to make the machines

from di�erent providers work seamlessly together with the rest of the farming equipment. The

machines are equipted with sensors and actuators to sense the environment as well as to react to

external control inputs sent over a wireless network. Work orders should be sent from the Farm

Management Information System (FMIS) to the appropriate machines and after the tasks have been

executed the work records should be send back to the FMIS. For the farm manager it is vital to

send and retrieve data from his machines in real-time. The interoperability problem is thus a dual

problem of actuation and sensing. The manager’s intention is to optimize yield production as well

as to reduce cost while a seed manufacturer uses the FMIS in order to gain information on how

to optimize his production. The farm machine provider on the other hand operates the farming

machine platform which acts as the data provider. The use case is illustrated in �gure 4-1.

4.3. CONCEPTUALIZATION OF IOT ECOSYSTEMS FROM A DSE PERSPECTIVE 73

Infrastructure service provider

INSP agent negotiation

matchmaking

Seed manufacturer

Farmer

Farm information system

Farm machine platform

Machine

DSC agent

Machine
connector

Web application

Gateway

Sensors

Gateway

Data storage Web/mobile
application

DSP agent machine
connectors

Farm machine
provider

operatesuses

uses

API

API

API API

discovery

Figure 4-1: A smart farming use case, consisting of an infrastructure service provider, a farm
information system, and a farming machine platform. The systems are used by three types of
stakeholders (farmer, seed manufacturer and farm machine providers)

4.3.1.2 Industry - Smart production services use case

The vision of the Industry 4.0 concept lies in the assumption that data can be traded through a

transaction platform in an automated and on-demand fashion [aH15]. Through trading machine

data, production can be provided in a demand-driven way, custom-�t to speci�c production de-

mands. This will add new revenue streams for machine manufacturers but also for third parties

who contribute services to custom-�t production data. But, this vision has not yet become a real-

ity mainly due to the problem of interoperability and missing marketplaces for trading this type

of data. Speci�cally in the Industry 4.0 context, data is characterized by its multi-faceted nature,

complexity and detailedness [aH15] which makes it di�cult to design standardized solutions for

trading production data. Also, a considerable number of industry standards already exist which

are not interoperable. The interoperability focus in this use case lies on the correct and real-time

provisioning of process parameters, since data has to be made available on demand quickly as well

as custom-�t. The use case is illustrated in �gure 4-2.

4.3. CONCEPTUALIZATION OF IOT ECOSYSTEMS FROM A DSE PERSPECTIVE 74

Factory management system

DSC agent

Web application

Gateway

Production machine platform

Data storage Monitoring
components

DSP agent Machine
connectors

Infrastructure service provider

INSP agent

negotiation

discovery matchmaking

Machine

Sensors

Gateway

Machine provideroperates

provides

MQTT/REST

Machine operator operates

API

API

API

Figure 4-2: Smart production use case showing the involved systems and components, consisting
of an infrastructure service provider, a factory management system and a production machine
platform connected through an API.

4.3.2 Smart city - Environmental-aware routing service

The purpose of the environmental-aware routing service (4-3) is to deliver a service which, along-

side a standard routing functionality known from car-navigation systems, includes additional real-

time data sources about air quality and noise pollution which is especially relevant, for example,

for cyclists. This information gets combined with other routing related information to supply an

optimal route for a cyclist with the least amount of health impact. Such a use case is especially

relevant in todays major cities which become ever more crowded with tra�c and pollution. The

IoT’s value proposition is to combine physical services, such as real-time sensor-based evaluation

of air quality with virtual services such as navigation and tra�c information. The agglomeration

is a signi�cant value addition for customers, and reaches far beyond what is currently available in

the service landscape of major platforms. To enable this service, interoperability is key. Opposed

to the previous use cases, this one exempli�es a large open ecosystem of services and data which

makes interoperability between these systems especially challenging. The essential elements with

4.3. CONCEPTUALIZATION OF IOT ECOSYSTEMS FROM A DSE PERSPECTIVE 75

regards to interoperability in this use case are the integration of the three IoT systems which are

displayed in �gure 4-3 (routing provider, air quality provider, tra�c provider) trough external plat-

form interfaces. Essentially, the application which is supposed to aggregate data and provide the

customer facing service interface has to perform the following steps:

• discover the right platform providers for the purpose of providing tra�c- and environmental-

related, real-time IoT data.

• engage with the platform providers to understand if and how they can integrate the data

sources, i.e. understand their external interfaces

• implement both interfaces according to the speci�cation by platform A and B

• integrate an external map provider (this typically does not constitute an IoT system but

rather a web service, although an IoT system could also o�er such a service)

• homogenize the acquired data sources in the developed service and deploy it through an

external interface

4.3. CONCEPTUALIZATION OF IOT ECOSYSTEMS FROM A DSE PERSPECTIVE 76

Traffic IoT system

Application container

traffic
monitoring

traffic
recommendation

router

DB

device
connector

IoT platform

TC sensor Webcam

Environmental monitoring system

Application container

environmental
monitoring

router

DB

device
connector

IoT platform

Air quality Vehicles

Environmental aware routing system

Application container

environmental
routing

router

DB

IoT platform

TC sensor

API

Cyclist

uses

Figure 4-3: A digital service ecosystem for an environmental-aware routing system in a Smart
city environment, consisting of a tra�c IoT system, an environmental monitoring system and an
environmental aware routing system.

4.3. CONCEPTUALIZATION OF IOT ECOSYSTEMS FROM A DSE PERSPECTIVE 77

Summarizing, these examples exemplify the typical, main interoperability problems in IoT

ecosystems :

• The abundance of IoT data & services and the missing link how to �nd this data & services

(especially in open IoT ecosystems)

• Heterogeneous interfaces obstructing data exchange

• Homogenization and alignment of data from multiple sources

• Synchronizing real-time actuation and sensing needs between di�erent systems

4.3.3 Core concepts

To conceptualize an IoT ecosystem, �rst, the general core concepts of an IoT ecosystem are in-

troduced before going into the details of the dependencies and interconnections between these

components. One of the most comprising taxonomies for SoS is given by [CBF+16]. They de-

scribe the general components of a SoS in great detail and are repeated where necessary to ease

readability. Each of the abstract concepts from the SoS domain will be put into the IoT context as

appropriate.

De�nition 4.1 (IoT ecosystem) An IoT ecosystem is a System of systems which consists of IoT

systems that act as digital species, consuming and providing digital services in an open context

environment. It is an arbitrary large community of IoT actors that share the environment and

interact, forming a complex, adaptive system of systems. An IoT ecosystem is de�ned by the network

of interactions among its constituent IoT actors.

De�nition 4.2 (IoT system) An IoT system consists of all components and sub-systems that al-

low access &management of smart objects and interaction with other IoT systems in an IoT ecosys-

tem through digital services.

De�nition 4.3 (Digital service) A digital service is a service that is delivered through the in-

formation infrastructure of a digital service ecosystem. It is provided or consumed by an IoT system.

4.3. CONCEPTUALIZATION OF IOT ECOSYSTEMS FROM A DSE PERSPECTIVE 78

In the IoT, a system is a broad concept, since the application domains cover a wide range

of areas and also the application and service boundaries are imprecise. We distinguish between

device, platform and application level. A typical IoT system usually consists of elements of

all these layers, where each layer builds upon the previous. On the lowest level it contains IoT

devices, that operate within a physical environment and which are accessed and abstracted trough

the platform layer. We can then embedded the idea of "IoT platforms" using the de�nition of

IoT systems. An IoT platform is then a system that connects the application and device level of

the IoT reference architecture by o�ering di�erent functionalities, i.e. access to sensors or data

aggregation that are typically o�ered as services to the application layer. The elements of an IoT

platform are thus all software based components that allow it to ful�ll its functionalities (e.g. OS,

software libraries,...). On the application level, the application and business logic of IoT systems

reside. The application level of an IoT system is the abstraction over the platform components. It

is what is visible to the outside as a service. The application level provides the digital service to the

outside. IoT platforms are usually developed to o�er services for a speci�c purpose, for example a

parking spot reservation service, that has a clear scope of functionality.

This service relies on data from smart objects, that would be the parking spots, transmitting

data about occupancy. The smart object itself does not ful�ll a useful purpose, it is just trans-

mitting data. However, the reservation service is an autonomous system that serves a prede�ned

purpose. An IoT application consists of di�erent elements, which could be a database system, a

device management system and a dashboard that are provided by a platform, of which the de-

vice management service would abstract the Things to be interconnected. However also other

services are used by the application, e.g. the operating system that is o�ered by the platform to

run the application. The software architecture of the application de�nes the relationships between

included components. For an IoT system, it should not be important who provides these compo-

nents, as long as they o�er the needed functionality. Another important property of IoT systems

is, that they should not only work together with other IoT systems but also with other systems,

for example enterprise systems or specialized software system, which additionally increases the

aforementioned issues regarding interoperability requirements.

De�nition 4.4 (IoT ecosystem environment) The entities and their actions in the IoT ecosys-

tem that are not part of an IoT-system but have the capability to interact with the system (based

on the system environment de�nition by [CBF+16]).

4.3. CONCEPTUALIZATION OF IOT ECOSYSTEMS FROM A DSE PERSPECTIVE 79

Analogous to the general system’s environment de�nition, and IoT environment contains ev-

erything that interacts with the actors that are not part of the IoT system. This can be within

but also outside the IoT system’s boundary. In general, the IoT environment "provides an infras-

tructure that supports the description, compositions, evolution, integration, sharing and distribution

of its components, i.e. digital species" [LBB12]. IoT environments are generally characterized by

high heterogeneity and dynamics [RMjP15]. This is a challenging problem for the stability and

interoperability of IoT systems, compared to traditional IT systems. Through interoperability, re-

lationships between the components of IoT systems are established, as well as relationships with

other IoT systems that allow them to work together and create new functionality that they cannot

realize alone.

De�nition 4.5 (IoT system state) "The state of a system at a given instant is the totality of

the information from the past that can have an in�uence on the future behaviour of a system"

[CBF+16]. In the context of IoT ecosystems, the state of an IoT system usually comprises information

about itself (which includes knowledge about hardware and software related components), other

IoT systems and about the exchanged messages with other systems.

Communication related concepts For the interoperability between the constituent systems,

a focus must be placed on the communication related aspects of SoS which is why these concepts

should be established �rst.

De�nition 4.6 (Message) "A data structure that is formed for the purpose of the timely exchange

of information among computer systems" [CBF+16].

De�nition 4.7 (Channel) "A logical or physical link that transports information among systems

at their connected interfaces. It is implemented by a communication system (e.g. a computer

network)" [CBF+16].

4.3. CONCEPTUALIZATION OF IOT ECOSYSTEMS FROM A DSE PERSPECTIVE 80

De�nition 4.8 (Interface) An interface represents the point of interaction of an IoT system with

other systems in the environment over time. Interfaces are connected through channels.

De�nition 4.9 (IoT message concept) Amessage concept represents a desired state change. All

concepts at the highest level change the state of the environment. A concept describes an abstract

class of communicative actions.

De�nition 4.10 (Intention) An intention is a concrete instantiation of a message concept .

In a system of systems, the communication among the individual systems through the ex-

change of messages is the core mechanism that realizes the integration of the systems [CBF+16].

In the context of IoT ecosystems, messages are usually related to the exchange of sensor data or

actuation of machines . Due to the heterogeneity of IoT devices, the message variety is signi�-

cant. The usual way of communication between two entities consists of instantiating a particular

intention and encoding a desired content into a message which is transported along a speci�c

channel, decoded and understood by the receiver. An intention could be for example a request

for an environmental routing service or a parking request. The usual communication model falls

short in complex IoT ecosystems due to the mentioned incoherences in communication inter-

faces and semantics. Interfaces occur in various forms in IoT ecosystems, for example REST-ful or

MQTT/websocket interfaces. The main communication channel for the Internet of Things is the

Internet. However, also other channels are important, speci�cally physical channels that connect

the device data with the IoT platforms. Not only the semantics a�ects this communication signi�-

cantly, but also there is potential misalignment regarding the intentions underlying the transmis-

sion. This level is typically addressed in the pragmatic interoperability level (see [TC09]).

De�nition 4.11 (Computational action) "An action that is characterized by the execution of

a program by a machine" [CBF+16].

4.3. CONCEPTUALIZATION OF IOT ECOSYSTEMS FROM A DSE PERSPECTIVE 81

De�nition 4.12 (Communication action) "An action that is characterized by the execution of

a communication protocol by a communication system" [CBF+16].

De�nition 4.13 (Communication protocol) "The set of rules that govern a communication

action" [CBF+16]

De�nition 4.14 (Transaction) "A transaction is a related sequence of computational actions

and communication actions" [CBF+16].

Actions and Protocols IoT systems possess computational and communication actions. IoT re-

lated computational actions are for example, the execution of actuation activities on the underlying

physical hardware as well as execution of algorithms inside digital services. IoT system usually

execute data requests or actuation requests protocols to receive or provide services to other IoT

systems. As already described in the background section, there are a multitude of communication

protocols in the IoT space which contribute a great deal to the interoperability problem. As in

the context of SoS, sequences of computational and communicative actions form "transactions"

[CBF+16]. As an example, we consider a transaction to exchange a digital service. In this ex-

change the transaction would contain a request for the service, a subsequent o�ering message and

message exchange followed by a payment message. The detailed explanation of the process of a

digital service transaction can be found in �gure 4-4 which was adapted from the general service

transaction lifecycle by [Del13]. To exchange messages across the communication channel, the

data coming from or entering one IoT system gets serialized and transmitted through a message

protocol to the receiving system.

4.3.4 Roles & interactions inside the IoT ecosystem

IoT systems perform di�erent roles in an IoT ecosystem. Generally, one can di�erentiate the fol-

lowing types of roles: Digital service consumers (DSC), Digital service providers (DSP), Infrastruc-

ture service providers (INSP), digital service developer (DSD) and digital service customer (DSCU).

The connection between roles and systems is not always 1-1, for instance a DSP role can be �lled

by multiple IoT provider systems. Also the INSP role can be �lled by multiple systems that form

4.3. CONCEPTUALIZATION OF IOT ECOSYSTEMS FROM A DSE PERSPECTIVE 82

IoT system

Semantic
structure Serialize Control

Request

Gateway

Control De-serialize Semantic
structure

Semantic
structure

SerializeControl

Message protocol

Request

Response Response

FormatSchema

Semantic
structure Serialize Control

IoT system

Figure 4-4: The service transaction model between two IoT systems described by [Del13], detailing
the process of a service request and response. The client system sends a service request in a speci�c
schema and format through a message protocol to a gateway. The receiver receives the request
from the gateway and de-serializes the message content. The response is handled the same way
but in the opposite direction.

a conglomeration to build the INSP. Also, an IoT system can operate in multiple roles at the same

time!

Digital service consumer - DSC The digital service consumer (DSC) represents any sys-

tem which requires an IoT related service for operation. It could be anything from a simple client

application that crawls IoT data sources to a fully �edged web-based dashboard which combines

IoT data sources and can be used to control IoT devices in the physical environment. The dig-

ital service consumer needs to �nd a �tting digital service which can support its needs. More

speci�cally, it needs to perform the following tasks:

• specify its required demand for services and forms queries for service o�erings accordingly

• evaluate available service o�erings and compare cost & bene�t when deciding which digital

service to consume

• negotiate the usage terms of digital services with digital service providers using the available

infrastructure

• subscribe to and consumes the digital services through the exchange of communicative ac-

tions

• potentially unsubscribe from a digital service (in the dissolution phase of the interoperability

lifecycle)

4.3. CONCEPTUALIZATION OF IOT ECOSYSTEMS FROM A DSE PERSPECTIVE 83

Digital service provider - DSP The digital service provider forms the counterpart of the

digital service consumer since he o�ers a digital service to be consumed by other systems. He is

also responsible for the proper functioning of the service. In return, he can monetize IoT assets

via the service, e.g. providing a data stream to consumer data from a car. In particular, the tasks

for the DSP are:

• create a service o�ering for its digital service that allows DSC to query its service

• negotiates the usage terms of its digital service(s) with DSC using the available infrastructure

• provides the digital service according to the negotiated terms of usage

Infrastructure service provider - INSP The infrastructure service provider is responsible

for establishing and operating the IoT environment in which DSC’s and DSP’s systems operate.

Therefore he needs to :

• provide the infrastructure that established the digital ecosystem of services underlying a

demand & supply pattern for digital services

• provide a functionality to o�er digital services to IoT systems inside the DSE

• provide a matchmaking functionality to connect DSC and DSP

• provide a negotiation functionality for DSC and DSP

• provide a semantic knowledge base for the IoT systems inside the ecosystem

• monitor the interactions between consumers & providers and the (un-) availability of digital

services

Digital service developer - DSD A digital service developer (DSD) is the developer of a

DSC,DSP or INSP system. He is responsible for implementing the underlying system logic by

utilizing the IoT platform services.

Digital service customer - DSCU A digital service customer (or user) (DSCU) is the cus-

tomer which uses an IoT DSC system to ful�ll a certain need.

4.3. CONCEPTUALIZATION OF IOT ECOSYSTEMS FROM A DSE PERSPECTIVE 84

As an example for a composition of these actors in an IoT ecosystem, consider the earlier intro-

duced use case of the environmental-aware routing service. The IoT ecosystem in this case could

be chosen arbitrary large, but here we consider it to consist of all IoT systems in a given Smart city.

In this use case, there is one DSC, i.e. the environmental aware routing system which consumes

the digital services from two providers, the tra�c IoT system and the environmental monitoring

system. Consuming in this case refers to exchanging transactions to receive data on air qual-

ity and tra�c information in the city. The service use respective interfaces in order to transact

this information. The infrastructure service in this case could be a digital smart city marketplace

platform which provides the infrastructure for the services and o�ers the mentioned services. A

DSCU of the environmental aware routing system in this case could be cyclist who uses the ser-

vice on his smartphone to stay informed about areas of bad, health-impacting air quality in his city.

Based on this understanding of concepts and roles, it is straightforward to describe the inter-

operability problem in IoT ecosystems.

De�nition 4.15 (Interoperability problem in IoT ecosystems) An interoperability prob-

lem in an IoT ecosystem occurs when a transaction between at least one DSC and DSP system

does not lead to the intended IoT ecosystem state change.

A more detailed formalization of the interoperability problem, aligned with the LCIM metric,

will be presented in the next section, but the main theme as outlined here stays the same, i.e. in-

teroperability as a mis-alignment between intended and actual environmental state changes. For

example, if the digital service provider in the environmental routing example has no concept of a

"routing request constrained by environmental data", it might not infer, based on the state knowl-

edge about the ecosystem and speci�cally based on the consumers context state, that air quality

information should a�ect the routing response. Hence, a general routing response will not satisfy

the consumer of its service. In this case the intended and resulting state of interoperability are

misaligned. We can �nd other examples of such misalignments all over the IoT space which fur-

thermore underlines the importance of interoperability.

Figure 4-5 presents a domain model for IoT ecosystems which connects the previously intro-

duced concepts in a graphical representation.

4.3. CONCEPTUALIZATION OF IOT ECOSYSTEMS FROM A DSE PERSPECTIVE 85

Intention

instantiates

Concept

is a

contains

Message

Information

operates in

has a

sends

has role

performs
is a

IoT system

consumesDSC

Interface

establishes

is a

is a

IoT
ecosystem

has

IoT ecosystem
environment

providesDSP

INSP

is a

Computational
Action

is a

Transaction

consists of Communication
protocol

Communication
action

Digital service

Action

IoT ecosystem
properties

is a

Digital specie

Autonomous
agent

Statehas

System is aDigital
ecosystem SoS

is a

Figure 4-5: A domain model for IoT ecosystems showing the previously introduced concepts in
orange including the relationships between the concepts.

4.3. CONCEPTUALIZATION OF IOT ECOSYSTEMS FROM A DSE PERSPECTIVE 86

Figure 4-6 illustrates the transaction process and transformation of IoT ecosystems in more

detail.

IoT system

in
te

rf
ac

e

IoT system

in
te

rf
ac

e

environment boundary

communication channel

transactions

communicative
action

communicative
action

state

data

action state'

data'

SoS state transformation

System of systems (SoS)

msg

computational
action

Figure 4-6: Visualization of the dynamics and characteristics of an IoT ecosystem. IoT systems
act as service providers (DSP) or service consumers (DSC) and exchange information through a
communication channel. An interaction between multiple IoT systems is encapsulated by a trans-
action which will result in the provisioning and consumption of a digital service. Computational
and communicative actions a�ect the state of the SoS. Each IoT system is separated from from the
rest of the SoS through the environment boundary.

4.3.5 IoT Ecosystem properties

Since the IoT ecosystem is described through general SoS and DSE concepts, also the general

properties of SoS and DSE apply to IoT ecosystems which are explained in the following.

Self-organization

A self-organizing system consists of multiple components that can change their interrelations.

Digital ecosystems are self-organizing systems which can form di�erent architectural models

through group intelligence, where local interactions between agents determine the global be-

havior [LBB12]. The "laws" of an ecosystem, in�uence the ruling and overall dynamics of the

ecosystem and the interaction among individuals of di�erent species [VMZ10]. In the case of

an IoT ecosystem, any providing system can be replaced in a collaboration with another service

providing similar functionality. These changing interrelations can originate from the providing

or consuming system. Also, there is no pre-determined architecture. In the motivating example

of this chapter, the environmental-aware IoT system just speci�es the goal state to achieve. No

system in the example overlooks the whole interoperation, they only know with whom they are

directly communicating, so the whole system consists of local interactions. According to systems

4.3. CONCEPTUALIZATION OF IOT ECOSYSTEMS FROM A DSE PERSPECTIVE 87

theory, a system is autonomous. That means, it is free to ful�ll its purpose and free to change

its roles at any point in time. Roles are hierarchical and while some roles apply to both provider

/consumer and infrastructure provider but some only to one of them.

Loose coupling

Similar to the SoS characteristics of independence between the systems, loose coupling refers to

the fact that participating IoT systems in the environment do not depend on each other and the

interaction between the species is based on loose contracts and the exchange of communicational

actions. The object of negotiation between IoT systems in the IoT ecosystem is a digital contract

between a DSC and DSP system. The digital contract represents the speci�cation of the digital

service between the two parties and is validated by the provider and consumer regularly to verify

the terms, by comparing the data that is sent to the contract terms. This will be referred to later as

the Interoperability contract.The underlying SoA based architecture of DSE, by de�nition, allows

such loose coupling.

Open

With openess, there is no predetermination which systems will be found inside the ecosystem

thus each system must be prepared to interoperate with any other. For example, a DSC can not

anticipate which particular digital services and DSPs will be available and which services will

enter or leave the environment at runtime. This is because, the IoT-DSE is an open community,

and there is no centralized control or �xed roles. Openess, although essential for the success of

the IoT, presents one of the main problematic criteria for interoperability.

Domain centered

IoT systems usually perform in their accustomed domain, however they could also operate in

neighboring domains if necessary. Based on the generality of an IoT system it can serve multiple

purposes into di�erent domains. The interoperability requirements change with each domain

application. Some common domains are for example smart city, energy or building technology

[IoT].

Demand driven

The digital ecosystem supports the automatic combining of numerous agents (which o�er ser-

vices), by their interaction in evolving populations to meet user requests for applications,in a scal-

able architecture. Demand for a digital service originates from customer requirements. DSP then

4.3. CONCEPTUALIZATION OF IOT ECOSYSTEMS FROM A DSE PERSPECTIVE 88

try to create a desired digital service to meet the demand. Without demand, the development of

digital services has no meaning, since there would be no system to consume them. What drives the

collaboration is the mutual interest among the service providers - there needs to be a willingness

to collaborate, to realize a bene�t for the customer. Thus, the ecosystem is dynamically created or

adapted around a speci�c demand! The demand-driven property also entails, that species join(or

leave) the ecosystem on their own interest. Those systems that work e�ectively together to ful�ll

current demand will remain to work together.

Belonging

Each participating IoT system is operated by a di�erent IoT provider for a speci�c purpose. The

purpose can be bound to provide a service in a particular service collaboration or to simply deliver

data to whoever may need it. In general, in order to make a system collaborate with other systems

inside a SoS, a clear motivation for them has to be realized. [SBV10] refer to a cost/bene�t basis. For

a system inside the SoS this means: Why belong to the SoS? Who manages the belonging? What

happens if the system leaves the SoS, will it break the SoS or the system itself? These questions

directly translate to interoperability inside IoT ecosystems : When cross-platform/cross-domain

interoperability enables the creation of SoS, how do the IoT systems decide about their collab-

oration partners? Since in SoS, there is no central coordinator, the systems need to possess the

necessary intelligence in order to decide about this themselves. Since they are responsible for their

own performance and functionality, they are also responsible for the decision, if they want to col-

laborate with other systems at runtime or not. In SoS this decision is not made by the designer

(as in the presented example) rather it needs to be decided autonomously by the participating IoT

systems themselves at runtime. In the given motivating example, the purpose of the SoS is to pro-

vide an environmental routing service however the di�erence to a manual integration approach is,

that the participating systems engage in a loosely coupled collaboration and remain autonomous

in their own right to operate as designed. This is in contrast to the manual integration approach

where system only exist for the purpose of the collaboration and they do not ful�ll a useful pur-

pose on their own.

Dynamic connectivity

Connectivity, directly translates to achieving interoperability amongst the legacy systems and pos-

sibly additions of new systems to the SoS. The systems themselves decide the level of connectivity

to other systems (either already present in the SoS or added later). That is a natural consequence

4.3. CONCEPTUALIZATION OF IOT ECOSYSTEMS FROM A DSE PERSPECTIVE 89

from the fact that IoT systems should be considered autonomous and decide about belonging to

a collaboration themselves, as explained before. The fundamental di�erence in system design for

SoS is, that the relationship between the elements (i.e. CS in case of the SoS) is not designed simul-

taneously with the design of the CS [SBV10]. Also, consumers and providers can become o�ine

or experience outtakes at any time, when connectivity breaks down.

Emergence

Emergence is created through the above mentioned characteristics inside a SoS, i.e. autonomy of

the CS, and the dynamic connections that are formed at runtime. It is a characteristic of a SoS,

that should not be restricted as it is done in classical system design, since emergent functionality

can be bene�cial for the SoS and repressing it could lead to inhibiting innovation. The goal in a

SoS is thus to create a conducive climate for emergence and quickly detect and remove unwanted

behaviors [BS06].

The role of emergence in IoT system collaboration is not well understood. The formation of sys-

tems to create an emergent functionality that is not triggered by an external/driving process but

rather serves the demand for a speci�c resource is still a futuristic vision. From an IoT system

designer’s perspective the questions becomes: "How will other systems a�ect my system? Positively

or negatively?". Therefore, especially with regards to interoperability, it is essential for IoT systems

to be actively aware of such emergence and properly react to it.

It is important to understand that these dimensions are not always equally distributed in a

particular IoT ecosystem. Rather, these dimensions have to be understood as a scale where certain

elements are more or less expressed.

IoT ecosystem properties in context Applying the IoT ecosystem properties to the earlier

introduced use cases in the beginning of this chapter yields the following analysis.

Figure 4-7, 4-8 and 4-9 present the unique characteristics of each use case in relation to the

IoT ecosystem properties in a graphical fashion. Each dimension in the chart refers to one ecosys-

tem property while the scale ranges from 0 (property not expressed) to 10 (property maximally

expressed).

4.3. CONCEPTUALIZATION OF IOT ECOSYSTEMS FROM A DSE PERSPECTIVE 90

0

2

4

6

8

10
self-organization

loose-coupling

open

domain-centered

demand driven

belonging

dynamic connectivity

Emergence

Industry

Figure 4-7: Representation of the smart production use case in terms of IoT ecosystem character-
istics on a scale of 1 (weak expression) to 10 (strong expression).

Starting with the smart industry use case, it shows high levels of belonging and domain-

centricity and medium levels of self-organization. Emergence and openess however are rather

under-expressed.

0

2

4

6

8

10
self-organization

loose-coupling

open

domain-centered

demand driven

belonging

dynamic connectivity

Emergence

Agriculture

Figure 4-8: Representation of the smart farming use case in terms of IoT ecosystem characteristics
on a scale of 1 (weak expression) to 10 (strong expression).

The smart agriculture use case meanwhile illustrates a strong focus on belonging, demand-

driven and domain-centricity. Emergence, self-organization and loose coupling are only weakly

expressed here. Also dynamic connectivity is not relevant in this case.

4.3. CONCEPTUALIZATION OF IOT ECOSYSTEMS FROM A DSE PERSPECTIVE 91

0

2

4

6

8

10
self-organization

loose-coupling

open

domain-centered

demand driven

belonging

dynamic connectivity

Emergence

Smart city

Figure 4-9: Representation of the smart city use case in terms of IoT ecosystem characteristics on
a scale of 1 (weak expression) to 10 (strong expression).

Lastly, the smart city environmental routing use cases experiences the complete opposite of

characteristics compared to the smart agriculture case. Here, clearly the focus lies in emergence,

loose-coupling, dynamic connectivity and openness while belonging and domain-centricity are

weakly expressed. This naturally falls into the characteristics of Smart city environments which

are highly dynamic and open in nature. All in all, this clearly demonstrates that the characteristics

of IoT ecosystems are highly variable and use case dependent which makes a runtime oriented

interoperability approach preferably which will thus be the focus of the next chapter.

4.3.6 Centralized vs. de-centralized ecosystems

Traditionally, IoT ecosystems are developed in a centralized fashion which means that there is

a central instance which acts as the infrastructure provider. This can be seen from the various

examples of IoT platforms and marketplaces which have been developed in the recent past (refer

to chapter 2) which act as a central coordinator in the interoperability problem. However, there

has been a recent trend to also consider decentralized IoT ecosystems, i.e. without a central co-

ordinator. Regarding interoperability, the decentralization of IoT ecosystems poses a signi�cant

problem, since the controlling mechanism for interoperability (e.g. standardization body or cen-

tral middleware) is not a centralized institution anymore but the process needs to be performed

collaboratively in a decentralized setting.

A structured approach to compare centralized and de-centralized IoT ecosystems is to consider

4.3. CONCEPTUALIZATION OF IOT ECOSYSTEMS FROM A DSE PERSPECTIVE 92

the di�erent roles and tasks in the IoT ecosystem and consider how a centralized vs. decentralized

structure a�ects these roles.

In a centralized environment, the INSP is a centralized entity (for example an IoT market-

place provider). This means, that a single platform provider usually o�ers the infrastructure to

implement the IoT environment. All system that want to interoperate need to connect to this cen-

tral INSP. Rules for exchange are de�ned by centralized authority (marketplace provider) and can

be changed at will. This environment requires less e�ort to implement and maintain, since it can be

controlled through one organizational entity. But, this approach still requires runtime oriented so-

lutions, depending on the requirements maybe to a lesser extent then a decentralized environment.

In a decentralized environment, the INSP is de-centralized and the functionality for match-

ing, negotiation and transactions is completely decentralized to the interoperating systems. There

is no centralized authority i.e. rules inside the ecosystem are "democratized". They are jointly

introduced, agreed upon and enforced by all participants of the network. Implementing this en-

vironment is signi�cantly more di�cult, since it can not be enforced by a central entity - relies

heavily on runtime oriented concepts. With regards to a technical approach for decentralized IoT

environments, recent advances in distributed ledger technologies (in particular Blockchain and

smart contracts) are a prime example. Smart contracts are deployed in the decentralized network

and represent autonomous contracts which de�ne the rules of the environment (e.g. matchmak-

ing) while the blockchain is used for tracking data and messages between the systems.

Comparing both ends of the spectrum of IoT ecosystems, it is important to consider interop-

erability solutions which are able to also operate in a decentralized fashion. Existing solutions

are very much oriented towards the centralized model, e.g. centralized middleware platforms that

serve as a mediator between disparate systems. Although these solutions will still exist in the

future (especially in closed settings), the limitations of centralized ecosystems will remain and

increase in signi�cance, especially in highly decentralized and dynamic areas such as the IoT. To

reach an open IoT ecosystem, with all its bene�ts of value co-creation, a similar perspective as

with the design of the Internet itself has to be considered.

Thus, in the next section, an interoperability conceptualization is presented which is able to

guarantee interoperability also in semi-decentralized and decentralized settings. It will be shown

4.4. SUMMARY 93

that the digital service ecosystem model can be used equally well as a framework for interoper-

ability in both settings.

4.4 Summary

This chapter introduced a conceptualization of IoT ecosystems as a digital service ecosystems. The

conceptualization follows the ideas of systems-of-systems and digital service ecosystem research

which are particularly well suited to model dynamic systems. What can be observed from this

characterization that indeed IoT ecosystems are complex systems which need a proper formal

model to be analyzed, which incorporates all of these concepts. This framework is used in the

next chapter to formalize the runtime interoperability problem in IoT ecosystems.

Chapter 5

A concept for runtime

interoperability in IoT ecosystems

5.1 Aim

The previous chapter introduced a concept to model IoT ecosystems. Based on this knowledge, the

goal of this chapter is now to create a concept for runtime interoperability inside the context of

IoT ecosystems and to evaluate the bene�ts over existing interoperability solution concepts, which

have been mentioned previously. More speci�cally, the following questions will be answered:

• How to design interoperability for IoT ecosystems

• How to measure interoperability in IoT ecosystems

• How to autonomously improve interoperability in IoT ecosystems

The chapter starts with a discussion regarding the shift in the viewpoint on interoperability

in the IoT. This results in a theoretical model of runtime interoperability which serves as the basis

for the implementation in the next chapter. Secondly requirements from the interoperability con-

ceptualization in IoT - DSE are derived and a comparison of interoperability solutions is included.

The approach will be the input for the next chapter which provides a concrete conceptual model

to implement the derived technical requirements for an IoT interoperability model.

94

5.2. RUNTIME INTEROPERABILITY IN THE CONTEXT OF IOT ECOSYSTEMS 95

5.2 Runtime interoperability in the context of IoT ecosystems

"Achieving interoperability between two resources is much more than sending a set of

bytes as a message. The interacting resources need to agree on compatible protocols,

formats, meanings and purposes, so that a request message sent by one resource produces

the intended e�ects on the other resource and a suitable response message is returned to

the former resource" [Del13].

Interoperability can be conceptualized from di�erent viewpoints as described in earlier chap-

ters. Since we have seen that IoT ecosystems should be represented from the SoS (respectively the

DSE) perspective which naturally represent dynamic, open and self-organizing environments this

raises the question, which is the appropriate interoperability conceptualization in these ecosys-

tems? The characteristics of IoT ecosystems and the dynamic changes to the underlying digital

service composition architecture have a profound e�ect on the requirements for interoperability.

Interoperability is not only a problem about standardization/integration and device control as it

has been previously focused in the IoT. Rather, interoperability needs to permeate every aspect of

the runtime interaction between IoT systems which requires a new perspective on the design of

IoT systems and platforms.

IoT system design is usually approached in a top-down process where an IoT architect designs

a system architecture and de�nes necessary interfaces and standards which need to be imple-

mented for interoperability. Current research on IoT interoperability therefore mostly concerns

integration aspects on the level of syntactic or semantic interoperability. In this way, systems can

exchange and understand the meaning of information. If these standards and interfaces are not

implemented by other systems, no interoperability will be possible. The underlying assumption

is that partners will agree on common standards to make systems interoperable. This will only

work if both sides of an interoperation follow this top-down approach. But, if we consider that

IoT systems need to communicate with other IoT systems in an open context to reach a common

goal, then the mere understanding of the meaning of exchanged data is not enough [ZTP14].

Furthermore, in the roll-out step, when an IoT system is deployed into production, the systems

are currently unaware of their surrounding context and thus unable to recognize and adapt to

changes autonomously. This violates the requirement for autonomy and self-organization in IoT

ecosystem. The only option for changing the behaviour of a deployed and running IoT system is

5.2. RUNTIME INTEROPERABILITY IN THE CONTEXT OF IOT ECOSYSTEMS 96

through manual adjustments by the developer, i.e. no runtime data is utilized by the interoperabil-

ity mechanism itself. This manual adjustment requires large e�orts and costs for IoT organizations

and potentially (depending on the response time) a reduced user experience. In case of tightly-

integrated systems, interoperability problems can easily lead to a complete system failures in a

collaborative context which damages the reputation of IoT providers and also risks the adoption

of further IoT technology.

These mentioned problems occur, since it is di�cult, if sometimes not impossible, for a devel-

oper to foresee the interactions of the developed IoT systems with other IoT systems during run-

time, due to the open/heterogeneous nature of the IoT ecosystem. IoT systems can be employed

in various di�erent circumstances. An essential property of the infrastructure in IoT ecosystem

is that they support a certain level of interoperability between the ecosystem members. This is

required so that IoT systems are actually able to detect other IoT systems inside the ecosystem,

which is a pre-requisite for interoperation. Increased complexity of system design and result-

ing emerging instability makes existing interoperability principles not fully su�cient to provide

the needed overall awareness, integrity, and pursuit of global goals, with runtime adjustment to

new ones. The situations are often complicated by the necessity to operate in spaces with high

connectivity and inter-dependence, also with numerous actors having own, often quite di�erent

purposes and interconnections. Essentially the system only works as intended if the situation that

are experienced at runtime align with what has been designed by the developer before [TPB+11].

With regards to interoperability this means, interoperability will only be established with those

systems whose interfaces and operation modes are understood and aligned with the developers

initial vision. If the system composition changes, there might be a degradation or complete lack

of interoperability. Also, goals of the customer of the IoT system might change over time which

might require reorientation of the system’s collaboration partners. These are only two issues that

highlight the need to put the focus of IoT-interoperability research on the runtime aspect of the

interoperation, i.e. all those aspects that may occur after the initial deployment of the system. An

evolution of interoperability concepts is missing, from a purely design-time problem to a runtime

problem! Essentially this addresses the characteristic in digital service ecosystem of moving from

tightly to loosely coupled systems and from closed to open systems [TPB+11].

5.2. RUNTIME INTEROPERABILITY IN THE CONTEXT OF IOT ECOSYSTEMS 97

The focus in digital service ecosystem (per de�nition in IoT ecosystems) needs to be "on dy-

namic, behavioural and conceptual interoperability and interactions between services, and be-

tween humans and services" [IOKP16]. Interaction between services refers to the direct interactions

between digital services whereas the interactions between humans and services refers to the fact,

that digital services can be also directly exposed to the end user which is then used in the speci�c

end user context. Dynamic behavior is then the prerequisite for increased user experience and

the creation of value added services, on the other hand dynamic behaviour is essential in order to

react to situations not anticipated at design-time of a system, thus increasing resilience. Attributes

such as "awareness", "intelligence" and "extroversion" [ZTP14] enable the IoT systems to behave and

communicate autonomously. But, if the systems are built from heterogeneous systems, that are

autonomous and not controllable by one entity, this raises the point of who controls the interoper-

ability between IoT systems? If a central entity is responsible for interoperability this will violate

the autonomy of system operators since they need to comply with whatever this central instance

requests. On the other hand, if there is no such centralized control, IoT systems must possess the

necessary capabilities to address interoperability problems without external help. This latter view

is more in line with the underlined nature of the IoT as an inherently unbounded and decentral-

ized system. IoT systems are very diverse and can be used in di�erent context and use cases where

varying requirements are imposed on them. For example, a smart camera system can be used for

people tracking purposes as well as for tra�c analysis using computer vision algorithms. Also, IoT

systems can be upgraded during operation to possess new or di�erent functionalities that cannot

be anticipated by other, collaborating systems, requiring them to adapt to new con�gurations. IoT

systems are generally expected to work together with other IoT systems to provide value added

services, making them unbounded in nature [CFMP05] and hence requiring them to be able to dis-

tinguish good from bad collaboration partners. [AO16] stress the fact, that the quality of a digital

services is very di�cult to achieve with increased ecosystem size as the supporting services need

to provide the needed quality as well. Interoperability is currently not or in-completely handled

by the majority of methods to create digital service ecosystems - especially considering dynamic

and pragmatic interoperability [AO16].

Regarding the de�nition of interoperability in the �rst part of this chapter, it can be substan-

tiated based on the previous argumentation.

5.2. RUNTIME INTEROPERABILITY IN THE CONTEXT OF IOT ECOSYSTEMS 98

De�nition 5.1 (Runtime interoperability in digital service ecosystems) Runtime inter-

operability is the ability of IoT systems to establish and maintain interoperation with other (po-

tentially unknown) IoT systems requesting (providing) digital services autonomously according to

underlying intentions and goals. Runtime interoperability is achieved when IoT systems are able

to jointly ful�ll a common mission (or goal), for a non negligible amount of time through the

interoperability lifecycle.

Since the IoT ecosystem concept is conceptually rooted in the SoS domain, it is obvious to draw

analogies for the conceptualizations of interoperability from SoS literature as well. Most studies

on interoperability in SoS restrict the characteristics of SoS to their respective domains, with lit-

tle cross-domain de�nitions. One of these cross-domain studies by [SBV10] de�ned "evolutionary

development", "emergent behavior", "self-organization", "adaptation", "complex systems", "individual

specialization", and "synergy" as important characteristics of SoS. They characterize interoperabil-

ity in SoS as "Making disparate, diverse, autonomous, and synchronized entities work together without

losing their individual sense of purpose and without loss of idiosyncratic capability, in order to realize

some higher level otherwise unattainable purpose" [SBV10]. This already addresses the key point

for interoperability in Systems of systems - the individual systems need to be considered as au-

tonomous, rational agents that are acting on their own bene�t but at the same time realize a need

to work together with other systems to achieve their goals. Interoperation in the case of SoS thus

means, that the individual systems "exchange �ows (data and services, material or energy)" while

"preserving their autonomy"[BD15]. A particular challenge for the formation of a SoS is the high

heterogeneity of their constituent systems, which are distributed, independent, and developed

with di�erent technologies and for diverse platforms - essentially a complex, distributed system.

Therefore, abstracting away the inherent heterogeneity of these systems and making them inter-

operable are imperative issues to be tackled in SoS architectures. Interoperability in SoS needs

to be placed around high-level descriptions of goals and of services since generally, the designer

has to work with black-box systems, where the inner workings of the collaborating systems are

not known [Luk15]. According to [Fis06], successful interoperation in SoS can not depend any-

more (as in traditional integration activities) on a centralized institution which issues "centralized

control dependent on global visibility and coordination among predictable error-free components in

predetermined situations". In SoS, autonomous constituents need to collaborate to ful�ll an over-

5.2. RUNTIME INTEROPERABILITY IN THE CONTEXT OF IOT ECOSYSTEMS 99

all system purpose, i.e. the governance of interoperability is decentralized. The e�ectiveness

of this collaboration relies on two key factors: "the degree to which the interaction partners share a

common purpose"[Fis06] and "the autonomous freedom each parter has to ful�ll this purpose" [Fis06].

[MDC10] de�ne the following requirements for interoperability which can be used as a rough

framework to capture interoperability in the IoT ecosystem.

• Compatibility "A compatibility requirement is de�ned as ’a statement that speci�es a func-

tion, ability or a characteristic, independent of time and related to interoperability barriers(in

Enterprise context: (conceptual, technological, and organizational)) for each interoperability

concerns (data, services, processes and business), that entities must satisfy before collaboration

e�ectiveness’"[MDC10]

• Interoperation "An interoperation requirement is de�ned as ’a statement that speci�es a func-

tion, ability or a characteristic, dependent of time and related to the performance of the in-

teraction, that entities must satisfy during the collaboration’."[MDC10]

• Reversibility "A reversibility requirement is de�ned as ’a statement that specify functions, abil-

ities or characteristics related to the capacity of entities to retrieve their autonomy and to return

to their original state (in terms of their own performance) that they must satisfy after collabo-

ration’."[MDC10]

Comparing this requirements framework to the usual approach to interoperability in IoT, we

observe that usually only the compatibility level is addressed, through standardization. This level

only deals with the design time aspect of interoperability since it is time-oblivious. The interop-

eration and reversibility level on the other hand relate to the runtime aspect of interoperability. It

was already explained that interoperability in complex systems such as the IoT cannot be reached

through compatibility level approaches alone due to the nature of the IoT which in its very sense

relates to the operational context in which systems �nd themselves. For example, since IoT en-

vironments are dynamic and pervasive, updating and managing semantic descriptions becomes

and important issue [VF13]. Also, the IoT does not only involve exchange of information but also

actuation in the physical world. This means, that communication errors due to missing or falsely

interoperability will have direct consequences making reversibility an important issue.

5.2. RUNTIME INTEROPERABILITY IN THE CONTEXT OF IOT ECOSYSTEMS 100

The importance of a runtime approach to interoperability calls for runtime-oriented concepts

in the design for IoT systems. Especially, the following questions need to be answered:

• How do IoT systems detect changes in their environment?

• How do IoT systems decide with whom to collaborate if this decision is made at runtime?

• How do IoT systems react when �nding potential partners for interaction - how do they

engage?

• How do IoT systems decide when and how to adapt (or disassemble) the state of interoper-

ability with other IoT systems?

• How do IoT systems keep track of adaptation changes in order to determine if and how to

reverse them to their original state?

This list is by no means meant to be exhaustive but it motivates that in order to reach these

objectives, new interoperability capabilities and mechanisms for IoT systems and platforms are

necessary to create these envisioned dynamic systems that are able to interact with their envi-

ronment seamlessly without human advisors and react automatically to perceived changes. When

considering the scale of the IoT, not only among the billions of devices that should be connected

but also the number of IoT platforms, the requirements proposed by [Gué14] become more and

more valid since frequent changes between interoperating systems will become more frequent,

rather than an exception. Also, failures of systems have to be considered. Thus a complete inter-

operability lifecycle approach, as motivated in [CD12], will become necessary for interoperability

in the IoT! In the course of this work a concrete approach to solve this problem is presented. But

�rst of all, a more conceptual approach to the runtime interoperability problem is required.

5.3. REQUIREMENTS ON IOT SYSTEM DESIGN FOR RUNTIME INTEROPERABILITY 101

5.3 Requirements on IoT systemdesign for runtime interoperabil-

ity

Based on the previous concept for runtime interoperability we can now answer question about

the requirements to establish interoperability since we have a complete system model and can

identify those elements and interfaces that are essential to maintain interoperability in this model.

The primary di�culty lies in a way to de�ne measures for these requirements. Each requirement

will thus also contain an acceptance criteria that is measurable in the later introduced simulation.

In the latter evaluation stage these requirements should evaluated as to whether they are met by

the proposed IoT system architecture .

Service orientation and discoverability Service composition and service discovery are func-

tionalities which are essential in IoT ecosystems, where IoT systems o�er digital services to other

IoT systems [RMjP15]. Service orientation is addressed by a service-based implementation of the

interoperability lifecycle where the systems way of communication is through the exchange of

services. A centralized and semi-decentralized lifecycle implementation provide an easier service

discovery, from the perspective of a system designer, due to the the centralized point for querying

and registering services. However, existing and discontinued approaches from the webservice do-

main such as UDDI [Raj11] have already proven that a central store for all services is di�cult to

maintain due to scalability reasons. A decentralized implementation would be advantageous to its

better scalability behaviour however it is signi�cantly more di�cult to implement, since systems

need to synchronize state of all available services in the system.

Discoverability plays a profound role in open IoT ecosystem with evolving populations and is

tightly integrated with service orientation. IoT systems are expected to work together with other

IoT systems in an ad-hoc fashion, i.e. without prior knowledge about the interaction on both

sides. Hence they need to possess mechanisms to search other interoperation partners at runtime,

�lter partners and decide to engage potential partners and negotiate on a model of cooperation.

The search process needs to return interoperability characteristics which are analyzable in an

automatic fashion by the IoT systems. Thus, a service layer ensures that IoT systems can �nd an

exchange services (and thus data and functionality) amongst another.

5.3. REQUIREMENTS ON IOT SYSTEM DESIGN FOR RUNTIME INTEROPERABILITY 102

De�nition 5.2 (Service-orientation requirement) IoT systems need to be able to expose or

consume functionality through a service abstraction layer. Acceptance criteria: An IoT system is

considered service-oriented if all of the interoperability lifecycle functionalities are accessed through

a service interface and all its o�ered services are o�ered through a service interface.

De�nition 5.3 (Discoverability requirement) IoT systems need to be able to �nd interoper-

ation partners autonomously at runtime, without prior manual interface con�guration. Discov-

erability can be di�erentiated between active and passive. Acceptance criteria: An IoT system

acting as a DSP ful�lls the passive discoverability requirement when it is discoverable for any other

IoT system in the environment. An IoT system acting as a DSC ful�lls the active discoverability

requirement when it is able to discover any other IoT system in the environment.

Semantic interoperability mechanisms IoT data and services are usually described in var-

ious di�erent ways which results in semantic mismatches during communication. To provide

runtime interoperability, information needs to be processed semantically with the help of ontolo-

gies. For this processing, a centralized lifecycle implementation is advantageous since semantic

information (ontologies and semantic translations) can be stored in a centralized location. In a

decentralized implementation, each IoT system needs to be able to understand and translate on-

tologies from all other IoT systems. However, a centralized implementation also means, that all

data is routed through a central infrastructure which might be impractical for real-time and privacy

sensitive applications. For this reasons, a semi-decentralized implementation joins the bene�ts of

keeping the data exchange between the IoT systems while providing a central place for storing

semantic related information.

Revisiting the semantic based requirements by [CFMP05], one can identify a plethora of so-

lutions regarding semantic interoperability in IoT. It is a common point of agreement that se-

mantic technologies provide the necessary foundation for interoperability on the semantic com-

munication level ([SBC+15]).

5.3. REQUIREMENTS ON IOT SYSTEM DESIGN FOR RUNTIME INTEROPERABILITY 103

De�nition 5.4 (Semantic communication requirement) To handle information semanti-

cally, IoT systems need to be able to process messages from other IoT systems using ontologies

and use ontologies to map outgoing messages semantically.

Acceptance criteria: An IoT system incorporates a semantic communication mechanism when

for a message m and an ontology O the semantic communication mechanism p(m, O) leads to the

desired internal state change by the sending system.

Pragmatic interoperability mechanisms In order to reach pragmatic interoperability, infor-

mation �ows between IoT systems need to be interpreted context-based and interpreted based on

the purpose of information usage instead of just based on the objective content. To determine the

usage context, the systems need to have knowledge about the current context of the other IoT

systems and the environment in their interoperation. This entails, for two di�erent contexts, the

interpretation of semantically identical messages may be di�erent or identical.

De�nition 5.5 (Pragmatic communication requirement) To handle information pragmat-

ically, IoT systems need to have mechanisms in order to process information with respect to a

concrete usage context. Acceptance criteria: An IoT system incorporates a pragmatic communi-

cation mechanism when it incorporates context information c into the semantic communication

mechanism p so that for a message m the reaction p(m, O, c) leads to the desired state change.

Decisional & operational autonomy From an internal systems perspective, autonomy can be

di�erentiated into "decisional autonomy (the system assures its governance and remains always able

to decide actions) and operational autonomy (the system remains able to preserve its performance

in terms of costs, delays and quality of services)" [CD12]. The IoT ecosystem is built up of het-

erogeneous systems, that are autonomous and not controllable by one entity [CFMP05]. This

raises the question of who controls the interoperability inside the ecosystem? If there is no central

control, IoT systems must possess the necessary capabilities to address interoperability problems

dynamically at runtime.

The de�nition of autonomy already hints to the fact that a centralized lifecycle implemen-

tation is not the optimal solution since a centralized implementation usually restricts systems

5.3. REQUIREMENTS ON IOT SYSTEM DESIGN FOR RUNTIME INTEROPERABILITY 104

decision freedom, limiting their ability to act on their own behalf also to unforeseen situations

autonomously. Autonomy is increased by moving the responsibilities inside the lifecycle func-

tionality away from a central instance towards the participating systems. For example, in the

semi-decentralized architecture, autonomous system behaviour is facilitated since the transaction

functionality is distributed to the individual systems. The best solution for maximal autonomy

would see the complete interoperability functionality being decentralized to the participating sys-

tems without a centralized INSP system. Although this has the advantage of maximal autonomy,

it brings its drawbacks with respect to performance, coordination and security since there is no

instance controlling settlement or service discovery for example.

IoT systems are very diverse and can be used in di�erent context and use cases where varying

requirements are imposed on them. For example, a smart camera system can be used for di�erent

purposes, such as people counting or tracking or tra�c analysis. Also, IoT systems are usually

being upgraded during operation to possess new or di�erent functionalities that cannot be antic-

ipated by other, collaborating systems hence they will not be aware of that fact until they get in

contact with the upgraded system. They are generally expected to work together with other IoT

systems to provide value added services, making them unbounded in nature [CFMP05] and hence

requiring them to be able to distinguish better from worse collaboration partners.

Autonomous decision making is important for systems to self-protect when engaged in inter-

actions with other systems at runtime, which are unknown at design-time. Concretely, in technical

terms, it would mean for a system to be able to maintain its response times even if another system

is trying to �ood it with requests. The question is, if there is no controlling entity, on which basis

can IoT systems make such decisions autonomously?

There has to be a controlling mechanism that makes sure the system remains functional even if it

changes interactions partners quite frequently during the evolution of the interoperation (opera-

tional autonomy). Interoperability and a shared understanding between components about their

behaviour is necessary to allow ad hoc applications composed by end users. Lacking interoper-

ability can result in mission critical failures, especially in Industrial IoT context! For example, in

the Industrial IoT, Cyber-physical systems are used which increase the variance in the behaviour

space of the overall system. Since responses to external stimuli are state dependent, the behaviour

is not deterministic. Because Industrial Internet systems are large-scale distributed systems of

multi-vendor machines, safe, secure and resilient operation is required. The systems must be able

5.3. REQUIREMENTS ON IOT SYSTEM DESIGN FOR RUNTIME INTEROPERABILITY 105

to make individual decisions based on the information available, requiring a local decision process

in each system [XLZ04].

De�nition 5.6 (Autonomy requirement) Interoperation can have drastically di�erent time

spans and no central interoperation operator can be expected to deal with interoperability issues at

runtime. Thus IoT systems need be able to react to interoperability situations autonomously. Ac-

ceptance criteria: A solution meets the autonomy requirement if for a given system state change

function f (s, a) = s′ where s ∈ S for all possible states, and a given IoT system’s utility function

u(s) the system is able to perform action a ∈ A so that the following equation holds : u(s′) >= u(s)

Interoperability reasoning&measurability Relationships between systems play an essential

role in this thesis since e�ectively, relationships are closely linked to interoperability. When sys-

tems or system elements are interoperable, they form relationships among each other and exchange

information. This accomplishes the desired functionality of the overall system and emergent be-

haviour inside the system [NGC09]. In the IoT, especially the dynamic creation of relationships

during the lifetime of IoT systems is essential. This can only be achieved, when IoT systems trans-

form from merely providing functionality in a collaboration to be actively aware of the collabora-

tion or interoperation by possessing the necessary competences to reason about interoperability

related decisions at runtime and for example deciding when to participate in a particular service

collaboration. To be able to reason about interoperability, it needs to be measurable. To measure

interoperability (and also e�ciency from the previous requirement), metrics are necessary to ana-

lyze semantic and pragmatic interoperability runtime. The metric needs to be based on the notion

of interoperability utility which is always created through use of a service in a particular context.

Quantitative metrics for interoperability have been developed in the past, e.g. by [FCGD07] us-

ing the iScore which can be used to quantify the amount of interoperability between a number

of systems. The question remains, in the context of runtime interoperability, what measurements

to apply. From a requirements perspective, the measurement needs to be able to quantitatively

analyze interoperability and be usable by IoT systems in an automatic way in order to have some

measure of judgment to improve interoperability. The notion of a context based assessment of

interoperability makes more sense than a generic measurement since the same systems can have

di�erent levels of interoperability, depending on the context they see themselves in. The only

5.3. REQUIREMENTS ON IOT SYSTEM DESIGN FOR RUNTIME INTEROPERABILITY 106

constant in this case is the value which is generated through the interoperability!

De�nition 5.7 (Interoperability reasoning requirement) In order to be able to reason about

interoperability related decisions, state information about the current state of interoperability needs

to be gathered automatically and be processed in an automatic fashion. Acceptance criteria: A

solution meets the interoperability reasoning criteria if for any given system state s an IoT system

possesses a mechanismm(s) to transform the state information into an internal representation and

measure the current level of interoperability with other IoT systems.

De�nition 5.8 (Measurability requirement) In order to measure interoperability, IoT systems

need to process internal metrics to quantify the state of interoperability with respect to the commu-

nication with other IoT systems, their own state as well as about the state of the other interoperation

partner(s). Acceptance criteria: An IoT system is able to measure interoperability if for any inter-

operability state s the system’s interoperability measurement function O produces an output O(s)

which allows to quantify the current level of semantic and pragmatic interoperability with other

communication partners. Each state s contains references to other IoT systems so that the subject

IoT system can assess the level of interoperability with all other system it interacts with.

Adaptivity Complex systems are considered adaptive when they are able to change and learn

from their experiences [UM09]. [Ack71] describes formally what it means for systems to be adap-

tive. He distinguishes between di�erent levels of adaptation that a�ect di�erent parts of the system.

Generally, a system is adaptive, if a change in the environment and / or its internal state triggers a

change in its own state and or that of its environment so as to increase its e�ciency with respect

to the goal/ goals it pursues. Adaptivity is thus an ability of a system to modify itself in order to

keep its e�ciency.

[NGC09] have identi�ed the need for systems to adapt as an important characteristic in order to

improve interoperability. They state that a system, that is able to self-react to changes in its en-

vironment and adapt its internal structure or behaviour accordingly, while keeping its original

objective, have a greater interoperability potential.

A relating concept is reversibility of systems, which means that any adaptation that was performed

in order to enhance interoperability can be reversed. For example, if a system has adapted one of

5.3. REQUIREMENTS ON IOT SYSTEM DESIGN FOR RUNTIME INTEROPERABILITY 107

its interfaces in order to interoperate with another system by adding an additional endpoint or

supporting a new protocol, this change can be reversed to the original version, when the inter-

operation is over. However it would be ideal, if the system could determine, if the changes could

be useful in general also for interoperability with other system so that it might in fact keep the

changes in tact. This leads to the next desirable property of learning.

[Muf09] also mention that service discovery and composition, inherent to the proposed middle-

ware based approaches for IoT, need to be autonomous dynamically adaptable.

If we compare this outcome with the interoperability requirements proposed by [Gué14], there

are still solutions missing in order to properly deal with the open nature of systems of systems of

which IoT is a representative. If a system must change due to changes in services the system uses,

an adaptive middleware solution that is build on prede�ned policies and rules will only work, as

long as the potential changes can be anticipated at design-time. Adaptation is the process whereby

a system becomes better suited to its environment given its purpose , the concept of adaptation is

closely linked to the goal(s) of the system.

Adaptivity �rst of all requires the system to be modi�able at all. The interoperability lifecycle

implementation provides the points of adaptation, e.g. with respect to matchmaking, negotiation

or transaction. Generally, with increased decentralization, the responsibility of providing these

adaptive actions is shifted towards the individual IoT system. This is advantageous, since usually

the system provider has the best knowledge about his system. In comparison, in a centralized

implementation all points of adaptation need to be implemented by one provider. One can imagine

that this setting restricts the breadth of adaptivity compared to a completely decentralized setting

in which each consumer or provider system is o�ering its own adaptation logic. On the �ipside,

decentralized adaptation also brings the disadvantage of uncontrolled adaptation if coordination

between the systems about their adaptations is not provided, "The SOI (system-of-interest) operates

seamlessly with the other systems of its environment in order to ful�ll its mission. It is able to control,

adapt or anticipate problems promptly i.e. to reduce impacts on other systems with more or less desired

e�ects and adverse."[CD12]

5.3. REQUIREMENTS ON IOT SYSTEM DESIGN FOR RUNTIME INTEROPERABILITY 108

De�nition 5.9 (Adaptivity Requirement) IoT systems need to be adaptable to ensure inter-

operation at runtime. System interactions that are built on prede�ned policies and rules will only

work, as long as all the interactions can be anticipated at design-time. In order to address runtime

interoperability, the IoT systems must be able to adapt to system changes that were not anticipated

(for example systems that are added, changed or modi�ed during operation).

Acceptance criteria: A solution is interoperability-adaptive, if for any given system state change

S a system is able to respond with an adaptive action a ∈ A that has an e�ect on its own state

and/or the IoT environment state with respect to the goals it pursues.

Learning Machine learning has a long history in computer science and in recent years, the trend

of arti�cial intelligence has led to increasingly sophisticated learning systems. In systems theory,

[Ack71] describe learning generally as the increase of one’s e�ciency in the pursuit of a goal under

unchanging conditions. However a prerequisite for learning is that the system has a choice among

alternative courses of action. As already hinted, adaptation and learning can also be combined, if

the system repeatedly learns to operate more e�ciently in a given environment [Ack71].

Especially due to the dynamics of IoT ecosystems, learning to interact in these environments plays

a profound role. The learning behavior for IoT systems needs to be based on feedback from the

environment which plays an integral part of the learning process. We deal with ad-hoc learning

problems, instead of supervised or unsupervised learning problems since the learning context of-

ten changes depending on the composition of the IoT ecosystem. This requires a learning process

which is able to apply real-time feedback. Feedback about the state of interoperability is gath-

ered and re-training is performed on this data for improved performance. By incorporating this

environment feedback, the learning module can become quite robust.

The learning mechanism of the system thus needs to have the following properties:

• Learning needs to be based on feedback from the environment and include new knowledge

in the learning process.

• Learning needs to be mostly online since little to no prior training information will be avail-

able due to the ad-hoc nature of the IoT environment.

5.3. REQUIREMENTS ON IOT SYSTEM DESIGN FOR RUNTIME INTEROPERABILITY 109

De�nition 5.10 (Learning requirement) IoT systems need to be able to learn to interact/react

in/to new situations at runtime, according to given constraints and their capabilities based on feed-

back from the environment. Acceptance criteria: An IoT system is considered to learn a behaviour

in an environment when its e�ciency between timesteps t1 and t2 increases by ameasurable amount

�e through feedback from the environment and actions he performs in the environment.

5.4. A MODEL FOR RUNTIME INTEROPERABILITY 110

5.4 A model for runtime interoperability

In this section, a concept for runtime interoperability is presented based on the de�nition of run-

time interoperability in de�nition 5.1 and the previously de�ned requirements for IoT system de-

sign to enable runtime interoperability. The model is split into two parts: a model for the interop-

erability lifecycle and a model for autonomous adaptation of interoperability at runtime.

Since interoperability is essentially a problem of collaboration between multiple IoT systems,

the following model for runtime interoperability follows a multi-agent based approach between a

list of service consumers (DSC) ℂ and service providers (DSP) ℙ. In this theory, an IoT system is

composed of an I-IOP (IoT - Interoperability) agent and a system logic part. The latter part contains

the IoT platform services that are used for the IoT systems logic implementation. The purpose of

the I-IOP agent is to establish interoperability with other IoT systems in the IoT environment.

It consists of two components: an interoperability module (IOP module) and an autonomic

control module (AC module)(�gure 5-1).

AC module

interoperability
module

I-IOP agent

system logic

IoT environment

IoT system

Figure 5-1: Visualization of an IoT system instance, consisting of the underlying IoT system logic,
the I-IOP agent (consisting of the AC module and the interoperability module) and the interface
to the IoT environment.

5.4. A MODEL FOR RUNTIME INTEROPERABILITY 111

5.4.1 The AC module

The AC module of the I-IOP agent model is a generic autonomous control system and will be

formalized as follows:

De�nition 5.11 (Formalization of the AC module) The AC module is a tuple m =<

I,A, O,ℤ, �, � > where:

• I is the set of interoperability information states of the I-IOP agent

• M is an interface to the interoperability module

• A,O The action set taken by / observations provided to the agent by the environment

• ℤ is the set of communicated observations z available to the agent through the communica-

tion with other IoT agents

• � is the action selection policy: � ∶ I → △(A)

• � is the information state update function � ∶ I × A × O × ℤ → △(I)

The AC module builds up an internal representation of the interoperability information state

I of the I-IOP agent based on the information it receives from the environment O through the

interoperability module with regards to the interoperability process and by interpreting these ob-

servations and bringing together the auxiliary and primary state information it received through

communication with other I-IOP agents ℤ. How this information state update process is per-

formed is de�ned in the information state update function � and is unique to each agent. The

agent is then able to base his decisions on the correct state of interoperability I with the other

agent(s) which consists of the complete semantic and pragmatic information available to the AC

module. It uses this information to perform actions on the interface to the interoperability module

M and or by communicating with other agents which in turn a�ects the interoperability informa-

tion states. In the optimal case, the actions taken by the agent would be equivalent to one central

instance that controls the actions of all the I-IOP agents involved through a joint policy based on

perfect knowledge to maximize interoperability. This joint policy can be split into individual poli-

cies for all the agents G involved �i , i ∈ G. If, auxiliary information is misinterpreted (e.g. through

semantic mismatches) the agent receives incomplete or false state information. This inevitably

5.4. A MODEL FOR RUNTIME INTEROPERABILITY 112

leads to problems in the interoperability and potentially in a collapse of interoperability. To avoid

such issues, a couple of agent communication standards have emerged in the early 2000s which

are well suited for this context since they already de�ne semantics and pragmatics within agent

communication, for example for negotiations which eases semantic interoperability. A prominent

example is FIPA-ACL which was standardized by the W3C 1.

5.4.2 The interoperability module

Interoperability in IoT ecosystems is modeled as a four-step process, referred to as the interop-

erability lifecycle, similar to the service collaboration lifecycle by [RK09] and is shown in �gure

5-2. The interoperability module of an I-IOP agent is responsible to interact with the IoT envi-

ronment through an implementation of the interoperability lifecycle (de�nition 5.12). It interfaces

with the underlying system logic and the surrounding IoT environment through an interoperabil-

ity lifecycle adapter. The autonomous control (AC) module acts as a meta-system, observing and

controlling the interoperability with other IoT systems through the assessment of the current in-

teroperability state. The concrete architecture and implementation of the I-IOP agent model will

be explained in chapter 6. The underlying system logic can implement any kind of IoT related

functionality, either on the platform or device level. This means, the I-IOP agent can be deployed

on IoT platform services and on IoT devices directly.

Matching Negotiation Transaction Dissolution

Interoperability lifecycle

Figure 5-2: Visualization of the interoperability lifecycle, consisting of the phases: matching, ne-
gotiation, transaction and dissolution.

1http://www.�pa.org/repository/aclspecs.html

5.4. A MODEL FOR RUNTIME INTEROPERABILITY 113

De�nition 5.12 (Interoperability lifecycle functionality) The interoperability lifecycle

functionality in an IoT ecosystem is a function  = (, ,) composed of sub-functionalities

 (matchmaking functionality),  (negotiation functionality) and  (transaction function-

ality) .

De�nition 5.13 (Matchmaking functionality) The matchmaking functionality (d, !) re-

ceives as inputs the speci�cation of a service demand d and o�ers for service delivery by potential

providers !. Its output is a list of n >= 1 service provider o�erings {ℙ} ordered by the degree of

matching with the demand.

The matchmaking functionality is responsible for bringing together di�erent parties of the

IoT ecosystem. It can be implemented by a centralized IoT system that has knowledge about

all participants of the ecosystem or in a decentralized way, where all ecosystem systems jointly

execute the functionality.

De�nition 5.14 (Negotiation functionality) The negotiation process is a functionality

 (ℂ, {ℙ}) which receives as input a list of n >= 1 provider systems matched with a consumer

system ℂ and negotiates a list of interoperability contracts I for each provider system p ∈ ℙ.

The negotiation functionality is implemented as a negotiation mechanism, e.g. a speci�c ne-

gotiation protocol such as an auction or a negotiation game ([MVEP03]). The interoperability

contract I speci�es the constraints for the interoperation between the IoT systems. For exam-

ple it contains details about maximum message delays, price for a digital service or the required

minimum utility for the customer. Thus, an interoperability contract represents a concrete instan-

tiation of a negotiation objective function and can be considered a blueprint for an interoperation

between DSC and DSP systems. In case the negotiation between the DSC and DSP system fails,

the interoperability contract is void.

5.4. A MODEL FOR RUNTIME INTEROPERABILITY 114

De�nition 5.15 (Interoperability contract) An interoperability contract is an object de�ning

the following elements for a transaction between two IoT systems:

• Identi�cations of the DSC and DSP IoT systems

• A protocol P

• The service delivery type t

• The underlying ontologies used by the IoT systems O

• A price being paid by the DSC to the DSP systems for consuming/providing the service p

• Quality of service parameters, such as accuracy and max. delay QoS

De�nition 5.16 (Transaction functionality) The transaction functionality  (I, SC , SP) de-

lineates the transactions between the IoT systems, i.e. the delivery of the negotiated digital service

according to the interoperability contract terms. It o�ers parameters for adaptation so that the

systems comply with the negotiated contract.

De�nition 5.17 (Dissolution functionality) The dissolution functionality  dissolves an in-

teroperability contract

The transaction functionality is the most essential part of the interoperation between IoT sys-

tems. It deals with the semantics and pragmatics of communication and describes the actual ex-

change of the digital service. The previously negotiated contract acts as a kind of blueprint for

this phase. Note that authentication and payment are part of this phase, however not in scope of

this thesis. The next part will introduce an optimization problem in order to optimally con�gure

a transaction functionality towards such a contract.

De�nition 5.18 (Interoperability lifecycle implementation) An interoperability lifecycle

implementation refers to a concrete implementation of a interoperability lifecycle functionality

 ′.

5.4. A MODEL FOR RUNTIME INTEROPERABILITY 115

Looking at the smart city example, this process results in an interoperability lifecycle  ′ be-

tween the environmental aware routing system and the tra�c IoT systems and the environmental

monitoring system. The demand for environmental data tra�c data was matched by the match-

making function after the routing system’s request for service (for example on a Smart city digital

marketplace platform) . A subsequent automated negotiation resulted in two interoperability con-

tracts with the respective terms and conditions between the routing system and each DSP. The

transaction functionality involves the consumption of the tra�c and environmental data by the

routing system and payment for service. A dissolution could be triggered, for example when one of

the providing systems become o�ine or a better providing system is found by a new matchmaking

request from the routing system side.

5.5. THE TRANSACTION OPTIMIZATION PROBLEM 116

5.5 The transaction optimization problem

To accomplish runtime interoperability, the interoperability module, o�ers parameters which can

be used at runtime by the AC module of the I-IOP agent to adapt the transaction functionality

towards an interoperability objective. This is essential in order to address the runtime nature of

interoperability, since only at runtime the composition of systems in the ecosystem is known,

after they were discovered and an interoperability contract has been settled. This autonomous

optimization step is missing from standard interoperability mechanisms which only rely on design-

time analysis and assumptions by developers on design-time integration aspects. They fail, as soon

as any of these assumptions are not met anymore.

Therefore, achieving runtime interoperability between multiple IoT systems requires, besides

establishing an interoperability lifecycle instance, also a process of solving an objective function

( ()′). Checking whether the objective of interoperability is achieved or not corresponds to

verifying whether the description of some state of interoperation S contains the desired e�ects.

"When a SLA is negotiated, the client’s objective is to persuade the service provider to provide it

with the best possible utility. The client’s utility can be expressed as a function of throughput and

price" [Wil09]. Since the interoperability contract as the outcome of the negotiation functionality

is similar to a SLA the transaction objective can be described as optimizing the semantic and prag-

matic processes in order to be in line with the negotiated interoperability contract terms. To solve

the transaction optimization problem it is necessary to reach an optimal joint policy of interaction

and communication � between a subset of IoT systems of the IoT ecosystem. The joint policy can

be split into the policy of the DSC system(s) �ℂ, the policy of the IN SP system and the policy of

the DSP system(s) �ℙ.

5.5. THE TRANSACTION OPTIMIZATION PROBLEM 117

Modeling the transaction optimization problem in IoT ecosystems will be based on the frame-

work of Markov decision problems (MDP) [OA16] .

De�nition 5.19 (MDP) A markov decision process (MDP) is a 5-tuple ⟨S, A, � , r ,
⟩, wℎere

• S is the set of possible states

• A is the set of possible actions

• � is the state transition function � ∶ SxA → S

• r is the reward function, de�ned as r ∶ SxA → S

•
 is a discount factor
 ∈ [0, 1)

A MDP models a "discrete time planning task of a single agent in a stochastically changing envi-

ronment, on the condition that the agent can observe the state of the environment" [OA16]. Markov

decision processes are widely used to model controlled dynamical systems in control theory, op-

erations research and arti�cial intelligence [SB17]. A MDP models a set of possible states, actions

and a state transition function which translates a state-action pair into the next state. After each

state transition, a reward function produces a reward for each agent, based on the value of the

new state. A discount factor determines "the relative importance of future rewards", which means,

how much a reward contributes to the learning objective of the agent [TMS17].

The following assumptions are taken in order to model the interoperability between IoT systems

as a sequential transactions process using Markov decision processes:

1. Reaching an optimal state of interoperability can not be assumed to be a one-step process.

Rather it is a continuous process which adapts to the requirements at runtime and is subject

to change when the context of interoperability changes.

2. It can not be assumed, that if a state of interoperability is reached at one time instance, that

it will remain steady forever. Thus, a constant monitoring of the interoperation is necessary

in case of disruptions. Interoperability is not "all-or-nothing" but rather a process which

leads to a more or less desirable outcome for all participants.

Thus, by applying the MDP based model to the problem of optimizing interoperability in IoT

5.5. THE TRANSACTION OPTIMIZATION PROBLEM 118

ecosystems, IoT systems are enabled to be autonomous and can deal with changes at runtime

without a designer needing to foresee all potential possibilities in advance [KH18]. To restrict

complexity, only deterministic MDPs will be considered in which the reward functions r and

the state transition function � are not subject to change at runtime. While in case of a centralized

interoperability lifecycle implementation, the MDP refers to a single-agent problem, in the case

of a decentralized implementation, it becomes a multi-agent problem since the optimization

process is decentralized. Thus, in order to formalize the interoperability optimization problem

in IoT ecosystems for decentralized interoperability functionalities, we need to extend MDPs to

multi-agent decision problems (MADP) where IoT systems operate inside a markovian multi-

agent environment (MME) [OA16]. MADP are derived from Markov decision problems in a multi-

agent setting, more speci�cally from decentralized partially observable markov decision problems

(DEC-POMDP). The di�erence between a DEC-POMDP and a MDP is that the execution phase is

decentralized and that the agents only have incomplete information about the environment: each

agent may only use its own observations to select its actions. So instead of directly observing

the state, the agents receive a �nite set of (joint) observations and are given a �nite set of (joint)

actions to change the state of the environment. As such, DEC-POMDPs allow for decision making

in multi-agent settings which makes it a �tting model for the coordination optimization problem

in IoT ecosystems since it is is a rich framework to formulate sequential decision making and

control problems for a distributed group of agents collaborating to achieve a common goal under

uncertainty [Sin18]. An formal de�nition of a MDP and a DEC-POMDP is given by [OA16].

5.5. THE TRANSACTION OPTIMIZATION PROBLEM 119

De�nition 5.20 (DEC-POMDP de�nition by [OA16]) A decentralized partially ob-

servable Markov decision process (DEC-POMDP) is de�ned as a tuple DecP =

⟨D, S, A, T , R, O, O, ℎ, b0⟩, wℎere

• D = {1, ..., n} is the set of n agents

• S is a �nite set of states

• A is a �nite set of joint actions

• T is the transition probability function

• R is the immediate reward function

• O is the �nite set of joint observations

• O is the observation probability function

• ℎ is the horizon of the problem

• b0 is the initial state distribution at stage t = 0

Agent communication In a decentralized interoperability functionality implementation, it is

important to de�ne a mechanism for agents so that the communicated messages between the

agents a�ect their internal states (beliefs) (and thus the state of the interoperation) in such a way,

that it bene�ts in solving the interoperability problem, as described previously. In this model, simi-

lar to [PL05], communication is de�ned as the process of changing the (belief-) state of a particular

agent so that other agents can perceive the modi�cation and decode information from it. This is in

line with de�nition 5.1. In this model, successful communication has to be seen as a process that

aims to realize a condition of mutual knowledge relative to a communicative intention [Bar11].

Communication is seen as a social activity of a combined e�ort of a least two participants, who

consciously and intentionally cooperate to construct together the meaning of their interaction.

The question is: what information agents communicate in order to achieve this.

To answer this question, we consider the case in which we assume a centralized communication

scenario with a communication channel between each IoT system. In this particular case, all agents

receive the full state information(as state observations) as an aggregation over all the individual

5.5. THE TRANSACTION OPTIMIZATION PROBLEM 120

state observations of each respective IoT system SA, SB. When agents communicate for example

their local belief states to other agents, this will change the internal belief state of the other agent

(i.e. his information base increases). Since the agent now has more knowledge about the environ-

ment, his subsequent actions will be in�uenced by this knowledge, resulting in a change of the

state of interoperability. This extends the DEC-POMDP model into a DEC-POMDP-COM:

De�nition 5.21 (DEC-POMDP-COM de�nition by [OA16]) A decentralized partially ob-

servable Markov decision process with communication (DEC-POMDP-COM) is de�ned as a tuple

⟨DecP , �,�⟩, wℎere

• DecP is a DEC − POMDP ,

• � is the alphabet of possible messages that the agent can send to other agents ,

• � is the communication cost function that indicates the cost of each possible message.

In a DEC-POMDP-COM under instantaneous, noise-free and cost-free communication, a joint

communication policy that shares the local observations at each stage is optimal [PT02]. How-

ever, in the practical case, we cannot rely on cost-free communication. This fact is accommodated

through an additional cost function C� which de�nes the cost for each message the agents commu-

nicate. Also, the internal state of a particular agent might contain private information regarding

the system logic which should not be made public to other agents. The state could for example

contain sensitive user information, such as his current geo-location. The agent thus needs to be

free to decide, how much of its state observations the subset contains and is potentially limited

in this regards by laws and regulations. This is achieved by the agent’s mechanism for auxil-

iary observations which is part of the agent model. It refers to the process of how information is

communicated between the agents.

Constraints The environment of a DEC-POMDP or a MDP, can either be a single-step or multi-

step environment. In a single-step environment, feedback for actions is returned after each step,

whereas in a multi-step environment a chain of actions is required to receive feedback [Ste17]. In

the runtime interoperability case, we restrict to single-step problems since it is assumed that the

IoT system is able to observe the e�ect of its action immediately after each action. Furthermore,

multi-step actions are very complex to analyze and should thus only be considered after an initial

5.5. THE TRANSACTION OPTIMIZATION PROBLEM 121

single-step model has been evaluated.

Although interaction in an IoT ecosystem is of course not time-restricted and should be considered

an in�nite process, we will restrict ourselves to the model of �nite DEC-POMDP systems due to

the computational traceability. Also, the application of the DEC-POMDP will be limited to the

special case, where not the individual, but the joint observation identi�es the true state. In other

words, if the observations of all the agents are combined, the state of the environment is known

exactly. This is referred to as jointly or "collectively observable" [OA16] and can be described as a

de-centralized Markov decision process (DEC-MDP). Since, however in this model, the agent itself

still has an incomplete view on the environment, we need to introduce a communication method

between the agents. To constrain the complexity of the problem further, we will only consider

collaborative settings, i.e. all IoT systems get a positive reward for improving interoperability

[OA16], which means that they are always rational acting in a sense that they try to improve the

interoperability. However this does not mean, that they all receive the same reward, since this

always ties to the customer utility.

5.5.1 Optimization criteria

The problem we still face is a proper formalization of the actual goal the agents are supposed to

achieve, i.e. what they are supposed to optimize in the  objective. The goal in the case of a

MDP is de�ned as the optimization criteria. An optimization criterion lays out exactly what

the optimization process is supposed to optimize [OA16]. Since we are dealing with single-step

problems in the interoperability optimization problem, we can de�ne the following optimization

criterion for runtime interoperability:

De�nition 5.22 (Transaction optimization criterion) The transaction optimization crite-

rion is the maximization of the accumulated interoperability reward r of an I-IOP agent at each

timestep t of a transaction T .

The optimal joint policy of a list of IoT systems pi∗(�t) = argmaxa∈Ar(�t , a) is the policy which

always chooses the action that maximizes the reward, given the current situation description �t

[Ste17]. The reward is de�ned by the utility function of an I-IOP agent [Ste17].

In the case of the transaction optimization criterion the utility of an I-IOP agent component is

to jointly maximize the semantic and pragmatic interoperability between the IoT systems. We can

5.5. THE TRANSACTION OPTIMIZATION PROBLEM 122

now de�ne the transaction optimization problem as follows:

De�nition 5.23 (Transaction optimization problem) A transaction optimization problem

for a number of I-IOP agents can be described as a DEC − POMDP − COM which consists of

the following elements:

• IOC which is the transaction optimization criterion

• G is a set of I-IOP agents

• C is a cost function, i.e. a function that speci�es for each I-IOP agent a mapping between

action and costs

• all the other elements that are speci�ed in the DEC − POMDP − COM model

The task for an I-IOP agent i ∈ G is to optimize IOC by applying a series of actions {A1, ..., AN } ∈

Ai to a�ect the interoperability information states Ii with other agents j ∈ G. The task for the I-IOP

agent designer is now to specify the representation of Ii , the information state update function for

the I-IOP agent �i and the action selection policy �i to maximize IOC respecting the cost for actions

C . In the next chapter we will see how this is practically done and also, how the I-IOP agent can

autonomously learn �i .

5.6. QUANTIFICATION OF THE INTEROPERABILITY STATE 123

5.6 Quanti�cation of the interoperability state

Referring back to the related work section, existing metrics for quantifying interoperability have

been reviewed. The literature shows, that quantitative evaluations are rare. In order to provide

runtime interoperability between IoT systems however, a quantitative, measurable analysis of the

interoperability state between the systems is essential. Since interoperability, on the technical

level, mainly revolves around semantic and pragmatic factors, two metrics are introduced in this

section: the semantic and pragmatic interoperability (IOP) metric. The LCIM metric is used

as a reference metric since it presents the most practical approach to measure the state of inter-

operability. To brie�y recapitulate, semantic and pragmatic interoperability refer to the meaning

and use of data in a communication. Based on these two concepts a utility function framework

is de�ned, which is then �lled by customer and developer requirements at runtime to provide the

utility function.

Semantic interoperability metric Semantic interoperability refers to a shared meaning of

message content inside transactions between the IoT systems. Since IoT systems use di�erent

descriptors in order to describe their data, ontologies are needed which objectively describe the

content of messages. IoT systems need to use semantic processes to enrich the message content

with ontological information in order to be semantically interoperable. Of course this raises a fur-

ther interoperability problem, since there needs to be a common agreement on the ontology being

used. However this issue can be solved inside the interoperability lifecycle in the second phase

(), where the IoT systems agree on a common ontology as part of the contract settlement. On-

tology alignment (or matching) algorithms could furthermore be used to help align concepts from

di�erent ontologies.

De�nition 5.24 (Semantic process) A semantic (interpretation/translation) process is the func-

tion sem(�, �i) of an IoT system i which receives a message input �i and produces a semantic

embedding of �i in ontology � .

Since semantic interoperability, according to the LCIM model, requires syntactic interoperabil-

ity, the syntactic interoperability measure is embedded in the semantic interoperability metric.

5.6. QUANTIFICATION OF THE INTEROPERABILITY STATE 124

De�nition 5.25 (Semantic interoperability metric) The semantic interoperability metric

measures the accumulated embedding score over the elements of a transaction. More speci�cally,

it is measured on each side of an IoT transaction by the respective IoT system as the semantic

interoperability gap IOPGS and contains the following measures:

• Protocol mismatche: A protocol mismatch occurs when the receiving and sending IoT system

use di�erent interaction protocols

• Semantic mismatch Γ: A semantic mismatch occurs when the sender and receiver use di�er-

ent ontologies than negotiated.

• Validity � : A message �(�i) is valid if it contains all elements that were negotiated in the

interoperability contract required for proper processing the message.

Note that the measures can be both discrete and continuous, for example a semantic mismatch

can be measured through a binary measure or through the amount of mismatch in ontological

terms.

We can then formulate the semantic interoperability optimization criterion (as one part of the

transaction optimization criteria) as follows:

De�nition 5.26 (Semantic interoperability optimization criterion) The semantic interop-

erability optimization criterion maximizes the semantic interoperablity metric between two IoT

systems.

Based on this criteria, the concept of semantic interoperability is rede�ned as:

De�nition 5.27 (Semantic interoperability) Two IoT systems ℂ and ℙ are semantic interop-

erable when their semantic processes sem,C and sem,P maximize the semantic interoperability

criterion.

Pragmatic interoperability metric Messages are sent between systems in order to change

the systems state, that is, messages are always sent with some intention. The pragmatic inter-

operability problems arise when the intended e�ect of a message di�ers from the actual e�ect of

5.6. QUANTIFICATION OF THE INTEROPERABILITY STATE 125

the message. Pragmatic interoperability can be seen as a particular state of interoperability be-

tween IoT systems where the system’s expectations about the intended outcome (or desired state)

of an interaction match. Interoperability is achieved at this level when processes serving di�erent

purposes under di�erent contexts by di�erent information systems can be composed to jointly

support a common intention [LLL14]. In this thesis, the term purpose is used equivalently with

goals. For example, the purpose of a smart parking system is to assist a driver in �nding parking

spots in a city while the goal of a routing service might be to calculate the shortest route from

point A to point B. By composing these systems, their goals need to be aligned properly. The ab-

stract goals have speci�c requirements associated with them, concerning quality / precision and

timeliness of results. Until now there is no universal metric to quantify pragmatic interoperability.

In order to quantify it between di�erent IoT systems, a straightforward way would be to evaluate

the business logic of the underlying IoT systems and assess it similar to the semantic interoperabil-

ity metric through matching and translating/interpreting on the business process level. Business

processes can be modeled through ontologies as well, which means, the pragmatic interoperability

problem could be reduced to a semantic interoperability problem. To be more speci�c, a business

process matching tool could be used which translates between di�erent, semantically annotated

business processes and measures (analogous to the semantic interoperability metric) the level of

pragmatic interoperability. This would correspond to an a-priori measure of pragmatic interoper-

ability which de�nes, how well the processes are aligned. However, this is only the theoretical,

ideal case. In reality, such a process is di�cult to establish since DSP (or DSC systems) might

not want disclose their business logic processing (due to intellectual property (IP) rights issues,

to prevent competitors to analyze their o�erings). Also it requires the developer of the DSP (or

DSC system) to �rst of all de�ne such a business process model. It is not realistic to generally as-

sume that a DSP system will advertise its business process for pragmatic interoperability analysis.

Another way to measure pragmatic interoperability is a-posteriori, i.e. during runtime, after the

interaction between the systems has already taken place. This procedure has two advantages: (i)

Systems do not need to disclose their business logic a-priori the interoperation, (ii) the overhead

for semantic annotations (especially on the complex business logic side) is reduced.

The pragmatic interoperability metric is de�ned to measure the e�ciency of reaching a desired

functional state of interoperation between multiple IoT systems, where e�ciency refers to the

match between requester-intended state and the subsequent state, after the request has been pro-

cessed. Note that such a de�nition is aligned with an MDP process, as de�ned earlier. This means,

5.6. QUANTIFICATION OF THE INTEROPERABILITY STATE 126

the intended state can be compared with the actual state of the environment, after a transaction

was processed and a new state of interoperation has emerged on a quanti�able basis. Moreover,

the pragmatic interoperability metric measures any mismatch with regards to the non-functional

constraints of the interaction between consumer and provider which were settled in the interop-

erability contract. Bear in mind, that terms which were not settled in the interoperability contract

can still be compared however usually it is expected that systems settle the most important in-

teroperability issues in a contract (but, referring back to the case about intellectual property, any

information regarding this topic which might compromise a consumer or provider’s IP, will also

not be re�ected in the contract).

De�nition 5.28 (Pragmatic interoperability metric) The pragmatic interoperability metric

quanti�es the reactions of IoT systems to exchanged transactions and the customer requirements for

the digital service. It is measured as the pragmatic interoperability gap IOPGP , i.e. the di�erence

between the current state of interoperability IOPS and the desired state by the customer of the

digital service IOPD : IOPGP = IOPD − IOPS .

Although this metric alleviates the a-priori - a-posteriori dilemma, the quanti�cation problem

is still not solved since it is still open, how to quantify the current state of interoperability and the

desired state to calculate IOPG . For this we require, what is referred to as a pragmatic process.

De�nition 5.29 (Pragmatic process) A pragmatic process is the function prag of an IoT sys-

tem which receives a semantically embedded message � and a customer (environment) context 

and produces a reaction pr(� ,) that changes the state of the environment S.

The pragmatic process is considered a black-box, i.e the functionality is hidden however its

externalities can be quanti�ed. A suitable metric to do this can be developed using functional and

non-functional IoT service aspects . For example, a maximum message delay might be speci�ed

as part of the negotiated interoperability contract in step  and measured during execution.

A pragmatic interoperability mismatch then occurs if the negotiated and actual message delay

deviate. Another example could be the desire of a customer of a smart home digital service to

provide a functionality to dim the lights. A pragmatic interoperability mismatch would occur, if

the consuming system of such a service (e.g. a smartphone interface) would issue a request to

5.6. QUANTIFICATION OF THE INTEROPERABILITY STATE 127

dim the lights inside the living room, while the service actually turns on the lights in the bedroom.

Obviously, the metrics that can be de�ned here tend to be quite use case speci�c, making it di�cult

to build a general purpose solution. Thus any use case speci�cs are abstracted as the current and

desired state IOPD and IOPG quanti�ed as:

• e�ciency: how e�cient the state change was, where e�ciency is measured as a customer

de�ned function of the current and previous state

• accuracy: how accurate the resulting state resembles the desired state

• availability: The availability of the provider(s)

• execution time: The time it takes to reach the desired environment change

• cost: The cost for changing the environment state

One can distinguish these properties into three groups, similar to those de�ned by [Che09]: (i)

cost, (ii) delay and (iii) quality

Analogous to the rede�nition of semantic interoperability, pragmatic interoperability in the

context of the pragmatic interoperability optimization criteria can be de�ned as follows:

De�nition 5.30 (Pragmatic interoperability optimization criterion) The pragmatic in-

teroperability optimization criterion maximizes the pragmatic interoperability metric between two

IoT systems.

De�nition 5.31 (Pragmatic interoperability) Two IoT systems ℂ and ℙ are pragmatic inter-

operable if their pragmatic processes maximize the pragmatic interoperability criterion.

We can now de�ne the combined reward measure for semantic and pragmatic interoperability.

De�nition 5.32 (Reward measure) Consider a transaction Λ between two IoT systems ℂ and

ℙ and a current state of interoperation S. The transaction leads to a particular state change of

interoperation St+1 which is the outcome of the semantic & pragmatic processes of both IoT sys-

tems sem,prag . The outcome of the processes produce the the interoperability gap IOPG =

(IOPGS , IOPGP) which is used as the reward measure for the I-IOP agents.

5.7. RELATED WORK 128

5.7 Related work

Based on the runtime interoperability requirements and the previous model for runtime interop-

erability from the previous section, we can now compare di�erent software based interoperability

solutions (see chapter 3) with respect to their capability to satisfy the runtime interoperability

requirements and �t to the model of runtime interoperability. The following table lists the most

relevant approaches in this respect one per row, with one column per requirement. A + sign means,

that this approach supports a speci�c requirement, while − means, that it does not. A ? refers to

unknown information about the requirement support.

Requirement/Approach CONNECT[GIB12] HYDRA[ERA10] MUSIC[RBD09] CHOReOS[BHKL13] UBIWARE[NKK+09]

Measurability - ? ? ? ?

Discoverability + + + + +

Service orientation + + + + -

Semantic mechanisms + + + + +

Pragmatic mechanisms + - + - -

Adaptivity - - + + +

Learning behaviour - - - - -

Autonomy - ? - - +

Interoperability reasoning + - + - +

Table 5.1: Mapping of runtime interoperability requirements to existing interoperability solutions
in the IoT space.

A sophisticated approach toward interoperability between web services was developed in the

CONNECT project [GIB12]. They propose an emergent middleware approach that facilitates dy-

namic interoperability by forming an interoperability layer to connect two systems at runtime.

Compared to static middleware solutions, the project addresses the problem of spontaneous inter-

actions as a characteristic for future distributed systems (such as the IoT), when systems do not

adhere to the same standards[VF13]. They create a solution for message interoperability, i.e. the

ability to interpret messages and behavioral interoperability, i.e. the ability to mediate interaction

protocols at runtime[SBC+15]. Dynamic approaches such as proposed in the CONNECT project,

provide maximal �exibility, however they are resource intensive and not suited for real time appli-

cations. Although there are currently adaptive middleware approaches, the adaptation logic is still

speci�ed at design time and not context-aware [RMjP15]. Service discovery and composition, in-

herent to the proposed middleware based approaches for IoT, need to be autonomous dynamically

5.7. RELATED WORK 129

adaptable [RMjP15]. If we compare this outcome with the interoperability requirements proposed

by [Gué14], we conclude that there are still solutions missing in order to properly deal with the na-

ture of ultra-large scale systems such as the IoT. If a system must adapt its operation due to changes

in service dependencies, an adaptive middleware solution that is build on prede�ned policies and

rules will only work, as long as the potential changes can be anticipated at design-time. In order

to address runtime interoperability, these changes must also work for system changes that were

not anticipated. This requires to place more intelligence on the system’s side, so that the system

itself can decide about necessary changes at runtime. [GIB12] do not de�ne an interoperability

metric which can be used autonomously by systems at runtime in order to asses the current level

of interoperability. Furthermore, the approach does not feature a feedback mechanism thus the

adaptability to changes at runtime remains questionable and not answered. Thus, autonomous

system behaviour cannot be fully expected .

The other approaches mostly con�rm, that semantics and service orientation have been the pre-

dominant approach to interoperability in the IoT, with all approaches supporting discoverabil-

ity, service orientation and some kind of semantic mechanism and ontologies. Also adaptivity is

addressed by most of the approaches in some way, although this usually restricts to �xed rule-

base policies. The UBIWARE approach focuses on a multi-agent based approach that addresses

autonomy and proactiveness. But interoperability between di�erent discovery protocols is not

yet supported [RMjP15]. The MUSIC approach presents another sophisticated IoT middleware

that consists of a self-adaptive architecture and a context manager. However, it does not sup-

port system autonomy, since the MUSIC platform handles all interoperability functionality, acting

as a centralized system. Also, learning is not supported in this approach as well as no informa-

tion about a measurability metric for interoperability is given. HYDRA follows a service-oriented

model and also supports dynamic recon�guration, self-con�guration and semantic interoperabil-

ity [RMjP15]. CHOReOS addresses the semantic and synactic interoperability levels and allows

large scale IoT service choreographies [RMjP15] but fails to support higher-level, dynamic inter-

operability requirements and real-time support [RMjP15]. Overall, we observe an absence from

all (or most) current approaches to address the measurability, autonomy(except UBIWARE) and

learning behaviour requirements for runtime interoperability.

5.8. SUMMARY 130

5.8 Summary

This chapter introduced a novel conceptualization of interoperability inside the framework of IoT

cross-platform ecosystems - referred to as runtime interoperability. First of all, the necessity to

consider interoperability as a runtime problem compared to usual design-time approaches, which

are not automatically adaptable at runtime, was introduced. Derived from this, requirements were

gathered for the design of IoT systems in order to provide runtime interoperability. A theoreti-

cal model of runtime interoperability and especially the transaction optimization process, based

on the theory of multi-agent decision problems, was then de�ned before re�ecting on the related

work were we observed that there is currently no solution which covers all runtime interoper-

ability requirements. The next chapter will therefore propose a concrete architectural model and

implementation of the runtime interoperability model to close this gap.

Chapter 6

An architectural approach to solve

runtime interoperability

6.1 Aim

The previous chapter presented a theoretic introduction to the runtime interoperability problem

in IoT ecosystems and introduced an IoT system model to solve the runtime interoperability prob-

lem (see �gure 5-1). Furthermore a number of requirements for the design of IoT systems have

been derived to make them per de�nition "runtime interoperable". Until now it is still unclear, how

such an IoT system model can be put into practice. This aligns with the next research question of

this thesis, i.e. how IoT systems need to be designed in order to implement the runtime model of

interoperability.

In this section, a concrete architecture is presented that will implement the requirements for run-

time interoperability in IoT ecosystems, speci�cally for the two I-IOP agent components (interop-

erability module and AC module). The architecture description is split into two parts:

First an explanation of di�erent models to implement the interoperability module is given

(section 6.2). It is explained, how a centralized implementation di�ers from a decentralized one

and provide technical building blocks for realizing these implementations. This is important to

understand the practical implications for the I-IOP agent since each architecture brings its own

bene�ts and issues. Next, an introduction to the architecture for the AC-module is given in section

6.3 which builds on the methods from the Organic Computing domain. It integrates a controlling

131

6.2. INTEROPERABILITY MODULE IMPLEMENTATION 132

mechanism enabling I-IOP agents to gradually adapt and improve interoperability between IoT

systems by solving the transaction optimization problem. The integration of both the interoper-

ability module and the AC-module into the IoT architecture is then presented in the �nal section.

6.2 Interoperability module implementation

As a reminder, the task of implementing an interoperability lifecycle functionality inside the in-

teroperability module  = (, ,) is composed of sub-functionalities  ,  and  as

depicted in section 5.4.2. Di�erent options ranging from a completely centralized to a completely

decentralized implementation can be considered, which was already brie�y introduced in section

4.3.6. This section explains how these theoretic concepts are actually implemented.

Centralized implementation The simplest model for implementing the interoperability life-

cycle is through a centralized implementation, also referred to as a broker architecture in literature

[MMP19]. Figure 6-1 presents an abstract �ow diagram including the interoperability lifecycle re-

lated responsibilities.

DSC DSP

INSP

matchmaking

negotiation

transaction

Figure 6-1: Centralized implementation of the interoperability lifecycle functionality.

In a centralized implementation, all interoperability related functionality is enforced by the

Infrastructure provider (INSP) system which acts a centralized mediator. Similar to this architec-

ture, in [BPGG11] the class of transparent interoperability solutions is described, where "protocol

speci�c messages, behaviour and data are captured by the interoperability framework and then trans-

lated to an intermediary representation". Examples for this kind of implementation are the smart

6.2. INTEROPERABILITY MODULE IMPLEMENTATION 133

production and smart agriculture use cases which both feature a dedicated infrastructure service

provider component acting as a centralized coordinator.

DSC DSP

INSP

matchmaking

negotiation
transaction

Figure 6-2: Semi-decentralized implementation of the interoperability lifecycle functionality.

Semi-decentralized implementation In a semi-decentralized implementation (�gure 6-2),

the INSP system still acts as a central hub for the matchmaking process, however the negotiation

and transaction functionalities are distributed towards the DSC and DSP systems. Distribution

here means, that the functionality for negotiation and transaction processing needs to be imple-

mented by the DSC and DSP systems in an interoperable way. For example, in the smart pro-

duction use case this could mean that negotiation on an interoperability contract between the

factory management system and a production machine is not assisted by the INSP but needs to

be performed by the I-IOP agents operating on the respective platforms. From an interaction �ow

perspective, after a matchmaking between DSC and DSP systems has occurred, any further in-

formation exchange is done peer-to-peer between them. The INSP system may however still be

involved through periodically submission of transaction related data from the other systems or for

dispute settlement.

Decentralized implementation The decentralized implementation di�ers from the semi-decentralized

one by completely removing the INSP system in the interaction, i.e. the INSP system’s responsibil-

ities are distributed onto the DSC and DSP. That means, the logical central point of matchmaking,

which is still left in the semi-decentralized version is decentralized to the DSC and DSP systems as

well. Figure 6-3 presents the described architecture in an abstract way. In this implementation of

an interoperability lifecycle, there is no concrete instantiation of an INSP system anymore. This

6.2. INTEROPERABILITY MODULE IMPLEMENTATION 134

style of implementation suits itself particularly well to open environments with lots of changes of

interoperating systems such as in the environmental-aware routing use case. Here, a decentralized

implementation could well lead to easier market access for the smart city oriented IoT systems and

o�er better scalability and resilience.

DSC DSP

INSP

matchmaking

negotiation

transaction

Figure 6-3: Decentralized implementation of the interoperability lifecycle functionality.

6.2.1 Matchmaking functionality implementation

The matchmaking functionality is de�ned in an abstract fashion in de�nition 5.13. To implement

the matchmaking functionality - information regarding available digital service demand and sup-

ply needs to be available in the IoT ecosystem. Based on the underlying lifecycle implementation

this is achieved in di�erent ways. The beginning of this process always needs to involve technol-

ogy for IoT systems to engage with each other. [MMP19] provide an extensive overview over state

of the art service discovery solutions in the IoT space which revealed that few approaches actually

use semantic technologies for discovery and most approaches feature a centralized directory based

architecture.

In the centralized and semi-decentralized model, matchmaking (as all the other functions) is per-

formed by the INSP agent, utilizing a central repository which features the candidates for inter-

operation. The agent has knowledge both about the supply and the demand for a digital service

and implements a matchmaking algorithm to match DSC and DSP agents. To initiate the match-

making, the DSC agent sends a demand request for a digital service to the INSP agent, while the

DSP agent sends o�er proposals. From an interoperability perspective, the DSC agent needs to be

aware of the INSP agent location inside the network, and its required syntax and semantic struc-

ture for demand requests. The same applies for the DSP agent. The demand request itself usually

6.2. INTEROPERABILITY MODULE IMPLEMENTATION 135

contains information about the required type of service, required level of service or detailed pa-

rameter settings. More details and examples for demand and supply will follow in a later section

in the context of the BIG IoT architecture. After receiving o�ers from DSP agents, they are stored

in a database by the INSP agent and the DSP agent is noti�ed as soon as a matching DSC agent is

found. Ontologies can be stored centrally by the INSP agent to be used in the matching process,

presuming that demand and o�er requests are semantically annotated. In this case, sophisticated

semantic distance measures can be calculated to determined the matching overlap.

In the decentralized model, the matchmaking phase is more challenging to achieve since there

is no central entity storing information for all IoT agents to retrieve. Thus, new IoT agents entering

the ecosystem need to be broadcast their arrival to all the other IoT agents in the ecosystem which

then need to possess a mechanism to store and update information about the ecosystem popula-

tion. Such approaches can be found in distributed database approaches, such as distributed ledger

technologies [TV07]. In a decentralized setting, the matchmaking protocol needs to be imple-

mented jointly by all the members in the ecosystem and there needs to be a consensus mechanism

on correct execution. This of course implies, that the IoT agents which enter the ecosystem pos-

sess this kind of knowledge and capabilities. Examples for these implementations can be found

for instance in the Universal Plug and Play standard (UPnP)[MMP19]. In this model, DSC agents

broadcast their service requests to all participants of the network who then respond with service

descriptions. However, as explained by [MMP19], this architecture needs to deal with problems

of excessive bandwidth and energy usage (thus especially di�cult to implement with regards to

constrained IoT platforms). Regarding the implementation of the actual matchmaking algorithm,

an exhaustive explanation of these solutions is outside the scope of this thesis, but there is exten-

sive literature on the topic of matchmaking protocols from the economic and Multi-agent systems

(MAS) literature [Vei03]. Matchmaking algorithms range from simple crawling of service cata-

logs, where service providers can register their service and a crawler regularly searches for �tting

request-o�er patterns to match consumers with providers of services to auction based matchmak-

ing where an optimal resource allocation is performed from an economic perspective [Vei03].

6.2.2 Negotiation functionality implementation

The negotiation functionality implementation realizes the formal negotiation functionality blueprint

from de�nition 5.14. Negotiation is an act between IoT systems, but in a centralized setting, a spe-

cialized IoT system can perform negotiation activities on their behalf. As described in [MMP19], as

6.2. INTEROPERABILITY MODULE IMPLEMENTATION 136

DSC DSP

specification

call-for-proposal (cfp)

contract offer

negotiation protocol

reject

contract acceptance/rejection

proposal

matching with
verification

INSP

contract offeralt

Figure 6-4: Example of a negotiation protocol for implementing the negotiation module of the
interoperability lifecycle functionality.

with the example of the Cloud Sensing Brokering Platform, a centralized broker platform is used

to perform negotiation and monitoring activities. In interoperability related terms, the mediator

can abstract the underlying negotiation protocol details and thus also mediate between di�erent

protocols. There exist a wide range of negotiation protocols in literature, with the WS-agreement

protocol being the standard in webservice oriented systems [MMP19]. The objective of the WS-

Agreement speci�cation is to de�ne a language and a protocol for advertising the capabilities of

service providers and creating agreements based on templates, and for monitoring agreement com-

pliance at runtime 1. Another common negotiation protocol from the agent domain is the usage of

auctions, for example a Dutch auction [MMP19], or negotiation protocols from the FIPA speci�-

cation2 such as the contract net protocol. In this protocol an agent proposes a contract to another

agent who then is allowed to either o�er a counter-proposal or accept the o�er. On acceptance,

the contract is transferred into a settlement phase.

An adaptation of the WS-agreement protocol for a central broker can be seen in �gure 6-4. The

advantage of the WS-agreement protocol is, that it is closely aligned with service oriented systems

such as the IoT digital service ecosystem. However it is also more complex to implement, and not

as lightweight as the FIPA based protocols.

To implement this protocol, in a centralized ecosystem, the interoperability module’s negotia-

tion module needs to be implemented for the client and the mediator side. On the mediator side the

module implements the veri�cation matching process. On the client side the communication with
1http://wsag4j.sourceforge.net/site/wsag/overview.html
2http://www.�pa.org/repository/aclspecs.html, accessed: 27.12.2019

6.2. INTEROPERABILITY MODULE IMPLEMENTATION 137

the INSP agent is implemented, i.e. sending the speci�cation, proposals and acceptance/rejection

messages. Note that the communication can be realized through standardized communication lan-

guages which assures interoperability on the negotiation protocol level. In the semi-decentralized

and centralized versions,since the negotiation functionality is decentralized to the individual IoT

agents, the necessary protocols need to reside on the client side. The agents know each others

endpoints through the previous matchmaking phase. In a semi-decentralized implementation, the

result of negotiation is still stored centrally in the infrastructure as trust base.

6.2.3 Transaction functionality implementation

The transaction functionality (de�nition 5.16) is the most challenging phase to implement as the

coordination activities within this phase are maximal complex and inoperable. There are di�erent

interaction patterns that de�ne speci�c rules to coordinate the behaviours of components. Specif-

ically due to the large non-uniformity of the IoT sector, there are usually a number of interaction

patterns supported by one platform [IoT16] which makes the interoperability problem more di�-

cult in practice.

The implementation of the transaction functionality realizes the transaction �ow as outline in

�gure 4-4.

In the centralized implementation, the transaction functionality is supported by the broker

which makes the problem easier from a DSC/DSP developer perspective, since he can support the

semantic interoperability through ontology matching or semantic translations. Pragmatic pro-

cessing of messages still resides on the DSC and DSP agent side, however also here the broker

can assist, e.g. by acting as a proxy for delay critical activities. Messages are sent to the INSP

agent through HTTP or other IoT suited protocols, such as MQTT or COAP [RMjP15]. From an

implementation side, this is the easiest approach to provide an interoperable transaction phase

since, e�ectively, all interoperability problems with regards to the transaction phase are o�oaded

to a third party INSP provider. On the �ipside, this means that since all messages need to be

routed through the INSP agent this raises scalability and privacy concerns. Also, if not assisted by

proper parallelization, a failure of the INSP agent will cause the complete functionality to break.

In the semi-decentralized & decentralized setting, the di�erence with regards to the previous im-

plementation is the decentralization of the the transaction functionality  , i.e. the semantic and

pragmatic processes are handled completely on the DSC and DSC side. This means, IoT agents are

responsible for proper reaction to messages, i.e. semantic translation/interpretation as well as the

6.2. INTEROPERABILITY MODULE IMPLEMENTATION 138

Centralized Semi-decentralized Decentralized
Advantages Easy to implement;

Only one agent neces-
sary for controlling

Better scalability; Cen-
tral repository for on-
tologies

Transparency; No cen-
tral point of failure any-
more

Disadvantages Scalability; All data vis-
ible to central broker;
Lock-in e�ect; Restricts
autonomy of IoT agents;
Central point of failure

Still one party central-
ized

Security & Privacy - in
a DLT based implemen-
tation, all information is
public; Scalability - all
nodes must process all
computations

Table 6.1: Advantages and disadvantages of centralized, semi-decentralized and decentralized in-
teroperability lifecycle implementations.

already implemented pragmatic processes. With regards to the transaction optimization problem,

in the centralized implementation, only one AC-module is necessary for adapting the interoper-

ability process whilst in the semi-decentralized and decentralized cases, there is one AC-module

per DSC and DSP agent needed.

6.2.4 Advantages & Disadvantages of a centralized implementation

According to the de�nition of an IoT ecosystem, it is inherently a decentralized systems. A cen-

tralized functionality, although easier to implement, in the long run restricts the desired autonomy

in IoT ecosystems. The advantages of decentralized solutions are their respect of autonomy, dy-

namics and lack of centralized components which might fail and thus impede interoperability.

However, in terms of implementation e�ort it is also the most demanding case since it needs to be

made sure, that all agents adhere to the protocol. Table 6.1 compares the three main approaches

to interoperability lifecycle implementation as to their advantages and disadvantages. Based on

that analysis, it seems that the semi-decentralized implementations presents a sweet-spot at the

time of writing until technology advances in decentralized technologies have solved the scalability

problem.

6.3. AC MODULE IMPLEMENTATION 139

6.3 AC module implementation

The nature of the runtime interoperability problem requires an appropriate software architecture

to deal with the transaction optimization problem (as previously de�ned in de�nition 5.23). This

calls for an architecture that can, on the one hand, deal with as little pre-de�ned knowledge as

possible and on the other hand is able to acquire new knowledge constantly at runtime and use this

knowledge to adapt the transaction process. This section introduces the AC-module speci�cation

of the I-IOP agent.

6.3.1 Background on Organic Computing

As described in chapter 5, IoT ecosystems can be analyzed and constructed from a DSE perspec-

tive which already hints to their nature of being self-organizing systems [LBB12]. Self-organizing

systems are naturally decentralized systems, where any knowledge available is distributed across

the participating agents [KK17]. Research areas with a particular focus on the development of sys-

tem architectures for self-organizing systems are Organic computing, respectively Autonomic

computing [KK17]. Hence these areas seem to be ideal candidates to consider for IoT agent de-

sign and thus will be described brie�y in the next paragraph for further background before going

into the details of the architecture proposed in this thesis.

Organic computing architectures "An Organic computing system is a technical system which

adapts dynamically to the current conditions of its environment" [Tom15]. Organic computing an-

alyzes models and architectures for the design of systems which support these properties. It is

closely linked to the topic of autonomic computing and feedback control systems. It emphasizes

that complex systems need to have self-control and self-adaptation abilities while keeping humans

in the loop for monitoring and control. The topic originally emerged from a strong industry focus

since in this context the complexity of systems becomes easily untraceable due to the various parts

that need to function together. Organic computing essentially is di�erent from earlier feedback-

control systems as it focuses also on the agent’s ability to "adapt its own goals, plans, resources and

behaviors to meet new contexts and requirements" [KK17]. One of the most important artifacts from

the Organic Computing domain is the Observer Controller Architecture (OCA) which is depicted

in �gure 6-5, showing essentially a reference architecture for an Organic computing system.

Although there are already a variety of Organic computing architectures developed for dif-

ferent SoS-relevant domains, applying this concept to interoperability related research has not

6.3. AC MODULE IMPLEMENTATION 140

Environment

State transition τ(σt,αt) = σt+1

ObserverController
Report
σt+1,r

p
erfo

rm
α

 t+
1

o
b

serve
σ

 t+
1

Figure 6-5: The Observer-controller reference architecture de�ned in [Ste17], consisting of an ob-
server component receiving state information from the environment and a controller that performs
actions to change the state of the environment.

yet been explored. Closest to this context comes the concept of self-integrating systems [BTW15]

which describes a process in which systems or subsystems are included into an overall system

and this inclusion status is continuously maintained. [TRBW16] present an approach for self-

improving system integration at runtime which also features a distributed middleware with func-

tionalities for communication, neighbour discovery and capability description of ecosystem mem-

bers. The approach presented in this thesis is similar in this respect, since also for the matchmaking

phase, service descriptions are required by the service providers. However, here the focus is on

interoperability, speci�cally semantic and pragmatic interoperability, between the ecosystem en-

tities which could be considered an extension of the capabilities of the communication platform

as described in [TRBW16]. This means, in the context of self-integration this thesis speci�cally

focus on the complete lifecycle of interoperability which entails not only neighbor discovery but

also contract negotiation and transaction monitoring.

Organic computing systems are characterized by being built out of systems with properties

such as "self-organizing", "self-con�guring", "self-healing", "self-protecting", "self-explaining", and

"context-aware" [KK17]. These properties are usually subsumed by the concepts of "self-awareness"

and "self-adaptivity" which will be explained in the following.

Self-aware & self-adaptive systems Self-aware system research is inspired from psychology

and cognitive science [LCP+11]. It concerns the proactive collection and representation of knowl-

6.3. AC MODULE IMPLEMENTATION 141

edge about a system, by that system, in order to perform intelligent reasoning on this knowledge

[LCP+11]. Self-aware systems can address the issues that will govern the future deployments of IoT

systems, that are: faulty and unreliable components, increasing levels of dynamics of distributed

systems, the position, functionality and availability of resources during runtime and diverging

requirements of future application domains [LPR+16]. For the interested reader, a thorough intro-

duction into self-aware systems is given in [KK17], however it is beyond the scope of this section

to go into that amount of detail.

De�nition 1 (De�nition of self-aware computing systems by [KK17]) Self-aware computing

systems are computing systems that:

1. learn models capturing knowledge about themselves and their environment (such as their struc-

ture, design, state, possible actions, and runtime behavior) on an ongoing basis and

2. reason using the models (e.g., predict, analyze, consider, and plan) enabling them to act based

on their knowledge and reasoning (e.g., explore, explain, report, suggest, self-adapt, or impact

their environment) in accordance with higher-level goals,which may also be subject to change.

[KK17]

According to [KK17], there are �ve design properties that should be considered when engi-

neering self-aware systems. They are:

• introspective, i.e. they can observe and optimise their own behaviour (SADP-1)

• adaptive, i.e. they can adapt to changing needs of applications running on them (SADP-2)

• self-healing, i.e. they can take corrective action if faults appear whilst monitoring resources

(SADP-3)

• goal oriented, i.e. they attempt to meet user application goals, and (SADP-4)

• approximate, i.e. they can automatically choose the level of precision needed for a task to

be accomplished (SADP-5)

A reference architecture for self-aware systems is presented in [LPR+16] which contains the

following components: internal & external sensors and actuators, self-awareness component and a

self-expression component. This high-level architecture can be connected to the general Observer-

controller architecture (�gure 6-5). Research on self-aware systems has many intersection with

6.3. AC MODULE IMPLEMENTATION 142

other disciplines such as Arti�cial intelligence, Service-based systems, Models@runtime or context-

awareness [KK17]. Self-aware systems put emphasis on online learning algorithms that are used in

order to gather the right information about the systems internal and external environment’s state

at runtime. It should be emphasized though that it is not required that all self-aware systems use

the same learning strategies, rather the opposite: Heterogeneous strategies can lead to increased

performance in heterogeneous environments [LPR+16] . Self-aware system research further as-

sumes, that the self-aware behaviour is not externally �tted to the system but instead it is built

into the system, i.e. are internally considered during the design of the system [LPR+16].

Self-awareness is furthermore closely linked to self-adaptivity. Self-adaptivity builds on the prop-

erties of self-awareness and context-awareness, with speci�c self-adaptivity concepts such as "self-

con�gurability", "self-optimization", "self-healing" and "self-protection" in between [KMV+15]. In

other words, for self-adaptive behavior, basic system properties of self-awareness and context-

awareness are necessary, such as the ability of a system to monitor its resources, state and be-

haviour. Thus, one can view self-awareness as a prerequisite to form adaptive behavior. "A self-

adaptive system is able to automatically modify itself in response to changes in its operating envi-

ronment" [KMV+15]. Modi�cations in this case refer to changes in parameter settings or internal

structure or other artifacts of the system [KMV+15]. A self-adaptive system consists of a managed

resource and the adaptation logic. An example for the adaptation logic would be the MAPE-cycle

from Autonomic Computing [LPR+16]. Adaptation is seen as the process through which a system

"becomes better suited to its environment given its purpose [...]"[LPR+16]. A self-adaptive system

distinguishes itself from any other system by its ability to adjust its behavior based on response

to its perception of the environment and the underlying system state itself [KK17].

Self-awareness is considered as an important basis for IoT agents in order to be aware of their

surroundings in the ecosystem and also its own goals and purpose. This serves as a prerequisite

for autonomy and interoperability reasoning, two of the runtime interoperability requirements

de�ned in section 5.3. Still, self-awareness alone is not enough. IoT agents also require the ability to

take actions based on the learned knowledge from the environment. It is here that self-adaptiveness

comes into play. Building self-adaptive systems for IoT ecosystems is especially challenging since

it constitutes a SoS and the inherent uncertainty of SoS is still an active research area with regards

to self-adaptation due to the additional complexity of decentralization [WA13]. For example, in

[WA13] three di�erent styles for the design of a self-adaptive SoS are presented however a general

6.3. AC MODULE IMPLEMENTATION 143

guideline for the design inside IoT-ecosystems cannot be derived that easily. Thus within the I-IOP

agent model, this open problem is addressed by considering the composition of IoT ecosystems as

systems-of-systems, i.e. the IoT systems can self-adapt inside the boundaries of the interoperability

lifecycle and towards the transaction optimization criteria. By integrating the I-IOP agents in the

interoperability lifecycle implementations, this allows to consider di�erent deployments of self-

adaptation logic which is described by [KMV+15] as centralized, decentralized or hybrid adaptation

logic and thus extending the research by [WA13] and others.

6.3.2 Runtime interoperability and self-adaptive IoT systems

Referring back to the introduction and challenges of runtime interoperability in section 5.2, the

question if self-aware or self-adaptive systems are able to help in this respect and in what way

needs to be addressed? Since the development of digital service ecosystems is (due to the desired

properties of the ecosystem) deeply entangled with Autonomic computing (and thus also Organic

computing) research, [AO16] have provided a recent overview of autonomic computing methods

in digital service ecosystem design. The main outcomes of the analysis are:

• Re�exivity as a technique to support evolution of the ecosystem is completely missing from

current interoperability research

• Service and pragmatic interoperability has not yet been considered by AC methods in digital

service ecosystems

In an abstract fashion, a couple of key issues are needed to be overcome during the design of

an AC module for runtime interoperability: (i) the problem of de�ning a controlling element, (ii)

the problem of what to observe and how to measure it and (iii) the integration with existing IoT

systems and deployment.

The problem of de�ning a controlling element The controller is the crucial element of the

AC module since it in�uences the interoperability module and thus the interoperability state with

other IoT systems. An essential element for the runtime interoperability performance is thus a

proper design of the optimization target, or reward function. This is a well-known problem in

Reinforcement Learning research, with a dedicated discipline called Reward engineering. During

the speci�cation of the initial AC module architecture, the following concerns have been identi�ed

that need to be addressed by an IoT developer when designing the optimization target:

6.3. AC MODULE IMPLEMENTATION 144

• Guidance: The IoT developer/designer needs to be given proper guidance in designing the

policy function. It cannot be assumed that an IoT developer is familiar with machine learning

concepts, thus a design framework needs to elaborate and ease the design process.

• Completeness: The reward needs to be designed over all key outcomes that the I-IOP agent

will experience. This requires a well-thought through reward function, although, even in the

case that certain situations do not have an attributed reward, the agent can still be re-trained

online.

• Unambiguance: The same reward should not be received for di�erent actions.

• Tradeo� between domain-speci�c and domain-agnostic rewards: There is always a

tradeo� with the design of the reward function between de�ning rewards to optimize a

domain problem compared to designing rewards which are oriented towards solving the

greater, interoperability problem

The problem of observability and measurability For an I-IOP agent to reach awareness of

its surrounding environment, the speci�cation of what to monitor is all important. Through the

resulting self-awareness the agent is able to reason about the IoT system’s state which is necessary

as per the interoperability reasoning requirement. In practical terms: When an IoT system is in-

teracting with multiple IoT services and devices, the agent is able to observe the current behavior

of these components and if they a�ect its goal pursuit. This refers to its internal self-awareness.

For example, in the smart agriculture use case the farm information system relies on information

from multiple machines to accurately monitor the state of the farm. Since its goal is to accurately

report this state to the farm operator, it is important to constantly be able to measure the state of

interoperation with these systems. In case of problems it needs to be aware of its goal state and be

able to perform corrective actions. As [NGC09] have pointed out, it is important for a system, if

it wants to increase its interoperability with others, to be adaptive. According to the explanation

provided by [Ack71], what it means for systems to be adaptive, it is evident that in order to trigger

the adaptation inside the system it is important to identify, what led to the adaptation require-

ment. In self-aware systems, this knowledge is obtained by the self-aware components through

the interoperability metrics that extract the relevant information from the raw state information.

This requires them to be properly con�gured since this guides the adaptation process. Any mis-

interpretation will lead to unwanted results. Again, coming back to the smart agriculture use case,

6.3. AC MODULE IMPLEMENTATION 145

the interoperability metrics might measure that the response time of one of the connected ma-

chines is below the required level, leading to increased latency and reduced interoperability. The

farm information system uses this metric based measurement at runtime to react appropriately,

e.g. by reducing the amount of requests on the machine platform or by alerting the human oper-

ator in case no automated approaches succeed.

To conclude this section, there are signi�cant overlaps between the introduction of Organic

computing systems and the desired system characteristics discussed in the previous section that are

important for runtime interoperability. Thus, in the following an architecture for the AC-module

based on self-aware and self-adaptive concepts is presented.

6.3.3 Architecture of the AC module

The purpose of the AC module is to adapt the interoperability module of the I-IOP agent at run-

time to optimize the runtime interoperability between IoT systems. An abstract formalization of

the AC module was already provided in the previous chapter in de�nition 5.11. The following ar-

chitecture puts this formal AC module into practice, based on an Observer Controller Architecture

(OCA) architecture . Observer Controller Architecture (OCA) architectures bring the advantage

that they especially focuses on self-adaptivity in the context of large-scale interconnected systems

which naturally �ts the characteristics of IoT ecosystems, as detailed before. Also, OCA - architec-

tures deal with emergence which naturally occurs in these complex systems since collaborations

between IoT systems form and can lead to unexpected or undesired e�ects.

The AC-module monitors and controls the transaction phase of the interoperability lifecycle.

The architecture is divided into two parts: the observer and controller parts. In �gure 6-6, these

parts are marked in blue and red respectively. In the general, the observer is responsible for moni-

toring the current state of the interoperation with respect to the interoperability contract, through

situation descriptions which are extracted from the observed environment features alongside met-

rics which help to evaluate the observed situation[TPB+11], i.e. the current operational context.

The actual design of the AC-module of an I-IOP agent is based on the generic Observer/Controller

architecture (6-5) to extend IoT agents with self-aware and self-adaptive capabilities [KH19]. It is

discriminated between the IoT ecosystem, which consists of the IoT systems exchanging transac-

tions through the interoperability module of the I-IOP agent, consuming & providing digital ser-

6.3. AC MODULE IMPLEMENTATION 146

vices tied to an interoperability contract and the AC module which implements the self-awareness

and self-adaptivity functionality, to optimize the transaction module. The customer and develop-

ers provide interoperability constraints which are used by the negotiation functionality (FN) of the

interoperability module to negotiate the interoperability contract and for the interoperability met-

ric to evaluate the state of interoperability. This achieves the self-aware design property SADP-4.

Monitor External sensors provide information for the monitor about the current state of the in-

teroperation which originates from the data of the transactions. In this context the word "sensors"

does not refer to IoT sensors but instead to virtual sensors which are able to connect to the inter-

operability module. The sensor can be seen as an interoperability related interface. The sensors

monitor important features consisting of semantic and pragmatic information through an interface

with the interoperability module. For example, they assess values regarding semantic embeddings

of the last transactions alongside features of the pragmatic processes, such as e�ciency, cost and

transaction accuracy. The information is monitored by the observer component, either through

an active information push from the interoperability module or through a pull-based mechanism

which is initiated in regular intervals, for example every second. The exact method for obser-

vation and resolution is use case dependent and needs to be made con�gurable to suit di�erent

IoT deployments. Depending on the sophistication of the agent, more runtime-related features

can be analyzed as well, for example information processing delays or use case dependent fea-

tures. The interface for information exchange between the interoperability module and the AC

module can be realized as a simple REST-based interface, since the semantics of the communica-

tion are relatively compact and well de�ned. However this detail is implementation dependent.

The output of the monitor component is a �xed-size vector � which contains the state observation.

In the case of missing information from the sensor-based observations, the monitor further-

more receives data from the state estimator (SE) and the communication module (as detailed in

the next paragraph). The state estimator uses the state history to estimate missing features from

the direct observations which is constantly updated with new observations. For the estimation the

mean over all historic values for each respective feature is calculated which makes the estimation

more accurate the more experience the agent receives. Relevant information for measurability is

extracted through the features extraction performed in the monitoring component. The feature

6.3. AC MODULE IMPLEMENTATION 147

IoT ecosystem

AC module

Interoperability
state

analyzer

interoperability contract

Interoperability
metric

I-IOP agent

SUOC

monitor

SE

ß sI

acom

com

utility

consumer

observer

interpretation

provider

c-module

obs
controller

policy

LM

(as,ap)

history

interoperability
module

interoperability
module

AC
module

SUOC

Figure 6-6: Architecture of the AC module of an I-IOP agent. The architecture is based on the
generic observer-controller architecture and monitors / adapts the interoperability between IoT
systems inside the IoT ecosystem.

6.3. AC MODULE IMPLEMENTATION 148

set is designed so that the semantic and pragmatic interoperability metrics can be analyzed opti-

mally and automatically. These two processes allow the agents to accurately measure the state of

interoperability on a quanti�able basis (as opposed to the usual qualitative basis).

The monitoring component is needed to meet the SADP-1 property, i.e. to observe and optimize

the behavior of the IoT agent. The actual reasoning about the interoperability state, no matter how

this information was gathered, is accomplished through the monitoring component which regu-

larly acquires information about the state of interoperability from the System under observation

and control (SUOC)s and the interoperability metric for processing this information.

Communication module (c-module) In a decentralized setting, the monitoring component

of the agent will not receive all information required for feature extraction, since there is no cen-

tral instance through which all interoperability state related information is routed. Therefore, the

communication module is used for inter-agent communication of interoperability state related

features. In other words, the communication module is utilized for communication about the

interoperation between the I-IOP agents. That means, it is used both for sending and receiving

state information therefore appending an additional communication layer on top of the transac-

tion communication layer. This requires then to also consider semantics and pragmatics on the

agent communication level. However, in this case, as opposed to the general IoT ecosystem con-

text, the pragmatics are �xed, since the purpose of the communication is de�ned a-priori. Also the

semantics are simpler and can be �xed a-priori. Furthermore, there is an abundance of research

already on agent communication standards, e.g. FIPA-ACL which can be used in an implementa-

tion to even allow more complex agent-to-agent communication protocols.

The content that is sent between the agents is set to be the last state observation of each respec-

tive agent as well as the last taken action. It has been proven that agents communicating inside a

DEC-POMDP-COM problem space bene�t most by exchanging their own last observations when

the cost of communication is constant over all messages [GZ04] which is also the decision taken in

this thesis. Furthermore, exchanging the last taken action is important in order to avoid oscillating

adaptations.

Since the c-module also adds to the observations of the agent, it also contributes to property SADP-

1.

6.3. AC MODULE IMPLEMENTATION 149

Interoperability metric The interoperability metric is used to evaluate the current interop-

erability state � inside the interoperability state analyzer component. The metric consists of a

feature extractor and a �lter which analyzes the state feature vector for the policy module based

on the desired utility. Hence, depending on the choice of metric, the same state information is ana-

lyzed di�erently. For instance, if the accuracy of message exchange or conciseness of the message

content is of no importance to the interoperation, the same feature of the state space will not be

weighted as important as in a case in which exact processing of requests is required. This could be

for example the case in the smart city use case where the exact CO2 values of air quality might not

be relevant for the routing service, rather a range of acceptable and non-acceptable values. This

means, in reverse, that when the connected sensors of the environmental monitoring system do

not return maximal accuracy, there is no deterioration of interoperability. On the other hand, in

the smart production use case the exact provision of process parameters is essential so that a slight

deviation here will be sensed through the interoperability metric and result in an interoperability

decline with respect to the production machine platform. This underlines the fact, that the I-IOP

agent operates inside a very speci�c context and that the interoperability metric is always chosen

very speci�c to match the utility of the observed and controlled IoT system. The metric is provided

by the IoT developer. The information for con�guring the metric is given by the customer of the

I-IOP agent. This is important to di�erentiate, since the IoT developer does not possess the exact

knowledge of the use of the agent at runtime - this can only be provided by the customer/user of

the system. The level of precision is chosen by the utility measure, either provided by the cus-

tomer or developer and based on this, the features recorded by the monitor are processed. Since

the interoperability metric is tight to the utility of the customer, it contributes to property SADP-4.

Interoperability state analyzer The interoperability state analyzer is a function which applies

the interoperability metric to the derived features of the interoperation state � in order to create

the state representation for the policy. This process is illustrated in more detail in �gure 6-7.

Inside the function, � is �rst split into semantic and pragmatic features ÷s , ÷p . The feature

extraction algorithm extracts the raw semantic and pragmatic features of interest which are then

used to calculate the semantic and pragmatic interoperability scores. The scores are aggregated

into a vector that represents the state feature representation SI . This vector is used by the policy

component, and by the learning module inside the policy component. The vector contains two

information elements: sem and prag where sem represents the semantic interoperability related

6.3. AC MODULE IMPLEMENTATION 150

ß
[ß1,ß2,...,ßn]

IOP metric

[ßs1,...,ßsn]
[ßp1,...,ßpn]

[[fsem , fprag],
[treshsem , threshprag]]

Interoperability state analyzer

SIfsem([ßs1,...,ßsn])

[sts,sis,prag]

threshold filter

fprag([ßp1,...,ßpn])

feature extraction

[fsem(ßs1
),...,fsem(ßsn

)]
[fprag(ßs1

),...,fprag(ßsn
)]

Figure 6-7: Interoperability state analysis process inside an AC module. The IOP metric is used to
extract features from the interoperability state to be used by the agent policy.

content and prag represents the pragmatic interoperability related content. The semantic features

jointly relate to syntactic and semantic interoperability related information, such as the type of

protocol and ontologies used, semantic translation and interpretation information and the general

validity of exchanged information. The pragmatic features concern the actual runtime information

such as round-trip times for messages, cost of interoperation, and message accuracy. In general,

the feature space aligns with the information contained in the interoperability contract so that the

agent is able to verify if the terms and conditions of the underlying contract are met.

For the representation of the vector, a binary representation was chosen to ease the integration

with the learning module. The binary representation SI of the interoperability state can be imple-

mented through a threshold-based system that applies multiple thresholds onto the state features

which are chosen based on the interoperability metric. For example, among the multiple thresh-

olds for the pragmatic metric are "accuracy_cuto�" or "e�ciency_cuto�". If a feature lies above

(or below) the threshold, it is replaced by "1" (or "0" otherwise). This representation of the internal

interoperability state is optimized for the later explained LCS learning module but it also eases

the design of the rule-based policy in case of an expert based manual approach. In principle, this

representation can also be expanded to a continuous representation. This also brings the bene-

�t of increased accuracy and the removal of threshold parameters which might bias the agent,

however it requires to change the learning mechanism from a standard XCS to a more demanding

Continuous-XCS. Furthermore, the representation could also be further compress the state infor-

mation, which is an advantage in resource constrained devices. Jointly with the interoperability

6.3. AC MODULE IMPLEMENTATION 151

metric, the interoperability state analyzer accomplishes property SADP-5.

Policy The policy � constitutes the controlling mechanism of the AC module. It is realized as a

state-action mapping which maps the interoperability state description SI into the action space of

the environment which changes the transaction module operation accordingly. The actions which

are the output of the policy are usually dependent on the environment and need to be provided by

the interoperability module.

The policy can be either modeled manually by an expert or it is learned through a machine

learning approach, more speci�cally a rule based machine learning methods. Rule-based machine

learning uses a learningmechanism in order to automatically identify rules instead of relying on

human judgment to handcraft all rules. A rule-based approach is preferable to other approaches

since the policies are easier to interpret for humans. Rules typically take the form of an IF:THEN

expression, (e.g. IF ’condition’ THEN ’result’, or as a more speci�c example, IF ’red’ AND ’octagon’

THEN ’stop-sign’). An individual rule is not in itself a model, since the rule is only applicable

when its condition is satis�ed. Therefore rule-based machine learning methods typically identify

a set of rules that collectively comprise the prediction model, or the knowledge base. The policy

representation can be either a simple table or a more complex representation, such as a neural

network or decision tree, depending on the requirements. For example, in smaller,discrete state

spaces a table representation is usually su�cient and easier to interpret for an expert. But, in con-

tinuous state spaces a function approximation approach, through neural networks for example, is

preferable due to the well-known problem in the machine learning domain of the "curse of dimen-

sionality" [SB17]. The curse of dimensionality refers to the fact, that with larger and larger state

spaces, the information content increases exponentially and thus it is more and more di�cult to

achieve reasonable results.

The designer needs to know, when to choose a machine learning approach over manual,

expert-crafted design approaches to implement the policy. Rule based systems are determinis-

tic in nature which means, that not having the right rule in place can result in false positives and

false negatives. Rule-based systems can start of quite simple, but can become rather unwieldy

over time as more and more exceptions and rule changes are added. This means, in complex en-

vironments, an expert needs to be well aware of the con�guration space. Naturally, the expert

based approach does not align well with the idea of runtime interoperability, where the IoT agent

6.3. AC MODULE IMPLEMENTATION 152

is supposed to learn to act autonomously in its environment. Also, if data and scenarios change

faster than one can manually update the rules, machine learning approaches are more scalable

and e�cient. In complex scenarios, one can reach a point of losing track of the rule set easily

and of how many exceptions there are. Machine Learning methods are appropriate in application

settings where experts are unable to provide precise speci�cations for desired program behavior,

but where examples of desired behavior are available, or where it is possible to assign a measure of

goodness to examples of behavior. Rule-based machine learning is easier to maintain in complex

environments, since the decision process itself can be considered a blackbox. Since the machine

learning algorithm itself discovers the rules of the domain, it can be continuously updated and thus

adapt �exibly to new environments. Still, training data or feedback mechanisms are necessary to

be designed by humans which can be di�cult and time consuming. One can say that rule-based

machine learning focuses more on the outcomes rather then the entire decision making process,

making machine learning approaches more �exible and less susceptible to some of the problems

encountered with manual designed, expert based systems. In favor of manual approaches, they

are in general easier to setup and do not require (potentially lengthy) training cycles. This makes

them preferable in simple domains with only a limited set of required rule-action sets.

Learning module For the learning module, a suitable machine learning mechanism needs to

be chosen. Most of the widely used machine learning algorithms operate on static, non-interactive

data sets which have already been collected o�ine, building a model from one data set and then

using that model to assess a new data set drawn from the same data source, predicting unknown

values from known ones. This process describes the a supervised machine learning problem. How-

ever, in the case of optimizing runtime interoperability, these datasets are not available for training,

making a pure supervised method unusable. Rather, the agent is supposed to learn online based on

the experience he makes by acting inside the IoT environment. ML methods that fall into this area

are collectively described as reaction learning where the agent has to adapt his learned knowledge

constantly from the environmental stimuli to his actions(reactions).

One of the most prominent examples of reaction learning is Reinforcement learning (RL). Un-

like other machine learning algorithms, reinforcement learning algorithms are capable of dealing

with not only non-interactive data, but interactive processes in which classi�cation decisions must

6.3. AC MODULE IMPLEMENTATION 153

be made on the �y that can potentially a�ect which data will be gathered and classi�ed in the fu-

ture. The I-IOP agent is designed to be used with such an interactive learning procedure which

receives IoT environment situations as input and needs to learn correct actions to optimize the

interoperability process. Actions are rewarded based on the utility of the resulting state and the

interoperability score, which is calculated through the interoperability metric as explained before.

RL is a large �eld with considerable progress in the last couple of years. Generally RL methods

can be split into value-based and policy-based methods with one of the most commonly used ap-

proaches being the Q-learning algorithm, a value-based RL method. Q-learning learns a Q-table

which contains values for each state-action pair which indicate the accumulated future reward

if the agent takes a particular action in a particular state. The Q-values are updated constantly

as the agent explores the environment which will ultimately lead to convergence of the optimal

Q-function under certain assumptions [TMS17].

A related class of reaction learning approaches are Learning classi�er system (LCS). Learning

classi�er system (LCS) combine elements of supervised and reinforcement learning and evolu-

tionary algorithms in order to derive rules, how to act in an environment. Advantages of such

rule-based machine learning systems are (according to [Ste17]):

• The decision process and the trained policy is comprehensible for humans

• Actions are explicitly assigned to certain situations

• Exploration is restrictable by introducing similarity measures on the situation descriptions

• A �tness value is explicitly assignable to actions with a direct situational context

The objective of a LCS algorithm is to optimize payo� based on exposure to stimuli from

a problem-speci�c environment. This is achieved by managing the credit assignment for those

rules that prove useful and searching for new rules and new variations on existing rules using

an evolutionary process [Bul15]. The general idea behind LCS is, that in complex systems it is

easier to model the system as a set of rules than having one best �tting model [UM09]. Since

their introduction, a large number of LCS algorithms have been developed (for a recent survey,

the reader is referred to [UM09]). One can generally distinguish between the Pittsburgh-style and

Michigan-style classi�er systems [WvO12]. The di�erence between the two lies in the represen-

tation of individuals in the classi�er population, where Pittsburgh-style evolves rule sets while in

Michigan-style approaches one rule set (population of classi�ers) is learned [But15]. One of the

6.3. AC MODULE IMPLEMENTATION 154

most popular Michigan-style classi�ers is the XCS algorithm [WvO12] (see �gure 6-8) which is

used in the I-IOP agent implementation since it strives to evolve maximal general problem clas-

si�ers that are maximally accurate [But15]. The XCS classi�er system is shown in �gure 6-8. It

contains a population of classi�ers which applies to one or multiple states of the environment

(condition). A simple representation for such conditions is obtained by using binary state features

0,1 and #, where ’#’ is considered a wildcard. For example, a classi�er with condition ’01#00’ maps

to states ’01000’ and 01100. Each classi�er contains actions which specify what action the agent

applies when a classi�er is matched. The population is matched during the encounter of a new

problem instance. If actions are missing from the match set, they are added through a so called

covering mechanism [But15]. XCS then estimates the payo�s for the actions in the match set and

chooses the most promising action which is subsequently executed in the environment. An action

set is formed containing all classi�ers that contain the chosen action. After feedback from the en-

vironment is received, it is used to update the action set parameters and the process is continued

for the subsequent iterations. The population, match set and action set are constantly modi�ed

through a steady state genetic algorithm to explore the problem space [Ste17].

Population Match set

match

Action set Match set t+1

execution

reinforcem
en

t feedback

Steady state genetic
algorithm

Condition Action Reward

C1

C2

Cn

A1

A2

An

R1

R2

Rn

evolve

C1 A1 R1

C2 A2 R2

Cm Am Rm

Environment

reproduce

choose action

C1 A1 R1

Condition Action Reward Condition Action Reward

CA AA RA

update

Condition Action Reward

problem
 instance

C1 A1 R1

C1 A1 R1

CM' AM' RM'

m
atch next pro

blem
 in

stance

Figure 6-8: The process of the XCS online classi�er system as de�ned in [But15] - pp.966

6.3. AC MODULE IMPLEMENTATION 155

The following attributes make XCS a preferred choice for the learning module of the I-IOP

agent [TMS17]:

• It is uniquely suited for dynamic environments

• It is adaptive - it accommodates to changing environments and changes in problem space

• It is model-free - it limits assumptions about environment (environment refers to source of

training instance)

• It learns in clean or very noisy problems

• It accommodates missing training data

• The training results are interpretable

The integration of the learning module into the I-IOP architecture requires the agent to per-

ceive environment stimuli, which is possible through the monitoring component. The environ-

ment situations, actions and perceived feedback is processed by the learning module of the con-

troller component. Feedback is calculated through the interoperability metric, which de�nes how

well a particular state of interoperation �ts the IoT agent’s utility. The agent applies the presented

XCS based learning mechanism in an online fashion to update its underlying policy, i.e. rule-base

in order to improve the interoperability. In this way, each I-IOP agent learns to act in the given

environment according to the developer/customer intentions. Since the policy and learning mod-

ule are responsible for adaptive behavior, they achieve properties SADP-2 and SADP-3.

6.3.4 Architectural integration

The integration of the I-IOP agent with existing systems is the crucial aspect to introduce runtime

interoperability. Obviously, in order for the I-IOP architecture to work at its maximum level, it

needs to be properly integrated with existing IoT systems. This requires from the agent middleware

to be easily integrable in the �rst place. If integration is too cumbersome, IoT developers will not

adopt the solution. The practical integration will be explained in this section in the context of the

BIG-IoT project.

6.3. AC MODULE IMPLEMENTATION 156

BIG IoT Project background The goal of the the BIG-IoT project 3 was to bridge the interop-

erability gap between IoT platforms. Multiple industrial and academic partners gathered as part

of the European IoT Platforms Initiative to create an interoperability lifecycle instance, consisting

of a marketplace and a SDK for semantic interoperability between IoT platforms. The domain for

the BIG IoT project was settled in the Smart City context where the heterogeneity of IoT platform

o�erings becomes especially apparent.

The purpose of the BIG IoT marketplace is for matchmaking between requests and o�ers and

thus ful�lls the role of a central Infrastructure provider (INSP) agent. It provides a service discovery

mechanism and allows providers to register o�erings on the marketplace, which contains (among

other components) a service registry. The o�erings are described semantically by the providers

and describe various types of digital IoT services such as: Parking space data / parking reserva-

tions services, environmental data or charging station data. The semantic descriptions are based

on common and custom designed ontologies from the IoT sector. By extending existing ontologies,

it was made sure that proper interoperability with existing systems is possible. It also allows to

register higher-level services which provide, for example routing functionality. These services can

be composed through recipes to form higher order services. The semantic annotation meta-data,

called semantic descriptions, allow to �nd the o�erings by the DSC agents using a semantic query

engine (SPARQL).

The transaction functionality of the interoperability module is implemented through an API

which is delivered as a Java-SDK for easy distribution and integration into existing IoT platforms.

The API depicts the main functionalities needed for communication between IoT agents. Speci�-

cally, the following functions are provided by the API:

• Authentication (M1) - for authenticating with the BIG IoT marketplace (used by DSC & DSP

agents)

• Registration (M2) - for registering o�erings on the BIG IoT marketplace (used by DSP agents)

• Discovery (M3) - for discovering o�erings on the BIG IoT marketplace (used by DSC agents)

• Subscription (M4) - for subscribing to an o�ering of DSP (used by DSC agents)
3http://big-iot.eu/, accessed 29.11.2019

6.3. AC MODULE IMPLEMENTATION 157

• Accounting (M5) - for accounting based on used o�erings (used by DSC & DSP agents)

• Access (A1) - for executing the transaction functionality to retrieve data from an o�ering

(used by DSC agents)

Furthermore, the project developed di�erent versions of the SDK, to be used by di�erent types of

IoT platforms, from cloud-level to device-level platforms.

BIG IoT - I-IOP agent integration Figure 6-9, presents the integration of the I-IOP agent with

the BIG IoT architecture. The BIG IoT SDK integrates with the BIG IoT marketplace through

the M1-5 interfaces. The BIG IoT compliant IoT platforms integrate the BIG IoT SDK via the A1

interface. The I-IOP agent architecture acts as a middleware between the IoT infrastructure and

the IoT applications. This allows di�erent IoT platform services and applications to be jointly

connected through the agent-based service-oriented middleware. The middleware provides all the

essential requirements to enable runtime interoperability. In this way, digital services deployed on

di�erent IoT platforms are made interoperable through the implementation of the interoperability

module. The interoperability module can also be implemented by a single INSP agent in a broker

model (as explained previously). Due to the already mentioned de�ciencies of this approach, it will

not be considered hereafter. The same applies to the AC module which can be integrated into the

individual DSC and DSP agents or into a central INSP agent. In the former case, the AC module

will operate as explained previously and adapt the operation of the transaction module. The AC-

module is connected to the transaction module through the I1 interface. In this way, transactions

that are exchanged through the BIG IoT SDK can be monitored and controlled by the AC module

of the I-IOP agent.

To better illustrate these transactions, an interaction protocol is provided in �gure 6-10 which

displays the essential steps during the information exchange between DSC, BIG-IoT marketplace

and DSP agents.

6.3. AC MODULE IMPLEMENTATION 158

Interoperability module

AC module

IoT applications

IoT
platform

matchmaking negotiation

transaction

observer

controller

Agent-based
Service-oriented

MW

Infrastructure layer

I1

IoT
platform

Runtime interoperability

A1

A1

Application layer

BIG IoT marketplace

BIG IoT SDK

M1-5

Figure 6-9: The integration between the I-IOP architecture and the BIG IoT project. The interop-
erability module consists of the BIG IoT building blocks with the AC module connected to the BIG
IoT SDK via the I1 interface.

First, the DSC agent’s interoperability module sends a discovery request to the BIG IoT mar-

ketplace, while the DSP agent commits a register request to register a digital service. The DSC

agent receives a list of service o�ers which are fowarded, for selection to the system logic. The

logic selects the relevant service(s) for operation which triggers engagement in the negotiation

protocol between the DSC agent and the DSP agent. When the negotiation is �nished, both agents

receive a contract which de�nes the terms and conditions of their interaction, in particular the

price, used ontology and protocol. The contract is forwarded to the AC module of the respective I-

IOP agents. When, the DSC agent receives a request from the system logic, it sends a semantically

embedded request (embedded in the negotiated ontology) to the DSP agent which uses its seman-

tic and pragmatic processes to create a response to return back to the DSC agent. The response is

processed by the semantic and pragmatic processes of the DSC system logic and the resulting state

change is registered by the I-IOP agents and processed through the AC module. The AC module

determines the necessary adaptive actions which are sent back to the interoperability module. The

interoperability module then performs the action which will result in a new interoperability state

for the subsequent interaction.

To make this integration work in practice, it needs to be assumed that the developer of an IoT

system introduces the following elements in order for the I-IOP agent to work properly:

6.4. SUMMARY 159

• A utility function which allows to relate situations to actions, needed for the learning module

• Implementation of adaptation logic

• Speci�cation of an action set for the agent to execute

• The ability to embed communicated content into existing ontologies

IOP module IOP moduleBIG IoT marketplace

negotiation protocol

request for discovery

[offers]

request for contract

contract

negotiation finished

situation

action

AC module

register

contractcontract

request

response

se
m

an
tic

/p
ra

gm
at

ic

pr
oc

es
s

t+1

execute
action

sem
antic/pragm

atic

process

semantic embedding

semantic embedding

DSC I-IOP agent

AC module

DSP I-IOP agent

contract

situation

action

execute
action

altfailure

Figure 6-10: Interaction diagram showing the BIG IoT lifecycle implementation. The lifecycle has
been adopted based on the BIG IoT project architecture.

6.4 Summary

This section has picked up on the theory of runtime interoperability from the previous chapter and

gave a practical guide for an architectural model of an I-IOP agent to solve the runtime interoper-

ability problem. In particular, di�erent architectures for the implementation of an interoperability

lifecycle were presented and compared. An architecture for the AC module was given as well that

facilitates IoT agents to autonomously optimize the transaction optimization problem. To verify

the architecture, the following chapter will describe an evaluation of the I-IOP architecture in the

context of di�erent IoT ecosystem scenarios.

Part III

Evaluation

160

Chapter 7

Empirical evaluation of the I-IOP

agent architecture

7.1 Aim

This section empirically evaluates an implementation of the I-IOP agent architecture against the

runtime interoperability requirements inside a simulated IoT ecosystem. The main question to

answer in this context is, if the developed IoT agent model from the previous section implements

all requirements and therefore presents a valid contribution towards solving the interoperability

problem between IoT platforms. The general underlying hypothesis states that through the appli-

cation of the I-IOP agent middleware, runtime interoperability as introduced in chapter 5 can be

established. This hypothesis is evaluated through a feasibility study in a multi-agent based testbed

which is able to simulate di�erent IoT ecosystem compositions and scenarios and measures the

necessary metrics to evaluate the interoperability results quantitatively. Pursuing a simulated ap-

proach has the following bene�ts, compared to an implementation within a real systems:

• Easier abstraction for the purpose of simpli�cation

• Testing of hypotheses when real world testing not possible due to constraints and availability

of data sources

• Adapt parameters to the speci�c problem

Developing a new simulator instead of choosing an existing one is necessary as there is no

general available all-purpose simulator that can be used to create a detailed representation of an

161

7.2. FEASIBILITY STUDY DESIGN 162

end-to-end IoT service composition [CBBZ18]. Since the focus of this thesis is on the analysis

of interoperability, the simulation was developed with a focus on this particular matter to show

speci�cally, how the parameters of the IoT ecosystem a�ect interoperability.

The �rst section will describe the approach for the feasibility study. The proceeding section 7.2.1

introduces the problem setting for the simulator alongside measurable metrics which are used for

later analysis. Section 7.2.2 describes the simulation model followed by section 7.2.3 which goes

into the details of the implementation and the settings con�gurations.

7.1.1 Approach

The simulation approach for the feasibility study can be distinguished into three phases [LK91].

1. A problem de�nition is required which clearly states the problem to be analyzed alongside

the metrics which are used for evaluation.

2. The simulation model is designed in an abstract fashion. The simulation model will be

based on the IoT ecosystem concept from chapter 4

3. Implementation of the simulation model in some kind of software artifact and de�nition

of inputs and parameters for running the simulation.

7.2 Feasibility study design

Since the IoT is a complex domain and for this study an ecosystem with multiple consumers and

providers is assumed, such a system can easily become quite complex and di�cult to analyze due

to the various side e�ects. The here presented simulator thus has the purpose to make it possible

to abstract all use case speci�c properties of real-world IoT systems to focus on the interoperability

problem and speci�cally on the essential barriers for runtime interoperability. Since the simulator

is not supposed to solve a use case speci�c problem, no domain speci�c information should be

in�uencing the simulation. Rather, the goal is to show how the agents react and interact in a con-

trolled environment without side e�ects to di�erent types of interoperability problems. This rules

out a physical, "real-world" testbed due to exactly these unwanted side e�ects. A further bene�t

of complexity reduction is that the results become less prone to outliers and are easier to reproduce.

7.2. FEASIBILITY STUDY DESIGN 163

7.2.1 Problem de�nition

For the problem de�nition, the use case studies from chapter 4, section 4.3.1 are re-examined.

Although the purpose of this evaluation is not to solve a speci�c case study problem with an

operational software product, the use cases are well suited to demonstrate di�erent forms of IoT

ecosystem. The case studies facilitate the de�nition of di�erent scenarios that are supposed to

demonstrate a set of typical interoperability patterns which usually occur in IoT ecosystems. The

scenarios will then demonstrate if the IoT agent is able to deliver on the runtime interoperability

requirements and thus solve the interoperability problem in IoT ecosystems. For some of the

scenarios multiple agent con�gurations will be tested that change the constitution as well as the

operation mode of the agent (e.g. by changing its learning module). More details on the parameters

subject to change can be found in the next section. In particular, the smart industry (section 4.3.1.1)

and smart agriculture (section 4.3.1.2) interoperability problems are analyzed in the study. To

reiterate, these are:

• Agriculture - Smart farming: The interoperability goal is for the farming machines and

equipment from di�erent providers to work seamlessly together with the rest of the farming

equipment. The manager of a Farm Management Information System (FMIS) needs to send

and retrieve real-time data from his machines. The interoperability problem is thus a dual

problem of actuation and sensing of IoT data.

• Industry - Smart production: The interoperability problem lies in the correct and real-time

provisioning of process parameters to machines, since data has to be made available on

demand quickly as well as custom-�t.

7.2.1.1 Scenarios

Each individual simulated scenario is chosen to highlight one speci�c interoperability-related sit-

uation inside the ecosystem scenario. Figure 7-1 shows these situations in an overview �gure.

The scenarios originate from the proof-of-concept results of the BIG IoT project (see section

6.3.4). Since in the BIG IoT project real world use cases have been implemented, tested and evalu-

ated, this information can be used as a reliable source for interoperability related problems in the

complex of multi-platform ecosystems. The analysis was performed manually by outlining, for

each use case, the speci�c problem to be solved by the interoperation, the participating systems

and the information �ows between the interfaces of the participating systems. The results of this

7.2. FEASIBILITY STUDY DESIGN 164

analysis were aggregated to create a list of common interoperability patterns (�gure 7-1). To ap-

ply the patterns also to other domains outside Smart city, they were generalized and modeled as

scenarios to be used in the simulator to test the I-IOP agent architecture.

DSC

DSP

DSP

2

+
1

Interoperability lifecycle

4
!

3

Figure 7-1: Interoperability related situations which can occur inside an IoT ecosystem in an in-
teroperability lifecycle instantiation.

Figure 7-1 presents all scenarios, in order from (1) to (4) they are: (1) Addition of an inter-

operation partner, (2) interoperability recovery, (3) interoperability recovery with adaptation, and

(4) failures of interoperation partners. More speci�cally, the exact procedure of each scenario is

detailed in �gure 7-2 and �gure 7-3. Through the simulation of these patterns, the I-IOP agent’s

operation can be evaluated including the bounds of the architecture, i.e. at what point the agent

can not achieve a further interoperability improvement. The success of the agent’s performance

with respect to the runtime interoperability requirements will always be quantitatively measured

through the semantic and pragmatic interoperability metrics. The subsequent tables will list in

detail the exact scenarios that have been simulated, including the participating systems and infor-

mation �ows.

7.2. FEASIBILITY STUDY DESIGN 165

Identifier S_1 Autonomous discovery

Summary

Scenario sequence Step

1 DSC and DSP-1 are created & DSP-1 registers offering.

2 DSC queries for providers and is matched with DSP-1.

3 DSC and DSP-1 negotiate interoperability contract.

4 DSP-2 is added after 5 iterations.

5 DSC queries for missing providers and is matched with DSP-2.

6

DSC achieves maximum level of interoperability by negotiating

interoperability contract with DSP-2.

Interoperability

evaluation

Runtime IOP

requirements

Identifier S_2 Offline recovery

Summary

Scenario sequence Step

1 DSC, DSP-1 and DSP-2 are created & DSP-1,2 register offerings.

2 DSC queries for providers and is matched with DSP-1 and DSP-2.

3 DSC negotiates interoperability contract with DSP-1 & DSP-2.

4 DSP-2 is removed after 5 iterations.

5 DSP-3 registers its offering.

6 DSC queries for missing providers and is matched with DSP-3.

7

DSC achieves maximum level of interoperability again by negotiating

interoperability contract with DSP-3.

Interoperability

evaluation

Runtime IOP

requirements

Identifier S_3 Interoperability recovery with transaction adaptation

Summary

Scenario sequence Step

1 DSC, DSP-1 and DSP-2 are created & DSP-1,2 register offerings.

2 DSC queries for providers and is matched with DSP-1 and DSP-2.

3 DSC negotiates interoperability contract with DSP-1 & DSP-2.

4 DSP-2 is removed after 5 iterations.

5 DSP-3 registers its offering.

6 DSC queries for missing providers and is matched with DSP-3.

7 DSC and DSP-3 adapt transaction channel.

8

DSC achieves maximum level of interoperability again by negotiating

interoperability contract with DSP-3.

Interoperability

evaluation

Runtime IOP

requirements

A DSC system needs to contract two DSP systems to operate.

Scenario description

The scenario will show that how, through the interoperability lifecycle, the second

DSP system is discovered & integrated to achieve the desired level of

interoperability

autonomy, discoverability, service orientation

Scenario description

A DSC interoperates with two DSP systems, while one of them becomes offline

and needs to be replaced with another DSP system.

The scenario will show if in the case of DSP-2 becoming offline, DSC will

autonomously achieve the desired level of interoperability again through the

continuous querying for DSP systems.

autonomy, service orientation & discoverability

Scenario description

A DSC interoperates with two DSP systems, while one of them becomes offline

and needs to be replaced with another DSP system that has to be adapted to be

interoperable with the DSC.

The scenario will show if in the case of DSP-2 becoming offline, DSC will

autonomously achieve the desired level of interoperability again by querying for

replacement DSP systems and subsequent transaction adaptation.

autonomy, adaptivity, service orientation & discoverability, interoperability

reasoning & measurability, semantic interoperability

Figure 7-2: Description of the interoperability scenarios 1 to 3 which are evaluated in the feasibility
study.

7.2. FEASIBILITY STUDY DESIGN 166

Identifier S_4 Perturbation resistance

Summary

Scenario sequence Step

1 DSC and DSP-1 are created & DSP-1 registers offering.

2 DSC queries for providers and is matched with DSP-1.

3 DSC negotiates interoperability contract with DSP-1.

4

DSP-1 experiences random pertruberations, (i) random unavailability, (ii)

firmware updates, (iii) communication delays, and (iv) random

communication failures

5

DSC maintains interoperability with DSP through adaptation of

transaction process.

Interoperability

evaluation

Runtime IOP

requirements

Identifier S_F Smart farming - high heterogenity

Summary

Scenario sequence Step

1

DSC, DSP-1, DSP-2 and DSP-3 are created & DSP-1,DSP-2,DSP-3

register their offerings

2 DSC queries for providers and is matched with DSP-1, DSP-2 & DSP-3

3 DSC negotiates interoperability contract with all three providers

4

DSC adapts its semantic interoperability mechanism towards DSP-2.

DSP-2 also adapts its semantic communication mechanism.

5

DSC adapts its pragmatic interoperability mechanism towards DSP-3.

DSP-3 also adapts its pragmatic communication mechanism.

Interoperability

evaluation

Runtime IOP

requirements

Identifier S_P Smart production - high precision

Summary

Scenario sequence Step

1 DSC, DSP-1 & DSP-2 are created & DSP-1,DSP-2 registers offerings.

2 DSC queries for providers and is matched with DSP-1,2.

3 DSC negotiates interoperability contract with DSP-1 & DSP-2.

4

DSP-1,2 adapts its pragmatic interoperability mechanism to provide

maximum accuracy with regards to the utility of the DSC system.

Interoperability

evaluation

Runtime IOP

requirements

autonomy, adaptivity, service orientation & discoverability, interoperability

reasoning & measurability, pragmatic interoperability

Scenario description

Scenario description

A DSC integrates a list of DSP systems which provide smart farming related

services. Due to the large heterogenity of the systems, semantic and pragmatic

adaptations are necessary.

The scenario shows if the DSC-agent is able to achieve semantic and pragmatic

interoperability in an exemplary instantiation of a Smart farming IoT ecosystems.

A DSC interoperates with two DSP systems in a smart factory. Both of the DSP

systems are configured to provide maximum accuracy during the interoperation.

The scenario shows that the IoT-OC agent of the DSP systems is able to adapt

interoperation so that the utility of the DSC systeme is maximized. This scenario

thus specificall addresses pragmatic interoperability.

autonomy, adaptivity, service orientation & discoverability, interoperability

reasoning & measurability

Scenario description

A DSC interacts with a DSP which experiences random perturbations at runtime.

The scenario shows if DSC is able to register interoperability related

perturbations and is able to reach the desired level of interoperability again.

autonomy, adaptivity, service orientation & discoverability, interoperability

reasoning & measurability, semantic & pragmatic interoperability

Figure 7-3: Description of the interoperability scenarios 4 to S_P which are evaluated in the feasi-
bility study.

7.2. FEASIBILITY STUDY DESIGN 167

7.2.1.2 Metrics

In order to quantify the results and to judge the performance of the I-IOP agent in optimizing

the transaction phase of the interoperability lifecycle, the semantic and pragmatic interoperability

metric are used, which have been introduced in section 5.6. The reasoning being that semantic and

pragmatic interoperability are the key components of the reward measure for I-IOP agents in run-

time interoperability which was de�ned in de�nition 5.32 in section 5.6. Thus, if a minimization

of the interoperability gap between IoT agents can be quanti�ed through applying the semantic

and pragmatic interoperability metrics, the performance of the agents with regards to establishing

runtime interoperability can be derived - which is ultimately the goal to evaluate the soundness

of the I-IOP agent architecture. To apply these metrics in the simulator, a couple of measurement

points have been selected to derive the relevant state information from each transaction between

two agents to measure, for example, the desired state vs. the actual state for the pragmatic in-

teroperability metric or the occurrence of ontology mismatches when agents exchange semantic

information in the simulated environment.

Cost of self-awareness The application of an I-IOP agent architecture always comes at a cost

of performance due to the increased overhead compared to running the same system without

a dedicated agent. Thus, to assess the performance and the cost of the agent architecture, the

following performance parameters are additionally measured during the simulation:

• The memory allocation for each I-IOP agent in MB

• The communication overhead of each message exchange for SUOC-to-agent communication

and agent-to-agent communication (in number of messages and message size in MB)

• The execution time of the agent logic and of the training process for the XCS learning module

(in seconds)

• The number of times the agent executes an action on the underlying SUOC (in number of

actions)

7.2.2 Simulation model

Each scenario is run for a pre-determined number of iterations, which di�ers based on the scenario

being analyzed between 10-20 iterations. The simulation model implements the scenario speci�-

7.2. FEASIBILITY STUDY DESIGN 168

Start

Simulation model setup

Initialize
simulation

model

Initialize
SUOCs and

agents

Perform offline
training of XCS

agents

Simulation run

End

Process
interoperability

lifecycle +
optimization

Initialize input data

Collect
interoperability &

performance
results

Simulation
complete ?

no

Further MC
runs left?

no

Visualize
results

Store results

yes

Figure 7-4: The activity diagram describing the simulation �ow in the feasibility study. It is dis-
tinguished between the main blocks of simulation model setup and simulation run.

cation which means that it consists of an Infrastructure provider (INSP) agent, one or more DSC

and DSP SUOC implementations and a varying number of I-IOP agent instances. Additionally a

customer is simulated who has a concrete use case related problem which is manifested in a par-

ticular simulation space con�guration. The customer input to the DSC agent is simulated through

arti�cial interactions of the customer with the DSC agent.

The �owchart in �gure 7-4 describes the �ow of the simulation in more detail. It starts with

the simulation model setup step which initiates the simulation model, the SUOC and agents and

triggers the training phase for the XCS module. Also in this phase, the arti�cial customer input

is generated which is the used to run the simulation ticks. During each simulation tick, the inter-

operability lifecycle is processed as well as any adaptations by the agents. Certain metrics, which

are explained in the next paragraph, are measured and after that the next simulator iteration starts

unless the maximum number of iterations is achieved. If this is the case, the results are stored and

7.2. FEASIBILITY STUDY DESIGN 169

visualized which ends the simulation.

7.2.2.1 Strategies

The simulator can be equipped with a number of pre-de�ned strategies that the I-IOP agents can

use either for learning a policy or as an expert rule-base. The strategy thus de�nes the trait of the

agent. The strategies determine, based on the observed situation what semantic and pragmatic

action to execute. The standard strategy is the utility maximizing strategy which strives to always

maximize the semantic and pragmatic interoperability in the simulator. Yet, the agents can also

be initialized with another strategy, for example an always-cost-minimizing strategy or a strategy

which always adapts to other agents.

7.2.2.2 Utilities

The simulator allows for di�erent utility functions for each agent. The utility function is always

split into two parts: A utility part and the metric part. The utility part de�nes a mask, which is

overlain onto the received state description of the agent. The masked situation description is used

inside the policy module to determine the most e�cient action. The metric part is used by the

interoperability state analyzer to create the situation description. It de�nes the thresholds that

are needed for the binarization of the state space features. It is also important to highlight that of

course all simulated agents have an underlying utility.

7.2.2.3 Simulation con�guration

The simulation features a large con�guration space for simulating a broad range of IoT ecosystem

situations. Figure 7-5 highlights the con�guration space for the simulation:

The environment con�guration de�nes the interoperability lifecycle implementation, the type

of agent deployment and the simulated customer instantiation. (Note that technically, the SUOC

is also part of the environment but it was decided to separate it to make the con�guration space

discussion more accessible). The SUOC con�guration space can furthermore be broken down into

the parameters in table 7.1.

Random parameters are used to simulate the natural variance in an IoT ecosystem which is due

to di�erent types of consumer/provider or customer events. The agent con�guration dimension

determines, which of the simulated SUOC have an agent component attached, which learning

7.2. FEASIBILITY STUDY DESIGN 170

Environment

Agent

SUOC

Figure 7-5: Con�guration space of the simulation is partitioned into the environment, agent and
SUOC axis.

DSP con�guration DSC con�guration
API con�guration Request con�guration
Ontology used Ontology used
Provider utility function Consumer utility function
Provider events Consumer events
Number of providers simulated
Degree of provider functional heterogeneity

Table 7.1: Properties of the SUOC which are con�gurable in the simulator.

7.2. FEASIBILITY STUDY DESIGN 171

mode these agents use, what the communication costs are or if communication is turned o� and

what XCS con�guration they use. An example XCS con�guration is shown in table A.12.

SUOC adaptation parameters To analyze the changes in interoperability as the simulation

progresses, it is necessary to simulate typical adaptations of SUOC. Based on the identi�ed typical

interoperability patterns in IoT ecosystems (7-1) a list of parameters are de�ned to be used by the

AC module’s controller and considered part of the simulation model speci�cation. The following

list contains the parameters of the SUOC to allow adaptive actions.

• Provider API con�guration

– Response type

– Employed ontology

– Employed protocol (e.g. request-response/ feed)

– Response precision

– Response rate

• Consumer con�guration

– Request mode

– Request frequency

– Employed ontology

– Employed protocol

7.2.3 IoT ecosystem simulation implementation

The class diagram for the simulator implementation is displayed in �gure 7-6. To keep the diagram

readable, function arguments and return types are omitted. The simulator was implemented as

a custom software artifact (due to the already mentioned unavailability of desired multi-agent

simulation frameworks) in Python 3.6 and was run on an Intel core i7-6820HQ system with 4 X64-

cores at 2.7 Ghz, 32 GB RAM on Windows 10 enterprise, build 17763. The implementation supports

parallelization of the IoT processes through the Python built-in multiprocessing module.

7.2. FEASIBILITY STUDY DESIGN 172

Simulation model DSC

DSP

Customer

FixedRuleBase

Generic LP

IOPContract

- createDSGroup()
- run()
- stop()
- visualize()

*

*

*

1

1

1

*

SUOC
- requestGen()
- semReaction()
- pragReaction()
- adaptationLogic()

- semTranslation()
11

1

1

- reaction()
- adaptationLogic()

+ contractTerms

- more()
- sense()
- execute()

- match()

- getJobProfile()

Action

- combine()
- lookup
- reverseLookup()

Interaction module

- runDSC()
- runDSP()
- runINSP()
- calculateIOPScore()

INSP

1

- registerOffering()
- unregisterOffering()
- matchmaking()
- adaptationLogic()

IoT Process

- send()
- receive()
- execACModule()

AC Agent

1

- train()
- retrain()
- updateFeatures()
- stateEstimator()
- broadcast()
- buffer()
- pragmIOPMetric()
- semIOPMetric()
- interoperabilityAnalyzer()
- mapping()

1

1

1

1

1

1

1

1

*

Figure 7-6: The UML diagram of the IoT ecosystem simulator.

7.2.3.1 BIG IoT lifecycle implementation

The simulator implements the BIG IoT architecture and I-IOP agent integration as described in

section 6.3.4. The implementation approach follows a customer oriented perspective, i.e. the in-

teraction is always triggered through the DSC agent. Since the purpose of this study is not to

analyze the emerging structures through multiple DSC-DSP agent compositions, this approach is

better aligned with the vision of the IoT to deliver optimal value for customers.

The implementation simulates the BIG IoT marketplace where, at the beginning of the simu-

lation, the o�ers of DSP agents are registered and later matched against the DSC agent requests.

However not all components of the complete BIG IoT marketplace are implemented - in this simula-

tion only the core matchmaking functionality. Demand requests are created based on a simulated

customer input, which has certain goals to be ful�lled by the interoperation. All DSC and DSP

agents in the simulation are pre-con�gured with a direct communication connection to the mar-

7.2. FEASIBILITY STUDY DESIGN 173

ketplace. The matchmaking model follows a simpli�ed model which compares the o�ering type

and the number of o�ered input and output parameters with the requested o�er. If all these ele-

ments match, the o�er is added to the candidate list.

What is missing in the BIG IoT consideration is the automated contract negotiation, as part of the

negotiation module. The simulation implementation thus adds an implementation of FN in order

to have a complete, automated interoperability lifecycle implementation for the IoT agents. The

negotiation functionality negotiates a contract according to the customer request and the o�erings

through a simple version of the contract net protocol (see 6.2.2). The contract is stored by the INSP

agent and sent to both the DSC and DSP agents who also store the contract on their end. During

information exchange between the DSC and DSP agents, the semantic and pragmatic processes

are executed by internal SUOC implementations. The implementations follow a simpli�ed ver-

sion of a real-world IoT system by abstracting the use case speci�c data. The transaction modules

of the I-IOP agent simulate a service oriented communication channel through a message queue.

Messages on this queue are interpreted as o�ering requests or responses by the I-IOP agents.

The interoperability score calculation is done after each simulated transaction between the IoT

agents and stored for later visualization.

7.2.3.2 Learning module

The implementation of the learning module of the AC-module is based on the XCS implementation

from 1. The actual learning process is performed in the following way: The Generic_LP class

de�nes the learning environment which is used by the training module of the I-IOP agent. The

strategy class instance de�nes the pre-determined rule-base strategy for the agent and is used for

training the XCS policy for a number of iterations. The trained policy is stored in the AC module

for later use at runtime by the I-IOP agent.

7.2.4 Veri�cation & Threats to validity

Although the simulation testbed implements the essential elements in an IoT ecosystem, the fol-

lowing disclaimers have to be kept in mind:

• Due to the real world abstraction, the testbed will not be completely accurate
1https://pypi.org/project/xcs/ , accessed 29.11.2019

7.2. FEASIBILITY STUDY DESIGN 174

• The outcome heavily depends on the customer input, thus it is essential to carefully design

the input space so that it is representative for a real-world scenario

• All events and threats in the system, e.g. misbehaving or failing entities need to be imple-

mented by the simulator

In order to make sure that the simulation model properly implements the conceptual model of

an IoT ecosystem it needs to be veri�ed that the implementation matches the speci�cation of an IoT

ecosystem and the I-IOP agent model. In essence, veri�cation makes sure that the implementation

of the simulation model is correct. For this purpose the implementation of the IoT ecosystem

properties are discussed in table 7.2 to verify that the simulator implementation is in accordance

with the de�ned IoT ecosystem properties in section 4.3.5 .

IoT ecosystem property Veri�cation

self-organization / openness DSC agents are implemented in a way that they choose the con-

tracts themselves based on their utilities / negotiation is imple-

mented so that no pre-determined collaborations are assumed

loose coupling The service descriptions/queries and interoperability contracts

are used to implement the loose coupling between DSC and DSP

agents. No direct couplings are pre-determined

domain-clustered The simulation supports separate runs and con�gurations to

simulate di�erent domains (see scenarios S_F and S_P)

demand-driven The simulation follows a customer-oriented focus. That means,

the job pro�le of a DSC agent drives the whole interoperability

process including the adaptation

belonging The I-IOP agent process shows how the decision making of the

IoT agent is taken to runtime instead of being pre-determined

connectivity The Simulator allows to model events related to connectivity,

e.g. a failing communication between IoT agents

emergence Emergence is not covered since the focus of this simulation is not

on emergent behavior between a multitude of agents

Table 7.2: Veri�cation criteria that the IoT ecosystem properties are met by the IoT ecosystem
simulator.

7.3. RESULTS 175

7.3 Results

This section reviews the results from the I-IOP agent evaluation. This part only covers the ob-

jective result analysis. The interpretation of results will follow in chapter 8. The semantic and

pragmatic interoperability scores are visualized in an aggregated fashion using a Boxplot visual-

ization and a detailed version using a line graph. This highlights, on the one hand, the overall

measurable performance of each tested con�guration and on the other hand the detailed runtime

performance during the individual iterations. In this way, the imposed research question whether

the I-IOP agent can solve the runtime interoperability problem can be answered. The result prepa-

ration process will be explained in detail for the �rst scenario, after that only the results will be

presented since the process is the same for the rest of the scenarios. To ease readability, con�gu-

rations are abbreviated using their con�guration identi�er (e.g. XCS 100k,S_1) as a reference and

can be found through the same identi�er in the annex in section A.4.1. Also the terms semantic

interoperability and pragmatic interoperability are shortened to SI and PI.

Di�erent variants of agent con�gurations are used within the experiments: An agent setting with

an expert rule system without an active XCS component, an active DSC and DSP XCS system with

a 10.000 training cycles and 50.000 training cycles. Comparing these con�gurations will show-

case the di�erences between distinct XCS deployments on the one hand and the performance of

XCS compared to an expert rule system which functions as a benchmark. Further experiments

were performed with di�erent XCS con�gurations, showcasing the di�erences between varying

the number of training cycles and the amount of exploration the agent is allowed to perform to

cover the problem space. This will demonstrate the bene�ts of the GA component of the XCS

module and in particular its ability to work in new situations experienced at runtime. During each

simulation tick, the interoperability score is measured based on the current environment situation

and stored by the simulator for later visualization. The values for the maximum SI and PI score

were arbitrary chosen between six and zero.

7.3. RESULTS 176

7.3.1 Scenario S_1 results

expert RB
expert RB prag

XCS 50k

XCS 100k

XCS 50k prag

XCS 100k prag

Figure 7-7: Interoperability analysis for scenario S_1 including SI (solid lines) and PI scores (dashed
lines)

Median_semantic 6.0 6.0 6.0
Median_pragmatic 6.0 6.0 6.0
Mean_semantic 5.25 5.05 5.25
Mean_pragmatic 5.25 4.75 5.25
Std_semantic 1.3 1.47 1.3
Std_pragmatic 1.3 1.85 1.3

0

1

2

3

4

5

6

In
te

ro
p
e
ra

b
ili

ty
 s

co
re

Aggregated interoperability scores

Legend

semantic score
pragmatic score

expert RB XCS 50k XCS 100k

Figure 7-8: Aggregated representation of the SI and PI scores for scenario S_1. The table below
each box presents the median,mean and standard deviation for each scenarios’ SI and PI score.

7.3. RESULTS 177

The interoperability analysis in �gure 7-7 lays out the SI (solid line) and PI scores (dashed line)

on a timescale for each con�guration. No normalization was performed, instead the values were

kept at their original values for easier comparison. In the case of overlapping values between the

graphs, only the results from the last executed con�guration are visible. The horizontal axis of the

graph refers to the iterations while the vertical axis shows the interoperability score on scale of

zero to six.

Figure 7-7 shows an identical SI and PI score behavior for expert RB and XCS 100k. For both con-

�gurations, an increase of SI and PI scores is noticed between iterations 5 and 6, which coincides

with the activation of DSP-2 in the scenario. After iteration 6, the SI and PI scores for both con�g-

urations stay constant at the maximum interoperability level. The results for XCS 50k reveal an

initial decrease in SI and PI scores between iterations 2 and 5 before gradually increasing to the

maximum interoperability level at iteration 8.

Boxplot 7-8 summarizes the SI and PI scores, in particular the median, upper and lower quartile

for each score alongside potential outliers for each con�guration. The table below the plot con-

tains the median, mean, and standard deviation of the interoperability scores for a more detailed

analysis.

In the aggregated S_1 results, all con�gurations achieved a median SI and PI score of 6.0. expert RB

and XCS 100k have identical values for the mean and standard deviation for SI and PI. XCS 50k

achieved a slightly weaker mean SI and PI score at 5.05 and 4.75 and a slightly higher standard

deviation.

Metric Value

Execution time 9 m

Average message size (MB) 56

Number of sent messages between agents 213

Mean agent execution time (seconds) 0,001580645

Number of actions performed 47

Table 7.3: Experiment summary for scenario S_1

Table 7.3 lists the simulation experiment summary. The scenario took 9 minutes to complete

with a total of 213 messages sent between the agents with an average message size of 56 megabytes

and 47 actions performed. The mean agent execution time (i.e. the I-IOP agent internal logic) was

measured at 0,001580645 seconds.

7.3. RESULTS 178

7.3.2 Scenario S_2 results

expert RB
expert RB prag

XCS 50k

XCS 100k

XCS 50k prag

XCS 100k prag

Figure 7-9: Interoperability analysis for scenario S_2 including SI (solid lines) and PI scores (dashed
lines)

Median_semantic 6.0 6.0 6.0
Median_pragmatic 6.0 6.0 6.0
Mean_semantic 5.55 5.55 5.55
Mean_pragmatic 5.55 5.55 5.55
Std_semantic 1.07 1.07 1.07
Std_pragmatic 1.07 1.07 1.07

0

1

2

3

4

5

6

In
te

ro
p
e
ra

b
ili

ty
 s

co
re

Aggregated interoperability scores

Legend

semantic score
pragmatic score

expert RB XCS 50k XCS 100k

Figure 7-10: Aggregated representation of the SI and PI scores for scenario S_2

7.3. RESULTS 179

Metric Value

Execution time 13 m

Average message size (MB) 56

Number of sent messages between agents 657

Mean agent execution time (seconds) 0,002348225

Number of actions performed 11

Table 7.4: Experiment summary for scenario S_2

For scenario S_2, the results in �gure 7-9 and 7-10 depict an identical interoperability pattern for

all three agent con�gurations. As seen in �gure 7-9, the interoperability score drops to a medium

level of 3 when DSP-2 operation is stopped. The score reaches the maximum level again after

iteration 5 when DSP-3 is deployed and successfully matched with the DSC agent. The execution

time for this scenario was measured at 13 minutes, with 657 messages sent between the agents

with an average message size of 56 megabyte and in total 11 actions performed. The mean agent

execution time was 0,002348225 seconds.

7.3. RESULTS 180

7.3.3 Scenario S_3 results

expert RB
expert RB prag

XCS 50k

XCS 100k

XCS 50k prag

XCS 100k prag

Figure 7-11: Interoperability analysis for scenario S_3 including SI (solid lines) and PI scores
(dashed lines)

Median_semantic 6.0 6.0 6.0
Median_pragmatic 6.0 6.0 5.0
Mean_semantic 5.35 5.35 5.35
Mean_pragmatic 5.05 4.95 4.65
Std_semantic 1.06 1.06 1.06
Std_pragmatic 1.3 1.48 1.44

0

1

2

3

4

5

6

In
te

ro
p
e
ra

b
ili

ty
 s

co
re

Aggregated interoperability scores

Legend

semantic score
pragmatic score

expert RB XCS 50k XCS 100k

Figure 7-12: Aggregated representation of the SI and PI scores for scenario S_3

7.3. RESULTS 181

Metric Value

Execution time 16 m

Used memory (MB) 56

Number of sent messages 655

Mean agent execution time (seconds) 0,115681024

Number of actions performed 78

Table 7.5: Experiment summary for scenario S_3

In scenario S_3 we notice an identical pattern of semantic interoperability between the three tested

agent con�gurations. The interoperability scores decrease after iteration 2 and recovers after it-

eration 10. The PI scores for expert RB and XCS 50k achieve maximum values again at iteration

10, with a slightly lower score of 4 between iterations 6 and 10. The PI score of XCS 100k drops

to the lowest score of 1 at iteration 8 before reaching the maximum score at iteration 11. Eventu-

ally, all con�gurations have reached maximum interoperability after iteration 11 but the PI score

for XCS 100k oscillates repeatedly afterwards until the end of the simulation. Figure 7-12 reveals

that expert RB and XCS 50k have achieved the overall same performance, while XCS 100k has

a slightly lower mean PI score and a slightly higher standard deviation. The scenario execution

took 16 minutes, 655 messages sent between agents (with a constant message size of 56 megabytes)

and 78 actions performed in total. The mean agent execution time was measure at 0,115681024

seconds.

7.3. RESULTS 182

7.3.4 Scenario S_4 results

expert RB
expert RB prag

XCS 50k

XCS 100k

XCS 50k prag

XCS 100k prag

Figure 7-13: Interoperability analysis for scenario S_4 including SI (solid lines) and PI scores
(dashed lines)

Median_semantic 6.0 6.0 6.0
Median_pragmatic 6.0 6.0 6.0
Mean_semantic 5.75 5.75 5.85
Mean_pragmatic 5.05 5.25 5.5
Std_semantic 0.62 0.62 0.48
Std_pragmatic 1.91 1.79 1.5

0

1

2

3

4

5

6

In
te

ro
p
e
ra

b
ili

ty
 s

co
re

Aggregated interoperability scores

Legend

semantic score
pragmatic score

expert RB XCS 50k XCS 100k

Figure 7-14: Aggregated representation of the SI and PI scores for scenario S_4.

7.3. RESULTS 183

5k no GA
5k no GA prag

50k GA
50k GA 1prag

Figure 7-15: Interoperability analysis for scenario S_4 - XCS comparison including SI (solid lines)
and PI scores (dashed lines)

Median_semantic 2.0 6.0
Median_pragmatic 1.0 6.0
Mean_semantic 3.75 5.7
Mean_pragmatic 3.0 5.0
Std_semantic 1.95 0.64
Std_pragmatic 2.45 2.0

0

1

2

3

4

5

6

In
te

ro
p
e
ra

b
ili

ty
 s

co
re

Aggregated interoperability scores

Legend

semantic score
pragmatic score

5k no GA 50k GA

Figure 7-16: Aggregated representation of the SI and PI scores for scenario S_4 XCS comparison

7.3. RESULTS 184

5k no GA
5k no GA prag

50k GA
50k GA 1prag

Figure 7-17: Second run of interoperability analysis for scenario S_4 - XCS comparison including
SI (solid lines) and PI scores (dashed lines)

Median_semantic 6.0 6.0
Median_pragmatic 6.0 6.0
Mean_semantic 5.5 5.85
Mean_pragmatic 4.75 5.5
Std_semantic 1.02 0.48
Std_pragmatic 2.17 1.5

0

1

2

3

4

5

6

In
te

ro
p
e
ra

b
ili

ty
 s

co
re

Aggregated interoperability scores

Legend

semantic score
pragmatic score

5k no GA 50k GA

Figure 7-18: Aggregated representation of the SI and PI scores for the second run of scenario S_4
XCS comparison

7.3. RESULTS 185

5k no GA
5k no GA prag

50k GA
50k GA 1prag

Figure 7-19: Third run of interoperability analysis for scenario S_4 - XCS comparison including SI
(solid lines) and PI scores (dashed lines)

Median_semantic 6.0 6.0
Median_pragmatic 6.0 6.0
Mean_semantic 4.96 5.94
Mean_pragmatic 4.0 5.8
Std_semantic 1.41 0.31
Std_pragmatic 2.45 0.98

0

1

2

3

4

5

6

In
te

ro
p
e
ra

b
ili

ty
 s

co
re

Aggregated interoperability scores

Legend

semantic score
pragmatic score

5k no GA 50k GA

Figure 7-20: Aggregated representation of the SI and PI scores for the third run of scenario S_4 -
XCS comparison

7.3. RESULTS 186

Metric Value

Execution time 7 m

Used memory (MB) 56

Number of sent messages 118

Mean agent execution time (seconds) 0,001208333

Number of actions performed 35

Table 7.6: Experiment summary for scenario S_4

The results of scenario S_4 in �gure 7-13 indicate medium deviations in SI scores between iter-

ations 4 and 9 and strong deviations of PI scores for all three con�gurations between iterations

4 and 11. In all con�gurations, the PI score deteriorates to the lowest level and improves again

to the maximum score, with expert RB being the slowest to recover. Figure 7-14 features stable

SI and PI scores with minor outliers. The metrics measured an execution time of 7 seconds, 118

messages sent between the agents and 35 actions performed. The mean agent execution time was

0,001208333 seconds.

The XCS comparison was performed in three subsequent simulation runs with each run featuring a

di�erent simulated randomness. In each run, two XCS con�gurations are compared, a GA-disabled

con�guration (expert RB) with 5000 iterations and a GA-enabled con�guration (XCS 50k) with

50.000 iterations. Results in 7-15 and 7-16 display a generally lower interoperability score for

expert RB with a mean SI and PI score of 3.75 and 3.0 compared to 5.7 and 5.0 for XCS 50k. The

interoperability analysis shows a drop in SI and PI scores for expert RB after iteration 8 which are

not recovered. In comparison, in XCS 50k the SI and PI scores drop as well after iteration 8, but

recover to the maximum interoperability level after iteration 13. expert RB generally experiences

a worse performance than XCS 50k as evident in all three test runs. In the interoperability analysis

results of �gure 7-17 and �gure 7-19 we note that XCS 50k is quicker to recover the maximum

interoperability score than expert RB.

7.3. RESULTS 187

7.3.5 Scenario S_F results

expert RB
expert RB prag

XCS 50k

XCS 100k

XCS 50k prag

XCS 100k prag

Figure 7-21: Interoperability analysis for scenario S_F including SI (solid lines) and PI scores
(dashed lines)

Median_semantic 6.0 6.0 6.0
Median_pragmatic 6.0 6.0 6.0
Mean_semantic 5.9 5.9 5.9
Mean_pragmatic 5.55 5.62 4.83
Std_semantic 0.44 0.44 0.32
Std_pragmatic 1.15 1.13 1.54

0

1

2

3

4

5

6

In
te

ro
p
e
ra

b
ili

ty
 s

co
re

Aggregated interoperability scores

Legend

semantic score
pragmatic score

expert RB XCS 50k XCS 100k

Figure 7-22: Aggregated representation of the SI and PI scores for scenario S_F

7.3. RESULTS 188

5k no GA
5k no GA prag

50k GA
50k GA prag

Figure 7-23: Interoperability analysis for scenario S_F - XCS comparison including SI (solid lines)
and PI scores (dashed lines)

5k no GA 50k GA
Median_semantic 3.33 6.0
Median_pragmatic 1.0 6.0
Mean_semantic 3.73 5.77
Mean_pragmatic 1.58 5.42
Std_semantic 0.65 0.48
Std_pragmatic 0.79 1.21

0

1

2

3

4

5

6

In
te

ro
p
e
ra

b
ili

ty
 s

co
re

Aggregated interoperability scores

Legend

semantic score
pragmatic score

Figure 7-24: Aggregated representation of the SI and PI scores for scenario S_F - XCS comparison

7.3. RESULTS 189

Metric Value

Execution time 18 m

Used memory (MB) 56

Number of sent messages 1062

Mean agent execution time (seconds) 0,145368272

Number of actions performed 165

Table 7.7: Experiment summary for scenario S_F

The interoperability analysis for scenario S_F evaluates di�erent starting con�gurations. In �gure

7-21, only the expert rule-system I-IOP agent is tested while in �gure 7-23, the same two XCS con-

�gurations (5k no-GA (expert RB), 50k GA(ID2)) as in the case of S_4 are compared. Figure 7-21

shows that expert RB and XCS 50k achieved a solid interoperability performance, with relatively

constant interoperability scores - veri�ed in �gure 7-22 as well. XCS 100k requires 8 iterations

to reach the maximum PI score, which is re�ected in �gure 7-22 with the lowest overall mean PI

score. Also in all tested con�gurations, short PI interruptions at iteration 6,11,16 and 18 can be

observed which in all cases recovered to the maximum PI score after one additional iteration.

The XCS comparison results (�gure 7-23 and 7-24) highlight a deteriorating interoperability per-

formance for 5k no GA from an initial interoperability score of (4.5,2.5) to (2.5,0). On the contrary,

con�guration 50k GA achieved maximum interoperability scores after iteration 5. Figure 7-24 dis-

plays signi�cantly higher mean semantic and pragmatic scores for 50k GA compared to 5k no GA.

7.3. RESULTS 190

7.3.6 Scenario S_P results

expert RB
expert RB prag

XCS 50k
XCS 50k prag

XCS 100k
XCS 100k prag

Figure 7-25: Interoperability analysis for scenario S_P including SI (solid lines) and PI scores
(dashed lines)

expert RB XCS 50k XCS 100k
Median_semantic 6.0 6.0 3.0
Median_pragmatic 1.5 3.5 1.0
Mean_semantic 6.0 6.0 3.1
Mean_pragmatic 2.95 3.15 1.0
Std_semantic 0.0 0.0 0.7
Std_pragmatic 2.02 1.99 0.0

0

1

2

3

4

5

6

In
te

ro
p
e
ra

b
ili

ty
 s

co
re

Aggregated interoperability scores

Legend

semantic score
pragmatic score

Figure 7-26: Aggregated representation of the SI and PI scores for scenario S_P

7.3. RESULTS 191

5k no GA

50k GA
5k no GA prag

50k GA prag

Figure 7-27: Interoperability analysis for scenario S_P - XCS comparison including SI (solid lines)
and PI scores (dashed lines)

Median_semantic 3.5 5.0
Median_pragmatic 1.0 1.5
Mean_semantic 3.55 5.18
Mean_pragmatic 1.2 2.25
Std_semantic 1.07 0.76
Std_pragmatic 0.56 1.64

0

1

2

3

4

5

6

In
te

ro
p
e
ra

b
ili

ty
 s

co
re

Aggregated interoperability scores

Legend

semantic score
pragmatic score

5k no GA 50k GA

Figure 7-28: Aggregated representation of the SI and PI scores for scenario S_P - XCS comparison

7.3. RESULTS 192

Metric Value

Execution time 12 m

Used memory (MB) 56

Number of sent messages 470

Mean agent execution time (seconds) 0,039586305

Number of actions performed 531

Table 7.8: Experiment summary for scenario S_P

Finally, in scenario S_P, speci�cally the pragmatic interoperability level was evaluated to demon-

strate the bounds of the I-IOP abilities to maximize interoperability at runtime. Looking at the

�gure 7-26, XCS 50k marks the best overall performance with a median PI score of 3.5. expert RB

and XCS 100k only achieved a median PI score of 1.5 and 1. The SI scores reach maximum levels

in expert RB and XCS 50k while the median SI score in XCS 100k levels at 3. Figure 7-25 fur-

thermore shows, that while expert RB and XCS 50k eventually reach the maximum PI level after

17 iterations, XCS 100k cannot achieve an improvement in the PI scores and the SI scores remain

around 3 for the complete simulation.

The XCS comparison for scenario S_P present a low PI and medium SI score of 50k GA until itera-

tion 12.5 when SI reaches the maximum level and iteration 18 when PI follows. Similar to previous

scenarios, con�guration 5k no GA experiences a worse interoperability performance which man-

ifests in a mean SI score of 3.44 and mean PI score of 1.2 and a maximum SI and PI score of 5 and

3.5.

7.3.7 XCS training performance

To evaluate the training performance of the XCS learning module, multiple XCS con�gurations are

compared. In particular, the DSC and DSP agents were trained using the XCS con�gurations found

in section A.4.2 which di�erentiate between the number of trained iterations and an active or inac-

tive genetic algorithm. The aim behind this experiment is to compare the advantage of the genetic

algorithm of XCS in scenarios S_4, S_F and S_P and hence the overall advantage of using XCS vs

a standard reinforcement learning procedure. Additionally, by evaluating multiple XCS con�gu-

rations the best trade o� between training time and learning performance can be evaluated. This

is an important metric since as of the agent’s requirement to gain new knowledge at runtime and

thus will need to be retrained regularly. If this re-training however takes up a signi�cant amount

7.3. RESULTS 193

of time, it could hurt the overall agent’s usefulness. To present the training results, the situation,

action, �tness, timestamp, average reward, reward prediction error, experience, action set size and

numerosity returned by the training model are listed, where the timestamp speci�es the last time

the classi�er was part of a GA competition, experience refers to the number of applied parameter

updates, action set size estimates the moving average of the action sets the classi�er was part of,

and numerosity speci�es the number of (micro-) classi�ers, this macro-classi�er actually repre-

sents [But15]. The agents were trained for 1000, 5000, 10.000, 25.000, 50.000 and 100.000 iterations.

These numbers were chosen deliberately to observe a noteworthy e�ect on the training perfor-

mance, since a gap of only 10.000 iterations each did not deliver meaningful results in previous

testing results.

The summarized XCS training results are given in tables A.1 and A.2. The training time for the

DSC and DSP agents lies between 11 and 237 seconds from lowest to highest number of train-

ing iterations, respectively 11 to 240 seconds for the DSP agent. We observe a steady increase

in training times with higher numbers of trained iterations. Considering the di�erence between

active and non-active GA, we observe, that for all experiments with a disabled GA, the agent was

able to learn highly accurate classi�ers which is evidenced by the average �tness over all no-GA

con�gurations roughly around 0.99 . Also the number of learned classi�ers is considerably higher

compared to an enabled GA. However, one has to keep in mind that these classi�ers are not gen-

eralized, which means that, opposed to the classi�ers in the GA con�gurations, they only match

their respective situations. The best training results with enabled GA were obtained by the con-

�guration XCS5k for the DSC and XCS25k for the DSP agents with an average �tness of 0.73143

and 0.912648 respectively. In general, the �tness scores in case of an enabled GA are lower for the

DSC results compared to the DSP results. The lowest �tness scores are found with con�guration

XCS1k for both agents. The highest number of learned situations was achieved by XCS50k - no

GA for the DSC agent and XCS5k - no GA for the DSP agent. Notably, in case of the DSC agent,

the number of learned situations decreases with higher numbers of iterations while it increases in

case of the DSC agent results.

7.4. SUMMARY 194

7.4 Summary

This chapter described a feasibility study to evaluate the I-IOP agent architecture in a simulated IoT

ecosystem. The results are shown for di�erent interoperability scenarios and use cases. The next

chapter will discuss these results and present their implications within the runtime interoperability

context and conclude on the performance of the I-IOP agent architecture, if it is able to ful�ll the

runtime interoperability requirements.

Chapter 8

Discussion

8.1 Aim

After the conceptual design and empirical evaluation of the I-IOP architecture, the �nal chapter

will revisit the research questions and discuss how the architecture contributes to the improvement

of interoperability between IoT platforms.

8.2 Revisiting the research questions

To investigate the current state of the art of interoperability in the IoT, a thorough literature survey

was performed. The background search revealed that there are two main streams of approaches:

standardization and software based solutions. The main issues to address with these approaches

(as of the time of writing) are the high amount of proprietary solutions, diversity and heterogene-

ity of IoT ecosystems [SBKK17]. Interoperability research has spawned a plethora of semantic

interoperability solutions and middleware architectures to solve the problem. In the context of the

IoT ecosystem simulation and BIG IoT results the thesis has a�rmed that these elements provide

the foundation for interoperability across IoT domains and platforms. Syntactic interoperability

can only be achieved through common exchange formats and semantic interoperability can only

be reached through semantic technologies. The BIG IoT results have joined both elements into

a uni�ed architecture for easy adoption by IoT platform providers. Yet, the amount of existing

solutions raised the point, why the interoperability problem is still not solved.

It was found that the foundational elements of syntax and semantics do not constitute a com-

plete interoperability stack for IoT systems, as presented and argued during the introduction of

195

8.2. REVISITING THE RESEARCH QUESTIONS 196

the runtime interoperability problem. As shown in chapter 5, the Internet of Things (IoT) requires

(due to its complexity and heterogeneity) a new, runtime oriented perspective on interoperabil-

ity. The requirements to establish runtime interoperability that were gathered accordingly cover

the existing presently mentioned issues in literature, such as semantics and service orientation

but add additional requirements that are not yet properly addressed. These requirements have

been con�rmed by joining the background on System of systems (SoS) research with a holistic,

conceptual model on the interactions in IoT ecosystems which resulted in a thorough picture of

the essential �ows in IoT ecosystems. Such a holistic perspective is still underdeveloped in IoT

literature but necessary to analyze interoperability in these systems from a practical-oriented and

more complete perspective. Also, experimental studies on higher interoperability levels are rarely

implemented making it di�cult to assess and compare interoperability approaches. The mapping

between existing approaches with the runtime interoperability requirements con�rms that exist-

ing approaches only address a minority of the requirements that would be necessary for successful

runtime interoperability. Essential requirements such as adaptivity, autonomy and learning have

been identi�ed as not su�ciently covered by existing solutions which is the reason for the remain-

der of open interoperability problems, especially when it comes to dynamic and highly uncertain

environments. A potential reason for this could be a missing general view on how to properly

model IoT ecosystems, especially across multiple domains.

Thus, to aid the process of creating holistic, runtime-oriented interoperability solutions, the

conceptual model from chapter 4 and the interoperability lifecycle as an abstract representation of

the core elements of interoperability, based on service collaboration in SoS environments have

been introduced. Describing the interoperability problem from a multi-agent perspective (al-

beit existing research in MAS based middleware approaches) provides an ideal basis to model

dynamic IoT ecosystems. As the simulator implementation has demonstrated, this agent-based

model greatly eases the process of designing testbeds for IoT ecosystems. Through the concep-

tual model, all interoperability related information �ows can be represented. The interoperability

lifecycle is able to reproduce existing interoperability solutions and can thus help in identifying

domain-speci�c interoperability problems. However, it is not geared to be used with very detailed,

domain-speci�c requirements, for example in the manufacturing domain. In these cases, the model

has to be extended to include additional constraints on the interoperation, e.g. in the form of com-

munication constraints, industry standards, etc. One of the identi�ed runtime requirements is the

8.3. EVALUATION OF THE I-IOP AGENT 197

ability for IoT systems to measure the state of interoperability. It was identi�ed that a proper metric

for this is missing from literature, rather interoperability is usually measured/assessed from di�er-

ent standpoints and using di�erent metrics - depending on the domain. Usually this is a manual,

design-time oriented approach. The presented semantic and pragmatic interoperability metrics are

concrete, implementable metrics that cover core properties of semantic and pragmatic interoper-

ability mismatches. The feasibility study and the result evaluation have shown that these metrics

can be used equally well for a current assessment of interoperability but also to design utility func-

tions and strategies for IoT agents. Comparing the metric to existing quanti�cation approaches

such as the i-Score 2, it is more straightforward to apply to concrete IoT related interoperability

problems. Especially the pragmatic interoperability metric focuses on concrete, runtime-speci�c

measurements while the semantic interoperability metric can be used in conjunction with ontol-

ogy alignment processes.

8.3 Evaluation of the I-IOP agent

Introducing an optimization component in the runtime interoperability lifecycle e�ectively bridges

the gap between existing design-time oriented interoperability solutions and future, autonomous

and runtime-adaptive solutions. Without a way to interact with the underlying system, an IoT

agent will not be able to execute interoperability related decisions. The literature survey has shown

that, albeit the amount of work in MAS and MDP based problem statements, such a link has not

been successfully established for the IoT. Therefore, the feasibility study addresses the question

whether the developed I-IOP architecture is able to solve or improve the state of the art interop-

erability solutions and solve the problem of runtime interoperability, in particular the transaction

optimization problem. Compared to existing approaches, the I-IOP agent is the �rst interoperabil-

ity middleware that implements a semantic and pragmatic interoperability metric on a quanti�able,

measurable level and provides a self-adaptive middleware component for autonomous adaptations

at runtime. For the evaluation, the results of the feasibility study are discussed in the context of

the previously de�ned runtime interoperability requirements. The underlying assumption states

that if the runtime interoperability requirements are met, the I-IOP architecture e�ectively solves

the runtime interoperability problem.

8.3. EVALUATION OF THE I-IOP AGENT 198

Analyzing the overall performance of the I-IOP agent in the feasibility study, the results �rst

of all show, that in all scenarios the maximum SI and PI scores were achieved. Generally, we ob-

serve a trend that the pragmatic interoperability scores feature a larger standard deviation and

generally lower interoperability scores compared to the semantic results. This could be due to the

generally more complex adaptations necessary to improve pragmatic interoperability compared

to semantic interoperability. The positive performance across the various scenarios con�rms the

domain-independent properties of the agent and its applicability across di�erent use cases. The

fact that the agent was able to achieve a maximization of interoperability scores despite the rel-

atively short iteration cycles demonstrates the responsiveness and real-time nature of the archi-

tecture. In case of a hundred or more iterations to reach the maximum interoperability level this

would have seriously questioned its usefulness in real-time critical applications, for example in

the smart agriculture use case where real-time responsiveness is vital. The responsiveness is ad-

ditionally a�rmed by the quick reaction time (usually one or two iteration cycles) in case of an

interoperability issue.

The service orientation and discoverability requirements are demonstrated by the design of the

simulator experiments, since service oriented communication is the only means by which agents

can exchange data. The results a�rm that the service oriented architecture of the interoperability

lifecycle implementation leads to the proper discovery of required services in each scenario and

message exchange between the systems interfaces. No manual integration was performed within

the I-IOP DSC system, i.e the systems autonomously enter into a business relationships based on

their internal goals (since the goals drive the discovery mechanism). This is re�ected in the simula-

tion outcomes, as all scenarios require �rst of all that the DSC agent queries for available providers

and negotiates a contract. In all results, the discovery was successful which is proven by a general

interoperability level > 0 across experiments. Thus the architecture seems well suited for dynamic,

open environments such as the one depicted in the environmental-aware routing service were it

is expected that IoT service compositions change more frequently.

The adaptivity requirement is met as the I-IOP agents reliably respond to a deterioration of

interoperability in all tested scenarios. Moreover the decisional autonomy of the agent is veri-

�ed, as a manual intervention was not performed to maximize interoperability by the experiment

operator. Rather, the agents were shown to be able to reason about the current level of interoper-

8.3. EVALUATION OF THE I-IOP AGENT 199

ability and act accordingly to improve interoperability. The interoperability curves show steady

behaviour which means that the agents were able to analyze interoperability over all experienced

states. Especially in scenario S_4 the advantages of an autonomous acting system become appar-

ent due to the random DSP perturbations. As the graphs show, the agents kept the interoperability

level relatively steady across the runtime of the experiment. This is especially valuable in use cases

which require strong resilience guarantees, such as in the smart production case where perturba-

tion related failures can have costly consequences.

In the S_2 results, we observe that the agent also properly addresses those cases where no in-

tervention is required since the maximum interoperability level is already achieved. This further

highlights the inter-workings of interoperability reasoning, measurement and autonomous self-

adaptation inside the AC module. This is irrespective of the consideration of semantic or pragmatic

interoperability. The simulation shows the e�ect of the adaptations on the semantic and prag-

matic processes of the underlying transaction module. The simulated System under observation

and controls in this case implement the semantic and pragmatic processes, discussed previously.

Speci�cally the results of S_F and S_P indicate that in both scenarios the agent architecture was

able to properly address the semantic and pragmatic interoperability requirements, by the general

increase in semantic and pragmatic interoperability. Since both these use cases impose di�erent

requirements for interoperability, these results seem promising to further develop the I-IOP agent

architecture towards usage in production systems. The results demonstrate that the AC module

can address both interoperability metrics separately while the agent is only performing either a

semantic or pragmatic interoperability related action at a time. This reduces unnecessary over-

head and costs which is further important for the real-world applicability of the I-IOP agent. In

the smart production related scenario S_P the advantages of the proposed architecture become

further apparent, since the low pragmatic interoperability levels in the beginning of the simula-

tion indicate that without proper adaptation the systems would not be able to interoperate. This

motivates the importance and relevance of such automated processes to cope with interoperabil-

ity issues especially in complex industrial settings were systems are generally harder to become

interoperable.

On a side note, in the S_P scenario problems regarding the transaction optimization process are

visible in the case of XCS_100k. Here, the optimization process gets stuck in a local optima around

semantic interoperability level 3 - 4. This indicates that the agent’s adaptation process is still sen-

sitive to initial starting conditions. This illustrates the earlier assumption about the importance

8.3. EVALUATION OF THE I-IOP AGENT 200

of being aware of the variability of IoT ecosystems, i.e. that the IoT system designer needs to

properly con�gure the agent to the respective context, since the same con�guration for an in-

dustrial context might not work in a farming or smart city related context. Furthermore, a trend

can be observed that pragmatic interoperability is more challenging to achieve than semantic in-

teroperability, since the pragmatic scores usually lack behind the semantic scores. This can be

explained by the fact that the pragmatic feature space o�ers more freedom for adaptation and is

more challenging to navigate furthermore assigning more weight to the expertise of the IoT expert

to properly con�gure the agent before deployment. Nevertheless, the I-IOP agents were also able

to maximize pragmatic interoperability alongside semantic interoperability.

Considering the learning performance of the I-IOP agent’s XCS learning module, the results

a�rm that the agent is able to learn the essential situation-action rules necessary for the tested

scenarios. The results have shown that for both the GA-disabled and GA-enabled case the XCS

module worked as expected. In case of a disabled GA, the learning performance is strong and

reliable - exhibiting better performance than in the GA-enabled case. This observation can be ex-

plained since in the case of exact matchings, the classi�ers can be �tted exactly to the situations

which increases the �tness for each classi�er. One has to keep in mind though that this always

comes at the cost of a worse generalization performance. Since the number of learned situations

does not increase signi�cantly with increased training iterations over 5000, we can conclude that

the disabled GA con�guration could be applied for clearly arranged, rather static environments

such as in the smart agriculture or smart production examples where generalization is not neces-

sary as no new situations will be experienced at runtime by the agent and where fast training is

more important.

Regarding the performance of the GA-enabled experiments we observe the following: On the one

hand, the DSC and DSP agents were able to learn the correct actions for the presented training

situations and the average �tness value of 0.71 and 0.89 shows that they are quite con�dent in

their learned experience. Notably, the �tness between the DSC and DSP agent trainings di�ers

which can be explained with the di�erent action spaces and underlying strategies that were used

for training. The agents already achieved good performance values after 5k iterations in case of

the DSC agent and 10k iterations for the DSP agent, with only slightly improvements thereafter.

On the other hand, the agents seem to struggle with situations in which not a single element of

the situation identi�er is essential but multiple. In other words, if an action decision depends on

8.3. EVALUATION OF THE I-IOP AGENT 201

multiple state features at once, the XCS module seems to experience problems during training.

Another issue appeared when, in some cases, the agents seem to learn abstracted situations when

instead they should be be conditioned on the concrete condition parameters. This problem seemed

to resolve with increased training cycles though, again requiring a trade-o� between training time

and accuracy. Comparing the training time for each iteration with the gain in �tness, it is appar-

ent that a larger amount of iterations achieves no signi�cant improvement which would justify an

increase in training time over two minutes. Probably, the agent over�ts with increased number of

iterations to the already learned situation-action mappings. Increasing the exploration ratio could

be a solution to this problem, but this brings the disadvantage of longer training cycles which

might or might not be desirable. We thus have to balance between completeness and real-time

applicability of the agent’s policy. In a smart city context it is better for an agent to have a rather

complete set of situation knowledge since more unexpected situations can occur while in a smart

farming scenario the real-time nature is more important, i.e. less training cycles since the amount

of experienced situations might be smaller. To conclude, it seems to be generally better to use less

iterations for the initial training, which might not capture all situations than to risk over�tting.

Situations which are not captured during the initial training process can later be added in subse-

quent feedback cycles from the environment. This would also allow the agent to adapt the policy

to highly speci�c environment situations as well. The rather low training time of around eighty

seconds makes it possible to run the training procedure at runtime and constantly feed in new

knowledge which makes it suitable for real-time use cases.

As a comment to the overall training results, it is obvious that the action space (see table A.3) is

relatively small and furthermore very general and not use case speci�c. This is the result of a num-

ber of tests with di�erent action spaces and action con�gurations. This �nal action set produced

the best performance. It was observed during experimentation that the general learning perfor-

mance decreased with increasing number of actions, probably because with increased situation

and action spaces, the combinatorial number of situation-action mappings gets too large for the

agent to learn in a reasonable amount of time. This requires the designer of the learning module to

carefully decide, which situations and actions are relevant. This also means, that a general purpose

situation-action map is not feasible in this architecture - hence training generalist agents which

are applicable in multiple environments is di�cult. This is in line with the earlier proposition that

agents should be carefully con�gured and trained to the respective domain they are operating in.

8.3. EVALUATION OF THE I-IOP AGENT 202

Thus a more realistic assumption would be, that the AC module is trained di�erently, specialized

on the underlying domain problem. This might contradict the underlying statement, that inter-

operability solutions in the IoT should be domain independent. But the general I-IOP architecture

is in fact domain independent which means, in case of context switches, the AC-module can be

exchanged, while the rest of the agent remains the same. For example, the same agent can be used

in di�erent smart factory installments, by being re-trained when switching contexts to learn the

proper policy for each context. This also brings the advantage, that multiple AC-modules could be

pre-trained before the agent starts operation and switched at runtime based on the need which in-

creases the agent’s responsiveness and improves resilience. In a smart production context we can

envision a collection of pre-trained models which are exchanged based on the factory con�gura-

tion and production needs. Another alternative is to switch from a discrete to a continuous action

space which is better suited to handle large action spaces which could occur in a smart production

scenario when IoT systems experience large degrees of con�gurability and parameters. However

this would require a di�erent learning module which is not considered in the scope of this thesis.

Breaking down the runtime performance of the trained agents, we need to consider the re-

sults of the comparison between expert policies vs XCS learned policies. Also, the XCS learning

policies results which compare the di�erence between an active and inactive GA. The general as-

sumption is that the XCS - learned policy works equally well or better than the expert rule-base

policy. This is obviously a trivial baseline assumption which needs to be supported by the ex-

perimental results in oder to justify the learning module in the �rst place. The next assumption

veri�es whether the XCS50k policy indeed achieves an overall better performance compared to

the XCS10k policy since the XCS training results have shown similar training results between the

XCS50k and XCS10k training con�gurations. Based on the scenario results the �rst assumption

generally holds, however in scenario S_P we notice that the expert policy achieved slightly better

results. This could be due to the active exploratory component of the XCS agent. The exploratory

component has the advantage, that the agent is able to react to new situations at runtime (as ev-

idenced by the XCS comparison results), nevertheless this also means that in some situations the

agent explores the action space instead of choosing a learned action. This could also explain the

pragmatic interoperability results of XCS_100k in S_F which show a decrease in interoperability

between episodes 6 and 8. This is again an indicator for the importance of proper con�guration

by an IoT expert. In case of an already ideal con�guration, there is no need for the agent to ex-

8.3. EVALUATION OF THE I-IOP AGENT 203

plore better solutions hence the learned policies should be disabled. However, in case there was

no expert con�guration, the agent can improve performance through its exploratory, optimizing

nature.

The second assumption does not hold, which is especially obvious in the case of the S_P results.

If we compare the overall XCS performances across all scenarios, it is apparent that (except in

S_1 and S_4) the XCS10k module has achieved the same or better performance than the XCS50k

module. This is also visible in the boxplot information. The XCS10k module, although having

learned fewer situations than the XCS50k module, shows an overall higher �tness for the learned

situation action mappings in the training results. This means, as long as those situations for which

the agent was not trained are not experienced at runtime, the adaptive performance will be better.

In a real-world operation this requires careful consideration by the IoT expert to determine what

levels of situational variability will be experienced by the agent to achieve best performance. The

signi�cantly worse performance by XCS50k in S_P probably has to be accounted to the earlier

mentioned problem of local minima. Some results (for instance in �gure 7-11) show oscillating

interoperability scores. This could hint to problems with contradictory actions that the agent sug-

gests between iterations. Such problems could be avoided through an action memory inside the

agent that "blocks" actions for a certain time to avoid them being executed in circles. Also, the

agent’s learning model could be expanded to include the previous taken action alongside the situ-

ation information. Such improvements have not been considered yet and should be postponed for

future enhancements of the I-IOP architecture.

Comparing the results of the distinct XCS comparison we want to analyze whether indeed the XCS

agent with an enabled GA performs better at runtime than a GA-disabled, classical reinforcement

learning agent. In all three evaluated scenarios we observe a trend that the GA-enabled con�gu-

rations achieved better results, signi�cantly even in the case of scenario S_F and S _4. Plausibly,

the non generalizing behaviour keeps the agent’s knowledge base limited to only those speci�c

situations it has experienced during training. This is veri�ed by the results since the GA-disabled

agent gets stuck or experiences worsening interoperability performance over the course of the

simulation, as shown in �gure 7-23. The GA-enabled agent is faster to recover a deteriorated

interoperability state and also more robust which is supported by the generally higher interoper-

ability score in the boxplot aggregations. For an IoT system such as in smart production this means

less failures and higher resilience. Also, the more the agent is able to adapt to new contexts the

less manual e�ort is required thus signi�cantly reducing costs and therefore increasing the overall

8.3. EVALUATION OF THE I-IOP AGENT 204

pro�tability of large scale IoT deployments. Furthermore, the assumption that the XCS agent is

able to learn to react to new situations is backed up by the results as apparently, in case of missing

situation-action mappings, the GA-disabled agent is not able to improve interoperability. This can

be seen for example in �gure 7-15 or �gure 7-23. This is furthermore an assurance (for example for

a farm manager or machine operator), that in critical situations which have not been thought of by

an IoT expert, the system will remain operational. Summarizing, the XCS comparison shows that,

although the disabled GA con�gurations achieved better training results, the online performance

paints a di�erent picture. The results in scenarios S_4, S_F and S_P therefore validate that the ge-

netic algorithm in combination with a reinforcement learning component o�ers advantages over a

pure reinforcement learning module which is an encouraging observation especially considering

the properties of IoT ecosystems of self-organization,emergence and dynamic connectivity, i.e. fre-

quent changes at runtime are to be expected. This underlines the �t of the I-IOP agent architecture

to the core interoperability problem in IoT ecosystems and the need for runtime interoperability.

8.3.1 E�ort and performance analysis

The measured metrics during experimentation highlight the general low footprint of the I-IOP

architecture. Since larger amounts of training iterations do not lead to better performance during

training, we assume training cycles between 10.000 and 50.000 iterations in operation. Therefore,

the expected training time lies between roughly one or two minutes. Since a constant online re-

training is not necessary, this keeps the training overhead reasonably low and thus applicable to a

wide range of IoT scenarios (assuming a corresponding thread model so that training and agent ex-

ecution can be parallelized). Thus, training delays should not be an issue, neither in end-consumer

based use cases such as environmental-routing nor in business-to-business based industrial sce-

narios. As seen in the metric results of all simulated scenarios, the overall memory consumption

of the agent is moderate at a couple of megabytes, which makes is possible to execute the agent

also on constrained IoT platforms. This is highly relevant in industrial settings, were embedded

platforms on industrial machines are predominant and allow to bring IoT solutions closed to the

edge of computing. The rather large number of sent messages between the individual I-IOP agents

points to the need for a stable network connection in a real-world deployment. This can generally

be assumed to be the case though, especially in rather closed settings of smart farms or smart

production lines. The mean agent execution time of 0,050962134 seconds supports the applica-

bility of the I-IOP architecture for real-time scenarios as required especially, for example in the

8.3. EVALUATION OF THE I-IOP AGENT 205

smart production use case. Although the execution time will always vary (based on the underly-

ing hardware) it does not exclude such real-time cases. Yet, we have to keep the general training

time in mind, which requires parallelization in highly dynamic ecosystems to maintain real-time

responsiveness.

Integration e�ort Although the real integration e�ort of the I-IOP architecture will only be

visible when employed in real-world systems, the integration e�ort can be estimated through the

feasibility study design. The fundamental agent architecture requires the IoT developer to design

its IoT application/service logic accordingly. A plug-and-play solution is currently not feasible.

Essentially this means that the developer needs to specify the search queries to be executed or

the o�erings to be registered. Also, the choice of provider systems after the output of the match-

making functionality needs to be encoded by the developer according to the domain / customer

requirements. The semantic embedding of messages can be assisted through code annotations, to

help the semantic description of search queries, o�erings and messages. This was also tested and

veri�ed in the BIG IoT project. Additionally, the interoperability metric (for evaluation of the in-

teroperability situation) needs to be speci�ed by the developer or customer of the service as well.

This may seem like an unreasonable amount of e�ort but if we compare this one-time e�ort to the

overall runtime gains we note that after the agent received its initial con�guration, it can be used

at runtime with no further input required from the developer until a change is desired.

The fact that the actions of the I-IOP agent only have an e�ect on the environment if implemented

by the underlying SUOC means, that the biggest hurdle for integration lies in the implementation

of the action space on the controlled system side. Essentially, this requires an initial e�ort from the

IoT developer of the SUOC to implement the action space. Obviously, if the system does not sup-

port certain actions, the abilities of the I-IOP agent will be restricted. Conversely, the mightiness

of the I-IOP agent rises simultaneously with the amount of implemented actions. In the feasibility

study it was assumed that the IoT developer implements all actions of the action space - hence the

results will di�er if this is not the case. Due to this essential step for the success of the agent, the

process of action implementation should be assisted by providing templates and solid documen-

tation to help the IoT developer as much as possible. The simulation summaries indicate that the

agents communicate a large number of messages, thus the IoT developer has to make sure that he

secures his system from being overloaded by agent messages.

8.4. SUMMARY 206

8.4 Summary

Table 8.1 gives an overview over all known runtime interoperability requirements (from section

5.3), and the evaluated level of achievement of the I-IOP agent based on the empirical results. The

level of achievement is ranked from one ’*’ to the maximum of ’***’.

Requirement/Approach Level of achievement
Measurability ***

Discoverability ***
Service orientation ***

Semantic mechanisms **
Pragmatic mechanisms **

Adaptivity ***
Learning behaviour **

Autonomy **
Interoperability reasoning ***

Table 8.1: The level of achievement with respect to the runtime interoperability requirements that
the I-IOP agent achieves.

Overall it was shown, that the I-IOP agent architecture successfully implements the runtime in-

teroperability requirements. The runtime interoperability in IoT ecosystems is de�ned as achieved

when IoT systems are able to autonomously ful�ll a common mission (or goal), for a non-negligible

amount of time. Re�ecting on the overall results we observe that in all scenarios the I-IOP agents

were able to collaboratively achieve su�cient, or optimal levels of interoperability. The adaptivity

and autonomy requirements are fully met through the I-IOP architecture and also the learning be-

haviour of the AC module shows promising results, although there is still room for improvements,

particular in cases of local optima. It is further shown that the IoT expert who is responsible to

instantiate and oversee the deployment is an important resource to make the I-IOP agents achieve

optimal performance. This means, the human factor still plays an important role in the increasing

automated world. Nevertheless, the I-IOP agent architecture presents a valuable improvement over

state-of-the-art IoT middleware which, as of yet, has not considered the application of machine

learning as part of the middleware o�ering but rather focused on the levels of service orientation

and semantics (with some exceptions). In addition, comparing the outcomes of the feasibility study

with the other approaches for interoperability (compare table 5.7), it is evident that especially with

regards to measurability, learning behaviour and autonomy this thesis adds a valuable contribu-

tion.

8.4. SUMMARY 207

As a disclaimer, we should be aware that the results were obtained through a simulation of

an IoT ecosystem. Even though the results were not derived from a real-world ecosystem, they

nevertheless show a strong indicator for the relevance of the I-IOP architecture to achieve runtime

interoperability. The simulator was designed based on real-world testbeds and careful literature

analysis but a validation was made di�cult due to missing real-world environments for testing as

of the time of writing. Since the simulation results are promising and considering the increasing

development e�orts in the IoT, a subsequent step will be to test the architecture in a real-world IoT

system. This task will be postponed to potential follow-up work of this thesis. It will be interesting

to compare the architecture in di�erent real-world setting which would further generate valuable

research data for additional improvements. Also, the correctness of the implementation of the

simulation was tested using unit tests. However it can not be excluded that inaccuracy in the

implementation (especially with regards to the simulation of transactions between DSC and DSP

agents) also a�ect the interoperability scores.

Part IV

Conclusion

208

Chapter 9

Conclusion & Outlook

Interoperability was shown to be a thorny issue in the context of the Internet of Things, especially

with regards to ecosystem formation and establishment of IoT marketplaces. As we have seen,

tremendous research e�orts have been invested already but still there are many open questions

left. This thesis lines up with this stream of research to analyze the problem of interoperability

between IoT platforms, which is one of the main issues preventing the IoT from reaching its ex-

pected value. A conceptualization of an IoT ecosystem from a System of systems (SoS) perspective

was presented, followed by a formalism of the runtime interoperability problem which conceptu-

alizes interoperability not from the usual design time perspective but from an Organic Computing

inspired runtime-oriented viewpoint. This helped to analyze the de�cits of existing interoper-

ability methods followed by a proposal for a self-adaptive IoT agent architecture which addresses

the runtime interoperability problem on a technical level and allows to adapt an interoperability

functionality at runtime to optimize semantic and pragmatic interoperability. The formalization

of runtime interoperability addresses all levels of the interoperability lifecycle and serves as a cen-

tral guideline to cover the major aspects of the interoperability problem in the IoT, speci�cally

pragmatic interoperability, which has not yet been previously handled on an architectural level.

Also, the introduced formalization elaborate interoperability metrics for semantic and pragmatic

interoperability in order to make the interoperability problem quanti�able and measurable, which

is an active problem in current research. The I-IOP agent model was evaluated in a simulated IoT

environment, designed based on common IoT use cases. An evaluation with existing work in the

design of IoT middleware was provided as well, to show the bene�ts of the introduced runtime

oriented perspective. The agent architecture lays a solid foundation for handling the interoperabil-

209

9.1. FUTURE WORK 210

ity problem in the IoT from a new perspective which should provide better customer experience

and more resilience between distributed systems. The architecture o�ers a regulatory feedback

mechanism through observing the current state between the SUOC and adapting interoperabil-

ity relevant parameters accordingly. It is realized through a rule-based online learning system, in

this case through a XCS system. Such dynamic approaches, when introduced into real IoT sys-

tems, are desired to cross IoT platform boundaries to enable the future vision of the Internet of

Things (IoT 2.0) as complex SoS where systems of di�erent scales and capabilities are connected

in cross-domain, cross-platform manner to improve human life and to enable new business areas

and technology advances.

9.1 Future work

To further verify the conceptual model and the interoperability lifecycle, additional domain sce-

narios and use cases should be evaluated, for example using the simulator or in real-world testbeds.

This would advance the validation of the underlying assumptions and could also extend the model

with additional domain speci�cs, if needed. However, as a note of caution, the model should still

be kept at a rather abstract level to avoid the problem of making it too domain dependent. The

semantic and pragmatic interoperability metrics are not assumed to be complete, but instead they

present ground for further extensions and evaluations in concrete IoT systems. Further techni-

cal improvements could well make it possible to monitor the complete communication scenario

of agent communication. The local optima problem should be addressed by testing other opti-

mization algorithms and re-evaluate the presented scenarios. Also, one could experiment with

continuous state and action spaces to make the AC module more versatile and robust. Generally

there are also other topics relevant in the general scope of the IoT interoperability problem, such

as privacy, trust and security. Although these topics are not addressed in the scope of this thesis,

they should be linked with the I-IOP architecture to show how the architecture in�uences these

issues. Another research direction could lead into the game theory territory. In this thesis, only

the collaborative settings between IoT systems are considered but one could include confronta-

tional/adversarial settings and analyze the e�ect on the interoperability level. This could be an in-

teresting analysis regarding the bene�ts/disadvantages of cooperation vs. competition in an open

IoT ecosystem. With increased platform connectivity by di�erent vendors and therefore increased

decentralization of the IoT infrastructure this will be an important topic in the near future.

Appendix A

Appendix

211

Acronyms

API Application programming interface.

Bluetooth SIG Bluetooth Special interest group.

CC Cloud computing.

CMP Connectivity management platform.

CS Constituent system.

DLT Distributed ledger technology.

DSC Digital service consumer.

DSE Digital service ecosystem.

DSP Digital service provider.

EU European union.

IaaS Infrastructure as a service.

IEEE Institute of Electrical and Electronics Engineers.

INSP Infrastructure provider.

IoT Internet of Things.

J2EE Java 2 enterprise edition.

JSON-LD JSON Linked data.

212

Acronyms 213

LCIM Levels of conceptual interoperability.

LCS Learning classi�er system.

LISI Levels of Information Systems Interoperability.

LORA Low range wide area network.

M2M Machine to machine.

MMEI Maturity model for Enterprise interoperability.

MQTT Message Queuing Telemetry Transport.

NFC Near �eld communication.

OCA Observer Controller Architecture.

OWL Web Ontology Language.

OWL-S Web Ontology Language for Web Services.

P2P Peer-to-peer.

PaaS Platform as a service.

PI Pragmatic interoperability.

QoS Quality of service.

REST Representational state transfer.

RFID Radio-frequency identi�cation.

RPC Remote Procedure Call.

SaaS Software as a service.

SADP self-aware systems design properties.

SDK Software development kit.

Acronyms 214

SI Semantic interoperability.

SLA Service level agreement.

SOA Service oriented architecture.

SoS System of systems.

SSN Semantic sensor network.

SUOC System under observation and control.

UI User interface.

URI Uniform resource identi�er.

VM Virtual machine.

W3C World Wide Web Consortium.

WoT Web of Trust.

A.1. DETAILED XCS TRAINING RESULTS - DSC 215

A.1 Detailed XCS training results - DSC

A.1.1 XCS 1k - no GA

000000010111 => 8 [0.95602]

000000010111 => 8

Time Stamp: 44

Average Reward: 1000.0

Error: 0.0

Fitness: 0.9560199746936111

Experience: 14

Action Set Size: 1.0

Numerosity: 1

000000101101 => 8 [0.93128]

000000101101 => 8

Time Stamp: 40

Average Reward: 1000.0

Error: 0.0

Fitness: 0.9312812104587673

Experience: 12

Action Set Size: 1.0

Numerosity: 1

000000111000 => 8 [0.94502]

000000111000 => 8

Time Stamp: 273

Average Reward: 1000.0

Error: 0.0

Fitness: 0.9450249683670139

Experience: 13

Action Set Size: 1.0

Numerosity: 1

000000101000 => 17 [0.89263]

000000101000 => 17

Time Stamp: 139

Average Reward: 1000.0

Error: 0.0

Fitness: 0.892626891341824

Experience: 10

Action Set Size: 1.0

Numerosity: 1

000000011011 => 8 [0.91410]

000000011011 => 8

Time Stamp: 162

Average Reward: 1000.0

Error: 0.0

Fitness: 0.9141015130734592

Experience: 11

Action Set Size: 1.0

Numerosity: 1

A.1.2 XCS 1k

00#0#0#0#01# => 17 [0.57562]

00#0#0#0#01# => 17

Time Stamp: 1000

Average Reward: 1000.0

Error: 0.0

Fitness: 0.5756178367019197

Experience: 18

Action Set Size: 41.02589602299904

Numerosity: 4

A.1.3 XCS 5k - no GA

000000111010 => 8 [0.91410]

000000111010 => 8

Time Stamp: 3921

Average Reward: 1000.0

Error: 0.0

Fitness: 0.9141015130734592

Experience: 11

Action Set Size: 1.0

Numerosity: 1

000000011001 => 8 [0.99998]

000000011001 => 8

Time Stamp: 64

Average Reward: 1000.0

Error: 0.0

Fitness: 0.999977699477809

Experience: 48

Action Set Size: 1.0

Numerosity: 1

000000011100 => 8 [0.99998]

000000011100 => 8

Time Stamp: 275

Average Reward: 1000.0

Error: 0.0

Fitness: 0.999977699477809

Experience: 48

Action Set Size: 1.0

Numerosity: 1

000000110100 => 8 [0.99997]

000000110100 => 8

Time Stamp: 125

Average Reward: 1000.0

Error: 0.0

A.1. DETAILED XCS TRAINING RESULTS - DSC 216

Fitness: 0.9999721243472612

Experience: 47

Action Set Size: 1.0

Numerosity: 1

000000100110 => 8 [0.99998]

000000100110 => 8

Time Stamp: 13

Average Reward: 1000.0

Error: 0.0

Fitness: 0.999977699477809

Experience: 48

Action Set Size: 1.0

Numerosity: 1

000000111100 => 8 [0.99987]

000000111100 => 8

Time Stamp: 88

Average Reward: 1000.0

Error: 0.0

Fitness: 0.9998670785296495

Experience: 40

Action Set Size: 1.0

Numerosity: 1

000000101000 => 17 [0.99996]

000000101000 => 17

Time Stamp: 651

Average Reward: 1000.0

Error: 0.0

Fitness: 0.9999564442925956

Experience: 45

Action Set Size: 1.0

Numerosity: 1

000000001100 => 8 [0.99993]

000000001100 => 8

Time Stamp: 35

Average Reward: 1000.0

Error: 0.0

Fitness: 0.9999319442071806

Experience: 43

Action Set Size: 1.0

Numerosity: 1

000000010101 => 8 [0.94502]

000000010101 => 8

Time Stamp: 4065

Average Reward: 1000.0

Error: 0.0

Fitness: 0.9450249683670139

Experience: 13

Action Set Size: 1.0

Numerosity: 1

000000000011 => 17 [0.99998]

000000000011 => 17

Time Stamp: 134

Average Reward: 1000.0

Error: 0.0

Fitness: 0.9999821595822472

Experience: 49

Action Set Size: 1.0

Numerosity: 1

000000100111 => 8 [0.99995]

000000100111 => 8

Time Stamp: 343

Average Reward: 1000.0

Error: 0.0

Fitness: 0.9999455553657445

Experience: 44

Action Set Size: 1.0

Numerosity: 1

000000100100 => 8 [0.99921]

000000100100 => 8

Time Stamp: 109

Average Reward: 1000.0

Error: 0.0

Fitness: 0.9992077262976735

Experience: 32

Action Set Size: 1.0

Numerosity: 1

000000101100 => 8 [0.99991]

000000101100 => 8

Time Stamp: 40

Average Reward: 1000.0

Error: 0.0

Fitness: 0.9999149302589757

Experience: 42

Action Set Size: 1.0

Numerosity: 1

000000111101 => 8 [0.99998]

000000111101 => 8

Time Stamp: 261

Average Reward: 1000.0

Error: 0.0

Fitness: 0.9999821595822472

Experience: 49

Action Set Size: 1.0

Numerosity: 1

000000010011 => 8 [0.99989]

000000010011 => 8

Time Stamp: 92

Average Reward: 1000.0

Error: 0.0

Fitness: 0.9998936628237196

Experience: 41

Action Set Size: 1.0

Numerosity: 1

000000001101 => 8 [0.99959]

000000001101 => 8

Time Stamp: 302

Average Reward: 1000.0

Error: 0.0

Fitness: 0.9995943558644088

Experience: 35

Action Set Size: 1.0

Numerosity: 1

000000111011 => 8 [0.99991]

000000111011 => 8

Time Stamp: 59

Average Reward: 1000.0

Error: 0.0

Fitness: 0.9999149302589757

Experience: 42

Action Set Size: 1.0

Numerosity: 1

000000001011 => 17 [0.99997]

A.1. DETAILED XCS TRAINING RESULTS - DSC 217

000000001011 => 17

Time Stamp: 61

Average Reward: 1000.0

Error: 0.0

Fitness: 0.9999651554340765

Experience: 46

Action Set Size: 1.0

Numerosity: 1

000000001111 => 8 [0.99979]

000000001111 => 8

Time Stamp: 65

Average Reward: 1000.0

Error: 0.0

Fitness: 0.9997923102025773

Experience: 38

Action Set Size: 1.0

Numerosity: 1

000000110101 => 8 [0.99999]

000000110101 => 8

Time Stamp: 70

Average Reward: 1000.0

Error: 0.0

Fitness: 0.9999885821326382

Experience: 51

Action Set Size: 1.0

Numerosity: 1

000000110001 => 8 [0.99949]

000000110001 => 8

Time Stamp: 600

Average Reward: 1000.0

Error: 0.0

Fitness: 0.999492944830511

Experience: 34

Action Set Size: 1.0

Numerosity: 1

000000101001 => 17 [0.99968]

000000101001 => 17

Time Stamp: 464

Average Reward: 1000.0

Error: 0.0

Fitness: 0.999675484691527

Experience: 36

Action Set Size: 1.0

Numerosity: 1

000000111000 => 8 [0.99968]

000000111000 => 8

Time Stamp: 77

Average Reward: 1000.0

Error: 0.0

Fitness: 0.999675484691527

Experience: 36

Action Set Size: 1.0

Numerosity: 1

000000011011 => 8 [0.99991]

000000011011 => 8

Time Stamp: 136

Average Reward: 1000.0

Error: 0.0

Fitness: 0.9999149302589757

Experience: 42

Action Set Size: 1.0

Numerosity: 1

000000011110 => 8 [0.99993]

000000011110 => 8

Time Stamp: 510

Average Reward: 1000.0

Error: 0.0

Fitness: 0.9999319442071806

Experience: 43

Action Set Size: 1.0

Numerosity: 1

000000001010 => 17 [0.99991]

000000001010 => 17

Time Stamp: 91

Average Reward: 1000.0

Error: 0.0

Fitness: 0.9999149302589757

Experience: 42

Action Set Size: 1.0

Numerosity: 1

000000100000 => 17 [0.99921]

000000100000 => 17

Time Stamp: 94

Average Reward: 1000.0

Error: 0.0

Fitness: 0.9992077262976735

Experience: 32

Action Set Size: 1.0

Numerosity: 1

000000011010 => 8 [0.99974]

000000011010 => 8

Time Stamp: 814

Average Reward: 1000.0

Error: 0.0

Fitness: 0.9997403877532216

Experience: 37

Action Set Size: 1.0

Numerosity: 1

000000000100 => 8 [0.99997]

000000000100 => 8

Time Stamp: 390

Average Reward: 1000.0

Error: 0.0

Fitness: 0.9999721243472612

Experience: 47

Action Set Size: 1.0

Numerosity: 1

000000101101 => 8 [0.99993]

000000101101 => 8

Time Stamp: 1049

Average Reward: 1000.0

Error: 0.0

Fitness: 0.9999319442071806

Experience: 43

Action Set Size: 1.0

Numerosity: 1

000000000101 => 8 [0.99949]

000000000101 => 8

Time Stamp: 411

Average Reward: 1000.0

Error: 0.0

Fitness: 0.999492944830511

A.1. DETAILED XCS TRAINING RESULTS - DSC 218

Experience: 34

Action Set Size: 1.0

Numerosity: 1

000000000110 => 8 [0.99974]

000000000110 => 8

Time Stamp: 485

Average Reward: 1000.0

Error: 0.0

Fitness: 0.9997403877532216

Experience: 37

Action Set Size: 1.0

Numerosity: 1

000000000001 => 17 [0.99974]

000000000001 => 17

Time Stamp: 324

Average Reward: 1000.0

Error: 0.0

Fitness: 0.9997403877532216

Experience: 37

Action Set Size: 1.0

Numerosity: 1

000000100001 => 17 [0.99983]

000000100001 => 17

Time Stamp: 421

Average Reward: 1000.0

Error: 0.0

Fitness: 0.9998338481620619

Experience: 39

Action Set Size: 1.0

Numerosity: 1

000000010111 => 8 [0.99989]

000000010111 => 8

Time Stamp: 351

Average Reward: 1000.0

Error: 0.0

Fitness: 0.9998936628237196

Experience: 41

Action Set Size: 1.0

Numerosity: 1

000000101110 => 8 [0.99983]

000000101110 => 8

Time Stamp: 151

Average Reward: 1000.0

Error: 0.0

Fitness: 0.9998338481620619

Experience: 39

Action Set Size: 1.0

Numerosity: 1

000000011101 => 8 [0.99876]

000000011101 => 8

Time Stamp: 588

Average Reward: 1000.0

Error: 0.0

Fitness: 0.9987620723401149

Experience: 30

Action Set Size: 1.0

Numerosity: 1

000000111111 => 8 [0.99989]

000000111111 => 8

Time Stamp: 563

Average Reward: 1000.0

Error: 0.0

Fitness: 0.9998936628237196

Experience: 41

Action Set Size: 1.0

Numerosity: 1

000000101011 => 17 [0.99993]

000000101011 => 17

Time Stamp: 298

Average Reward: 1000.0

Error: 0.0

Fitness: 0.9999319442071806

Experience: 43

Action Set Size: 1.0

Numerosity: 1

000000111110 => 8 [0.99989]

000000111110 => 8

Time Stamp: 197

Average Reward: 1000.0

Error: 0.0

Fitness: 0.9998936628237196

Experience: 41

Action Set Size: 1.0

Numerosity: 1

000000011111 => 8 [0.99983]

000000011111 => 8

Time Stamp: 493

Average Reward: 1000.0

Error: 0.0

Fitness: 0.9998338481620619

Experience: 39

Action Set Size: 1.0

Numerosity: 1

000000010000 => 8 [0.99921]

000000010000 => 8

Time Stamp: 312

Average Reward: 1000.0

Error: 0.0

Fitness: 0.9992077262976735

Experience: 32

Action Set Size: 1.0

Numerosity: 1

000000001001 => 17 [0.99974]

000000001001 => 17

Time Stamp: 254

Average Reward: 1000.0

Error: 0.0

Fitness: 0.9997403877532216

Experience: 37

Action Set Size: 1.0

Numerosity: 1

000000101111 => 8 [0.91410]

000000101111 => 8

Time Stamp: 3858

Average Reward: 1000.0

Error: 0.0

Fitness: 0.9141015130734592

Experience: 11

Action Set Size: 1.0

Numerosity: 1

000000110000 => 8 [0.99983]

000000110000 => 8

A.1. DETAILED XCS TRAINING RESULTS - DSC 219

Time Stamp: 356

Average Reward: 1000.0

Error: 0.0

Fitness: 0.9998338481620619

Experience: 39

Action Set Size: 1.0

Numerosity: 1

000000110111 => 8 [0.99901]

000000110111 => 8

Time Stamp: 409

Average Reward: 1000.0

Error: 0.0

Fitness: 0.999009657872092

Experience: 31

Action Set Size: 1.0

Numerosity: 1

000000010110 => 8 [0.99997]

000000010110 => 8

Time Stamp: 830

Average Reward: 1000.0

Error: 0.0

Fitness: 0.9999651554340765

Experience: 46

Action Set Size: 1.0

Numerosity: 1

000000100101 => 8 [0.99968]

000000100101 => 8

Time Stamp: 419

Average Reward: 1000.0

Error: 0.0

Fitness: 0.999675484691527

Experience: 36

Action Set Size: 1.0

Numerosity: 1

000000000111 => 8 [0.97185]

000000000111 => 8

Time Stamp: 3880

Average Reward: 1000.0

Error: 0.0

Fitness: 0.971852783803911

Experience: 16

Action Set Size: 1.0

Numerosity: 1

A.1.4 XCS 5k

11#00####### => 4 [0.52009]

11#00####### => 4

Time Stamp: 4971

Average Reward: 1000.0

Error: 0.0

Fitness: 0.5200867695339794

Experience: 52

Action Set Size: 46.86336080052103

Numerosity: 23

01########## => 4 [0.82710]

01########## => 4

Time Stamp: 4990

Average Reward: 1000.0

Error: 0.0

Fitness: 0.8271033953114357

Experience: 287

Action Set Size: 110.1872388751312

Numerosity: 85

#0#0###0#0## => 17 [0.73881]

#0#0###0#0## => 17

Time Stamp: 4979

Average Reward: 1000.0

Error: 0.0

Fitness: 0.7388116463209025

Experience: 409

Action Set Size: 97.35320625342044

Numerosity: 70

1##1######## => 6 [0.83972]

1##1######## => 6

Time Stamp: 4976

Average Reward: 1000.0

Error: 0.0

Fitness: 0.839723074186975

Experience: 147

Action Set Size: 94.87775834183924

Numerosity: 80

A.1.5 XCS 10k - no GA

000000000100 => 8 [0.99921]

000000000100 => 8

Time Stamp: 6165

Average Reward: 1000.0

Error: 0.0

Fitness: 0.9992077262976735

Experience: 32

Action Set Size: 1.0

Numerosity: 1

000000000000 => 17 [0.99758]

000000000000 => 17

Time Stamp: 6779

Average Reward: 1000.0

Error: 0.0

Fitness: 0.997582172539287

Experience: 27

Action Set Size: 1.0

Numerosity: 1

000000101100 => 8 [1.00000]

000000101100 => 8

A.1. DETAILED XCS TRAINING RESULTS - DSC 220

Time Stamp: 335

Average Reward: 1000.0

Error: 0.0

Fitness: 0.9999997943139872

Experience: 69

Action Set Size: 1.0

Numerosity: 1

000000010111 => 8 [0.99921]

000000010111 => 8

Time Stamp: 5054

Average Reward: 1000.0

Error: 0.0

Fitness: 0.9992077262976735

Experience: 32

Action Set Size: 1.0

Numerosity: 1

000000111001 => 8 [0.99921]

000000111001 => 8

Time Stamp: 6533

Average Reward: 1000.0

Error: 0.0

Fitness: 0.9992077262976735

Experience: 32

Action Set Size: 1.0

Numerosity: 1

000000011110 => 8 [1.00000]

000000011110 => 8

Time Stamp: 793

Average Reward: 1000.0

Error: 0.0

Fitness: 0.9999999823317061

Experience: 80

Action Set Size: 1.0

Numerosity: 1

000000101001 => 17 [0.99262]

000000101001 => 17

Time Stamp: 8196

Average Reward: 1000.0

Error: 0.0

Fitness: 0.9926213761574924

Experience: 22

Action Set Size: 1.0

Numerosity: 1

000000000001 => 17 [0.99876]

000000000001 => 17

Time Stamp: 6377

Average Reward: 1000.0

Error: 0.0

Fitness: 0.9987620723401149

Experience: 30

Action Set Size: 1.0

Numerosity: 1

000000001000 => 17 [0.95602]

000000001000 => 17

Time Stamp: 8117

Average Reward: 1000.0

Error: 0.0

Fitness: 0.9560199746936111

Experience: 14

Action Set Size: 1.0

Numerosity: 1

000000001011 => 17 [0.97748]

000000001011 => 17

Time Stamp: 8882

Average Reward: 1000.0

Error: 0.0

Fitness: 0.9774822270431288

Experience: 17

Action Set Size: 1.0

Numerosity: 1

000000000110 => 8 [1.00000]

000000000110 => 8

Time Stamp: 40

Average Reward: 1000.0

Error: 0.0

Fitness: 0.9999999942104535

Experience: 85

Action Set Size: 1.0

Numerosity: 1

000000110101 => 8 [0.89263]

000000110101 => 8

Time Stamp: 8661

Average Reward: 1000.0

Error: 0.0

Fitness: 0.892626891341824

Experience: 10

Action Set Size: 1.0

Numerosity: 1

000000111101 => 8 [0.98559]

000000111101 => 8

Time Stamp: 8252

Average Reward: 1000.0

Error: 0.0

Fitness: 0.9855886253076024

Experience: 19

Action Set Size: 1.0

Numerosity: 1

000000111100 => 8 [0.98847]

000000111100 => 8

Time Stamp: 7782

Average Reward: 1000.0

Error: 0.0

Fitness: 0.9884709002460819

Experience: 20

Action Set Size: 1.0

Numerosity: 1

000000100100 => 8 [0.94502]

000000100100 => 8

Time Stamp: 8812

Average Reward: 1000.0

Error: 0.0

Fitness: 0.9450249683670139

Experience: 13

Action Set Size: 1.0

Numerosity: 1

000000110100 => 8 [1.00000]

000000110100 => 8

Time Stamp: 97

Average Reward: 1000.0

Error: 0.0

Fitness: 0.9999999999165639

Experience: 104

A.1. DETAILED XCS TRAINING RESULTS - DSC 221

Action Set Size: 1.0

Numerosity: 1

000000110011 => 8 [0.89263]

000000110011 => 8

Time Stamp: 8753

Average Reward: 1000.0

Error: 0.0

Fitness: 0.892626891341824

Experience: 10

Action Set Size: 1.0

Numerosity: 1

000000011001 => 8 [1.00000]

000000011001 => 8

Time Stamp: 569

Average Reward: 1000.0

Error: 0.0

Fitness: 0.9999999886922919

Experience: 82

Action Set Size: 1.0

Numerosity: 1

000000110111 => 8 [0.93128]

000000110111 => 8

Time Stamp: 8806

Average Reward: 1000.0

Error: 0.0

Fitness: 0.9312812104587673

Experience: 12

Action Set Size: 1.0

Numerosity: 1

000000001001 => 17 [0.91410]

000000001001 => 17

Time Stamp: 8616

Average Reward: 1000.0

Error: 0.0

Fitness: 0.9141015130734592

Experience: 11

Action Set Size: 1.0

Numerosity: 1

000000111010 => 8 [0.99991]

000000111010 => 8

Time Stamp: 6173

Average Reward: 1000.0

Error: 0.0

Fitness: 0.9999149302589757

Experience: 42

Action Set Size: 1.0

Numerosity: 1

000000100101 => 8 [1.00000]

000000100101 => 8

Time Stamp: 91

Average Reward: 1000.0

Error: 0.0

Fitness: 0.9999999981028814

Experience: 90

Action Set Size: 1.0

Numerosity: 1

000000010101 => 8 [0.99993]

000000010101 => 8

Time Stamp: 5325

Average Reward: 1000.0

Error: 0.0

Fitness: 0.9999319442071806

Experience: 43

Action Set Size: 1.0

Numerosity: 1

000000101110 => 8 [1.00000]

000000101110 => 8

Time Stamp: 496

Average Reward: 1000.0

Error: 0.0

Fitness: 0.9999999998370387

Experience: 101

Action Set Size: 1.0

Numerosity: 1

000000010110 => 8 [0.99807]

000000010110 => 8

Time Stamp: 6657

Average Reward: 1000.0

Error: 0.0

Fitness: 0.9980657380314296

Experience: 28

Action Set Size: 1.0

Numerosity: 1

000000011111 => 8 [1.00000]

000000011111 => 8

Time Stamp: 128

Average Reward: 1000.0

Error: 0.0

Fitness: 0.9999999993783522

Experience: 95

Action Set Size: 1.0

Numerosity: 1

000000011010 => 8 [0.99901]

000000011010 => 8

Time Stamp: 6919

Average Reward: 1000.0

Error: 0.0

Fitness: 0.999009657872092

Experience: 31

Action Set Size: 1.0

Numerosity: 1

000000111011 => 8 [0.99979]

000000111011 => 8

Time Stamp: 5077

Average Reward: 1000.0

Error: 0.0

Fitness: 0.9997923102025773

Experience: 38

Action Set Size: 1.0

Numerosity: 1

000000100010 => 17 [0.99845]

000000100010 => 17

Time Stamp: 6560

Average Reward: 1000.0

Error: 0.0

Fitness: 0.9984525904251437

Experience: 29

Action Set Size: 1.0

Numerosity: 1

000000101011 => 17 [1.00000]

000000101011 => 17

Time Stamp: 509

A.1. DETAILED XCS TRAINING RESULTS - DSC 222

Average Reward: 1000.0

Error: 0.0

Fitness: 0.9999998946887614

Experience: 72

Action Set Size: 1.0

Numerosity: 1

000000011101 => 8 [0.98847]

000000011101 => 8

Time Stamp: 7658

Average Reward: 1000.0

Error: 0.0

Fitness: 0.9884709002460819

Experience: 20

Action Set Size: 1.0

Numerosity: 1

000000001111 => 8 [1.00000]

000000001111 => 8

Time Stamp: 4255

Average Reward: 1000.0

Error: 0.0

Fitness: 0.9999962585932229

Experience: 56

Action Set Size: 1.0

Numerosity: 1

000000110001 => 8 [0.99996]

000000110001 => 8

Time Stamp: 5029

Average Reward: 1000.0

Error: 0.0

Fitness: 0.9999564442925956

Experience: 45

Action Set Size: 1.0

Numerosity: 1

000000010100 => 8 [0.99807]

000000010100 => 8

Time Stamp: 6191

Average Reward: 1000.0

Error: 0.0

Fitness: 0.9980657380314296

Experience: 28

Action Set Size: 1.0

Numerosity: 1

000000011000 => 8 [0.96482]

000000011000 => 8

Time Stamp: 7554

Average Reward: 1000.0

Error: 0.0

Fitness: 0.9648159797548889

Experience: 15

Action Set Size: 1.0

Numerosity: 1

000000001010 => 17 [1.00000]

000000001010 => 17

Time Stamp: 288

Average Reward: 1000.0

Error: 0.0

Fitness: 0.9999999909538335

Experience: 83

Action Set Size: 1.0

Numerosity: 1

000000000111 => 8 [0.98847]

000000000111 => 8

Time Stamp: 6970

Average Reward: 1000.0

Error: 0.0

Fitness: 0.9884709002460819

Experience: 20

Action Set Size: 1.0

Numerosity: 1

000000000010 => 17 [0.93128]

000000000010 => 17

Time Stamp: 8411

Average Reward: 1000.0

Error: 0.0

Fitness: 0.9312812104587673

Experience: 12

Action Set Size: 1.0

Numerosity: 1

000000100001 => 17 [0.89263]

000000100001 => 17

Time Stamp: 8787

Average Reward: 1000.0

Error: 0.0

Fitness: 0.892626891341824

Experience: 10

Action Set Size: 1.0

Numerosity: 1

000000000011 => 17 [0.94502]

000000000011 => 17

Time Stamp: 8210

Average Reward: 1000.0

Error: 0.0

Fitness: 0.9450249683670139

Experience: 13

Action Set Size: 1.0

Numerosity: 1

000000110010 => 8 [0.99622]

000000110010 => 8

Time Stamp: 6912

Average Reward: 1000.0

Error: 0.0

Fitness: 0.9962221445926361

Experience: 25

Action Set Size: 1.0

Numerosity: 1

A.1.6 XCS 10k

#1#0######## => 4 [0.75711]

#1#0######## => 4

Time Stamp: 9990

Average Reward: 1000.0

Error: 0.0

Fitness: 0.7571121424618339

A.1. DETAILED XCS TRAINING RESULTS - DSC 223

Experience: 592

Action Set Size: 128.52287162400862

Numerosity: 83

00#####1#### => 8 [0.50870]

00#####1#### => 8

Time Stamp: 10000

Average Reward: 1000.0

Error: 0.0

Fitness: 0.5086996038162261

Experience: 1805

Action Set Size: 144.4581460843055

Numerosity: 70

01########## => 4 [0.82342]

01########## => 4

Time Stamp: 9978

Average Reward: 1000.0

Error: 0.0

Fitness: 0.8234152775749028

Experience: 509

Action Set Size: 143.68820478884786

Numerosity: 106

1##1######## => 6 [0.63969]

1##1######## => 6

Time Stamp: 9999

Average Reward: 1000.0

Error: 0.0

Fitness: 0.6396888477982674

Experience: 316

Action Set Size: 147.38659783393763

Numerosity: 89

A.1.7 XCS 25k - no GA

000000101100 => 8 [0.99807]

000000101100 => 8

Time Stamp: 21809

Average Reward: 1000.0

Error: 0.0

Fitness: 0.9980657380314296

Experience: 28

Action Set Size: 1.0

Numerosity: 1

000000111111 => 8 [1.00000]

000000111111 => 8

Time Stamp: 9005

Average Reward: 1000.0

Error: 0.0

Fitness: 0.9999999999999971

Experience: 150

Action Set Size: 1.0

Numerosity: 1

000000101011 => 17 [0.99698]

000000101011 => 17

Time Stamp: 21381

Average Reward: 1000.0

Error: 0.0

Fitness: 0.9969777156741089

Experience: 26

Action Set Size: 1.0

Numerosity: 1

000000110101 => 8 [1.00000]

000000110101 => 8

Time Stamp: 16520

Average Reward: 1000.0

Error: 0.0

Fitness: 0.9999997428924841

Experience: 68

Action Set Size: 1.0

Numerosity: 1

000000110010 => 8 [0.99989]

000000110010 => 8

Time Stamp: 20586

Average Reward: 1000.0

Error: 0.0

Fitness: 0.9998936628237196

Experience: 41

Action Set Size: 1.0

Numerosity: 1

000000110000 => 8 [0.99262]

000000110000 => 8

Time Stamp: 22303

Average Reward: 1000.0

Error: 0.0

Fitness: 0.9926213761574924

Experience: 22

Action Set Size: 1.0

Numerosity: 1

000000100100 => 8 [1.00000]

000000100100 => 8

Time Stamp: 17515

Average Reward: 1000.0

Error: 0.0

Fitness: 0.9999999723932907

Experience: 78

Action Set Size: 1.0

Numerosity: 1

000000101001 => 17 [0.99758]

000000101001 => 17

Time Stamp: 21908

Average Reward: 1000.0

Error: 0.0

Fitness: 0.997582172539287

Experience: 27

Action Set Size: 1.0

Numerosity: 1

000000010100 => 8 [0.99993]

000000010100 => 8

Time Stamp: 19798

Average Reward: 1000.0

Error: 0.0

Fitness: 0.9999319442071806

Experience: 43

Action Set Size: 1.0

Numerosity: 1

000000100110 => 8 [0.99937]

A.1. DETAILED XCS TRAINING RESULTS - DSC 224

000000100110 => 8

Time Stamp: 19946

Average Reward: 1000.0

Error: 0.0

Fitness: 0.9993661810381388

Experience: 33

Action Set Size: 1.0

Numerosity: 1

000000100001 => 17 [0.94502]

000000100001 => 17

Time Stamp: 22804

Average Reward: 1000.0

Error: 0.0

Fitness: 0.9450249683670139

Experience: 13

Action Set Size: 1.0

Numerosity: 1

000000101000 => 17 [0.99999]

000000101000 => 17

Time Stamp: 19244

Average Reward: 1000.0

Error: 0.0

Fitness: 0.9999908657061105

Experience: 52

Action Set Size: 1.0

Numerosity: 1

000000000010 => 17 [0.98199]

000000000010 => 17

Time Stamp: 23604

Average Reward: 1000.0

Error: 0.0

Fitness: 0.981985781634503

Experience: 18

Action Set Size: 1.0

Numerosity: 1

000000000000 => 17 [0.98199]

000000000000 => 17

Time Stamp: 23584

Average Reward: 1000.0

Error: 0.0

Fitness: 0.981985781634503

Experience: 18

Action Set Size: 1.0

Numerosity: 1

000000010001 => 8 [1.00000]

000000010001 => 8

Time Stamp: 14496

Average Reward: 1000.0

Error: 0.0

Fitness: 0.9999999997962984

Experience: 100

Action Set Size: 1.0

Numerosity: 1

000000001100 => 8 [0.99622]

000000001100 => 8

Time Stamp: 21321

Average Reward: 1000.0

Error: 0.0

Fitness: 0.9962221445926361

Experience: 25

Action Set Size: 1.0

Numerosity: 1

000000001010 => 17 [0.99949]

000000001010 => 17

Time Stamp: 21298

Average Reward: 1000.0

Error: 0.0

Fitness: 0.999492944830511

Experience: 34

Action Set Size: 1.0

Numerosity: 1

000000111000 => 8 [0.99845]

000000111000 => 8

Time Stamp: 21248

Average Reward: 1000.0

Error: 0.0

Fitness: 0.9984525904251437

Experience: 29

Action Set Size: 1.0

Numerosity: 1

000000111110 => 8 [0.99262]

000000111110 => 8

Time Stamp: 22639

Average Reward: 1000.0

Error: 0.0

Fitness: 0.9926213761574924

Experience: 22

Action Set Size: 1.0

Numerosity: 1

000000011100 => 8 [1.00000]

000000011100 => 8

Time Stamp: 14449

Average Reward: 1000.0

Error: 0.0

Fitness: 0.9999999996817163

Experience: 98

Action Set Size: 1.0

Numerosity: 1

000000110001 => 8 [0.99996]

000000110001 => 8

Time Stamp: 21356

Average Reward: 1000.0

Error: 0.0

Fitness: 0.9999564442925956

Experience: 45

Action Set Size: 1.0

Numerosity: 1

000000011111 => 8 [0.89263]

000000011111 => 8

Time Stamp: 24145

Average Reward: 1000.0

Error: 0.0

Fitness: 0.892626891341824

Experience: 10

Action Set Size: 1.0

Numerosity: 1

000000001110 => 8 [1.00000]

000000001110 => 8

Time Stamp: 16997

Average Reward: 1000.0

Error: 0.0

Fitness: 0.9999984675197842

A.1. DETAILED XCS TRAINING RESULTS - DSC 225

Experience: 60

Action Set Size: 1.0

Numerosity: 1

000000000110 => 8 [1.00000]

000000000110 => 8

Time Stamp: 490

Average Reward: 1000.0

Error: 0.0

Fitness: 0.9999999999999998

Experience: 209

Action Set Size: 1.0

Numerosity: 1

000000100111 => 8 [0.99998]

000000100111 => 8

Time Stamp: 19563

Average Reward: 1000.0

Error: 0.0

Fitness: 0.999977699477809

Experience: 48

Action Set Size: 1.0

Numerosity: 1

000000010000 => 8 [0.99999]

000000010000 => 8

Time Stamp: 18985

Average Reward: 1000.0

Error: 0.0

Fitness: 0.9999857276657977

Experience: 50

Action Set Size: 1.0

Numerosity: 1

000000110011 => 8 [0.98847]

000000110011 => 8

Time Stamp: 22746

Average Reward: 1000.0

Error: 0.0

Fitness: 0.9884709002460819

Experience: 20

Action Set Size: 1.0

Numerosity: 1

000000011000 => 8 [0.99959]

000000011000 => 8

Time Stamp: 19573

Average Reward: 1000.0

Error: 0.0

Fitness: 0.9995943558644088

Experience: 35

Action Set Size: 1.0

Numerosity: 1

000000001001 => 17 [0.99983]

000000001001 => 17

Time Stamp: 20221

Average Reward: 1000.0

Error: 0.0

Fitness: 0.9998338481620619

Experience: 39

Action Set Size: 1.0

Numerosity: 1

000000111101 => 8 [0.99528]

000000111101 => 8

Time Stamp: 22841

Average Reward: 1000.0

Error: 0.0

Fitness: 0.9952776807407951

Experience: 24

Action Set Size: 1.0

Numerosity: 1

000000101010 => 17 [0.99901]

000000101010 => 17

Time Stamp: 20916

Average Reward: 1000.0

Error: 0.0

Fitness: 0.999009657872092

Experience: 31

Action Set Size: 1.0

Numerosity: 1

000000011110 => 8 [0.99698]

000000011110 => 8

Time Stamp: 21302

Average Reward: 1000.0

Error: 0.0

Fitness: 0.9969777156741089

Experience: 26

Action Set Size: 1.0

Numerosity: 1

000000100011 => 17 [0.99995]

000000100011 => 17

Time Stamp: 20352

Average Reward: 1000.0

Error: 0.0

Fitness: 0.9999455553657445

Experience: 44

Action Set Size: 1.0

Numerosity: 1

000000010011 => 8 [0.99622]

000000010011 => 8

Time Stamp: 22007

Average Reward: 1000.0

Error: 0.0

Fitness: 0.9962221445926361

Experience: 25

Action Set Size: 1.0

Numerosity: 1

000000111010 => 8 [0.95602]

000000111010 => 8

Time Stamp: 22420

Average Reward: 1000.0

Error: 0.0

Fitness: 0.9560199746936111

Experience: 14

Action Set Size: 1.0

Numerosity: 1

000000011010 => 8 [0.99845]

000000011010 => 8

Time Stamp: 22123

Average Reward: 1000.0

Error: 0.0

Fitness: 0.9984525904251437

Experience: 29

Action Set Size: 1.0

Numerosity: 1

000000000001 => 17 [0.98559]

000000000001 => 17

A.1. DETAILED XCS TRAINING RESULTS - DSC 226

Time Stamp: 22832

Average Reward: 1000.0

Error: 0.0

Fitness: 0.9855886253076024

Experience: 19

Action Set Size: 1.0

Numerosity: 1

000000001000 => 17 [1.00000]

000000001000 => 17

Time Stamp: 8827

Average Reward: 1000.0

Error: 0.0

Fitness: 0.9999999999999998

Experience: 174

Action Set Size: 1.0

Numerosity: 1

000000110100 => 8 [1.00000]

000000110100 => 8

Time Stamp: 16062

Average Reward: 1000.0

Error: 0.0

Fitness: 0.9999998683609518

Experience: 71

Action Set Size: 1.0

Numerosity: 1

000000101110 => 8 [0.99959]

000000101110 => 8

Time Stamp: 22299

Average Reward: 1000.0

Error: 0.0

Fitness: 0.9995943558644088

Experience: 35

Action Set Size: 1.0

Numerosity: 1

000000010111 => 8 [0.89263]

000000010111 => 8

Time Stamp: 23680

Average Reward: 1000.0

Error: 0.0

Fitness: 0.892626891341824

Experience: 10

Action Set Size: 1.0

Numerosity: 1

000000000111 => 8 [0.98847]

000000000111 => 8

Time Stamp: 22542

Average Reward: 1000.0

Error: 0.0

Fitness: 0.9884709002460819

Experience: 20

Action Set Size: 1.0

Numerosity: 1

000000011001 => 8 [0.94502]

000000011001 => 8

Time Stamp: 22939

Average Reward: 1000.0

Error: 0.0

Fitness: 0.9450249683670139

Experience: 13

Action Set Size: 1.0

Numerosity: 1

000000100010 => 17 [0.99901]

000000100010 => 17

Time Stamp: 21253

Average Reward: 1000.0

Error: 0.0

Fitness: 0.999009657872092

Experience: 31

Action Set Size: 1.0

Numerosity: 1

A.1.8 XCS 25k

#0#0###1#### => 8 [0.56259]

#0#0###1#### => 8

Time Stamp: 24978

Average Reward: 1000.0

Error: 0.0

Fitness: 0.5625905431673819

Experience: 4667

Action Set Size: 154.24280391615952

Numerosity: 78

#1#0######## => 4 [0.62985]

#1#0######## => 4

Time Stamp: 24946

Average Reward: 1000.0

Error: 0.0

Fitness: 0.6298543578663202

Experience: 1647

Action Set Size: 180.67954605869596

Numerosity: 98

1##1######## => 6 [0.98997]

1##1######## => 6

Time Stamp: 24944

Average Reward: 1000.0

Error: 0.0

Fitness: 0.9899747286296879

Experience: 1532

Action Set Size: 154.01592967565932

Numerosity: 146

01########## => 4 [0.74992]

01########## => 4

Time Stamp: 24946

Average Reward: 1000.0

Error: 0.0

Fitness: 0.749916905312802

Experience: 1545

Action Set Size: 171.21786277125264

Numerosity: 113

00#####0#0## => 17 [0.57475]

00#####0#0## => 17

Time Stamp: 24987

Average Reward: 1000.0

Error: 0.0

Fitness: 0.5747505208354617

A.1. DETAILED XCS TRAINING RESULTS - DSC 227

Experience: 2089

Action Set Size: 154.31369800750562

Numerosity: 83

00#######1## => 8 [0.51222]

00#######1## => 8

Time Stamp: 25000

Average Reward: 1000.0

Error: 0.0

Fitness: 0.51222000724196

Experience: 3876

Action Set Size: 172.35855625266828

Numerosity: 73

A.1.9 XCS 50k - no GA

000000011010 => 8 [0.99997]

000000011010 => 8

Time Stamp: 44605

Average Reward: 1000.0

Error: 0.0

Fitness: 0.9999721243472612

Experience: 47

Action Set Size: 1.0

Numerosity: 1

000000100110 => 8 [0.99998]

000000100110 => 8

Time Stamp: 43419

Average Reward: 1000.0

Error: 0.0

Fitness: 0.9999821595822472

Experience: 49

Action Set Size: 1.0

Numerosity: 1

000000101101 => 8 [0.99995]

000000101101 => 8

Time Stamp: 44214

Average Reward: 1000.0

Error: 0.0

Fitness: 0.9999455553657445

Experience: 44

Action Set Size: 1.0

Numerosity: 1

000000111011 => 8 [0.99995]

000000111011 => 8

Time Stamp: 44506

Average Reward: 1000.0

Error: 0.0

Fitness: 0.9999455553657445

Experience: 44

Action Set Size: 1.0

Numerosity: 1

000000101110 => 8 [0.98199]

000000101110 => 8

Time Stamp: 48147

Average Reward: 1000.0

Error: 0.0

Fitness: 0.981985781634503

Experience: 18

Action Set Size: 1.0

Numerosity: 1

000000000111 => 8 [1.00000]

000000000111 => 8

Time Stamp: 43970

Average Reward: 1000.0

Error: 0.0

Fitness: 0.9999995982695064

Experience: 66

Action Set Size: 1.0

Numerosity: 1

000000100101 => 8 [0.99622]

000000100101 => 8

Time Stamp: 47290

Average Reward: 1000.0

Error: 0.0

Fitness: 0.9962221445926361

Experience: 25

Action Set Size: 1.0

Numerosity: 1

000000001110 => 8 [0.94502]

000000001110 => 8

Time Stamp: 49120

Average Reward: 1000.0

Error: 0.0

Fitness: 0.9450249683670139

Experience: 13

Action Set Size: 1.0

Numerosity: 1

000000110011 => 8 [1.00000]

000000110011 => 8

Time Stamp: 39091

Average Reward: 1000.0

Error: 0.0

Fitness: 0.9999997943139872

Experience: 69

Action Set Size: 1.0

Numerosity: 1

000000100010 => 17 [0.99968]

000000100010 => 17

Time Stamp: 45816

Average Reward: 1000.0

Error: 0.0

Fitness: 0.999675484691527

Experience: 36

Action Set Size: 1.0

Numerosity: 1

000000000000 => 17 [1.00000]

000000000000 => 17

Time Stamp: 28458

Average Reward: 1000.0

Error: 0.0

Fitness: 0.9999999999999998

Experience: 169

Action Set Size: 1.0

Numerosity: 1

000000011011 => 8 [0.99949]

A.1. DETAILED XCS TRAINING RESULTS - DSC 228

000000011011 => 8

Time Stamp: 45410

Average Reward: 1000.0

Error: 0.0

Fitness: 0.999492944830511

Experience: 34

Action Set Size: 1.0

Numerosity: 1

000000111001 => 8 [0.93128]

000000111001 => 8

Time Stamp: 49095

Average Reward: 1000.0

Error: 0.0

Fitness: 0.9312812104587673

Experience: 12

Action Set Size: 1.0

Numerosity: 1

000000111000 => 8 [0.99959]

000000111000 => 8

Time Stamp: 46979

Average Reward: 1000.0

Error: 0.0

Fitness: 0.9995943558644088

Experience: 35

Action Set Size: 1.0

Numerosity: 1

000000011111 => 8 [0.94502]

000000011111 => 8

Time Stamp: 48241

Average Reward: 1000.0

Error: 0.0

Fitness: 0.9450249683670139

Experience: 13

Action Set Size: 1.0

Numerosity: 1

000000000001 => 17 [0.99698]

000000000001 => 17

Time Stamp: 47159

Average Reward: 1000.0

Error: 0.0

Fitness: 0.9969777156741089

Experience: 26

Action Set Size: 1.0

Numerosity: 1

000000001010 => 17 [0.96482]

000000001010 => 17

Time Stamp: 48412

Average Reward: 1000.0

Error: 0.0

Fitness: 0.9648159797548889

Experience: 15

Action Set Size: 1.0

Numerosity: 1

000000000010 => 17 [0.99999]

000000000010 => 17

Time Stamp: 42537

Average Reward: 1000.0

Error: 0.0

Fitness: 0.9999908657061105

Experience: 52

Action Set Size: 1.0

Numerosity: 1

000000011000 => 8 [0.99999]

000000011000 => 8

Time Stamp: 44509

Average Reward: 1000.0

Error: 0.0

Fitness: 0.9999857276657977

Experience: 50

Action Set Size: 1.0

Numerosity: 1

000000000110 => 8 [0.98559]

000000000110 => 8

Time Stamp: 48329

Average Reward: 1000.0

Error: 0.0

Fitness: 0.9855886253076024

Experience: 19

Action Set Size: 1.0

Numerosity: 1

000000011101 => 8 [0.99998]

000000011101 => 8

Time Stamp: 45667

Average Reward: 1000.0

Error: 0.0

Fitness: 0.9999821595822472

Experience: 49

Action Set Size: 1.0

Numerosity: 1

000000101111 => 8 [0.99262]

000000101111 => 8

Time Stamp: 47216

Average Reward: 1000.0

Error: 0.0

Fitness: 0.9926213761574924

Experience: 22

Action Set Size: 1.0

Numerosity: 1

000000000100 => 8 [0.98559]

000000000100 => 8

Time Stamp: 47520

Average Reward: 1000.0

Error: 0.0

Fitness: 0.9855886253076024

Experience: 19

Action Set Size: 1.0

Numerosity: 1

000000010001 => 8 [0.99807]

000000010001 => 8

Time Stamp: 47106

Average Reward: 1000.0

Error: 0.0

Fitness: 0.9980657380314296

Experience: 28

Action Set Size: 1.0

Numerosity: 1

000000110001 => 8 [0.99949]

000000110001 => 8

Time Stamp: 43901

Average Reward: 1000.0

Error: 0.0

Fitness: 0.999492944830511

A.1. DETAILED XCS TRAINING RESULTS - DSC 229

Experience: 34

Action Set Size: 1.0

Numerosity: 1

000000001111 => 8 [0.99622]

000000001111 => 8

Time Stamp: 47340

Average Reward: 1000.0

Error: 0.0

Fitness: 0.9962221445926361

Experience: 25

Action Set Size: 1.0

Numerosity: 1

000000101000 => 17 [1.00000]

000000101000 => 17

Time Stamp: 44616

Average Reward: 1000.0

Error: 0.0

Fitness: 0.9999953232415286

Experience: 55

Action Set Size: 1.0

Numerosity: 1

000000011100 => 8 [0.97748]

000000011100 => 8

Time Stamp: 48280

Average Reward: 1000.0

Error: 0.0

Fitness: 0.9774822270431288

Experience: 17

Action Set Size: 1.0

Numerosity: 1

000000001101 => 8 [0.99901]

000000001101 => 8

Time Stamp: 46959

Average Reward: 1000.0

Error: 0.0

Fitness: 0.999009657872092

Experience: 31

Action Set Size: 1.0

Numerosity: 1

000000111111 => 8 [0.96482]

000000111111 => 8

Time Stamp: 48175

Average Reward: 1000.0

Error: 0.0

Fitness: 0.9648159797548889

Experience: 15

Action Set Size: 1.0

Numerosity: 1

000000110010 => 8 [0.97748]

000000110010 => 8

Time Stamp: 48654

Average Reward: 1000.0

Error: 0.0

Fitness: 0.9774822270431288

Experience: 17

Action Set Size: 1.0

Numerosity: 1

000000111100 => 8 [0.99758]

000000111100 => 8

Time Stamp: 46419

Average Reward: 1000.0

Error: 0.0

Fitness: 0.997582172539287

Experience: 27

Action Set Size: 1.0

Numerosity: 1

000000001000 => 17 [0.99989]

000000001000 => 17

Time Stamp: 45500

Average Reward: 1000.0

Error: 0.0

Fitness: 0.9998936628237196

Experience: 41

Action Set Size: 1.0

Numerosity: 1

000000110110 => 8 [1.00000]

000000110110 => 8

Time Stamp: 43087

Average Reward: 1000.0

Error: 0.0

Fitness: 0.9999962585932229

Experience: 56

Action Set Size: 1.0

Numerosity: 1

000000101100 => 8 [0.99999]

000000101100 => 8

Time Stamp: 45432

Average Reward: 1000.0

Error: 0.0

Fitness: 0.9999857276657977

Experience: 50

Action Set Size: 1.0

Numerosity: 1

000000100011 => 17 [1.00000]

000000100011 => 17

Time Stamp: 38086

Average Reward: 1000.0

Error: 0.0

Fitness: 0.9999999996817163

Experience: 98

Action Set Size: 1.0

Numerosity: 1

000000100000 => 17 [1.00000]

000000100000 => 17

Time Stamp: 38724

Average Reward: 1000.0

Error: 0.0

Fitness: 0.9999999976286018

Experience: 89

Action Set Size: 1.0

Numerosity: 1

000000000101 => 8 [0.91410]

000000000101 => 8

Time Stamp: 49124

Average Reward: 1000.0

Error: 0.0

Fitness: 0.9141015130734592

Experience: 11

Action Set Size: 1.0

Numerosity: 1

000000111110 => 8 [0.91410]

000000111110 => 8

A.1. DETAILED XCS TRAINING RESULTS - DSC 230

Time Stamp: 48598

Average Reward: 1000.0

Error: 0.0

Fitness: 0.9141015130734592

Experience: 11

Action Set Size: 1.0

Numerosity: 1

000000010010 => 8 [0.99995]

000000010010 => 8

Time Stamp: 45413

Average Reward: 1000.0

Error: 0.0

Fitness: 0.9999455553657445

Experience: 44

Action Set Size: 1.0

Numerosity: 1

000000001100 => 8 [0.99996]

000000001100 => 8

Time Stamp: 44514

Average Reward: 1000.0

Error: 0.0

Fitness: 0.9999564442925956

Experience: 45

Action Set Size: 1.0

Numerosity: 1

000000110101 => 8 [0.99078]

000000110101 => 8

Time Stamp: 47388

Average Reward: 1000.0

Error: 0.0

Fitness: 0.9907767201968655

Experience: 21

Action Set Size: 1.0

Numerosity: 1

000000111010 => 8 [0.95602]

000000111010 => 8

Time Stamp: 48559

Average Reward: 1000.0

Error: 0.0

Fitness: 0.9560199746936111

Experience: 14

Action Set Size: 1.0

Numerosity: 1

000000110100 => 8 [0.97748]

000000110100 => 8

Time Stamp: 48658

Average Reward: 1000.0

Error: 0.0

Fitness: 0.9774822270431288

Experience: 17

Action Set Size: 1.0

Numerosity: 1

000000100111 => 8 [0.96482]

000000100111 => 8

Time Stamp: 48156

Average Reward: 1000.0

Error: 0.0

Fitness: 0.9648159797548889

Experience: 15

Action Set Size: 1.0

Numerosity: 1

000000010100 => 8 [0.99758]

000000010100 => 8

Time Stamp: 47058

Average Reward: 1000.0

Error: 0.0

Fitness: 0.997582172539287

Experience: 27

Action Set Size: 1.0

Numerosity: 1

000000010000 => 8 [0.94502]

000000010000 => 8

Time Stamp: 48970

Average Reward: 1000.0

Error: 0.0

Fitness: 0.9450249683670139

Experience: 13

Action Set Size: 1.0

Numerosity: 1

000000011001 => 8 [0.99410]

000000011001 => 8

Time Stamp: 47367

Average Reward: 1000.0

Error: 0.0

Fitness: 0.9940971009259939

Experience: 23

Action Set Size: 1.0

Numerosity: 1

000000001011 => 17 [0.99876]

000000001011 => 17

Time Stamp: 46380

Average Reward: 1000.0

Error: 0.0

Fitness: 0.9987620723401149

Experience: 30

Action Set Size: 1.0

Numerosity: 1

000000100001 => 17 [0.99528]

000000100001 => 17

Time Stamp: 48190

Average Reward: 1000.0

Error: 0.0

Fitness: 0.9952776807407951

Experience: 24

Action Set Size: 1.0

Numerosity: 1

A.1.10 XCS 50k

1##1######## => 6 [0.99510]

1##1######## => 6

Time Stamp: 49968

Average Reward: 1000.0

Error: 0.0

Fitness: 0.9950983093648633

A.2. XCS TRAINING RESULTS - DSP 231

Experience: 3250

Action Set Size: 154.64606536306866

Numerosity: 152

01########## => 4 [0.73904]

01########## => 4

Time Stamp: 49920

Average Reward: 1000.0

Error: 0.0

Fitness: 0.7390358468686428

Experience: 3292

Action Set Size: 177.07120871232786

Numerosity: 119

#1#0######## => 4 [0.79651]

#1#0######## => 4

Time Stamp: 49999

Average Reward: 1000.0

Error: 0.0

Fitness: 0.796508007766288

Experience: 3169

Action Set Size: 150.52918648756375

Numerosity: 107

00#####0#0## => 17 [0.54468]

00#####0#0## => 17

Time Stamp: 49981

Average Reward: 1000.0

Error: 0.0

Fitness: 0.5446777656705332

Experience: 4674

Action Set Size: 144.24183292583947

Numerosity: 70

#0#0###0#0## => 17 [0.50259]

#0#0###0#0## => 17

Time Stamp: 49956

Average Reward: 1000.0

Error: 0.0

Fitness: 0.5025859979247588

Experience: 4274

Action Set Size: 153.8515257232222

Numerosity: 73

A.2 XCS training results - DSP

A.2.1 XCS 1k - no GA

None

A.2.2 XCS 1k

None

A.2.3 XCS 5k - no GA

000000001000 => 17 [0.99949]

000000001000 => 17

Time Stamp: 1128

Average Reward: 1000.0

Error: 0.0

Fitness: 0.999492944830511

Experience: 34

Action Set Size: 1.0

Numerosity: 1

000000000101 => 12 [0.99989]

000000000101 => 12

Time Stamp: 532

Average Reward: 1000.0

Error: 0.0

Fitness: 0.9998936628237196

Experience: 41

Action Set Size: 1.0

Numerosity: 1

000000101010 => 12 [0.99999]

000000101010 => 12

Time Stamp: 726

Average Reward: 1000.0

Error: 0.0

Fitness: 0.9999926925648884

Experience: 53

Action Set Size: 1.0

Numerosity: 1

000000100100 => 12 [0.99997]

000000100100 => 12

Time Stamp: 15

Average Reward: 1000.0

Error: 0.0

Fitness: 0.9999651554340765

Experience: 46

Action Set Size: 1.0

Numerosity: 1

000000101000 => 11 [0.99983]

000000101000 => 11

Time Stamp: 603

Average Reward: 1000.0

A.2. XCS TRAINING RESULTS - DSP 232

Error: 0.0

Fitness: 0.9998338481620619

Experience: 39

Action Set Size: 1.0

Numerosity: 1

000000111110 => 12 [0.99999]

000000111110 => 12

Time Stamp: 151

Average Reward: 1000.0

Error: 0.0

Fitness: 0.9999941540519107

Experience: 54

Action Set Size: 1.0

Numerosity: 1

000000011101 => 12 [0.99989]

000000011101 => 12

Time Stamp: 322

Average Reward: 1000.0

Error: 0.0

Fitness: 0.9998936628237196

Experience: 41

Action Set Size: 1.0

Numerosity: 1

000000101011 => 12 [0.99989]

000000101011 => 12

Time Stamp: 41

Average Reward: 1000.0

Error: 0.0

Fitness: 0.9998936628237196

Experience: 41

Action Set Size: 1.0

Numerosity: 1

000000001001 => 17 [0.99993]

000000001001 => 17

Time Stamp: 543

Average Reward: 1000.0

Error: 0.0

Fitness: 0.9999319442071806

Experience: 43

Action Set Size: 1.0

Numerosity: 1

000000100010 => 12 [0.99995]

000000100010 => 12

Time Stamp: 219

Average Reward: 1000.0

Error: 0.0

Fitness: 0.9999455553657445

Experience: 44

Action Set Size: 1.0

Numerosity: 1

000000110111 => 12 [0.96482]

000000110111 => 12

Time Stamp: 3782

Average Reward: 1000.0

Error: 0.0

Fitness: 0.9648159797548889

Experience: 15

Action Set Size: 1.0

Numerosity: 1

000000010100 => 12 [0.99999]

000000010100 => 12

Time Stamp: 157

Average Reward: 1000.0

Error: 0.0

Fitness: 0.9999908657061105

Experience: 52

Action Set Size: 1.0

Numerosity: 1

000000111001 => 13 [0.99983]

000000111001 => 13

Time Stamp: 1594

Average Reward: 1000.0

Error: 0.0

Fitness: 0.9998338481620619

Experience: 39

Action Set Size: 1.0

Numerosity: 1

000000011001 => 13 [0.99959]

000000011001 => 13

Time Stamp: 51

Average Reward: 1000.0

Error: 0.0

Fitness: 0.9995943558644088

Experience: 35

Action Set Size: 1.0

Numerosity: 1

000000110000 => 13 [0.99993]

000000110000 => 13

Time Stamp: 400

Average Reward: 1000.0

Error: 0.0

Fitness: 0.9999319442071806

Experience: 43

Action Set Size: 1.0

Numerosity: 1

000000101001 => 11 [0.99968]

000000101001 => 11

Time Stamp: 263

Average Reward: 1000.0

Error: 0.0

Fitness: 0.999675484691527

Experience: 36

Action Set Size: 1.0

Numerosity: 1

000000101111 => 12 [0.99987]

000000101111 => 12

Time Stamp: 61

Average Reward: 1000.0

Error: 0.0

Fitness: 0.9998670785296495

Experience: 40

Action Set Size: 1.0

Numerosity: 1

000000110100 => 12 [0.99996]

000000110100 => 12

Time Stamp: 218

Average Reward: 1000.0

Error: 0.0

Fitness: 0.9999564442925956

Experience: 45

Action Set Size: 1.0

Numerosity: 1

A.2. XCS TRAINING RESULTS - DSP 233

000000010111 => 12 [0.99998]

000000010111 => 12

Time Stamp: 89

Average Reward: 1000.0

Error: 0.0

Fitness: 0.999977699477809

Experience: 48

Action Set Size: 1.0

Numerosity: 1

000000010000 => 13 [0.99999]

000000010000 => 13

Time Stamp: 580

Average Reward: 1000.0

Error: 0.0

Fitness: 0.9999908657061105

Experience: 52

Action Set Size: 1.0

Numerosity: 1

000000100001 => 11 [0.99937]

000000100001 => 11

Time Stamp: 425

Average Reward: 1000.0

Error: 0.0

Fitness: 0.9993661810381388

Experience: 33

Action Set Size: 1.0

Numerosity: 1

000000110101 => 12 [0.99949]

000000110101 => 12

Time Stamp: 512

Average Reward: 1000.0

Error: 0.0

Fitness: 0.999492944830511

Experience: 34

Action Set Size: 1.0

Numerosity: 1

000000011110 => 12 [0.99921]

000000011110 => 12

Time Stamp: 623

Average Reward: 1000.0

Error: 0.0

Fitness: 0.9992077262976735

Experience: 32

Action Set Size: 1.0

Numerosity: 1

000000100000 => 11 [0.99979]

000000100000 => 11

Time Stamp: 347

Average Reward: 1000.0

Error: 0.0

Fitness: 0.9997923102025773

Experience: 38

Action Set Size: 1.0

Numerosity: 1

000000100111 => 12 [0.99987]

000000100111 => 12

Time Stamp: 534

Average Reward: 1000.0

Error: 0.0

Fitness: 0.9998670785296495

Experience: 40

Action Set Size: 1.0

Numerosity: 1

000000011011 => 12 [0.99991]

000000011011 => 12

Time Stamp: 648

Average Reward: 1000.0

Error: 0.0

Fitness: 0.9999149302589757

Experience: 42

Action Set Size: 1.0

Numerosity: 1

000000001100 => 12 [0.99987]

000000001100 => 12

Time Stamp: 230

Average Reward: 1000.0

Error: 0.0

Fitness: 0.9998670785296495

Experience: 40

Action Set Size: 1.0

Numerosity: 1

000000101100 => 12 [0.99959]

000000101100 => 12

Time Stamp: 271

Average Reward: 1000.0

Error: 0.0

Fitness: 0.9995943558644088

Experience: 35

Action Set Size: 1.0

Numerosity: 1

000000111111 => 12 [0.99974]

000000111111 => 12

Time Stamp: 997

Average Reward: 1000.0

Error: 0.0

Fitness: 0.9997403877532216

Experience: 37

Action Set Size: 1.0

Numerosity: 1

000000010101 => 12 [0.99999]

000000010101 => 12

Time Stamp: 184

Average Reward: 1000.0

Error: 0.0

Fitness: 0.9999926925648884

Experience: 53

Action Set Size: 1.0

Numerosity: 1

000000010001 => 13 [0.99807]

000000010001 => 13

Time Stamp: 200

Average Reward: 1000.0

Error: 0.0

Fitness: 0.9980657380314296

Experience: 28

Action Set Size: 1.0

Numerosity: 1

000000010010 => 12 [0.99998]

000000010010 => 12

Time Stamp: 1061

Average Reward: 1000.0

Error: 0.0

A.2. XCS TRAINING RESULTS - DSP 234

Fitness: 0.999977699477809

Experience: 48

Action Set Size: 1.0

Numerosity: 1

000000111101 => 12 [0.99987]

000000111101 => 12

Time Stamp: 763

Average Reward: 1000.0

Error: 0.0

Fitness: 0.9998670785296495

Experience: 40

Action Set Size: 1.0

Numerosity: 1

000000011010 => 12 [0.99979]

000000011010 => 12

Time Stamp: 1287

Average Reward: 1000.0

Error: 0.0

Fitness: 0.9997923102025773

Experience: 38

Action Set Size: 1.0

Numerosity: 1

000000000100 => 12 [0.99989]

000000000100 => 12

Time Stamp: 469

Average Reward: 1000.0

Error: 0.0

Fitness: 0.9998936628237196

Experience: 41

Action Set Size: 1.0

Numerosity: 1

000000011100 => 12 [0.99876]

000000011100 => 12

Time Stamp: 667

Average Reward: 1000.0

Error: 0.0

Fitness: 0.9987620723401149

Experience: 30

Action Set Size: 1.0

Numerosity: 1

000000000001 => 17 [0.99974]

000000000001 => 17

Time Stamp: 310

Average Reward: 1000.0

Error: 0.0

Fitness: 0.9997403877532216

Experience: 37

Action Set Size: 1.0

Numerosity: 1

000000010110 => 12 [0.93128]

000000010110 => 12

Time Stamp: 3544

Average Reward: 1000.0

Error: 0.0

Fitness: 0.9312812104587673

Experience: 12

Action Set Size: 1.0

Numerosity: 1

000000011111 => 12 [0.99698]

000000011111 => 12

Time Stamp: 686

Average Reward: 1000.0

Error: 0.0

Fitness: 0.9969777156741089

Experience: 26

Action Set Size: 1.0

Numerosity: 1

000000001010 => 12 [0.99876]

000000001010 => 12

Time Stamp: 1283

Average Reward: 1000.0

Error: 0.0

Fitness: 0.9987620723401149

Experience: 30

Action Set Size: 1.0

Numerosity: 1

000000011000 => 13 [0.99921]

000000011000 => 13

Time Stamp: 929

Average Reward: 1000.0

Error: 0.0

Fitness: 0.9992077262976735

Experience: 32

Action Set Size: 1.0

Numerosity: 1

000000110011 => 12 [0.99974]

000000110011 => 12

Time Stamp: 1063

Average Reward: 1000.0

Error: 0.0

Fitness: 0.9997403877532216

Experience: 37

Action Set Size: 1.0

Numerosity: 1

000000000111 => 12 [0.99807]

000000000111 => 12

Time Stamp: 748

Average Reward: 1000.0

Error: 0.0

Fitness: 0.9980657380314296

Experience: 28

Action Set Size: 1.0

Numerosity: 1

000000001110 => 12 [0.99997]

000000001110 => 12

Time Stamp: 361

Average Reward: 1000.0

Error: 0.0

Fitness: 0.9999721243472612

Experience: 47

Action Set Size: 1.0

Numerosity: 1

000000100011 => 12 [0.99979]

000000100011 => 12

Time Stamp: 528

Average Reward: 1000.0

Error: 0.0

Fitness: 0.9997923102025773

Experience: 38

Action Set Size: 1.0

Numerosity: 1

000000101110 => 12 [0.99949]

A.2. XCS TRAINING RESULTS - DSP 235

000000101110 => 12

Time Stamp: 544

Average Reward: 1000.0

Error: 0.0

Fitness: 0.999492944830511

Experience: 34

Action Set Size: 1.0

Numerosity: 1

000000111010 => 12 [0.99876]

000000111010 => 12

Time Stamp: 914

Average Reward: 1000.0

Error: 0.0

Fitness: 0.9987620723401149

Experience: 30

Action Set Size: 1.0

Numerosity: 1

A.2.4 XCS 5k

##########1# => 12 [0.61738]

##########1# => 12

Time Stamp: 4985

Average Reward: 1000.0

Error: 0.0

Fitness: 0.6173824060660333

Experience: 1260

Action Set Size: 127.68913654760868

Numerosity: 70

#########1## => 12 [0.60019]

#########1## => 12

Time Stamp: 5001

Average Reward: 1000.0

Error: 0.0

Fitness: 0.6001921597819547

Experience: 1015

Action Set Size: 131.45905391641577

Numerosity: 75

#######1#00# => 13 [0.55675]

#######1#00# => 13

Time Stamp: 4970

Average Reward: 1000.0

Error: 0.0

Fitness: 0.5567520506490294

Experience: 119

Action Set Size: 79.11231905674819

Numerosity: 36

A.2.5 XCS 10k - no GA

000000101000 => 11 [0.91410]

000000101000 => 11

Time Stamp: 8473

Average Reward: 1000.0

Error: 0.0

Fitness: 0.9141015130734592

Experience: 11

Action Set Size: 1.0

Numerosity: 1

000000010111 => 12 [0.93128]

000000010111 => 12

Time Stamp: 8478

Average Reward: 1000.0

Error: 0.0

Fitness: 0.9312812104587673

Experience: 12

Action Set Size: 1.0

Numerosity: 1

000000100101 => 12 [0.99959]

000000100101 => 12

Time Stamp: 6392

Average Reward: 1000.0

Error: 0.0

Fitness: 0.9995943558644088

Experience: 35

Action Set Size: 1.0

Numerosity: 1

000000001101 => 12 [0.99989]

000000001101 => 12

Time Stamp: 4425

Average Reward: 1000.0

Error: 0.0

Fitness: 0.9998936628237196

Experience: 41

Action Set Size: 1.0

Numerosity: 1

000000010100 => 12 [1.00000]

000000010100 => 12

Time Stamp: 774

Average Reward: 1000.0

Error: 0.0

Fitness: 0.9999999460806459

Experience: 75

Action Set Size: 1.0

Numerosity: 1

000000100110 => 12 [0.99262]

000000100110 => 12

Time Stamp: 6871

Average Reward: 1000.0

Error: 0.0

Fitness: 0.9926213761574924

Experience: 22

Action Set Size: 1.0

Numerosity: 1

A.2. XCS TRAINING RESULTS - DSP 236

000000011110 => 12 [1.00000]

000000011110 => 12

Time Stamp: 1711

Average Reward: 1000.0

Error: 0.0

Fitness: 0.9999998683609518

Experience: 71

Action Set Size: 1.0

Numerosity: 1

000000011100 => 12 [1.00000]

000000011100 => 12

Time Stamp: 994

Average Reward: 1000.0

Error: 0.0

Fitness: 0.9999996786156051

Experience: 67

Action Set Size: 1.0

Numerosity: 1

000000010101 => 12 [0.97748]

000000010101 => 12

Time Stamp: 8296

Average Reward: 1000.0

Error: 0.0

Fitness: 0.9774822270431288

Experience: 17

Action Set Size: 1.0

Numerosity: 1

000000001000 => 17 [0.99999]

000000001000 => 17

Time Stamp: 3683

Average Reward: 1000.0

Error: 0.0

Fitness: 0.9999908657061105

Experience: 52

Action Set Size: 1.0

Numerosity: 1

000000000010 => 12 [0.98847]

000000000010 => 12

Time Stamp: 8249

Average Reward: 1000.0

Error: 0.0

Fitness: 0.9884709002460819

Experience: 20

Action Set Size: 1.0

Numerosity: 1

000000101010 => 12 [0.96482]

000000101010 => 12

Time Stamp: 7197

Average Reward: 1000.0

Error: 0.0

Fitness: 0.9648159797548889

Experience: 15

Action Set Size: 1.0

Numerosity: 1

000000001111 => 12 [0.98847]

000000001111 => 12

Time Stamp: 8337

Average Reward: 1000.0

Error: 0.0

Fitness: 0.9884709002460819

Experience: 20

Action Set Size: 1.0

Numerosity: 1

000000101100 => 12 [0.99999]

000000101100 => 12

Time Stamp: 3602

Average Reward: 1000.0

Error: 0.0

Fitness: 0.9999941540519107

Experience: 54

Action Set Size: 1.0

Numerosity: 1

000000000111 => 12 [0.99528]

000000000111 => 12

Time Stamp: 7751

Average Reward: 1000.0

Error: 0.0

Fitness: 0.9952776807407951

Experience: 24

Action Set Size: 1.0

Numerosity: 1

000000011111 => 12 [0.99995]

000000011111 => 12

Time Stamp: 5475

Average Reward: 1000.0

Error: 0.0

Fitness: 0.9999455553657445

Experience: 44

Action Set Size: 1.0

Numerosity: 1

000000111111 => 12 [1.00000]

000000111111 => 12

Time Stamp: 640

Average Reward: 1000.0

Error: 0.0

Fitness: 0.9999995982695064

Experience: 66

Action Set Size: 1.0

Numerosity: 1

000000000001 => 17 [1.00000]

000000000001 => 17

Time Stamp: 3609

Average Reward: 1000.0

Error: 0.0

Fitness: 0.9999962585932229

Experience: 56

Action Set Size: 1.0

Numerosity: 1

000000010000 => 13 [0.99949]

000000010000 => 13

Time Stamp: 6002

Average Reward: 1000.0

Error: 0.0

Fitness: 0.999492944830511

Experience: 34

Action Set Size: 1.0

Numerosity: 1

000000001110 => 12 [0.91410]

000000001110 => 12

Time Stamp: 8731

Average Reward: 1000.0

Error: 0.0

A.2. XCS TRAINING RESULTS - DSP 237

Fitness: 0.9141015130734592

Experience: 11

Action Set Size: 1.0

Numerosity: 1

000000111010 => 12 [1.00000]

000000111010 => 12

Time Stamp: 523

Average Reward: 1000.0

Error: 0.0

Fitness: 0.9999999996817163

Experience: 98

Action Set Size: 1.0

Numerosity: 1

000000110001 => 13 [0.99262]

000000110001 => 13

Time Stamp: 7825

Average Reward: 1000.0

Error: 0.0

Fitness: 0.9926213761574924

Experience: 22

Action Set Size: 1.0

Numerosity: 1

000000110000 => 13 [1.00000]

000000110000 => 13

Time Stamp: 3534

Average Reward: 1000.0

Error: 0.0

Fitness: 0.9999953232415286

Experience: 55

Action Set Size: 1.0

Numerosity: 1

000000000101 => 12 [0.98199]

000000000101 => 12

Time Stamp: 7631

Average Reward: 1000.0

Error: 0.0

Fitness: 0.981985781634503

Experience: 18

Action Set Size: 1.0

Numerosity: 1

000000000110 => 12 [0.97185]

000000000110 => 12

Time Stamp: 7230

Average Reward: 1000.0

Error: 0.0

Fitness: 0.971852783803911

Experience: 16

Action Set Size: 1.0

Numerosity: 1

000000110101 => 12 [1.00000]

000000110101 => 12

Time Stamp: 505

Average Reward: 1000.0

Error: 0.0

Fitness: 0.9999999990286753

Experience: 93

Action Set Size: 1.0

Numerosity: 1

000000011000 => 13 [1.00000]

000000011000 => 13

Time Stamp: 82

Average Reward: 1000.0

Error: 0.0

Fitness: 0.9999999962946903

Experience: 87

Action Set Size: 1.0

Numerosity: 1

000000111101 => 12 [1.00000]

000000111101 => 12

Time Stamp: 681

Average Reward: 1000.0

Error: 0.0

Fitness: 0.9999999779146326

Experience: 79

Action Set Size: 1.0

Numerosity: 1

000000001010 => 12 [1.00000]

000000001010 => 12

Time Stamp: 89

Average Reward: 1000.0

Error: 0.0

Fitness: 0.9999999858653649

Experience: 81

Action Set Size: 1.0

Numerosity: 1

000000111000 => 13 [1.00000]

000000111000 => 13

Time Stamp: 93

Average Reward: 1000.0

Error: 0.0

Fitness: 0.9999998946887614

Experience: 72

Action Set Size: 1.0

Numerosity: 1

000000011001 => 13 [0.91410]

000000011001 => 13

Time Stamp: 8364

Average Reward: 1000.0

Error: 0.0

Fitness: 0.9141015130734592

Experience: 11

Action Set Size: 1.0

Numerosity: 1

000000001001 => 17 [0.93128]

000000001001 => 17

Time Stamp: 9238

Average Reward: 1000.0

Error: 0.0

Fitness: 0.9312812104587673

Experience: 12

Action Set Size: 1.0

Numerosity: 1

000000101111 => 12 [0.99999]

000000101111 => 12

Time Stamp: 4789

Average Reward: 1000.0

Error: 0.0

Fitness: 0.9999941540519107

Experience: 54

Action Set Size: 1.0

Numerosity: 1

000000111110 => 12 [0.97748]

A.2. XCS TRAINING RESULTS - DSP 238

000000111110 => 12

Time Stamp: 7566

Average Reward: 1000.0

Error: 0.0

Fitness: 0.9774822270431288

Experience: 17

Action Set Size: 1.0

Numerosity: 1

000000001011 => 12 [0.99974]

000000001011 => 12

Time Stamp: 5018

Average Reward: 1000.0

Error: 0.0

Fitness: 0.9997403877532216

Experience: 37

Action Set Size: 1.0

Numerosity: 1

000000101011 => 12 [1.00000]

000000101011 => 12

Time Stamp: 674

Average Reward: 1000.0

Error: 0.0

Fitness: 0.9999999993783522

Experience: 95

Action Set Size: 1.0

Numerosity: 1

000000010001 => 13 [0.99989]

000000010001 => 13

Time Stamp: 4847

Average Reward: 1000.0

Error: 0.0

Fitness: 0.9998936628237196

Experience: 41

Action Set Size: 1.0

Numerosity: 1

000000110011 => 12 [0.99528]

000000110011 => 12

Time Stamp: 7974

Average Reward: 1000.0

Error: 0.0

Fitness: 0.9952776807407951

Experience: 24

Action Set Size: 1.0

Numerosity: 1

000000111100 => 12 [1.00000]

000000111100 => 12

Time Stamp: 524

Average Reward: 1000.0

Error: 0.0

Fitness: 0.9999999654916134

Experience: 77

Action Set Size: 1.0

Numerosity: 1

000000110100 => 12 [1.00000]

000000110100 => 12

Time Stamp: 345

Average Reward: 1000.0

Error: 0.0

Fitness: 0.9999999909538335

Experience: 83

Action Set Size: 1.0

Numerosity: 1

000000101110 => 12 [0.97748]

000000101110 => 12

Time Stamp: 7480

Average Reward: 1000.0

Error: 0.0

Fitness: 0.9774822270431288

Experience: 17

Action Set Size: 1.0

Numerosity: 1

000000100000 => 11 [0.91410]

000000100000 => 11

Time Stamp: 8986

Average Reward: 1000.0

Error: 0.0

Fitness: 0.9141015130734592

Experience: 11

Action Set Size: 1.0

Numerosity: 1

000000011010 => 12 [0.99078]

000000011010 => 12

Time Stamp: 7776

Average Reward: 1000.0

Error: 0.0

Fitness: 0.9907767201968655

Experience: 21

Action Set Size: 1.0

Numerosity: 1

A.2.6 XCS 10k

#########1## => 12 [0.67954]

#########1## => 12

Time Stamp: 9984

Average Reward: 1000.0

Error: 0.0

Fitness: 0.6795355801041069

Experience: 2627

Action Set Size: 157.08495787286998

Numerosity: 94

##########1# => 12 [0.72931]

##########1# => 12

Time Stamp: 9989

Average Reward: 1000.0

Error: 0.0

Fitness: 0.7293095749470476

Experience: 2514

Action Set Size: 156.91944101706366

Numerosity: 104

#######1#00# => 13 [0.98840]

#######1#00# => 13

Time Stamp: 9975

Average Reward: 1000.0

A.2. XCS TRAINING RESULTS - DSP 239

Error: 0.0

Fitness: 0.9883957624558888

Experience: 493

Action Set Size: 120.36751773418345

Numerosity: 113

######00#00# => 17 [0.90815]

######00#00# => 17

Time Stamp: 9974

Average Reward: 1000.0

Error: 0.0

Fitness: 0.9081477562761155

Experience: 271

Action Set Size: 101.33411866681419

Numerosity: 83

######10#00# => 11 [0.86133]

######10#00# => 11

Time Stamp: 9961

Average Reward: 1000.0

Error: 0.0

Fitness: 0.8613254202089623

Experience: 240

Action Set Size: 96.82525289214956

Numerosity: 82

A.2.7 XCS 25k - no GA

000000001101 => 12 [1.00000]

000000001101 => 12

Time Stamp: 17959

Average Reward: 1000.0

Error: 0.0

Fitness: 0.9999953232415286

Experience: 55

Action Set Size: 1.0

Numerosity: 1

000000111010 => 12 [0.98559]

000000111010 => 12

Time Stamp: 22507

Average Reward: 1000.0

Error: 0.0

Fitness: 0.9855886253076024

Experience: 19

Action Set Size: 1.0

Numerosity: 1

000000110000 => 13 [0.97748]

000000110000 => 13

Time Stamp: 23157

Average Reward: 1000.0

Error: 0.0

Fitness: 0.9774822270431288

Experience: 17

Action Set Size: 1.0

Numerosity: 1

000000011101 => 12 [0.99998]

000000011101 => 12

Time Stamp: 20666

Average Reward: 1000.0

Error: 0.0

Fitness: 0.999977699477809

Experience: 48

Action Set Size: 1.0

Numerosity: 1

000000010111 => 12 [0.97185]

000000010111 => 12

Time Stamp: 21935

Average Reward: 1000.0

Error: 0.0

Fitness: 0.971852783803911

Experience: 16

Action Set Size: 1.0

Numerosity: 1

000000101111 => 12 [0.99999]

000000101111 => 12

Time Stamp: 19998

Average Reward: 1000.0

Error: 0.0

Fitness: 0.9999885821326382

Experience: 51

Action Set Size: 1.0

Numerosity: 1

000000011000 => 13 [0.99959]

000000011000 => 13

Time Stamp: 20877

Average Reward: 1000.0

Error: 0.0

Fitness: 0.9995943558644088

Experience: 35

Action Set Size: 1.0

Numerosity: 1

000000001001 => 17 [0.99979]

000000001001 => 17

Time Stamp: 20087

Average Reward: 1000.0

Error: 0.0

Fitness: 0.9997923102025773

Experience: 38

Action Set Size: 1.0

Numerosity: 1

000000101010 => 12 [0.91410]

000000101010 => 12

Time Stamp: 24071

Average Reward: 1000.0

Error: 0.0

Fitness: 0.9141015130734592

Experience: 11

Action Set Size: 1.0

Numerosity: 1

000000000010 => 12 [0.97185]

000000000010 => 12

Time Stamp: 22927

Average Reward: 1000.0

Error: 0.0

Fitness: 0.971852783803911

Experience: 16

A.2. XCS TRAINING RESULTS - DSP 240

Action Set Size: 1.0

Numerosity: 1

000000000101 => 12 [0.95602]

000000000101 => 12

Time Stamp: 23069

Average Reward: 1000.0

Error: 0.0

Fitness: 0.9560199746936111

Experience: 14

Action Set Size: 1.0

Numerosity: 1

000000110100 => 12 [0.97748]

000000110100 => 12

Time Stamp: 22937

Average Reward: 1000.0

Error: 0.0

Fitness: 0.9774822270431288

Experience: 17

Action Set Size: 1.0

Numerosity: 1

000000111111 => 12 [0.99921]

000000111111 => 12

Time Stamp: 20197

Average Reward: 1000.0

Error: 0.0

Fitness: 0.9992077262976735

Experience: 32

Action Set Size: 1.0

Numerosity: 1

000000100111 => 12 [0.93128]

000000100111 => 12

Time Stamp: 23378

Average Reward: 1000.0

Error: 0.0

Fitness: 0.9312812104587673

Experience: 12

Action Set Size: 1.0

Numerosity: 1

000000001111 => 12 [1.00000]

000000001111 => 12

Time Stamp: 15840

Average Reward: 1000.0

Error: 0.0

Fitness: 0.9999999779146326

Experience: 79

Action Set Size: 1.0

Numerosity: 1

000000100110 => 12 [0.99989]

000000100110 => 12

Time Stamp: 21084

Average Reward: 1000.0

Error: 0.0

Fitness: 0.9998936628237196

Experience: 41

Action Set Size: 1.0

Numerosity: 1

000000101110 => 12 [1.00000]

000000101110 => 12

Time Stamp: 15161

Average Reward: 1000.0

Error: 0.0

Fitness: 0.9999998683609518

Experience: 71

Action Set Size: 1.0

Numerosity: 1

000000101100 => 12 [0.97748]

000000101100 => 12

Time Stamp: 22634

Average Reward: 1000.0

Error: 0.0

Fitness: 0.9774822270431288

Experience: 17

Action Set Size: 1.0

Numerosity: 1

000000010100 => 12 [0.89263]

000000010100 => 12

Time Stamp: 23854

Average Reward: 1000.0

Error: 0.0

Fitness: 0.892626891341824

Experience: 10

Action Set Size: 1.0

Numerosity: 1

000000111101 => 12 [0.97185]

000000111101 => 12

Time Stamp: 22988

Average Reward: 1000.0

Error: 0.0

Fitness: 0.971852783803911

Experience: 16

Action Set Size: 1.0

Numerosity: 1

000000011010 => 12 [0.99983]

000000011010 => 12

Time Stamp: 20527

Average Reward: 1000.0

Error: 0.0

Fitness: 0.9998338481620619

Experience: 39

Action Set Size: 1.0

Numerosity: 1

000000010001 => 13 [1.00000]

000000010001 => 13

Time Stamp: 19251

Average Reward: 1000.0

Error: 0.0

Fitness: 0.9999976054996627

Experience: 58

Action Set Size: 1.0

Numerosity: 1

000000011011 => 12 [0.95602]

000000011011 => 12

Time Stamp: 23471

Average Reward: 1000.0

Error: 0.0

Fitness: 0.9560199746936111

Experience: 14

Action Set Size: 1.0

Numerosity: 1

000000101101 => 12 [1.00000]

000000101101 => 12

Time Stamp: 16790

A.2. XCS TRAINING RESULTS - DSP 241

Average Reward: 1000.0

Error: 0.0

Fitness: 0.9999995982695064

Experience: 66

Action Set Size: 1.0

Numerosity: 1

000000011100 => 12 [1.00000]

000000011100 => 12

Time Stamp: 14715

Average Reward: 1000.0

Error: 0.0

Fitness: 0.9999999999332511

Experience: 105

Action Set Size: 1.0

Numerosity: 1

000000111001 => 13 [0.93128]

000000111001 => 13

Time Stamp: 23811

Average Reward: 1000.0

Error: 0.0

Fitness: 0.9312812104587673

Experience: 12

Action Set Size: 1.0

Numerosity: 1

000000001011 => 12 [1.00000]

000000001011 => 12

Time Stamp: 15284

Average Reward: 1000.0

Error: 0.0

Fitness: 0.9999999909538335

Experience: 83

Action Set Size: 1.0

Numerosity: 1

000000110101 => 12 [0.98199]

000000110101 => 12

Time Stamp: 22820

Average Reward: 1000.0

Error: 0.0

Fitness: 0.981985781634503

Experience: 18

Action Set Size: 1.0

Numerosity: 1

000000000000 => 17 [0.96482]

000000000000 => 17

Time Stamp: 22422

Average Reward: 1000.0

Error: 0.0

Fitness: 0.9648159797548889

Experience: 15

Action Set Size: 1.0

Numerosity: 1

000000100001 => 11 [1.00000]

000000100001 => 11

Time Stamp: 17957

Average Reward: 1000.0

Error: 0.0

Fitness: 0.9999995982695064

Experience: 66

Action Set Size: 1.0

Numerosity: 1

000000111110 => 12 [0.96482]

000000111110 => 12

Time Stamp: 22829

Average Reward: 1000.0

Error: 0.0

Fitness: 0.9648159797548889

Experience: 15

Action Set Size: 1.0

Numerosity: 1

000000110010 => 12 [1.00000]

000000110010 => 12

Time Stamp: 17327

Average Reward: 1000.0

Error: 0.0

Fitness: 0.9999997428924841

Experience: 68

Action Set Size: 1.0

Numerosity: 1

000000000001 => 17 [0.99974]

000000000001 => 17

Time Stamp: 20280

Average Reward: 1000.0

Error: 0.0

Fitness: 0.9997403877532216

Experience: 37

Action Set Size: 1.0

Numerosity: 1

000000110011 => 12 [0.91410]

000000110011 => 12

Time Stamp: 23838

Average Reward: 1000.0

Error: 0.0

Fitness: 0.9141015130734592

Experience: 11

Action Set Size: 1.0

Numerosity: 1

000000110001 => 13 [0.99876]

000000110001 => 13

Time Stamp: 21760

Average Reward: 1000.0

Error: 0.0

Fitness: 0.9987620723401149

Experience: 30

Action Set Size: 1.0

Numerosity: 1

000000111000 => 13 [0.99921]

000000111000 => 13

Time Stamp: 20615

Average Reward: 1000.0

Error: 0.0

Fitness: 0.9992077262976735

Experience: 32

Action Set Size: 1.0

Numerosity: 1

000000000100 => 12 [1.00000]

000000000100 => 12

Time Stamp: 17297

Average Reward: 1000.0

Error: 0.0

Fitness: 0.9999987740158274

Experience: 61

Action Set Size: 1.0

A.2. XCS TRAINING RESULTS - DSP 242

Numerosity: 1

000000011111 => 12 [0.99979]

000000011111 => 12

Time Stamp: 20632

Average Reward: 1000.0

Error: 0.0

Fitness: 0.9997923102025773

Experience: 38

Action Set Size: 1.0

Numerosity: 1

000000111100 => 12 [0.93128]

000000111100 => 12

Time Stamp: 23758

Average Reward: 1000.0

Error: 0.0

Fitness: 0.9312812104587673

Experience: 12

Action Set Size: 1.0

Numerosity: 1

000000010000 => 13 [0.97748]

000000010000 => 13

Time Stamp: 22692

Average Reward: 1000.0

Error: 0.0

Fitness: 0.9774822270431288

Experience: 17

Action Set Size: 1.0

Numerosity: 1

000000010110 => 12 [0.89263]

000000010110 => 12

Time Stamp: 23699

Average Reward: 1000.0

Error: 0.0

Fitness: 0.892626891341824

Experience: 10

Action Set Size: 1.0

Numerosity: 1

000000000011 => 12 [0.99845]

000000000011 => 12

Time Stamp: 20767

Average Reward: 1000.0

Error: 0.0

Fitness: 0.9984525904251437

Experience: 29

Action Set Size: 1.0

Numerosity: 1

000000110110 => 12 [0.99758]

000000110110 => 12

Time Stamp: 21405

Average Reward: 1000.0

Error: 0.0

Fitness: 0.997582172539287

Experience: 27

Action Set Size: 1.0

Numerosity: 1

A.2.8 XCS 25k

#########1## => 12 [0.83936]

#########1## => 12

Time Stamp: 24990

Average Reward: 1000.0

Error: 0.0

Fitness: 0.8393557043818822

Experience: 6644

Action Set Size: 174.5116942841693

Numerosity: 131

##########1# => 12 [0.78616]

##########1# => 12

Time Stamp: 24979

Average Reward: 1000.0

Error: 0.0

Fitness: 0.786163298369161

Experience: 6867

Action Set Size: 186.3288624137215

Numerosity: 127

#######1#00# => 13 [0.99293]

#######1#00# => 13

Time Stamp: 24988

Average Reward: 1000.0

Error: 0.0

Fitness: 0.992929511086371

Experience: 1632

Action Set Size: 140.19315361135267

Numerosity: 134

######10#00# => 11 [0.95084]

######10#00# => 11

Time Stamp: 24993

Average Reward: 1000.0

Error: 0.0

Fitness: 0.9508432572598198

Experience: 763

Action Set Size: 119.46096408567944

Numerosity: 109

######00#00# => 17 [0.99405]

######00#00# => 17

Time Stamp: 24950

Average Reward: 1000.0

Error: 0.0

Fitness: 0.9940463286133433

Experience: 788

Action Set Size: 110.9822021406458

Numerosity: 106

A.2.9 XCS 50k - no GA

A.2. XCS TRAINING RESULTS - DSP 243

000000010110 => 12 [0.99807]

000000010110 => 12

Time Stamp: 46711

Average Reward: 1000.0

Error: 0.0

Fitness: 0.9980657380314296

Experience: 28

Action Set Size: 1.0

Numerosity: 1

000000111011 => 12 [0.97748]

000000111011 => 12

Time Stamp: 48034

Average Reward: 1000.0

Error: 0.0

Fitness: 0.9774822270431288

Experience: 17

Action Set Size: 1.0

Numerosity: 1

000000100010 => 12 [1.00000]

000000100010 => 12

Time Stamp: 36416

Average Reward: 1000.0

Error: 0.0

Fitness: 0.9999999999658244

Experience: 108

Action Set Size: 1.0

Numerosity: 1

000000101000 => 11 [0.99979]

000000101000 => 11

Time Stamp: 46474

Average Reward: 1000.0

Error: 0.0

Fitness: 0.9997923102025773

Experience: 38

Action Set Size: 1.0

Numerosity: 1

000000011001 => 13 [0.99968]

000000011001 => 13

Time Stamp: 45725

Average Reward: 1000.0

Error: 0.0

Fitness: 0.999675484691527

Experience: 36

Action Set Size: 1.0

Numerosity: 1

000000110010 => 12 [0.89263]

000000110010 => 12

Time Stamp: 49058

Average Reward: 1000.0

Error: 0.0

Fitness: 0.892626891341824

Experience: 10

Action Set Size: 1.0

Numerosity: 1

000000001011 => 12 [0.99807]

000000001011 => 12

Time Stamp: 45824

Average Reward: 1000.0

Error: 0.0

Fitness: 0.9980657380314296

Experience: 28

Action Set Size: 1.0

Numerosity: 1

000000010100 => 12 [0.99959]

000000010100 => 12

Time Stamp: 46861

Average Reward: 1000.0

Error: 0.0

Fitness: 0.9995943558644088

Experience: 35

Action Set Size: 1.0

Numerosity: 1

000000010011 => 12 [0.99622]

000000010011 => 12

Time Stamp: 47057

Average Reward: 1000.0

Error: 0.0

Fitness: 0.9962221445926361

Experience: 25

Action Set Size: 1.0

Numerosity: 1

000000001001 => 17 [0.99997]

000000001001 => 17

Time Stamp: 44456

Average Reward: 1000.0

Error: 0.0

Fitness: 0.9999651554340765

Experience: 46

Action Set Size: 1.0

Numerosity: 1

000000110111 => 12 [0.89263]

000000110111 => 12

Time Stamp: 48699

Average Reward: 1000.0

Error: 0.0

Fitness: 0.892626891341824

Experience: 10

Action Set Size: 1.0

Numerosity: 1

000000010111 => 12 [1.00000]

000000010111 => 12

Time Stamp: 37847

Average Reward: 1000.0

Error: 0.0

Fitness: 0.9999999999726595

Experience: 109

Action Set Size: 1.0

Numerosity: 1

000000100110 => 12 [0.97185]

000000100110 => 12

Time Stamp: 48849

Average Reward: 1000.0

Error: 0.0

Fitness: 0.971852783803911

Experience: 16

Action Set Size: 1.0

Numerosity: 1

000000011011 => 12 [1.00000]

000000011011 => 12

Time Stamp: 40466

Average Reward: 1000.0

Error: 0.0

A.2. XCS TRAINING RESULTS - DSP 244

Fitness: 0.9999999927630668

Experience: 84

Action Set Size: 1.0

Numerosity: 1

000000101010 => 12 [0.99758]

000000101010 => 12

Time Stamp: 46579

Average Reward: 1000.0

Error: 0.0

Fitness: 0.997582172539287

Experience: 27

Action Set Size: 1.0

Numerosity: 1

000000100011 => 12 [0.97185]

000000100011 => 12

Time Stamp: 47672

Average Reward: 1000.0

Error: 0.0

Fitness: 0.971852783803911

Experience: 16

Action Set Size: 1.0

Numerosity: 1

000000111101 => 12 [0.97185]

000000111101 => 12

Time Stamp: 48881

Average Reward: 1000.0

Error: 0.0

Fitness: 0.971852783803911

Experience: 16

Action Set Size: 1.0

Numerosity: 1

000000001110 => 12 [0.99262]

000000001110 => 12

Time Stamp: 46962

Average Reward: 1000.0

Error: 0.0

Fitness: 0.9926213761574924

Experience: 22

Action Set Size: 1.0

Numerosity: 1

000000110101 => 12 [0.93128]

000000110101 => 12

Time Stamp: 48621

Average Reward: 1000.0

Error: 0.0

Fitness: 0.9312812104587673

Experience: 12

Action Set Size: 1.0

Numerosity: 1

000000100100 => 12 [0.98199]

000000100100 => 12

Time Stamp: 48188

Average Reward: 1000.0

Error: 0.0

Fitness: 0.981985781634503

Experience: 18

Action Set Size: 1.0

Numerosity: 1

000000000001 => 17 [0.99993]

000000000001 => 17

Time Stamp: 45648

Average Reward: 1000.0

Error: 0.0

Fitness: 0.9999319442071806

Experience: 43

Action Set Size: 1.0

Numerosity: 1

000000000000 => 17 [0.94502]

000000000000 => 17

Time Stamp: 48427

Average Reward: 1000.0

Error: 0.0

Fitness: 0.9450249683670139

Experience: 13

Action Set Size: 1.0

Numerosity: 1

000000100111 => 12 [0.98199]

000000100111 => 12

Time Stamp: 46902

Average Reward: 1000.0

Error: 0.0

Fitness: 0.981985781634503

Experience: 18

Action Set Size: 1.0

Numerosity: 1

000000100001 => 11 [0.99807]

000000100001 => 11

Time Stamp: 46199

Average Reward: 1000.0

Error: 0.0

Fitness: 0.9980657380314296

Experience: 28

Action Set Size: 1.0

Numerosity: 1

000000000110 => 12 [0.97185]

000000000110 => 12

Time Stamp: 48993

Average Reward: 1000.0

Error: 0.0

Fitness: 0.971852783803911

Experience: 16

Action Set Size: 1.0

Numerosity: 1

000000011100 => 12 [0.98847]

000000011100 => 12

Time Stamp: 46063

Average Reward: 1000.0

Error: 0.0

Fitness: 0.9884709002460819

Experience: 20

Action Set Size: 1.0

Numerosity: 1

000000110110 => 12 [0.99262]

000000110110 => 12

Time Stamp: 47506

Average Reward: 1000.0

Error: 0.0

Fitness: 0.9926213761574924

Experience: 22

Action Set Size: 1.0

Numerosity: 1

000000101001 => 11 [0.99979]

A.2. XCS TRAINING RESULTS - DSP 245

000000101001 => 11

Time Stamp: 44069

Average Reward: 1000.0

Error: 0.0

Fitness: 0.9997923102025773

Experience: 38

Action Set Size: 1.0

Numerosity: 1

000000101100 => 12 [0.99999]

000000101100 => 12

Time Stamp: 44210

Average Reward: 1000.0

Error: 0.0

Fitness: 0.9999885821326382

Experience: 51

Action Set Size: 1.0

Numerosity: 1

000000111000 => 13 [0.99758]

000000111000 => 13

Time Stamp: 47020

Average Reward: 1000.0

Error: 0.0

Fitness: 0.997582172539287

Experience: 27

Action Set Size: 1.0

Numerosity: 1

000000011010 => 12 [1.00000]

000000011010 => 12

Time Stamp: 36623

Average Reward: 1000.0

Error: 0.0

Fitness: 0.9999999999942663

Experience: 116

Action Set Size: 1.0

Numerosity: 1

000000011110 => 12 [1.00000]

000000011110 => 12

Time Stamp: 43872

Average Reward: 1000.0

Error: 0.0

Fitness: 0.9999984675197842

Experience: 60

Action Set Size: 1.0

Numerosity: 1

000000011111 => 12 [0.94502]

000000011111 => 12

Time Stamp: 48276

Average Reward: 1000.0

Error: 0.0

Fitness: 0.9450249683670139

Experience: 13

Action Set Size: 1.0

Numerosity: 1

000000100101 => 12 [0.99991]

000000100101 => 12

Time Stamp: 46100

Average Reward: 1000.0

Error: 0.0

Fitness: 0.9999149302589757

Experience: 42

Action Set Size: 1.0

Numerosity: 1

000000010000 => 13 [0.99758]

000000010000 => 13

Time Stamp: 47013

Average Reward: 1000.0

Error: 0.0

Fitness: 0.997582172539287

Experience: 27

Action Set Size: 1.0

Numerosity: 1

000000111110 => 12 [1.00000]

000000111110 => 12

Time Stamp: 40946

Average Reward: 1000.0

Error: 0.0

Fitness: 0.9999998946887614

Experience: 72

Action Set Size: 1.0

Numerosity: 1

000000101111 => 12 [0.99997]

000000101111 => 12

Time Stamp: 43190

Average Reward: 1000.0

Error: 0.0

Fitness: 0.9999651554340765

Experience: 46

Action Set Size: 1.0

Numerosity: 1

000000000101 => 12 [1.00000]

000000000101 => 12

Time Stamp: 41050

Average Reward: 1000.0

Error: 0.0

Fitness: 0.9999998946887614

Experience: 72

Action Set Size: 1.0

Numerosity: 1

000000010001 => 13 [0.95602]

000000010001 => 13

Time Stamp: 47982

Average Reward: 1000.0

Error: 0.0

Fitness: 0.9560199746936111

Experience: 14

Action Set Size: 1.0

Numerosity: 1

A.2.10 XCS 50k

A.3. TRAINING SUMMARIES 246

#########1## => 12 [0.74758]

#########1## => 12

Time Stamp: 49983

Average Reward: 1000.0

Error: 0.0

Fitness: 0.7475818834062665

Experience: 13496

Action Set Size: 176.9677180244134

Numerosity: 116

##########1# => 12 [0.70552]

##########1# => 12

Time Stamp: 49983

Average Reward: 1000.0

Error: 0.0

Fitness: 0.7055237635160592

Experience: 13624

Action Set Size: 197.44407451716674

Numerosity: 126

#######1#00# => 13 [0.98853]

#######1#00# => 13

Time Stamp: 49999

Average Reward: 1000.0

Error: 0.0

Fitness: 0.9885283302692095

Experience: 3354

Action Set Size: 141.80496111657925

Numerosity: 135

######00#00# => 17 [0.98375]

######00#00# => 17

Time Stamp: 49974

Average Reward: 1000.0

Error: 0.0

Fitness: 0.9837493831868861

Experience: 1547

Action Set Size: 112.64795548818489

Numerosity: 106

######10#00# => 11 [0.99421]

######10#00# => 11

Time Stamp: 49952

Average Reward: 1000.0

Error: 0.0

Fitness: 0.994205954497984

Experience: 1467

Action Set Size: 109.04690303581262

Numerosity: 98

A.3 Training summaries

A.3.1 XCS training summary - DSC

XCS con�guration Training time (s) Average �tness Number of learned situations

XCS 1k - no GA 11 0.92781 5

XCS 1k 12 0.57562 1

XCS 5k - no GA 13 0.99 42

XCS 5k 15 0.73143 4

XCS 10k - no GA 35 0.99 41

XCS 10k 39 0.68223 4

XCS 25k - no GA 50 0.99 44

XCS 25k 51 0.670 6

XCS 50k - no GA 78 0.99 51

XCS 50k 81 0.715584 5

XCS 100k 237 0.72835 6

Table A.1: Summary of XCS training performance for the DSC agent, listing the training time,
�tness, number of learned situations and �tness/situation performance

A.3. TRAINING SUMMARIES 247

A.3.2 XCS training summary - DSP

XCS con�guration Training time (s) Average �tness Number of learned situations

XCS 1k - no GA - - -

XCS 1k - - -

XCS 5k - no GA 11 0.99 47

XCS 5k 14 0.59144 3

XCS 10k - no GA 44 0.99 43

XCS 10k 45 0.833346 5

XCS 25k - no GA 52 0.98 43

XCS 25k 57 0.912648 5

XCS 50k - no GA 72 0.992 39

XCS 50k 87 0.883918 5

XCS 100k 240 0.911158 5

Table A.2: Summary of XCS training performance for the DSP agent, listing the training time,
�tness, number of learned situations and �tness/situation performance

Action identi�er Action description

3 Change response type

4 Switch ontology

6 Adapt protocol type

8 Decrease request speci�cy

10 Decrease request rate

11 Increase response precision

13 Increase response rate

17 Do nothing

Table A.3: Action identi�ers and description for the I-IOP agent in the IoT ecosystem simulator.

A.4. CONFIGURATIONS 248

A.4 Con�gurations

A.4.1 Simulator con�guration

Con�guration parameter Description

XCS con�g The used XCS con�guration by the

agent

Agent active Where the agent is operational or not.

This is used to evaluate the non-agent

vs. the agent based deployments

Provider utility The utility function employed by the

provider. By adjusting this parame-

ter, the agent is trained to optimize for

runtime interoperability in a di�erent

direction.

Number of providers Number of provider systems to deploy

in simulation

Mapping parameters The semantic mapping starting param-

eters which in�uence how ontologies

are mapped

Provider heterogeneity Determines whether provider systems

are di�erent

Ontologies The ontologies to be used by the sys-

tems. In case of homogeneous ontolo-

gies, this will only be one to be used by

all system in the simulation in which

case semantic interoperability will al-

ways be 1.

Bu�er Simulated communication bu�er

Table A.4: Con�guration space of the IoT ecosystem simulator.

Con�guration space

A.4. CONFIGURATIONS 249

A.4.1.1 Scenario S_1

Con�guration parameter Value

Agent_active [True,True,False]

Provider - API con�g [0,1]

Provider - ontologies [0,0]

Provider - number of providers 2

Provider - utility utilities.utility_max_e�ciency

Provider - prob. unavailability [0,0]

Provider - prob. �rmware [0,0]

Provider - prob. delay [0,0]

Provider - prob. com failure [0,0]

Consumer - request_con�g 0

Consumer - ontology 0

Consumer - utility utilities.utility_max_e�ciency

Consumer - prob. com failure 0

Required job types [data,actuation]

Request speci�cy 1

iterations 20

Table A.5: Simulator con�guration of scenario S_1

A.4. CONFIGURATIONS 250

A.4.1.2 Scenario S_2

Con�guration parameter Value

Agent_active [True,True,False]

Provider - API con�g [0,1,2]

Provider - ontologies [0,0,0]

Provider - number of providers 3

Provider - utility utilities.utility_max_e�ciency

Provider - prob. unavailability [0,0]

Provider - prob. �rmware [0,0]

Provider - prob. delay [0,0]

Provider - prob. com failure [0,0]

Consumer - request_con�g 0

Consumer - ontology 0

Consumer - utility utilities.utility_max_e�ciency

Consumer - prob. com failure 0

Required job types [data,actuation]

Request speci�cy 1

iterations 20

Table A.6: Simulator con�guration of scenario S_2

A.4. CONFIGURATIONS 251

A.4.1.3 Scenario S_3

Con�guration parameter Value

Agent_active [True,True,False]

Provider - API con�g [0,1,3]

Provider - ontologies [0,0,0]

Provider - number of providers 3

Provider - utility utilities.utility_max_e�ciency

Provider - prob. unavailability [0,0]

Provider - prob. �rmware [0,0]

Provider - prob. delay [0,0]

Provider - prob. com failure [0,0]

Consumer - request_con�g 0

Consumer - ontology 0

Consumer - utility utilities.utility_max_e�ciency

Consumer - prob. com failure 0

Required job types [data,actuation]

Request speci�cy 1

iterations 20

Table A.7: Simulator con�guration of scenario S_3

A.4. CONFIGURATIONS 252

A.4.1.4 Scenario S_4

Con�guration parameter Value

Agent_active [True,True,False]

Provider - API con�g [0]

Provider - ontologies [0]

Provider - number of providers 1

Provider - heterogeneity 1

Provider - utility utilities.utility_max_e�ciency

Provider - prob. unavailability [0]

Provider - prob. �rmware [0.1]

Provider - prob. delay [0.05]

Provider - prob. com failure [0]

Consumer - request_con�g 0

Consumer - ontology 0

Consumer - utility utilities.utility_max_e�ciency

Consumer - prob. com failure 0

Required job types [data]

Request speci�cy 1

iterations 20

Table A.8: Simulator con�guration of scenario S_4

A.4. CONFIGURATIONS 253

A.4.1.5 Scenario S_F

Con�guration parameter Value

Agent_active [True,True,False]

Provider - API con�g [0,1,2]

Provider - ontologies [1,0,1]

Provider - number of providers 3

Provider - heterogeneity 1

Provider - utility utilities.utility_max_e�ciency

Provider - prob. unavailability [0,0,0]

Provider - prob. �rmware [0,0]

Provider - prob. delay [0,0]

Provider - prob. com failure [0,0]

Consumer - request_con�g 0

Consumer - ontology 0

Consumer - utility utilities.utility_max_e�ciency

Consumer - prob. com failure 0

Required job types [data,actuation,actuation_1]

Request speci�cy 1

iterations 20

Table A.9: Simulator con�guration of scenario S_F

A.4. CONFIGURATIONS 254

A.4.1.6 Scenario S_P

Con�guration parameter Value

Agent_active [True,True,False]

Provider - API con�g [1,2]

Provider - ontologies [1,0]

Provider - number of providers 2

Provider - heterogeneity 1

Provider - utility utilities.utility_max_e�ciency

Provider - prob. unavailability [0,0]

Provider - prob. �rmware [0,0.4]

Provider - prob. delay [0,0]

Provider - prob. com failure [0,0]

Consumer - request_con�g 0

Consumer - Ontology heterogeneity 0

Consumer - utility utilities.utility_max_e�ciency_sp

Consumer - prob. com failure 0

Required job types [data,actuation]

Request speci�cy 1

iterations 20

Table A.10: Simulator con�guration of scenario S_P

A.4. CONFIGURATIONS 255

A.4.2 XCS con�gurations

A.4.2.1 XCS con�guration space

XCS-Parameter default value

Population size 2000

Learning rate 0.15

Discount rate 0.71

Exploration probability 0.01

Accuracy coe�cient 0.1

error threshold 0.01

GA threshold 1

Deletion consideration threshold 1

Minimum number of actions threshold 0

Subsumption consideration threshold 20

Wildcard probability 0.998

Mutation probability 0.004

Crossover probability 0.8

Initial value for the prediction 1 e−05

Initial value for the error 1 e−05

Initial value for the �tness 1 e−05

Fitness reduction factor 0.1

Table A.11: The XCS con�guration space

A.4. CONFIGURATIONS 256

A.4.2.2 XCS 50k

XCS-Parameter default value

Population size 2000

Learning rate 0.2

Discount rate 0.0

Exploration probability 0.5

Accuracy coe�cient 0.1

error threshold 1

GA threshold 25

Deletion consideration threshold 1

Minimum number of actions threshold 0

Subsumption consideration threshold 20

Wildcard probability 0.5

Mutation probability 0.004

Crossover probability 0.5

Initial value for the prediction 1 e−05

Initial value for the error 1 e−05

Initial value for the �tness 1 e−05

Fitness reduction factor 0.1

Table A.12: The con�guration for the XCS agent with 50.000 trained iterations

A.4.2.3 XCS 100k

The same con�guration as in XCS50k was used, except that the agent was trained for 100.000

iterations.

A.4. CONFIGURATIONS 257

A.4.2.4 XCS 5k - no GA

XCS-Parameter default value

Population size 2000

Learning rate 0.2

Discount rate 0.0

Exploration probability 0.0

Accuracy coe�cient 0.1

error threshold 0.1

GA threshold 1000000

Deletion consideration threshold 1

Minimum number of actions threshold 0

Subsumption consideration threshold 20

Wildcard probability 0.0

Mutation probability 0.000

Crossover probability 0

Initial value for the prediction 1 e−05

Initial value for the error 1 e−05

Initial value for the �tness 1 e−05

Fitness reduction factor 0.1

Table A.13: The con�guration for the XCS agent with 5.000 trained iterations an inactive GA

Bibliography

[ABI+11] C. H. Asuncion, C. Boldyre�, S. Islam, M. Leonard, and B. Thalheim. Pragmatic inter-
operability in the enterprise - a research agenda. Theoretical Computer Science - TCS,
731:0, 01 2011.

[Ack71] R. L. Acko�. Towards a System of Systems Concepts, volume 17. INFORMS, 1971.

[aH15] Arbeitskreis Smart Service Welt / acatech (Hrsg). Smart Service Welt - Um-
setzungsempfehlungen fuer das Zukunftsprojekt Internet-basierte Dienste fuer die
Wirtschaft. Deutsche Akademie der Technikwissenschaften, 2015.

[AIM10] L. Atzori, A. Iera, and G. Morabito. The Internet of Things: A survey. Computer
Networks, 54(15):2787–2805, 2010.

[AO16] D. B. Abeywickrama and E. Ovaska. A survey of autonomic computing methods in
digital service ecosystems. Service Oriented Computing and Applications, pages 1–31,
2016.

[Asu10] C. Asuncion. Pragmatic Interoperability: A Systematic Review of Published De�nitions,
volume 326, pages 164–175. Springer Berlin, 08 2010.

[AV11] C. H. Asuncion and M. Van Sinderen. Towards pragmatic interoperability in the New
Enterprise - A survey of approaches. Lecture Notes in Business Information Processing,
76 LNBIP:132–145, 2011.

[Bar11] B. Bara. Cognitive pragmatics the mental processes of communication. Intercultural
Pragmatics, 8, 09 2011.

[Bat13] T. Batista. Middleware Solutions for the Internet of Things. Springer, 09 2013.

[BD15] S. Billaud and N. Daclin. Interoperability as a Key Concept for the Control and Evo-
lution of the System of Systems (SoS). International Federation for Information Pro-
cessing, 76(March):118–131, 2015.

[BHKL13] A. Ben Hamida, F. Kon, and N. et al. Lago. Integrated choreos middleware - enabling
large-scale, qos-aware adaptive choreographies. 09 2013.

[BI15] A. Bennaceur and V. Issarny. Automated synthesis of mediators to support component
interoperability. IEEE Transactions on Software Engineering, 41(3):221–240, 2015.

[BL15] M. Blackstock and R. Lea. Iot interoperability: A hub-based approach. 2014 Interna-
tional Conference on the Internet of Things, IOT 2014, pages 79–84, 02 2015.

258

BIBLIOGRAPHY 259

[Bor14] E. Borgia. The Internet of Things vision: Key features, applications and open issues.
Computer Communications, 54:1–31, 2014.

[BPGG11] G. Blair, M. Paolucci, P. Grace, and N. Georgantas. Interoperability in Complex Dis-
tributed Systems Interoperability Barriers : Dimensions of Heterogeneity. Europe,
pages 1–26, 2011.

[Brö17] A. Bröring. Enabling IoT Ecosystems through Platform Interoperability. IEEE Soft-
ware, 34(1):54–61, 2017.

[BS06] J. Boardman and B. Sauser. The meaning of system of systems. System of Systems
Engineering, 0, 04 2006.

[BST16] G. Blair, D. Schmidt, and C. Taconet. Middleware for Internet distribution in the
context of cloud computing and the Internet of Things: Editorial Introduction. Annals
of Telecommunications, 71(3-4):87–92, 2016.

[BTW15] K. Bellman, S. Tomforde, and R. Würtz. Interwoven systems: Self-improving systems
integration. Proceedings - 2014 IEEE 8th International Conference on Self-Adaptive and
Self-Organizing Systems Workshops, SASOW 2014, pages 123–127, 03 2015.

[Bul15] L. Bull. A brief history of learning classi�er systems: from CS-1 to XCS and its vari-
ants. Evolutionary Intelligence, 8(2-3):55–70, 2015.

[But15] Martin Butz. Learning classi�er systems. In Springer Handbook of Computational
Intelligence, pages 2367–2388, 07 2015.

[CBBZ18] M. Chernyshev, Z. Baig, O. Bello, and S. Zeadally. Internet of Things (IoT): Research
, Simulators and Testbeds. IEEE Internet of Things Journal, 5(3):1637–1647, 2018.

[CBF+16] Andrea Ceccarelli, Andrea Bondavalli, Bernhard Froemel, Oliver Hoeftberger, and
Hermann Kopetz. Basic Concepts on Systems of Systems, pages 1–39. Springer Inter-
national Publishing, Cham, 2016.

[CD12] V. Chapurlat and N. Daclin. System interoperability: De�nition and proposition of
interface model in MBSE context, volume 14. IFAC Proceedings Volumes, 2012.

[CDE06] D. Chen, M. Dassisti, and B. Elvesaeter. Enterprise interoperability-framework and
knowledge corpus., 2006.

[CFMP05] D. Carney, D. Fisher, E. Morris, and P. Place. Some Current Approaches to Interoper-
ability. Integration The Vlsi Journal, 1(August):27, 2005.

[Che09] B. et al. Cheng. Software engineering for self-adaptive systems: A research
roadmap. In "Software Engineering for Self-Adaptive Systems", volume 5525, pages
1–26. "Springer Berlin Heidelberg", 01 2009.

[CHP18] P. Constantinides, O. Henfridsson, and G. Parker. Platforms and infrastructures in
the digital age. Information Systems Research, 29, 05 2018.

[CN15] J. Cardoso and S. Nickel. Fundamentals of Service Systems, volume 1. Springer, 2015.

BIBLIOGRAPHY 260

[Coo] Gabler wirtschaftslexikon - de�nition coopetition.
https://wirtschaftslexikon.gabler.de/de�nition/coopetition-27127. Accessed: 2019-
12-27.

[CW06] E. Chang and M. West. Digital ecosystems a next generation of the collaborative
environment. The Eight International Conference on Information Systems, pages 3–23,
2006.

[Del13] J. Delgado. Service Interoperability in the Internet of Things. Comput. Technol. SCI,
460:51–87, 2013.

[DM14] N. Daclin and S. Mallek. Capturing and Structuring Interoperability Requirements:
A Framework for Interoperability Requirements . Enterprise Interoperability VI, pages
41–51, 2014.

[DMA13] A. Didandeh, N. Mirbakhsh, and M. Afsharchi. Concept learning games. Information
Systems Frontiers, 15(4):653–676, 2013.

[dRSB17] M. de Reuver, C. Sørensen, and R. C. Basole. The digital platform: a research agenda.
Journal of Information Technology, pages 1–12, 2017.

[DV15] W. Damm and A. Vincentelli. A conceptual model of system of systems. In SWEC
2015, pages 19–27, 04 2015.

[ERA10] M. Eisenhauer, P. Rosengren, and P. Antolin. Hydra: A development platform for in-
tegrating wireless devices and sensors into ambient intelligence systems. The Internet
of Things, pages 367–373, 2010.

[FCGD07] T. C. Ford, J. M. Colombi, S. R. Graham, and Jacques D.R. A Survey on Interoperability
Measurement. Information Systems, 2007.

[FGCJ08] T. Ford, S. Graham, J. Colombi, and D. Jacques. Measuring System Interoperability
(An i-Score Improvement). Conference on Systems Engineering Research, April 4-5,
(November 2016):1–10, 2008.

[Fis06] D. A Fisher. An Emergent Perspective on Interoperation in Systems of Systems. Tech-
nical report, Software Engineering Institute, Carnegie Mellon University, 2006.

[For08] T. Ford. Interoperability Measurement. Biblioscholar, 08 2008.

[Gas15] U. Gasser. Interoperability in the Digital Ecosystem. SSRN Electronic Journal, 7641:36,
2015.

[GBF+18] J. Guth, Uwe Breitenbücher, M. Falkenthal, P. Fremantle, O. Kopp, F. Leymann, and
L. Reinfurt. A Detailed Analysis of IoT Platform Architectures: Concepts, Similarities,
and Di�erences, pages 81–101. 01 2018.

[GC02] A. Gawer and M. A. Cusumano. Platform Leadership, volume 1. Harvard Business
School Press, Boston, MA, USA, 2002.

[GC13] A. Gawer and M. Cusumano. Industry Platform and Ecosystem Innovation. Journal
of Product Innovation and Management, 31(3):417–433, 2013.

BIBLIOGRAPHY 261

[GCB+14] M.B. Gonçalves, E. Cavalcante, T. Batista, F. Oquendo, and E.Y. Nakagawa. To-
wards a conceptual model for software-intensive system-of-systems. Conference
Proceedings - IEEE International Conference on Systems, Man and Cybernetics, 2014-
Janua(January):1605–1610, 2014.

[GIB12] E. Grousset, V. Issarny, and A. et al. Bertolino. Connect; project �nal report - use and
dissemination of foreground, 12 2012.

[Gmb16] Berg Insight GmbH. IoT Platforms and Software. Technical report, Berg Insight, 2016.

[GMLF18] R. Gravina, M. Manso, A. Liotta, and G. Fortino. Integration, Interconnection, and
Interoperability of IoT Systems, volume 1. Springer, 2018.

[GP12] U. Gasser and J. Palfrey. Interop: The Promise and Perils of Highly Interconnected Sys-
tems, volume 1. Basic Books, 2012.

[GPP+16] M. Ganzha, M. Paprzycki, W. Pawlowski, P. Szmeja, and K. Wasielewska. Semantic
interoperability in the Internet of Things: An overview from the INTER-IoT perspec-
tive. Journal of Network and Computer Applications, 2016.

[Gué14] W. Guédria. A conceptual framework for enterprise interoperability. Int. J. E-Bus.
Res., 10:54–64, July 2014.

[GW12] F. Guo and M. Wang. Quantitative measurement of interoperability by using Petri
net. Journal of Computational Information Systems, 8(8):3245–3252, 2012.

[GZ04] C.V. Goldman and S. Zilberstein. Decentralized control of cooperative systems: Cate-
gorization and complexity analysis. Journal of Arti�cial Intelligence Research, 22:143–
174, 2004.

[HF56] A Hall and R Fagen. De�nition of system. In General systems, volume 1, pages 18–28,
1956.

[Hoa16] S. Hoare. A study of the state-of-the-art of PaaS interoperability. Proceedings of the
20th International Conference on Evaluation and Assessment in Software Engineering -
EASE ’16, pages 1–4, 2016.

[HS11] Cooperative Hybrid and Objects Sensor. CHOSeN Project Report Extended Publish-
able Summary. pages 1–42, 2011.

[Ini15] IEEE Internet Initiative. Towards a de�nition of the Internet of Things (IoT). page 27,
2015.

[IOKP16] A. Immonen, E. Ovaska, J. Kalaoja, and D. Pakkala. A service requirements engineer-
ing method for a digital service ecosystem. Service Oriented Computing and Applica-
tions, 10(2):151–172, 2016.

[IoT] BIG IoT. Big iot eu project. http://big-iot.eu/. Accessed: 2019-12-12.

[IoT16] IoT Analytics GmbH. IoT Platform Market Report 2015-2021. Technical Report Jan-
uary, IoT Analytics, 2016.

BIBLIOGRAPHY 262

[JB12] F-W. Jaekel and G. et al. Benguria. A methodology for interoperability evaluation
based on causal performance measurement models. Enterprise Interoperability, 5:61 –
70, 2012.

[JWDM13] E. Jones-Wyatt, J.C. Domercant, and D. Mavris. A reliability-based measurement of
interoperability for systems of systems. In SysCon 2013 - 7th Annual IEEE International
Systems Conference, Proceedings, pages 408–413, 04 2013.

[KGR16] M. Kostoska, M. Gusev, and S. Ristov. An Overview of Cloud Interoperability. Feder-
ated conference on computer science and ifnromation systems, 8:873–876, 2016.

[KH18] Denis Kramer and Joerg Haehner. Beyond semantic interoperability in iot ecosystems.
In IOT ’18: Proceedings of the 8th International Conference on the Internet of Things,
pages 1–4, 10 2018.

[KH19] Denis Kramer and Joerg Haehner. A self-aware systems approach for interoperability
in iot ecosystems. In 32nd GI/ITG International Conference on Architecture of Comput-
ing Systems May 20 - 21, 2019, Technical University of Denmark, Copenhagen, Denmark
Workshop Proceedings, volume 6. VDE, 2019.

[KK17] S. Kounev and J. O. Kephart. Self-Aware Computing Systems, volume 1. Springer, 2017.

[KMV+15] C. Krupitzer, F. Maximilian, S. Vansyckel, G. Schiele, and C. Becker. A survey on
engineering approaches for self-adaptive systems. Pervasive and Mobile Computing,
17:184–206, 2015.

[LBB12] W. Li, Y. Badr, and F. Biennier. Digital Ecosystems: Challenges and Prospects. Proceed-
ings of the International Conference on Management of Emergent Digital EcoSystems
(MEDES ’12), pages 117–122, 2012.

[LCP+11] P. R. Lewis, A. Chandra, S. Parsons, E. Robinson, K. Glette, R. Bahsoon, J. Torresen,
and X. Yao. A survey of self-awareness and its application in computing systems.
Proceedings - 2011 5th IEEE Conference on Self-Adaptive and Self-Organizing Systems
Workshops, SASOW 2011, pages 102–107, 2011.

[LGP16] G. S. S. Leal, W. Guedria, and H. Panetto. Towards a Comparative Analysis of In-
teroperability Assessment Approaches for Collaborative Enterprise Systems. ISPE -
International Conference on Transdiciplinary Engineering, 2016.

[Liu07] K. Liu. Pragmatic Computing - A Semiotic Perspective to Web Services. CCIS, 23:3–15,
2007.

[LK91] A. M. Law and D. W. Kelton. Simulation Modeling & Analysis, volume 2. University
of Michigan, 1991.

[LLL14] S. Liu, W. Li, and K. Liu. Assessing Pragmatic Interoperability of Information Systems
from a Semiotic Perspective. Iciso 2014, 449:32–41, 2014.

[LPR+16] P. R Lewis, M. Platzner, B. Rinner, J. Tørresen, and X. Yao. Self-aware Computing
Systems: An Engineering Approach, volume 1. Springer, 2016.

[Luc16] S. Lucero. IoT platforms : enabling the Internet of Things, 2016.

BIBLIOGRAPHY 263

[Luk15] J. Lukkien. A Summary on Systems of Systems Engineering. 2015.

[Luk16] J. Lukkien. A Systems of Systems perspective on the Internet of Things. ACM SIGBED
Review, 13(June):56–62, 2016.

[LY02] Kalle Lyytinen and Youngjin Yoo. Ubiquitous computing. Communications of the
ACM, 45(12):63–96, 2002.

[Mai98] M. W. Maier. Architecting Principles for Systems-of-Systems. Systems Engineering,
1:267–284, 1998.

[MCG+14] P. Maia, E. Cavalcante, P. Gomes, T. Batista, F. C Delicato, and P. F. Pires. On the
Development of Systems-of-Systems based on the Internet of Things : A Systematic
Mapping, 2014.

[MDC10] S. Mallek, N. Daclin, and V. Chapurlat. Towards a Conceptualisation of Interoperability
Requirements, volume 4, pages 439–448. Springer, 01 2010.

[MMP19] F. Marino, C. Moiso, and M. Petracca. Automatic contract negotiation, service dis-
covery and mutual authentication solutions: A survey on the enabling technologies
of the forthcoming IoT ecosystems. Computer Networks, 148:176–195, 2019.

[MMST16] J. Mineraud, O. Mazhelis, X. Su, and S. Tarkoma. A gap analysis of Internet-of-Things
platforms. Computer Communications, 8990:5–16, 2016.

[MSDC12] D. Miorandi, S. Sicari, F. De Pellegrini, and I. Chlamtac. Internet of things: Vision,
applications and research challenges. Ad Hoc Networks, 10:1497–1516, 2012.

[Muf09] M. Mu�atti. The Impact of SOA on Interoperability: a Systematic Literature Review.
PhD thesis, Politecnico Milano, 2009.

[Mun02] S. Munk. An analysis of basic interoperability related terms, system of interoperabil-
ity types. Academic and Applied Research in Military Sciences, 1(1):117–131, 2002.

[MVEP03] P. Mcburney, R.M. Van Eijk, and S. et al. Parsons. A Dialogue Game Protocol for Agent
Purchase Negotiations. Autonomous Agents andMulti-Agent Systems, 1:235–273, 2003.

[Nay15] M.M. Nayebpour. The interoperability index model: Improving the I-Score model for
interoperability measurement. International Journal of Advanced Research in Engi-
neering and Applied Sciences, 4(11):24–36, 2015.

[NDBC16] F. W. Neiva, J. M. N. David, R. Braga, and F. Campos. Towards pragmatic interoper-
ability to support collaboration: A systematic review and mapping of the literature.
Information and Software Technology, 72:137–150, 2016.

[NGC09] Y. Naudet, W. Guedria, and D. Chen. Systems science for enterprise interoperability.
Proceedings - 2009 International Conference on Interoperability for Enterprise Software
and Applications, IESA 2009, pages 107–113, 2009.

[NHRdR18] R. Nicolescu, M. Huth, P. Radanliev, and D. de Roure. Mapping the values of IoT.
Journal of Information Technology, pages 1–16, 2018.

BIBLIOGRAPHY 264

[NKK+09] M. Nagy, A. Katasonov, O. Khriyenko, S. Nikitin, M. Szydlowski, and Terzivan. Chal-
lenges of middleware for the internet of things. Automation Control - Theory and
Practice, 2009.

[NLGC10] Y. Naudet, T. Latour, W. Guedria, and D. Chen. Towards a systemic formalisation of
interoperability. Computers in Industry, 61(2):176–185, 2010.

[OA16] F. A. Oliehoek and C. Amato. A concise introduction to Decentralized POMDPs, vol-
ume 1. Springer International Publishing, 2016.

[PG03] M. Papazoglou and D. Georgakopoulos. Introduction: Service-oriented computing.
Communications of the ACM, 46:24–28, 10 2003.

[PL05] L. Panait and S. Luke. Cooperative multi-agent learning: The state of the art. Au-
tonomous Agents and Multi-Agent Systems, 11(3):387–434, 2005.

[PT02] D. V. Pynadath and M. Tambe. The communicative multiagent team decision problem:
Analyzing teamwork theories and models. Journal of Arti�cial Intelligence Research,
16:389–423, Jun 2002.

[PZJGR16] H. Panetto, M. Zdravkovic, R. Jardim-Goncalves, and D. et al. Romero. New perspec-
tives for the future interoperable enterprise systems. Computers in Industry, 79:47–63,
2016.

[Raj11] R Rajmohan. A Survey on Problems in Distributed UDDI. International Journal of
Computer Applications, 36(3):1–7, 2011.

[RBD09] R. Rouvoy, P. Barone, and Y. et al. Ding. MUSIC: Middleware Support for Self-
Adaptation in Ubiquitous and Service-Oriented Environments. LNCS, 5525:164–182,
2009.

[RK09] T. Ruokolainen and L. Kutvonen. Managing interoperability knowledge in open ser-
vice ecosystems. Proceedings - IEEE International Enterprise Distributed Object Com-
puting Workshop, EDOC, pages 203–211, 2009.

[RLSS10] Ragunathan Rajkumar, Insup Lee, Lui Sha, and John Stankovic. 44.1 cyber-physical
systems: The next computing revolution. In Proceedings - Design Automation Confer-
ence, pages 731–736, 01 2010.

[RMjP15] M. A. Razzaque, M. Milojevic-jevric, and A. Palade. Middleware for Internet of Things
: a Survey. IEEE Internet of Things Journal, 0(0):1–26, 2015.

[SB17] R. S. Sutton and A. G. Barto. Reinforcement Learning: An Introduction. Trends in
Cognitive Sciences, 2017.

[SBC+15] M. Serrano, P. Barnaghi, F. Carrez, P. Cousin, O. Vermesan, and P. Friess. Internet
of Things - IoT Semantic Interoperability: research challeges, best practices, recom-
mendations and next steps, 2015.

[SBKK17] S. Schmid, A. Bröring, D. Kramer, and S. et al. Käbisch. An Architecture for Interop-
erable IoT Ecosystems. Lecture Notes in Computer Science, 10218, 2017.

BIBLIOGRAPHY 265

[SBV10] B. Sauser, J. Boardman, and D. Verma. Systomics: Toward a biology of system of
systems. IEEE Transactions on Systems, Man, and Cybernetics - Part A: Systems and
Humans, 40(4):803–814, 2010.

[Sin18] R. R. Singh. Designing for Multi-Agent Collaboration: A Shared Mental Model Perspec-
tive. PhD thesis, University of Melbourne, 2018.

[Sma18] Interoperability in IOT based smart home: A review. Review of Computer Engineering
Studies, 5:50–55, 2018.

[Ste17] A. Stein. Reaction Learning. In Christian Müller-Schloer and S. Tomforde, editors,
Organic Computing – Technical Systems for Survival in the Real World, chapter Basic
Methods, pages 287–328. Birkhäuser, Cham, 2017.

[SZZ+16] S. Soursos, I. P. Zarko, P. Zwickl, I. Gojmerac, G. Bianchi, and G. Carrozzo. Towards
the cross-domain interoperability of IoT platforms. EUCNC 2016 - European Confer-
ence on Networks and Communications, pages 398–402, 2016.

[TC09] A. Tolk and Turnitsa C.D. An Extended Interoperability Framework for Joint Com-
posability. In Modeling, Simulation and Visualization Engineering Faculty Publications,
volume 52, 2009.

[TDT07] A. Tolk, S. Y. Diallo, and C. D. Turnitsa. Applying the Levels of Conceptual Interoper-
ability Model in Support of Integratability , Interoperability , and Composability for
System-of-Systems Engineering. Journal of Systemics, Cybernetics and Informatics,
5(5):65–74, 2007.

[TE06] E. Tamani and P. Evripidou. A pragmatic and pervasive methodology to web ser-
vice discovery. Lecture Notes in Computer Science (including subseries Lecture Notes
in Arti�cial Intelligence and Lecture Notes in Bioinformatics), 4278 LNCS:1285–1294,
2006.

[THIG11] T. Teixeira, S. Hachem, V. Issarny, and N. Georgantas. Service oriented middleware
for the internet of things: A perspective. Procedia Environmental Sciences, 11, 01 2011.

[TKB10] A. Tiwana, B. Konsynski, and A. Bush. Research commentary platform evolution:
Coevolution of platform architecture, governance, and environmental dynamics. In-
formation Systems Research, 21:675–687, 12 2010.

[TMS17] S. Tomforde and C. Müller-Schloer. Organic Computing - Technical Systems for Sur-
vival in the Real World. Springer, 2017.

[Tom15] S. Tomforde. Challenges and Solution Strategies for Mastering Interwoven Systems.
habilitation, Universität Augsburg, 2015.

[TPB+11] S. Tomforde, H. Prothmann, J. Branke, J. Hähner, M. Mnif, C. Müller-Schloer,
U. Richter, and H. Schmeck. Observation and Control of Organic Systems, pages 325–
338. Springer, 01 2011.

[TRBW16] S. Tomforde, S. Rudolph, K. Bellman, and R. Wurtz. An Organic Computing Per-
spective on Self-Improving System Interweaving at Runtime. 2016 IEEE International
Conference on Autonomic Computing (ICAC), 245240:276–284, 2016.

BIBLIOGRAPHY 266

[TV07] A. S. Tanenbaum and M. Van Steen. Distributed Systems: Principles and Paradigms,
volume 1. Pearson Education, 2007.

[UM09] R. Urbanowicz and J. Moore. Learning classi�er systems: A complete introduction,
review, and roadmap. Journal of Arti�cial Evolution and Applications, 2009, 09 2009.

[Vei03] D. Veit. Matchmaking in Electronic Markets - An Agent-Based Approach towardsMatch-
making in Electronic Negotiations, volume 2882. Springer, 01 2003.

[VF13] Ovidiu Vermesan and Peter Friess. Internet of things: Converging technologies for
smart environments and integrated ecosystems. In River Publishers Series in Commu-
nications. River Publishers (Aalborg Denmark 2013), 2013.

[VMZ10] C. Villalba, M. Mamei, and F. Zambonelli. A self-organizing architecture for pervasive
ecosystems. Lecture Notes in Computer Science (including subseries Lecture Notes in
Arti�cial Intelligence and Lecture Notes in Bioinformatics), 6090 LNCS:275–300, 2010.

[WA13] D. Weyns and J. Andersson. On the challenges of self-adaptation in systems of sys-
tems. Proceedings of the First International Workshop on Software Engineering for
Systems-of-Systems - SESoS ’13, pages 47–51, 2013.

[Wei14] G. Weichhart. Requirements for supporting enterprise interoperability in dynamic
environments. In Proceedings of the I-ESA Conferences, pages 479–488. Enterprise
Interoperability VI, 01 2014.

[WF15] F. Wortmann and K. Flüchter. Internet of Things: Technology and Value Added.
Business and Information Systems Engineering, 57(3):221–224, 2015.

[Wil09] J. Wilkes. Utility Functions, Prices, and Negotiation. Market-Oriented Grid and Utility
Computing, pages 67–88, 2009.

[WvO12] M. Wiering and M. van Otterlo. Reinforcement Learning - State of the art, volume 1.
Springer, 2012.

[XLZ04] P. Xuan, V. Lesser, and S. Zilberstein. Modeling Cooperative Multiagent Problem
Solving as Decentralized Decision Processes. Aamas, 1:1–28, 2004.

[YAP12] E. Yahia, A. Aubry, and H. Panetto. Formal measures for semantic interoperability
assessment in cooperative enterprise information systems. Computers in Industry,
63(5):443–457, 2012.

[ZTP14] M. Zdravkovi, M. Trajanovi, and H. Panetto. Enabling interoperability as a property
of ubiquitous systems: towards the theory of interoperability-of-everything. 4th In-
ternational Conference on Information Society and Technology (ICIST 2014) Kopaonik,
Serbia, (1):240–247, 2014.

