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Abstract. Induced by the last evolutionary step of systems, the vir-
tualization and decentralization of systems is thriving leading to more
complex systems. This causes the system behavior described by models
to be split into additional models, creating gaps.
As a result, we present a novel approach that combines model artifacts
describing the architecture of a system to recover the complete view of a
system’s behavior. Our design relies on model transformation to create a
consistent model basis to enable cross-model connections. The combining
process is carried out in two phases. First, an expert defines cross-model
connections mapping behavioral models onto structural models. Second,
these connections are used to derive direct connections between behav-
ioral models to bridge the gap that emerged.
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1 Introduction

Advances in communications technology and global interconnectivity have led
to the next evolutionary step of systems. As a result, technologies such as cloud
computing (CC), the Internet of Things (IoT) and cyber-physical systems (CPS)
have emerged. As defined by the NIST, “Cloud computing is a model for en-
abling ubiquitous, convenient, on-demand network access to a shared pool of
configurable computing resources (e.g., networks, servers, storage, applications,
and services) that can be rapidly provisioned and released with minimal man-
agement effort or service provider interaction.”[15]. While CC widens the gap
between software and hardware by focusing on virtualization and decentraliza-
tion, the IoT and CPS close the gap between the cyber and the real world. The
IoT is defined in [1] as “a global infrastructure for the information society, en-
abling advanced services by interconnecting (physical and virtual) things based
on existing and evolving interoperable information and communication technolo-
gies”. CPS addresses several concepts also present in IoT but more focused in an
industrial environment [17]. As a result, IoT devices are mostly used to monitor
the real world [14] while CPS are designed to actively shape the world [8].
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2 Problem Statement

The ongoing trend towards virtualization, decentralization and real-world inte-
gration is adding complexity to systems. In case of virtualization and decentral-
ization, components of a system often no longer interact directly with each other
but must first overcome hidden behavior to reach other system components. In a
software-centric environment, we assume that each such component is controlled
by software which results in its behavior being set by programming language. In
this context, hidden behavior describes software without available source code.
Cloud computing is a prime example of highly virtualized and decentralized sys-
tems as it allows companies to outsource the hosting of their IT infrastructure
making it a matter of cost [13]. In comparison to traditional distributed sys-
tems, a fundamental difference in architecture is that software in distributed
systems is tied to a specific physical machine while software in cloud computing
is tied to a specific virtual machine [16]. This results in the software being fully
abstracted from the hardware leading to new challenges. [12]. One of these chal-
lenges is reliability [11]. However, there are several approaches that address this
challenge on the architectural level [9]. Anyhow, cloud computing significantly
adds complexity to systems which creates new points of failure. In recent years,
there was effort to apply the concept of cloud computing to the concept of the
IoT to cope with its problems [7]. The IoT allows systems to react and interact
with the real world introducing physical processes to systems. This applies to
CPS as well since the IoT and CPS follow a similar approach as described in sec-
tion 1. Physical processes add uncertainty to systems [18]. Uncertainty describes
the lack of knowledge about a physical process i.e. state of the parent physical
system, timing and nature of inputs. As a result, virtualization, decentralization
and uncertainty are heavily adding complexity to systems.

A system, in general, is defined as a set of at least two components where each
component has to affect at least one other component and has to be affected by
at least one other component of the system [4]. Consequently, a component con-
sists of properties which describe its behavior and connections to other system
components. As stated in the specification of UML [10], UML model elements
are categorized either as structural or behavioral. Structural Model Elements
(SMEs) represent the static properties of a system that describe what the sys-
tem is composed of. Behavioral model elements (BMEs) describe the dynamic
features of a system that characterize how the components behave. Therefore,
SMEs are used to model the properties of a system at a particular point in
time while BMEs are used to model how they change over time. However, this
categorization applies not only to the model elements but also to the models
themselves. A structural model may contain BMEs but these are only used to
request a particular behavior. In turn, a behavioral model may contain SMEs
showing properties that do not change over time. As a result, we assume that
models can be roughly categorized in either being structural or behavioral. Struc-
tural models often show the connections between system components such as
UML component diagrams which show the interfaces of components and their
structural connection. Behavioral models, in contrast, are often tied to a system
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component such as UML state machine diagrams that represent the internal be-
havior of a particular system component. As a result, the behavior of a system
is usually described by several models, each representing a particular aspect of
the system. As system complexity increases, these models become more complex
as well. Subsequently, the number of models to describe a system potentially
increases.

As the number of models to describe a system increases, we see a strong
need to regain a complete view of the behavior of a system. Since structural
models usually focus on representing the connections between components and
behavioral models usually describe the internal behavior of a component, there
is no model that sufficiently contains the behavior of the entire system. To derive
the behavior of the system as a whole, the behavioral models describing a system
need to be connected or merged.

3 Bridging the Gap

In this section, we propose a novel approach for using structural models to con-
nect the behavioral models of a system. First, the structural and behavioral
models that represent the architecture of a system are reduced to mixed graphs.
This is detailed in subsection 3.1. Thereafter, the models are merged and trans-
formed to a directed graph to enable cross-model connections which is described
in detail in subsection 3.2. Finally, cross-model connections are defined that
link structural models to behavioral models, from which additional cross-model
connections are derived to directly link behavioral models. This is detailed in
subsection 3.3. In this section we focus on the syntax of the approach while the
semantics are addressed in more detail in section 4.

3.1 Reduction of Structural and Behavioral Models

In the context of models, dependency is often expressed by directed edges. A
dependency induces some kind of order when it is included in a structural model
as for instance inheritance in class diagrams. A directed edge as part of a be-
havioral model, in turn, enables the formation of paths that characterize the
behavior of a component or the interactions between components. An example
of behavior models that describe the behavior of a component in detail are UML
state machine diagrams or activity diagrams. As behavioral models describe the
behavior of the system, their edges are directed. However, behavioral models
may contain edges that are undirected as described in section 2. In addition,
structural models may contain directed edges but they are usually undirected.
As both types of model contain directed and undirected edges, we aim at re-
ducing both types of model to mixed graphs. A mixed graph M = (V,A,E)
consists of a non-empty finite set V (M) of elements called vertices, a finite set
A(M) = V (M) × V (M) of ordered pairs of distinct vertices and a finite set
E(M) = V (M)× V (M) of unordered pairs of distinct vertices as defined in [6].
We call V (M) the node set of M , A(M) the set of directed edges of M and
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E(M) the set of undirected edges of M . As the edges in A(M) are directed, the
edge (a, b) ∈ A(M) represents a source-to-target connection where the node a is
the source and the node b represents the target.

Let the set X(S) contain all models that describe the system S structurally.
In addition, let the set Y (S) contain all models that describe the behavior of
the system S. We reduce the behavioral and structural models of the system
by transforming them into mixed graphs. Each structural and behavioral model
is thereby transformed into exactly one mixed graph. This results in the sets
XM (S) and YM (S). The set XM (S) contains all mixed graphs derived from the
structural models. In addition, the set YM (S) consists of all mixed graphs derived
from the behavioral models. The nodes of the behavioral model x ∈ X(S) are
thereby added to the node set V (xM ) of the mixed graph xM ∈ XM (S) that
represents the model x. The nodes of the structural model y ∈ Y (S) are added to
the node set V (yM ) of the mixed graph yM ∈ YM (S) representing the model y.
The edges of the behavioral model x ∈ X(S) are categorized as either directed or
undirected and added to their respective set of the corresponding mixed model
xM . The edges of the structural model y ∈ Y (S) are categorized and added in
the same way.

3.2 Merging of System Architecture

To enable cross-model connections, the mixed graphs representing the system
architecture are merged to form a consistent model basis. Therefore, the undi-
rected edges of the mixed graphs are transformed into directed edges and the
mixed graphs are merged into a single directed graph holding the whole sys-
tem architecture. A directed graph D = (V,A) consists of a non-empty finite
set V (D) of elements called vertices and a finite set A(D) = V (D) × V (D) of
ordered pairs of distinct vertices as defined in [6]. We call V (D) the node set of
D and A(D) the set of directed edges of D. As the edges are directed, the edge
(a, b) ∈ A(D) represents a source-to-target connection where the node a is the
source and the node b represents the target.

As undirected edges can be considered bidirectional [6], undirected edges can
be transformed to directed edges. The function T : E(M)→ A(M)

T (E(M)) =
⋃

(k,l)∈E(M)

(k, l) ∪ (l, k) (1)

transforms every bidirectional edge (k, l) ∈ E(M) into the directed edges (k, l)
and (l, k).

Let the consistent model basis be the directed graph S = (V,A). Conse-
quently, we define the set

V (S) =
⋃

s∈XM (S)

⋃
b∈YM (S)

V (s) ∪ V (b) (2)
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as the union of all nodes of the mixed graphs that describe the system S. In
addition, the set

A(S) =
⋃

s∈XM (S)

⋃
b∈YM (S)

T (E(s)) ∪A(s) ∪ T (E(b)) ∪A(b) (3)

of ordered pairs holding the edges included in the mixed graphs that describe
the system S. The model thus consists of several independent model artifacts.

3.3 Directly connecting behavioral models

In context of the consistent model basis, we define a cross-model connection as an
edge between two nodes contained in the consistent model basis that originated
from two different model artifacts that described the same system. Therefore, let
the nodes a and b be contained in the set V (S). Let the nodes a and b originate
from two different models x and y. Let the models x and y be contained in X(S)
or Y (S) and describe the system S. The node a can be paired with the node b
resulting in the edge (a, b) being added to the edge set A(S) of the consistent
model basis S. As the edges are directed, the node b can be paired with the node
a resulting in the edge (b, a) being added to the set of directed edges A(S). The
semantics are addressed in the following section 4.

As the concept of transitive closures applies to directed graphs, we can use
this property to directly connect behavioral models by deriving cross-model con-
nections from walks. As defined in [6], a walk in D is an alternating sequence
W = x1a1x2a2 . . . xk−1ak−1xk of vertices xi and arcs aj = (xi, xi+1) from D
such that ∀xi ∈W (D) ∃v ∈ V (D) : xi = v and ∀aj ∈W (D) ∃a ∈ A(D) : aj = a
with i = j = 1, . . . , k − 1. Consequently, if a path exists from x ∈ V (S) to
z ∈ V (S), then the edge (x, z) can be formed without violating the model. This
allows the behavioral models to be directly connected by transitivity, bridging
the gap.

4 Case Study: Smart Home

In this section, a case study is performed, design decisions are discussed and
semantics for this approach are defined. The case study is performed on a simple
system measuring the outside temperature and sending the information to a
device called the Smart Mirror. The device capturing the temperature is called
Thermometer. It reads the outside temperature every minute and sends the
result to the smart mirror over a TCP connection. Since a TCP connection
acknowledges the receiving of packets, both components influence each other
and therefore fulfill the constraints of the definition of system. After receiving a
packet, the smart mirror processes the message and displays the temperature.

The system architecture is composed of structural and behavioral models.
Figure 1 shows the system structurally as an UML component diagram. The
component Thermometer provides the interface Temperature which is required
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Smart
Home

«component» 
Smart Mirror

«component» 
Thermometer

Temperature

Fig. 1. Component diagram illustrating the system structurally

Smart
Mirror

Thermo- 
meter

Process Message
 Idle

getMsg()

Push Temperature
 Idle

wait(60s)

entry / processMsg()

entry / readTemperature() 
exit / sendTemperature()

Fig. 2. State machine diagrams visualizing the behavior of each system component

by the component Smart Mirror. We chose UML for our representation because,
despite a declining trend in its use, UML is still widely used [5].

In figure 2, the behavior of the components is described by UML state ma-
chine diagrams. They are framed by their respective name and are defined by
two states. The smart mirror consists of an idle state and a state in which the
temperature is collected from an internal sensor and transmitted to the network
connecting both components. The device starts in the idle state and switches to
the transmit state every sixty seconds. After the temperature is pushed to the
network, the device changes its state to idle.

The thermometer includes an idle state and a state in which messages are
processed and the new temperature value is displayed. This device also starts in
the idle state and switches to the process state after a message is received. After
the message is processed and the temperature is displayed, the device returns to
idle mode.

As described in section 3, cross-model connections need to be enabled to
bridge the gap. For this purpose, the behavioral and structural models are
merged in this approach. To derive the behavior of the system as a whole, undi-
rected edges are considered bidirectional and cross-model connections need to
be formed. In section 3.3, the formation of cross-model connections is defined
syntactically. In the following, the semantics of such connections are briefly dis-
cussed.

A cross-model connection describes an edge between two different models
resulting in the possibility to connect structural with structural, behavioral
with behavioral, behavioral with structural or structural with behavioral models.
Since the approach is designed to extract the behavior of a whole system, con-
nections from structural models to structural models are ignored as we assume
that there is always a structural model that covers the structure of a system in
its entirety. Connections from behavioral models to behavioral models are rel-
atively difficult to derive directly since they usually describe the behavior of a
specific system component or a directed information flow between components.
If a behavior model describes the behavior of a component like state machine
diagrams, then it can be linked to a system component but usually does not
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include information identifying that component. In this case, an expert for this
system is needed to link a behavioral model to a node of a structural model.
If a behavioral model, in turn, characterizes the communication between com-
ponents like sequence diagrams, there are nodes that can be directly associated
with components of the system and thus with other nodes of structural models.
In this case, the connections can be formed automatically. However, the for-
mation of cross-model connections need to be further refined as our goal is to
establish cross model connections between nodes of behavioral models. For this
purpose, nodes of behavioral models are identified as valid candidates for cross-
model connections between such models. They can be marked as either input
or output nodes to implicitly define the direction of connections. An input node
requires stimuli from other system components enabling the formation of incom-
ing cross-model connections. An output node provides stimuli to other system
components enabling the formation of outgoing cross-model connections. Based
on this information, cross-model connections between structural and behavioral
models are formed.

System

«component» 
Smart Mirror

«component» 
ThermometerTemperature

Process Message
 Idle

getMsg()

Push Temperature
 Idle

wait(60s)

entry / processMsg()

entry / readTemperature() 
exit / sendTemperature()

Fig. 3. Consistent model basis with cross-model connections defined

Figure 3 shows the behavioral and structural models representing the ar-
chitecture of the case study in their merged form. The expert associated the
behavioral models shown in figure 2 with their component in the structural
model shown in figure 1 and marked the state Push Temperature as an output
node and the state Process Message as an input node. Consequently, the edges
Push Temperature to Thermometer and Smart Mirror to Process Message were
formed.

The cross-model connections involving nodes of structural models are only
used to derive the behavior of the system as a whole. In more detail, they are
used to help the formation of direct connections between behavioral models
to prevent unnecessary steps as SMEs do not infer behavior. To enable the
formation of such connections, the modeler needs to add semantic information
for every cross-model connection that link nodes of behavioral models to nodes
of structural models. Based on these information, direct connections between
behavioral models are derived. A cross-model connection between behavioral
models is valid if a mapping exists that maps the properties of a node of a
behavioral model to properties of a node of another behavioral model. In case
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of the case study, the function sendTemperature() is mapped on the function
processMsg().

Process Message
 Idle

getMsg()

Push Temperature
 Idle

wait(60s)

entry / processMsg()

entry / readTemperature() 
exit / sendTemperature()

sendTemperature()      processMsg()

Fig. 4. Cross-model connection between behavioral model elements

Figure 4 shows the connected behavioral models of the case study. Note that
all nodes of the structural models, their edges and cross-model edges between the
structural and the behavioral models are not shown in the figure. They remain
in the consistent model basis. Since there is a path from the Push Temperature
state to the Process Message state in the consistent model base, the edge from
the former to the latter is formed, directly connecting the two behavioral models
and thus bridging the gap.

This two-phase decision approach has several advantages over a single-phase
decision approach in which the input and output nodes of behavioral models are
directly linked. By splitting the decision phase, the number of possible direct
links between behavioral models is reduced as the inclusion of structural models
significantly limits the possibilities. Furthermore, if the expert intends to directly
connect nodes of different behavioral models, he needs to exactly know how the
system behaves. In turn, if the modeler intends to associate a node of a behavioral
model with a node of a structural model, then all he needs to know is whether the
behavioral model details the node of the structural model as the node represents
a system component. Consequently, mapping a node of a behavioral model to
a node of a structural model is easier to accomplish than mapping a node of a
behavioral model to a node of another behavioral model because less knowledge
is required.

5 Related Work

The topic of systems modeling has been discussed for quite some time. There are
several modeling languages and methods to capture the behavior of a system.
One approach is SysML. SysML is a modeling language that reuses a subset
of UML 2.5 [3]. It is particularly designed to specify requirements, structure,
behavior, allocations and constraints on system properties. Cross-model connec-
tions are established by a matrix whose format is not prescribed. It can be used
to loosely connect model elements of any SysML model. Our approach follows
a similar technique but we aim to establish connections between nodes of differ-
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ent behavioral models and additionally connect their properties to validate the
connection.

ArchiMate Enterprise Architecture is another modeling language [2]. It is
designed to visualize and describe different architecture domains and their de-
pendencies and relations. As it is not intended to model the behavior of a system
component in detail, a complete view of the system’s behavior is not derivable.
However, an ArchiMate model is organized in layers. Connections between layers
can be compared to cross-model connections. Cross-layer connections follow a
specific rule set and therefore are syntactically restricted. We take a more general
approach where cross-model connections between all nodes of different models
are allowed but they are only valid if the properties of the nodes are mapped.

6 Conclusion and Future Work

The system architecture is often captured by models. In general, models can
be categorized as either structural or behavioral. A behavioral model describes
either the behavior of a system component or the communication between com-
ponents. As decentralization proceeds, the behavior of a system is distributed
away from one component to many components working together in a system.
As a result, the overall behavior of the system is divided among an increasing
number of models. As these models are not directly connected, they open a gap
making it harder to derive the behavior of the system as a whole.

In this paper, we presented a novel approach to bridge the gap that has re-
sulted from the last evolutionary step of systems. To simplify the idea behind the
approach, the structural and behavioral models are first transformed to mixed
graphs. These graphs are then merged and transformed into a directed graph to
form a consistent model basis that enables the formation of cross-model connec-
tions. The behavioral models as part of the consistent model basis are connected
by a semi-automatic two-phase decision approach. First, the behavioral models
are connected with the structural models of the consistent model basis by an
expert. Second, if the derivation of a direct connection results in more than one
edge, the expert decides which edge is valid. In contrast to direct linking of be-
havioral models, this approach requires less system knowledge and significantly
reduces cross-model linking possibilities.

In future, we want to further refine the approach and conduct various studies
to prove our assumption that this approach is in fact a valuable way of combining
models to derive the behavior of a system as a whole. Therefore, we want to
apply this approach to a more complex case study and proof that the two-phase
decision approach is in fact superior to the one-phase decision approach. We
also see the possibility of using this approach in deriving models that describe
communication between system components.

Acknowledgment Electronic Component and Systems for European Leader-
ship (ECSEL) supported the development of this approach within the project
CPS4EU (Grant Agreement Number 826276).



10 N. Hagemann and B. Bauer

References

1. Y.2060 : Overview of the Internet of things, https://www.itu.int/rec/T-REC-
Y.2060-201206-I/en

2. Archimate 3.1 specification. Standard, The Open Group (Nov 2019),
https://pubs.opengroup.org/architecture/archimate3-doc/

3. Omg systems modeling language (omg sysml) version 1.6.
Standard, Object Management Group (OMG) (Nov 2019),
https://sysml.org/.res/docs/specs/OMGSysML-v1.6-19-11-01.pdf

4. Backlund, A.: The definition of system. Kybernetes (2000)
5. Badreddin, O., Khandoker, R., Forward, A., Masmali, O., Lethbridge, T.C.: A

decade of software design and modeling: A survey to uncover trends of the practice.
In: Proceedings of the 21th ACM/IEEE International Conference on Model Driven
Engineering Languages and Systems. pp. 245–255 (2018)

6. Bang-Jensen, J., Gutin, G.Z.: Digraphs: theory, algorithms and applications.
Springer Science & Business Media (2008)

7. redha BOUAKOUK, M., ABDELLI, A., MOKDAD, L.: Survey on the cloud-iot
paradigms: Taxonomy and architectures. In: 2020 IEEE Symposium on Computers
and Communications (ISCC). pp. 1–6. IEEE (2020)
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