
TOWARDS A MODEL-CENTRIC SOFTWARE
TESTING LIFE CYCLE

FOR EARLY AND CONSISTENT TESTING
ACTIVITIES

Reinhard Pröll

DISSERTATION
for the degree of

Doctor of Natural Sciences (Dr. rer. nat.)

University of Augsburg

Department of Computer Science

Software Methodologies for Distributed Systems

April 2021

Towards a Model-Centric Software Testing Life Cycle
for Early and Consistent Testing Activities

Supervisor: Prof. Dr. Bernhard L. Bauer, Department of Computer Science,
University of Augsburg, Germany

Advisor: Prof. Dr. Alexander Knapp, Department of Computer Science,
University of Augsburg, Germany

Thesis defense: 19th July 2021

Copyright © Reinhard Pröll, Augsburg, April 2021

Abstract

The constant improvement of the available computing power nowadays enables the
accomplishment of more and more complex tasks. The resulting implicit increase in the
complexity of hardware and software solutions for realizing the desired functionality
requires a constant improvement of the development methods used. On the one hand
over the last decades the percentage of agile development practices, as well as test-
driven development increases. On the other hand, this trend results in the need to
reduce the complexity with suitable methods. At this point, the concept of abstraction
comes into play, which manifests itself in model-based approaches such as MDSD or
MBT.

The thesis is motivated by the fact that the earliest possible detection and elimination
of faults has a significant influence on product costs. Therefore, a holistic approach is
developed in the context of model-driven development, which allows applying testing
already in early phases and especially on the model artifacts, i.e. it provides a shift left
of the testing activities. To comprehensively address the complexity problem, a model-
centric software testing life cycle is developed that maps the process steps and artifacts
of classical testing to the model-level.

Therefore, the conceptual basis is first created by putting the available model artifacts
of all domains into context. In particular, structural mappings are specified across the
included domain-specific model artifacts to establish a sufficient basis for all the process
steps of the life cycle. Besides, a flexible metamodel including operational semantics is
developed, which enables experts to carry out an abstract test execution on the model-
level.

Based on this, approaches for test case management, automated test case generation,
evaluation of test cases, and quality verification of test cases are developed. In the
context of test case management, a mechanism is realized that enables the selection,
prioritization, and reduction of Test Model artifacts usable for test case generation. I.e.
a targeted set of test cases is generated satisfying quality criteria like coverage at the
model-level. These quality requirements are accomplished by using a mutation-based
analysis of the identified test cases, which builds on the model basis. As the last step of
the model-centered software testing life cycle two approaches are presented, allowing
an abstract execution of the test cases in the model context through structural analy-
sis and a form of model interpretation concerning data flow information. All the ap-
proaches for accomplishing the problem are placed in the context of related work, as
well as examined for their feasibility by of a prototypical implementation within the
Architecture And Analysis Framework. Subsequently, the described approaches and their
concepts are evaluated by qualitative as well as quantitative evaluation. Moreover, case
studies show the practical applicability of the approach.

Zusammenfassung

Die stetige Verbesserung der verfügbaren Rechenleistung ermöglicht heutzutage das
Bewältigen immer komplexerer Aufgaben. Die dadurch implizit steigende Komplexität
der Hardware- aber auch Software-seitigen Lösungen zur Realisierung der gewünsch-
ten Funktionalität bedingt ebenfalls eine stetige Weiterentwicklung der hierfür genutz-
ten Entwicklungsmethoden. Einerseits steigt über die letzten Jahrzehnte der Anteil an
agilen Entwicklungspraktiken, aber auch Praktiken, die dem Testen der Funktionalität
einen höheren Stellwert geben, in der Praxis deutlich an. Andererseits ergibt sich aus
dieser Entwicklung die Notwendigkeit der Komplexität während der Entwicklungs-
arbeit durch geeignete Methoden zu begegnen. An dieser Stelle kommt oftmals das
Konzept der Abstraktion zum Einsatz, was sich konkret in Modell-basierten Ansätzen
wie MDSD oder MBT manifestiert.

Die vorliegende Arbeit ist motiviert durch die Erkenntnis, dass ein möglichst frühes
Erkennen und Beheben von Fehlern deutlichen Einfluss auf die Produktkosten hat. Da-
her wird im Rahmen dieser Arbeit ein ganzheitliches Konzept entwickelt, welches im
Kontext Modell-getriebener Entwicklung eine Möglichkeit eröffnet, Testen bereits in
frühen Phasen und insbesondere auf den Modellartefakten anzuwenden, also einen
Shift Left der Tests vorsieht. Um der Komplexitätsproblematik umfassend zu begegnen,
wird ein Modell-zentrischer Software Test Lebenszyklus entwickelt, der die üblichen
Prozessschritte und Artefakte des klassischen Testens auf der Modellebene umsetzt.
Hierzu werden zunächst die konzeptuellen Grundlagen geschaffen, indem die verfüg-
baren Modellartefakte sämtlicher Domänen in Relation gesetzt werden. Dies bedeutet
insbesondere, dass eine Verknüpfung von Modelldaten umgesetzt wird, um eine hin-
reichende Grundlage für die darauf aufbauenden Prozessschritte des Lebenszyklus zu
schaffen. Darüber hinaus wird ein flexibles Metamodell inklusive operationaler Seman-
tik entwickelt, welches unter anderem die Grundlage für die abstrakte Ausführung der
Modellartefakte darstellt.

Aufbauend auf dieser Grundlage werden Ansätze für das Testfallmanagement, die au-
tomatisierte Testfallgenerierung, die Evaluation von Testfällen und die Qualitätsüber-
prüfung von Testfällen entwickelt. Im Kontext des Testfallmanagement wird ein Me-
chanismus realisiert, der die Auswahl, Priorisierung und Reduktion von Testmodel-
lartefakten ermöglicht und diese der Testfallgenerierung bereitstellt. Die entwickelten
Konzepte der Testfallgenerierung nutzen diese spezifischen Testmodelle, um mittels
etablierter Methoden, welche auf der Modellebene umgesetzt wurden, eine zielgerich-
tete Testfallmenge zu erzeugen, die gewissen Qualitätskriterien wie z.B. Abdeckungen
auf unterschiedlichen Modellierungsdomänen entspricht. Diese Qualitätsanforderun-
gen werden durch den Einsatz einer Mutations-basierten Analyse der ermittelten Test-
fälle bewerkstelligt, die wiederum auf der Modellbasis aufbaut. Als letzter Bestandteil
des entwickelten Modell-zentrischen Software Test Lebenszyklus werden zwei Ansät-
ze vorgestellt, die mittels struktureller Analyse und einer Form der Modellinterpreta-
tion eine abstrakte Ausführung der Testfälle im Modellkontext ermöglichen. All die
erwähnten Ansätze zur Bewerkstelligung der Problemstellung werden im Verlauf der

Arbeit jeweils in den Kontext verwandter Forschungsarbeiten gesetzt, als auch im Rah-
men einer prototypischen Umsetzung im Rahmen des Architecture And Analysis Frame-
works auf deren Umsetzbarkeit untersucht.

Anschließend werden die beschriebenen Ansätze und deren Konzepte durch qualita-
tive, als auch quantitative Betrachtungen der Teilaspekte evaluiert. Diese Evaluation
wird vor dem Hintergrund einiger Anwendungsbeispiele aus der Praxis durchgeführt,
wodurch die praktische Anwendbarkeit der Ansatzes gezeigt wird.

vi

Danksagung

Im Kontrast zu den sachlichen Ausführungen dieser Dissertation möchte ich an die-
ser Stelle ein herzliches Dankeschön und eigene persönliche Worte formulieren. In ers-
ter Linie möchte ich meinem Doktorvater Prof. Dr. Bernhard L. Bauer für die Betreu-
ung danken. Durch ihn wurde das Projekt Promotion erst möglich gemacht und auch
während der Umsetzung durch wertvolles Feedback bereichert. Insbesondere ist hier
das entgegen gebrachte Vertrauen im Sinne des verfügbaren kreativen Spielraums in
Kombination mit der Möglichkeit Verantwortung zu übernehmen hervorzuheben, was
mich in meiner persönlichen Entwicklung sehr bestärkt hat. Herzlichen Dank Bern-
hard! Ebenfalls möchte ich mich bei Prof. Dr. Alexander Knapp für das wertvolle Feed-
back und seine Arbeit als Zweitgutachter bedanken.

Darüber hinaus möchte ich mich bei all meinen Kolleginnen und Kollegen bedanken,
die mich in irgendeiner Weise unterstützt haben. Sei es durch angenehme Gespräche in
den (Kaffee-)Pausen, notwendige und manchmal erheiternde Diskussionen im Lehre
Kontext, teilweise ernüchternde Arbeiten im Projektalltag oder auch die produktiven
Nachtschichten im Zusammenhang mit unserem autonomen Fahrzeug, bei denen der
soziale Aspekt auch nicht zu kurz kam. In Summe lassen mich all diese Aspekte mit
einem weinenden Auge auf die verstrichene Zeit an der Professur zurückblicken, weil
mir die Arbeit durchwegs Freude bereitet hat und ich sehr viele Persönlichkeiten zu
schätzen gelernt habe. Herzlichen Dank euch allen!

Da meiner Meinung nach eine Promotion nur mit starkem Rückhalt aus dem privaten
Umfeld zum Erfolg führt, möchte ich meinen Freunden und meiner Familie herzlich
danken. Auch wenn der Kopf nur schwer davon abzubringen war nach Lösungen für
Herausforderungen der Dissertation zu suchen, konnte ich im privaten Kontext immer
wieder die notwendige Energie schöpfen und zur Ruhe kommen. Insbesondere will ich
an dieser Stelle meiner Frau, meinem Sohn und meinen Geschwistern danken, die mir
durchwegs den Rücken stärken, im privaten Umfeld “den Laden am Laufen halten”
und Tag für Tag mein Herz zum Lachen bringen. Abschließend möchte ich mich bei
meinem Vater und meiner leider viel zu früh verstorbenen Mutter, der ich diese Arbeit
widme, bedanken, ohne die ich heute nicht dort stehen würde, wo ich stehe, ohne die
ich nicht die Persönlichkeit wäre, die ich bin! Herzlichen Dank, ihr seid großartig!

Contents

I MOTIVATION, RESEARCH ITEMS AND OUTLINE 1

1 Introduction 3
1.1 Problem Statement and Research Questions 4
1.2 Concepts and Objectives . 8

2 Research Items 15
2.1 Publications . 15
2.2 Research Projects . 19
2.3 Supervised Thesis . 21

3 Outline 25

II FOUNDATIONS AND RELATED AREAS 29

4 Model-Driven Software Development 31
4.1 Meta-Object Facility . 32
4.2 Model Transformations . 33
4.3 Model-Driven Architecture . 35

5 Verification and Validation in Software Development 37
5.1 Software Testing . 38

5.1.1 Fundamentals of Testing . 39
5.1.2 Standardization . 43
5.1.3 Test Design Techniques . 48

5.2 Model-Based Testing . 55
5.2.1 Scenarios of Model-Based Testing . 58
5.2.2 Model-Based Testing in Practice . 60

III TOWARDS A MODEL-CENTRIC SOFTWARE TESTING LIFE
CYCLE 63

6 General Approach and Running Example 65
6.1 General Approach . 65
6.2 Running Example: Ceiling Speed Monitor 68

7 Omni Model Approach 71
7.1 Domain-Specific Models . 72

7.1.1 System Structure and Behavior Metamodels 73
7.1.2 Test Metamodels . 77
7.1.3 Integration Metamodel . 83

7.2 Analysis-Specific Models . 95
7.2.1 Execution Graph++ Metamodel . 96

CONTENTS

7.2.2 Model to Model Transformations . 110
7.3 Architecture And Analysis Framework . 115

7.3.1 Framework Architecture . 117
7.3.2 Working with the Framework . 122

7.4 Related Work . 124
7.5 Conclusions and Outlook . 126

8 Model-Based Test Case Management 129
8.1 Prerequisites for Test Model Scoping . 130

8.1.1 Test Focus Specification . 130
8.1.2 Excerpt of the Omni Model . 132

8.2 Test Model Scoping . 133
8.2.1 Integration Model based Filtering . 133
8.2.2 Test Model Mapping and Reconstruction 136
8.2.3 Test Model Split and Enrichment . 137

8.3 Technical Realization within A3F . 140
8.4 Related Work . 141
8.5 Conclusions and Outlook . 143

9 Model-Based Abstract Test Generation 145
9.1 Prerequisites for Test Suite Generation . 146

9.1.1 Expert’s Configuration Parameters 146
9.1.2 Machine-Interpretable Mutation Analysis Results 147
9.1.3 Excerpt of the Omni Model . 147

9.2 Test Suite Generation . 148
9.2.1 Artifact and Feedback Evaluation . 148
9.2.2 Test Case Generation Metric Adaption 150
9.2.3 Data Flow Analysis-Based Test Case Generation 153
9.2.4 Feedback-Oriented Test Suite Creation 155

9.3 Technical Realization within A3F . 156
9.4 Related Work . 158
9.5 Conclusions and Outlook . 159

10 Model-Based Abstract Test Execution 161
10.1 Prerequisites for Abstract Test Execution . 162

10.1.1 Execution Graph++ Characteristics Analysis 162
10.1.2 Abstract Test Execution Engine Configuration Parameters 163
10.1.3 Excerpt of the Omni Model . 164

10.2 The Abstract Test Execution Approach . 164
10.2.1 Digression into a Control Flow-Aware ATE Approach 166
10.2.2 Overall Concept for Data Flow-Aware Abstract Test Execution . . 172
10.2.3 Omni Model-Based Path Merging . 174
10.2.4 Evaluation of Path Space . 176
10.2.5 Evaluation Result to Test Verdict Mapping 179
10.2.6 Result Selection and Test Report Generation 180

10.3 Technical Realization within A3F . 182
10.4 Related Work . 184
10.5 Conclusions and Outlook . 185

x

CONTENTS

11 Model-Based Mutation Analysis 189
11.1 Prerequisites for Mutation Analysis . 190

11.1.1 Digression: Mutation applied to the Execution Graph++ 190
11.1.2 Configuration Parameters . 196
11.1.3 Excerpt of the Omni Model . 197

11.2 Mutation Analysis . 197
11.2.1 Mutant Generation . 198
11.2.2 Mutant Execution . 202
11.2.3 Execution Result Evaluation . 205

11.3 Technical Realization within A3F . 208
11.4 Related Work . 210
11.5 Conclusions and Outlook . 212

IV APPLICATIONS AND EVALUATION 215

12 Applications of the Omni Model Approach 217
12.1 Tank Control System . 217
12.2 Automotive Light Control System . 221
12.3 Elevator System . 228
12.4 Discussion . 234

13 Qualitative and Quantitative Evaluation of the MCSTLC Approaches 237
13.1 Model-based Test Case Management . 237
13.2 Model-based Test Generation . 241
13.3 Model-based Abstract Test Execution . 246
13.4 Model-based Mutation Analysis . 252

14 Discussion on the overall MCSTLC 259

V CONCLUSIONS AND OUTLOOK 263

15 Conclusions 265

16 Outlook 267

VI Annex 269

Bibliography 291

Glossary 305

xi

Part I

MOTIVATION, RESEARCH
ITEMS AND OUTLINE

1
Introduction

The invention of the first computer by Konrad Zuse launched a new era. Until then,
the performance of extensive calculation tasks had only been possible with human as-
sistance. However, this changed with the introduction and further development of
computers in such a way that now developers only implemented the tasks (programs),
but the execution was carried out by the machine. Over the years, however, the tasks
became more and more demanding, which enormously increased the complexity and
volume of the machine code written (see [64]). With the introduction of high-level lan-
guages this complexity was counteracted and the level of abstraction for specifying
new functionality was increased. The first Fortran compiler, in particular, represents
a milestone, as it shifted the developers’ attention back from technical to algorithmic
challenges [26].

The race against Moore’s Law, starting in the 1980s with the invention of integrated
circuit technologies steadily increased the processing power of computers until today.
With the continuous improvement of the available hardware, the possibilities with re-
gard to realizable tasks are continuously increasing. The resulting variety of today’s
programming languages and their high-level language concepts testify to the constant
development which is driven by the increasing complexity of the tasks.

Possibly, we are currently performing another paradigm change. In early phases of de-
velopment, different modeling variants are used, i.e. to visualize use cases, to sketch a
rough design of the software to be developed, or even to specify communication flows
between components. No matter which concrete role modeling plays in a development
process, it overcomes a certain flavor of emerging complexity. The efforts towards solid
solutions, which use modeling as a core technology during software development, are
driven by standardization bodies such as the Object Management Group (OMG). The
Model-Driven Architecture (MDA) standard explicitly presents an approach on how
modeling should be implemented in the construction phases of development [126]. Be-
sides attributes such as improved reusability or better product quality, MDA is often
promoted with the automation of error-prone steps in development [69] [160].

In concert with high-level programming languages, the use of Model-Driven Software
Development (MDSD) approaches has led to better performance during construction
phases of complex systems [28]. However, it turns out, that the construction phases
represent only half of the truth and the question of how subsequent or ongoing Verifi-
cation and Validation (V&V) is applied in such scenarios arises.

1 INTRODUCTION

1.1 Problem Statement and Research Questions

The state-of-the-art V&V approaches applied in software development are mostly car-
ried out on code artifacts of the System Under Development (SUD) or executable ar-
tifacts for the target platform. In an MDSD context, this effectively reduces the set of
applicable techniques to either error-prone manual and heavily experience-based ap-
proaches, e.g. reviews, or automated formal approaches like model checking, which
require substantial knowledge in formalization. Alternatives based on the execution or
simulation of early development artifacts show a strong focus on certain specification
languages and/or the application context, e.g. Papyrus or Matlab. Most state-of-the-art
V&V approaches are based on the code-level, probably leading to unsatisfying feedback
loops for corrective tasks.

Especially in traditional development processes, in which few iterations through the
development phases are performed, the effects are well studied. Figure 1.1a visualizes
Feiler et al.’s summary (see [64]) of multiple studies on software defects and resulting
relative costs ([141] [71] [36] [49] [30]).

(a) Standard scenario (based on [64]) (b) Shift Left scenario

Figure 1.1: Correlation of defect injection, detection, and emerging costs

Basically, both diagrams in figure 1.1 are based on three different scales. The left scale
shows the percentage of defects from 0 to 100, while the bottom scale draws the different
development phases, Specification/Design, Coding, Unit Test, Integration Test, System Test,
and Release. In addition, the right scale reflects the relative repair cost factor, which ranges
from 0 to 120.

First, the diagram on the left side encapsulates the information of standard develop-
ment and test scenario. Thereby, the dotted line shows the distribution of Defect Injec-
tion through the previously mentioned development phases. Across all the included
studies, it turns out, that around 80% of the defects are commonly introduced during
Specification/Design and Coding. Furthermore, around 80% of these defects are only dis-
covered in phases after the Unit Testing phase, which is visualized by the dotted and

4

1.1 PROBLEM STATEMENT AND RESEARCH QUESTIONS

dashed Defect Detection line. Consequently, this has a huge impact on the costs for fix-
ing the defects introduced in the early stages of development, which is represented
by the dashed Repair Cost curve revealing an exponential growth towards late phases.
[64]

In order to reduce the overall costs for fixing defects, a Shift Left of V&V tasks, some-
times called Front Loading, is desirable. Figure 1.1b visualizes the shift left scenario re-
vealing the main effects. On the one hand, the number of defects detected in late phases
is reduced and shifted towards phases like Specification/Design and Coding, thereby re-
ducing the emerging costs. On the other hand, with the introduction of V&V mech-
anisms applied in early stages, the relative number of early defects is reduced, again
having a positive impact on the resulting costs. In addition, the previously exponential
growth of the relative Repair Cost factor is expected to be slower than in the standard
scenario, which is not yet provable. Depending on the underlying development pro-
cess, the Shift Left is carried out on different levels of granularity, e.g. on a complete
development life cycle or during an increment of it. In practice, the Shift Left can be
seen by the use of modern approaches like Test-Driven Development (TDD) or the De-
velopment and Operations (DevOps) movement.

Complexity Challenge in Software Testing and Insufficient Applicability on
Model-Level

Driven by the constantly increasing complexity of software and systems under devel-
opment, software testing, a concrete methodology for V&V, has become more challeng-
ing. Analogous to approaches of MDSD, certain aspects of software testing are already
realized by modeling and automating processing steps. In the so-called Model-Based
Testing (MBT), steps such as test case creation are performed at the model-level, while
the subsequent execution of the test cases against the target system is carried out on
the code-level. Especially by deriving the test cases from models, the number of de-
tected defects can be increased significantly, and thus drastically reduces the costs (see
figure 1.1a) [144]. Further, MBT can be seen as a partial attempt to perform the shift left
of software testing activities towards the early stages of MDSD. However, MBT does
not map all artifacts of a Software Testing Life Cycle (STLC) to the model-level, which
still limits the early application of testing. Especially in cases where MDA is applied
and consequently code is automatically generated from models, there is an additional
level of indirection between fault and detectable failure. This leads to the first research
question:

Research Question 1
How to carry out a testing life cycle on the model-level to counteract complexity and severe
defects, improving the overall quality of development artifacts in MDSD scenarios?

5

1 INTRODUCTION

Insufficient Information Separation and Integration Across Different
Development Disciplines

The easiest way of applying MBT is to enrich the Software and System Model arti-
facts with test-specific data. One major drawback of this kind of MBT is the missing
divergence in the interpretation of requirements by developers and testers. In scenar-
ios, where code is automatically derived from model artifacts, the test cases derived
from the same, enriched model artifact, are not able to detect any functional defects,
but defects in the applied code generator. [143] Overall, this reflects a lack of infor-
mation separation, leading to conceptual problems during testing and unforeseen side
effects.

Even if there are separate model artifacts to carry out an advanced MBT approach [143],
lots of development artifacts from varying domains like safety or security are available,
but not yet taken into account for the improvement of automated testing efforts. The
problem of missing integration of information prevails in the area of documentation of
complex systems and is often solved by controlled integration [15]. The aspects men-
tioned in the context of MDSD and MBT results in the next research question.

Research Question 2
What kind of modeling conventions and metamodeling concepts are necessary to effectively ap-
ply testing activities in early stages of MDSD?

Test Case Selection, Prioritization and Reduction

In scenarios, where coverage-oriented test suite selection metrics are applied to com-
plex systems, the path explosion problem is even harder and leads to exploding test
suites [88]. Especially, in code-based white box testing approaches the test suite is build
using selection criteria, subsequently prioritized, and finally reduced by applying so-
phisticated algorithms, like e.g. genetic algorithms. However, following such a pro-
cessing approach the complexity is revealed to its full extent. In contrast to algorithmic
approaches towards efficient and adaptive test suites, information-driven approaches
often manage to deal with complexity at its origin, which raises the following research
question:

Research Question 3
How can an intuitive and holistic data-driven test case management approach (selection, prior-
itization, and reduction) on the model-level lead to manageable test suites reflecting the tester’s
mindset?

6

1.1 PROBLEM STATEMENT AND RESEARCH QUESTIONS

Limited Adaptability of Straightforward Test Generation Criteria

In a white box testing context, control flow or data flow-oriented test suite selection
criteria like statement coverage, are a prominent way to control test case generation.
This also applies to the MBT context, regardless of the concrete manifestation of the
involved model artifacts. Metrics are usually applied to the entire model since this is
either prescribed by regulatory restrictions (e.g. by ISO26262 or DO178B/C), or due to
missing insights into the instances under consideration. Indeed, this represents a quite
pessimistic and bloated approach if the resulting size of the test suite is hardly man-
ageable. Especially, in cases where the test engineer has sufficient insight and context
knowledge of the use case, the following research question needs more investigation:

Research Question 4
How can better adaptability and context sensitivity of test generation based on coverage criteria
and measures on the model-level reduce the overall complexity?

Limited Test Execution Mechanisms in Early Stages of Development

An essential concept of software testing is monitoring the behavior of an executable
artifact of the System Under Test (SUT). As we have seen in the introductory part of
this chapter, defects revealed in the late stages of development do have a significantly
higher impact on the overall costs of the project, than defects detected early. Besides,
we pointed out the high number of concept-level defects, e.g. requirements defects,
compared to other development phases. To counteract these issues, an execution mech-
anism for the model-level is desirable to support another shift of software testing activ-
ities towards models. However, the palette of model execution and simulation frame-
works is mostly bound to specific modeling approaches and further not designed to
deal with model artifacts development, i.e. incomplete or faulty artifacts. Therefore,
we identified the following research question:

Research Question 5
How can an automated mechanism for the verification of test cases based on (probably incom-
plete) models of the SUD reduce the emerging test complexity?

Misunderstanding of Test Case Quality

As previously mentioned, integrity in a sense of coverage often represents a major qual-
ity attribute of a test suite, e.g. in safety-related standards. However, it is questionable
whether a test suite with sufficient coverage is effective in terms of test case quality.
Therefore, many studies investigated a correlation between coverage and effectiveness
of a test suite [98][87]. It turned out, that none of the studies could provide evidence

7

1 INTRODUCTION

for that. Consequently, we see a need for another technique, which can determine the
quality of test cases using their defect detection capabilities. On the source code-level,
as well as on dedicated models, there are mutation testing frameworks, sufficient for
this job. In a more general modeling context the following research question needs to
be answered:

Research Question 6
How can mutation-based testing concepts together with a mechanism for test case execution
applied on the model-level improve quality of automatically generated test suites?

1.2 Concepts and Objectives

In the previous section, we addressed several issues which interfere with a targeted ap-
plication of V&V approaches in an MDSD context, particularly testing. Continuing the
research questions presented in the previous chapter, the remainder of this chapter out-
lines possible approaches to solutions, from which the concrete objectives are derived.
In particular, the research questions and objectives with identical numbers constitute a
unit, e.g. Research Question 3 corresponds to Objective 3.

However, before the concrete ideas for solutions and the resulting objectives are dis-
cussed, the overarching challenges are first addressed:

1. High complexity in software testing due to increased complexity of developed soft-
ware/systems

2. Insufficient semi-formal and automated testing approaches to resolve costly defects at their
origin

To make the complexity of software tangible, a large number of metrics have been
developed to identify potential weaknesses and initiate appropriate countermeasures
[158]. Moreover, metrics for specific model artifacts were presented, applicable in
MDSD [51]. Besides the numeric representation of complexity through such metrics,
the meta aspects difficulty of understanding the software/system and difficulty of identifying
and correcting defects in our opinion represent the most basic indicators for test complex-
ity [94]. We believe, that a more result-oriented way of MDSD and testing represents
an effective countermeasure to manage complexity. Therefore, based on the idea of De-
sign For Testability (DFT), which originated in the context of hardware design, a strict
alignment of the applied development paradigms across development disciplines is
desirable, which requires a continuous facing of complexity by appropriate counter-
measures.

Kopetz defines the following strategies to counteract complexity [114]:

1. Abstraction (also referred to as conceptual chunking):
In most cases, a higher-order concept is used, which omits information that is

8

1.2 CONCEPTS AND OBJECTIVES

irrelevant in the current problem context which can be achieved by Domain-
Specific Languages (DSLs) or modeling in general.

2. Partitioning (also referred to as the separation of concerns):
Makes use of spatial division of the problem scenario, to study independent parts
in isolation. Tightly coupled to the well-known divide-and-conquer strategy has
its limits when emergent effects take place.

3. Segmentation (also referred to as temporal decomposition):
Divides complex behavior along the temporal dimension, splitting up complex
tasks into a sequence of partial tasks.

The application of such strategies throughout the model-centric interpretations of the
traditional STLC, we expect to result in an improved overall quality of the final product,
and reduced costs.

Planning and

Control

Evaluating Exit

Criteria and

Reporting

Analysis and

Design

Implementation

and Execution

Tes t

Closure

Planning and

Control

Evaluating Exit

Criteria and

Reporting

Analysis and

Design

Implementation

and Execution

Tes t

Closure

Artifact

Art ifact
Art ifact

Art ifact

Integrated

Model Basis

Our ApproachState of the Art

Figure 1.2: Illustration of general approach (see objective 1)

In order to achieve this goal, we attempt to map and interpret all sub-steps of the well-
known STLC to the model-level. Figure 1.2 shows the intended switch from a process
step-oriented way of information generation and serialization (also from a develop-
ment perspective) towards a model-centric approach, where all the process steps to
profit from an integrated model basis. The way in which process steps are implemented
at the model-level depends strongly on the applicability or necessity of certain activi-
ties in this context. In particular, the existing approaches from the context of MBT need
to be reasonably continued. In addition to these concepts, the views of various stan-
dardization authorities in the field of application should also be taken into account and
incorporated into the implementation.

A noticeable improvement in the overall quality of the product created, as well as a sig-
nificant reduction in cost-intensive defects, is expected from this integrated approach.
This is achieved by shorter feedback loops and certain agility in MDSD. This ambitious
goal is phrased in the following objective.

9

1 INTRODUCTION

Objective 1
Manage complexity and improve quality through a Model-Centric Software Testing Life Cycle
(MCSTLC) with sufficient tool support.

In the following, concrete components of the planned solution path are examined more
closely, their core aspects are pointed out, and concrete objectives are derived. First, we
focus on the integrated model basis, representing the foundation for all further steps.

Requirements

Sys tem/Software

Mult i Concerns

Tes t

Integrated

Model Basis

Integration

Software/Sys tem Multi Concerns

Requirements Tes t

Our ApproachState of the Art

Figure 1.3: Abstract illustration of the general approach from traditional structures to-
wards an Integrated Model Basis

In addition to the application of the abstraction concept, we emphasize the advantages
of partitioning the problem. I.e. a clean separation of concerns with regard to the cre-
ated development artifacts, e.g. already available models divided along with the devel-
opment domains (see figure 1.3). Moreover, domain experts can use their specific tool-
ing or domain-specific (modeling) languages as usual. No multi-purpose view concept
is applied, but specific metamodels are used for each development domain. However,
this does not exclude the application of view mechanisms within a certain develop-
ment domain. Information for the interaction across different development domains
as well as information resulting from different processing steps (metadata, analysis re-
sults, results of previous iterations to regression information) is explicitly stored in an
Integration Model. This represents the flexible link between model artifacts including
requirements (see the left side of figure 1.3). Further, information can be used to im-
prove the redesigned testing activities in the context of the MCSTLC. Thereby, a more
targeted variant of testing is expected, leading to objective 2:

Objective 2
Reduce complexity by model-level separation of concerns and expand knowledge by controlled
information integration.

1. Apply the separation of concerns to involved disciplines, e.g. for development and test.

10

1.2 CONCEPTS AND OBJECTIVES

2. Roll out a controlled integration of model artifacts concerning MCSTLC activities.
3. Develop concepts for flexible application of MCSTLC activities, independent of the un-

derlying development setup.

As soon as the integrated model basis is available in an initial version, the execution of
the MCSTLC starts. In a conventional STLC, planning is usually based on the require-
ments, which is the basis for the creation of test cases (see the left side of figure 1.4). This

Test Case Management

Tes t Case(s)Test Cases

Tes t Case Management

Model Test Case(s)

Scoped

Test Model

Art ifact

Art ifact

Art ifact

Our ApproachState of the Art

Figure 1.4: Illustration of the shift towards the application of Test Case Management
approaches on the model-level

activity is referred to as Test Case Management and includes the selection, prioritization,
and reduction of a test case set. Moreover, this ensures that the resulting set of test cases
reflects the test focus regarding the current development phase and requirements. Our
model-centric approach uses abstraction, partitioning, and segmentation, to rearrange
the STLC on the way to a test case set. Based on the integrated model basis, including an
isolated Test Model specifying the intended behavior of the overall system, a strongly
focused extract is derived. Namely, a Scoped Test Model serves all the purposes of the
legacy version and reflects the tester’s mindset (see right side figure 1.4). Subsequent
steps transfer the model excerpt to a concrete set of test cases, resulting in objective 3:

Objective 3
Develop a test case management approach based on an integrated model basis instead of require-
ments and planning artifacts.

1. Specify a DSL to reflect the tester’s mindset for model-level test focus specification.
2. Establish a mechanism for scoping Test Models based on the test focus.

As we mentioned above, the Scoped Test Model artifacts represent the starting point for
the generation of a concrete set of test cases. Core concepts of traditional MBT are
optimized about the strongly focused source artifacts and through a context-sensitive
way of Test Case Generation (TCG). Again the abstraction concept is applied in concert
with a partitioning of the problem domain. Specifically, the partitioning of the extracted
model artifact is aligned to the modeled integration levels, resulting in a set of Scoped
Test Models per integration level (see figure 1.5).

11

1 INTRODUCTION

Test Cases

Sys tem

Model
Scoped

Tes t Model

STM

Part

STM

Part

STM

Part

Tes t Case Generat ion

Coverage

Metric

Test Case Generation

Coverage

Metric

Tes t Case Generat ion

Coverage

Metric

Tes t Case Generat ion

Coverage

Metric

Model Test Cases

Model Test Cases

Model Test Cases

Our ApproachState of the Art

Figure 1.5: Illustration of the shift towards a model-level Test Case Generation ap-
proach

Therefore, the algorithm for test case generation can treat the individual models
context-sensitive and consequently apply appropriate metrics. The applied criteria
refer to traditional control flow and data flow-aware properties of the source model.
The decision about the most suitable metric is further guided by information from
linked domain-specific models of the integrated model basis. In addition, regression
and quality information from previous iterations of the MCSTLC may be taken into
account. Below, an objective is defined reflecting the mentioned aspects.

Objective 4
Reduce the test complexity by selective adaption of test quality and test integrity aware test
generation criteria.

1. Lift the code-based generation criteria to the model-level.
2. Implement a mechanism for continuous adaptation of test generation criteria based on

integrated model information and feedback.

Having generated the set of test cases reflecting the current test focus, the most essential
step for software testing takes place, namely the test case execution. To reside on a
unified level of abstraction, the execution mechanism is lifted to the model-level (see
figure 1.6).

At this point, a model representation independent of the input metamodel is desir-
able to achieve broad applicability. Supporting such an execution mechanism, model
transformations are used, having the ability to streamline potentially vague execution
semantics. The Abstract Test Execution (ATE) itself is carried out by a structural anal-
ysis approach and a hybrid interpreter, both operating on the analysis-specific inter-
nal model representation. In early phases of development, the control flow-aware ap-
proach is applied to handle intermediate and therefore potentially incomplete model
artifacts. In later phases, where data flow information is partially available, the hybrid

12

1.2 CONCEPTS AND OBJECTIVES

Test Case Execution

Target

Code

Tes t Cases

Abstract Test Case Execution

System

Model

Model Test Cases

Our ApproachState of the Art

Figure 1.6: Illustration of the intended shift towards an Abstract Test Execution ap-
proach

model interpreter approach performs a more sophisticated version of ATE. Both ap-
proaches share the goal to serve as much information about the ATE as possible and
finally derive a test verdict for each test case. The major points are represented by the
following objective:

Objective 5
Manage test complexity in early stages by model-level execution of abstract test cases.

1. Develop approaches for abstract verification of test cases based on an internal model rep-
resentation.

2. Develop operational semantics for the internal processing model.
3. Align the test and System Model information based on the internal processing model.
4. Develop a mechanism for abstract verification of model test case against the system model.

In addition to the adaption and modification of traditional STLC activities to the model-
level, the MCSTLC is extended by a vital concept for improving the adequacy of a test
suite. A common inaccuracy in the testing context is putting the term adequacy on a
level with quality. However, the traditional STLC does not foresee an activity, which
automatically performs quality assurance and control for the test cases themselves. This
is usually done manually using reviews (see figure 1.7) or by simplified metrics, such
as the integrity of a test suite, which does not necessarily result in good test cases and
therefore is a misconception.

Mutation Analysis can fix this shortcoming by performing automated quality checks.
Adopting this approach, the concept of abstraction can be applied, and the code-based
concepts are lifted to the model-level. Major improvements of our model-level variant
are related to the discovery of an appropriate set of mutation operators still reflecting
common faults, consequently generating an effective set of mutants, and finally making
use of the integrated model basis to tune scalability. These aspects are reflected by the
following objective:

13

1 INTRODUCTION

Test Case Generat ion

Coverage

Metric

Tes t Cases

Manual

Test Case

Review

Tes t Case Generat ion

Coverage

Metric

Model Test Cases

Manual

Test Case

Review

Automated

Mutation-based

Tes t Case

Review

Our ApproachState of the Art

Figure 1.7: Illustration of an automated quality assurance for generated model test
cases

Objective 6
Increase the test case quality by a model-level mutation-based quality rating of test cases.

1. Determine the set of model-level mutation operators.
2. Determine rules for targeted mutant generation based on an integrated model basis.
3. Lift the code-based mutation analysis approach to the model-level and improve scalability.

14

2
Research Items

Within this section, we present the set of research items contributing to the work de-
scribed in this thesis. Hereby, we group the set of research artifacts by their scientific
context and relevance in the main chapters. The first section (section 2.1) presents the
set of peer-reviewed conference papers and subsequent journal contributions, building
the core of the thesis. Furthermore, section 2.2 elaborates on related research projects
we participated in during the work on this thesis. The last section (section 2.3) includes
a selection of supervised bachelor and master theses affiliated to the tackled problem
domains.

2.1 Publications

During this section, we elaborate on the peer-reviewed publications in the context of
this thesis. Therefore, we first present a compact version of the publication’s contents.
Furthermore, the personal contribution to the research item is pointed out in more de-
tail. Finally, we give the reader some advice on chapters of the thesis linked to the
respective publication.

A Domain-aware Framework for Integrated Model-based System
Analysis and Design
Conference Paper [151]

Abstract: The increasing complexity of modern embedded systems demands advanced
design and development methods. Incremental evolution of model-based engineering
practice has led to heterogeneous tool environments without proper integration and ex-
change of design artifacts. These problems are especially prevalent in tightly regulated
domains, where an independent assessment is required for newly developed products,
e.g. in automotive or aviation systems. To address these shortcomings of current engi-
neering practice, we propose a holistic model-based approach for the seamless design
and development of an integrated system model. We describe an embedding of a vari-
ety of domain-specific modeling languages into a common general-purpose modeling
language, in order to facilitate the integration between heterogeneous design artifacts.
Based on this conceptual modeling approach, we introduce a framework for automated

2 RESEARCH ITEMS

model-based analysis of integrated system models. A case study demonstrates the suit-
ability of this modeling and analysis approach for the design of a safety-critical embed-
ded system, a hypothetical gas heating burner.

Personal Contribution: In general, the publication represents the joint work of the
authors Rumpold and Proell. Starting with section 2 A Domain-Aware Approach For
System Modeling, the conceptual work on the model to model transformations and or-
chestration of domain-specific modeling languages represents my contribution. Fur-
ther, section 3 Model-Based Architecture And Analysis Framework reflects the technical
realization of the presented concepts. Apart from the base functionality, which was
developed together, the project-specific functionality for orchestration and test-related
topics (ReTeC, T3) represents my contribution. Finally, section 4 Case Study: Reliability
Model For A Gas Heating System was jointly developed by the two authors, including the
creation of the case study as well as its discussion.

Related Parts in Thesis: Section 7.1.3, Section 7.3

Applying Integrated Domain-Specific Modeling for Multi-concerns Development
of Complex Systems

Journal Paper [148]
Extended Version of [151]

Abstract: Current systems engineering efforts are increasingly driven by trade-offs
and limitations imposed by multiple factors: Growing product complexity as well as
stricter regulatory requirements in domains such as automotive or aviation necessitate
advanced design and development methods. At the core of these influencing factors
lies a consideration of competing non-functional concerns, such as safety and reliabil-
ity, performance, and the fulfillment of quality requirements. In an attempt to cope
with these aspects, incremental evolution of model-based engineering practice has pro-
duced heterogeneous tool environments without proper integration and exchange of
design artifacts. In order to overcome these shortcomings of current engineering prac-
tice, we propose a holistic, model-based architecture and analysis framework for seam-
less design, analysis, and evolution of integrated system models. We describe how
heterogeneous domain-specific modeling languages can be embedded into a common
general-purpose model in order to facilitate the integration between previously disjoint
design artifacts. A case study demonstrates the suitability of this methodology for the
design of a safety-critical embedded system, a hypothetical gas heating, with respect to
reliability engineering and further quality assurance activities.

Personal Contribution: In general, the publication represents the joint work of the au-
thors Rumpold and Pröll. Due to the fact, that this publication represents an extended
version of the previously introduced conference paper, the structure and contents are
almost the same. Sections 2-4 (A Domain-Aware Modeling Approach for Embedded System
Engineering, A Model-Based Architecture and Analysis Framework and Case Study: Design
and Evaluation of a Gas Heating System) follow the distribution of topics given by the con-

16

2.1 PUBLICATIONS

ference paper, which holds for the work contributed by the two authors. Contributions
added during the rework were created by both authors.

Related Parts in Thesis: Section 7.1.3, Section 7.2, Section 7.3

Toward A Consistent And Strictly Model-Based Interpretation Of The
ISO/IEC/IEEE 29119 For Early Testing Activities

Special Session Paper [146]

Abstract: Effective and sufficient testing has always been a challenging task in soft-
ware development. The ongoing increase of software complexity forces developers and
testers to make extensive use of the concept of abstraction, thereby leading to model-
based approaches. Further, standardization organizations aim for harmonized process
templates to assure a certain quality level of the processes behind. In order to combine
the process-level advice as well as the concept-level advice, we aim for a consistent
and strict application of model-based methodologies throughout the testing processes,
introduced by the ISO/IEC/IEEE 29119 standard for software testing. After a brief
introduction to the standards content and a critical view on it, we focus on our model-
based interpretation of the postulated processes. Thereby, we extend the original idea
of model-based testing, incorporating the separation of concerns on the model-level, to
form a broad information basis. Subsequent activities are aligned with these concepts,
in order to make sure a purely model-based testing life cycle, with respect to consis-
tency and quality of development artifacts. Following the related work of impacted
research areas, we end up with a conclusive statement on the intended combination of
approaches.

Personal Contribution: This publication exclusively contains research of the first au-
thor, who also is the author of this thesis.

Related Parts in Thesis: Section 1.2, Chapter 8 - chapter 11 in a general context

A Model-based Test Case Management Approach For Integrated Sets Of
Domain-Specific Models

Workshop Paper [145]

Abstract: Due to rapid improvements in the area of embedded processing hardware,
the complexity of developed systems constantly increases. In order to ensure a high
quality level of such systems, related quality assurance concepts have to evolve. The
introduction of Model-Based Testing (MBT) approaches has shown promising results
by automating and abstracting multiple activities of the software testing life cycle. Nev-
ertheless, there is a strong need for approaches supporting scoped test models, i.e. sub-
sets of test cases, reflecting specific test purposes driven by risk-oriented development
strategies. Therefore, we developed an integrated and model-based approach support-
ing test case management, which incorporates the beneficial aspects of abstract devel-

17

2 RESEARCH ITEMS

opment methodologies with predominant research for test case management in non-
model-based scenarios. Based on a new model artifact, the integration model, tasks
like cross-domain information mapping and the integration of domain-specific KPIs
derived by analyses favor the subsequently applied constraint-based mechanism for
test case management. Further, a prototypical implementation of these concepts within
the Architecture And Analysis Framework (A3F) is elaborated and further evaluated
based on representative application scenarios. A comparative view on related work
leads to a conclusive statement regarding our future work.

Personal Contribution: This publication exclusively contains research of the first au-
thor, who also is the author of this thesis.

Related Parts in Thesis: Chapter 8

Towards Abstract Test Execution in Early Stages
of Model-Driven Software Development

Conference Paper [83]

Abstract: Over the last decades, systems immanent complexity has significantly in-
creased. In order to cope with the emerging challenges during the development of
such systems, modeling approaches become an indispensable part. While many pro-
cess steps are applicable to the model-level, there are no sufficient realizations for test
execution yet. As a result, we present a semi-formal approach enabling developers to
perform abstract test execution straight on the modeled artifacts to support the overar-
ching objective of a shift left of verification and validation tasks. Our concept challenges
an abstract test case (derived from test model) against a system model utilizing an inte-
grated set of domain-specific models, i.e. the omni model. Driven by an optimistic data
flow analysis based on a combined view of an abstract test case and its triggered system
behavior, possible test verdicts are assigned. Based on a prototypical implementation
of the concept, the proof of concept is demonstrated and further on put in the context
of related research.

Personal Contribution: The first author was a master student of the second author and
worked on the defined task, which was previously solved on a conceptual level by the
second author. This publication exclusively contains research of the second author, who
also is the author of this thesis. All in all, the research presented in this paper remains
the intellectual property of the second author.

Related Parts in Thesis: Chapter 10, Section 10.2.2

18

2.2 RESEARCH PROJECTS

Abstract Test Execution for Early Testing Activities in Model-Driven Scenarios
Journal Paper [147]

Extended Version of [83]

Abstract: The constant improvement in the performance of computing units enables
them to handle increasingly complex tasks. This usually demands for more complex
software, the development of which is difficult to achieve using traditional approaches.
With concepts like model-driven software development this problem can be defused
for the constructive phases. However, new challenges arise for the testing of develop-
ment artifacts. To be able to perform a real shift left of verification and validation tasks
in this context, we present a semi-formal approach that enables us to execute test cases
against the system under development on the model-level. Grounded on an Integrated
Model Basis which is created and maintained during development, test reports are au-
tomatically derived. This opens up a wide range of possibilities for early and targeted
troubleshooting. After a discussion of the algorithmic implementation, the presented
approach is categorized.

Personal Contribution: Since this is an extended version of the publication mentioned
above, the contents are largely identical. In addition to a much more formal presenta-
tion, a different running example was used. Furthermore, the mutation-based evalu-
ation was replaced by a critical discussion and qualitative evaluation. Regarding the
assignment of individual parts to the participating authors, the same applies to the
original publication. The content dealing with details of the technical implementation
is attributed to the second author. All other content, especially conceptual content, is to
be assigned to the first author.

Related Parts in Thesis: Chapter 10, Section 10.2.2

2.2 Research Projects

Throughout this section, the projects in the context of this thesis we were involved in,
are presented. Here, we first present a compact view on the project’s topics reveal-
ing the cross-cutting concerns with this thesis. Further, we point out the research of
our working group, especially the author’s personal contribution to the project results.
Finally, we give the reader some advice on chapters of the thesis affiliated with the
respective project results.

Reduction of Test Complexity (ReTeC) [166]

Summary: Within the context of the ReTeC project, a holistic, model-based approach
for the development and testing of embedded systems was developed. Starting from a
set of requirements, the model-based development of the application parts (structure,

19

2 RESEARCH ITEMS

data, functionality) as well as the model-based test-specific artifacts, are to be stored in
a similar, domain-spanning model, the so-called Omni Model. Through this integral
storage of information around the system to be developed, statements about quality
can be made at an early stage through different variants of the "in-the-loop" simulation.
To evaluate the underlying concepts about their suitability, a prototype implementation
was realized. The subsequent integration into a toolchain represented the conclusion
of the desired work in the context of the project.

Personal Contribution: One of the main contributions to the ReTeC project is given
by the development of a conceptual basis for the integration of heterogeneous model-
based development artifacts. Therefore, I worked on an Omni Model approach, which
is about linking and maping model information across domains. The central model
artifact is the Integration Model, which specifies additional information to integrate the
model data. Based on the integrated set of model artifacts a methodology aiming for the
reduction of test complexity has been developed. The complexity reduction is achieved
by an intelligent scoping mechanism analyzing the integrated model data while taking
the tester’s focus into account. To give a proof of concept, the conceptual work was
implemented in a prototypical way, further improved toward the first version of our
Architecture And Analysis Framework (A3F).

Related Parts in Thesis: Section 7.3, Chapter 8, Chapter 9

Modellgetriebene Software Entwicklung für Funktionale Sicherheit von
Automatisierungslösungen (MDSD4SIL) [165]

Summary: Within the cooperation project MDSD4SIL a methodology and toolchain for
the model-driven development of safety-critical embedded systems according to IEC
61508 was developed. The core of the development approach is the continuous model-
ing of the non-functional quality aspects of a system in a common System Model. This
consistency enables the analysis of the system to be developed with regard to domain-
specific requirements such as functional safety, timing, reliability, and information se-
curity. The demonstrator developed in the course of the project allows the modeling
of such systems in the commercial modeling tool Enterprise Architect in connection
with the radCASE solution of the project partner IMACS. An independent analysis
framework provides the necessary infrastructure for performing model analyses on the
system via a web service. A final evaluation demonstrated the suitability of the devel-
oped solution for use in the modeling of safety-critical systems on the basis of a typical
application case.

Personal Contribution: In addition to the conceptual work in the context of the ReTeC
project, I extended the Omni Model approach. This involved the extension and gener-
alization of the underlying metamodel concepts towards a flexible set of participating
development domains. In this case, models for safety-related concerns, e.g. fault trees
were the driving force during the partial redesign of the original concepts. Conse-
quently, I updated the prototypical implementation and synchronized it with my col-

20

2.3 SUPERVISED THESIS

leagues, which lead to the first stable version of the Architecture And Analysis Frame-
work (A3F).

Related Parts in Thesis: Section 7.3, Chapter 7

Test the Test (T3) [167]

Summary: The aim of the project was to enable an automated evaluation of tests with
regard to their quality ("Test the Test", T3) by means of fault injection as well as by mu-
tations of the System under Test (SUT) both on the software side and on the hardware
side. These evaluations serve to improve the quality of the tests. I.e. code is deliberately
and systematically affected by errors in order to evaluate corresponding tests. For this
purpose, existing approaches for software and hardware tests were supplemented by a
quality analysis and semi-automatic quality improvement of the test cases in order to
meet the ever-increasing quality requirements of embedded systems. In addition to the
classical approaches for determining test quality, T3 aimed at efficient possibilities for
the evaluation of tests. On the one hand, this should be done by evaluating the tests al-
ready in the early phases (modeling) of development (design time). On the other hand,
a (semi-)automatic improvement of the test quality is to be achieved by suitable adap-
tation and a combination of classical code metrics. These mechanisms were conceived
in a similar way across different levels of abstraction. The developed concepts were
prototypically realized within the project and integrated into the existing software and
hardware test tools of the project partners. The evaluation was carried out on the basis
of some case studies from the addressed areas.

Personal Contribution: In general, this project followed a quite different overall struc-
ture and work distribution leading to fewer interaction points with the predominant
industrial toolchain. Nevertheless, carrying on the developed concepts and prototype
from the research projects MDSD4SiL and ReTeC, I developed another metamodel for
internal analysis purposes. Based thereon, a concept for the flexible mutation of System
Models, internally using the new analysis metamodel, was designed. Further, I worked
on a mechanism for the abstract execution of test cases against the System Model, in or-
der to gain early indications for included bugs. The orchestration of all the developed
functionality across projects lead to a mechanism enabling applicants to continuously
improve test suite quality. Finally, I managed to complete the implementation of all
the concepts within the A3F framework, which helped to evaluate the developments
alongside industrial as well as research case studies.

Related Parts in Thesis: Section 7.3, Chapter 11, Chapter 10

2.3 Supervised Thesis

In this section, we present a set of supervised work in the context of this thesis, which
means that the topics, as well as the major conceptual decisions, were developed by the

21

2 RESEARCH ITEMS

author of this doctoral thesis. In order to point out the role in the context of my thesis,
each of the supervised work items is introduced by a brief summarizing paragraph.
Finally, we directly address the related sections of the thesis.

Funktionale Absicherung auf dem Weg zum autonomen Fahren am Beispiel eines
Autobahnpiloten [59]

Summary: The master thesis elaborated a holistic concept for functional safety analyses
in the context of automotive driver assistance systems. Again, the foundations in the ar-
eas of automotive development methodologies, safety-related analysis methodologies,
as well as hardware-specific safety concerns were presented. The conceptual work on
the structured analysis of a automotive assistance system on the basis of a functional
as well as a technical safety concept revealed potential for future research in the area
of integrated analysis of so far disjoint domains. Finally, a recent case study from the
automotive industrial context gave evidence for the adequacy of the work done.

Related Parts in Thesis: Chapter 7 show case for a model artifact which may participate
in the Omni Model (fault modeling)

Abstract Execution of Graph-Based Test Descriptions in Model-Driven Software
Development [118]

Summary: Due to the economical need to detect errors in software development pro-
cesses as quickly as possible, the master thesis worked on testing in early stages of
model driven software development. In this thesis, a novel approach for abstract exe-
cution of test descriptions was presented and prototypically implemented in the archi-
tecture and analysis framework. Instead of processing contained instructions, the ab-
stract structure of model artifacts is brought to execution. By comparing model graphs
of system and test, structural differences can be identified that indicate discrepancies
between actual behavior and intended behavior of the System Under Test (SUT). These
indicators can be processed and classified to give the tester feedback for early test set
assessment and an indication for potential problems.

Related Parts in Thesis: chapter 10, section 10.2.1

Datenfluss-basierte abstrakte Testausführung in der Modell-basierten
Softwareentwicklung [131]

Summary: Continuing the work on the problem domain of the work about “Abstract
Execution of Graph-Based Test Descriptions in Model-Driven Software Development”,
this master thesis elaborates an approach taking into account the data flow of system

22

2.3 SUPERVISED THESIS

and test models. Based on integrated sets of system and test model artifacts a method-
ology for the systematic evaluation of abstract test case specifications has been devel-
oped. A combined view on the graph-based specifications of data flow allows us to
draw conclusions about the discrepancies between the modeled system and its respec-
tive test model. Along an industrial case study from the automotive domain, a proof of
concept as well as the potential for future applications has been illustrated.

Related Parts in Thesis: Chapter 10, Section 10.2.2

Model-to-Model Transformationen im Kontext modell-basierter Software- und
System-Analysen [101]

Summary: In this thesis, model transformations in the context of model-based soft-
ware and system analyses were investigated. The focus was on the Systems Modeling
Language (SYSML) which was integrated into the A3F within the scope of the work.
In particular, model transformations for the internal analysis-specific metamodels were
realized. Starting from a modeling tool specific input representation, the first trans-
formation towards an internal and simplified version of the SYSML metamodel were
conducted. In a second step, the simplified SYSML model was transformed to the inter-
nal analysis-specific version, which is used to elaborate structure as well as data related
aspects of the system model. The developed functionality was examined alongside a
running example, namely the Ceiling Speed Monitor (CSM), from a former research
group. A final discussion about the newly integrated concepts closes the conducted
work.

Related Parts in Thesis: Chapter 7, Section 7.3, Chapter 10

Model-to-Model Transformationen zur Adaption Modellzentrischer
Testmechanismen am Beispiel U2TP [102]

Summary: Model-based testing provides an approach to extend the test process of a
system with models. In this context, the Object Management Group (OMG) defines the
modeling language UML Testing Profile 2 (UTP2) which is used for describing and vi-
sualizing test artifacts. This thesis gives an overview of model-based testing, metamod-
eling and model transformations with a special focus on the OMG standards. After a
short introduction of the Eclipse Modeling Framework and the UTP2, three metamod-
els are presented. Based on these metamodels, two model-to-model transformations
are proposed, which convert a UTP2-conform visual model to a model used for further
analysis. The thesis concludes with possible concepts to extend the metamodels and
model transformations.

Related Parts in Thesis: Chapter 7, Section 7.3, Chapter 10

23

3
Outline

In this section, an overview of the contents of this thesis is given. The general structure
and coherence of the parent chapters can be seen in figure 3.1.

In the first part of the thesis (part I) first, a motivation for the topic is given, the problem
as well as the research questions/objectives are presented, and finally relevant research
projects and works are discussed.

In the second part of the thesis (part II), the necessary foundations for the concepts pre-
sented in the main part are explained. First, general concepts and terms from the mod-
eling environment are discussed (chapter 4). Furthermore, some central approaches of
verification and validation of systems are shown (chapter 5), whereby the focus is on
testing (section 5.1) considering the interaction with the modeling world (section 5.2).

The third part represents the main part of the thesis, with the components and funda-
mentals of the MCSTLC (part III). Thus, an overview of the developed concept and its
components is given (chapter 6), before a running example is introduced, used through-
out the thesis to illustrate the concepts (section 6.2). Thus, as the first substantive part
of the MCSTLC, the model basis and the concept of linking different modeling domains
are discussed (chapter 7). On the one hand, possible modeling languages, a representa-
tive selection of modeling domains, and the metamodel used for information integra-
tion are presented (section 7.1). On the other hand, the internal model representation
developed specifically for processing the available model information and the concepts
for model transformation are explained (section 7.2). As a counterpart to the presented
theoretical foundations of the MCSTLC, the prototypical realization is discussed in sec-
tion 7.3. The final section presents related work, a summary, and an outlook (section 7.4
and section 7.5).

Building on the investigated fundamentals, the remaining chapters of the main part
deal with the individual process steps and the concepts developed for this purpose.
In chapter 8, the concept for Test Case Management is presented at the model-level,
starting with a classification in the overall process including necessary preconditions.
Afterward, in section 8.2, the algorithmic implementation is explained before the proto-
typical realization is discussed (section 8.3). In section 8.4 research work in the context
of the approach is elaborated before a summary including an outlook is given (sec-
tion 8.5).

3 OUTLINE

II. Foundations and Related Areas

V. Conclusions and Outlook

IV. Applications and Evaluation

I. Motivation, Problem Statement, Objectives, Research Items

III. Towards a Model-Centric Software Testing Life Cycle

The Omni Model Approach

Omni Model-Based Test Case Management

Adaptive and Efficient Model-Based Abstract Test Suite Generation

Omni Model-Based Abstract Test Execution

Omni Model-Based Mutation Analysis

Architecture And

Analysis

Framework

Figure 3.1: Overall structure of the thesis

Chapter 9 has an analogous structure, where the Test Case Generation based on the
presented Omni Model is considered. As an introduction, the context and necessary
preconditions of the approach are discussed (section 9.1). After the comprehensive
introduction of the concept in section 9.2, section 9.3 deals with the implementation
in the context of the prototypical Architecture And Analysis Framework. This section
concludes with a review of related approaches in section 9.4, as well as a summary and
outlook for further topics in this area (section 9.5).

In the context of chapter 10, our concept for Abstract Test Execution is presented. After
the introductory part has dealt with the boundary conditions (section 10.1), the pre-
sentation of the concepts defines two different approaches to the problem. On the one
hand, in section 10.2.1 a concept is presented that works on structural information and
is thus suitable for the early stages of development. On the other hand, section 10.2.2
presents a data flow-based concept that processes more detailed information in addi-
tion to structural information and is thus designed for advanced phases of model-based
development. Further on, the implementation of the two concepts in A3F is discussed
(section 10.3), before concluding again with alternative approaches (section 10.4).

The last chapter of the main part represents the concepts for Mutation Analysis (chap-
ter 11). First, as in all sections of the main part, the embedding of the process step in the
context of MCSTLC is presented and the interfaces are discussed (section 11.1). In the
course of section 11.2, the implementation of Mutation Analysis in the given modeling

26

environment is discussed, which again ends with the realization of the demonstrated
functionality in the context of A3F (section 11.3). Before a concluding discussion of the
concepts including an outlook on further topics is given, section 11.4 highlights similar
research projects.

The following part IV comprehensively presents and evaluates some application sce-
narios of the MCSTLC based on an Omni Model. First, the case studies considered are
discussed and how they are realized in the context of the Omni Model (chapter 12). In
the following chapters, the individual process steps are first evaluated separately with
respect to the presented functional scope (section 13.1 to section 13.4, before the entire
MCSTLC is evaluated again in chapter 14.

In part V, a summary of the presented components of the approach is drawn, which is
supplemented by future application scenarios in the overall context.

27

Part II

FOUNDATIONS AND RELATED
AREAS

4
Model-Driven Software Development

MDSD represents a style of software development, which is an alternative to classi-
cal development by incrementally transforming specifications to code. Here, models
represent major artifacts during development. Depending on the type of MDSD ap-
proach, however, the role of the models varies considerably. Brown et al. draw the
scale from models for more intuitive visualization of code to model-only MDSD se-
tups, where modeling fully replaces classical code-based engineering [33]. A central
aspect here is the shift in focus from code-based development of the SUD to develop-
ment in the modeling tool, which consequently generates the application code. This
change to a modeling notation increases the level of abstraction, which ultimately im-
proves productivity due to better understandability and the automation of error-prone
steps [155]. However, one should always have in mind the fundamental characteristics
of models identified by Stachowiak. [159]

• A model is a mapping from a concrete original to an abstract format
• A model serves a context-specific purpose
• A model represents a simplification, by omitting irrelevant information for the

current context

Through different uses of models in MDSD, a number of variants have emerged, which
differ in their varying degrees of a strict interpretation of the original idea. The weakest
interpretation of the MDSD idea is represented by Model-Based Software Development
(MBSD), whereby the models are used as a basis for discussion or for visual support of
specification documents. However, the application code is still derived manually from
the specification. [37]

Today’s use of MDSD in the context of the modeling community corresponds in large
parts to the original idea of this development approach. Models replace parts of the
classical specification and are used for automated processing. However, model-driven
approaches are limited to a specific aspect of development, such as testing. Often, the
two concepts MBSD and MDSD are not distinguished clearly. [37]

The strictest interpretation of the original MDSD idea is the Model-Centric Software De-
velopment (MCSD). Here, the model artifacts created during development are regarded
as the central knowledge base and are linked across the various aspects of development.
Furthermore, knowledge gained during development or an automated processing step
is usually reflected back into the model(s). [29]

4 MODEL-DRIVEN SOFTWARE DEVELOPMENT

This results in different characteristics of how modeling is used in the development
process. Either in sense of visualization of design and architecture decisions or for the
purpose of automated translation towards the target platform. Depending on this, the
requirements on syntax and semantics as well as the modeling domain guide the de-
cision process on which modeling language fits best. The application domain often
decides whether a Domain-Specific Modeling Language (DSML) or a General Purpose
Modeling Language (GPML) is used. While DSMLs have limited expressiveness and a
strong focus on the particular domain, GPMLs offer a great range of customization op-
tions and are widely known [68]. For example, the Unified Modeling Language (UML)
is often applied in semi-formal development contexts because of its popularity.

4.1 Meta-Object Facility

Being able to specify a modeling language, the Metamodel (MM) is essential. Clark et
al. [44] gives the following definition.

Definition 1 (Metamodel)
A metamodel is a model of a language that captures its essential properties and features. These
include the language concepts it supports, its textual and/or graphical syntax, and its semantics
(what the models and programs written in the language mean and how they behave).

Extending the idea of a MM, the Meta Object Facility (MOF) standard developed by
the OMG tries to establish a common modeling layer above different languages, the
Metametamodel (MMM). Among others, UML plays a central role, since its modeling
concepts are partially used in the context of the MOF MM definitions. The specification
bases on a layered architecture which further impacts the field of transformations be-
tween different MMs, defined in conformity with the MOF, by Model-to-Model Trans-
formations (M2MTs) (see section 4.2). [129]

The number of layers depends on the problem domain, but usually, four layers are
defined. Figure 4.1 shows the subdivision of a MOF-compliant specification into four
layers, with the UML and Interface Definition Language (IDL) being placed in the lay-
ers here as examples.

M3 is the highest level of the hierarchy and contains the MOF MM. This MM defines
the selection of modeling elements for the next lower level. I.e. all MM components of
an M2 model represent instances of the MOF MM elements at the M3 level. As shown
in the figure, the components of the MMs of the UML and IDL represent instances of
the MOF MM.

The same applies to the lower levels. For example, the model artifacts on the M1 level
conform to the respective language definition given on the M2 level. Again talking
about the UML example, the models specify the parts of a concrete SUD. Consequently,

32

4.2 MODEL TRANSFORMATIONS

Meta Object Facility (MOF)

UML Models

UML Model Instances

M3 Level

(Meta-Metamodel)

M2 Level

(Metamodel)

M1 Level

(Model)

M0 Level

(Instance)

Unified Modeling Language

(UML) Metamodel

Interface Definition

Language (IDL) Metamodel

IDL Models

IDL Model Instances

Figure 4.1: Hierarchy of metamodeling in MOF

the artifacts on the lowest level of the hierarchy, namely the M0 level, represent the
objects or instances of the SUD at runtime.

Altogether, the MOF standard and its layer model provide a uniform basis for the defi-
nition of modeling languages. Depending on the application, only a subset of the MOF,
the so-called Essential MOF (EMOF), can be used for the specification of MMs. How-
ever, if the entire language scope is required, it is usually referred to as the Complete
MOF (CMOF).

4.2 Model Transformations

As already stated, transformations serve many purposes, especially in MDSD. While
there are many flavors of transformations in the context of software development, we
narrow down our focus to model transformations [47]. Clearly pointing out the general
meaning of transformations, Kleppe et al. [113] provided the following set of defini-
tions, whose correlation is illustrated in figure 4.2.

Definition 2 (Transformation)
A transformation is the automatic generation of a target model from a source model, according
to a transformation definition.

Definition 3 (Transformation Definition)
A transformation definition is a set of transformation rules that together describe how a model
in the source language can be transformed into a model in the target language.

33

4 MODEL-DRIVEN SOFTWARE DEVELOPMENT

Definition 4 (Transformation Rule)
A transformation rule is a description of how one or more constructs in the source language can
be transformed into one or more constructs in the target language.

Meta Object Facility (MOF)

Transformation Definition

Transformation

Transformation Language

Target Metamodel

Target Model

executes

conforms

conforms

conforms

conforms

Source Model

Source Metamodel

conforms

conforms

to

targetsource

from

Transformation Rule(s)

Figure 4.2: Relation of basic concepts in M2MT (based on [56])

However, if we again take a closer look at the M2MT building blocks, certain character-
istics of the source and target models plus their combinations allow us to concretize the
type of transformation, namely the combination of source and target MMs, the abstraction
level of source and target models, and the targeted language dimension [127].

The first one deals with the combination of source and target MMs. In case of the
source and target models being specified according to the same MM, an endogenous
model transformation is taking place. In the context of model transformation, literature
commonly uses the term rephrasing. In contrast to that, the underlying MMs for source
and target may vary, which is widely known as a translation. In this case, an exogenous
model transformation needs to be specified. [171]

In addition to the previous one, the levels of abstraction, the source, and target models
are arranged at, reflect another important aspect. If both models, source and target,
reside on the same level of abstraction, we speak of a horizontal transformation. Examples
of this kind of transformation are refactoring (endogenous) and migration (exogenous)
[127]. The counterpart is the vertical transformation, whereby the level of abstraction of
the model is changed by the transformation.

The third one addresses the language’s dimension the transformation primarily aims
at. The distinction is made here between syntax and semantic. While a syntactical trans-
formation only cares about the change of the representation of language constructs, the
semantical transformation cares about the subsequent changes of its meaning. There-
fore, semantical transformations are significantly more complex to define and hard to
be verified as correct. Taking all the characteristics into account, we end up in a variety
of different types of model transformation, which are used in the context of MDSD. Be-
sides the previously mentioned use case of horizontal endogenous transformations in
the context of the MOF layer model, vertical exogenous transformations are prominent,
when MDA is carried out (see section 4.3).

34

4.3 MODEL-DRIVEN ARCHITECTURE

From a technical point of view, there are many languages and frameworks to apply
model transformations in the MDSD context. There are many aspects to include, while
determining the transformation approach which fits best. Czarnecki and Helsen [47]
categorized the M2MT approaches as follows:

• Direct manipulation
• Structure-driven
• Operational
• Template-based
• Relational
• Graph-transformation-based
• Hybrid

Among others, prominent examples from literature (and partially applied in a com-
mercial context) are the Query View Transformation (QVT) language (part of the MOF
standard), the Atlas Transformation Language (ATL), and the VIsual Automated model
TRAnsformation (VIATRA) framework [47]. Apart from the VIATRA framework,
which is categorized as a Graph-transformation-based approach, the mentioned trans-
formation languages represent hybrid concepts. For example, the QVT is divided into
three components from different categories, Relations, Operational Mappings, and Core.
In the context of the A3F (see section 7.3) the Query View Transformation Operational
(QVTO) plays a central role for horizontal endogenous M2MTs, where missing seman-
tics is made explicit within the transformation.

4.3 Model-Driven Architecture

In the context of MDSD, another OMG standard, namely Model-Driven Architecture
(MDA), comes into play. MDA describes a software development approach that, driven
by models and the automation of essential processing steps, should improve the devel-
opment quality for complex systems. The standard introduces concepts supporting the
strict separation of concerns, views, and languages specific to the underlying appli-
cation domain, which altogether structure the way from a model-based specification
down to an executable system and are commonly carried out by UML and thereon
defined profiles. Further, the application of vertical exogenous M2MTs and Model-to-
Code Transformations (M2CTs) is a core concept of the MDA standard to deal with the
layers of abstraction and representation. [67]

In particular, artifacts are differentiated on their level of detail and degree of platform-
specific information, as shown in figure 4.3. The elaborations on the different layers of
the MDA hierarchy are based on the published specification document [126].

Starting on the most abstract level of the MDA hierarchy, the so-called Computation
Independent Models (CIMs) are arranged. The models on this level describe the re-
quirements and needs of the SUD without any implementation details, e.g. user re-
quirements or business objectives. Sometimes, these kinds of models have entitled

35

4 MODEL-DRIVEN SOFTWARE DEVELOPMENT

Computation Independent Models (CIM)

Platform Specific Models (PSM)

Platform Independent Models (PIM)

Implementation Specific Models (ISM)

Business or Domain Models

Logical System Models

Implementation Models

Figure 4.3: MDSD based on the MDA standard

business or domain models. Having specified the CIMs, these models need to be set in
relation, further enriched with information and consequently transformed making up
the so-called logical System Models.

These logical System Models are further divided into two groups, i.e. the Platform Inde-
pendent Models (PIMs) and the Platform Specific Models (PSMs). What the acronyms
already indicated, is the differentiation by means of the included platform properties.
Therefore, the PIM defines the behavior of the SUD in terms of stored data and per-
formed algorithms, while no technical details are specified. In contrast, the PSM intro-
duces all the technical knowledge needed to end up with models, which are ready for
transformation towards implementation models.

The lowest level of the MDA standard holds the Implementation Specific Models
(ISMs), commonly created in an automated way. In case of a fully-featured PSM and
a high quality (or demonstrably correct) code generator, the code artifacts do not need
any human intervention, except for legacy application and subsequent maintenance.

Overall, the MDA approach has many beneficial aspects, e.g. automation or reuse,
which build on the division into levels and the strict separation of platform-specific
and independent information. However, there are also disadvantages that are mainly
originated in the recommendation for the use of UML and the thereon-based tooling.
The UML and its profiles for example limit the modeling capabilities and hardens a
targeted automated code generation due to the absence of explicit concepts.

36

5
Verification and Validation in Software

Development

Apart from the constructive tasks of a Software Development Life Cycle (SDLC), no
matter which concrete flavor is carried out, there is a strong need for process steps con-
stantly evaluating intermediate development artifacts under certain aspects. In litera-
ture, these process steps are commonly divided into two types, namely Verification and
Validation. To give an intuitive understanding of the terms, Barry Boehm introduced
the following mnemonic [139]:

“Are we building the product right?” ↔ “Are we building the right product?”

The first, incorporating the verification of the SUD, aims at analyses assuring the con-
formance of intermediate artifacts to the specified requirements. Thus, it is a more tech-
nical task to be carried out on certain development artifacts. The second, incorporating
the validation of the SUD, tackles the analyses checking whether the product meets the
customer’s needs, initially captured by requirements. Consequently, this kind of task
demands knowledge of the application domain and the concrete context. [19]

In order to detail the intuitive understanding of V&V and elaborate on which kinds of
defects of the SUD may be revealed, we introduce the well-known fault/failure model
[24] [19]. To distinguish various flavors of threats to dependability makes it easier to
define the capabilities and limits of concrete V&V approaches.

Definition 5 (Fault/Failure Model)
The Fault/Failure Model is made up of the following three definitions:

1. Fault
A fault is given by a static defect in a system’s source code. Further, a fault is classified as
dormant in case of the affected code fragment not being executed and activated, if it is
processed during execution.

2. Error
An error represents a diverging internal state, as a result of a fault being activated.

3. Failure
A failure is an observable deviation between the actual and the expected behavior of a
system.

5 VERIFICATION AND VALIDATION IN SOFTWARE DEVELOPMENT

The three concepts show the stages of activation/propagation a defect may be in. This
further draws the spectrum for V&V approaches, ranging from static analyses of inter-
mediate results to dynamic approaches requiring executable development artifacts.

On the one hand, the field of static analyses ranges from quite informal and manual
techniques like reviews to pretty formal verification approaches, e.g. model checking.
Strongly depending on the combination of the applied technique and the type of devel-
opment artifact under analysis, the resulting quality statement is more or less concrete
and error-prone. A common feature is the fault-centric reporting of identified issues.

On the other hand, approaches in the field of dynamic analyses just can draw state-
ments about observed failures. In general, there are informal/manual approaches, e.g.
inspection, and more automated approaches like simulation or interpretation of devel-
oped functionality.

As a mixture of both kinds, verification, and validation, there is a quite popular ap-
proach for quality control during ongoing development, namely Software Testing.

5.1 Software Testing

In general Software Testing has many different flavors and therefore lots of definitions.
The International Software Testing Qualification Board (ISTQB) defined testing as fol-
lows [80]:

Definition 6 (Testing)
The process consisting of all life cycle activities that deal with the planning, preparation, and
evaluation of a software product and its associated work results. The aim of the process is to
ensure that these meet all specified requirements, that they fulfill their purpose, and that any
error conditions are detected.

Furthermore, two types of software testing are distinguished. The so-called static tests
are techniques, which may be performed on each and every development artifact. Here,
mainly structured variants of inspection, e.g. reviews, are performed to assure quality,
which most of the time remains a purely manual activity. In contrast, the dynamic tests
are based on executable development artifacts. During the ongoing execution of these
artifacts, the steady observation of the SUD in a structured way aims at revealing fail-
ures. [174]

In contrast to other V&V techniques aiming at the proven correctness of the SUT, limi-
tations of testing should be kept in mind.

“Program testing can be used to show the presence of bugs,
but never to show their absence.” - Edsger W. Dijkstra [58]

38

5.1 SOFTWARE TESTING

Thereby, Dijkstra tackles a common misunderstanding. Testing marks an approach for
improving the user’s trust in the absence of defects/bugs as well as in the software
shipping with the intended functionality with regard to the customer’s requirements,
but may not prove the SUT correct. In addition to this central principle of testing,
there are lots of basic principles apart from the one quoted by Dijkstra, guiding testers
and developers towards a sufficient realization of testing throughout the product life
cycle.

5.1.1 Fundamentals of Testing

In addition to the insight on the missing ability for showing the absence of defects, testing
may not be carried out exhaustively. Further, there is a strong need for an early application
and tight focus of the testing activities, in order to reduce the overall costs for testing.
Especially in late phases of testing, e.g. in a pre-release phase, a tester should always
keep in mind the phenomena of defect clustering, which says that most of the remaining
defects are encapsulated in a small number of modules of the SUD. In a row with the
pesticide paradox, which complains about the repeated application of the same test suite
and its expressiveness over time, these principles are based on experiences over the past
decades of testing software. Finally, testing is heavily context-dependent and therefore
needs to be adapted according to requirements imposed by the development context
as well as regulatory instances. Further continuing the thought of the previous section,
testing is not a pure verification nor a pure validation technique and therefore does not
give any causal relation between the absence of faults in the product and its usability
for the customer. [80]

All the presented insights on testing commonly lead to a specific variant of how testing
is carried out during development. However, all different variants follow the same
basic structure, shown in figure 5.1 and commonly known as the Software Testing Life
Cycle (STLC). Although the figure shows a linear process, the linearity is not a necessity,
i.e. certain steps of the process may either overlap or be iterated during the process.

Throughout the following sections, we detail activities included in the process steps,
while introducing important definitions for the field of software testing. The contents
detailed in these sections are based on the widely accepted definitions of testing activi-
ties from the ISTQB [80] [174].

Test planning and control

As illustrated in figure 5.1, the first step of the STLC deals with planning and control ac-
tivities. In particular, Test Planning aims at understanding the goals and objectives of the
customer. Furthermore, all the involved stakeholders need to be addressed. Overall,
the project context needs to be identified and understood in detail. For a test engineer,
this results in a test mission, sometimes called a test assignment.

39

5 VERIFICATION AND VALIDATION IN SOFTWARE DEVELOPMENT

Planning and

Control

Evaluating Exit

Criteria and

Reporting

Development

Artifacts

Analysis and

Design

Implementation

and Execution

Test

Closure

Figure 5.1: The common software testing life cycle

Based on this intermediate version of a test mission, a conformity check with the com-
panies test policy as well as the overall test strategy needs to be performed. In case of
conformance issues, the affected parts of the test mission are adjusted.

Definition 7 (Test Policy [170])
A high-level document describing the principles, approach, and major objectives of the organi-
zation regarding testing.

Definition 8 (Test Strategy [170])
A documentation aligned with the test policy that describes the generic requirements for testing
and details how to perform testing within an organization.

As soon as the general planning is finished, the basic testing approach and therefore
necessary resources are determined. The range of available approaches is usually di-
vided into functional, non-functional/quality, structural, and regression testing ap-
proaches. The first two categories are sometimes subsumed under the term Black-box
Testing, while structural tests are often called White-Box Testing approaches. Apart from
the mentioned non-regression categorizations, sometimes there is an additional cate-
gory called Grey-Box Testing, reflecting partial or uncertain knowledge of the SUT.

Definition 9 (Black-box Testing [170])
Testing, either functional or non-functional, without reference to the internal structure of the
component or system.

Definition 10 (White-box Testing [170])
Testing based on an analysis of the internal structure of the component or system.

40

5.1 SOFTWARE TESTING

One aspect that is closely related to the chosen test approach is the definition of an
exit criterion. This criterion determines whether testing activities are completed or not.
Completing the set of test planning activities, the subsequent process steps as well as
included tasks are scheduled according to the project timeline.

In contrast to the planning part, the Test Control activities are usually carried out in par-
allel to all remaining process steps included in figure 5.1. At this point, the structure
of the figure seems misleading, but above all tackles the definition of how the con-
trol activities are performed. An essential aspect of the test control process step is the
steady comparison of the actual testing progress against the planned progress. This is
followed by a continuous reporting of the derived status to all the previously identi-
fied stakeholders. In case of unacceptable deviations from the plan, an adjustment of
the plan based on the monitoring information is triggered. Two types of triggers are
conceivable. On the one hand, corrective actions due to misconceptions in the planning
phase, e.g. change of exit criteria. On the other hand, expanding actions through a
more detailed view of the SUT.

Test analysis and design

Based on the developed test plan, test engineers further detail the intended test setup
by analyzing artifacts and thereby developing a concrete design. In particular, devel-
opment artifacts like requirements, architecture documents, design specifications, and
included interfaces, also known as the test basis, are studied. At this point, the test basis
serves as sufficient information for the design of black-box test cases. Even if no black-
box tests are intended, the test conditions for the relevant test items are developed in this
phase of the STLC. Here, especially the testability of the underlying test basis is chal-
lenged and, if necessary, triggers a change request for the test basis. A central role of
the test design phase is to end up with a focused set of tests for the targeted parts of the
SUT.

Definition 11 (Test Condition [170])
A testable aspect of a component or system identified as a basis for testing.

Definition 12 (Test Item [170])
A part of a test object used in the test process.

Definition 13 (Test Case [170])
A set of preconditions, inputs, actions (where applicable), expected results and postconditions,
developed based on test conditions.

Besides the analysis and design of test cases, the test environment marks an essential
point of investigation in this phase. On the one hand, the necessary infrastructure to
perform subsequent test phases is determined. On the other hand, appropriate tooling

41

5 VERIFICATION AND VALIDATION IN SOFTWARE DEVELOPMENT

for the test engineer is set up and configured to integrate to a sufficient toolchain that
operates on the previously defined infrastructure. Overall, the goal of this STLC-phase
is a tangible set of test conditions and test procedures with regard to the predominant
set of test objectives.

Definition 14 (Test Environment [170])
An environment containing hardware, instrumentation, simulators, software tools, and other
support elements needed to conduct a test.

Test implementation and execution

Following the analysis and design view on testing, the STLC-phase of this section deals
with the concrete implementation of tests and the thereon-based execution. In particular,
during test implementation, the previously specified set of abstract test cases is detailed by
developing appropriate test data to derive a set of concrete test cases. Moreover, test
procedures are implemented by scripts to support the execution of tests in the test envi-
ronment. In order to make the execution more efficient, the test cases are grouped into
logical collections, called test suites, sharing test data or test objectives. Furthermore,
the test suites are prioritized and a schedule for the subsequent execution is derived.
Any missing components of the test environment are implemented and verified in this
phase to create the best possible starting point for the following phases.

Definition 15 (Abstract Test Case [170])
A test case without concrete values for input data and expected results.

Definition 16 (Test Suite [170])
A set of test scripts or test procedures to be executed in a specific test run.

Following the implementation of test-related artifacts, the test execution is performed. In
particular, the previously defined test suites are executed against the SUT. The record-
ing of the execution traces and results is the most important task, since based on these
so-called test logs, documents or even instructions for action are derived for stakehold-
ers. Especially in cases, where observed behavior differs from intended behavior, the
test log marks the basis of the decision to develop appropriate countermeasures.

Definition 17 (Test Log [170])
A chronological record of relevant details about the execution of tests.

Evaluating exit criteria and reporting

Continuing the STLC presented in figure 5.1, an important point of decision in the pro-
cess is reached. As its name implies, the evaluation of exit criteria determines whether

42

5.1 SOFTWARE TESTING

sufficient testing has been performed. Two different conclusions can be drawn from
this check. Either that the previous tests were not sufficient and further iterations are
necessary, or that the criterion chosen in the planning phase is not suitable and must be
adapted. This step applies to each of the defined test levels from Unit/Component testing
up to Acceptance testing. Regardless of the current test level, a test report is generated,
which discloses the current testing status for stakeholders.

Definition 18 (Test Level [174])
Depending on the constructive phases for the test basis, the test levels are commonly divided into
the following levels: unit/component testing, integration testing, system testing, and acceptance
testing. A more fine-grained division into levels is conceivable if required by the test policy or
the product.

Definition 19 (Test Report [170])
Documentation summarizing test activities and results.

Test closure activities

If the exit criteria take effect and these are considered useful, the final actions of the
STLC, namely test closure activities, are performed. The primary objective is to compare
planned test artifacts with artifacts that have been created. Furthermore, this includes
a review of recorded problems and knowingly remaining errors to ensure appropriate
defect handling and documentation.

Apart from test result-specific closure activities, some test environment-related tasks
need to be performed. This includes a handover of test-related artifacts to the mainte-
nance department as well as archiving all the test tools and infrastructure relevant for
the previously detailed process steps. Moreover, improvements for future variants of
the STLC are identified at this point and necessary adjustments are documented and
initiated.

As already mentioned in the introductory part of this section, the concrete instance of a
STLC is subject to many influences such as the type of STLC, the companies test policy
or general strategy, empirical values, and standards set by the application context.

5.1.2 Standardization

Apart from ISTQB’s view on the software testing process, there are many other stan-
dardization bodies, ranging from international boards like International Organization
for Standardization (ISO), International Electrotechnical Commission (IEC), or Institute
of Electrical and Electronics Engineers (IEEE), to national organizations like Software
Engineering Institute (SEI), American National Standards Institute (ANSI), or British

43

5 VERIFICATION AND VALIDATION IN SOFTWARE DEVELOPMENT

Standards Institute (BSI). Over the past decades, all the mentioned boards competed
by publishing standards for software quality assurance and control. Figure 5.2 gives
a high-level overview of the most impacting standards, some of which are no longer
active at this time or have already been summarized in new standards.

ISO/IEC 29119

Software Testing

ISO/IEC 250xx
Systems and Software Quality Requirements and Evaluation

(SQuaRE)

ISO/IEC

9126
Software

Engineering –

Product Quality

ISO/IEC

14598
Software product

evaluation

ISO/IEC

12119
Software packages

- Quality

requirements and

testing

IEEE

829
Software and

System Test

Documentation

IEEE 1059
Guide for Software Verification and

Validation Plans

IEEE 1061

Software Quality Metrics Methodology

IEEE

1008
Software Unit

Testing

IEEE 1012
System and Software Verification and

Validation

BS

7925-1&2
Vocabulary of terms in

software test ing &

The software component

testing standard

ISO/IEC

33063
Process

assessment model

for software

testing

ISO/IEC

20246
Work product

reviews

replacesbased on

Legend:

active

superseded/inactive

Figure 5.2: Important standards in the context of Software Testing and Quality Assur-
ance

The first group of standards arranged in the upper part of figure 5.2, deals with general
topics on V&V of systems/software and gives advice in terms of the applied method-
ology as well as involved artifacts. Over the years, some standards were superseded
by newer revisions, in order to continuously align the contents to recent insights, while
others were set inactive or even withdrawn. The second group placed in the center
of figure 5.2 includes standards in the area of testing. Furthermore, the objects placed
on the left side represent basic and relatively new standards from the field of dynamic
software testing. This is contrasted by the objects on the right-hand side, which repre-
sent the quality assurance domain and its development over the years. At the bottom
of figure 5.2 two more standards are mentioned, which are often used in conjunction
with ISO/IEC 29119 and ISO/IEC 25000.

Overall, attempts have been made in recent years to consolidate the almost unman-
ageable number of standards. In particular, the discussed standard ISO/IEC 29119 at-
tempts to summarize and update established standards and prescribe the basic pro-
cesses across the different development practices.

44

5.1 SOFTWARE TESTING

ISO/IEC 29119 - Software Testing

Based on the contents published in [146], this section gives a deeper insight into the
controversially discussed standard. ISO/IEC 29119 was designed with the aim of speci-
fying a standard that combines best practices and reflects the state of the art of software
testing from a process-level view. As mentioned above, this standard contains elements
of older standards in this field and brings them together in a larger context. For a better
structuring of the contents, it consists of five separate parts.

ISO/IEC 29119-1 [6] contains mainly the definitions and concepts, which form the basis
for the following parts and are mostly based on the contents of BS 7925-1 [40]. ISO/IEC
29119-2 [7] on the other hand presents the contents of an intended and potential ref-
erence process for software testing continuing the concepts of BS 7925-2 [41] and IEEE
1008 [21]. Furthermore, this part puts a focus on the cross relations between formerly
separated process groups, which are examined in more detail below. Overall, this part
reflects the major contribution of this standard. ISO/IEC 29119-3 [8] focuses on docu-
mentation topics, which mark an essential aspect of a meaningful software testing pro-
cess. In particular, the necessary documentation parts, as well as their purpose within
the previously mentioned reference process, are presented. Moreover, the general con-
cepts for the technical documentation are detailed. ISO/IEC 29119-4 [9] investigates
applicable techniques for test design and implementation activities in software testing.
Starting from the techniques, which were presented in the context of BS 7925-2, alterna-
tive possibilities are listed and in the further course also explicitly dealt with coverage
criteria. ISO/IEC 29119-5 [10], the last part of the standard, elaborates on a special test-
ing technique, namely keyword-driven testing. In addition, further concepts of this
technique, such as hierarchical keywords and templates for technical keywords, are
discussed and a possible application in the presented reference process is shown.

Apart from the division into five parts, the standard aligns to a layered structure of
process groups with mutual dependencies as per figure 5.3.

Organizational Test Process The highest level of processes included in the layered
structure presented in figure 5.3, deals with the organizational test process. Apart from
a concrete project, a process template is given, which among others enables to manage
and develop the organizations’ test policy and strategy. Therefore, the template is split
into three main activities, namely Development of Organizational Test Specification (OT1),
Monitor And Control Use Of Organizational Test Specification (OT2), and Update Organi-
zational Test Specification (OT3). OT1 represents the starting point for the creation of
an Organizational Test Specification (OTS), while OT2 and OT3 support the iterative
improvement and maintenance of related artifacts.

Test Management Processes Below the organizational test process, project-specific
test management processes are arranged. These in turn are divided into three groups
(see figure 5.3).

45

5 VERIFICATION AND VALIDATION IN SOFTWARE DEVELOPMENT

Organizational Test Process

Test Management Processes

Dynamic Test Processes

Test Planning

Process

Test Monitoring

& Control

Process

Test

Completion

Process

Test Design &

Implementation

Process

Test

Environment

Setup &

Maintenance

Process

Test Execution

Process

Test Incident

Reporting

Process

IS
O

/I
E

C
 2

9
1

1
9
 –

 P
a
rt

 1
-5

Figure 5.3: Process Structure defined in ISO/IEC 29119 (based on [146])

Test Planning Process - As an initial activity, the context is first assessed, the workload is
estimated and further allocated (TP1 - TP2). Following the initial activities, the identi-
fication, mitigation, and deduction towards a risk-driven strategy mark essential tasks
(TP3 - TP6). At this point, it is recommended in the standard to iterate the steps several
times to achieve improved quality and focussedness of the resulting test plan. Closing
activities tackle the documentation and communication of developed artifacts in the
context of the test plan (TP7 - TP9).

Test Monitoring & Control Process - Based on the derived test plan, this process deals
with the continuous monitoring and control of subsequent testing activities. Therefore,
monitoring infrastructure is deployed accordingly (TMC1). Based on a previously de-
termined set of test measures the monitoring is performed (TMC2) and in case of devi-
ations triggers specified control structures (TMC3). All the occurring incidents are col-
lected and in a final activity shipped in detailed reports (TMC4), which further marks
the basis for decisions about sufficient testing.

Test Completion Process - The last of three test management processes takes place if the
test monitoring and control processes determined the end of testing activities. The fi-
nal activities incorporate the archiving of test assets (TC1), a test environment cleanup
(TC2), as well as reflective and again documenting tasks (TC3 and TC4). Thereby, the
last two activities pursue the goal of continuous improvement of the process land-
scape.

Dynamic Test Processes Apart from the previously presented management pro-
cesses, but tightly coupled, the processes dealing with the concrete testing activities
arranged at the bottom of figure 5.3, are furthermore detailed.

46

5.1 SOFTWARE TESTING

Test Design & Implementation Process - Before the execution of test cases may be carried
out, the design and implementation of those need to be completed. With regard to the
actual test plan, the concrete design, and implementation of test cases are developed it-
erative (TD1 - TD6). Overall, there are three different artifacts, which specify the results
of respective activities:

• Test Design Specification
• Test Case Specification
• Test Procedure Specification

All these artifacts contain essential information as soon as the execution of test cases is
carried out.

Test Environment Setup & Maintenance Process - Completing the initial test environment
setup, the activities of this process ensure the ability to execute test cases by continuous
maintenance of the environment (ES1 and ES2).

Test Execution Process - Carrying out the major task of testing, this process defines three
activities. First, the procedures included in the test procedure specification are executed
(TE1). The results are further evaluated (TE2) and finally documented, which again
serves the overall goal of steadily improving testing and test-related processes.

Test Incident Reporting Process - The last process of the dynamic test processes group
handles unforeseen incidents occurring during test execution. In particular, two steps
constitute this process, the former analyzing the incidents (IR1) and the latter docu-
menting these incidents with regard to the affected stakeholders.

Relation between ISO/IEC 29119 and ISTQB

Although ISTQB is not a standardization body, the documents and materials in the
context of their certification programs are seen as standard-like. This is due to the
community-oriented development and practical relevance of the material, reflecting
a wide-accepted view on the topics. As we have seen in the previous sections, the
ISO/IEC 29119 standard and the ISTQB concepts differ only slightly. This can be at-
tributed to the fact that both variants are based on an overlapping set of documents and
thus logically continue these approaches in large parts. Nevertheless, the ISTQB view
seems to leave more room for specific application contexts and test methods, which was
one major point of criticism when promoting the publication of the ISO/IEC 29119 stan-
dard. Even petitions against the publication of this standard were started, fearing big
players of the industry behind the scenes forcing the conformance to this standard in
future projects, thereby hindering appropriate approaches. Overall, the two documents
draw a very similar picture of how software testing should be carried out.

47

5 VERIFICATION AND VALIDATION IN SOFTWARE DEVELOPMENT

5.1.3 Test Design Techniques

As we have seen in section 5.1.1, the design and implementation of test cases play a
major role. There are several fundamentally different approaches to derive the most
efficient and targeted set of test cases from an existing test basis. As already mentioned,
a distinction is usually made between Back-box/Specification-based approaches and White-
box/Structure-based approaches [174]. The ISTQB introduces two additional categories
of testing techniques overarching the mentioned [170]. On the one hand Experience-
based Test Techniques and on the other hand Defect-based Test Techniques. To give the
reader more insight, some representative techniques of these categories are detailed.
The selection of example technologies refers to the test design techniques considered in
our approach and thus represents the basis for later understanding.

Experience-Based Approaches for test design are not primarily based on develop-
ment artifacts. Rather, the essential components of these techniques are the knowledge,
skills, and background of the testers. As its name implies, the experience in similar
systems from different perspectives (technical vs. business) enables the testing team to
guess what may go wrong and what needs to be covered by a comprehensive set of test cases.
A simple technique that extensively makes use of intuition what might go wrong is called
Error Guessing. Here, possible error cases are collected and subsequently transformed
into a set of test cases to confirm the assumptions. [80]

Besides the Error Guessing approach, there is another technique in this field called Ex-
ploratory Testing or Ad-hoc Testing. Driven by a group of testers, the Context-Driven
School, the following compact but meaningful definition emerged.

“Exploratory testing is simultaneous learning, test design, and test execution.” - James Bach
[25]

Bach further pointed out, that each flavor of testing is exploratory to some degree [25]. In
contrast to scripted testing, the continuous learning about the SUT by developing new
test cases based on insights of previous test runs marks the core concept. This approach
does not put the obvious parts of the system to the test but may investigate cases that
would not be achieved by non-exploratory techniques. Therefore, Exploratory Testing is
not just a classical test design technique, but a way of thinking about testing. [25]

Specification-based Approaches take the requirement or similar specification arti-
facts to design test cases in a structured way. Therefore, the category is called Black-box,
which is due to the missing information about the internal behavior of the SUT. How-
ever, based on this limited amount of information, characteristic and error-prone com-
binations of inputs are determined, which further serve as stimuli to the SUT. [174]

48

5.1 SOFTWARE TESTING

Examples from this area are decision tables, state transition testing, Boundary Value Testing,
and Equivalence Class Testing, the latter two techniques being discussed in more detail
below. [80]

d

c

a b

x2

x1

(a) Boundary Value Testing

d

c

a b

x2

x1

(b) Equivalence Class Testing

Figure 5.4: Specification-Based Test Design approaches (subfigures based on [103])

Boundary Value Testing, sometimes called Boundary Value Analysis, marks a test design
technique, which focuses on interface information of a component or system under test.
Therefore, the set of input data is divided into its atomic elements. Each of these data
elements defines a scale of possible values given by its datatype. This scale may further
be partitioned into sections based on specified thresholds or constraints defined for the
data elements. What Boundary Value Testing aims at is selecting test data in a structured
way by data points at the boundaries of the determined sections. To demonstrate this
approach, figure 5.4a shows a tiny example, where the axes represent the scale of vari-
able x1 with boundaries a and b and the variable x2 with boundaries c and d. Each of
the gray dots included in this figure represents a test data point that assigns values to
the variables x1 and x2. The amount of test data, in this case, is determined by a spe-
cific variant of Boundary Value Testing, namely Robust Worst-Case Boundary Value Testing.
Apart from this specific variant of Boundary Value Testing, there are lots of other less
strict flavors, leading to fewer test cases. [103]

Another technique, namely Equivalence Class Testing, is illustrated by figure 5.4b on the
same example scenario. The limits of variable values imposed by thresholds or con-
straints define so-called equivalence classes on them. The resulting set of equivalence
class combinations determines the value ranges, for which representatives are deter-
mined either randomly or according to a certain scheme. The example shown in fig-
ure 5.4b again reflects a special version of Equivalence Class Testing, namely Strong Ro-
bust Equivalence Class Testing. For this technique, there are other variants that may fit
better to a certain test context and effectively end up with a lower number of resulting
test cases. [103]

Particularly, figure 5.4a shows that even with very simple problems, the resulting num-
ber of test cases becomes very large. Due to time and budget restrictions, it is necessary
to sort the test cases in descending order of importance (Prioritization) or to make a
selection (Selection/Reduction). In both cases, this is often achieved utilizing so-called
Risk-Based Testing (RBT). In general, a risk represents a factor that could result in fu-

49

5 VERIFICATION AND VALIDATION IN SOFTWARE DEVELOPMENT

ture negative consequences and is usually expressed by its likelihood and impact [170].
Based on a risk management process, Amland described RBT as a suitable integration
of this process into the conventional test process [18]. The resulting process behind RBT
breaks down into the following steps.

1. Planning (risk identification/risk strategy)
2. Identify risk indicators (risk assessment)
3. Identify the cost of a fault (risk assessment)
4. Identify critical elements (risk assessment)
5. Test Execution (risk mitigation)
6. Estimate to complete (risk reporting and prediction)

Besides the application of RBT in the context of specification-based test design ap-
proaches, the area of structure-based test design approaches offers even more potential.
[65] All in all, RBT offers a mechanism with high practical relevance, which introduces
information from other development domains into the testing domain, but itself does
not represent a complete test design technique.

Structure-based Approaches, sometimes called Black-box Approaches, offer a much
more targeted way of deriving test cases from an appropriate development artifact.
In particular, these approaches are a necessary supplement to the above-mentioned
Black-box approaches, as the accessibility and meaningfulness of certain parts of the
respective implementation, are closely examined. [174]

Many development artifacts serve as a sound basis for the application of structure-
based approaches to derive test cases. Although mostly code artifacts are used for
the application of structure-based approaches, there are lots of other sufficient behav-
ioral descriptions. The underlying graph structure represents the crucial information
to which the structural criteria are applied. For this reason, the following definitions al-
ways reside on the underlying directed graph structure and abstract from the concrete
artifact representation together with its additional data. [19]

For this purpose, we first define a graph.

Definition 20 (Graph [19])
A graph formally is made up of

• a set N of nodes
• a set N0 of initial nodes, where N0 ⊆ N
• a set N f of final nodes, where N f ⊆ N
• a set E of edges, where E is a subset of N × N

Based on the set of nodes and directed edges, possible ways through the graph result,
which represent valid (partial) executions of the system specified by the graph. In the

50

5.1 SOFTWARE TESTING

case of source code artifacts, the graph usually reflects the control flow of the program.
A sequence of nodes and edges through a graph is further called a path.

Definition 21 (Path [19])
A path through a graph is a sequence [n1, n2, . . . , nM] of nodes, where each pair of adjacent
nodes, (ni, ni+1), 1 ≤ i ≤ M, is in the set E of edges.

Furthermore, if the path complies with some characteristics regarding the start and end
nodes, it is called a test path.

Definition 22 (Test Path [19])
A path p, possibly of length zero, that starts at some node in N0 and ends at some node in N f .

These test paths in turn represent the runs through the graph, which are triggered by
test data of the corresponding test case. For deterministic systems represented by a
graph structure, the mapping between test data and test paths follows a many-to-one
relation [19]. Based on these definitions, the term coverage regarding the graph struc-
ture can be defined as follows.

Definition 23 (Graph Coverage [19])
Given a set TR of test requirements for a graph criterion C, a test set T satisfies C on graph G if
and only if for every test requirement tr in TR, there is at least one test path p in path(T) such
that p meets tr.

The amount, combination, and type of test requirements can of course vary, which
results in different variations of coverage.

Structural Coverage Criteria focus on the underlying graph structure and leave aside
consideration of concrete data. Such criteria are often used at the unit level in particular.
Standards such as ISO 26262, DO-178B/C, and IEC 62304 refer to representatives of the
structural criteria in its recommendations regarding sufficient coverage of the SUD [5]
[2] [11]. Based on the definitions previously introduced, we further specify the widely-
known C0-C2 criteria [174].

Definition 24 (Node Coverage (C0) [19])
Test set T satisfies node coverage on graph G if and only if for every syntactically reachable node
n in N, there is some path p in path(T) such that p visits n.

Definition 25 (Edge Coverage (C1) [19])
Test set T satisfies edge coverage on graph G if and only if for every edge e in E, there is some
path p in path(T) such that p visits e.

51

5 VERIFICATION AND VALIDATION IN SOFTWARE DEVELOPMENT

Definition 26 (Path Coverage (C2) [19])
Test set T satisfies path coverage on graph G if and only if every path(T) equals the set of paths
in G.

Besides the three criteria defined, there are several other structure-based criteria, e.g.
Modified Condition/Decision Coverage (MC/DC), ranging on intermediate levels ac-
cording to their strength. Some of them are part of figure 5.5 and thereby set into rela-
tion (detailed at the end of this section).

Data Flow Coverage Criteria in contrast to the Structural Coverage Criteria consider the
use of variables besides. Research in this area goes back to the early 80s, where Laski
et al. elaborated on various versions of data flow-related coverage criteria [117]. The
consideration of the application context of a variable is of particular importance here
and therefore distinguished as follows.

• Definition
A concrete value is bound to a variable (def).

• Usage
The value of the variable is used to decide about the subsequent execution flow
(p-use) or is part of a computation (c-use)

Based on these different contexts and to make the definitions of this area consistent
with the previous ones, the original definition of a graph is extended as follows.

Definition 27 (Graph (Extended) [19])
In the context of data flow investigations, the existing definition of a graph further consists of

• a set V of variables associated with the program artifacts embedded in the graph
• each node n and edge e defines a certain subset of V, with the sets being called def(n) and

def(e)
• each node n and edge e uses a certain subset of V, with the sets being called use(n) and

use(e)

Consequently, each element of the graph is processed and data sets for the def and use
are initialized accordingly. Analogous to the definitions of structural criteria, predicates
(test requirements) can be specified on these sets, from which test cases can be further
derived. We do not further elaborate on data flow criteria and leave the investigation
to the reader, but we recommend the work of Ammann and Offutt [19].

What is of great interest are the relationships between the individual coverage criteria
previously presented. These relationships are often described by so-called subsumption,
which results in a dependency structure that can be seen in figure 5.5 for some selected
criteria. In particular, the criteria with a dotted frame are based on data flow informa-
tion, while the ones with a dashed frame take the structural characteristics into account.
In case of an arrow from criterion A to criterion B is included, A subsumes B, i.e. the test
cases derived concerning A satisfy B, but not the other way round.

52

5.1 SOFTWARE TESTING

Node Coverage

Edge Coverage

Edge-Pair

Coverage

Prime Path

Coverage

Complete Round

Trip Coverage

Simple Round

Trip Coverage

Complete Path

Coverage

All-du Paths

Coverage

All-Uses

Coverage

All-Defs

Coverage

All-C-Uses/

Some-P-Uses

All-P-Uses/

Some-C-Uses

All-P-Uses

Coverage

Figure 5.5: Subsumption hierarchy of structural and data flow criteria (based on [19]
and [149]

Overall, such a hierarchy of coverage criteria enables developers and testers to find an
appropriate criterion, which is due to its expressiveness being set into relation.

Defect-based Approaches in contrast to error guessing, which is based on the expe-
rience of the development and testing team, these techniques are thought to evoke the
concrete error case and examine the behavior in the context of test case execution. For
instance, fault injection or mutation testing are the most prominent examples of this cat-
egory. Fault injection for example leaves the test object in its original state and changes
the memory in which the variable values are stored during runtime [93]. Thereby, pri-
marily the robustness of the software, in case of external influences like cosmic rays, is
evaluated.

In contrast, Mutation Testing or Mutation Analysis aims at revealing common coding
faults introduced by programmers. Originally this technique was proposed in 1978
by DeMillo et al. [53], who presented a system that made it possible to determine
the significance of a test suite. To meet this requirement, the following fundamental
hypotheses apply, as summed up by Jia et al. [100].

• Competent Programmer Hypothesis (CPH) [53]
Programmers are competent and therefore tend to create code that is close to a
fault-free version. In case of the presence of faults in the final code artifact, these
faults are just simple faults, that can be fixed by small adjustments to the syntax.
This is why mutation testing focuses on small changes to the underlying syntax,
to mimic a competent programmer.

• Coupling Effect (CE) [53]
In contrast to the CPH, the CE aims at types of faults used in the context of mu-

53

5 VERIFICATION AND VALIDATION IN SOFTWARE DEVELOPMENT

tation. DeMillo et al. formulated it as follows: “Test data that distinguishes all
programs differing from a correct one by only simple errors is so sensitive that it
also implicitly distinguishes more complex errors.”[53] As a result, mutation anal-
ysis is limited to the simulation of simple errors, because even complex errors are
only a combination of simple errors.

Input

Original

Program P

Fix P

Create

Mutants P‘

Run

T on P

Input

Test Set T

Run

T on Each

Live P‘

Analyze and

Mark

Equivalent

Mutants

Test Set passes

Some Tests fail

Some P‘ aliveAll P‘ killed

Figure 5.6: Mutation Analysis process (based on [134])

Based on these hypotheses, the process behind mutation testing looks like illustrated
in figure 5.6. Starting with the original version of program P, the basis for subsequent
mutation testing specific process steps is given. As a first step, the faulty versions of
the original program P are created. These faulty versions are usually called mutants and
represent the products of a technical realization of the previously introduced hypothe-
ses. Thereby, the simple faults are realized by so-called mutation operators, which each
introduce one type of fault into the program by controlled manipulation of a defined
subset of program fragments. Besides, the set of mutation operators is highly depen-
dent on the chosen representation of the program, thus there is no one set of operators,
applicable to every problem domain. To create representative and effective mutants,
there are further multiple strategies to apply mutation operators and/or even combine
their application.

However, as soon as the set of mutants P′ is created, the set of test cases T represents
the central artifact of the mutation testing process. Therefore, all the test cases included
in T are run against the original program P. This step is necessary to determine a valid
starting point for subsequent conclusions drawn based on this test set. If any of the
tests included result in a test verdict apart from PASSED, the program needs to be fixed
to lead to a fully passing set of test cases. If all test cases are rated as PASSED, the set
of test cases is passed to the next process step. Here, all of the test cases included are
run against each of the previously created mutants P′. At this point, special wording
regarding the relation of mutants and resulting test verdicts is introduced. In case of a
test case still being rated PASSED at the end of a run against a mutant, we say the mutant
is alive. All verdicts apart from PASSED lead to a mutant classification killed. In case of
all mutants P′ being killed by the test set, the mutation testing process ends.

54

5.2 MODEL-BASED TESTING

Otherwise, the test results across all mutants P′ are analyzed to conclude the test set.
In particular, the Mutation Adequacy Score (MAS) is calculated for this purpose, which
provides information on how high the proportion of killed mutants is.

Definition 28 (Mutation (Adequacy) Score)
The Mutation Adequacy Score (MAS) is defined as

MAS = D
M − E

with

• D: number of killed mutants
• M: number of created mutants
• E: number of equivalent mutants

One difficulty of mutation testing is explicitly dealt with here, namely mutants that are
semantically indistinguishable from the original, so-called equivalent mutants. Overall,
this score indicates the test set’s ability to detect mutants of the original version and
mostly serves as a trigger for subsequent modifications of the test set.

However, this imitation of programming errors and the mutation testing process that
builds on it is accompanied by some challenges. On the one hand, the cost of perform-
ing all tests against all created mutants is the biggest obstacle. To tackle this challenge,
many techniques to optimize process steps of mutation testing have been proposed,
which is largely covered by Jia et al. [100]. On the other hand, there are conceptual
challenges while performing mutation testing. The detection of equivalent mutants [42]
as well as the human oracle problem [172], which is a problem of any test procedure,
sometimes still requires human intervention or the use of complex procedures, to en-
able the practical application. [100]

Overall, Mutation Testing can be used in two different ways for testing. Firstly, as a
test design technique in which new cases to be tested are identified by mutations of the
original program, from which new test cases are then created. Secondly, as a technique
for determining the quality of a test set by constantly observing the MAS. Regardless
of the concrete characteristics, defect-based approaches represent a group of practical
techniques with high potential, which, however, due to the costs, are not yet widely
used in a practical context.

5.2 Model-Based Testing

As already explained in chapter 4, modeling is often used in complex development con-
texts. This serves above all to abstract irrelevant information for the current use case, as
well as the subsequent automation of further manual process steps. These advantages

55

5 VERIFICATION AND VALIDATION IN SOFTWARE DEVELOPMENT

are applied in the area of software testing having its origins in work by Apfelbaum et
al. [22]. In literature, there is a large number of definitions for Model-Based Testing
(MBT), whereby these are usually formulated specifically for the respective application
context. In some cases, MBT is only mentioned in the context of test case creation for
black-box testing [168]. However, in other application areas, MBT is used for white-box
approaches. Overall, MBT can be seen as a technique that derives the test cases wholly
or partly from a model that includes certain aspects of the SUT [107]. Utting et al. split
up the model-based testing process into five steps, explicitly arranging the new model
artifacts in between the predominant STLC activities [168].

Since the underlying model plays a central role in MBT, the different types of models
participating are discussed in more detail below. Among other authors, Winter et al.
specify three different types of models, which are applied in the context of MBT [174]

• Environment Model
This model maps parts of the context in which the SUD is embedded. For exam-
ple, external influences on the system are modeled, which can concern boundary
conditions, interfaces to other systems, or external factors.

• System/Software Model
In contrast to the environment model, the system/software model represents the
internal structure and behavior of the SUD. The structure describes the decom-
position of the system into its components, which usually contain a subset of
the functionality. The encapsulated low-level behavior together with interaction
specifications emerges the overall behavior of the SUD on higher levels of inte-
gration.

• Test Model
The Test Model includes information created and modified in test-related process
steps. In particular, information on the test basis and test specification are mod-
eled at this point. Therefore, different types of Test Models are available in the
context of the MBT. On the one hand, existing models of the SUT, such as the
system/software model, can be extended by the mentioned test-specific informa-
tion or a Test Model can be derived. On the other hand, the Test Model can be
a standalone model which reflects the tester’s view of the requirements and may
have a different level of abstraction compared to the previously mentioned model
artifacts.

Depending on aspects like time, budget, the experience of developers/testers, and the
project’s context, the presented set of models is potentially reduced to one integrated
model serving multiple purposes. Furthermore, it plays an important role in what pur-
pose these models should serve. On the one hand, Test Models are used to make mental
models explicit when testing. On the other hand, Test Models with clear syntax and se-
mantics form the basis of an automated test toolchain, which, apart from the generation
of test cases, may include their execution. Especially in the latter application scenario,
some challenges have to be considered, to carry out a meaningful test process (see sec-
tion 5.2.1).

56

5.2 MODEL-BASED TESTING

Based on the different variants resulting from the role of models, a distinction is made
between different forms of MBT as already shown in chapter 4 in the context of MDSD.
Winter et al., therefore, define the terms Model-Oriented Testing, Model-Driven Testing,
and Model-Centric Testing with the role of models becoming increasingly important
across the variants [174] (see Figure 5.7).

Analysis
and Design

Implementation
and Execution

Evaluating Exit Criteria
and Reporting

Test Closure

Planning and Control

(a) Model-Oriented Testing

Analysis
and Design

Implementation
and Execution

Evaluating Exit Criteria
and Reporting

Test Closure

Planning and Control

(b) Model-Driven Testing

Analysis
and Design

Implementation
and Execution

Evaluating Exit Criteria
and Reporting

Test Closure

Planning and Control

(c) Model-Centric Testing

Figure 5.7: Types of Model-Based Testing (subfigures based on [174])

• Model-Oriented Testing (figure 5.7a)
Model-Oriented Testing (MOT) represents the weakest type of MBT. Here, mod-
els are mainly used as a basis for expert discussions and manual reviews with a
close relation to the basis of the original requirements. Due to the manual pro-
cessing of model information and the main purpose being visualization, there is
no need for detailed knowledge of the formal foundations. Concerning the clas-
sical STLC activities, only the phases Analysis and Design and Implementation and
Execution are affected partially.

• Model-Driven Testing (figure 5.7b)
In the context of Model-Driven Testing (MDT), modeling is assigned a more im-
portant role. In contrast to the MOT, various test artifacts are derived from models
with suitable tool support. Depending on the level of detail of the model created,
this step can be either fully automated or only partially automated. In the par-
tially automated variant, skeletons are generated which are then completed by
experts. Overall, the (partial) automation of recurring steps reduces the effort
and the probability of errors. With this type of MBT, the activities Analysis and
Design, Implementation and Execution and Evaluating Exit Criteria can be supported
by the use of models, the Reporting, as well as other non-constructive activities,
remain apart from the modeling approach.

• Model-Centric Testing (figure 5.7c)
In contrast to the two variants of the MBT presented so far, the Model-Centric
Testing (MCT) puts models into the center of testing. As illustrated in figure 5.7c,
all activities of the STLC are affected by models. An important point is that mod-
els are not only a source of information but serve to represent the results of test
activities. Furthermore, in MCT the level of abstraction or the change of the form
of representation is rather avoided, which is why there is a significantly higher

57

5 VERIFICATION AND VALIDATION IN SOFTWARE DEVELOPMENT

overall transparency. This type of MBT is often used in combination with MDSD
as a development paradigm, which leads to positive emergence effects.

All in all, there are many variants of how MBT can be realized. On the one side, the
role of models in the individual test activities has a decisive influence. On the other
side, it is crucial how the model basis is designed and for which purposes the modeled
information can be used.

5.2.1 Scenarios of Model-Based Testing

Especially if MBT is to be implemented with a high degree of automation, there has to
be an understanding of certain pitfalls regarding the models making up the information
basis. This high degree of automation is usually reflected in the intention to derive both
the application code and the test cases from a possibly multi-purpose model. Which
constellations are possible is described in the following and is largely based on the
statements of Pretschner et al.. [143]

(a) Common Model Basis (b) Automatic Model Extraction

(c) Manual Modeling (d) Separated Model Basis

Figure 5.8: Scenarios of Model-Based Testing (based on [143])

Common Model Basis

The first scenario is characterized by one single model for the two applications previ-
ously mentioned (see figure 5.8a). In particular, the set of test cases, as well as the target
code, is automatically derived from this single model artifact. However, this setup

58

5.2 MODEL-BASED TESTING

contradicts one of the basic concepts of testing, namely redundancy. The missing re-
dundancy in the underlying model basis on the one hand requires manual test verdicts
and on the other hand, limits the capabilities of thereby derived test cases to verify the
adequacy of environment assumptions as well as the correctness of the applied code
generator. However, this may not coincide with the actual intention of applying MBT
concepts.

Automatic Model Extraction

The second scenario includes one single model artifact. While the previous scenario
utilized the model in both contexts, this scenario just uses the model artifact to sub-
sequently generate the set of test cases for the SUT (see figure 5.8b). The model itself
is not derived from the basis of the requirements but rather extracted semi-automatic
from the target code. In turn, the code is implemented manually based on a beforehand
developed specification document. Identical to the previous case, the necessary redun-
dancy is missing to be able to automatically derive test verdicts. Despite the indirection
stage via the extraction of the model, no potentially diverse view of the requirements is
created here. An obvious disadvantage of such a setup is the need for an extensive code
basis to have the necessary information available for the extraction of a Test Model.

Manual Modeling

The logical next step of the previous scenario towards automatic test verdicts is given
by manual modeling instead of deriving it from the code basis (see figure 5.8c). Thereby,
not only the set of requirements is taken into consideration but the specification docu-
ments which serve as a basis for manual coding. This scenario is applied in distributed
development setups or at least diverse teams for specification, implementation, and
possibly testing. Further, hybrid forms of the Automatic Model Extraction scenario and
the Manual Modeling scenario are often realized in a practical context.

Separated Model Basis

The last scenario detailed represents the optimal case in terms of the level of redun-
dancy as well as the spirit of modeling (see figure 5.8d). Here, two separate model
artifacts are derived from the requirements. One model is used for development pur-
poses to improve the overall quality of either manually or automatically derived code.
The other model just serves as a basis for ongoing test case generation. The two sepa-
rate models further enable testers to use automatic test verdicts during test execution,
which is a necessity for highly automated processes.

As we have seen, apart from the last approach, the processing of models included either
in the constructive or the testing context, always needs manual support. Especially, in

59

5 VERIFICATION AND VALIDATION IN SOFTWARE DEVELOPMENT

continuous development setups, the number of applicable scenarios reduces to one,
namely the one necessitating a separated model basis.

5.2.2 Model-Based Testing in Practice

When it comes to the practical application of MBT, the availability of appropriate tool-
ing marks an essential point. Furthermore, adequate modeling languages are needed
to make such technologies widely applicable and acceptable. Over the years, a very
broad spectrum has been created in both areas.

From formal modeling languages to languages that emphasize visual presentation,
there are a variety of solutions, often with application context-specific content. Specifi-
cally, certain model artifacts of the existing modeling scope of widely used languages,
such as UML, are often used for MBT purposes, e.g. statecharts or activity charts for
the specification of the SUT’s behavior. [168]

At this point, another standard of the OMG, namely the UML Testing Profile (UTP),
introduces concepts for carrying out MBT in the UML ecosystem. Technically, this stan-
dard is therefore realized as a UML profile, which covers large parts of the process steps
known from the STLC. [4]

Zander et al. [178] and Schieferdecker et al. [154] therefore extracted the following
groups of concepts from the mentioned standard.

• Test architecture
This group covers the basic elements of a test and its relations. Essential parts are
the so-called test configurations and test components, which create the basic setup
for later test execution.

• Test behavior
In this group, all elements regarding the dynamic aspects of test case execution
are included. The most important concept is the test case itself, whose execution
is specified by test actions, and the outcome is represented by test verdicts.

• Test data
Concepts of this group cover the data handling and specification, which conse-
quently lifts the set of abstract test cases to a set of concrete test cases. This func-
tionality is implemented by model elements such as the data pool, data specification,
data partition or data items.

• Test planning
This group of model elements combines constructs of test analysis and test de-
sign. Essentially, this introduces structure-giving model elements that, for exam-
ple, combine test cases into test sets, or the so-called test context, which logically
combines multiple information in the context of the tests.

Altogether, this selection of modeling concepts covers almost all scenarios of MBT. The
standard itself draws some possible usage scenarios, ranging from the specification and

60

5.2 MODEL-BASED TESTING

design of test systems over the creation of model-based test specifications for existing System
Models to modeling test cases, test environments, and test data [4].

Apart from the modeling language perspective, an excerpt of available tooling is pre-
sented throughout the rest of this section. First, a tool developed in an academic context
by the TU Graz is mentioned, which combines model-based testing with mutation test-
ing as presented in section 5.1.3. Here, either based on UML statemachines or Object
Oriented Action Systems (OOASs), a set of test cases is derived using mutation op-
erators. The tool called MoMuT represents a highly automated test case generation
approach, which is still maintained and applied in a practical context. [115]

In contrast to the academic context, the commercial Conformiq Creator & Designer is
briefly introduced. Conformiq supports various input formats. Possible modeling lan-
guages for processing range from UML activity charts and statemachines, to propri-
etary DSLs. The mentioned Conformiq Creator & Designer represent an excerpt of a tool
suite enabling testers to further execute the specified test cases. Besides, many other
formats of other tools in the context of MBT are supported, e.g. Testing and Test Con-
trol Notation (TTCN-3). [96]

The last tool presented here is called mbtSuite which is developed by AFRA GmbH,
as well as sepp.med GmbH. In the context of the mentioned research project ReTeC
[166] this tool was extended by functionality. The modeling basis is provided by UML
activity charts and statemachines. Based on these, the test cases can be derived using
different coverage criteria or even genetic or randomized algorithms. A connection to
test management and execution tooling is also available. [156]

61

Part III

TOWARDS A MODEL-CENTRIC
SOFTWARE TESTING LIFE

CYCLE

6
General Approach and Running Example

Targeting the challenges emerging from a steadily rising level of development com-
plexity, previously identified in section 1.1, we further draw a more concrete and holis-
tic picture of our approach sketched in section 1.2. Finally, the running example, used
throughout the main chapters of our work, is introduced.

To overcome these challenges, an MCSTLC is developed based on the process steps
of a classic STLC (see section 5.1.1). The goals are the greatest possible automation
of the process steps and the applicability in the early phases of development. This
enables the use of an MCSTLC for quality control as well as a tool during development
to consistently get hints for improvement.

6.1 General Approach

Throughout the rest of this chapter the phases of the MCSTLC are explained (illustrated
in figure 6.1). These phases were originally sketched in one of our conference contribu-
tions [146]. The specified life cycle steps are related to the process steps of the original
STLC, serving as the starting point. Besides, specific artifacts produced/consumed by
the processing steps are addressed but not included in figure 6.1.

1. Model Creation/Modification marks the entry point of the MCSTLC and at the
same time represents the interface to all disciplines in the development. The main tasks
of this process step are given by the Integrated Model Basis (also called Omni Model) and
the specification of configuration parameters like applicable coverage metrics, for the
automated processing chain. Before executing the MCSTLC, all artifacts of the mod-
eling domains involved in the development process have to be available and suitably
integrated by the Integration Model. The Integration Model links information across the
different development domain-specific model artifacts. Further, this Integration Model
can be extended by adding content to align the different models (for details see chap-
ter 7). This model artifact is the basis for all further process steps to obtain a fully auto-
mated iteration of the life cycle. However, at the end of each iteration of the MCSTLC
manual adaptions are necessary.

6 GENERAL APPROACH AND RUNNING EXAMPLE

Model

Creation/

Modification

Model-Based

Test Case

Management

Abstract

Test

Execution

Integrated

Model Basis

Model-Based

Test Suite

Generation

Model-Based

Mutation

Analysis

2

1

3

5

4

Figure 6.1: The Model-Centric Software Testing Life Cycle

From a tester’s point of view, having the standard STLC in mind, activities from dif-
ferent process steps are combined in the context of the MCSTLC phase. The Planning
and Control process step represents the counterpart, but there are also activities from
Analysis and Design, as well as Test Closure, carried out in the current MCSTLC phase.
In particular, the creation of a Test Model, representing a part of the Integrated Model
Basis and forming the basis for the automated derivation of test cases are conducted in
this phase. Further, measures either taken after completion of test activities or at the
end of an MCSTLC iteration, are summarized under this phase.

Overall, the initial and the final phase of the life cycle represents the interface between
humans and the automated processing chain. In particular, the information provided
by the processing chain, namely the Human-Interpretable Test Results and the Human-
Interpretable Mutation Analysis Results, should provide the user with sufficient support
to a targeted test phase in the early stages of development. The elaboration in chapter 7
provides details and illustrates the application with a practical example.

2. Model-based Test Case Management represents the first phase of the automated
processing chain. In this phase, different activities of the classic STLC are combined.
Aspects of Test Planning and Test Analysis are realized by transforming the fully-blown
Test Model into a strongly focused submodel. This is achieved by a multi-stage pro-
cess, where model artifacts are pruned and projected to models of other development
domains. All of the mentioned stages reside on the Integrated Model Basis or expert’s
configuration input. Moreover, aspects of Test Design and Test Implementation are ap-
plied at this phase. Due to the focussedness of the resulting Test Model excerpt, con-
cepts like prioritization, selection, and reduction of test suites may be realized. Notice,
that the concepts mentioned above are carried out before the complexity exposes in the
context of the concrete set of derived test cases.

66

6.1 GENERAL APPROACH

To realize this functionality, all available models are taken into account to derive a suit-
able portion of the original Test Model reflecting the tester’s mindset. The carefully
linked model data from various development domains of the Integrated Model Basis
significantly impacts the quality of subsequent processing results. Details are presented
in chapter 8 with an example.

3. Model-based Test Suite Generation takes as input the resulting Scoped Test Model
and performs activities, which are encapsulated in the Test Design and the Test Implemen-
tation process steps of a classic STLC. Specifically, properties of the underlying models
like contained data flow information, are evaluated and assessed together with configu-
ration parameters, like exit criteria or a start metric, specified in the introductory phase
of the life cycle. To determine an appropriate algorithm for the test case generation, a
subsumption hierarchy of coverage metrics and respective implementations is utilized
as a decision basis. The resulting test cases reflect the current test focus and represent
the starting point for later iterations of the life cycle.

However, if there are test cases derived from this Test Model instance or similar Scoped
Test Models in the form of Machine-Interpretable Mutation Analysis Results, an improved
starting point for determining an appropriate test case extraction metric is given. The
original set of test cases can be optimized and handed over to the next phase of the
MCSTLC. The feedback from previous iterations enables the evaluation of the exit criteria,
as in the classic STLC. Metrics on the model artifacts are evaluated after each iteration
and provide a basis for termination of the cycle. Chapter 9 details and illustrates the
application using an example.

4. Abstract Test Execution is the counterpart to the process activities Test Execu-
tion and partly Test Reporting of the standard STLC. This phase of the MCSTLC deals
with the execution/interpretation of model artifacts from the integrated model basis.
Therefore, the quality-proven set of test cases is analyzed about the integration level of
test cases and the level of abstraction of the targeted System Model part. Based on the
results of this analysis, two different kinds of abstract test case execution mechanisms
are available. In case of model artifacts including no data flow information, a structural
conformance check between the input test cases and the System Model linked via the
Integrated Model Basis is performed. In the case of more concrete data embedded in
the System Model, model interpretation based on derived paths through the SUT is
carried out. Both approaches have in common, the valuable Human-Interpretable Test
Results which further expand the expert’s knowledge during the Model Creation/Modi-
fication phase. This process step enables testers to perform a test execution on model
artifacts, whereby insights to the SUD at an early stage of development are gained. The
elaboration in chapter 10 provides details and illustrates the application with a practical
example.

5. Model-based Mutation Analysis represents a new process step not included in
a classic STLC. The goal is to evaluate the quality of the created test cases concerning

67

6 GENERAL APPROACH AND RUNNING EXAMPLE

a certain set of faults and thereby improve the resulting test suites. In contrast to the
previous manual static checks, this is achieved by a flexible realization of mutation
analysis on models. I.e. the test cases created in the Model-based Test Suite Generation
phase are executed against targeted mutants of the existing System Model. Using the
Integrated Model Basis the evaluation is carried out mainly automatically and is based
on concepts that can be assigned to the Test Execution and Test Reporting of the STLC.

The results are used in other phases of the MCSTLC. This includes the Model-based Test
Suite Generation phase, which can adjust the metrics for generating test cases based on
Machine-Interpretable Mutation Analysis Results. However, the results can be made avail-
able to domain experts, i.e. Human-Interpretable Mutation Analysis Results are provided
for the Model Creation/Modification step. Chapter 11 details and illustrates the applica-
tion with a practical example.

6.2 Running Example: Ceiling Speed Monitor

In the section an example model is introduced, which is used to illustrate concepts in
the following. The selected example should be sufficiently complex to demonstrate the
practical applicability of the concepts developed as well as easy enough to understand
the complexity of the problem.

The European Vital Computer (EVC) is a control unit for trains that conforms to the Eu-
ropean Train Control System (ETCS) standard. The onboard controller, which controls
the engines of the trains, includes a variety of functionalities. A dedicated group of
functions of the controller deals with Speed and Distance Monitoring, reflecting the focus
of our running example. The mentioned functionality is decomposed into three sepa-
rate blocks, where each handles a certain subtask. An excerpt of the complete system
which is focused on the context of the running example can be seen in figure 6.2.

EVC System

Speed and Distance

Monitoring

Ceiling Speed

Monitoring

Target Speed

Monitoring

Release Speed

Monitoring

...

CSM Statemachine

CSM_ON Statemachine

consists of

consists of

Figure 6.2: Excerpt of the ETCS EVC system

68

6.2 RUNNING EXAMPLE: CEILING SPEED MONITOR

Braunstein et al. [38] define the functionalities as follows:

• Ceiling speed monitoring (CSM)
supervises the observance of the maximal speed allowed according to the cur-
rent most restrictive speed profile (MRSP). CSM is active while the train does not
approach a target (train station, level crossing, or any other point that must be
reached with predefined speed).

• Target speed monitoring (TSM)
supervises the observance of the maximal distance-depending speed, while the
train brakes to a target, that is, a location where a given predefined speed (zero or
greater zero) must be met.

• Release speed monitoring (RSM)
applies when the special target End Of Movement Authority (EOA) is approached,
where the train must come to a stop. RSM supervises the observance of the
distance-depending so-called release speed when the train approaches the EOA.

As part of the research work of the University Bremen in the context of MBT, an SYSML
model for the CSM was created based on the requirements of the ETCS system. The re-
quirements concerning the CSM system are contained in the model and are further ref-
erenced in the context of the main chapters. The actual model is divided into different
submodels. The top-level structures the model into the actual SUT and the test environ-
ment, as well as the intended interfaces and included data structures, which can be seen
in figure 16.1 (Supplementary Material). Furthermore, the SUT splits up into the pre-
viously mentioned subsystems, CSM, TSM, and RSM. At this point, the original model
of the University Bremen was extended by the blocks TSM and RSM. Altogether, these
blocks are embedded inside the SUT block (see figure 16.2 (Supplementary Material))
and are used to demonstrate some features of the approach.

The SYSML block CSM contains the specification of behavior as a statemachine (see
figure 16.3 (Supplementary Material) and figure 16.4 (Supplementary Material)). The
statemachine is hierarchically structured and reflects the state of the CSM subsystem. A
change between the states is caused by the change of external influences and managed
by method calls, which are referenced by the CSM system. These methods represent
the smallest functional units of the system under consideration.

The detailed model artifacts of the System Model are presented in part VI (Supple-
mentary Material). Additional model artifacts like behavioral models or Test Models
including the respective metamodel are defined in chapter 7.

69

7
Omni Model Approach

As already described in the introduction of the MCSTLC, a meaningful data/model ba-
sis plays an essential role in MDSD. In particular, large parts of the development and
the validation process should be automated. The process step of creating and modify-
ing model artifacts is the entry point into our model-centric instance of an STLC as well
as the point of interaction between experts and the automated MCSTLC chain. Fig-
ure 7.1 shows a portion of the entire MCSTLC including the used model artifacts and
their exchange between the different process steps.

Abstract

Test

Execution
Model

Creation/

Modification

Integrated

Model Basis

Model-Based

Test Case

Management
Model-Based

Mutation

Analysis

Human-Interpretable

Mutation Analysis

Results

Human-Interpretable

Tes t Results

Legend:

Document

Parameters

Process Step

Model Artifact

Figure 7.1: MCSTLC extract focusing on the creation and modification of the Omni
Model and involved information

The process step Model Creation/Modification consumes different types of feedback from
previous iterations of the MCSTLC to correct defects or possible improvements. More-
over, this process step defines the necessary parameters for the configuration of the
following processing chain and optimizes them based on the feedback.

The most important component is the central knowledge basis, which is created or ma-
nipulated by the process steps of the MCSTLC and acts as the model data sink. This
Integrated Model Basis, called Omni Model, represents an integration of model infor-
mation from implicitly interconnected development domains like MDSD, MBT, and
Model-Driven Multi Concerns Analyses. By integrating the separated models, knowl-
edge about the developed system is bundled and made available to all disciplines of
development. In the context of the MDA methodology, the Omni Model approach is

7 OMNI MODEL APPROACH

primarily on the Platform Independent Models (PIM) level (shown in figure 7.2). In later
phases of the MDSD, variants of the target code artifacts can already be derived, where-
upon the execution of the steps of the STLC leads to more concrete results. Neverthe-
less, the Omni Model approach can be applied in these phases for improvements, but
are not the focus of this thesis.

Integration
Model

Te
st

M
od

el

System
 Structure

M
odel

System
 Behavior

Model
Requirement
Model

Expert

ExpertExpert

Expert

Computation Independent Models (CIM)

Platform Independent Models (PIM)

Platform Specific Models (PSM)

Implementation Specific Models (ISM)
Omni Model Approach

Other Domains

Figure 7.2: Integrated Model Basis in the context of MDA

Apart from the classification into the phases of MDA, figure 7.2 illustrates the concept
of integrating the model artifacts. In particular, an expert approach is to be imple-
mented, i.e. in the respective domains, experts are responsible for the choice of the
modeling language and the subsequent modeling of the relevant aspects. The choice of
the respective modeling language remains unaffected by the Omni Model approach as
long as the underlying metamodel and the associated syntax and semantics are known.
Therefore, the experts work in their accustomed environment with their experience.
Thus, this design decision keeps the complexity of the model basis as low as possible.
Besides, a mapping of concepts across the domains is established and maintained for
structural as well as behavioral models of SUD. This allows information to be used
across domains in a controlled manner.

7.1 Domain-Specific Models

The Integrated Model Basis represents a flexible composition of domain-specific mod-
els. In this section, the minimum set of domains, necessary to realize all components
of the presented MCSTLC, is examined in detail. This includes the System Modeling
Domain, the Test Modeling Domain, and the Integration Modeling Domain. From these do-
mains, different modeling languages are discussed, which are either used in the context
of the running example or the evaluation examples and are therefore relevant for fur-
ther understanding. The modeling languages discussed in more detail, i.e. metamodel
concepts are explicitly tackled and set into relation, represent the set of modeling lan-
guages applied in the running example. The other languages are further applied during
the case studies, while details for these metamodels are shown in part VI (Supplemen-

72

7.1 DOMAIN-SPECIFIC MODELS

tary Material). In addition to DSMLs in the classical sense, GPMLs are briefly discussed
and how they can be used in the respective domain.

7.1.1 System Structure and Behavior Metamodels

First, we focus on the software modeling domain affecting the resulting artifacts of
the constructive phases of development. As usual, we distinguish between structure-
and behavior-describing models. Depending on the use case and development context,
there is a wide range of possible modeling languages that can be applied. The spectrum
ranges from very formal modeling languages to languages that are primarily used for
visualization purposes. In the context of the presented MCSTLC, the modeling lan-
guages need concrete semantics to provide a sufficient basis for subsequent processing
steps.

In the following, some modeling languages and the underlying metamodels are de-
scribed in more detail. The languages presented are applied in the context of the run-
ning example and the case studies considered in the evaluation chapter. The former is
described in more detail and set about concrete model instances of the running exam-
ple.

OMG Systems Modeling Language

The Systems Modeling Language (SYSML) of the OMG is a popular language in the
field of systems engineering. The SYSML is based on UML and enables the structure
and behavior of the respective SUD to be modeled by many different diagram types
[1]. For the sake of clarity and demonstration purposes of the approach presented in
this thesis, a simplified metamodel of SYSML is defined based on the SYSML model
of the Ceiling Speed Monitor (introduced in section 6.2). The metamodel is specified as
an Ecore model since this technology offers the best integration within the prototypical
implementation of the concept (see section 7.3). A complete mapping of the concepts
covered in the SYSML specification is possible but is not intended in the context of this
thesis.

In the following, the simplified metamodel of SYSML is introduced and the correspond-
ing SYSML model of the running example is explained and set into relation with the
metamodel. We start with the top-level concepts and packages, which form the basis
for all further specific concepts (see figure 7.3). This excerpt shows the most general
concept of the metamodel, identifying any model artifact. Furthermore, concepts are
introduced which allow to specify attributes and parameters.

73

7 OMNI MODEL APPROACH

Figure 7.3: Simplified SYSML metamodel

Table 7.1: Metamodel element descriptions for figure 7.3
Concept Description

SYSElement The most abstract concept of the simplified SYSML metamodel with
a unique id and name attribute

SYSVariable Concept for the definition of block member variables

SYSEnumeration Concept for the representation of enumeration datatypes

SYSDatatype Enumeration for the supported basic datatypes of a block member
variable

Below this top-level of the SYSML Ecore metamodel, two additional packages are in-
cluded: First, the structure package (figure 7.4 and table 7.2) defining concepts to struc-
ture the SUD by blocks, to define their interfaces, and to map the information flows
between these structural elements.

Figure 7.4: Structure package of the simplified SYSML metamodel

74

7.1 DOMAIN-SPECIFIC MODELS

Table 7.2: Metamodel element descriptions for figure 7.4
Concept Description

SYSStructureElement The most abstract concept of the structure package (for im-
plementation purposes)

SYSBlock Concept reflecting the standard SYSML block

SYSSystem A special kind of SYSML block encapsulating the overall sys-
tem

SYSPort Concept for the SYSML port which is attached to a block

SYSConnector Abstract concept representing multiple types of connectors
in the SYSML context

SYSFlowDirection Enumeration for the specification of an information flow di-
rection regarding the mentioned port concept

SYSItemFlow Concept contributing the specification of an item flow be-
tween two ports

SYSFlowSpecification Concept encapsulating a specification for the items ex-
changed through an item flow

SYSFlowProperty Concept encapsulating the valid direction and data struc-
tures for the respective ports

The second package, namely the behavior package, is shown in figure 7.5 and table 7.3.
Not all behavior diagrams specified by UML and SYSML are shown here. The concepts
defined in figure 7.5 allow the specification of hierarchical statemachines.

Figure 7.5: Behavior package of the simplified SYSML metamodel

Table 7.3: Metamodel element descriptions for Figure 7.5
Concept Description

SYSBehaviourElement The most abstract concept of the behavior package (for imple-
mentation purposes)

SYSStateNode Concept for a state of the statemachine not specifying any be-
havioral details, e.g. initial or final nodes

SYSState Concept for a state including additional information like trig-
gered operations

75

7 OMNI MODEL APPROACH

Table 7.3: Metamodel element descriptions for figure 7.5 (continued)

SYSTransition Concept for a transition between two state nodes with guard
conditions and triggered effects

With this set of concepts, it is possible to completely model the Ceiling Speed Monitor.
Thereby, models based on this metamodel can be used in the context of the Omni Model
approach and thus applied in later process steps of the MCSTLC. Part VI (Supplemen-
tary Material) shows the individual diagrams describing the entirety of the Ceiling Speed
Monitor.

OMG Unified Modeling Language

An alternative modeling language for the system model parts of the Omni Model is
UML. This GPML, which covers many disciplines of development, offers a very wide
range of concepts and diagram types for MDSD [3]. The modeling scope of UML is
significantly larger than that of the SYSML, which is reflected in a high number of di-
agram types for structural and behavioral modeling. However, a complete mapping
would again exceed the scope of the work. Therefore, the metamodel used for UML
represents a simplified variant created about the model artifacts of the case study (see
section 12.2).

The metamodel is divided into several packages that group the concepts according to
diagram types as well as responsibilities. Part VI (Supplementary Material) introduces
and explains all concepts of the simplified metamodel and puts them into relation.

The radCase Modeling Approach

The last modeling language, which is used exemplary for the System Modeling do-
main is given by the modeling tool radCase of the company IMACS [75]. This language
is used to model embedded systems and therefore offers specific concepts for this area.
Besides, the modeling language is implemented as a UML profile, i.e. any GPML mod-
eling tool can be used to create radCase models. Due to the strong focus on the ap-
plication domain, the underlying metamodel is not very elaborated. This metamodel
is the basis of the System Models in sections 12.1 and 12.3. In part VI (Supplementary
Material) this metamodel is considered more closely.

(Modeling) Guidelines & Best Practices

A set of guidelines and best practices are necessary to ensure the basic functioning of
subsequent processing steps as well as the quality of resulting findings. It is important

76

7.1 DOMAIN-SPECIFIC MODELS

to note that the overall structure in System Modeling has a significant influence on
the subsequent modeling of the test cases. If a certain amount of preliminary work is
already being carried out on the System Modeling side, then the Test Modeling can be
carried out effectively. However, if important guidelines are disregarded, a system can
hardly be tested resulting in remaining serious defects. Therefore, this section defines
metamodel-independent modeling guidelines useful for the MCSTLC steps.

The testability of a system is affected by its transparency regarding connectors between
components and the structuring of sub-components. These properties have proven
to be particularly useful during validation of hardware-related components under the
term “Design4Testability” [173]. In the context of System Modeling, these properties
can be achieved by a wide variety of techniques. For instance, contract-based as well
as component-based approaches represent techniques favoring the mentioned trans-
parency and therefore have positive effects on the testability of the system.

Contract-Based Design reduces the complexity of a SUD by clearly exposing inter-
faces of (sub-)systems and defining their interaction in form of contracts avoiding hid-
den links and emergent effects. Sangiovanni-Vincentelli et al. refer to a horizontal
reduction of complexity, whereas the structuring of the model represents a vertical re-
duction of complexity [153]. In the context of our Omni Model approach, the Integra-
tion Model explicitly defines a property element to specify contract information for the
respective System Model parts.

Component-Based Design and Patterns have positive effects on the testability of the
SUD, since especially the integration levels are explicitly expressed by the model arti-
facts. Having a possible state space explosion in mind, Groote et al. have formulated
some guidelines with positive effects on the testability of the system [81]. In partic-
ular, guidelines III, VI, and VII explicitly address transparency concerning external
behavior, the combination of components, and their interaction.

A mapping of classical design patterns from object-oriented software development
promises a positive effect in the context of MDSD. For example, a strict application of
structural patterns in the sense of the Facade pattern results in highly structured mod-
els, which in turn enables fine-grained integration levels. Behavioral patterns such as
the Strategy pattern further promote the definition of explicit interfaces of functional
components and thus improve their testability. [72]

7.1.2 Test Metamodels

MBT represents a model-based methodology in the context of testing. Furthermore,
an essential aspect of the Omni Model approach is that each development domain,
including testing, maintains its models. A wide variety of modeling languages exist.
The selection of languages is based on the modeling languages used in the context of the

77

7 OMNI MODEL APPROACH

running example and the case studies. The modeling languages applied in the running
example are discussed in more detail and visualized by respective model instances.

OMG UML Testing Profile

The UML Testing Profile (UTP) is a UML profile developed for modeling artifacts re-
lated to testing. The language scope of the UTP covers the areas of Test Architecture, Test
Behavior, Test Data, and Test Planning. Thus, this modeling language allows to map test
cases and to model other artifacts that are part of the STLC. Again a simplified meta-
model was created, which is oriented to the modeling scope of the model instances
based on it. This is particularly relevant in the context of the Ceiling Speed Moni-
tor Test Model discussed after the presentation of the metamodel concepts. Figure 7.6
shows the most basic concept of the metamodel and the packages it contains.

Figure 7.6: Simplified UTP metamodel

Table 7.4: Metamodel element descriptions for figure 7.6
Concept Description

U2TPElement Abstract concept for a uniform basis
→name String attribute for the specification of a name
→id String attribute to specify a unique identifier for each element

Other concepts of the UTP are divided into three packages: The architecture package
(figure 7.7, table 7.5) defines the U2TPTestContext, which sets the U2TPTestCase in-
cluding the U2TPTestData and the respective U2TPTestComponents with each other.
Furthermore, the included components can reference a different context, which repre-
sents a deeper level of the overall Test Model.

Figure 7.7: Architecture package of the simplified UTP metamodel

78

7.1 DOMAIN-SPECIFIC MODELS

Table 7.5: Metamodel element descriptions for figure 7.7
Concept Description

U2TPTestComponent Concept for a component participating in a test case

U2TPTestContext Concept integrates all the information needed for carrying out
testing

→testdata U2TPTestData attribute filling abstract test cases with concrete
data

U2TPTestCase Concept for a abstract test case
→behaviour U2TPBehaviourModel attribute to determine the behavioral de-

scription of a test case

Modeling the behavior of a test case plays a central role. Therefore, the behavior
package (figure 7.8, table 7.6) provides a simplified metamodel, which is limited to
sequence diagrams consisting of different U2TPLifelines, which correspond to the
U2TPTestComponents specified in the respective U2TPTestContext. U2TPMessages can
be sent between the lifelines, which in turn can be encapsulated in U2TPFrames to
model more complex behavior.

Figure 7.8: Behavior package of the simplified UTP metamodel

Table 7.6: Metamodel element descriptions for figure 7.8
Concept Description

U2TPBehaviourModel Abstract concept for various types of models for the specifica-
tion of test behavior

U2TPSequenceDiagram Concept for the specification of test behavior as a UML se-
quence diagram

79

7 OMNI MODEL APPROACH

Table 7.6: Metamodel element descriptions for figure 7.8 (continued)

U2TPActivation Concept for the activation event of a U2TPLifeline of a
U2TPSequenceDiagram

U2TPLifeline Concept for a lifeline of a U2TPSequenceDiagram
→testcomponent U2TPTestComponent attribute for the specification of an af-

fected component

U2TPFrame Abstract concept for the definition of special constructs in the
context of U2TPSequenceDiagrams

U2TPAltFrame Concept for an alternative flow in a U2TPSequenceDiagram
→guard String attribute for the specification of a boolean guard expres-

sion

U2TPLoopFrame Concept for a loop in a U2TPSequenceDiagram
→condition String attribute for the specification of a condition expression

U2TPMessage Abstract concept for the information exchange or method call
between two U2TPLifelines of a U2TPSequenceDiagram

→body String attribute for the payload of a message

U2TPCallMessage Concept representing a call message from one lifeline to an-
other

U2TPReturnMessage Concept representing the return value of a previously called
method

U2TPMessageEvent Concept to determine the start and end of U2TPMessages on
the respective U2TPActivations of lifelines

To transfer the behavior specified in the form of a sequence diagram into concrete tests,
test data must be modeled. This is achieved by the concepts of the data package (fig-
ure 7.9, table 7.7). All data is managed in the U2TPDataPool, divided into different
U2TPDataPartitions. This defines how the data structures look and which concrete
instances (U2TPDataPartitionInstances) are specified for the intended set of concrete
test cases.

Figure 7.9: Data package of the simplified UTP metamodel

80

7.1 DOMAIN-SPECIFIC MODELS

Table 7.7: Metamodel element descriptions for figure 7.9
Concept Description

U2TPDataPartitionInstance Concept for the specification of an instance of the de-
fined U2TPDataPartition enabling the derivation of
concrete test cases from a U2TPBehaviourModel

U2TPDataItem Concept for the specification of attributes making up a
U2TPDataPartition

→value String attribute for the specification of a certain data
value

→type String attribute for the specification of a data type for
the respective attribute

U2TPDataPartition Concept structuring a U2TPDataPool regarding certain
sets of abstract test cases

→constraint String attribute for the specification of constraints for
the U2TPDataItems making up the data partition

U2TPDataPool Concept for the organization of test data

Altogether, the presented constructs allow specifying a Test Model in UTP, which par-
ticipates in the Omni Model. In the following, excerpts of the UTP Test Model of the
Ceiling Speed Monitor are introduced, since this forms the basis for the demonstration
of subsequent processing steps.

Figure 7.10a shows the basic breakdown of the Test Model into different levels of in-
tegration. This decomposition is based on the subdivision of the SUT into subsystems
and the available interfaces, which significantly influence the number of integration
levels. Per test level, some U2TPTestContexts encapsulate all information for a set of
Test Cases. The test behavior models are implemented as sequence diagrams, com-
bined with the test data from the U2TPDataPools during the generation of concrete
test cases. Figure 7.10b shows different unit tests. Especially the U2TPDataPartition
DP-CSTD specifies two different instances (DPI-CSTD-1 and DPI-CSTD-2) for the test be-
havior model calc_speed_to_driver_test.

81

7 OMNI MODEL APPROACH

(a) General structure (b) Unit level testmodel

Figure 7.10: Excerpts of the UTP Test Model of the CSM system

The mbtSuite Modeling Approach

There are a lot of possibilities for modeling test cases. Besides the UTP, based on the
UML, there are commercial tools based on proprietary modeling languages, e.g. the
mbtSuite of sepp.med GmbH [156]. The mbtSuite allows the creation of Test Models in
an extended form of UML activity diagrams, as well as a variant of the UML statecharts.
Furthermore, concrete test cases can be derived based on such models and exported
into concrete test scripts of different programming languages.

Concerning the case studies, a simplified metamodel is created. This metamodel only
considers the activity chart part and is described in more detail in part VI. Such a model
consists of nodes and edges, where the nodes describe the possible steps in a set of
Test Cases. The nodes are divided into Test Steps (nodes that send stimuli to the SUT)
and Verification Points (nodes that check the system state). The edges in this graph
define in which order the steps can be combined and which paths (Test Cases) can be
derived. Especially loops, conditional test sections, or even initialization phases can

82

7.1 DOMAIN-SPECIFIC MODELS

be constructed. Furthermore, there are structured nodes, which can include other Test
Models. Thereby, hierarchies in Test Models can be modeled, which corresponds to the
integration levels in the test context.

(Modeling) Guidelines & Best Practices

As stated in the context of System Modeling, some guidelines can be formulated for
Test Modeling as well as to improve the knowledge and artifacts of the subsequent
process steps. These guidelines apply to all concrete instances of modeling languages
used in the test domain and thus are formulated in general terms. Starting from a solid
test design, which is based on the established techniques described in the foundations
(see section 5.1.3) additional guidelines may improve the overall quality. Therefore the
following guidelines should be considered:

1. The Test Modeling should have a structure aligned with the decomposition of the
SUT into its subsystems and functional units.

2. The Test Behavior Models should represent concrete initialization phases such
that the expected system state can be guaranteed before the actual test case starts.
This is particularly important when test cases are executed against the same in-
stance of the system.

3. The Test Models of the different test levels should be strongly focused on to better
identify possible error causes. Ideally, each test behavior model should examine
one aspect of the SUT.

4. The ratio of test steps and verification points should be balanced to be able to
draw clear conclusions about error causes. This is especially valid in the white-
box context, which provides insights into System Modeling apart from the inter-
faces.

The last two aspects lead to better results, especially when evaluating the resulting
test cases (see chapter 10). However, beyond the model-level, this property of the test
design cannot always be fulfilled, because this information of the system is not available
at this point.

7.1.3 Integration Metamodel

The Omni Model approach is a combination of model artifacts from different develop-
ment domains. There is no upper limit to the number of contributing domains, but at
least the System Modeling domain and the Test Modeling domain have to be present.
The artifacts of the development domains are specified according to different metamod-
els which do not have any context information about other development domains. To
keep responsibilities and information cleanly separated, the Omni Model approach in-
troduces the so-called Integration Model. It represents an additional model, which partly
requires expert knowledge and parts can be derived/generated from other models of

83

7 OMNI MODEL APPROACH

the Omni Model. The Integration Model allows to explicitly link structural and behav-
ioral model parts. Parts of the system, which cannot be assigned to a specific domain,
can be captured as well. These functionalities allow the Omni Model to be used in its
entirety as a valuable basis for the MCSTLC.

Like all other models of the Omni Model, the Integration Model is defined by a meta-
model. Note, abbreviations are further on used for a more compact presentation. The
running example is used to illustrate the introduced concepts.

Figure 7.11: Integration Model (IM) metamodel

Table 7.8: Metamodel element descriptions for figure 7.11
Concept (Abbreviation) Description

IMElement (im_el) Abstract concept for all the included metamodel con-
cepts of the IM

→name String attribute which represents the name of the ele-
ment

→description String attribute which captures the description of the el-
ement

→ID String attribute which reflects the unique identifier of
the element

IntegrationModel (im_im) Concept which acts as a container for all the model ele-
ments included in an instance of the IM

→treeElements Set of IMTreeElements making up the tree structure of
the Integration Model

→traceConnectors Set of IMTraceConnectors specifying the mapping in-
formation included in the Integration Model

→aspectsDefinition IMAspectDefinition for the IM (detailed in the context
of the Aspect Definition Language)

As can be seen in figure 7.11 and table 7.8, an abstract concept (IMElement) is defined
making each object unique by an ID, meaningful name, and an optional descrip-
tion. Furthermore, a model element IntegrationModel is introduced which acts as

84

7.1 DOMAIN-SPECIFIC MODELS

a container encapsulating model elements, e.g. the IMAspectDefinition (see sec-
tion 7.1.3). The inheritance between concepts, IMElement and IntegrationModel, is
shown, whereby the attributes are assigned to the child concept. In addition to con-
crete concepts of the metamodel, figure 7.11 shows the packages, containing the more
advanced concepts on which the structure of the following sections is based.

Structural Concepts

The structural components of the Integration Model are defined in the tree package.
An instance of the Integration Model reflects a tree structure that shows the decompo-
sition of the instantiated SUT into its functional components and their encapsulation.
In particular, this allows the simplest and most intuitive representation of the SUT to be
chosen as a basis for discussion between experts of the development domains. To en-
able this representation, which is created either automatically from instance diagrams
of the System Modeling domain or manually, the following concepts are provided in
the metamodel (see figure 7.12, table 7.9).

Figure 7.12: Tree package of the IM metamodel

Table 7.9: Metamodel element descriptions for figure 7.12
Concept (Abbreviation) Description

IMTreeElement (im_te) Abstract concept for implementation purposes of the
tree package

IMTreeNode (im_tn) Abstract Concept representing a node of the tree struc-
ture reflecting the breakdown of the SUT

→instance String attribute capturing the unique instance identifier

85

7 OMNI MODEL APPROACH

Table 7.9: Metamodel element descriptions for figure 7.12 (continued)

→aspectsSpecification String attribute capturing the aspect specification which
holds for the node of the tree structure

→traceConnectors IMTraceConnectors which specify a semantic relation
to model elements of other development domains

→contractSpecification IMContractSpecification to specify contracts which
hold for the related elements of the SUT

→synchronizationPoint IMSyncPoint for the detailed specification of mappings
between model elements of different development do-
mains

→interfaceSpecification IMInterfaceSpecification to determine interface in-
formation to synchronize interface information

→traceAnchors IMTraceAnchors to specify detailed semantic relations
to model elements of other development domains

IMComponent (im_co) Special concept of the tree structure representing
structure-defining elements of the SUT breakdown

→type IMComponentType attribute which defaults to the Stan-
dard value

→traceConnectors IMTraceConnectors which specify a semantic relation
to model elements of other development domains

IMFunctionality (im_fu) Special concept of the tree structure representing
behavior-defining elements of the SUT breakdown

→traceConnectors IMTraceConnectors which specify a semantic relation
to model elements of other development domains

→timingSpecification IMTimingSpecification specifies abstract timing infor-
mation between IMSyncPoints

IMComponentType (im_ct) Enumeration concept to determine the type of a IMCom-
ponent: Standard, Container, Abstract

IMTreeEdge (im_tt) Abstract concept for a connector of the tree structure

IMPartOf (im_po) Concept reflecting the inclusion of the tree node at the
lower level of this relation

IMGeneralization (im_ge) Concept reflecting an inheritance relation between the
connected nodes

The so-called IMTreeNodes represent the intermediate node and leaves of the tree struc-
ture, which are connected by IMTreeEdges. The nodes are further distinguished be-
tween IMComponents, which represent the structural components of the system, and
IMFunctionalities, which address the behavioral descriptions of the System Model.
Both types of nodes provide the ability to specify certain detailed information (see sec-
tion 7.1.3). At this point, only the IMComponentType is referred to, which allows a dis-
tinction between different types of structural components of the system. There are two
types of transitions, the IMPartOf relation, which indicates that the child elements are
included, and the IMGeneralization, which is used for generalization.

86

7.1 DOMAIN-SPECIFIC MODELS

A concrete instance in the context of the running example is given. Figure 7.13 shows
the tree structure, which is reflected by the Integration Model instance (gray rectan-
gles).

«IMComponent»
System

«IMComponent»
CSM

«IMFunctionali ty»
CSM_ON

«IMFunctionali ty»
CSM

«block,SUT»
SYSTEM::SystemUnderTest

flow ports
 in OdometryIn
 in NationalVal uesIn
 in SnDMonitorIn
 in SpeedRestrictionIn
 out DMIOut
 out TIOut

«block»
SYSTEM::SystemUnderTest::CSM

+ calc_permi tted_speed_to_driver(): void
+ calc_speed_onboard(int): void
+ calc_speed_to_driver(): void
+ dV_ebi (float): fl oat
+ dV_sbi (float): fl oat
+ dV_warning(float): float

CSM

(from SYSTEM)

CSM_ON

do / calc_permitted_speed_to_driver();
do / calc_speed_to_driver();

(from SYSTEM)

«TestContext»
TEST::System

«TestContext»
TEST::System::Component-Integration::

Integration

«TestContext»
TEST::System::Component-Integration::

Integration::Component-Unit::Unit

«IMComponent»
Target Speed Monitoring

«IMComponent»
Release Speed Monitoring

«block»
SYSTEM::SystemUnderTest::RSM

«block»
SYSTEM::

SystemUnderTest::TSM

«IMAspectDefinition»
Aspects

«IMFunctionali ty»
calc_speed_to_driver

«IMFunctionali ty»
calc_permitt ed_speed_to_driver

«IMFunctionali ty»
calc_speed_onboard

«IMFunctionali ty»
dV_ebi

«IMFunctionali ty»
dV_sbi

«IMFunctionali ty»
dV_warning

calc_permitt ed_speed_to_driver
(CSM::)

calc_speed_to_driver
(CSM::)

calc_speed_onboard
(CSM::)

dV_ebi
(CSM::)

dV_sbi
(CSM::)

dV_warning
(CSM::)

«TestCase»
TEST::System::Component-
Integration::Integration::
Component-Unit::Unit::
calc_speed_onboard_test

«TestCase»
TEST::System::Component-Integration::

Integration::Component-Unit::Unit::
calc_permitt ed_speed_to_driver_test

«TestCase»
TEST::System::Component-
Integration::Integration::
Component-Unit::Unit::

calc_speed_to_driver_test

«IMPartOf»

«IMTrace,trace»

«IMTrace,trace»

«IMPartOf»

«IMTrace,trace»

«IMTrace,trace»

«IMTrace,trace»

«IMTrace,trace»

«IMTrace,trace»
«IMTrace,trace»

«IMTrace,trace»

«IMPartOf»

«IMPartOf»

«IMPartOf»

«IMTrace,trace»

«IMPartOf»

«IMTrace,trace»

«IMTrace,trace»

«IMTrace,trace»

«IMPartOf» «IMPartOf»

«IMTrace,trace»

«IMTrace,trace»

«IMTrace,trace»

«IMPartOf»

«IMPartOf»

«IMTrace,trace»

«IMPartOf»

«IMTrace,trace»

Figure 7.13: Integration Model structure for the CSM system

In this example, there are no major differences between the system’s structure and the
structure of the Integration Model because there are no multiple instances of the System
Model parts. The same holds for the relation between the Test Model and the Integra-
tion Model.

Mapping Concepts

It was already stated that the Integration Model manages the combination of different
domain-specific model artifacts and especially the included metamodels. That is, the in-
tegration is achieved by the constructs contained in the trace package. Figure 7.14 gives
an overview of the concepts of this package, while short descriptions are provided in ta-
ble 7.10. Overall, the concepts of the metamodel presented in the following provide the
basis for the controlled use of information beyond the boundaries of domain-specific
models. This enables all further processing steps within MCSTLC.

87

7 OMNI MODEL APPROACH

Figure 7.14: Trace package of the IM metamodel

Table 7.10: Metamodel element descriptions for figure 7.14
Concept (Abbreviation) Description

IMTraceConnector (im_trc) Abstract concept for implementation purposes of the
trace package

IMTraceElement (im_tre) Concept enabling another concept of the metamodel to
specify mapping relations

→extIMTraceInfo String attribute to specify external mapping informa-
tion

IMTrace (im_tr) Concept for the specification of mapping information
between model elements

→customKind String attribute to determine the development domain
of the connected element

→toIM String attribute to determine the direction of the map-
ping relation

→imTraceElement IMElement which reflects the Integration Model part of
the focused mapping relation

→extTraceElement EObject which reflects the model element of a devel-
opment domain apart from the Integration Model

→baseSource Source element of a specified mapping relation defined
in the original model context

→baseTarget Target element of a specified mapping relation defined
in the original model context

→parent Parent element which includes the definition of the fo-
cused mapping relation

Two types of concepts are introduced in the course of the trace package, IMTraceEle-
ments, and IMTraceConnectors, with the IMTrace being a special variant of an IM-
TraceConnector. An IMTraceElement allows a model element of the Integration Model
to specify connections to artifacts of other domain-specific models.

88

7.1 DOMAIN-SPECIFIC MODELS

For example, the previously introduced IMTreeNodes inherit from IMTraceElement,
while the IMTrace defines the concrete connection. In particular, the original connec-
tion (baseSource and baseTarget) is recorded as well, in case it is a connection result-
ing from a model transformation (see section 7.2.2). The interaction of both constructs
makes it possible to annotate structural relationships across domains on IMComponents
and IMFunctionalities. Moreover, properties can be used to map concrete behavior
across domains, discussed in section 7.1.3. In particular, this mapping of behavioral de-
scriptions enables the abstract test case execution at the model-level, which is presented
throughout chapter 10.

The running example is used to illustrate the concepts just presented. Specifically, fig-
ure 7.13 contains examples for mapping structural contents, visualized by the dashed
connections between the Integration Model elements and the model elements of other
domains. Examples for the mapping of behavioral models or their components are
shown in section 7.1.3.

Property Concepts

The IMTreeNodes offer the possibility to specify additional information. This can either
be data that is not available in the System Model in this form, or data like management
metrics, that cannot be mapped to any of the existing modeling domains. Furthermore,
more detailed information of the Integration Model is specified in the form of properties
(see figure 7.15, table 7.11).

Figure 7.15: Properties package of the IM metamodel

89

7 OMNI MODEL APPROACH

Table 7.11: Metamodel element descriptions for figure 7.15
Concept (Abbreviation) Description

IMPropertyElement (im_pe) Abstract concept for implementation pur-
poses of the property package

→belongsToTE IMTreeNode where the respective property
information is attached to

IMPropertyNode (im_pn) Abstract concept encapsulating specific
property information

IMPropertyTransition (im_pt) Abstract concept for the specification of rela-
tions between certain property information

IMBelongsTo (im_bt) Concept to specify that a property concept
belongs to another property concept

IMTraceAnchor (im_ta) Concept for a more fine-grained specification
of mapping information

→traceConnectors IMTraceConnectors which specify a seman-
tic relation to model elements of other devel-
opment domains

IMSyncPoint (im_sp) Concept for detailed mapping of behavioral
information across development domains

→codeRefMap String attribute for the specification of fine-
grained mapping based on code fragments

→traceConnectors IMTraceConnectors which specify a seman-
tic relation to model elements of other devel-
opment domains

IMSyncEntryPoint (im_sen) Special version of a IMSyncPoint which re-
flects the beginning of a mapped behavior se-
quence

→traceConnectors IMTraceConnectors which specify a seman-
tic relation to model elements of other devel-
opment domains

IMSyncExitPoint (im_sex) Special version of a IMSyncPoint which re-
flects the end of a mapped behavior sequence

→traceConnectors IMTraceConnectors which specify a seman-
tic relation to model elements of other devel-
opment domains

IMTimingSpecification (im_ts) Concept for the specification of bounds for
the execution time between IMSyncPoints

→value Integer attribute to specify a concrete amount
of time

→type String attribute to determine the unit of the
value attribute

→upperBound Integer attribute to specify the upper bound
for the execution time

90

7.1 DOMAIN-SPECIFIC MODELS

Table 7.11: Metamodel element descriptions for figure 7.15 (continued)

→lowerBound Integer attribute to specify the lower bound
for the execution time

IMMeasurementStart (im_ms) Concept to connect the IMTimingSpecifica-
tion with a certain IMSyncPoint

IMMeasurementEnd (im_me) Concept to connect the IMTimingSpecifica-
tion with a certain IMSyncPoint

IMInterfaceInformation (im_ifi) Concept for attaching contract data to a cer-
tain interface

IMInterfaceSpecification (im_ifs) Concept for the specification of interface in-
formation of the SUT

IMInterfaceElement (im_ife) Concept for the specification of a part of the
interface

→default String attribute for the default value of the
interface element

→range String attribute for the range specification of
the interface element

→type IMIElementType attribute for the current ele-
ment

→elemRefMap String attribute for the specification of the
referenced System Model element

IMIElementType (im_iet) Enumeration concept to determine the type
of interface information: in, out, inout

IMContractSpecification (im_cs) Concept to specify contract data
→content String attribute for the concrete contract in-

formation

Like in the other development domains, there are general concepts that inherit at-
tributes, namely IMPropertyElement, IMPropertyNode, and IMPropertyTransition.
In particular, a distinction is made between nodes and transitions, with the nodes
containing the information and the transitions specifying further-reaching relations be-
tween the information. Following the previous mapping package, the first concept is the
IMTraceAnchor, which allows a more detailed specification of the cross-domain rela-
tions. The already known IMTraceConnectors are used. In the context of cross-domain
mapping the concept of the IMSyncPoint (IMSyncEntryPoint/IMSyncExitPoint) al-
lows the linking of behavioral models. This concept is intended to synchronize dif-
ferent behavior descriptions, whereby the different types specify the position in the
sequence in more detail (entry, intermediate, exit). If estimations of the temporal
behavior on the intended target platforms are already available, these can be linked to
the IMSyncPoints via the IMTimingSpecification concept (see IMMeasurementStart
and IMMeasurementEnd). This allows estimations regarding temporal behavior, which
usually cannot be carried out on PIM models. Furthermore, there are concepts for han-
dling interface information enriched with aspects of Contract-Based Design (CBD).

91

7 OMNI MODEL APPROACH

To illustrate these concepts, another part of the running example is presented, namely
the internals of the IMFunctionality CSM_ON Control. Figure 7.16 contains two IM-
SyncPoints which are about to map behavioral concepts of the System Model with
concepts of the Test Model. The mentioned IMTimingSpecification property is in-
cluded, which enables the user together with the measurement connectors, to draw
temporal conclusions while testing the respective part of the CSM.

«IMSyncEntryPoint»
CSM_ON::Entry

«TestComponent»
TEST::System::Component-Integration::

Integration::NORMAL

NORMAL

do / calc_speed_onboard(NORMAL);
entry / calc_speed_onboard(NORMAL);
entry / DMICmd = NORMAL;
entry / DMIdisplaySBI = false;
entry / TICmd = NO_CMD;

(from SYSTEM)

«IMSyncExitPoi nt»
CSM_ON::Exit

OVERSPEED

entry / calc_speed_onboard(OVERSPEED);
do / calc_speed_onboard(OVERSPEED);
entry / DMICmd = OVERSPEED;
entry / DMIdisplaySBI = true;

(from SYSTEM)

«IMTimingSpecification»
CSM_ON::TimingInfo

«TestComponent»
TEST::System::Component-Integration::

Integration::OVERSPEED

«IMMeasurementStart»

«IMTrace,trace»«IMTrace,trace»

«IMTrace,trace»«IMTrace,trace»

«IMMeasurementEnd»

Figure 7.16: Integration Model excerpt for the CSM_ON Control sub-system

The Aspect Concept

Besides the extension of concepts of the tree structure by the already presented prop-
erties, there is a concept for mapping quantifiable characteristics, annotated to the ex-
isting tree structure. This annotation can be used in further processing steps to e.g.
specify decisions, depending on empirical values. From a technical point of view, these
so-called Aspects are further divided into two types. The intrinsic aspects, which encap-
sulate existing data from connected domains for uniform handling. The synthetic as-
pects, which represent already processed model data or data from domains that are not
explicitly modeled. Both types of aspects must be defined initially, such that they can be
used in further steps. Note, that there is no conceptual relation between our term Aspect
and concepts like Aspect-Oriented Programming (AOP) or Aspect-Oriented Modeling
(AOM).

The Aspect Definition Language represents the interface to the user and fills the
concepts provided in the integration metamodel with values. The ANTLR grammar
can be seen in listing 7.1 giving an overview of the available constructs. Each aspect
is defined by a unique name (aname), used to handle the aspect later. The second step
is to define the values of the aspect. A distinction is made between aspects with a
continuous range of values (adranged), aspects with a set of discrete values (adset)
and aspects based on attributes of concepts from other domains (adlinkeddef). For the
first two types, only a small selection of data types is explicitly supported but can be

92

7.1 DOMAIN-SPECIFIC MODELS

extended. In this way, any number of aspects can be supported in the context of an
Integration Model.

1 addsl:
2 (aspect ’;’)*;
3

4 aspect:
5 aname=ID ’:’ addefpart;
6

7 addefpart:
8 (adatatype=DTYPE ’:ranged ’ adranged | adatatype=DTYPEALL ’:set ’ adset
9 | ’linked ’ adlinkeddef);

10

11 adranged:
12 (’[’ (min=NUMBER ’,’ max=NUMBER) ’]’) | ’[’ ’]’;
13

14 adset:
15 (’[’ ((value=ANYID ’,’)* value=ANYID) ’]’) | ’[’ ’]’;
16

17 adlinkeddef:
18 eMMName=ID ’:’ eClassName=ID ’:’ eAttributeName=ID;
19

20 DTYPE: (’Float’ | ’Integer’);
21 DTYPEALL: (’String’ | ’Float’ | ’Integer’);
22 fragment LETTER: [a-zA-Z\u0080-\u00FF_];
23 fragment DIGIT: [0-9];
24

25 ID: (LETTER(LETTER|DIGIT)* | NUMBER);
26 ANYID: ’\’’ (LETTER | DIGIT | ’.’)+ ’\’’;
27

28 NUMBER: ’-’? (’.’ DIGIT+ | DIGIT+ (’.’ DIGIT*)?);
29

30 BLOCK_COMMENT: ’/*’ .*? ’*/’ -> channel(HIDDEN);
31

32 LINE_COMMENT: ’//’ ~[\r\n]* -> channel(HIDDEN);
33

34 WS: [\t\r\n]+ -> skip ; // skip spaces, tabs, newlines

Listing 7.1: ANTLR grammar for the Aspect Definition Language

The Aspect Specification Language is the counterpart of the previously presented
Aspect Definition Language. It specifies explicit values of the aspects at IMTreeNodes
of the Integration Model. Therefore, a small ANTLR grammar was defined (see list-
ing 7.2), which fills the metamodel concept with values and represents the user inter-
face. In principle, only a set of key-value pairs is implemented, whereby several values
can occur on one aspect (avalues).

A possible example of an aspect is the risk assessment of a component of the SUT to
derive a concrete risk assessment for the respective component from preceding analy-
ses, which can subsequently be used in the context of an aspect for the application of
RBT.

93

7 OMNI MODEL APPROACH

1 asdsl:
2 (aspect ’;’)*;
3

4 aspect:
5 aname=ID ’ = ’ avalues;
6

7 avalues:
8 ’[’ (value=ANYID ’,’)* value=ANYID ’]’;
9

10 fragment LETTER: [a-zA-Z\u0080-\u00FF_];
11 fragment DIGIT: [0-9];
12

13 ID: (LETTER(LETTER|DIGIT)* | NUMBER);
14 ANYID: ’\’’ (LETTER | DIGIT | ’.’)+ ’\’’;
15

16 NUMBER: ’-’? (’.’ DIGIT+ | DIGIT+ (’.’ DIGIT*)?);
17

18 BLOCK_COMMENT: ’/*’ .*? ’*/’ -> channel(HIDDEN);
19

20 LINE_COMMENT: ’//’ ~[\r\n]* -> channel(HIDDEN);
21

22 WS: [\t\r\n]+ -> skip ; // skip spaces, tabs, newlines

Listing 7.2: ANTLR grammar for the aspect specification language

In the context of the running example, especially in its Integration Model, both concepts
are applied. Therefore, the available aspects and their value sets are specified for the
entire Integration Model, namely three aspects, the first of which defines a concrete
value set and the last of which defines value ranges for the concrete instances.

partID:String:set [’CSM’,’RSM’,’TSM’];
safetyLVL:Integer:ranged [0,5];
devPRIO:Integer:ranged [0,10];

Based on this definition of aspects, all aspect specifications annotated to the elements of
the tree structure are built up. An example is provided, where the specification for the
IMComponent CSM is shown. For example, as mentioned earlier, the value of safetyLVL
could be derived from an appropriate safety consideration of the proposed SUT.

partID = [’CSM’];
safetyLVL = [’3’];

(Modeling) Guidelines & Best Practices

As with the other modeling domains presented in the previous sections, some guide-
lines apply to the Integration Model, which leads to noticeable improvements in the
results of subsequent processing steps. However, it depends on the development ap-
proach the Omni Model is used in. On the one hand, development can be driven by

94

7.2 ANALYSIS-SPECIFIC MODELS

System Modeling. In this case, the structural design of the Integration Model can be
completely derived from the available instance information. On the other hand, the
Integration Model can be used for the first sketches of the structural breakdown of the
system, from which the System Model is subsequently derived. Here, it is particularly
important to ensure that the decomposition of the structure provides a sufficient num-
ber of integration stages. This is particularly useful and necessary concerning testabil-
ity, which was mentioned in the modeling guidelines in section 7.1.1. This approach is
complementary to the synthetic design concepts of CBD. Thus, each integration level
not explicitly provided reduces the transparency of the relationships between the linked
domains and thus increases the complexity of the processing steps.

In addition to the structural model elements of the Integration Model, there are several
concepts to be considered in the context of behavioral aspects, especially with IMTraces
and IMSyncPoints. As already explained, these model elements are used to establish
links across domain boundaries. When linking structural elements, it is important to
create and maintain a mapping that is as complete as possible. Linking behavioral
descriptions, however, demands careful modeling. An almost complete linkage about
the entry points (IMSyncEntryPoint) and the possible endpoints (IMSyncExitPoint)
has to be strived for and maintained. Additional synchronization points are beneficial
for some processing steps (see section 10.2.1) but rather disadvantageous for others (see
section 10.2.2). However, other concepts of the properties package are highly dependent
on the level of detail of the modeling, thus no concrete guidelines can be given here.

Finally, some guidelines are given regarding the targeted use of the aspects. Since the
aspects represent in particular an essential interface to the user, attention should be paid
to the comprehensibility and interpretability of the stored information when defining
them. That is, an incomprehensible specification in the value range of the synthetic
aspects should be avoided. Further, a significant number of aspects with quite different
focus enables a differentiated implementation of further steps.

7.2 Analysis-Specific Models

Starting from a fully specified Omni Model for the respective development context,
this section focuses on the subsequent automated processing of model data. Espe-
cially against the background of the automated implementation of the STLC steps in
the model context, the information around the Test Model and the System Model has
to be prepared appropriately.

At this point, horizontal exogenous Model-to-Model Transformation (M2MT) is used,
which transforms the different original models of the mentioned domains according to
a uniform representation (see figure 7.17). On the one hand, this ensures that the pro-
cessing chain is independent of the metamodels used in the context of the Integrated
Model Basis. On the other hand, the model transformations, which are developed and
updated together with the domain experts, ensure that the semantics in the target mod-
eling language meet the expectations. Furthermore, the connections between the partic-

95

7 OMNI MODEL APPROACH

Integration
Model

Te
st

M
od

el

System
 Structure

M
odel

System
 Behavior

Model

Requirement
Model

EGPP
for

Test Model

EGPP for
System Behavior

and Structure Model

Integration
Model

Models
of other

Development Domains

M2M

Figure 7.17: Analysis-specific model artifacts in the context of the Omni Model ap-
proach

ipating domains specified in the context of the Omni Model are retained or transferred
in the context of the M2MT. The connections to non-transformed model artifacts of ad-
ditional development domains are preserved.

In the following sections the detailed specification of our internal analysis-specific
metamodel including execution semantics is rolled out. In a second step, the M2MTs
for the system and test domain a further detailed.

7.2.1 Execution Graph++ Metamodel

Apart from the domain-specific models taking part in the Omni Model approach, a
domain-independent representation is needed. The use of an internal representation
decouples the algorithmic realization of the processing steps of the MCSTLC from con-
crete instances of the Omni Model. Driven by the overarching objectives defined in
section 1.2 the following requirements for the internal computation model were de-
rived:

• ability to reflect structural characteristics of source models, e.g. containment hier-
archies

• ability to represent behavioral descriptions, e.g. activity charts or statemachines

– capture control flow information (potentially incomplete or modeled on dif-
ferent levels of abstraction)

– capture data flow information (potentially incomplete or specified in differ-
ent source languages)

• support model evolution as the degree of concreteness steadily rises in develop-
ment

96

7.2 ANALYSIS-SPECIFIC MODELS

To meet these requirements and serve as a flexible mechanism for subsequent process-
ing steps of the MCSTLC like e.g. the abstract execution of test cases against the System
Model, we developed a concept called Execution Graph++ (EGPP). Following the goal
of making this mechanism accessible to a widespread set of application scenarios, we
first define the metamodel, which marks the conceptual basis.

Concepts of the Execution Graph++ Metamodel (EGPPMM)

In this section, the components of the underlying metamodel are explained in more de-
tail. Figure 7.18 gives an overview and shows the relationships between the constructs,
which are described in more detail below.

Figure 7.18: Execution Graph++ (EGPP) metamodel

EGPPElement (el) is the most abstract concept of the Execution Graph++ Meta-
model (EGPPMM), to determine the domain of the concept. It marks the super element
of every model artifact of the EGPPMM.

Superclass

-
Attribute:Type Description

name:EString name of model element
id:EString unique identifier
taggedData:EGPPTaggedData see EGPPTaggedData
egppAttribute:Collection<EGPPAttribute> see EGPPAttribute
OCL Invariants

-

97

7 OMNI MODEL APPROACH

EGPPGraph (gr) represents the container element for the graph structure. A graph
internally maintains the system state, which is given by the set of know variables
and the assigned values. It may be part of another EGPPGraph, thereby representing
a subgraph/-container.

Superclass

EGPPElement
Attribute:Type Description

nodes:Collection<EGPPNode> set of nodes included
(exclusive subgraph’s contents)

transitions:Collection<EGPPTransition> set of transitions included
(exclusive subgraph’s contents)

stub:EGPPGraph reduced version of original
(context-dependent)

OCL Invariants

context EGPPGraph inv:
self.nodes->select(n | n.oclIsTypeOf(EGPPInitialNode))->size() == 1
context EGPPGraph inv:
self.nodes->select(n | n.oclIsTypeOf(EGPPFinalNode))->size() == 1

EGPPNode (no) marks the most general type of node of the graph structure.

Superclass

EGPPElement
Attribute:Type Description

in:Collection<EGPPTransition> set of incoming transitions
out:Collection<EGPPTransition> set of outgoing transitions
OCL Invariants

-

EGPPTransition (tr) is the most general type of transition included in the graph.
Transitions in the EGPP context are always directed.

Superclass

EGPPElement
Attribute:Type Description

startNode:EGPPNode start node of transition
endNode:EGPPNode end node of transition
OCL Invariants

context EGPPGraph inv:
self.transitions->forAll(t | t.startNode->notEmpty()
and t.endNode->notEmpty())

98

7.2 ANALYSIS-SPECIFIC MODELS

EGPPInitialNode (in) is a special node which represents the start of the control flow
captured by the graph structure.

Superclass

EGPPNode
Attribute:Type Description

- -
OCL Invariants

context EGPPInitialNode inv:
self.in->isEmpty()
context EGPPInitialNode inv:
self.taggedData.codeFragements()->isEmpty()

EGPPFinalNode (fn) is a special node which represents the end of the control flow
captured by the graph structure.

Superclass

EGPPNode
Attribute:Type Description

- -
OCL Invariants

context EGPPFinalNode inv:
self.out->isEmpty()
context EGPPFinalNode inv:
self.taggedData.codeFragements()->isEmpty()

EGPPInputNode (ipn) marks a node that is syntactically equivalent to its superclass
EGPPNode. Semantically, it is a node that consumes/reads information. For example,
in the Test Model context, this might be a verification point that checks for a certain
attribute value of the System Model, i.e. a system state.

EGPPOutputNode (opn) marks a node that is syntactically equivalent to its super-
class EGPPNode. Semantically, it is a node that emits/writes information. For example
in the Test Model context, this might reflect an assignment to a variable of the System
Model, i.e. emitting a stimulus.

99

7 OMNI MODEL APPROACH

EGPPDecisionNode (dn) is a node representing a split of the control flow constrained
by guards specified along the EGPPTransitions. Further exactly one of the outgoing
transitions may be taken at a time, permitting the processing of two paths in parallel.

Superclass

EGPPNode
Attribute:Type Description

- -
OCL Invariants

context EGPPDecisionNode inv: self.out->size() > 1

EGPPMergeNode (mn) is a node representing a merge of the control flow previously
split by an EGPPDecisionNode.

Superclass

EGPPNode
Attribute:Type Description

- -
OCL Invariants

context EGPPMergeNode inv: self.in->size() > 1

EGPPForkNode (fon) represents a fork of the control flow into parallel flows.

Superclass

EGPPNode
Attribute:Type Description

- -
OCL Invariants

context EGPPForkNode inv: self.out->size() > 1

EGPPJoinNode (jon) is a node representing a join of the control flow, while the par-
allel flows need to be spawned at the same EGPPForkNode.

Superclass

EGPPNode
Attribute:Type Description

- -
OCL Invariants

context EGPPJoinNode inv: self.in->size() > 1

100

7.2 ANALYSIS-SPECIFIC MODELS

Further, the number and instances of spawning paths in an EGPPForkNode, later on,
joined in an EGPPJoinNode need to be equal. To define such a constraint, we utilize a
DataFlow Analysis (DFA)-based specification with attribute grammars as per Saad et
al. [152].

Therefore, we define the attribute numParflows representing a list of integers that indi-
cate the number of parallel EGPP-paths currently active at a time. Lists with more than
one entry indicate the existence of parallel regions within a parallel region. Thereby,
the last entry represents the most inner region. A list entry equal to zero indicates a
malformed EGPPGraph, due to non-conformance to the criteria specified at the begin-
ning of this paragraph. Listing 7.3 shows the production rules for the initialization of
the numParflows attribute of the different types of nodes previously introduced.

1 attribution parflows_analysis {
2 -- attribute that indicates the number of parallel flows currently active
3 attribute assignment numParflows : OCLSequence
4 initWith { };
5

6 -- rule to check how many parflows are active at the direct predecessor
7 rule ocl node_parflows : standard
8 "return self.in.startNode.numParflows()";
9

10 extend egpp_no with {
11 occurenceOf numParflows calculateWith node_parflows;
12 }
13

14 -- rule to check how many parflows are active at the direct predecessor
15 rule ocl forknode_parflows : standard
16 "return self.in.startNode.numParflows().append(self.out->size())"
17

18 extend egpp_fon with {
19 occurenceOf numParflows calculateWith forknode_parflows;
20 }
21

22 -- rule to check how many parflows are active at the direct predecessor
23 rule ocl joinnode_parflows : standard
24 "def: ref:Integer = self.in->first().numParflows()
25 if (self.in->any(t : t.startNode.numParflows()->last() = 0)) then
26 return self.in.startNode.numParflows().append(0)
27 else
28 if (self.in->forAll(t : t.startNode.numParflows()->last() = ref)) then
29 return self.in.startNode.numParflows()
30 ->subSequence(1, self.in.startNode.numParflows()->size()-1))
31 endif
32 endif"
33

34 extend egpp_jon with {
35 occurenceOf numParflows calculateWith joinnode_parflows
36 }
37

38 extend egpp_in with {
39 occurenceOf numParflows calculateWith {1};
40 }
41 }

Listing 7.3: The attribution for the parflows_analysis

101

7 OMNI MODEL APPROACH

In a second step, based on the initialized attributes, the validity of the EGPPGraph can be
checked with the following analysis (see listing 7.4). The last entry of the numParflows
list is checked for the EGPPFinalNode.

1 attribution parflows_validation {
2 -- constraint that indicates if the EGPPGraph
3 -- is well-formed concerning the parallel regions
4 attribute constraint checkParflows : error
5 "EGPPGraph contains malformed parallel regions";
6

7 -- use the result of numParflows
8 rule ocl egpp_fn_checkParflows : standard
9 "return self.numParflows()->last() = 1";

10

11 -- attach the ’checkParFlows’ to the EGPPFinalNode(egpp_fn)
12 -- computed with the rule ’egpp_fn_checkParflows’
13 extend egpp_fn with {
14 occurenceOf checkParflows calculateWith egpp_fn_checkParflows;
15 }
16 }

Listing 7.4: The attribution for the parflows_validation

The list of already introduced concepts together with the two data flow analyses just
presented defines valid structures in the context of EGPP implementation. However,
what is not shown here is the information that extends the previous purely structural
view to the data flow level. For this purpose, further concepts are introduced, which
are explained in the following.

EGPPTaggedData (td) represents any kind of uninterpreted data specified along-
side an EGPPElement.

Superclass

EGPPElement
Attribute:Type Description

json:EString uninterpreted JSON-String
OCL Invariants

-

During the exogenous horizontal M2MT from a source model to an EGPP model, the
until now unmentioned data flow information is captured by an EGPPTaggedData ob-
ject. To improve flexibility and extendability, the data is serialized as a JavaScript Object
Notation (JSON) string with a node named Code. Thereby, the Code node supports the
concepts declaration ⟨DECL⟩, statement ⟨STMT⟩, condition ⟨COND⟩, and func-
tion (FUNC) in a pseudocode-like syntax (see Grammar 7.1). Further, the usage of
⟨DECL⟩, ⟨STMT⟩ or ⟨FUNC⟩ code fragments is only allowed in EGPPTaggedData (td)
annotated to EGPPNode (no) or any inheriting concepts. In contrast, the ⟨COND⟩ frag-
ments may be used inside EGPPTaggedData (td) of any EGPP metamodel element.

102

7.2 ANALYSIS-SPECIFIC MODELS

⟨CODE⟩ ::= ⟨DECL⟩ | ⟨STMT⟩ | ⟨COND⟩ | ⟨FUNC⟩

⟨DECL⟩ ::= ’int’ ⟨IDENT⟩ ’=’ ⟨INTEGER⟩ ’;’
| ’double’ ⟨IDENT⟩ ’=’ ⟨DOUBLE⟩ ’;’
| ’string’ ⟨IDENT⟩ ’=’ ⟨STRING⟩ ’;’

⟨STMT⟩ ::= ⟨IDENT⟩ ’=’ ⟨EXP⟩ ’;’
| ⟨IDENT⟩ ’=’ ⟨FUNC⟩ ’;’
| ⟨STMT⟩ ⟨STMT⟩

⟨EXP⟩ ::= ⟨IDENT⟩
| ⟨CONST⟩
| ⟨EXP⟩ ’+’ ⟨EXP⟩
| ⟨EXP⟩ ’-’ ⟨EXP⟩
| ⟨EXP⟩ ’⋅’ ⟨EXP⟩
| ⟨EXP⟩ ’/’ ⟨EXP⟩

⟨COND⟩ ::= ’true’ | ’false’
| ⟨IDENT⟩
| ⟨CONST⟩
| ’!’ ⟨COND⟩
| ⟨COND⟩ ’&&’ ⟨COND⟩
| ⟨COND⟩ ’||’ ⟨COND⟩
| ⟨COND⟩ ’==’ ⟨COND⟩
| ⟨COND⟩ ’!=’ ⟨COND⟩
| ⟨COND⟩ ’<’ ⟨COND⟩
| ⟨COND⟩ ’>’ ⟨COND⟩
| ⟨COND⟩ ’≤’ ⟨COND⟩
| ⟨COND⟩ ’≥’ ⟨COND⟩

⟨FUNC⟩ ::= ⟨IDENT⟩ ’(’ ⟨ARGLIST⟩ ’)’ ’;’

⟨ARGLIST⟩ ::= (⟨IDENT⟩ | ⟨CONST⟩) * (’,’ ⟨IDENT⟩ | ⟨CONST⟩) *

⟨CONST⟩ ::= ⟨INTEGER⟩ | ⟨DOUBLE⟩ | ⟨STRING⟩

Grammar 7.1: Grammar for the Code fragments of EGPPTaggedData

By the grammar shown, variables can be mapped with three different data types,
namely int, double, and string. The possible expressions can further be constructed
by the basic mathematical operators +, -, ⋅, and /. There are some restrictions on the
conditions. Basic boolean and relational operators can be used to create conditions
based on variables, constants, and the two possible truth values true and false. These
constructs can be used to map a large part of the elementary code constructs used,
which is, among other things, the basis for further analyses on these model artifacts.

In addition to the data flow information, it is intended to store uninterpreted data in a

103

7 OMNI MODEL APPROACH

JSON node called Comment. Under certain circumstances, this data can be used for fur-
ther processing or interpretation in subsequent steps. A possible application scenario
for this can be seen in section 7.2.2. Further, a concept related to the transformation
from uninterpreted to interpreted data is given by the EGPPAttribute.

EGPPAttribute (at) is meant to capture interpreted internal information which is
attached to an EGPPElement.

With this model element, calculations can be outsourced to a pre-processing for certain
analyses, which may involve computationally intensive steps. The pre-processing fills
appropriate EGPPAttributes for later execution of the analysis.

Semantics of the EGPPMM

Based on the EGPP metamodel concepts and the previously defined language frag-
ments, we define the semantics of the EGPPMM, which represents the basis for the
subsequent specification of a model interpreter in the context of ATE. First, we focus on
the semantics of code fragments syntactically conforming to the previous grammar.

Definition 29 (Datatypes and Value Ranges)
Variables or constants in the context of language artifacts specified before, support the datatypes
⟨INTEGER⟩, ⟨DOUBLE⟩, and ⟨STRING⟩. The respective type identifiers build up the set
Π = {int, double, string}. Further, we define the value ranges linked to the type identifiers as
follows:

Vt =
⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

Z if t = int
R if t = double
S if t = string

with t ∈ Π;

Z = the set of integer values between INT_MIN and INT_MAX;

R = the set of floating numbers between DOUBLE_MIN and DOUBLE_MAX;

S = the UTF-8 representation of a string value;

Computations with ’string’ type are based on the UTF-8 values,
while comparisons are based on the length of the string

Definition 30 (Variable Types)
A variable holds a certain type of information Π as previously introduced. This type may further
be revealed as follows:

τ ∶ Var → Π

104

7.2 ANALYSIS-SPECIFIC MODELS

Definition 31 (Variable Valuations)
Variables determine certain states Σ ∶ Var → V, while the variable’s current value is specified
by the following mapping function:

σt ∶ Var →V with t ∈ Π

Let σ(x) be a function to access the variable’s current value and

σ[xt → vt] to update the value of xt with vt

with xt ∈ Vart ; vt ∈ Vt

Based on the previous definitions, the update of a variable leads to a change of its
valuation, which conforms to the following equation.

σ[xt → vt](x′t) =
⎧⎪⎪⎨⎪⎪⎩

σ(x′t) if xt ≠ x′t
vt if xt = x′t

(7.1)

Following the basic definitions, the compositional semantics of the ⟨DECL⟩ and
⟨STMT⟩ fragments of our grammar (see 7.1) are specified. To specify the semantics
of declarations and valuation expressions of our grammar, we define the semantic
function I.

Declaration 1 (Semantic Function I)
This function defines the transition between variable states Σ as follows:

I[[−]] ∶ ⟨DECL⟩∪ ⟨STMT⟩→ (Σ → Σ)

To specify the semantics of declarations and valuation expressions of our grammar, we
further define the semantic function A.

Declaration 2 (Semantic Function A)
This function defines the projection of a state to a certain value range as follows:

A[[−]] ∶ ⟨EXP⟩→ (Σ →Vt)

with t ∈ Π

Before we start with further semantic specifications, we define w.l.o.g. the following
elements to be representatives of the respective category of our grammar tags with a
new index determining a new representative:

e ∈ ⟨EXP⟩ ; c ∈ ⟨COND⟩ ; i ∈ ⟨IDENT⟩ ; s ∈ ⟨STMT⟩ ; d ∈ ⟨DECL⟩ ; k ∈ ⟨CONST⟩

and p being a prefix of the string representation of a declaration

105

7 OMNI MODEL APPROACH

Furthermore, in the context of the following definitions, any mathematical and rela-
tional operators are used in their original semantics.

I[[pi = k]]σ = σ[i → k] with

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

τ(k) = int if p = ’int’
τ(k) = double if p = ’double’
τ(k) = string if p = ’string’

(7.2)

I[[i = e]]σ = σ[i → z] with z = A[[e]]σ (7.3)

I[[s1; s2]]σ = I[[s2]]σ′ with σ′ = I[[s1]]σ (7.4)

A[[i]]σ = σ(i) (7.5)

A[[k]]σ = vt with vt being the value of the constant k of type t ∈ Π (7.6)

A[[e1 + e2]]σ = A[[e1]]σ +A[[e2]]σ
if τ(A[[e1]]σ) = τ(A[[e2]]σ)∧ τ(A[[e1]]σ) ∈ {int, double}

(7.7)

The analogous continuation of the equation (7.7) for the remaining binary mathematical
operators {−, ⋅, /} is analogous. Further, there are no semantic rules regarding structural
aspects like sequences, branches, or loops because they are not covered by the language
fragments, but by the EGPP nodes and transitions.

In addition to the semantic functions I and A for declarations and valuation expres-
sions, we further define a semantic function B for the boolean expressions.

Definition 32 (Semantic Function B)
We define the semantic function B as follows:

B[[−]] ∶ ⟨COND⟩→ (Σ → B)

with t ∈ Π and B = {tt, ff};

B[[true]]σ = tt (7.8)

B[[f alse]]σ = ff (7.9)

B[[i]]σ =

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

tt if (τ(i) = int ∧ σ(i) ≠ 0)∨
(τ(i) = double ∧ σ(i) ≠ 0.0)∨
(τ(i) = string ∧ σ(i) ≠ ’0’)

ff otherwise

(7.10)

B[[k]]σ =

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

tt if (τ(k) = int ∧ k ≠ 0)∨
(τ(k) = double ∧ k ≠ 0.0)∨
(τ(k) = string ∧ k ≠ ’0’)

ff otherwise

(7.11)

B[[!c]]σ = ¬B[[c]]σ (7.12)

106

7.2 ANALYSIS-SPECIFIC MODELS

B[[c1&&c2]]σ = B[[c1]]σ ∧B[[c2]]σ (7.13)

B[[c1∣∣c2]]σ = B[[c1]]σ ∨B[[c2]]σ (7.14)

B[[c1 == c2]]σ =
⎧⎪⎪⎨⎪⎪⎩

tt if B[[c1]]σ = B[[c2]]σ
ff if B[[c1]]σ ≠ B[[c2]]σ

(7.15)

B[[c1! = c2]]σ = ¬B[[c1 == c2]]σ (7.16)

B[[c1 < c2]]σ =
⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

tt if A[[c1]]σ < A[[c2]]σ∧
τ(c1) = τ(c2)

ff otherwise

(7.17)

B[[c1 > c2]]σ =
⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

tt if A[[c1]]σ > A[[c2]]σ∧
τ(c1) = τ(c2)

ff otherwise

(7.18)

B[[c1 <= c2]]σ = ¬B[[c1 > c2]]σ (7.19)

B[[c1 >= c2]]σ = ¬B[[c1 < c2]]σ (7.20)

Apart from the semantics of the code fragments included in our EGPP, there are model
elements to specify the control flow structure of the underlying graph. To address some
characteristics of the EGPP during the semantic specification, we define some terms in
this context.

Definition 33 (EGPPGraph Characteristics)

Φg represents the set of graph nodes (gr.nodes)

Θg ∶ Φg ×Φg represents the set of graph transitions (gr.transitions)

with n ∈ Φg and t ∈ Θg

code(n) ∈ ⟨DECL⟩∪ ⟨STMT⟩∪ ⟨COND⟩ to access code fragments of a node n

cond(t) ∈ ⟨COND⟩ to access code fragments of a transition t

Structural Definition of the EGPP Semantics

Apart from the state of variables included in code fragments, a model element as part
of the control flow is necessary to determine the overall state of the system. Every
EGPPGraph (gr) maintains its systems state, which is given by the currently active
control flow-node and the states of the variables known to this point.

107

7 OMNI MODEL APPROACH

Definition 34 (System State of a EGPPGraph)
The system state of a EGPPGraph instance may be defined as follows:

⟨n, σ⟩ ∈ Φg ×Σ

To visually support the definition of a system state, the following excerpt of a EGPP-
Graph structure is given.

n n’t... ...t

statex statex+1

Figure 7.19: An illustration of the different system states (statex and statex+1) in a EGPP
flow

The evolution of the system state throughout the execution of the EGPPGraph structure
conforms to the following step rule:

⟨n, σ⟩ tÐ→ ⟨n′, σ′⟩ if (n, n′) ∈ Θg ∧ I[[code(n′)]]σ = σ′

with t being the chosen transition between n and n′

Based on the definitions in the context of a EGPPGraph, we further define the structural-
operational semantics of the control flow structure.

⟨no, σ⟩ tÐ→ ⟨no′,I[[code(no′)]]σ⟩ if B[[cond(t)]]σ = tt (nott)

⟨no, σ⟩ tÐ→ ⟨no, σ⟩ if B[[cond(t)]]σ = ff (noff)

Especially, noff results in the system stalling in a certain state until a transition t can be
satisfied. The rules (nott) and (noff) hold for all of the subtypes of no (EGPPNode), e.g.
fon (EGPPForkNode), if no special semantic rule is defined. The first exception to this
rule is the case for the dn (EGPPDecisionNode), where a decision has to be taken as to
how to proceed. Further, this decision has to be clearly defined by the conditions of the
transitions and may in every case only produce one single resulting path.

⟨dn, σ⟩ tiÐ→ ⟨dn′,I[[code(dn′)]]σ⟩
if B[[cond(ti)]]σ = tt ∧∀t ∈ {t1, . . . , tn}∖ {ti} ∶ B[[cond(t)]]σ = ff

(dn)

Another exception is the parallel regions in the EGPPGraph. At this point, a simplified
merging of the parallel developing system states is applied, as per the following defi-
nition.

108

7.2 ANALYSIS-SPECIFIC MODELS

fon jon... ...

t1

...

...

ni

ni-1

n2

n1

n’i

n’i-1

n’2

n’1

...

...

t2

ti-1

ti t’i

t’i-1

t’2

t’1
jonacc

Figure 7.20: A schematic for parallel flows between EGPPForkNode (fon) and
EGPPJoinNode (jon)

Definition 35 (System State Merge at EGPPJoinNode)
Let i ∈ N be the number of parallel flows in a EGPPGraph as per figure 7.20. Further, the end
nodes of the parallel flows are ordered about the lexicographic order of the last transition’s labels
from the last node to jon, e.g. t′1 for the uppermost path of figure 7.20. The joint system state
at the jon node can be computed according to the following rules. The dotted lines in figure 7.20
show the iterative computation and the propagation of the accumulated intermediate state across
parallel flows.

⟨n′k, σ⟩
t′kÐ→ ⟨jonacc, σacc⟩

if B[[code(t′k)]]σ = tt
(jontt

k)

⟨n′k, σ⟩
t′kÐ→ ⟨jonacc, σ⟩

if B[[code(t′k)]]σ = ff
(jonff

k)

⟨n′i , σ⟩
t′iÐ→ ⟨jon,I[[code(jon)]]σacc⟩

if B[[code(t′i)]]σ = tt
(jontt

i)

⟨n′i , σ⟩
t′iÐ→ ⟨jon,I[[code(jon)]]σ⟩

if B[[code(t′i)]]σ = ff
(jonff

i)

with jonacc ∉ Φg representing an accumulator node

and σ either representing the initial valuations, or σacc from the previous merge step

and σacc representing the merged valuations of accumulator node

and k ∈ {1, . . . , i − 1}

As mentioned in the initial part of this section, EGPPGraphs are designed to be part

109

7 OMNI MODEL APPROACH

of another EGPPGraph. Essentially, there are two types of scenarios to be considered,
entering a sub-graph (grin) or leaving a sub-graph (grout). Consequently, the traversal
of an EGPPGraph conforms to the following set of semantic rules further illustrated in
figure 7.21:

n0 n1... ...t0 gr t1

...

ingr fngr

Figure 7.21: An illustration of a sub-graph embedded in a flow of its parent EGPPGraph
(gr)

⟨n0, σ⟩ t0Ð→ ⟨ingr, σ⟩
if B[[cond(t0)]]σ = tt

(grin
tt)

⟨n0, σ⟩ t0Ð→ ⟨n0, σ⟩
if B[[cond(t0)]]σ = ff

(grin
ff)

⟨ f ngr, σ⟩ t1Ð→ ⟨n1, σ⟩
if B[[cond(t1)]]σ = tt∧ f ngr ∈ Φgr

(grout
tt)

⟨ f ngr, σ⟩ t1Ð→ ⟨gr, σ⟩
if B[[cond(t1)]]σ = ff ∨ f ngr ∉ Φgr

(grout
ff)

The syntactic and semantic definitions presented here provide the basis for most of the
following steps. In particular, this laid the foundation for the Abstract Test Execution
explained in more detail in section 10.2.

7.2.2 Model to Model Transformations

Besides the definition of the internal metamodel, which serves to implement the differ-
ent analyses in the context of the Integrated Model Basis, the M2MTs (see figure 7.17)
play an important role. These horizontal exogenous transformations allow different
source models to be mapped to the previously introduced metamodel and, in the pro-
cess, to improve weaknesses of the source metamodel by expert knowledge. However,
when specifying the model transformations, care must be taken to ensure that the re-
sulting representation is as accurate as possible to keep the differences between the
model and the code representation as small as possible. If the specification is incorrect,
the results of the analyses based on it may not provide usable results.

110

7.2 ANALYSIS-SPECIFIC MODELS

Stub EGPP System Model EGPP System Behavior Model

A

B

C
Main Loop

Sub-

Sys tem

guard

...

D

E F

G

Behavior

Join

Fork

Figure 7.22: Pattern for EGPP instance transformed from structure and behavior System
Model artifacts

The transformation is divided into two phases, whereby the structure and control flow
aspects as well as the data flow aspects are performed separately. In addition to the
differentiation into the phases of the transformation, a distinction is made according to
the model context, that is, whether the original model is used for System Modeling or
for Test Modeling.

Transformation of Structure and Control Flow Information

First, the transformation of structural information is discussed. For this purpose, pat-
terns are developed for the two modeling contexts System and Test, according to which
the instances of the target modeling language EGPP are built. The following section
discusses the set of rules for the transformation of system structure and behavior infor-
mation.

System Structure and Behavior Information to Execution Graph++ As already
described in the introduction of the metamodel concepts of EGPP, both the structure
and the behavior of a system can be implemented integrated into the graph-based rep-
resentation. An exemplary section of an EGPP structure is shown in figure 7.22, where
the system level serves as the entry point, which is developed top-down to the smallest
included components. In the middle of the figure, there is the EGPPGraph, contain-
ing especially the Main Loop as its main component. This represents the functionality
of conventional systems to activate certain components either time- or event-triggered
(guard), which in this case corresponds to traversing one of the parallel paths including
possible sub-graphs. The concepts contained in Main Loop can be either subsystems or
behavioral models, each of which is mapped using EGPPGraph. On the right side of
figure 7.22 is an example graph containing two alternative processes, where the sys-
tem state can be changed by expressions contained in the nodes D, E, F, G. On the other

111

7 OMNI MODEL APPROACH

hand, if you take a look at the EGPPGraph of the sub-system shown, it would have the
same components as the graph shown and explained in the middle of figure 7.22. How
often this encapsulation and, accordingly, the nested Main Loops occur depends on the
number of integration levels of the System Model.

An essential difference between the use of the EGPP metamodel for system and Test
Modeling is the use of the so-called stub. This is an EGPPGraph that is coupled to another
EGPPGraph and reflects the initialization of its variables relevant to the system state. As
shown in figure 7.22 on the left, this is an EGPPGraph that consists of a path, with nodes
A, B, C containing variable assignments of initial values, e.g. x = 5;, while the initial
values are not mandatory and may therefore be reduced to declarations. Processing of
the information contained in the stub is done once at the beginning of execution, not
per iteration of the Main Loops. The described stub concept applies to the sub-system
and behavior EGPPGraphs of the lower levels.

As in the previous chapters, the running example shows how a portion of the System
Model is mapped to the EGPP representation. Figure 7.23 shows the nesting of different
EGPP graphs, each of which retains sub-functionality.

EGPP CSM (Block) EGPP CSM (Statemachine)

 Main Loop

EGPP CSM

(Statemachine)

EGPP CSM_ON (Statemachine)

CSM_OFF CSM_ON

NORMAL

OVERSPEED

WARNING

SERVICE_BRAKE

EMER_BRAKE

Fork

Join

Figure 7.23: Excerpt of the EGPP model for the CSM System Model

For clarity, detailed information such as edge labels has been omitted. On the left side,
one can see the original SYSML block CSM which has been transformed into an EGPP-
Graph. Since the CSM block does not contain any further blocks, only the transformed
statemachine (original: see figure 16.3 (Supplementary Material)) is included in the
main cycle. In the middle of the picture, you can see the first statemachine in the EGPP
context, in which the sub-statemachine (original: see figure 16.4 (Supplementary Mate-
rial)) shown on the right side is integrated. In the EGPP variants of the two statema-
chines it is noticeable that an explicit final state was specified in each case, which can
be reached from all intermediate states. This is necessary to comply with the EGPP
metamodel.

Test Information to Execution Graph++ Analogous to the development of a pattern
for software modeling, the structure of the EGPP models, which represents the test

112

7.2 ANALYSIS-SPECIFIC MODELS

context, is explained. At this point, a schematic representation of the structure of the
target model is used, as shown in figure 7.24.

Stub EGPP Systemtest Model EGPP Integrationtest Model

A

B

C

A

D

E

G

H

Integration

1

A

D

B

C

Unit

 2

Unit

 1

F

Figure 7.24: Pattern for EGPP instance transformed from Test Model artifacts

As already explained in the foundations’ chapter, test cases are specified for different
integration levels. Thus, test cases of higher integration levels build on tested compo-
nents of lower levels. This situation is reflected in EGPP models, where Test Modeling is
divided along with the different levels of integration, starting from system level down
to unit level. In the middle of figure 7.24, a transformed Test Model for the system
level is shown schematically. Three possible paths (test cases) can be derived from this
model, where one path incorporates the externally perceivable effects of an interme-
diate level component integration 1 on the next lower level. The Test Modeling of this
component is shown on the right side of the figure. Based on this model a set of paths
(test cases) can be derived, which partly build up again on insights from tests on deeper
integration levels (see Unit 1 and Unit 2).

On the left side of figure 7.24, one can see another EGPPGraph, showing the role of
the so-called stubs. In the context of Test Modeling, the stub encapsulates a set of
paths, while each of the paths contains a set of nodes, that first evaluate the overall
system state and then manipulate the system state accordingly. The contents of the
paths emerge from successful test executions against the corresponding EGPP model.
With sufficient test data, the paths contained in the stub can be aggregated to paths that
represent equivalence classes to the input data. The information contained in the stub
model is further utilized in the context of our approach to Abstract Test Execution (see
section 10.2.4). Here, the information collected at lower levels of integration provides
value to the model interpreter, which can use it to adjust the current system state with-
out further evaluation of embedded EGPP models. Overall, extensive testing starting
at lower integration levels can improve the performance of MCSTLC.

In this section, we use the running example, which is intended to illustrate the ex-
plained facts. Figure 7.25 illustrates the split of the Test Model into the mentioned
integration levels.

113

7 OMNI MODEL APPROACH

EGPP Unit 2EGPP Integration 2EGPP Systemlevel

Fork ForkFork

JoinJoinJoin

T
es

t P
a
th

 1

T
es

t P
a
th

 2

T
es

t P
a
th

 1

T
es

t P
a
th

 2

c
alc

_
sp

e
ed

_
to

_
d
riv

er 1

c
alc

_
sp

e
ed

_
to

_
d

riv
er 3

c
alc

_
sp

e
ed

_
to

_
d

riv
er 2

EGPP

Unit 1
EGPP

Integration 1

Tes tStep

TestStep

VP

TestStep

TestStep

VP

TestStep

VP

EGPP

Integration 2

EGPP

Unit 2

Figure 7.25: Excerpt of the EGPP model for the CSM Test Model

The EGPP representation of the Test Model for the system test level is shown on the
left side of the figure. In particular, it represents a set of test cases by providing mul-
tiple paths from the EGPPInitialNode to the EGPPFinalNode. As part of these paths,
the stubs of the Test Models of deeper integration levels (see EGPP Integration 2) are
included. The concept of stubs is dealt with separately in the context of chapter 8 since
several independent models are potentially created from one model. This indicates that
already tested behavior is used in an extended test context. This can be continued anal-
ogously through the intended integration levels up to the unit level. At the right side
of the figure, the test cases for the method calc_speed_to_driver are shown as an ex-
ample, which in turn represent individual paths through the Test Model EGPP Unit 2.
The test cases each consist of EGPPNodes, which on the one hand represent TestSteps and
on the other hand VerificationPoints (VP), determined by the types and contents of the
EGPPTaggedData.

Transformation of Data Flow Information

In addition to the transformation of the structural information as well as the modeled
control flow, the original model can already contain detailed information which has
to be transformed. Detailed information such as code fragments, which are embed-
ded in the model artifacts, conform to a certain language. Depending on the language
scope and the size of the embedded code fragments, the transformation of the data
flow information can have effects on the previously considered structure and control
flow transformations.

The aim of the second phase of the M2MT is, to map the control flow components used
in code fragments in (sub-)graphs and, to store the atomic data flow information in the
EGPPTaggedData of the respective model elements. For the former, the transformation
procedure is relatively obvious. If the code fragments to be transformed contain control
flow information, the model artifact previously implemented as EGPPNode is replaced
by an EGPPGraph, which in turn reflects the code-based control flow. The atomic data

114

7.3 ARCHITECTURE AND ANALYSIS FRAMEWORK

flow information (assignments, conditions, etc.) is then stored as usual in the EGPP-
TaggedData of the respective EGPPNode or EGPPTransition.

For the latter, depending on the programming language used, the concepts need to
be mapped to our pseudocode-like language introduced in grammar 7.1. Since at this
point the fragments are free of control flow components, this is just a syntactical ad-
justment. If concepts are used in the original programming language that cannot be
mapped in our language or can only be realized by changing the semantics, the limits
of our approach are reached. This is the case, for example, as soon as temporal consid-
erations or pointer arithmetic are applied.

In the course of the running example, data flow information is transformed. As al-
ready mentioned, the transformation of the code fragment is limited to purely syntac-
tical changes in the concrete case. Regarding the types used, no mappings are nec-
essary. Besides, the control flow, which is encapsulated in method calls of the System
Model, for example, is mapped by explicit EGPPGraphs to guarantee the requirement for
atomic assignment operations in the context of EGPPNodes. For example, the methods
calc_permitted_speed_to_driver, calc_speed_to_driver, or calc_speed_onboard
used in the context of the statemachine from figure 16.3 (Supplementary Material) and
figure 16.4 (Supplementary Material) are affected.

7.3 Architecture And Analysis Framework

Continuing the metamodeling concepts, this section deals with the implementation of
an associated reference technology platform, namely the Architecture And Analysis
Framework (A3F). The origins of this framework have already been described in a con-
ference and a journal paper, which builds the basis for the contents presented through-
out this section [151][148].

The A3F represents a framework that was developed especially for MDSD and can be
used in this context for various purposes. To allow this flexibility in terms of purpose,
the framework is built on the conceptual basis seen in figure 7.26.

The General Purpose Modeling Language (GPML) can be seen on the left side of the fig-
ure. Its model instances provide the basis for the user and at the same time the interface
to the processing chain within the A3F. From artifacts of the GPMLs, different DSMLs
can be derived by M2MTs in the context of the framework and vice versa. In particu-
lar, several DSMLs can be combined, which corresponds to the Omni Model approach
explained in chapter 7 which are arranged in the middle of the figure. Again, building
on the domain-specific representations, Purpose-Specific Data (PSD) can be created by
further transformations that serve only a very specific purpose. In the following, the
mentioned parts of the conceptual basis are discussed in more detail.

115

7 OMNI MODEL APPROACH

Architecture And Analysis Framework (A3F)

General-Purpose

Modeling Languages

Domain-Specific Modeling Languages Purpose-Specific Data

Machine-Consumable

Artifacts

M2M

Timing

Testing

(TD)

Integration

(IM)

Security

System

Structure

(SSD)

Safety /

Reliability

(SRD)

Requirements

(REQ)

EMOF/CMOF

Ecore

System

Behaviour

(SBD)

Code ArtifactsM2C

M2M/

M2T

UML +

Profiles

Human-Consumable

Artifacts

 Views

 Documentation

 Metrics

 Intermediate Data

 Analysis-specific Models

Figure 7.26: Conceptual foundations of the A3F (based on [148])

General-Purpose Modeling Languages represent the entry point into the A3F. This
is chosen mainly for reasons of acceptance of the framework and in the sense of broad
applicability in different development concepts. Especially in the context of these mod-
eling languages, there is a large number of practitioners, which has resulted in a signif-
icant number of so-called MDSD tools, which enable the modeling of such languages.
This variety of tools is further meant to interact with our prototype. In the context of
the prototypical implementation, the GPMLs are used in two different contexts. On the
one hand, they serve as a uniform basis for specifying the domain-specific model infor-
mation. On the other hand, certain parts of the model landscape can be represented by
a GPML-based model. Here, the user is free to choose the GPML as long as the chosen
language offers concepts for metamodel extensions.

Domain-Specific Modeling Languages are the basis of the Omni Model approach pre-
sented in section 7.1. For this purpose, the information modeled in a GPML is converted
by M2MTs into a domain-specific modeling language (if provided) and then put into
relation with other models. These transformations are commonly applied in both di-
rections, i.e. domain-specific artifacts can be transformed back to their general-purpose
artifact. The number of DSMLs used depends on the development context and can be
designed as required. The resulting models provide a solid basis for further processing
steps, which can be used for the respective application context.

Purpose-Specific Data does not necessarily represent model data in the classical
sense. Furthermore, the M2X transformations are irreversible, since a reduction con-
cerning irrelevant information is performed during processing. On the right side,
figure 7.26 enumerates possible types of PSD.

The first category is given by the Human-Consumable Artifacts, which mainly represent
model data prepared for a special purpose and primarily for the toolchain user. There-

116

7.3 ARCHITECTURE AND ANALYSIS FRAMEWORK

fore, usually M2MTs or Model-to-Text Transformations (M2TTs) are applied using es-
tablished frameworks. Thus, the focus of such artifacts is not on further processing
by machine. Examples of such artifacts are Views known from software architecture,
which can be generated from the available model (landscape). Another example is the
automated creation of Documentation. In particular, the Integrated Model Basis can pro-
duce significant added value if the focus is on the entirety of the information and its
interrelationships. Finally, in the context of Human-Consumable Artifacts, Metrics can be
mentioned which prepare characteristics and convert them into comparable quantified
properties for the user.

In contrast, the Machine-Consumable Artifacts focus on machine processing. This pro-
cessing can either take place in the A3F itself or can be delegated to external tools by
export/import functionality. The latter generally represents the conceptual interface
for connecting external tools. A special form is the Analysis-Specific Models, whose rep-
resentative EGPP has already been presented in detail.

Code Artifacts are mentioned as the last representative of PSD. Depending on the model-
ing languages and the development methodology applied, the Integrated Model Basis
provides a more or less optimal starting point for generating target code. This can be
achieved by transformations as well, in this case, M2CTs, which is out of scope for this
thesis.

7.3.1 Framework Architecture

Based on the conceptual view on the framework, a prototypical implementation of the
A3F is realized. To meet different application purposes and technological contexts and
to reflect the extensibility and flexibility of the concept, the following architecture is
chosen (figure 7.27).

GPML artifacts represent the point of interaction with the framework regarding data.
Therefore, all information that is modeled in Enterprise Architect®, a CASE tool that was
chosen during the prototypical implementation, is stored in a connected model reposi-
tory. Furthermore, this repository is the source of information for the A3F developer. In
the following, individual components of this toolchain and in particular, the internals
of the technical realization of A3F is described in detail.

Model Repository

First, the Model Repository is realized by a database. For instance, it could be a relational
Postgres database, not necessarily running on the same hardware as the framework or
the modeling tool. The applied schema of the relational database must be able to map
and manage models according to any GPML including extension mechanisms. A solu-
tion satisfying these requirements is given by Enterprise Architect®. Therefore, in the
context of our prototype, the predefined database schema from Enterprise Architect® is

117

7 OMNI MODEL APPROACH

Architecture And Analysis Framework (A3F)

Meta-Models

Enterprise

Architect

A3F

Plugin

Model

Repository

Analyses

ea-meta-model

egpp-meta-model

data-transformation-module

EAORM

MAF

REST

Server
3rd Party

Tooling

utp2-meta-model

...

maf-analysis-module

egpp-testgen-module

...

GUI

Framework Core

Figure 7.27: Internal architecture of the A3F

applied, which makes the interaction between the repository and the CASE tool work
out of the box.

In contrast, A3F must provide a way to work with the information in the Model Repos-
itory. A special Object Relational Mapper (ORM) has been developed for this purpose
(see section 7.3.1). All in all, the architecture decision regarding a single and fully-
fledged model repository provides a solid basis for flexible, distributed, and scalable
work with the A3F.

Enterprise Architect®

As already mentioned, a special CASE tool for creating the GPMLs models was cho-
sen in the course of the prototypical implementation, namely Enterprise Architect®.
Enterprise Architect® is one of many modeling tools that are widely used in industry.
Especially the high distribution among industry partners in the context of the research
projects mentioned at the beginning of this thesis has led to the choice of this tool. How-
ever, Enterprise Architect® has several technological unique selling points that have
additionally supported the choice.

On the one hand, the extension possibilities regarding the modeling support of DSLs
are to be emphasized. This makes the use of the MDSD tool for modeling the DSLs
explained in the concept more user-friendly, which has been implemented for some
modeling languages in this thesis. On the other hand, Enterprise Architect® offers the
possibility to extend the standard range of functions with plugins or to adapt it to your
needs. This mechanism is used within the scope of the prototypical implementation.

118

7.3 ARCHITECTURE AND ANALYSIS FRAMEWORK

In addition to the wide distribution and the mentioned extension possibilities, there are
some technological aspects to mention, which are beneficial to the technical implemen-
tation of our prototype.

• Integrated baseline mechanism: a snapshot of model elements and a possibility
to restore a baseline

• Transparent data model: Extensive documentation on the repository data model
available

• Scalable data management: support of various database systems/technologies

All in all, the Enterprise Architect® thus provides a solid basis within the course of
our prototypical implementation. However, the framework architecture enables the
adoption of company-specific tooling, replacing Enterprise Architect® with any other
CASE tool.

The Framework

On the left side of figure 7.27, the functional parts of the framework are shown. Here, a
further distinction is made between the metamodel definitions, the analysis definitions,
and the framework core.

A3F Metamodels At this point a multitude of metamodels including the correspond-
ing transformation rules are defined. These can be classified according to the three-part
division is shown in figure 7.26. In the first category GPMLs, the ea-meta-model is to
be mentioned as a representative, whose components are explained in part VI (Sup-
plementary Material). It is an Ecore representation of the Enterprise Architect® data
model, which is the A3F counterpart of the Model Repository. In particular, the EAORM
uses data from the Model Repository to create instances of this metamodel, which are
then suitably processed. Work may either be carried out directly on the created models
or a specified M2MT is applied to obtain a domain-specific representation.

In the category of DSLs, there is a variety of representatives, indicated by the dots in
the figure. In contrast to the metamodels described above, instances of the u2tp-meta-
model (see section 7.1.2), for example, are always derived from GPML instances. The
combination of such metamodels together with the Integration Model represents the
Omni Model approach in the context of the A3F.

The last remaining category is described by metamodels, which can be assigned to
the presented PSD. The egpp-meta-model (section 7.2.1) should be mentioned here as
a representative Analysis-specific Metamodel. In principle, its instances can be derived
from both of the presented metamodel categories by M2MTs, but usually, a domain-
specific metamodel is used as the source due to the more concrete semantics.

119

7 OMNI MODEL APPROACH

A3F Analyses At this point, the processing modules of the framework are integrated,
which ultimately specify the scope of functions. Here, a module can specify any num-
ber of so-called analyses, which represent the smallest processing units. For example,
the loading (ea_db_loader) and saving (ea_db_persister) of models from the Model
Repository are implemented by separate analyses. In addition to the specification of pro-
cessing logic, which in turn requires certain metamodels from the previous section,
other frameworks can be integrated. Specifically, the module maf-analysis-module inte-
grates the Model Analysis Framework (MAF), which was developed at the professor-
ship. The following list shows a selection of the current A3F analyses:

• history_loader: Load specific analysis results from previous executions
• data_transformer: Runs a model-to-model transformation script
• fta_cutsets: Computes cutsets for a fault tree
• documentation_generator: Generates a set of hypertext documentation for a set

of model artifacts

Since a certain amount of configuration is necessary for addition to the pure implemen-
tation of the functional logic, the following DSL was developed (see listing 7.5), which
allows the specification of these configuration parameters and allows for a combination
of analyses.

1 configuration:
2 (analyses+=analysis)* ;
3

4 analysis:
5 ’analysis’ classID=ID ’(’identifier=ID’)’
6 ((’{’ (parameters+=parameter)* ’}’) | ’;’) ;
7

8 parameter:
9 id=ID ’=’ value=STRING ’;’ ;

10

11 ID : LETTER (LETTER|DIGIT)* ;
12

13 fragment LETTER : [a-zA-Z\u0080-\u00FF_] ;
14 fragment DIGIT : [0-9] ;
15

16 STRING: ’"’ (~(’"’ | ’\\’ | ’\r’ | ’\n’) | ’\\’ (’"’ | ’\\’))* ’"’ ;
17

18 BLOCK_COMMENT: ’/*’ .*? ’*/’ -> channel(HIDDEN) ;
19

20 LINE_COMMENT: ’//’ ~[\r\n]* -> channel(HIDDEN) ;
21

22 WS : [\t\r\n]+ -> skip ; // skip spaces, tabs, newlines

Listing 7.5: ANTLR grammar for A3F configuration language

As the ANTLR grammar shows, a so-called configuration consists of any number of
analyses. Each analysis is specified by a unique classID and an instance identifier. This
makes it possible to use several instances of the same analysis in one configuration.
Besides, a set of parameters can be specified for each analysis in the form of key-value
pairs.

120

7.3 ARCHITECTURE AND ANALYSIS FRAMEWORK

Dependencies between individual analyses can be created in different ways. There
are data dependencies that result from interdependent parameters as well as there are
implementation-related dependencies that result from splitting processing steps across
several analyses.

A3F Core This part of the architecture forms the framework around the components
already explained. In particular, Core implements the execution of an analysis con-
figuration. For this purpose, the transferred configuration is first checked for certain
properties that determine its validity:

• Syntactic conformance to the defined configuration grammar
• Absence of circular dependencies between included analyses
• Proper specification of mandatory analysis parameters
• Presence of dependencies (data and implementation) across individual analyses

If the configuration was classified as valid, an execution sequence is determined from
the underlying dependency graph. This sequence is chosen as optimally as possible
by running independent analyses in parallel. In addition to the pure determination of
the execution sequence, the administration of the processing results of the individual
analyses and their exchange is managed. This means the framework manages all results
of analyses in so-called ResultContainers. This applies to each execution round of a
configuration, as well as across successive rounds. The presented components already
allow functional variants of the A3F, with the possibility for customizing functional
scope.

Framework Extensions

The extensions improve the interaction with the framework. To extend the scope of
functions and interaction with other tools, additional components are planned, ex-
plained at the end of this section.

Developer GUI - This A3F interface allows users to elegantly create and edit config-
urations, checking their well-formedness at all times. Furthermore, the execution can
be controlled, and especially the results of an analysis run can be examined in different
views, e.g. for detailed examination of model transformation results as well as for vi-
sual preparation of model artifacts. In addition to the presentation of analysis results,
the user is provided with detailed log information on the execution of a configuration.
The main view of the GUI is shown in figure 7.28.

Server - To scale the framework better and to create a versatile interface, a server
component was developed. This encapsulates the already presented framework and

121

7 OMNI MODEL APPROACH

provides all interaction points in form of a REST-API. All model data can be retrieved
via this interface and thus be processed in other tools. Furthermore, the server compo-
nent marks the basis for other extensions, which are explained in the following.

Enterprise Architect® Plugin - As already mentioned, the Enterprise Architect®

used in the prototypical implementation offers the possibility to extend its function-
ality with plug-ins. In this way, a further type of interaction with A3F was imple-
mented. The plugin enables analysis configurations to be executed directly from Enter-
prise Architect® and allows the calculated results to be visualized directly. The REST-
API mentioned before is used here, which guarantees the decoupling of the CASE tool
and the framework.

Future Extensions - In principle, further useful extensions are conceivable, but these
were not realized in the course of the prototypical implementation. First of all, the
realization of a frontend should be mentioned here, which is based on the REST-API
and thus represents a more practicable implementation compared to the Developer GUI.
In particular, this allows for better scaling and cooperative work with the framework.
Besides the user interface, the data interface offers great potential for extensions. At this
point, a connection of the framework to other model data sinks is useful and necessary
to be able to leave the context of the MDSD tool. Conceivable is the connection to the
so-called ModelBus, which is a technology that connects different tools in the context of
MDSD and enables data exchange [35]. A technology that is used in the ModelBus and
thus represents a product-independent extension of A3F’s functional scope would be a
connection according to the Open Services for Life Cycle Collaboration (OSLC) [132]. This
enables the connection to other tools that implement an OSLC interface.

7.3.2 Working with the Framework

Based on the remarks on the concepts and architecture of the A3F, the following section
briefly describes how to work with the framework. The already mentioned Developer
GUI forms the basis for this (figure 7.28).

Besides, the already known CSM Omni Model is used to illustrate common steps. The
application scenario is the loading, transformation, and linking of all model artifacts
that participate in the Integrated Model Basis. The configuration representing this func-
tionality is developed on the left side of the Developer GUI using the Analyses Reposi-
tory and the textual configuration editor. The configuration in listing 7.6 represents the
result of this work.

122

7.3 ARCHITECTURE AND ANALYSIS FRAMEWORK

1 analysis ea_db_loader(system) {
2 dbkey="r-db3";
3 requests="EADiagram|{21BECB65-204D-4257-B8F3-8131A7CE9C50}";
4 }
5 analysis data_transformer(system) {
6 request="EnterpriseArchitectPackage|SysmlPackage";
7 inputs="ea_db_loader|system|DataTransformationResult|getOutputElements";
8 }
9 analysis ea_db_loader(test) {

10 dbkey="r-db3";
11 requests="EADiagram|{C50814AB-C0B5-41ca-8BF9-E17676D937E1}";
12 }
13 analysis data_transformer(test) {
14 request="EnterpriseArchitectPackage|U2tpPackage";
15 inputs="ea_db_loader|test|DataTransformationResult|getOutputElements";
16 }
17 analysis ea_db_loader(integration) {
18 dbkey="r-db3";
19 requests="EADiagram|{1EB38DDF-663D-4ae7-9C39-A605DB898BEE}";
20 }
21 analysis data_transformer(integration) {
22 request="EnterpriseArchitectPackage|IntegrationModelPackage";
23 inputs="ea_db_loader|integration|DataTransformationResult|getOutputElements";
24 }
25 analysis data_transformer(systemegpp) {
26 request="SysmlPackage|EGPPPackage";
27 inputs="data_transformer|system|DataTransformationResult|getOutputElements";
28 ppParameters="codeprocessor|c";
29 }
30 analysis data_transformer(testegpp) {
31 request="U2tpPackage|EGPPPackage";
32 inputs="data_transformer|test|DataTransformationResult|getOutputElements";
33 }
34 analysis im_validation(imvali) {
35 validationconfig="11111";
36 targetIMs="{1EB38DDF-663D-4ae7-9C39-A605DB898BEE}";
37 inputs="data_transformer|integration|DataTransformationResult,
38 data_transformer|testegpp|DataTransformationResult,
39 data_transformer|systemegpp|DataTransformationResult,
40 data_transformer|test|DataTransformationResult,
41 data_transformer|system|DataTransformationResult";
42 }

Listing 7.6: Example configuration for A3F based on the Running Example

As already indicated, the analyses specify different sets of parameters controlling the
internal processing of the model data. What can be seen is, that the majority of analyses
are based on each other, with some analyses specifying parameters that in turn use
the results of other analyses as input parameters, e.g. inputs=“ea_db_loader...”.
This results in data dependencies. The dependency graph determines a valid execution
order. This graph can be seen in the upper left corner of the Developer GUI, while
the nodes represent the participating analyses and the edge determine a dependency
between the aforementioned analyses.

123

7 OMNI MODEL APPROACH

Figure 7.28: Main view of the A3F Developer GUI

Once the configuration has been checked and validated, it can be executed by the frame-
work by pressing the Run Analyses button. After execution is completed, the different
views for analyzing the processed results are available as tabs in the main view. In our
case, the processed data of the analyses ea_db_loader and data_transformer can be
examined mainly through the Model Elements view and the Analysis Results view.

Finally, at the bottom of the graph, the log area is shown, which, when executing the
configuration shown, merely provides information on which processing steps were car-
ried out and in what time frame this was accomplished. In other cases, this area can
provide information about possible causes of errors. In the following chapters, which
cover the sub-steps of the MCSTLC, a supplementary part to the configuration shown
above is detailed in each case, which illustrates the concepts in the context of the A3F.

7.4 Related Work

To better understand the Omni Model approach presented, this section discusses re-
lated approaches and shows the differences between them and our approach. However,
since the concepts of the Omni Model approach and the related prototypical implemen-
tation are multi-layered and no comprehensively comparable approach is known to us,
this section is subdivided by the core aspects of our approach. In particular, the aspects
of Model Integration and Analysis-specific Metamodels are examined more closely.

124

7.4 RELATED WORK

Model Integration

The literature presents various approaches to the integration of development informa-
tion/models. A classical method for linking information from different development
artifacts is the so-called requirements tracing. Finkelstein et al. elaborated on the under-
lying traceability problem, which represents the major challenge to establish forward
and backward traceability between requirements and target code [79]. Technically, a re-
quirement management tool such as IBM DOORS® is usually used for the realization.
The Omni Model approach, in contrast, provides more than just the pure traceability of
requirements through the Integration Model.

In addition to the implicit coupling of structure and functionality via requirements,
independently implemented aspects of the system, in terms of Aspect-Oriented Mod-
eling/Design, can be integrated using Model Weaving. The identification of suitable
integration points and the subsequent integration of the additional aspects plays a cen-
tral role [99]. Alternatively, model weaving is applied on metamodel-level to describe
relations between different models by a so-called weaving model, which subsequently
enables integration of model information by transformations [104][50]. However,
such techniques are usually strongly focused on functional aspects and aim to create
a new combined model artifact. In contrast, the Omni Model approach maps both
the structure and the behavior, which opens up the same possibilities. However, the
strict separation of the concerns is maintained, as there is no intention to create an
all-encompassing model artifact.

Especially in the context of Model-Driven Engineering (MDE), the integration of model
information is achieved by the so-called Mega-/Macromodeling. Here, relations between
entire models/metamodels are established by a separate model artifact, whereby the
content of the linked models has no relevance for the linkage [86][34]. This type of com-
bination of model artifacts can be combined with the previously mentioned technique
of model weaving. Bezivin et al. have presented an approach that enables the coor-
dination between different artifacts using the aforementioned techniques [105]. This
is comparable to the Omni Model approach, which is more concrete in terms of the
semantics of the connections between the modeling domains. This allows us to make
certain assumptions regarding the integrated view on parts of the Integrated Model
Basis in later processing steps, e.g. the Abstract Test Case Execution.

Approaches that manage the integration of model data via a uniform information base
usually do not offer flexibility concerning the specification languages used. Further-
more, the aspect Separation of Concerns is often implemented via view/viewpoint-like
constructs, which is sufficient in many cases [92]. In the automotive context, EAST-
ADL deserves to be mentioned here, which, in addition to vertical differentiation about
different abstraction levels, provides for horizontal differentiation of concerns such as
dependability or variability.

125

7 OMNI MODEL APPROACH

Analysis-specific Metamodels

There are several related approaches in the area of specific model artifacts for analysis.
However, most approaches are tailored to very specific problems and therefore cannot
cover all facets of our approach satisfactorily. Especially if the focus is on the execu-
tion of model artifacts, there are some comparable approaches. In the context of UML,
there is the Foundational Subset for Executable UML Models (fUML), which deals with
the executability of UML models and the corresponding semantics of the models con-
cerned [70]. In conjunction with the Action Language for Foundational UML (ALF)
which allows a textual description of fUML concepts, executable models can be speci-
fied [17]. It would be conceivable to specify the model artifacts of the Integrated Model
Basis according to fUML or to translate them via model transformations into an fUML-
compliant variant. However, on the one hand, this restricts the circle of users consid-
erably and on the other hand, this solution is rather designed for formal checks, which
does not reflect the focus of our approach. In the context of our approach, missing/spu-
rious semantics of the original artifact can be enriched so that the characteristics of flex-
ibility and early applicability are preserved.

Another possibility is given by the statecharts developed by David Harel [84]. The
formal syntax and semantics of these statecharts allow checking the correctness of the
modeling even before the first line of code exists. The strictly formal idea behind this
type of specification, however, brings the same problems with it as were mentioned
in the context of fUML. Another problem is the missing description of the structural
hierarchies of the model under consideration. Especially in the context of the creation
of specific model sections (see chapter 8) this leads to problems, but this is explicitly
covered by our implementation in the form of EGPP.

In addition to the modeling possibilities mentioned above, there are many other pos-
sibilities, such as different variations of Petri nets [31]. However, variants for analysis
are often used here that is strongly tailored to the application context and are there-
fore difficult to use for other purposes. Furthermore, in many cases, insufficient doc-
umentation and the availability of a prototype implementation questions the practical
applicability.

7.5 Conclusions and Outlook

In the context of this chapter, we have presented a comprehensive approach that com-
bines models of different development domains/disciplines and prepares them for
analysis purposes. In particular, we focused on necessary test activities during model-
based development. The question formulated in section 1.1

What kind of modeling conventions and metamodeling concepts are essential to effectively
apply testing activities in the early stages of MDSD?

126

7.5 CONCLUSIONS AND OUTLOOK

can therefore be answered as follows. The presented Omni Model approach allows
using the modeling languages commonly utilized by the user, provided that the min-
imum requirements for the subsequent integration are met. These are realized in the
respective domains utilizing a set of modeling guidelines and thus form the basis for
the modeling landscape. A model artifact created explicitly for integration purposes
provides functionality for both structural and behavioral aspects and encapsulates in-
formation important for model-centric testing. By defining a special metamodel for the
analysis-specific view of the model landscape, i.e. EGPP, the basis for uniform process-
ing of all model information is established. This representation is automatically derived
from the original model artifacts through M2MTs. In particular, a sound basis was cre-
ated for all processing steps of the MCSTLC. In addition to the conceptual solution of
the problem definition, a prototype implementation was developed. The Architecture
And Analysis Framework (A3F) created for this purpose offers extensive possibilities
for the processing and analysis of model information, whereby the central concept of
the framework is again the Omni Model approach. The focus was on the practical ap-
plicability of the implementation as well as the integration into existing toolchains.

Each concept has certain strengths and weaknesses, which have to be communicated to
the user such that a well-founded decision for or against the application of the approach
can be made. For this reason, the following section deals with the advantages and
disadvantages in the form of a brief discussion. Among the advantages of the current
approach is the adaptability to the quantity and characteristics of the included model
artifacts. In this context, the strict separation of concerns is advantageous, since no
undesired cross-relationships and emergent behavior arise. Furthermore, the simple
and intuitive display of cross-relationships and the specification of meta-information is
another positive aspect. On the side of the technical implementation, the existence of a
prototype implementation is to be emphasized, which shows the practical applicability.
Especially the applicability from very early phases up to late phases of model-centric
developments gives the user an advantage.

Addressing the approach’s shortcomings, the mentioned functionalities are based to
a large extent on a new and additional model artifact introduced especially for this
purpose, namely the Integration Model. At this point, the additional effort of model
creation and maintenance has to be taken into account. However, this effort can be
kept relatively low by sophisticated support from the tools and strict implementation
of modeling guidelines. Also, the effort for the specification of the M2MTs for the au-
tomated derivation of the analysis-specific representation should not be neglected. Be-
sides, this artifact has to be created by experts, since a high degree of modeling expe-
rience and domain knowledge is required. Conceptual errors in the implementation of
these transformations have serious effects on all downstream processing steps. There
are some shortcomings on the technical level in the current implementation. These
primarily concern the usability of the implementation and the connection to more ex-
tensive and flexible interfaces for model data, such as OSLC or the ModelBus.

In conclusion, possible starting points for future improvements/extensions on the side
of the concept as well as the connected prototypical implementation are shown. On
the conceptual side, the current integration of data flow information via the internal

127

7 OMNI MODEL APPROACH

pseudocode-like language is to be mentioned. In later stages of expansion, further con-
cepts typical for certain programming languages can be taken into account to increase
the functional extent. Likewise, the connection of the concepts just mentioned for the
exchange of model information between tools (OSLC, ModelBus) represents a possible
future extension of the implementation [132][35]. The same applies to the improvement
of the user interface to enable the most intuitive interaction possible.

128

8
Model-Based Test Case Management

Based on the Omni Model of the SUT, whose basic concepts are explained in the previ-
ous chapter, the first processing step of the MCSTLC takes place. In the context of this
step, the test focus and the test level are mapped to the model landscape and thus lay
the foundation for subsequent processing, such as test case generation. As already de-
scribed at the beginning of chapter 6, some phases of the classical STLC are addressed
at this point, albeit in a different order. In particular, the concepts presented in the
following allow for the selection, prioritization, and reduction of test cases in an early
phase of the MCSTLC before test cases are even derived from the model.

In contrast to the largely manual modeling work on the Integrated Model Basis, this
process step represents the first part of the automated processing chain. In early iter-
ations of the MCSTLC, i.e. at low integration levels, only the basic models created by
the modeler/developer are processed. In contrast, in later iterations of this processing
step, i.e. on higher integration levels, findings of the downstream test execution are fed
back into the model and thus taken into account.

As the excerpt of the MCSTLC in figure 8.1 shows, besides the already mentioned In-
tegrated Model Basis, some configuration parameters are necessary to realize the men-
tioned functionality.

Model

Creation/

Modification

Model-Based

Test Case

Management

Integrated

Model Basis

Model-Based

Test Suite

Generation

Scoped

Test Model(s)

Configuration

Parameters

Legend:

Parameters

Process Step

Model Artifact

Figure 8.1: MCSTLC extract focusing the Test Case Management and involved informa-
tion

The test engineer’s test focus must be able to be specified intuitively, again utilizing
and expanding the Aspects concept (see section 7.1.3). The test level (Unit, Integration,

8 MODEL-BASED TEST CASE MANAGEMENT

System) has to be applied to the set of models, which correspond to the specified test fo-
cus. For this purpose, the Execution Graph++ Metamodel (EGPPMM) was introduced.
Based on this set of information, the processing can be performed to produce one or
more so-called Scoped Test Models, each of which represents very specific portions of the
original Test Model. Therefore, the algorithmic solution that realizes the extraction of
these sub-models is called Test Model Scoping.

8.1 Prerequisites for Test Model Scoping

To provide the necessary foundations for algorithmic processing in the context of Test
Model Scoping, the relevant concepts are introduced in this section. In addition to the
obvious configuration parameters like the test level, the mechanism for the specification
of the test focus is presented as well as the relevant parts of the Omni Model.

8.1.1 Test Focus Specification

As previously mentioned, the extraction of a specific Test Model is the overall goal of
this process step. Specific in this context means that the resulting model artifact and test
cases tackle the focused System Model parts. Consequently, the generated test cases
can challenge the focused parts as efficiently and effectively as possible. In this case, the
Aspects concept introduced in section 7.1.3 serves as a basis, which realizes a uniform
interface for intrinsic and synthetic information of the Integrated Model Basis.

Aspects Revisited - The Aspect Constraint Language

The Aspect Definition Language allows specifying the available Aspects and their value
ranges. Furthermore, the concrete values for model elements of the Integration Model,
which reflects the instantiated version of the SUT in terms of its structure, are retrieved
or specified using the Aspect Specification Language. Similar to RBT, where risk assess-
ments are used as a basis for the selection of test cases, this concept allows any infor-
mation of the Omni Model to be included in the process [18][65].

To describe the test focus and to extract the model parts accordingly, the Aspect Con-
straint Language is developed. The language enables the user to specify constraints
for certain Aspects and to combine them with logical operators. Listing 8.1 shows the
grammar that realizes the mentioned functionalities.

In combination with the Aspect Specification Language, the name of the Aspect serves as
a reference to the respective definition. Starting from the Aspect name, the elementary
constraints are described. Depending on the type of the underlying Aspect (ranged vs.
set), different operators can be used to specify the constraint.

130

8.1 PREREQUISITES FOR TEST MODEL SCOPING

1 acdsl: term;
2

3 term:
4 factor (boolbinaryop factor)*;
5

6 factor:
7 constraint | boolunaryop factor | ’(’ term ’)’;
8

9 constraint:
10 cname=ID ’:’ coparator=OP ’[’ cdefpart ’]’ (’:’ clogicop=LOGOP)?;
11

12 cdefpart:
13 (value=ANYID ’,’)* value=ANYID;
14

15 boolbinaryop: BOOLAND | BOOLOR | BOOLXOR;
16

17 boolunaryop: BOOLNOT;
18

19 BOOLAND: ’&’;
20 BOOLOR: ’|’;
21 BOOLXOR: ’^’;
22 BOOLNOT: ’!’;
23

24 LOGOP : ’and’ | ’or’ | ’xor’;
25 OP : ’le’ | ’lee’ | ’in’ | ’gre’ | ’gr’;
26

27 fragment LETTER : [a-zA-Z\u0080-\u00FF_];
28 fragment DIGIT : [0-9];
29

30 ANYID : ’\’’ (LETTER | DIGIT | ’.’)+ ’\’’;
31 ID : (LETTER(LETTER|DIGIT)* | NUMBER);
32

33 NUMBER : ’-’? (’.’ DIGIT+ | DIGIT+ (’.’ DIGIT*)?);
34

35 BLOCK_COMMENT: ’/*’ .*? ’*/’ -> channel(HIDDEN);
36

37 LINE_COMMENT: ’//’ ~[\r\n]* -> channel(HIDDEN);
38

39 WS : [\t\r\n]+ -> skip ; // skip spaces, tabs, newlines

Listing 8.1: ANTLR grammar for the Aspect Constraint Language

For Aspects, which define a continuous value range, a truth value depending on the
threshold value (cdefpart) can be derived using comparison operators (coperator:
< (le), <= (lee), = (in), >= (gre), > (gre)).

In contrast, for Aspects with a discrete set of values, only the overloaded in operator
can be used, which checks each concrete value of the Aspect, whether the respective
element is contained in the set (cdefpart). For each pairwise comparison, a truth value
is derived, which contributes to the overall result. How these partial results are linked
to each other can be specified by three logical operators (clogicop: and, or, xor).

The elementary constraints can be combined into complex constraints. The unary log-
ical negation operator (!) and the binary operators AND (&), OR (|), and XOR (ˆ) are

131

8 MODEL-BASED TEST CASE MANAGEMENT

applicable. Beyond, parenthesis is supported for clarity and binding.

All in all, the presented language offers the necessary constructs to represent the test fo-
cus of the test engineer. Therefore, the user has to develop an Aspect Constraint Language
expression made available to the automated processing chain. An exemplary applica-
tion of the Aspect Constraint Language can be seen in the course of the introduction of
Test Model Scoping in section 8.2.

Execution Graph++-based Test Levels

Besides the constraint-based extraction of a specific part of the Integration Model, the
classic test levels are mapped in the context of the EGPP-based representation of the
original Test Models. Figure 7.24 in section 7.2.2 shows the concepts behind the EGPP-
based Test Models. In particular, the connection to the stub concept is shown, which
plays an important role in the further course.

Essentially, a system-level Test Model is defined by the fact that it is not itself integrated
into another Test Model but integrates other Test Models. A unit-level Test Model, on
the other hand, is integrated into other Test Models but does not itself include any Test
Models. Any Test Models that include other Test Models and are themselves included
in another Test Model are called integration-level Test Models. Further, there are no
restrictions on the number of integration levels in the Test Models.

Analogous to the specification of an Aspect Constraint Language expression, the test
engineer must specify the desired test level and make it available to the automated
processing chain as a configuration parameter.

8.1.2 Excerpt of the Omni Model

The Omni Model, or Integrated Model Basis, containing the Test Model and its rela-
tions to the Integration Model covers the structural relations and relations regarding
the specified control flow. All these relations are specified on the original model and
are further incorporated into the internal EGPP representation within the context of the
M2MTs presented in section 7.2.2.

Furthermore, in the context of Test Model Scoping, the aspects defined and specified in
the Omni Model play an important role and have a significant influence on the quality
of the scoping results. The quality of these results can be improved by either connect-
ing additional model information via the Integration Model, or by maintaining custom
Aspect information in the Integration Model for a more precise focus specification.

132

8.2 TEST MODEL SCOPING

8.2 Test Model Scoping

The term Test Case Management conceals different goals concerning the resulting set of
test cases for a certain test objective. Specifically, the disciplines selection, prioritization,
and reduction are covered by a corresponding configuration of the same algorithmic
solution. These three disciplines pursue a similar goal, namely the selection of a subset
of test cases, where the contained test cases fulfill a certain objective. Projected to the
model-level, the aim is to extract sub-models from the entirety of the Test Models. The
term Test Model Scoping (TMS) is used as a representative term for the algorithmic
solution.

Based on the Integrated Model Basis and the configuration parameters explained in the
previous section, the TMS process is divided into three phases. The first step Integra-
tion Model Based Filtering reduces the original Integration Model based on the Aspect
Constraints. Based on the results, the subsequent step Test Model Mapping and Recon-
struction exploits the cross-domain connections between model artifacts to derive Test
Model artifacts that are related to the extracted Integration Model parts. However, the
resulting set of model elements of the Test Model does not necessarily represent a valid
Test Model in the sense of a valid input for the subsequent test case generation. There-
fore, in the same processing step, a valid Test Model is reconstructed from the set of Test
Model elements. The last step of the processing chain Test Model Split and Enrichment
deals with the split of the derived intermediate Test Model alongside integration levels
to end up with a set of Scoped Test Models of uniform integration level. Further, the
enrichment of these Scoped Test Models depending on the choice of the subsequent test
case generator represents a task of this process step. Altogether, this step of the MC-
STLC represents a target-oriented preparation of the model basis for the downstream
processing steps.

The contents of the following sections on Test Case Management and the TMS process
represent a continuation of the concepts of the conference paper [145].

8.2.1 Integration Model based Filtering

As already mentioned, the fully-blown Integration Model marks the starting point of
the TMS process and thus for the Integration Model based Filtering step. The goal of this
processing step is to extract a submodel that corresponds to the focus of the test engi-
neer and serves as a starting point for further processing steps. The Aspect Constraint
Language introduced in section 8.1 allows the test engineer to specify the test focus.
The evaluation of this Aspect Constraint expression in turn is based on the concrete
Aspect Specifications of the model elements of the Integration Model. The affected el-
ements (IMTreeNode) of the Integration Model form a tree structure, which is schemat-
ically represented in figure 8.2 and is used for further explanations. Furthermore, the
dashed connectors represent the type IMGeneralization, and the solid connectors the
type IMPartOf.

133

8 MODEL-BASED TEST CASE MANAGEMENT

1.

2.

3.

4.

5. 8.

6. 7.

Figure 8.2: Algorithmic approach for Integration Model based filtering

The different colors of the nodes represent the result of the evaluation of the Aspect
Constraint Snippet on the respective Aspect Specification. A black node means that
the evaluation was positive, i.e. all analyzable constraints and their combinations are
fulfilled. A white node, however, symbolizes a negative result of the evaluation. A
gray node means that no evaluation can be performed since the node does not specify
any information about the respective Aspects. This case is treated in the same way
as a positive evaluation about the resulting set of model elements of the Integration
Model.

The evaluation of the Aspect Specification Snippets starts at the root node of the tree
structure. However, if only a subtree of the original Integration Model is to be con-
sidered, the test engineer has the additional option of setting a different node as the
starting point for the evaluation. In case of a positive evaluation of the root node’s As-
pect Specification, the evaluation for the child nodes is triggered. If the result of the
evaluation is negative, the top-down process for the respective branch of the tree struc-
ture ends, and all nodes below are evaluated as negative. A special case comes into
effect as soon as two nodes of the tree structure are connected with an IMGeneraliza-
tion (see figure 8.2 top left). In this case, if the higher-level node has been evaluated
positive, the node below is evaluated positively, although the evaluation was not yet
performed.

As soon as this process stalls, the determination of the reduced Integration Model is
finished. The right side of figure 8.2 shows the result schematically. Furthermore, if the
combination of Aspect Constraints is too restrictive, the resulting set of model elements
remains empty. In this case, it is either necessary to reshape the formulation of the
Aspect Constraint Snippet or gives an indication to rework the related model parts. To
illustrate the presented functionality, the running example from section 6.2 is utilized.
In the context of the Integration Model explanations (see section 7.1.3) some Aspect
Definitions have already been defined, which are listed below:

partID:String:set [’CSM’,’RSM’,’TSM’];
safetyLVL:Integer:ranged [0,5];
devPRIO:Integer:ranged [0,10];

134

8.2 TEST MODEL SCOPING

Based on this, the model elements of the tree structure specify concrete values for the
respective Aspects. However, it is legitimate that not every model element specifies a
value for every Aspect. For the already introduced Integration Model of the Running
Example, the values of the Aspects embedded in figure 8.3 are specified. The determi-
nation of these concrete values may have various origins. For example, the safetyLVL
can be an abstract representation of a Key Performance Indicator (KPI) of a Failure
Modes And Effects Analysis (FMEA) of the respective system, whereas the devPRIO
may represent an abstract quantity that prioritizes components based on planning doc-
uments.

<<IMComponent>>

System

<<IMFunctionality>>

CSM

<<IMComponent>>

CSM

partID = [‘CSM‘];

<<IMComponent>>

Release Speed Monitoring

partID = [‘RSM‘];

<<IMComponent>>

Target Speed Monitoring

partID = [‘TSM‘];

<<IMFunctionality>>

CSM_ON

safetyLVL = [‘6‘];

<<IMFunctionality>>

calc_permitted_speed_to_driver

safetyLVL = [‘3‘];

devPRIO = [‘4‘];

<<IMFunctionality>>

dV_warning

devPRIO = [‘7‘];

<<IMFunctionality>>

dV_sbi

devPRIO = [‘5‘];

<<IMFunctionality>>

calc_speed_onboard

safetyLVL = [‘3‘];

devPRIO = [‘10‘];

<<IMFunctionality>>

dV_ebi

devPRIO = [‘5‘];

<<IMFunctionality>>

calc_speed_to_driver

safetyLVL = [‘4‘];

devPRIO = [‘4‘];

Figure 8.3: Algorithmic approach Integration Model based Filtering applied to the Run-
ning Example

Based on this starting point, the test engineer defines the test focus as follows:

partID:in [’CSM’] & safetyLVL:gre [’3’] & devPRIO:gr [’7’]

In concrete terms, the focus is put on components that can be assigned to the Ceil-
ing Speed Monitoring Subsystem, which is categorized greater than or equal to 3 in
terms of safety level and has been assigned a priority value greater than 7 by the de-
velopment team. For any evaluated model element i.e. all the mentioned constraints
need to be fulfilled (AND operator) to satisfy the test focus. Evaluating the tree structure
presented in figure 8.3 accordingly, the grayed-out model elements are excluded from
downstream processing. Overall, this can significantly reduce the tree structure, which
in turn constitutes the starting point for the next processing step of TMS.

135

8 MODEL-BASED TEST CASE MANAGEMENT

8.2.2 Test Model Mapping and Reconstruction

Starting from the resulting model of the Integration Model based Filtering process step,
Test Model Mapping and Reconstruction is carried out. In this step, the mapping rela-
tions between the Integration Model and the EGPP representation of the Test Model
specified by the modeler are utilized. As already described in the modeling guidelines
for the Integration Model (see section 7.1.3), the balance between a very fine granular
modeling of mappings and a very loose specification of these relations has to be de-
termined at this point. The specification of as many cross-relations as possible would
be advantageous for the results of this processing step, but in turn, has rather negative
effects on the explorative possibilities of the subsequent Abstract Test Case Execution
(see chapter 10). Starting with details of the solution, as illustrated in figure 8.4.

Filtered Integration Model Test Model Reconstructed Test Model Filtered Test Model

Figure 8.4: Algorithmic approach for Test Model Mapping and Reconstruction

On the left side of the figure, the schematic Integration Model of the last section is in-
cluded. The grayed-out nodes and edges represent the model elements, which were
filtered during the Integration Model based Filtering process step. Nevertheless, the fully-
blown Integration Model still contains mapping information (dashed horizontal con-
nectors) for all types of nodes, whether filtered or not. Therefore, in the first step, this
mapping information is used to project the filter status of Integration Model elements
onto the connected Test Model elements. Thereby, the mapping information can be
utilized on different types of model information. Structure-giving components can be
mapped, including the encapsulated behavioral descriptions and mapping can be spec-
ified on this basis, whereby the behavioral descriptions represent a fragmented version
of the original model artifact.

The result of this projection is represented by partially grayed-out components anal-
ogous to the ones of the Filtered Integration Model. In the middle of the Test Model
area, a completely mapped sub-model as well as an excluded sub-model can be seen.
In contrast, the sub-models at the lower edge of this area are only partially mapped.
These partial Test Models do not represent valid models instances in the sense of the
EGPP metamodel definition.

To convert the set of mapped Test Model components back into a valid EGPP repre-
sentation, it is necessary to perform a reconstruction step. The reconstruction concerns
especially the control flow between the EGPPInitialNodes and the EGPPFinalNodes of

136

8.2 TEST MODEL SCOPING

an EGPPGraph. Due to the possibility of selective mapping of elements of the behav-
ioral description (elements of the aforementioned control flow), the path to a mapped
element may be corrupted. If such defects in the Test Model or its sub-models are not
corrected, test cases would be erroneously excluded during the subsequent Test Case
Generation (see chapter 9).

Therefore, a static control flow analysis is carried out to restore the corrupted paths. In
order to be able to implement this on the control flow-like representation of the EGPP
models, the concepts underlying the Model Analysis Framework (MAF) are utilized.
For each of the metamodel elements of the EGPPMM, evaluation rules based on attri-
butions specify a data flow analysis (see [152]) that determines all possible paths to the
EGPPInitialNode starting from the EGPPFinalNodes. The set of possible paths is cal-
culated in advance based on the fully-blown Test Model. Subsequently, a comparison
between the calculated paths and the set of mapped Test Model elements is performed.
This comparison can be conducted with varying degrees of severity depending on the
test engineer’s preferences (retention policy). I.e. a path is included in the result
set if only one model element of the path has been mapped (require_one), or it even
requires that all model elements of the considered path have been mapped (require_-
all). The graph structure described by the resulting set of paths, which is determined
according to the selected retention policy, determines the Reconstructed Test Model.
Schematically illustrated in figure 8.4.

The final task of this process step is the application of the Test Model specific config-
uration parameters, namely the specified test levels. As explained in section 8.1.1, the
traditional test levels Unit, Integration, and System are utilized. In our schematic rep-
resentation (see figure 8.4), for example, the Unit and Integration levels are specified
as the target test levels, i.e. the Filtered Test Model is composed of one Integration Test
Model and the two Unit Test Model components. The model parts that tackle higher
integration levels are grayed out.

In addition to the conceptual description, the procedure for this process step is shown
utilizing the Running Example. The Filtered Integration Model determined in the last
section serves as a starting point (see figure 8.3 left side). However, the details are left
out, but an illustration including a brief explanation of the results of the steps as shown
in figure 8.5 is conducted.

In the middle of the figure, the Reconstructed Test Model is shown, which is calculated
based on the retention policy require_one, a relatively soft criterion for the path map-
ping and reconstruction phase. After applying the test levels Unit and Integration,
the Filtered Test Model is obtained, which is located on the right side of the figure.

8.2.3 Test Model Split and Enrichment

The last remaining process step in the context of Test Model Scoping is the Test Model
Split and Enrichment. During processing, the Filtered Test Model of the Test Model Map-

137

8 MODEL-BASED TEST CASE MANAGEMENT

Reconstructed Test ModelFiltered Integration Model

<<IMComponent>>

System

<<IMFunctionality>>

CSM

<<IMComponent>>

CSM

<<IMFunctionality>>

CSM_ON

<<IMFunctionality>>

calc_speed_onboard

<<EGPPGraph>>

System

<<EGPPGraph>>

CSM Integration

<<EGPPGraph>>

CSM_ON Integration

<<EGPPGraph>>

calc_speed_onboard Unit

Filtered Test Model

<<EGPPGraph>>

System

<<EGPPGraph>>

CSM Integration

<<EGPPGraph>>

CSM_ON Integration

<<EGPPGraph>>

calc_speed_onboard Unit

Figure 8.5: Algorithmic approach for Test Model Mapping and Reconstruction applied to
the Running Example

ping and Reconstruction step is split into independent Test Models of uniform integration
level and thus do no longer include any hierarchy information. In this step, the set of
resulting Test Models can be enriched with information from the Omni Model. This
is especially beneficial if this information can be used profitably by external test case
generators.

The concepts are illustrated by a schematic representation (see figure 8.6). On the left
side of the figure, the starting point is given by the Filtered Test Model.

Filtered Test Model Test Models

Scoped Test Model

Scoped Test Model

Scoped Test Model

Enriched Test Models

Scoped Test Model

Scoped Test Model

Scoped Test Model

OM

OM

OM

OM

Figure 8.6: Algorithmic approach for Test Model Split and Enrichment

The model artifacts excluded from the fully-blown Test Model are again displayed in
gray color. For the generation of test cases and their subsequent execution, however, it
is difficult when test cases of different integration levels appear mixed.

Therefore, the goal of the Filtered Test Model decomposition is to create a set of Test
Models that each represent a uniform integration level and can therefore be considered
in isolation. I.e. the connection between model elements of the sub-model of the higher
integration level and the sub-models of the integration level below have to be suitably

138

8.2 TEST MODEL SCOPING

resolved. In the context of the EGPP-based representation of the Test Models, such
connections are modeled by an EGPPGraph node in the control flow of the sub-model
of higher integration level and a graph contained therein, which describes the sub-
model of the integration level below. This can be achieved by extracting the model
elements of the included graph and keeping only the stub model information on the
EGPPGraph. The concepts of these stub models have been discussed in section 7.2.2, a
concrete application is shown in chapter 10. In the middle part of figure 8.6, these stub
models are visualized by squares included in the control flow. The model elements
extracted from the graph form an independent Test Model. In total, three independent
and semantically correct Scoped Test Models are created from the three original sub-
models of the Test Model.

After the set of Scoped Test Models is determined, it is possible, to annotate the model
components with additional information from the Omni Model. In this way, informa-
tion available within the MCSTLC can be made available for external tools. This can
improve the quality of the resulting test cases significantly and the necessary documen-
tation, e.g. the generated test reports, can be improved. The construct EGPPTaggedData
is used to implement a flexible annotation mechanism. In particular, it is possible to
specify the information for individual model elements of the Test Model. Furthermore,
additional information can be annotated for the entire EGPPGraph of a Test Model. In
figure 8.6 the dotted lines in the right area indicate how the information is assigned.
An example of such data is linked requirements that justify the linked tests, or quantifi-
cation of investigations regarding the safety evaluation of certain system parts, respec-
tively the relevance of the assigned test cases.

Finally, this section refers to the Running Example by applying the steps just presented
to the intermediate Test Model of the previous section. Figure 8.7 shows on the left side
the initial situation and on the right side some relevant sections of the resulting Scoped
Test Models.

Filtered Test Model

<<EGPPGraph>>

System

<<EGPPGraph>>

CSM Integration

<<EGPPGraph>>

CSM_ON Integration

<<EGPPGraph>>

calc_speed_onboard Unit

Scoped Test Models

<
<

E
G

P
P

G
ra

p
h

>
>

C
S

M
 I

n
te

g
ra

ti
o

n

<<EGPPGraph>>

CSM_ON Integration

<<EGPPGraph>>

calc_speed_onboard Unit

calc_speed_onboard

(0)

V_mrsp = 115

status = 0

V_mrsp = 110

speedOnboard == V_mrspO
th

er
 p

at
hs

...

...

O
th

er
 p

at
h
s

...

...

V_est = 125

DMICmd == 2

Figure 8.7: Algorithmic approach for Test Model Split and Enrichment applied to the Run-
ning Example

The Test Model CSM Integration is included in the figure for completeness, but con-

139

8 MODEL-BASED TEST CASE MANAGEMENT

tains no information about the included test paths. In contrast, the CSM_ON Integra-
tion, as well as the calc_speed_onboard Unit Test Model give insight into details.
The first one shows an example path from the set of paths (test cases), which includes
a call of the method/function, tested by the second Test Model. Moreover, the stub
model is introduced, visualized as a rectangle. The nodes with rounded corners are
EGPPNodes, containing atomic statements of the resulting test cases. This way, a large
number of tests are mapped in the model. In figure 8.7 these remaining parts of the
graph are represented by the nodes with the labels “|other paths|” or “|...|”. The
same holds for the second graph calc_speed_onboard, which, unlike the other graph,
does not contain any stub models.

8.3 Technical Realization within A3F

Based on the Architecture And Analysis Framework (A3F) presented in section 7.3,
extensive analyses can be realized on models. This is especially true for the process
steps of the MCSTLC, implemented either as stand-alone analyses or as a combination
of several analyses. The same holds for the Test Case Management functionality and
the algorithmic implementation through TMS.

Using so-called Configurations, both the dependence on other analyses and the nec-
essary parameters can be passed to the A3F. For the analysis im_scoping up to five
different parameters can be specified, which in turn control the behavior of the internal
functionality. Table 8.1 lists the possible parameters and gives a brief explanation in
each case.

Table 8.1: Configuration parameters for im_scoping analysis
Parameter Description

integrationmodel Determines the input set of Omni Model elements for processing

customrootguid A GUID of an Integration Model element, which represents the
new root element of the Integration Model Based Filtering step

aspectconstraints An Aspect Constraint Language snippet to be evaluated during
the Integration Model Based Filtering step

retentionpolicy Determines the retention policy applied after the data flow anal-
ysis for Test Model paths generation during the Test Model Map-
ping and Reconstruction step. Possible values are require_one or
require_all

testlevels The target set of test levels, which determine the Filtered Test
Model as a result of the Test Model Mapping and Reconstruction
step

Besides the necessary model information, which is specified by the parameter inputs,
there are some implicit dependencies to other analyses (see figure 8.8).

140

8.4 RELATED WORK

ea_db_loader(test) data_transformer(test)

ea_db_loader(system) data_transformer(system)

ea_db_loader(integration)

data_transformer(testegpp)

data_transformer(systemegpp)

im_validation(imvali) im_scoping(omni)

Figure 8.8: Analyses dependency graph for the im_scoping analysis

On the one hand, analyses are necessary, which provide the model information, like
ea_db_loader, on the other hand, these must also be transferred into the required rep-
resentation format (e.g. EGPP). In particular, it is necessary for the im_scoping analysis
to perform the im_validation analysis in advance. At this point, the model informa-
tion around the Integration Model is checked and the links of the Integration Model to
the other Domain-Specific Models is finalized.

Listing 8.2 shows an exemplary configuration of the A3F, whereas the preceding anal-
yses are not detailed at this point.

1 <configurations of preceding analyses>
2

3 analysis im_scoping(omni) {
4 integrationmodel=
5 "data_transformer|integration|DataTransformationResult|getOutputElements";
6 customrootguid="";
7 aspectconstraints=
8 "partID:in [’CSM’] & safetyLVL:gre [’3’] & devPRIO:gr [’7’]";
9 retentionpolicy="require_one";

10 testlevels="unit,integration";
11 }

Listing 8.2: Example configuration for the im_scoping analysis

If this configuration is executed in the context of the Omni Model of the Running Ex-
ample, the results match with the ones shown and explained in section 8.2.3.

8.4 Related Work

To better classify the concept, several approaches that have addressed the challenges of
Test Suite Reduction, Test Case Selection, and Test Case Prioritization are presented in this
section. However, it should be noted that the majority of the described approaches are
based on the code-level or on an existing set of concrete test cases, which makes the
comparison to our approach somewhat abstract.

The range of MBT approaches is very diverse, which is reflected in the publications
in this area [169][57]. In particular, the challenges mentioned above usually represent
criteria against which different approaches are compared. Utting et al. have differenti-
ated in their taxonomy for example about the applied Test Selection Criteria [169]. The

141

8 MODEL-BASED TEST CASE MANAGEMENT

included approaches clearly show that algorithmic attempts to determine an appropri-
ate test suite are the preferred option. However, in the context of their Conclusion and
Outlook, the future research question of a meaningful “domain-specific test selection
criteria” [169] is proclaimed. In our opinion, such a criterion is based on an extensive
domain-specific knowledge base and cannot be solved sufficiently by purely algorith-
mic approaches.

A typical application case is given by Hemmati et al. in the form of an industrial case
study [88]. When implementing a Hardware-In-The-Loop setup in conjunction with
MBT the phenomenon of test case explosion is frequently observed, which makes an
effective mechanism for test case selection indispensable. The consideration of differ-
ent approaches to select an effective set of test cases led to a genetic algorithm that
eliminates similar test cases and thus reduces the resulting test suite. Comparing this
approach with our Test Case Management approach, this type of decision-making can
be mapped by the Test Model Scoping mechanism. By an upstream analysis of the Test
Model, similarity values (fitness function) can be derived and annotated to the model
in the form of Aspects. However, in determining this quantification, a much more com-
prehensive source of information can theoretically be used, which can offer a significant
advantage over test case analysis. In addition to the selection of test cases, prioritization
can at the same time be achieved.

In the sense of our mapping of sub-models to models of other domains, some ap-
proaches in the literature are based on the most obvious artifacts in the development
process, namely the requirements. Harrold et al. use the link between requirements and
concrete test cases to control the resulting set of test cases. [85] In connection with the
concept of tracking requirements across different model artifacts, as presented by Ab-
bors et al., a concept results which is comparable to our generalized approach to linking
and selection based on information from a diverse set of domains. [13] An alternative
approach for prioritizing test cases based on requirements information is presented by
Arafeen et al.. [23] Based on the relationships between requirements, code fragments,
and test cases, clusters are formed, which in turn are prioritized based on heuristic anal-
ysis. Such a prioritization via clustering can be realized by our approach by including
information from System Modeling, Test Modeling as well as requirements modeling.
Using a corresponding metric, which is quantified by an aspect, the algorithm can then
automatically create the appropriate Scoped Test Models. A similar approach is pre-
sented by Abbas et al. which in turn prioritizes requirements and then maps them to
the linked test cases. [12]

In the context of selection and prioritization of test cases, approaches are frequent in the
literature that in one way or another use costs as a basis for decision-making. Herzig
et al. for example select and prioritize based on the execution costs for test cases. [89]
To estimate/minimize possible follow-up costs, risk-based testing or the selection and
prioritization of test cases based on risk assessments is often applied. [66][65] Such test
case management approaches are of particular relevance in the context of regression
testing, where the focus is on reducing costs. Therefore, Khatibsyarbini et al. have
published a comprehensive literature review, which includes the different decision cri-
teria and respective trend analyses. [108] The same holds for the research of Engstrom

142

8.5 CONCLUSIONS AND OUTLOOK

et al., which in particular investigate the two aspects of Cost reduction and Fault detec-
tion effectiveness of the mentioned approaches. [60] Due to the model-centric character
of our approach, all information about the evolution of the model basis is available,
which allows the implementation of a variety of the mentioned regression test selection
approaches through our test case management approach.

Overall, the conducted literature research in the field of selection, prioritization, and re-
duction of test cases could not identify a matching approach. The conformity of certain
sub-concepts in the area of cross-domain evaluation of development artifacts, as well
as the feasibility of other solution concepts within the scope of our approach, indicate
the meaningfulness and relevance of the developed concepts.

8.5 Conclusions and Outlook

In the course of this chapter, we have presented an approach for Omni Model-Based
Test Case Management. This approach tries to incorporate as much information as
possible from the comprehensive Integrated Model Basis into the process of Test Model
Scoping. Based on that, many targeted Test Models matching the previously specified
focus of the test engineer, are generated. The question formulated in section 1.1

How would an intuitive and holistic data-driven test case management approach (selection,
prioritization, and reduction) on the model-level look like leading to manageable test suites

reflecting the tester’s mindset?

can therefore be answered as follows.

By combining a variety of information sources in the context of the Omni Model, the
approach presented provides a comprehensive and solid data basis. In combination
with the Aspects concept and the language constructs based on it, this basis can easily
be extended with meta-information. Furthermore, any information can be used intu-
itively and consistently by users in this way. The flexibility of these concepts makes it
possible to cover several disciplines of Test Case Management, such as Selection, Prior-
itization, and Reduction with the same approach. In each case, the problem is reduced
to the definition, specification, and selection of appropriate Aspects, which in turn are
under the control of the user. Possible application scenarios such as Risk-Aware Test
Case Prioritization, Model-Based Regression Test Selection, or Product line-Aware Test Case
Management have already been demonstrated in [145].

Each approach has advantages as well as shortcomings, discussed below. One of the
advantages of this concept is undoubtedly its ease of use. This is reflected by the in-
tuitive interface and adaptability for the user and by the automated processing of the
model data. Especially the final processing step, which provides an export to different
formats, is a clear advantage since context-specific external processing chains can ben-
efit from the information base. The most important advantage, which is in the sense

143

8 MODEL-BASED TEST CASE MANAGEMENT

of the overall question of this thesis, is the reduction of complexity. Specifically, the
task of selecting test cases is shifted from an almost unlimited number of test cases to
the model-level, which increases the degree of abstraction and makes interrelationships
more tangible.

However, the advantages mentioned above are counterbalanced by some shortcom-
ings, which are important when weighing up practicability. As already mentioned in
the context of the Integrated Model Basis, the quality of the domain-specific models and
especially of the Integration Model plays a central role throughout all process steps of
the MCSTLC. If the models are not created by the formulated guidelines and are not
maintained throughout, this has a significant impact on results that are determined in
a largely automated manner. Another shortcoming of the presented approach to Test
Case Management is the rather sequential nature of the test process. Usually, the men-
tioned disciplines are performed after the creation of the concrete test cases. This can
lead to a reduced acceptance of the approach by the user.

Altogether, the approach described in this section represents an essential part of the
MCSTLC. Possible improvements of this process step are linked to the mentioned short-
comings. On the one hand, learning algorithms could be used to complete and improve
the Integrated Model Basis concerning the Aspects used or the linked domain-specific
models. On the other hand, this would improve the quality of the results, but is related
to some pitfalls, whereby a supposed improvement of the information base leads to a
deterioration of the results. Further, a survey of model-based developers and testers
could provide valuable insights into the best possible integration into existing pro-
cesses. A corresponding adaptation could significantly improve the acceptance of this
approach.

144

9
Model-Based Abstract Test Generation

The next step of the developed MCSTLC includes the generation of test cases from
Test Models. For this purpose test cases are derived from the Scoped Test Models de-
termined in the previous processing step. To provide the algorithmic solution with
sufficient information, the Omni Model (Integrated Model Basis) is utilized, as well as
expert knowledge to configure the process step. By integrating all the information, it
is possible to create very targeted test suites for submodels of the SUT. Besides, the
processing of the information is automated. The expert is only necessary for the read-
justment of configuration parameters and the monitoring of the processes. Further-
more, the process step of test case generation can be applied in different contexts (see
figure 9.1).

Model-Based

Test Case

Management
Model-Based

Test Suite

Generation

Integrated

Model Basis

Scoped

Test Model(s)

Model-Based

Mutation

Analysis

Machine-Interpretable

Mutation Analysis

Results

Abstract

Test

Execution

Tes t Case(s)

Rated Test Case(s)

Configurat ion

Parameters

Legend:

Document

Parameters

Process Step

Model Artifact

Test Case

2

1

Figure 9.1: MCSTLC extract focusing the Test Case Generation and involved informa-
tion

The process step can be applied to the first iteration of the test case determination of a
specific Scoped Test Model (see the upper part or 1). I.e. no test cases have been created
yet for the Test Model, and therefore the quality of these test cases has not yet been
evaluated. In this case only the model information and the configuration parameters of
the experts can be used.

9 MODEL-BASED ABSTRACT TEST GENERATION

Moreover, Test Case Generation can incorporate information about an already analyzed
test case set of the respective Scoped Test Model (see the lower part or 2), obtained from
the Omni Model-based Mutation Analysis (for details see chapter 11). Therefore, an
evaluated test case set is available, which can be reduced according to various criteria
(e.g. Mutation Score) and ultimately represents the determined test suite. In particular,
it can be used to determine a better starting point for the test cases at the code-level
and to design the test suite for the subsequent test case execution as efficiently as pos-
sible.

9.1 Prerequisites for Test Suite Generation

The number of Scoped Test Models plays an important role in the MCSTLC process,
as discussed in detail in chapter 8. In addition to the Scoped Test Models, the expert
plays an essential role, since she/he has to specify the starting point of the automated
processing chain as well as the parameters for determining the quality of test cases (e.g.
a threshold for the Mutation Score) and for defining the exit criteria.

9.1.1 Expert’s Configuration Parameters

These configuration parameters are divided into different areas, each of which relates
to the configuration of specific parts of the process step.

Start Criterion

In context 1, the definition of a suitable Start Criterion for the generation of an initial
set of test cases represents one of the expert’s core tasks. Starting from this initial crite-
rion, all iterations of the MCSTLC can be optimized concerning the defined exit criteria,
which is described in more detail in section 9.2.2. To define such a Start Criterion, the
expert has to assign a criterion of the subsumption hierarchy (see figure 5.5) to the
respective Scoped Test Model. Besides, she/he can configure the algorithm that im-
plements the selected criterion with a specific amount of information, e.g. a maximum
number of derived paths. In many cases, such information improves the performance
of the considered Scoped Test Model.

Exit Criteria

Further, appropriate Exit Criteria determine whether the generated test suite meets the
expert’s requirements and thus the continuous process of improving the test suite can

146

9.1 PREREQUISITES FOR TEST SUITE GENERATION

be terminated. The mentioned criteria are specified on the domain-specific model arti-
facts involved in the Omni Model and evaluated in the context of section 9.2.1. Which
domains are included in the evaluation is determined by the expert. Further, the expert
determines per domain which coverage metric is to be applied and which threshold the
metric needs to exceed. The set of applicable metrics includes the already mentioned
coverage metrics but can be extended by special metrics from the respective model-
ing domain. In the context of the MCSTLC, however, each metric involved must be
identifiable.

Test Case Quality Threshold

The expert defines a threshold value for the test case quality, which is based on its
Mutation Score (see section 11.2.3). If a test case from the set of generated test cases does
not meet this threshold, it is excluded from the final test suite. The choice of the concrete
threshold value has to be realized based on empirical values. This is necessary since
the application of a dynamic threshold value in early iterations of this feedback cycle
would have negative effects on the resulting set of test cases, which is due to missing
knowledge of the average quality of the initial test suite. However, an adjustment of
the threshold value by the expert during later iterations is conceivable.

9.1.2 Machine-Interpretable Mutation Analysis Results

In contrast to the input artifacts that have to be created manually, this artifact is the re-
sult of the Mutation Analysis (see chapter 11). In particular, all information on Mutation
Analysis of the previously generated test cases, such as the Mutation Score or the exe-
cution reports, is collected here. The mentioned execution reports include details on the
respective executions of a test case against the set of created mutants. This enables the
expert to reconstruct the way the test case produced the respective test results. In addi-
tion to the machine-processed parts of the report, a concise, human-readable version of
the information is provided, giving the expert insight into the automated processing,
which can be used to optimize the manual configuration parameters.

9.1.3 Excerpt of the Omni Model

In the context of this process step, the Test Model as part of the Omni Model is used
to derive test cases. Further, connected domain-specific models are utilized for the
evaluation of metrics, which are part of the exit criteria of test case generation. Since the
exit criteria may just be defined on the System Model, an Omni Model consisting of Test
Model, System Model and Integration Model represents the minimum configuration
for this process step. However, it is recommended to incorporate more domain-specific
models to be able to detect model smells at an early stage of development.

147

9 MODEL-BASED ABSTRACT TEST GENERATION

9.2 Test Suite Generation

Based on the input artifacts introduced above, the current process of test case genera-
tion is explained in this section. The process is divided into four sub-steps.

The first step of the process called Artifact and Feedback Evaluation analyzes the artifacts
necessary for test case generation. In particular, this step has to be seen in the two
contexts introduced in figure 9.1. If Scoped Test Models are under consideration, which
have not been processed in any of the previous iterations, these models are evaluated
for the chosen Start Criterion. Otherwise, the evolution of several indicators for the
previously derived test suite are tracked. This includes the evaluation of the multi-
domain coverage as well as the identification of bad test cases in terms of their Mutation
Score, usable as a criterion for reducing the test suite.

The second step of the process, Test Case Generation Metric Adaption, deals with the se-
lection and adaptation of the criterion and the associated algorithm, to obtain a set of
test cases from the Scoped Test Models. If no information from previous iterations is
available for the Scoped Test Models, expert knowledge can be used to determine an
initial criterion. In case of no such information being available, the Start Criterion is
determined from the information collected in the Artifact and Feedback Evaluation phase.
Based on the evolution of the multi-domain exit criteria metrics over the last iterations,
a new criterion is selected, which in turn determines the algorithm applied to generate
the test cases.

The third step of the processing chain called Data Flow Analysis-Based Test Case Gener-
ation deals with the conceptual implementation of the test case generation using data
flow analysis techniques. In particular, the relationship between the criteria of the sub-
sumption hierarchy and the associated algorithms is detailed in the form of MAF-based
analyses for EGPP-based Scoped Test Models. An analysis in Model Analysis Frame-
work (MAF) comprises a data flow analysis of an EGPP instance, which evaluates any
data annotated to the metamodel.

The fourth and final step of the process, Feedback-Oriented Test Suite Creation, incorpo-
rates the lessons learned from previous iterations on the relevant Scoped Test Models.
In particular, quality properties of individual test cases are projected onto test cases
of the newly created test case set, thus implementing a kind of blacklisting for bad
test cases. This reduces the final test suite to an efficient subset of the generated test
cases.

9.2.1 Artifact and Feedback Evaluation

This processing step is the starting point of the test case generation. On the one hand,
the input models and on the other hand the feedback of an already performed muta-
tion analysis of these models are processed here. The former is particularly useful if

148

9.2 TEST SUITE GENERATION

no start criterion is specified and no knowledge of derived test cases is available yet.
In particular, the Scoped Test Models are evaluated to gain first insights into suitable
coverage criteria for the subsequent selection process. This evaluation looks at the na-
ture of the graph structure that defines the respective Scoped Test Model. Depending
on the complexity of the initialization phases, the degree of branching, and the occur-
rence of loops included in the Scoped Test Model, a Start Criterion can be chosen apart
from Node Coverage. However, the selection is limited to criteria that represent leaves of
the subsumption hierarchy shown in figure 5.5, which maximizes the potential for im-
provement This is mainly because the iterative improvement of the resulting test suite
across several runs of the MCSTLC provides a higher number of variation possibili-
ties.

However, the focus of the Artifact and Feedback Evaluation step is on advanced iterations
of the MCSTLC (see 2 in figure 9.1). In this context, the findings of the Mutation Anal-
ysis are used to reduce the number of test cases by excluding test cases with a poor
quality rating. Currently, the decision is based on the Mutation Score of the test case
but may include other aspects in future versions. Together with the Test Case Quality
Threshold specified by the expert, which represents the minimum Mutation Score to be
achieved, the selection is determined. The test cases with a Test Case Mutation Ade-
quacy Score (TCMAS) greater than the threshold are included in the test suite, while
the others are put on a so-called blacklist and do not contribute to the test suite as long
as the threshold does not change. Excluded test cases from previous runs remain on
this blacklist if no parameter adjustments are made. This step aims to be able to make
a statement about the quality of the resulting set of evaluated test cases. In particular,
the subsequent execution of the test suite is therefore improved by reducing the total
number of tests to be executed by test cases with low significance.

In addition to the quality of the individual test cases, the entirety of the test cases in this
process step is examined concerning the specified Exit Criteria. These are specified by
the expert and often reflect external requirements from the development process. This
can be a regulatory requirement of a standard that specifies a special form of cover-
age for appropriately evaluated system parts. In the automotive industry, for example,
the standards ISO 26262 or IEC 61508 require statement coverage, branch coverage or
MC/DC coverage depending on the Automotive Safety Integrity Level (ASIL) classifi-
cation of the system part [5]. As figure 9.2 shows, a specific metric can be defined for
each modeling domain, including a threshold value for compliance.

Due to the relationships between structural as well as behavioral components defined
in the Integration Model, the evaluation of the metrics of the respective modeling do-
mains can be performed, driven by the determined set of test cases. Regarding the pro-
cedure for evaluating the metrics, a distinction is made between the System Modeling
domain and the other domains. The former is based on the system paths triggered by
the test cases and their ratio to the total of possible system paths. The second one eval-
uates the connections between model elements of the considered test cases and model
elements of the respective modeling domain. An element that specifies a connection to
an element of a test case is considered to be covered and is thus included in the evalu-
ation of the specified metric. As soon as all metrics specified in the Exit Criteria are met

149

9 MODEL-BASED ABSTRACT TEST GENERATION

Requirements
Model

Test
Model

System
Model

Safety
Model

Metric
C

Metric
B

Metric
D

Metric
A

Joint
Evaluation

Figure 9.2: Exit Criteria specification via multi-domain metric evaluation

by the set of test cases concerning the thresholds, the iterative process is aborted. Oth-
erwise, the process is continued and, if necessary, adjustments are either made to the
Coverage Criterion for test case generation or the Exit Criteria. The following section
explains how the evaluation of the Exit Criteria impacts the adjustment of the Coverage
Criterion.

In the course of the explanation of this processing step, the Running Example is used
for illustration. Here, the parameters specified by the expert are selected as follows.

startcriterion = "|nodecoverage|"
tcmasthreshold = "0.2"

exitcriteria = "system|nodecoverage|0.8"

According to the specified parameters, the Node Coverage criterion is suggested as a
starting point for all Scoped Test Models that have been determined. In the iterations
for selecting high-quality test cases, only test cases with a TCMAS greater than 0.2
should be included in the resulting test suite. The Exit Criteria was specified in this case
as the sole criterion for the relevant System Model, according to which an 80% Node
Coverage must be achieved. Provided that for the Scoped Test Models of the Running
Example the Exit Criteria is completely fulfilled after a certain number of iterations, the
final test suites have been determined.

9.2.2 Test Case Generation Metric Adaption

Based on the information obtained from the analysis of the Scoped Test Models or the
evaluation of the feedback from the Mutation Analysis, a suitable coverage metric can
be determined for the subsequent test case generation. To understand the procedure

150

9.2 TEST SUITE GENERATION

explained in the further course, a short preview of the realization of test case generation
through data flow analysis is given here. Whenever we talk about a coverage criterion
that is used for test case generation, we implicitly refer to a corresponding data flow
analysis of the MAF that produces a test suite that covers the associated criterion best.
In particular, this can be done for all the criteria shown in figure 5.5. If each of the
criteria specifies a corresponding data flow analysis, the decision space for the criteria
adaptation process is obtained, which is shown schematically in figure 9.3.

Node Coverage

Edge Coverage

Edge-Pair

Coverage

Prime Path

Coverage

Complete Round

Trip Coverage

Simple Round

Trip Coverage

Complete Path

Coverage

All-du Paths

Coverage

All-Uses

Coverage

All-Defs

Coverage

All-C-Uses/

Some-P-Uses

All-P-Uses/

Some-C-Uses

All-P-Uses

Coverage

Data flow

Analysis

Data flow

Analysis

Data flow

Analysis

Data flow

Analysis

Data flow

Analysis

Data flow

Analysis

Data flow

Analysis

Data flow

Analysis

Data flow

Analysis

Data flow

Analysis

Data flow

Analysis

Data flow

Analysis

Data flow

Analysis

Figure 9.3: Coverage Criteria Subsumption Hierarchy including connected data flow
analyses (based on figure 5.5)

The entry points for test case generation determined in the previous section usually
represent the leaves of the illustrated tree structure. An exception can be the start cri-
terion manually specified by the expert since it is possible to select any criterion of the
tree structure. Such a Start Criterion may quickly lead to a test suite that meets the spec-
ified Exit Criteria, but might be not optimal concerning the amount and complexity of
included test cases.

Therefore, when selecting the Start Criterion by analyzing the relevant Scoped Test
Model, the Node Coverage criterion is usually set as default. This criterion is one of
the weakest criteria since a high degree of coverage can usually be achieved by a rela-
tively small number of paths through the EGPP Test Model. However, it is not possible
to draw any conclusions about the respective coverage of the connected EGPP System
Model. This in turn is one of the advantages of having these models created by differ-
ent experts, since the first differences between the target and actual system are revealed
early. Once a Start Criterion is determined, the data flow analysis is applied, which is
discussed in the following section.

In the context of further iterations of the MCSTLC (see 2 of figure 9.1) the feedback is
furthermore included. In this case, the hierarchy introduced above comes into effect.
However, before the algorithm for the evolution of the applied coverage metric is dis-
cussed, another quantity is introduced, which is used for decision-making. This mea-
sure considers the evolution of the Exit Criteria over the last two iterations of the MC-
STLC. In particular, a so-called metricsTrend is determined, which indicates whether

151

9 MODEL-BASED ABSTRACT TEST GENERATION

Iteration
Domain

system requirements safety

0 0.2 (edge cov.) - (node cov.) 0.3 (node cov.)
1 0.35 (edge cov.) 0.9 (node cov.) 0.32 (node cov.)
δ +0.15 +0.9 +0.02

Table 9.1: Example Exit Criteria evaluation to determine the metricsTrend

the last adjustment of the Coverage Criterion for test case generation has lead to an
improvement. For this purpose, the change of each atomic criterion involved in the
Exit Criteria is examined and the median of the changes is further processed as met-
ricsTrend. To show this by a concrete example, the following evaluations of the Exit
Criteria of two past iterations of the MCSTLC are utilized.

As the table shows, the values of the Exit Criteria have improved throughout. For the
modeling domains system and safety by +0.15 and +0.02 respectively. For the model-
ing domain requirements even by +0.9, which is since after the iteration 0 the Exit Cri-
teria was adjusted by including the respective domain. This is the reason why instead of
the mean value (+0.357) the median (+0.15) is chosen to determine the metricsTrend,
because it better represents the actual change in such a situation.

To select a better criterion for the following step, three ranges are defined on the scale
of the metricsTrend variable (from -1 to 1), which are used to determine the future
criterion using different methods (see figure 9.4). The values (-0.02 and +0.02), which
determine the three ranges, are only to create a certain blur around the neutral value 0
and do not have any special meaning.

searchForNextCriteriaBelowOrReverseLastStep searchForNextCriteriaSideways searchForNextCriteriaAbove

1.

Last Step Criteria

Current Criteria

Future Criteria

1.

2.
3.

2.1.
2.

Figure 9.4: Ways of determining the future Coverage Criterion applied

On the one hand, the range from -1 to -0.02 is used as an indicator for poor perfor-
mance in the previous step. In this case, the future criterion is selected by the method
searchForNextCriteriaBelowOrReverseLastStep. The method searches for a new
criterion at a lower level, giving preference to criteria that were not used in previous
steps. However, if there is no alternative, the criterion of the previous step can be rese-
lected, which stops the adaptation process.

The second range covers the values between -0.02 and +0.02, which reflects a weak
increase/decrease in the value of the metric. Such values are seen as an indication of
stagnation of the increase/decrease, so in this case, the method searchForNextCrite-

152

9.2 TEST SUITE GENERATION

riaSideways provides the future criterion. As you can see in the graph, it is possible to
determine criteria on the same level by utilizing lower as well as higher-level elements
of the structure.

The third and last area ranges from +0.02 to +1 and reflects very positive development
in the past choice of the coverage criterion. In such a situation, we try to carry on the
positive trend and determine the future metrics by the searchForNextCriteriaAbove
method. This method moves up in the structure but excludes criteria that have already
been applied in previous steps. If no new criteria are found, the process ends, because
either the top-level of the structure has been reached, or all higher criteria have given
worse values for the Exit Criteria.

Regardless of the method that produced the set of future criteria, a final criterion is
randomly selected. For our Running Example, we assume that the Node Coverage crite-
rion has initially (Iteration 0) been selected, and in the current step (Iteration 1) the
Edge Coverage criterion is evaluated. Based on the metricsTrend determined in table 9.1
+0.15, the algorithm uses the method searchForNextCriteriaAbove to determine the
set of future criteria. If we search for new criteria in figure 9.3 according to this method
starting with the Edge Coverage criterion, we obtain the criteria All-P-Uses Coverage, All-
Uses Coverage, and Edge-Pair Coverage. The criterion selected from this set is used in the
next step of the processing chain to perform the connected data flow analysis. Details
about this processing step are conducted in the following section.

9.2.3 Data Flow Analysis-Based Test Case Generation

Based on the criterion selected in the previous step, this section deals in more detail
with the determination of a concrete test case set using data flow analysis techniques.
As already shown in figure 9.3, a data flow analysis is specified and linked for each
coverage criterion. Specifically, this is performed at the model-level, utilizing concepts
of the MAF [152]. For this purpose, the respective metamodel is provided with data
flow attributes. These attributes are assigned concrete values, which are evaluated af-
terward. The analysis-specific EGPPMM of the MCSTLC, which is used for the internal
representation of the System Models as well as for the Test Models and Scoped Test
Models, has already been discussed in section 7.2. For this reason, all data flow analy-
ses that are implemented in the context of MCSTLC are based on this metamodel.

In conjunction with the data flow attributes, which are annotated to the metamodel,
update rules are specified for the contained model elements. The evaluation of the
update rules considering the attributes starting from the respective EGPPInitialNode
results in a set of paths through the specified graph structure. The subsequent selection
of paths ending in an EGPPFinalNode implicitly reflects the resulting test suite. In this
way, unreachable parts of the specified graph structure are excluded from the final set
of paths, and only valid runs through the Test Model are considered.

To better illustrate the conceptual explanations, the application context of the Running

153

9 MODEL-BASED ABSTRACT TEST GENERATION

Example from the previous section is taken up again. In particular, the Edge Coverage
criterion mentioned above are discussed about the set of update rules and the data flow
attributes. In contrast to the Object Constraint Language (OCL)-based specification of
update rules, as shown in listing 7.3, this section utilizes a pseudo code-based represen-
tation, because the original and comprehensive specification would be too extensive.

Algorithm 1 MAF-based data flow analysis for the edge coverage criterion

function UPDATERULEEGPPINITIALNODE(node)
return new HashSet<List<EObject»()

function UPDATERULEEGPPTRANSITION(transition)
result = new HashSet<List<EObject»()
sourceNode = transition.getStartNode()
previousPaths = getPathsFromNode(sourceNode)
if sourceNode instanceof EGPPInitialNode then

result.addPath(sourceNode)
else

for incomingPath ∈ previousPaths do
if maxTraversalTransitionsReached(incomingPath, transition) then

continue
if transition.getEndNode() instanceof EGPPFinalNode then

updateAndCheckEdgeCoverageStatus()
result.addPath(incomingPath.extendPath(sourceNode)

return result

function UPDATERULEEGPPNODE(node)
result = new HashSet<List<EObject»()
for incomingTransition ∈ node.getIncomingTransitions() do

previousPaths = getPathsFromTransition(incomingTransition)
for incomingPath in previousPaths do

result.addPath(incomingPath.extendPath(incomingTransition)
return result

As mentioned above, update rules are specified for all metamodel elements that
describe the control flow. In the illustrated data flow analysis for the Edge Cover-
age Criterion, the update rules are limited to UPDATERULEEGPPINITIALNODE, UP-
DATERULEEGPPTRANSITION, and UPDATERULEEGPPNODE. The update rule UP-
DATERULEEGPPINITIALNODE represents the starting point of each path by initializing
a data structure that collects the paths. The other two update rules iteratively build the
paths and check the annotated attributes, such as the number of traversals of a transi-
tion. Especially the update rule UPDATERULEEGPPTRANSITION checks if the consid-
ered transition is already contained in a path (maxTraversalTransitionsReached) and
if the set of all transitions is covered (updateAndCheckEdgeCoverageStatus). If one of
these termination criteria is met, the update rule does not generate a new partial result,
or the paths according to the Edge Coverage Criterion have been determined completely.

154

9.2 TEST SUITE GENERATION

Based on this intermediate result, the paths ending in an EGPPFinalNode are extracted,
ensuring that only valid runs through the Test Model are included in the resulting set.
This way test cases can be derived for the Scoped Test Models shown in figure 8.7. The
final set of test cases for the running example is shown in the following section.

9.2.4 Feedback-Oriented Test Suite Creation

Based on the set of paths generated by the respective Test Model, the last step of the test
case generation process involves processing the existing feedback. As already shown
in section 9.2.1, the findings of Mutation Analysis for test cases from previous iterations
are included. In particular, the quality of a test case is estimated and further evaluated
to determine test cases for the persistent blacklist.

The focus of this last processing step is to project the blacklist onto the newly created
set of test cases. In particular, the final test suite should not contain any test cases of bad
quality. However, in the first iteration of the test case generation (see 1 of figure 9.1),
the mentioned activities are not applicable and thus omitted. In such a case the test
cases previously derived by data flow analysis represent the final test suite. However,
in an advanced iteration of MCSTLC (see 2 of figure 9.1), the respective test cases are
excluded and the final test suite is determined.

This is shown alongside the Running Example to give a better understanding. Fig-
ure 9.5 shows the result of the previously explained processing step.

Test Suite for Scoped Test Model

calc_speed_onboard Unit

status = 0

V_mrsp = 110

speedOnboard == V_mrsp

status = 1

V_mrsp = 250

speedOnboard == V_mrsp

status = 2

V_mrsp = 50

speedOnboard == 55.5

status = 3

V_mrsp = 210

speedOnboard == 220

status = 4

V_mrsp = 220

speedOnboard == 230

Figure 9.5: Set of generated test cases for a unit-level Test Model of the Running Exam-
ple

The paths with gray nodes are excluded from the test suite due to an insufficient TC-
MAS determined in the Mutation Analysis. The paths with white nodes represent the
test cases that are either re-subjected to a Mutation Analysis (see chapter 11) or simply
executed against the SUT (see chapter 10).

155

9 MODEL-BASED ABSTRACT TEST GENERATION

9.3 Technical Realization within A3F

The functionality of this processing step has a prototypical realization within the A3F.
For this purpose, the functionality is implemented by an independent analysis of the
framework. This analysis encapsulates the previously mentioned concepts and algo-
rithmic sub-steps and offers the user several configuration options.

The configuration options are realized by a series of parameters. Table 9.2 gives an
overview of the available parameters, which are specified by the expert on the one
hand and given by results of other analyses on the other hand.

Table 9.2: Configuration parameters for egpp_path_generation analysis
Parameter Description

integrationmodel Determines the Integration Model, which contains the map-
ping information of the corresponding Omni Model

testmodels Determines the set of Test Models for the subsequent test case
generation

blacklistthreshold A floating-point value between 0 and 1, which represents a
threshold for the blacklist mechanism based on mutation score

exitcriteria A set of coverage metric thresholds, evaluated on the Inte-
grated Model Basis (see section 9.2.1)

startcriterion Parameter for the specification of a generation metric including
metric parameters

autoadvice Determines the feedback data from previous mutation analysis
runs

The parameters startcriterion, exitcriteria, and blacklistthreshold require the
mentioned expert knowledge and were already explained on a conceptual level in sec-
tion 9.1 and evaluated in the sub-steps of the process. The parameter startcriterion
consists of three different parts, not all of them are mandatory. The first part covers the
ID of the relevant Scoped Test Model, while the second part determines the initial cov-
erage metric and algorithm to be applied for test case generation. The third part allows
fine-tuning of the algorithm by modifying internal settings. The parameter exitcrite-
ria again represents a dynamic set of triples, where each of the triples defines the eval-
uation metric for a certain modeling domain included in the Omni Model. Accordingly,
the first part of each triple describes the ID of the respective domain, the second part
the ID of the metric to be evaluated, and the third part the threshold, which describes
a percentage in the form of a floating-point number between 0 and 1. The triples are
internally linked by a logical AND, so the multi-domain metric is only fulfilled when all
metrics involved meet their respective threshold. The parameter blacklistthreshold
is used to define a threshold for the automated selection mechanism, which has already
been described conceptually in section 9.2.4.

156

9.3 TECHNICAL REALIZATION WITHIN A3F

In addition to the parameters already mentioned, some model information of the Omni
Model is required, which is generated in particular by upstream analyses. Figure 9.6
gives an overview of the combination of analyses of the A3F, which are linked to an
analysis chain.

egpp_path_generation(testegpp)

history_loader(mutt)

im_validation(imvali) im_scoping(omni)ea_db_loader(integration)

data_transformer(testegpp)

data_transformer(systemegpp)

Figure 9.6: Analyses dependency graph for the egpp_path_generation analysis

The parameters integrationmodel and testmodels are taken from the analysis results
of the analyses, which are detailed in figure 8.8. This provides the egpp_path_genera-
tion analysis on the one hand with an Integration Model that contains all connections
between the modeling domains involved. All Scoped Test Models, determined in the
context of the im_scoping analysis are available.

Only the parameter autoadvice, which evaluates the Mutation Analysis results of the
previous A3F analysis, is a special feature. Technically, the history_loader analysis
loads analysis results from a previous A3F analysis into the current A3F analysis and
can thus be processed further.

To make the descriptions of the individual parameters more tangible, an example con-
figuration is shown for this analysis. (Listing 9.1, preceding analyses are excluded)

1 <configurations of preceding analyses>
2

3 analysis egpp_path_generation(testegpp) {
4 integrationmodel="im_scoping|omni|IMScopingResult|getFilteredIMModel";
5 testmodels="im_scoping|omni|IMScopingResult|getGeneratedMBTModels";
6 blacklistthreshold="0.5";
7 exitcriteria="system|nodecoverage|0.8";
8 startcriterion="|pathcoverage|MAX_PATHS:100 MAX_TRAVERSAL_NODES:1
9 MAX_TRAVERSAL_TRANSITIONS:1";

10 autoadvice="history_loader|mutt|EGPPMutationTestingResult";
11 }

Listing 9.1: Example configuration for the egpp_path_generation analysis

After the analysis has been performed, the analysis result is generated. In this case,
lists of test cases are created per Scoped Test Model, where a test case is described by
an ordered list of model element IDs, which in turn provides a valid sequence of test
instructions. For the continuous Running Example, a possible result of this analysis has
been shown in a condensed form in section 9.2.4.

157

9 MODEL-BASED ABSTRACT TEST GENERATION

9.4 Related Work

Following the conceptual presentation of our test case generation approach, this section
looks at other approaches that are placed in the same context. There are many different
approaches in the field of test case generation to overcome the problem of generating a
sufficient test suite. Anand et al. show in their comprehensive survey a large part of the
available spectrum [20]. This ranges from randomized, search-based, or combinatorial
approaches based on development artifacts of the SUD to the model-based approaches
that are related to our concepts. To make it easier to classify these approaches, different
aspects are focused.

Model Basis

It should be emphasized that the majority of research contributions are based on devel-
opmental artifacts of the SUD instead of using their models for testing. In particular,
this reflects the large number of UML-based approaches that use and partially extend
various structural and behavioral models [157] [128]. For example, Swain et al. have
constructed combined models from various artifacts of a UML-based development (Use
Case and Sequence Charts), which are used in their processing chain to generate test
cases [162]. In addition to the UML-based approaches, variants of timed automata are
frequently used, from which concrete test cases are derived through model checking
approaches (here UPAAL) [90] [61]. Furthermore, some approaches automatically de-
rive model artifacts from a suitable requirements specification for the subsequent test
case generation, which in turn is based on a variant of finite statemachines [163]. In
summary, the research contributions are repeatedly based on comparable models, rep-
resented as far as possible by the presented EGPPMM, or derived from it. This results
in the flexible applicability of our approach to a large number of the model variants
shown, provided that a suitable transformation rule between the metamodels is avail-
able.

Algorithmic Approach

Based on the respective model artifacts, different algorithmic approaches to derive a
set of test cases can be found in the literature. These can be divided into two cate-
gories, namely Black-box and White-box. In the first category, there are more and more
randomized/combinatorial approaches that cover the input parameters of the SUT to
derive a meaningful test suite [119]. In the second category, priority is given to ap-
proaches that make profitable use of the knowledge about the internal processes of the
system. Anand et al. have investigated some applications of search-based algorithms in
this context [20]. In particular, genetic algorithms are frequently utilized to determine
the best possible test suite. These algorithms are computationally intensive and there-
fore offer optimization potential [32]. The form of data flow analysis by Saad et al. used
in our approach again describes an unconventional variant of test case generation and

158

9.5 CONCLUSIONS AND OUTLOOK

is therefore difficult to compare with the presented alternatives. However, to determine
a more effective test suite, Briand et al. applied a data flow analysis that incorporates
more context information in addition to the previous control flow view, thus leading to
more effective test cases [39].

Test Adequacy Criteria

The last aspect of the presented approaches is the range of criteria that determine
whether a generated set of test cases is adequate. As anchored in several standards,
many approaches use the classic coverage criteria. For example, Rayadurgam et al. use
a set of structural coverage criteria to generate a test suite using model checking [150].
The criteria used in test case generation can be evaluated in combination to increase
the effectiveness of the resulting test suite [73]. The criticism of using such adequacy
criteria exclusively is clearly expressed by Inozemtseva et al. in their paper [98]. Driven
by such critical questioning of coverage-driven test suites, the effectiveness of such test
suites is additionally determined by mutation testing approaches [74]. Such a combi-
nation of criteria is included in our approach, which makes the quality of the resulting
test suite more transparent and resilient.

9.5 Conclusions and Outlook

In the course of this chapter, a promising approach for the adaptive and efficient gener-
ation of test cases was presented. Adaptive, in the sense of a continuous adaptation of
the algorithms for deriving test cases based on previous results. Efficient, in the sense of
a minimum resulting set of test cases, by continuously selecting meaningful test cases.
In particular, established methods for the derivation of test cases, knowledge of other
process steps of the MCSTLC, as well as the extensive information of the Integrated
Model Basis is used. An answer to the question identified in section 1.1

How could better adaptability and context sensitivity of test generation based on criteria and
measures on the model-level improve the overall complexity?

looks as follows.

Starting from classical approaches to test case generation as shown in related work,
these approaches were first mapped on a special model representation. A more ab-
stract view of the problem can be adopted and on the other hand, a representation
independent of the original model can be built upon. Both aspects help to reduce the
emerging complexity. Furthermore, seamless integration into the entire MCSTLC is
forced, whereby the individual process steps to profit from each other as much as pos-
sible. In the context of test case generation at model-level, a continuous adaptation of

159

9 MODEL-BASED ABSTRACT TEST GENERATION

the underlying algorithm was implemented, which is primarily based on comprehensi-
ble metrics to make the complexity manageable. The findings of the Mutation Analysis
are evaluated in terms of a quality measure for test cases and results from past iterations
and the Integrated Model Basis are included. All in all, a concept can be implemented
which lowers complexity by design and produces results that keep the complexity of
the overall process manageable. The focus is on improving classical approaches that
just consider the integrity of a test suite to include a measure for the quality of the
resulting test suite.

Apart from the positive aspects of the mentioned concepts, a critical discussion of some
other aspects is contributed in the following. First of all, the definition of the Exit Crite-
ria based on artifacts of the Omni Model should be mentioned. The possible diversity in
the included metrics promises an increased significance regarding the created test suite
concerning all modeling domains involved. This functionality heavily depends on the
modeling and maintenance of the respective Integration Model elements. If these are
not or insufficiently specified, the downstream automated processing chain can pro-
duce results that allow false conclusions. Another point concerns the orientation of the
approach towards a purely generation-based determination of test cases. This aspect
can be weakened such that manually generated test cases can be considered, too. For
this purpose, the information must simply be embedded in the relevant Test Models in
a suitable way such that they are included in the generation process. For example, in
the context of EGPP, this could be isolated paths from an EGPPInitialNode to an EGPP-
FinalNode. Finally, the blacklisting mechanism is discussed. At this point, the lack of
significance of the Mutation Score, which is determined by the Mutation Analysis, can
be pointed out. This score depends on the way the mutants are created for the System
Model under consideration. To weaken this shortcoming, the Mutation Analysis de-
tailed in chapter 11 explicitly focuses on a targeted creation of mutants. The presented
concept offers the possibility to combine the Mutation Score with further metrics on the
quality of the test cases without the need to adjust the remaining processing chain, but
improving the basis for decision-making.

From the context of Mutation Analysis, which has so far only been used as feedback in
Test Case Generation, it is possible to exploit the potential for improvement in future
work on this topic. Besides its application to create mutants of the System Model, the
mutation aspect is often used to identify new test cases. This could be an additional
component of the strictly rule-based derivation of test cases from the model, in that a
kind of fuzzing expands the horizon about new test cases. At this point, the ideas of
Exploratory Testing presented in the basic part may be incorporated.

160

10
Model-Based Abstract Test Execution

In addition to the already presented process steps of the MCSTLC, which cover Model
Creation/Modification, Test Case Management, and Test Suite Generation, this chapter
presents our concept for the execution of test cases on the model-level. Our approach
is intended to improve the applicability of a shift left of test activities towards the
model-level. That means the execution of test cases does not require the existence of
an executable system in the form of code artifacts but is accomplished using the model
artifacts of the Integrated Model Basis. Therefore, the required information must be
available in the models, and the models can be transformed into our internal repre-
sentation (EGPP). To be able to evaluate the former, an evaluation scheme of model
artifacts is presented in section 10.1, which evaluates properties of the model and based
on that allows a correct classification of the given model, which accordingly influences
the processing logic of Abstract Test Execution (ATE). For the latter, a transforma-
tion from the present metamodel of the chosen modeling language to our Execution
Graph++ (EGPP) metamodel has to be specified. Besides these two prerequisites to be
seen in the context of the Integrated Model Basis, figure 10.1 shows the incorporation
of the process step into the MCSTLC.

Abstract

Test

Execution

Integrated

Model Basis

Model-Based

Test Suite

Generation

Model

Creation/

Modification

Human-Interpretable

Tes t Results

Rated Test Case(s)

Configurat ion

Parameters

Legend:

Document

Parameters

Process Step

Model Artifact

Test Case

Figure 10.1: MCSTLC extract focusing the Abstract Test Execution and involved infor-
mation

Another factor is the set of test cases to be executed, as shown on the left side of the
figure. This can either be a set of test cases generated from the underlying Test Model,
or a derived set of test cases that has already been subjected to a quality assessment

10 MODEL-BASED ABSTRACT TEST EXECUTION

using the Mutation Analysis presented in chapter 11. For processing by the ATE com-
ponent, this information is transparent but determines the significance of the results.
These test reports, in turn, are primarily generated for the expert in the form of Human-
Interpretable Test Results, whereby improvements to the model artifacts can be subse-
quently initiated as part of a new iteration of Model Creation/Modification. In addition to
the input and output artifacts of this process step, the experts are allowed to influence
the internal processing logic through a series of configuration parameters.

In addition to the shown incorporation into the MCSTLC, the ATE applies in the context
of Mutation Analysis. Here, the execution mechanism presented in the following serves
to execute the test cases against the mutated variants of the System Model, which in
turn again saves the step towards an executable version of the system on the code-
level.

10.1 Prerequisites for Abstract Test Execution

Before going into details about the execution mechanics of ATE, some basic concepts
are introduced for a better understanding. The categorization of EGPP-based System
Models is discussed, which allows the implementation of the best possible execution
technique according to the available information. Moreover, the configuration options
and the necessary model artifacts of the Integrated Model Basis are discussed, necessary
for a proper execution.

10.1.1 Execution Graph++ Characteristics Analysis

As already mentioned, before performing an ATE, the available System Model is an-
alyzed for its nature. For this purpose, the System Model has to be available in its
transformed EGPP variant, which is assumed as given at this point. If the transfor-
mations have been specified in advance by the expert, this condition does not pose a
problem because it can be performed automatically.

The analysis aims to identify the development stage of the given System Model and
the types of information which can be evaluated. In the context of model-based soft-
ware development, a rough architecture is usually created in a first iteration which
mainly specifies structural model elements. Further modeling iterations are used to
create coarse behavioral models, which are refined continuously and enriched with de-
tailed information. Our so-called Graph Levels, which allow categorization of an existing
EGPP, are based on these described phases of model-based development:

• Level 0: Fragmented Control Flow Graph
• Level 1: Control Flow Complete Graph
• Level 2: Data Flow Graph

162

10.1 PREREQUISITES FOR ABSTRACT TEST EXECUTION

The first one is the so-called Level 0. Under this category, EGPP instances are sub-
sumed that are advanced concerning the structure-giving model elements, but still have
fragmented control flow information in the context of the behavior-describing model
components. An instance of Level 0 is therefore further referred to as a Fragmented
Control Flow Graph. In general, such a categorization is made if the analyzed EGPP
instance violates one of the structural or control flow rules of the graph specified in
section 7.2.1. For example, a graph that contains model elements that are not passed
when traversing any paths from an EGPPInitialNode to an EGPPFinalNode represents
an invalid EGPP instance and is therefore categorized as Level 0.

The next level is described by Level 1. This includes EGPP Instances that do not
contradict any rules of the underlying metamodel to their structural nature and the
behavioral descriptions they contain in the form of graphs. Instances of this cate-
gory are called Control Flow Complete Graphs. However, concerning the included de-
tailed information in the form of code fragments of our minimal language presented in
code fragment 7.1, these graphs do not exhibit any meaningful information. Meaningful
means that no connections in the sense of Def-Use chains can be determined in the given
graph.

The last level of this categorization, Level 2 describes so-called Data Flow Graphs. In
contrast to the previous levels, EGPP instances of this category fulfill both the require-
ments of a Level 1 graph and additionally the presence of a significant amount of de-
tailed information in the included model elements. As far as the detailed information
represents valid code fragments of our language in the respective model elements and
these correspond to the modeled control flow, the model has reached a level that may
serve as a basis for an automated transition towards code. However, code generation is
not the focus of our concept but points out the flexibility of our modeling concept.

In addition to using the categorization just introduced in the context of ATE, the Mu-
tation Analysis presented in section 11.2.1 makes use of this mechanism. At this point,
the mechanism is used to decide which mutation operators are reasonable and appli-
cable based on the evaluation of the EGPP System Model. This results, for example, in
the default set of mutation operators applied by the mutant generation algorithm.

10.1.2 Abstract Test Execution Engine Configuration Parameters

Analogous to the process steps of the MCSTLC already presented, the configuration
parameters rely on the experience of the expert as well. That is, the expert can specify a
set of parameters that influence the execution mechanism of the ATE concept. Provided
that no empirical values are available in the context, the expert can rely on a generic
set of default parameters. In the previous section, it was mentioned that the level of
the EGPP instance has a crucial influence on the applied execution mechanics in the
course of the ATE. Depending on the execution mechanics, different parameters can be
configured. Currently, two different execution techniques exist, the Control Flow-Aware
ATE and the Data Flow-Aware ATE, detailed throughout section 10.2.

163

10 MODEL-BASED ABSTRACT TEST EXECUTION

The Control Flow-Aware ATE relies primarily on the structural information of the graph
at hand and therefore provides configuration parameters that affect this type of anal-
ysis. Specifically, the expert can influence thresholds of the internally used search al-
gorithms such as breadth-first and depth-first search or define termination criteria that
make the execution more efficient. For the Data Flow-Aware ATE, this results in an anal-
ogous selection of parameters that are primarily due to the underlying data flow anal-
ysis. Besides, timeouts can be specified to prevent the entire ATE from failing in case of
erroneous model data. The concrete characteristics of the configuration parameters are
discussed in the context of the technical realization in the A3F (see section 10.3).

10.1.3 Excerpt of the Omni Model

This process step uses the information of the Omni Model. The main focus is on the
System Model, the Integration Model, and the Test Model, which is the origin of the
generated test cases. Independent of the applied execution mechanics of the ATE, es-
pecially the links between the System Model and the Test Model represent the cen-
tral information. Information coming from other modeling domains of the Integrated
Model Basis is not used for essential aspects in this process step. It is only conceivable
that the linked information is incorporated into the generated execution logs, which can
simplify subsequent evaluation and debugging because more contextual information is
available. However, this requires a very disciplined creation and maintenance of those
relationships, discussed in the concluding section of this chapter.

10.2 The Abstract Test Execution Approach

As already mentioned, the challenge of Abstract Test Execution in the context of model-
based software development is that the completeness of the information cannot usually
be assumed due to the intention of early applicability. Depending on the development
state of the System Model, different types of information are available in the model and
can therefore be evaluated for execution at this level.

In conventional software development, on the other hand, functionalities specified
completely in the code are checked by test cases during execution. Depending on the
integration level, either the respective code fragment or the entire system is executed
under realistic conditions and subjected to the stimuli of the respective test cases. These
stimuli, which either elicit a response from the system or directly manipulate the inter-
nal system state (depending on the interaction capabilities with the system), represent
either theoretically arbitrary inputs from the system or non-specified components of the
control flow. Similarly, the components of a test case determine the success or failure of
the test case by matching returns from the system or occupancies of internal data struc-
tures with the expected value, respectively. All these actions are based at the code-level
on unique identifiers that are assigned to variables or instances.

164

10.2 THE ABSTRACT TEST EXECUTION APPROACH

For our approach on the model-level, in particular, if models of Level 0 or Level 1
are provided, the presence of these identifiers and the internal data structures do not
necessarily apply. On the other hand, in particular, executability in the sense of a com-
pilation to object code including subsequent execution on the target system is not pos-
sible without further efforts. Therefore, two different approaches of ATE are presented,
which use different concepts to analyze the available System Model and test cases in an
integrated way. On the one hand, for the Level 0 and Level 1 instances of the present
System Model, a structural interpretation of the model information is implemented
against the background of the Integrated Model Basis. On the other hand, a static data
flow analysis of the model information extended by dynamic aspects is implemented
to be able to evaluate test cases against Level 2 System Models. Overall, the fusion of
the information available in the Omni Model marks the basis for both variants of our
ATE, illustrated in figure 10.2.

Data Flow Aware ATEControl Flow Aware ATE

System

Model

Test

Case/Model

Integration

Model

ipn

ipn

ipn

opn

ipn

im_sp

im_sp

System

Model

Test

Case

Integration

Model

ipn

ipn

ipn

opn

ipn

im_sp

im_sp

td td

td

td

td

td

td

ipn

Figure 10.2: Omni Model foundation for the ATE approaches

The left side of the figure shows schematically on which information basis the Control
Flow Aware ATE approach is built. The modeling domains System, Integration, and Test
already mentioned in section 10.1.3 represent the basis. In particular, in the respective
EGPP model elements of the System and Test domains are of particular importance,
whereby a distinction is usually made between EGPPInputNodes (ipn) and EGPPOut-
putNodes (opn). The former are visualized with sharp corners, whereas the latter are
drawn with round corners. The underlying information is completed by the links be-
tween the two described modeling domains via the IMSyncPoints (im_sp) of the In-
tegration Model and their connections to model elements of the respective domains.

On the right side, however, the scenario for the Data Flow Aware ATE approach can be
seen. The information basis of the Control Flow Aware ATE approach is extended by de-
tailed information. In this context, this detailed information is mainly code fragments,
which are assigned to the said ipn and opn in the form of EGPPTaggedData (td). In ad-
dition to the structural inter-dependencies specified via the Integration Model, further
dependencies are specified in such a scenario through the cross-model use of identifiers
in the context of td. This enables a comprehensive and code-oriented evaluation.

165

10 MODEL-BASED ABSTRACT TEST EXECUTION

The two approaches are aimed at different phases of model-based development and
are therefore not competing for approaches. However, in the course of the prototypical
implementation of the two variants, some insights were gained that represent valuable
information about the applicability of the approaches against the background of the
MCSTLC.

First of all, we realized that for a meaningful evaluation of test cases against the present
System Model by a Control Flow Aware Abstract Test Execution (CFA-ATE), a high de-
gree of structural mappings has to be specified in the Integration Model. The mapping
of all model elements of the Test Model or the Test Cases represents the desired goal,
whereby a mapping of all ipn of the Test Model represents the minimum required in-
formation. This cannot be justified from the point of view of the modeling and model
maintenance efforts and is contrary to the findings on the data basis of a Data Flow
Aware Abstract Test Execution (DFA-ATE). Some experiments have shown that a rather
small number of structural mapping over im_sp of the Integration Model lead to more
meaningful results, in this case.

Furthermore, the collected findings of a CFA-ATE can hardly be transferred to concrete
test verdicts. Above all, this is due to the abstract patterns analyzed in the context of
this evaluation, which is based on purely structural information usually leads to vague
statements. In the sense of a test case execution on structural information, no reliable
and henceforth valid statement regarding the success or failure of a test case can be
made from this. However, the information collected should not be underestimated con-
cerning its value. For example, the results of the CFA-ATE can be used by the modeler
to detect any model smells in the early stages and take appropriate countermeasures.

Based on these findings, the concept for CFA-ATE briefly presented in the following
section is seen in terms of an Omni Model analysis for the early detection of modeling
flaws, rather than a test execution mechanism. A reliable starting position for test ac-
tivities of advanced development iterations usually can not be determined due to the
problems mentioned. In the context of review activities, such an analysis can however
efficiently uncover specification gaps or model smells (similar to code smells, but on the
model-level). Due to the focus not being on the CFA-ATE, the following section just
gives an overview of the CFA-ATE concept. Consequently, in the context of any pro-
cess steps of the MCSTLC, the focus is on the DFA-ATE variant, since it is built on a
resilient set of rules, which is discussed in detail.

10.2.1 Digression into a Control Flow-Aware ATE Approach

Building on model information of the Integrated Model Basis as schematically depicted
in figure 10.2, CFA-ATE is intended to create a mechanism that provides information on
the relationship between actual vs. target implementation in the very early phases of
model-based development. The structural relationships that emerge from the Integra-
tion Model allow investigations to be carried out into the conformity of the two speci-
fications at the model-level. For this purpose, a first concept was developed within the

166

10.2 THE ABSTRACT TEST EXECUTION APPROACH

scope of a master thesis that analyzes the execution path of the System Model caused by
a test case and identifies issues in this context about the existing test case set. Originally,
the idea was to perform an isomorphism check of the EGPP instances of the System and
the Test Model against the background of the Integration Model data. However, this
approach was discarded quickly due to the still open question regarding the complexity
of this problem.

The concept of CFA-ATE is therefore based on a step-by-step examination of the graph
structure, which is defined via the present Integrated Model Basis. Decisive at this
point is the composition of the respective test case. The model elements contained in
the test case in combination with the links between System and Test Model define the
sections of the System Model, which are analyzed utilizing search algorithms. A possi-
ble connection between two model elements of the graph structure of the System Model
is determined in a search iteration of such a section (see figure 10.3). During the anal-
ysis, all anomalies of the graph structure are recorded, which forms the basis for the
final interpretation and processing of the test results. Against the background of an ef-
ficient concept, the search algorithm is improved by heuristic methods, where different
properties of the graph structure are evaluated in advance and e.g. termination crite-
ria are defined. After successful analysis, the collected information about the available
graph structure is aggregated, processed, and transferred into a test report. This test
report can be used in the early phases of development by different stakeholders in the
model-based development process to improve the Omni Model to the identified prob-
lems. Details on the individual parts of the concept are based on content from [118] and
are presented concisely in the following sections.

Challenges and Preprocessing

In the context of our search algorithmic approach for the CFA-ATE, several challenges
exist. The first challenge is the scalability of the solution, which is primarily given by
the properties of the model base at hand. The number of generated test cases plays a
crucial role since a new search run is started by each test case. Likewise, the amount of
links between the System and the Test Model is decisive, since this information guides
the algorithm by defining sections of the iterative graph search. In general, the lack of
knowledge about the properties of the System Model is an important aspect of scalabil-
ity.

This lack of knowledge is a main aspect of the second challenge, the efficiency of the
solution. In particular, due to the uncertainty about the completeness of the available
model information, only a few assumptions can be made, which causes a reduction
of the search space. Also, the definition of a criterion, which causes the termination
of a search iteration, is difficult, since a static value always represents a compromise
regarding efficiency and a value determined specifically for the System Model at hand
requires a preliminary analysis, which again generates costs. If a search iteration has
been aborted, another challenge of an efficient implementation is to find appropriate
starting points for a resumption of the search or a reverse search.

167

10 MODEL-BASED ABSTRACT TEST EXECUTION

To address some of these challenges, preprocessing of the model information is per-
formed. To estimate the size of the System Model against the background of the search
iterations to be performed, a user-defined number of random walks through the graph
structure is performed. From this information, the termination criterion for a search
iteration and at the same time the trigger for a reverse search is determined. The pa-
rameter k reflecting this purpose is defined as follows:

k =
γavg

2
with γavg =

∑N
n=0 ∣RandomWalks∣

N + 1

The choice of the parameter k is a compromise between the search depth and the need
for a backward search. It is important to note that the variant based on random walks
does not produce deterministic results. If the expert wants to set a different value for the
parameter k, this can be done via configuration parameters. In the case of the parameter
being constant, the determinism of the results is given.

Furthermore, the System Model is checked for loops in advance. If loops are identified
in the graph structure, the model elements they contain are marked appropriately so
that they are handled accordingly during the search iterations of CFA-ATE. The same
is done for the underlying Test Model. However, it is of particular interest whether the
test case under consideration checks an iterative functionality of the System Model, i.e.
several model elements of the Test Model are linked to the same model element from
the System Model. This provides valuable information for the current analysis.

In addition to the information relevant to the algorithm, some metrics are determined
during preprocessing and are listed in the generated test report. These include, for ex-
ample, the ratio of the total number of model elements of the Test Model to the number
of links to the System Model specified in the Integration Model. This is of particular in-
terest in the case of searching for the root cause of a failing test case, while the mapping
modeled in the Integration Model represents a possible source for such a test result. To-
gether with other metrics for the existing Omni Model instance, valuable information
is prepared that can be used by the expert afterward as a basis for troubleshooting.

Graph-Search Based Execution Concept

Based on the preprocessing, the concrete implementation of the algorithmic solution
to CFA-ATE is discussed in this section. To clarify the initial situation of the execution
concept, we refer to figure 10.3.

Similar to figure 10.2, this figure is split into the three modeling domains namely System,
Integration and Test. On the right is the Test Model, the path showing a portion of a
concrete test case. Here, vT (an EGPPInputNode (ipn) of the Test Model) represents the
node in the test flow under partial analysis. pre(vT) is the starting point of the past

168

10.2 THE ABSTRACT TEST EXECUTION APPROACH

System

Model

Test

Case/Model

Integration

Model

ipn

ipn

ipn

opn

ipn

im_sp

im_sp

ipn ipn

ipn

suc(vT)

vT

vS

im_sp ipn
sa

pre(vT)

IS
IT

Figure 10.3: Schematic representation of the information basis of CFA-ATE

partial analysis, whereby the searchAnchor sa for the current partial analysis is defined
via the links. The goal of a partial analysis is to find the next sa by starting a search in the
System Model from the current sa towards vS (an EGPPInputNode (ipn) of the System
Model), which is determined by the Integration Model Information mapping vT. The
set of discovered paths between sa and vS thus represents the possible execution paths
for this interval.

This is done analogously for all pairs of consecutive model elements of a test case,
where in the next step suc(vT) is in the focus, and vS becomes the new sa. If one adds all
partial results of a test case together after a successful analysis, one obtains all possible
execution paths that can be evoked. In which way the partial analyses combine to the
whole CFA-ATE is described by the following algorithm.

The implementation uses a combination of Breadth First Search (BFS), Depth First
Search (DFS) and Backtracking, which enables efficient retrieval of the respective model
element in the System Model (see algorithm 2). First of all, the sa for the initial model
element of the test case is determined via the Integration Model (im(vT_init)). Based on
the sa, a BFS is performed taking into account the parameter k determined in advance.
Furthermore, loops are taken into account by marking already considered model ele-
ments of the System Model and logging the corresponding execution paths. Finally,
only one of the possible execution paths is taken as a representative result, but the
information about the other possible execution paths is kept (see the grayed-out path
on the left side of figure 10.3). The selection of a single representative ensures that an
unambiguous result is obtained when the partial results are combined. If the search
for the respective section is finished, it is distinguished whether a corresponding node
vS could be found or not. If this is not the case, a reverse search (backtracking) with
the same parameters is performed. If no corresponding model element could be found
here either, it is recorded at which point the search was aborted. If a model element
could be found by one of the two mentioned searches, the corresponding execution
path is recorded together with the model element. This is repeated until the analysis
for the last model element of the test case has been performed and the next test case

169

10 MODEL-BASED ABSTRACT TEST EXECUTION

can be examined.

Algorithm 2 Control Flow Aware Abstract Test Execution (based on [118])

sa = im(vT_init)
vS = null
while vT ≠ null do

sa = im(vT)
if sa ≠ null then

vS, executionPath ← SEARCH(sa, vT, k)
if vS ≠ null then

ADDRESULT(success, vT, vS, executionPath)
else

vS, executionPathrev ← REVERSESEARCH(sa, vT, k)
if vS ≠ null then

ADDRESULT(successrev, vT, vS, executionPathrev)
else

ADDRESULT(f ailed, vT, vS,∅)
vT ← suc(vT)

Graph-Search Result Interpretation

After successful preprocessing and execution of the iterative search algorithm, all in-
formation is available for the creation of the test reports. The following information per
test case is derived:

• A set of model element pairs representing the corresponding elements on the part
of the System and Test Model

• A possible execution path through the System Model caused by the test case com-
posed of a set of partial execution paths for the examined intervals

• Information about the course of the analysis, e.g. reasons for aborting a search
iteration

• Some metrics on the underlying models (see section 10.2.1)

Since it is difficult for the expert to process the collected raw information, an interpreta-
tion is required. In particular, the set of corresponding model elements in conjunction
with the determined execution paths is therefore considered, allowing the determina-
tion of a set of possible findings. IT represents the set of model elements of the Test
Model contained in a considered interval. IS, represents the set of System Model el-
ements for the same interval (see figure 10.3). Based on this metric, the following in-
terpretations are considered, determined by the structural modeling capabilities of the
EGPPMM and the integrated analysis of the System and Test Model elements:

1. System Artifacts missing: If ∣IT ∣ > ∣IS∣ holds, i.e. in the considered interval the
number of model elements of the Test Model is greater than the one of the System

170

10.2 THE ABSTRACT TEST EXECUTION APPROACH

Model, this indicates a specification gap in the System Model. Alternatively, it
may be the case that the connections in the Integration Model are no longer up to
date.

2. Case Distinction not covered: If more than one path is determined during the
search for the corresponding model element of the System Model, this can be an
indicator for a missing test case. If there is no other test case in the test suite that
covers the other branch of the different cases, the System Model is not completely
covered by the test suite and/or there is a weakness in the test case under consid-
eration.

3. System Loop not covered: This case represents a special case of the previous case
Case Distinction not covered. However, the discovered case distinction is part of a
loop construct of the System Model, which is not taken into account by the test
case. Formally such loops are detected based on the marked nodes, which are
determined in the preprocessing step of the System Model.

4. System loop missing or not traversed: This variant represents a modification
of the interpretation Case Distinction not covered, where according to the test case
similar functionality is repeatedly checked, but not implemented on the part of
the System Model in the form of a loop construct.

5. Test Model Inaccuracy: This interpretation is recorded if ∣IS∣ is significantly larger
than ∣IT ∣. Depending on the application context, this may indicate that the test
case does not include some aspects. Likewise, this could be due to a more black-
box type of test case, but this strongly depends on the ratio between ∣IS∣ and ∣IT ∣
at hand. The threshold for the ratio of the sizes of these two sets represents a
configuration parameter of the respective analysis, which defaults to factor 2.

6. Integration Model Inaccuracy: In this case, IT and IS each include a very large
number of nodes, which indicates an incomplete specification of the connections
in the Integration Model. However, it could be the case that further connections
between nodes included in the interval do not make sense, which has to be inves-
tigated by the expert on a case-by-case basis. The threshold for the size of the two
sets depends on the application context. Therefore it is realized as a configuration
parameter, which defaults to 10.

7. Merge: The result is recorded if an until then unconsidered execution path of the
System Model merges into the currently analyzed interval. This means the model
element where the unconsidered execution path branched from the known exe-
cution path is not known to the analysis. Especially in the context of concrete
troubleshooting based on the collected information, this can be an important in-
dicator for possible side effects or emergent faults.

8. Contradiction: Based on the raw data, a contradiction can be detected in the mod-
els, in particular, if the forward search could not determine a valid execution path
in the System Model, but only the backward search reveals a path to the corre-
sponding model element.

All in all, the selection of interpretations clearly shows that only a few sound statements
can be made due to the nature of the purely structural model data. A derivation of a
concrete test verdict PASS, INCONCLUSIVE, or FAIL is therefore difficult to realize or is not
usable in the test context concerning the reliability of the statement. Analyses that could
not be completed successfully can be classified as FAIL with a high degree of certainty,

171

10 MODEL-BASED ABSTRACT TEST EXECUTION

but a majority of the remaining test cases receives the test verdict INCONCLUSIVE. Re-
garding downstream processing in the context of the MCSTLC, the DFA-ATE approach
is preferred, while the presented CFA-ATE approach offers valuable information to
the modeler in the early stages of development. Overall, the CFA-ATE is therefore a
promising base to support targeted debugging.

10.2.2 Overall Concept for Data Flow-Aware Abstract Test Execution

In contrast to the structure-based ATE, the CFA-ATE, the Data Flow Aware Abstract
Test Execution (DFA-ATE) is introduced. As already shown in the right part of fig-
ure 10.2 (section 10.2), this concept combines the data specified in the System and Test
Model with the structural relationships of the Integration Model. Since this approach
requires additional model information, it is applied at a later stage than CFA-ATE,
where detailed models are available.

The concept of DFA-ATE consists of the following parts: In the first processing step,
Omni Model-Based Path Merging, the respective test case is merged with the correspond-
ing System Model according to a set of rules, that are detailed in the respective section.
During this process, the connections between the System Model and the test case stored
in the Integration Model are evaluated, e.g. to obtain the correct entry point into the
System Model. Furthermore, the merging is initially performed for a so-called Segment,
describing the section of a test case between two verifying statements (see figure 10.4).
Since this process is based on a static analysis, the result is a set of combined execution
paths for the respective Segment. These paths represent the execution paths that are
initially obtained without a detailed evaluation of the underlying information. In the
next step (Evaluation of Path Space) the determined set of merged execution paths for the
segment is examined concerning control and data flow issues. In particular, detected
problems are put into context and recorded according to the different execution paths,
being the basis for the subsequent calculation of a Test Verdict. These two processing
steps are executed alternately until all Segments have been analyzed for the respective
test case. After the iterative process of evaluation is completed, the next step (Evalua-
tion Result to Test Verdict Mapping) is performed on the intermediate result. Here, the
collected information on the identified execution paths is evaluated and, based on a set
of rules, mapped to a Test Verdict. In the final processing step (Result Selection and Test
Report Generation) a representative result is selected from the set of possible execution
paths, their information, and derived test verdict. Afterward, the representative result
is processed for different application contexts, such as machine processing in the con-
text of MCSTLC or as feedback for the modeling expert, and finally converted into a
suitable test report.

The concepts and illustrations presented throughout this chapter are based in part on
[131], [83], and [147]. A portion of the running example from section 6.2 is further used
to illustrate the concepts.

172

10.2 THE ABSTRACT TEST EXECUTION APPROACH

Excerpt of the Running Example

In contrast to the System Model components at lower integration levels, such as those
used to illustrate the Test Case Management concepts in chapter 8, the ATE context
makes use of the higher-level model parts of the CSM. Therefore, the left side of fig-
ure 10.4 shows the EGPP instance of the statemachine of the CSM system, which man-
ages the activation of the whole system.

Test Case

S
e
g
m

e
n
t

System Model Integration Model

SET_sbiCmd_SERVICE (S)

Code:

sbiCmd =

SERVICE_BRAKE_CMD;

SET_sbiCmd_EMER (E)

Code:

sbiCmd =

EMER_BRAKE_CMD;

CSM_OFF (F)

Code:

(3)

Code:

csmSwitch &&

SBAvailable

(2)

Code:

csmSwitch &&

!SBAvailable

(1)

Code:

!csmSwitch

im_sp

im_sp

setCSMSwitchTrue (T)

Code:

csmSwitch = 1;

CSM_ON (N)

Code:

calc_speed_to_driver()

Assert (A)

Code:

csmSwitch == 1 &&

sbiCmd ==

EMER_BRAKE_CMD &&

speedToDriver != 0

Precondition (Pr)

Code:

csmSwitch == 0 &&

SBAvailable == 0 &&

sbiCmd !=

EMER_BRAKE_CMD

Figure 10.4: Omni Model excerpt for the CSM Running Example

Therefore, the System Model is divided into the different EGPPInputNodes (F, E, S, N)
which may contain code fragments for the detailed specification of functionality and
are visually represented as rectangles. The edges between the nodes define the con-
trol flow and may specify guards (see 1, 2, 3). On the right side of the figure, an
exemplary test case is shown, which was derived from a corresponding Test Model.
This in turn is composed of EGPPInputNodes, which describe the test steps, and EGP-
POutputNodes, which describe the verification points of the test case (see Pr, T, A).
Both types of nodes contain code fragments describing the concrete characteristic. The
EGPPOutputNodes are each shown with rounded corners throughout the rest of this sec-
tion. The two model instances are related via the connections stored in the Integration
Model using the IMSyncPoints. These represent the structural dependency between
instances of the different Omni Model domains, in this case, System and Test. Further,
the EGPPOutputNodes included in the test case determine the number of Segments to be
analyzed. The illustrated test case includes one such Segment, which is drawn in at the
right edge of the figure.

Apart from the visualization aspects, the test case verifies that the initially switched-
off CSM system (csmSwitch = 0, SBAvailable = 0, sbiCmd = SERVICE_BRAKE_CMD,
speedToDriver = 0), which is in a certain overall state (F), is started by the trigger

173

10 MODEL-BASED ABSTRACT TEST EXECUTION

csmSwitch = 1 and computes plausible initial values during its first cycle. In particu-
lar, the initial values are determined by functionality embedded in the EGPPGraph of N,
i.e. specified at a different integration level.

10.2.3 Omni Model-Based Path Merging

The first processing step deals with the determination of possible execution scenarios
of the considered test case against the present System Model, which leads to a set of
possible execution paths. As already mentioned, the merging is always performed per
segment before an evaluation of the determined paths for the segment is performed.

To perform the merging of the model information in a meaningful way, the start and
end points of the analysis have to be determined in advance. Due to the nature of the
EGPP instances (see section 7.2.1), corresponding start and endpoints are given. How-
ever, without further constraints, the set of model elements that need to be examined
would be very large, which is due to the ability of EGPP Models to nest instances across
multiple levels. By connecting the first and last EGPPOutputNodes of the test case via
the Integration Model, there is an opportunity to explicitly specify these points and
thus reduce the set of model elements that have to be considered. The specification
of a starting point is optional, but the specification of an endpoint is necessary since
the endpoint appropriate for the test case is difficult to be determined automatically.
Furthermore, this endpoint is a critical point for control and data flow analysis in the
context of DFA-ATE.

Based on this information, the merging of the model elements can be started. Therefore,
the model elements contained in the test case are iteratively integrated into the System
Model. The simplest approach would determine and evaluate all possible permutations
resulting in many variants that contradict the EGPP metamodel or are not appropriate
in the context. To counteract the state explosion that occurs at this point, the following
rules are specified, which produce a reduced set of execution paths.

1. The order of the model elements of the System Model and the test case is pre-
served.

2. The combination of an edge and a node of the System Model represents an insep-
arable entity (see definition 34) which cannot be split by model elements of the
test case.

3. The combination of an EGPPOutputNode (Verifying Node) and the subsequent
EGPPInputNodes (manipulating nodes) of a segment of the test case represent an
inseparable unit

The first rule is largely self-explanatory, since the intervention in the order of the model
elements of the two EGPP models (system and test) represents a change in the modeled
behavior, and therefore the results derived from this would lose any validity.

The second rule is based on the semantics of the EGPP metamodel. Here, the edge

174

10.2 THE ABSTRACT TEST EXECUTION APPROACH

represents the transition between two system states, whereby this can be protected by
a guard (verifying instruction). Traversing such a guard is usually achieved during
testing by stimuli on the part of the test case, which corresponds to one or more EGP-
PInputNodes that mimic the desired effect before the edge under consideration and its
guard are evaluated. This basic idea of testing and the given semantics of the EGPP
metamodel provides the rationale for this rule.

The third rule is the counterpart of the second rule on the part of the test case. It is as-
sumed that starting from an unmodified system state confirmed by an EGPPOutputNode
(verifying node) of the test case, a set of stimuli (EGPPInputNodes) of the test case are
processed before the system responds to them. Further, due to the abstract approach of
DFA-ATE, a temporal consideration is not performed. That is, if more than one guard-
protected node of the System Model is included in the currently considered segment,
the test case may fail by mistake. The reason is that the two model parts have for them-
selves a fixed order, however, with the unification within a segment, no information
about the intended order is available. Therefore, in order not to exclude any valid vari-
ant of an execution path the concept of Overassignment of variables within a segment is
implemented.

The Overassignment allows variables that are part of the system state to have several
valid assignments for the observation context of a segment. This ensures that the stim-
uli given by the test case are retained until they are needed, e.g., to fulfill a guard. If
such an Overassignment is utilized to lead the test case to success, this is taken into
account accordingly during the derivation of a Test Verdict (see section 10.2.5).

To illustrate the rules shown, figure 10.5 shows the total set of determining execution
paths Plim.

α
F

E S

T

Pr

T

Pr

T

PrN N

T

Pr

T

Pr E S

A

N N

A AAA

N

A AA

β
F

α

β

α

β β

N

AAβ

E S

A

N N

A AAAβ βAβ

2

2 3

3

2 3

1 1 1 1 1 1 1 1

1 1

β

p1 p2 p3 p4 p5 p6 p7 p8 p9 p10 p11

Figure 10.5: Execution paths for the Running Example from figure 10.4

In this figure, the shaping and identifiers of the model elements from figure 10.4 have
been adopted. That is, the first-named node at the top of α represents the EGPPIn-
putNode F. The possible paths from the root node to a leaf of the tree reflect the result
determined according to the rules. Since the given System Model contains loops, the

175

10 MODEL-BASED ABSTRACT TEST EXECUTION

structure is repeated at different parts of the graph, hence by α or β the respective sub-
tree is applied. The identifiers p1 − p11 shown at the bottom of the figure represent the
different paths, each ending with the EGPPOutputNode A, representing the end of the
considered segment. The paths of β ending with A are already included on the right
side of α, such that p7 − p11 cover the possible cases of this recurring part. At this point,
no reduction of the path space can be achieved by the information of the Integration
Model, since only the two nodes F and N of the System Model are linked.

10.2.4 Evaluation of Path Space

As soon as the paths for a segment are determined, the evaluation of the path space
Plim starts with the data flow and the control flow. To ensure that the code fragments
contained in a path can be evaluated correctly, the associated control flow makes sense
and the specified endpoint of the System Model is reached.

In the first step, the data flow analysis is executed per path, where a wide variety
of faults can occur. The set of possible faults is defined as D ∶= {d1, d2, d3, d4, d5, d6},
whereby the possible fault types are represented in the following list.

d1 The code fragment of the considered node could not be solved (e.g. Verification
Node originated in the Test Model)

d2 The guard of the considered transition could not be solved
d3 The code fragment of a node or a transition contains several undeclared or unini-

tialized variable(s)
d4 The respective endpoint could not be determined
d5 The guard of the considered transition contains a/several time-dependent vari-

able(s) (e.g. guard conditions regarding the system time)
d6 The guard of the considered transition is solved by an/several over assigned vari-

able(s)

By mixing concepts from the System Model and the Test Model, the subsequent analysis
does not distinguish between the domains of the model elements, but only between
Variable Verifying Instructions (VVIs) and Variable Modifying Instructions (VMIs), i.e.,
model elements that check the system state VVI and those that change the system state
VMI. For example, a VVI is considered non-solvable unless the boolean expression can
be evaluated to true in the current system state. The analysis of such a segment can
be represented in pseudo-code, as shown in its basic form in [147] and illustrated in
algorithm section 10.2.4 in an extended version.

The functions applied during analysis are presented in a more structured way in al-
gorithm 3. The method EVALSEGMENT(s), called for one segment s of the test case
at a time, represents the starting point. Here, either the variable assignments are
updated for the model elements to be evaluated (see STOREVALUESOFELEMENT)
or a boolean expression is evaluated based on the current variable assignment (see
VERIFYELEMENT). Finally, the PERSISTLASTSTOREDVARIABLEVALUES function en-

176

10.2 THE ABSTRACT TEST EXECUTION APPROACH

sures that the overassignment mechanism implemented within the segment does not
affect subsequent segments by resolving overassigned variables. As a counterpart to
storing these values, the different assignments are taken into account when evaluating
instructions (see GETPERMUTATEDVARIABLEASSIGNMENTS(I)). Across all functions,
the REGISTERFAULT(dx , e) logs the corresponding faults.

Algorithm 3 Algorithm for the evaluation of an ATE segment s

function EVALSEGMENT(s)
for e ∈ GETELEMENTS(s) do

if INSTANCEOF(GETINST(e), VMI) then STOREVALUESOFELEMENT(e)
else if INSTANCEOF(GETINST(e), VVI) then VERIFYELEMENT(e)

PERSISTLASTSTOREDVARIABLEVALUES(s)

function VERIFYELEMENT(e)
if NEWFAULTSREGISTERED(CHECKPRECONDITIONS(e)) then return
if INSTANCEOF(e, EGPPNode) then

if not VERIFYINST(GETINST(e)) xor ISOVERASSIGNED(GETINST(e)) then
REGISTERFAULT(d1, e)

else if INSTANCEOF(e, EGPPTransition) then
if VERIFYINST(GETINST(e)) then

if ISOVERASSIGNED(GETINST(e)) then
REGISTERFAULT(d6, e)

else
REGISTERFAULT(d2, e)

function CHECKPRECONDITIONS(e)
for v ∈ GETVARIABLES(GETINST(e)) do

if ISTIMEDEPENDENTVARIABLE(v) then REGISTERFAULT(d5, e)
if SIZE(GETSTOREDVALUES(v)) = 0 then REGISTERFAULT(d3, e)

function ISOVERASSIGNED(i)
for v ∈ GETVARIABLES(i) do

if SIZE(GETSTOREDVALUES(v)) > 1 then return true
return false

function STOREVALUESOFELEMENT(e)
if INSTANCEOF(e, EGPPGraph) then STORE(GETINSTOFSTUB(e))
if INSTANCEOF(e, EGPPNode) then STORE(GETINST(e))

function VERIFYINST(i)
for va ∈ GETPERMUTATEDVARIABLEASSIGNMENTS(i) do

if EVAL(i,va) then return true
return false

177

10 MODEL-BASED ABSTRACT TEST EXECUTION

A special feature of the extended variant of the pseudo-code can be seen in the method
STOREVALUESOFELEMENT(e), since the stub concept available in the EGPP context, is
addressed here (see section 7.2.2). The stub graph, which is connected to an EGPPGraph,
may contain black box information about already executed tests on lower integration
levels. Black Box Information in this context means that the Stub contains information
about the outputs or variable assignments based on a set of input variables. Provided
that the required input variables of the stub coincide with the current system state be-
fore the evaluation of the relevant EGPPGraph, the new system state can be derived
directly from the outputs stored in the stub. Unless there is a match in the inputs, the
EGPP model contained in the EGPPGraph has to be analyzed, but this requires signifi-
cantly more effort. The stub concept can be seen as a performance improvement in this
context if extensive testing has been done especially on low integration levels and there-
fore comprehensive information is available in the stub models. In combination with
the data flow analysis of the paths, a control flow analysis is performed, which in partic-
ular examines whether the path under consideration could be successfully terminated
at the specified endpoint. This type of control flow analysis relies on the information of
the Integration Model, where the structural relationships are stored. Analogous to the
set of different fault types for data flow analysis, a set C ∶= {c1, c2, c3, c4} describing the
different control flow faults was defined.

c1 All verifying instructions of the path are fulfilled and the last verification point is
solved by the instructions of one of the end nodes of the System Model

c2 All verifying instructions of the path are fulfilled and the last verification point
could not be solved using the instructions of one of the end nodes of the System
Model

c3 At least one verification point of the path could not be fulfilled, but one of the end
nodes of the System Model is part of the path

c4 At least one verification point of the path could not be fulfilled, but no end node
of the System Model is part of the path

We first distinguish whether the present path in the data flow analysis could satisfy all
VVIs (c1 and c2) or not (c3 and c4). In the first case, it is further distinguished whether
the termination of the path is given in an endpoint specified by the Integration Model
(c1) or whether another node is the termination (c2). In the second case, it is only dis-
tinguished whether one of the specified end nodes is part of the failed path execution
(c3) or not (c4).

Overall, a set of faults is recorded for each execution path, from which a set OS ∶=
{R1, . . . , R∣Plim

∣} is created for the entire segment, where R ∶= DM ∪CP. Here, DM repre-
sents the set of data flow results, where an element of this set always is a pair D × M,
with M being the set of model elements (nodes and edges) of the merged EGPP model.
CP, in contrast, represents the set of control flow results, with each element being a pair
C × px.

For our considered running example, which was already introduced in section 10.2.3,
the following set OS ∶= {R1, . . . , R11} results according to the algorithm.

178

10.2 THE ABSTRACT TEST EXECUTION APPROACH

R1 = {(d2, 2), (d1, Pr), (c3, p1)}
R2 = {(d2, 2), (d1, Pr), (c3, p2)}
R3 = {(d2, 2), (d1, A), (c4, p3)}
R4 = {(d2, 3), (d1, A), (c3, p4)}
R5 = {(d2, 3), (d1, A), (c3, p5)}
R6 = {(d2, 3), (d1, A), (c4, p6)}
R7 = {(c1, p7)}
R8 = {(d1, A), (c3, p8)}
R9 = {(d2, 3), (c3, p9)}

R10 = {(d2, 3), (d1, A), (c4, p10)}
R11 = {(d1, A), (c4, p11)}

The sets R1 - R11 show the faults for the respective paths p1 - p11. For example, R1
includes three elements, where the first element describes that the guard csmSwitch
&& !SBAvailable of the edge 2 could not be satisfied. The second element describes
that furthermore the condition csmSwitch == 0 && SBAvailable == 0 && sbiCmd !=
EMER_BRAKE_CMD of the node Pr could not be fulfilled. Finally, the last element of the
result set describes that at least one condition of a node could not be satisfied, but one
of the specified end nodes is part of the path. The results of the other paths are to be
interpreted analogously. All in all, this information provides the basis for the derivation
of a Test Verdict, presented in the following section.

10.2.5 Evaluation Result to Test Verdict Mapping

In conventional test frameworks, a so-called Test Verdict is derived for each test case.
This is primarily used to be able to classify the execution of the test cases without having
to look at the detailed information about the test execution. Usually, a distinction is
made at this point between PASSED, INCONCLUSIVE, FAILED, and ERROR [82]. The last
Test Verdict maps the state indicating that an error occurred on the part of the execution
framework. In the further explanations of the concept, an idealized execution is always
assumed, which is why the test verdict ERROR is not considered anymore.

In the context of DFA-ATE, however, this set of different Test Verdicts cannot be used to
express the difference whether the cause of failure (Test Verdict ≠ PASSED) is due to our
concept of ATE or is located in the modeling of the system or test. To be able to represent
this difference in the Test Verdicts, PROBABLY PASSED is added to the set of Test Verdicts
mentioned above. Specifically, this Test Verdict is used if during our data flow analysis
it was determined that the execution path either contains a time-dependent variable
(d5), or the overassignment concept was used to further pass the execution path (d6),
but no other faults were logged. To bring all remaining test verdicts in line with our
specified fault types and analysis results, the following definition is given to derive the
Test Verdict from the collected analysis results [147]. For the Test Verdicts a shortened
notation is used in the further course, i.e. pa for PASSED, pp for PROBABLY PASSED, in
for INCONCLUSIVE and fa for FAILED.

179

10 MODEL-BASED ABSTRACT TEST EXECUTION

M ∶ OS → V

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

pa, if ∃(f , h) ∈ R. f = c1 ∧ ∣R∣ = 1
pp, if ∃(f , h) ∈ R. f = di such that i ∈ {5, 6}∧

∀(f , h) ∈ R. f ≠ dj such that j ∈ {1, 2, 3, 4}
in, if ∃(f , h) ∈ R. f = di such that i ∈ {3, 4}∧

∀(f , h) ∈ R. f ≠ dj such that j ∈ {1, 2, 5, 6}
f a, otherwise

Accordingly, the verdict pa is determined by a data flow analysis without any faults
recorded, whereby the control flow analysis has to be terminated at the specified end-
point (c1). The verdict in, on the other hand, is determined if only faults of the classes
d3 and d4 were determined during the data flow analysis. All result sets that do not
match any of the criteria of the already explained Test Verdicts pa, pp, or in lead to a
Test Verdict fa. As mentioned above, the classical Test Verdicts are thus assigned the
commonly used semantics, and the specifics of our approach are mapped into the novel
Test Verdict pp. Overall, however, a pessimistic form of the derivation of the Test Ver-
dicts is implemented at this point, which means that an execution path is assigned to a
worse Test Verdict in case of any doubts. The idea behind this is that false positives often
remain undetected in the test context, but can cause considerable damage, whereas false
negatives may require an unnecessary manual review, which is relatively uncritical.

As in the other sections, this process step is again illustrated by our running example.
Specifically, table 10.1 shows the Test Verdicts determined from the sets R1 − R11.

Rx R1 R2 R3 R4 R5 R6 R7 R8 R9 R10 R11

M(Rx) f a f a f a f a f a f a pa f a f a f a f a

Table 10.1: Derived Test Verdicts for the Running Example

Only the set R7 of the execution path p7 is evaluated for the Test Verdict pa, whereas all
other sets are assigned the Test Verdict fa. The mapped test verdicts thus represent all
theoretically possible results of an execution of the considered test case.

10.2.6 Result Selection and Test Report Generation

Continuing with an analyzed and classified set of execution paths is available for the
test case under consideration, the last step of the DFA-ATE is to select a representative
result, which is listed in the test report. For this purpose, an order is defined on the
presented test verdicts. This serves essentially to create a clear decision basis for the
mentioned selection process. Based on the argumentation for the introduction of the
novel test verdict PROBABLY PASSED, pa >v pp >v in >v f a applies in the further course
of the work, where pa represents the best and fa the worst result.

180

10.2 THE ABSTRACT TEST EXECUTION APPROACH

On this basis, in contrast to the pessimistic derivation of a test verdict from analysis
information, an optimistic selection of the representative is made, which means that
the best test verdict also becomes the representative for the test case. Based on the
definitions introduced in advance, the following set of rules results for the selection
process.

Σ ∶ O → Obest ∶={arg max>v
(M(Ri))∧ arg min(∣pi∣) :

Ri ∈ O , pi being the respective path for Ri with i ∈ {1, . . . , ∣Plim∣}}

The formula describes that the best result is determined from all analysis results O for
the paths by first filtering those paths with the best Test Verdict. If multiple paths are
leading to the same Test Verdict, the execution path that includes fewer model elements
is preferred. If these two constraints do not lead to an unambiguous result, a path is
selected at random, and the application of this selection criterion is indicated to the
expert in the test report.

Abstract Test Execution Report

After the successful determination of a representative test result per test case, the ATE is
complete, i.e. all artifacts are generated. In particular, the Abstract Test Execution Report
designed for modeling experts can be derived. Listing 10.1 shows the essential excerpts
of such a report for the Running Example.

1 ===
2 Test Case: TC005_CSM-Statemachine_{B7BA8801-ECC1-4fc2-B992-874737C5C528}
3 ===
4 System Under Test: CSM-Statemachine
5 Test Result: PASS
6 Test Steps:
7 ---
8 1. Precondition ["csmSwitch == 0 && SBAvailable == 0 &&
9 sbiCmd != EMER_BRAKE_CMD"]

10 2. setCSMSwitchTrue ["csmSwitch = 1;"]
11 6. Assert ["csmSwitch == 1 && sbiCmd == EMER_BRAKE_CMD &&
12 speedToDriver != 0"]
13 ---
14 System Steps:
15 ---
16 0. CSM_OFF [""]
17 3. ["csmSwitch && !SBAvailable"]
18 4. SET_sbiCmd_EMER ["sbiCMD = EMER_BRAKE_CMD;"]
19 5. CSM_ON ["calc_speed_to_driver();"]
20 ---
21 Execution Log:
22 ---
23

24 INFO: We passed all VPs and last VP was solved with the specified Endpoint!
25 ---

Listing 10.1: Test Report for Running Example CSM statemachine

181

10 MODEL-BASED ABSTRACT TEST EXECUTION

The test report for a test case is divided into different sections. The upper section of the
report contains general information about the input artifacts and the determined result.
It is shown which test case was derived from the Test Model and which System Model
was considered. The determined Test Verdict is directly visible. If detailed information
is desired, in the middle section of the report the run through model elements of the
test case (lines 8-11), as well as the model elements of the system are presented (lines
15-19). In particular, the overall execution sequence is shown transparently by the over-
arching numbering presented. In combination with the execution steps, the lower part
of the report (lines 21-25) formulates the collected data flow and control flow errors in
natural language and gives a reference to the concerned model elements. In this case,
there were no faults detected and therefore no such content is displayed. In contrast,
listing 13.4 gives an example of how detected faults are illustrated in the execution log
of a test report.

10.3 Technical Realization within A3F

As with the two MCSTLC processing steps presented above, a prototypical implemen-
tation in the A3F is realized for the two Abstract Test Execution variants. The basis is
the explained concepts, which are encapsulated in a configurable analysis of the A3F.
To get an overview of the configuration possibilities, the available parameters of the
egpp_execute analysis are listed and briefly explained in table 10.2.

Table 10.2: Configuration parameters for egpp_execute analysis
Parameter Description

integrationmodel Determines the Integration Model which manages the Omni
Model around the systemmodel and the testmodels

systemmodel The System Model which represents the basis for the application
of mutations

testmodels The Scoped Test Models from which the testcases are derived

testcases Determines the set of test cases which are processed by the muta-
tion analysis

executor Determines the executor, for the Abstract Test Execution. Possible
values are controlflow and dataflow

executorconfig Determines a set of configuration parameters for the respective
executor

A part of the configuration parameters concerns the necessary model information,
which is either taken directly from the Integrated Model Basis or represents results
of upstream analyses. In particular, the parameters integrationmodel, systemmodel,
and testmodels describe the model artifacts which are the basis for the execution. The
parameter testcases returns the pre-generated test cases that have emerged from the

182

10.3 TECHNICAL REALIZATION WITHIN A3F

mentioned testmodels. In addition to these input models, the parameter executor can
be used to select the desired variant of the execution mechanics. On the other hand,
the parameter executorconfig can be utilized to pass a set of configuration parame-
ters depending on the choice of the execution mechanism. These parameters allow an
expert to optimize the execution mechanism for the problem size.

A snippet of a possible analysis chain where the egpp_execute analysis is integrated
can be seen in figure 10.6.

egpp_path_generation(testegpp)

history_loader(mutt)

im_scoping(omni)

egpp_execute(exec)

im_validation(imvali)

data_transformer(systemegpp)

Figure 10.6: Analyses dependency graph for the egpp_excute analysis

In particular, this graph shows the dependencies concerning upstream analyses of the
A3F. These are shown in gray, with the arrows describing the flow of information be-
tween the analyses. For example, the two parameters integrationmodel and test-
models represent results of the displayed im_scoping analysis. The System Model is
derived from the data_transformer analysis. The test cases, which are determined
by the egpp_path_generation analysis, complete the model information. A concrete
configuration for the egpp_execute analysis can be seen in listing 10.2.

1 <configurations of preceding analyses>
2

3 analysis egpp_execute(exec) {
4 integrationmodel=
5 "im_scoping|omni|IMScopingResult|getFilteredIMModel";
6 systemmodel=
7 "data_transformer|systemegpp|DataTransformationResult|getOutputElements";
8 testmodels=
9 "im_scoping|omni|IMScopingResult|getExtractedMBTModel";

10 testcases=
11 "egpp_path_generation|testegpp|EGPPPathGenerationResult|getTestCases";
12 executor="dataflow";
13 executorconfig="10,10";
14 }

Listing 10.2: Example configuration for the egpp_excute analysis

After successful execution of this analysis configuration, a set of reports is available for
execution of the individual test cases. On the one hand, these reports provide the expert
with information about the execution sequence of the individual test cases, and on the
other hand, they can form the basis for more advanced mechanisms such as mutation
analysis (see chapter 11). Applying the shown configuration to the Running Example
used for illustration leads to the result artifacts, some of which were already shown
in the concept part of this chapter. Further examples of this kind are provided in the
evaluation chapter by the case studies.

183

10 MODEL-BASED ABSTRACT TEST EXECUTION

10.4 Related Work

In addition to the presented approaches to ATE, many other concepts exist for the re-
alization of execution or evaluation of development artifacts of the model-level. The
spectrum ranges from formal approaches that verify the existing models to approaches
that simulate the models. Further, the used modeling languages span an extensive
spectrum, whereby altogether the UML and its variants represent a significant amount.
For example, Ciccozzi et al. have carried out an extensive analysis that presents a wide
variety of approaches to executing UML Models and categorizes these approaches [43].
In particular, the categorization into interpretive and translational is made, while our ap-
proaches can in some sense be assigned to both groups. Translational about the M2MTs
performed towards the EGPP representation and interpretative concerning the model
interpreter specified in the context of our DFA-ATE.

However, to discuss approaches beyond UML, the presented related work is subdi-
vided into Model Translation and Model Interpretation and Formal Model Verification.

Model Translation and Model Interpretation

As noted in the systematic literature review by Ciccozzi et al. [43], there is an imbal-
ance between interpretive and translational approaches. While the majority of existing
approaches choose to transform the original model artifacts to a modeling language
having an execution engine, there are only a few approaches that interpret the model
information without further preprocessing. When translating the model information,
different target languages can again be chosen, and few engines are widely used. For
example, the MoMuT::UML framework uses Object Oriented Action System (OOAS)
as the target model, which is then executed by the corresponding engine, and test cases
are examined in the same context [115]. A generalization towards a generic model ex-
ecution engine supporting different modeling variants is shown, e.g. by Kirshin et al.
[112]. Other approaches do not use a modeling language as a target language, but rather
established programming languages. A well-known representative of this is the estab-
lished development framework MatLab/Simulink, whereby C is the target language
for the simulation [48].

This contrasts with the interpreter-based approaches to model execution. Common in-
terpretation engines are mostly based on UML, for example, the Moka framework based
on Eclipse Papyrus [55]. Whereas other approaches use the fUML engine to interpret
the model information [124][125][164]. Moreover, there are interpreters developed for
specific use cases, e.g. Crane et al. who have implemented their UML Virtual Machine
[46].

However, compared to our ATE approach, all related approaches known to us lack flex-
ibility for the chosen modeling language for the specification of SUT. Due to this fact,
our approach, which performs a transformation towards our EGPP representation and

184

10.5 CONCLUSIONS AND OUTLOOK

carries out an interpretation of the generated model instances, can convince by its flex-
ibility. Another aspect emerges especially in comparison with translational approaches,
which use established programming languages as target artifacts. In case of missing
detailed information in the available models, no executability can be achieved by such
approaches, whereas ATE can cope with models of different development stages. This
feature allows to execute models at earlier stages of the development and to draw in-
sights from the test cases accordingly mitigating early errors.

Formal Model Verification

In contrast to testing, formal verification compares the existing model against a for-
mal behavior specification. For this purpose, the requirements are often formalized,
and subsequently evaluated against the possible system states [27]. In the context of
our approach, the components of the test cases are matched against the possible sys-
tem states, but utilizing structural and data flow-based relationships. Furthermore,
our semi-formal specification does not have to be created by the user but is derived
automatically from the Test Model. An examination of the system is accomplished
by considering all possible execution paths, implemented by various approaches in the
context of Symbolic Execution [110][109][130]. For this purpose, however, complete spec-
ifications are advantageous to obtain a useful result. Further development of the Sym-
bolic Execution is the Abstract Execution, which continues the evaluation with place-
holders in case of incomplete specifications [161].

Compared to the model checker concepts our basic concept offers the advantage that
only a fraction of the theoretically possible execution paths have to be considered since
the subsystem in question is known via the structural relationships. Furthermore, the
complex evaluation algorithm is transparent to the user, who therefore merely specifies
the information in the familiar modeling environment and then determines the struc-
tural relationships. Expert knowledge of formalization approaches is therefore hardly
necessary, which often makes access to formal approaches difficult.

10.5 Conclusions and Outlook

Within the scope of this chapter, approaches to Abstract Test Execution were presented,
which are mainly applied in the early phases of the MDSD. On the one hand, a concept
was presented that mainly evaluates structural relationships of the Integrated Model
Basis and implements a type of test execution that can be seen as an approach for mod-
eling support. Likewise, a concept was shown, which is intended for subsequent phases
of the MDSD. For this purpose, this concept implements a model interpreter based on
the Integrated Model Basis and the existing data flow information, which already en-
ables ATE at this stage. In response to the question posed at the beginning

185

10 MODEL-BASED ABSTRACT TEST EXECUTION

How would an automated mechanism for the verification of test cases based on (probably
incomplete) models of the SUT look like, reducing the emerging test complexity?

the following answer can therefore be given.

The basis of both approaches is provided by the EGPP representation of the original
model artifacts. In connection with the Integration Model and the extensive defini-
tion of operational semantics, a solid basis for execution at the model-level is given.
Through the control flow-based approach for the execution of test cases on this model
basis, a statement about the conformity of the model artifacts can be made in the early
phases of the development. Likewise, any modeling weaknesses can be identified in
very early phases, which can be corrected accordingly with reduced effort and in the
context of lower complexity. The data flow-based approach for executing the model
information can additionally be used to check the conformity of the specified details,
taking into account the structural relationships. By automating both approaches as
far as possible, the complexity of the problem is hidden from the user, who can only
influence the execution via configuration parameters. Furthermore, it was paid atten-
tion to the fact that the produced results come as close as possible to a conventional
test report, to be able to convert the application scenarios known from the code-level
with small expenditure on the model-level and to make a smooth transition possible
between the development contexts. Overall, the focus was on a clean integration with
the already presented process steps of the MCSTLC, whereby the emergent complexity
remains manageable.

Besides the positive aspects of the approach, there are some challenges to be addressed
explicitly. The first to be mentioned is the Omni Model, which plays the most sensitive
role in the context of ATE. Since for both concepts of our ATE the structural relation-
ships of the Integration Model play a central role, the correct modeling and updating
of the underlying information are of high relevance. Incorrect or outdated model in-
formation can, in the worst case, create a false picture to the test case set, which makes
the application of the approach dangerous. Another aspect of our approach is the in-
cluded model transformation step for the System as well as the Test Models. If the
pre-specified model transformations create an erroneous model base in the EGPP envi-
ronment, the obtained ATE results are not usable. Similarly, the model transformations
create an additional indirection to the models and the modeling language used to create
the particular system. This is a disadvantage for localizing the cause of the error unless
the model transformation is implemented bidirectionally, but this is again related to
the one-time initial effort. The last challenge related to the presented ATE concepts is
the scalability of the approach. Both concepts scale as long as the Integrated Model Ba-
sis provides sufficient structural relationships between System and Test Model, as well
as the modeling, is aligned. This means especially for the data flow-based ATE that
the model interpreter does not have to consider several hierarchy levels of the System
Model when executing test cases of a certain integration level. In this case, the path
space for the respective test cases would become enormously large, which increases the
effort exponentially. Provided that the causes addressed here are taken into account in
the application context, the positive aspects outweigh the negative ones.

186

10.5 CONCLUSIONS AND OUTLOOK

Further work in the context of the presented concepts includes, for example, a more
specific preprocessing of the available model information. This could ensure or at least
improve the aforementioned scalability challenges in special cases. A further improve-
ment of the scalability could be achieved by an additional analysis of the already avail-
able Test Model, which represents the basis of the individual test cases. Depending on
the type of derived test cases, this could save duplicated analysis effort and thus signif-
icantly improve performance in certain scenarios. We see possible applications for the
presented concepts in the integration of the MCSTLC into a continuous test toolchain,
where the ATE represents an essential building block of such a use case. Through this,
a model-based development methodology can be extended with concepts of CI/CD to
consistently ensure the quality of the generated model artifacts.

187

11
Model-Based Mutation Analysis

The last remaining step of the MCSTLC is the Omni Model-based Mutation Analysis,
which is closely related to the Test Case Generation presented in chapter 9. Basically,
in this process step, besides the guaranteed coverage of the Omni Model parts by the
determined quantity of test cases, a statement about their quality shall be made. In
this case, the statement is determined based on mutation of the considered system. In
particular, new variants are created by changing parts of the original System Model,
against which the considered set of test cases is subsequently executed. As already in-
troduced in the corresponding foundations part (see section 5.1.3), for all mutants it is
evaluated whether on the one hand there was a test case whose test result has changed
noticeably compared to the reference run. On the other hand, for each test case, the
amount of mutants killed is determined, which is further processed to a quality met-
ric.

Model

Creation/

Modification
Model-Based

Mutation

Analysis

Integrated

Model Basis

Model-Based

Test Suite

Generation
Model-Based

Test Suite

Generation

Machine-Interpretable

Mutation Analysis

ResultsTes t Case(s)

Human-Interpretable

Mutation Analysis

Results
Configurat ion

Parameters

Legend:

Document

Parameters

Process Step

Model Artifact

Test Case

Figure 11.1: MCSTLC extract focusing the Mutation Analysis and involved information

Making use of the quality information about test cases, the process step is integrated
into the MCSTLC as shown in figure 11.1. As shown on the left side of the figure, the
previously generated test cases are part of the input for the mutation analysis. Besides,
a set of configuration parameters is required. Concerning model information, the In-
tegrated Model Basis is used again, which further provides a decisive advantage in

11 MODEL-BASED MUTATION ANALYSIS

the sub-steps. After successful processing of the information, the results are prepared
for two different usage scenarios which can be seen on the right side of the graph.
These results provide aggregated information about the executions against the set of
mutants.

11.1 Prerequisites for Mutation Analysis

In this section, a digression for basic mechanisms is conducted to keep the section self-
contained. Furthermore, the available set of configuration parameters and input arti-
facts is discussed.

11.1.1 Digression: Mutation applied to the Execution Graph++

As already explained in section 5.1.3, a set of mutants is generated for the mutation
analysis. These mutants represent modified variants of the original system and are
derived from the original model using Mutation Operators. In particular, the set of Mu-
tation Operators is usually tailored to a specific application domain. In the literature,
many Mutation Operators, as well as languages for defining mutations, are presented
[100]. Based on the results of literature research and the practical experiences from the
T3 project (see section 2.2), a set of mutation operators is determined. Within the EGPP
this set of mutation operators can be categorized according to their functionality. This is
done in tabular form, whereby the respective functionality is explained in each case.

The first group of Mutation Operators, the Node Mutations, comprises structural mu-
tations, which apply to the nodes of the EGPP structure. This type of mutation in-
cludes defects that represent incorrectly inserted, forgotten, or false statements of a
code block.

The second group of Transition Mutations includes mutations affecting the structural
nature of the EGPP model. In particular, defects are mapped that create a faulty control
flow caused by incorrect positioning of code fragments.

The third group of mutation operators, the Operator Mutations, contains operators,
which manipulate boolean conditions as well as mathematical expressions. Within this
group, accidental mistakes of the developer are imitated, which have effects on the
evaluation of the whole expression or the condition.

The fourth group of Data Mutations includes mutations, which replace concrete values
and thus mimic an incorrect setting of constants or their datatypes.

The last group of mutation operators, the SubGraph Mutations, deals with possible faults
in the context of the EGPP representation of partial functionalities such as method/-
function calls. The stub concept, which was introduced in section 7.2.2, is explicitly

190

11.1 PREREQUISITES FOR MUTATION ANALYSIS

addressed here because potential faults can be introduced into the system by the user
at this stage.

Altogether, the set of Mutation Operators shown provides a solid basis for the applica-
tion of mutations in the EGPP context. On the one hand, the set of mutation operators
presented in the literature is mapped on the model-level as far as possible. On the
other hand, the specifics of the EGPP representation are considered so that extensive
mutation possibilities can be realized.

191

11
M

O
D

E
L-B

A
SE

D
M

U
TA

T
IO

N
A

N
A

LY
SIS

Table 11.1: EGPP Mutation Operators
Category / Operator ID Preconditions Description Pitfalls

Node Mutations

DELETE_NODE Target node is not a EGPPIni-
tialNode, EGPPFinalNode, or a
node with multiple but different
numbers of incoming and outgo-
ing transitions.

This operator removes the node
from the graph and connects its
predecessor with the successor.

DUPLICATE_NODE Target node is not a head- or tail-
node of a loop.

This operator creates a copy of
the targeted node and inserts it
before or after the original node
depending on the node type.

MAKE_FINALNODE Target node is not a EGPPIni-
tialNode, EGPPFinalNode.

This operator converts the tar-
geted node to a EGPPFinalNode.

CANCEL_FINALNODE Target node is not the last re-
maining node in the graph, or
not a EGPPFinalNode.

This operator converts the given
EGPPFinalNode into a standard
EGPPNode.

Transition Mutations

DELETE_TRANSITION This operator removes a transi-
tion from the graph.

The resulting graph may not rep-
resent a valid control flow.

INSERT_TRANSITION This operator creates a new tran-
sition from a respective node
to another random node of the
graph.

The resulting graph may not rep-
resent a valid control flow.

INVERT_TRANSITION This operator inverts the direc-
tion of the transition by swap-
ping its start and end node.

Operator Mutations

192

11.1
P

R
E

R
E

Q
U

ISIT
E

S
F

O
R

M
U

TA
T

IO
N

A
N

A
LY

SIS

Table 11.1: EGPP Mutation Operators (continued)

REDUCE_TO_ONE_PATH Target node has more than one
outgoing transition.

This operator removes all out-
going transitions of the node
except for one random transi-
tion. It is a generalized version
of REPLACE_COND_OPERATOR, but
works on graphs with no code
fragments at all.

The resulting graph may not rep-
resent a valid control flow.

REMOVE_ONE_PATH This operator is similar to RE-
DUCE_TO_ONE_PATH, but removes
only one random transition in-
stead of removing all except for
one.

EXCHANGE_COND_OPERATOR Target node includes EGPP-
TaggedData with code fragments
that contain at least one condi-
tional operator. The following
set of relational operators is
supported: {>=, <=, >, <, ==, ! =}
Further, these logical operators
are supported: {∣∣, &&, !}.

This operator exchanges one ran-
domly chosen operator from the
code with a second randomly
chosen one while the types cor-
respond.

REPLACE_COND_OPERATOR This operator is quite simi-
lar to EXCHANGE_COND_OPERATOR,
but replaces a randomly chosen
relational or logical operator and
its children by a fixed Boolean
value (true/false).

193

11
M

O
D

E
L-B

A
SE

D
M

U
TA

T
IO

N
A

N
A

LY
SIS

Table 11.1: EGPP Mutation Operators (continued)

EXCHANGE_MATH_OPERATOR Target node includes EGPP-
TaggedData with code frag-
ments that contain at least one
mathematical operator. The
following binary math opera-
tors are supported: {+, −, ∗, /,
%} Additionally, these unary
operators are handled: {++, −−}.

This operator exchanges one ran-
domly chosen operator from the
code with a second randomly
chosen one while the types cor-
respond.

REPLACE_MATH_OPERATOR This operator is similar to EX-
CHANGE_MATH_OPERATOR, but re-
places a randomly chosen opera-
tor and its children by a fixed nu-
meric constant.

Data Mutations

REPLACE_CONST Target node includes EGPP-
TaggedData with code fragments
that contain at least one numeric
constant.

This operator replaces one ran-
domly chosen constant with a
default value (e.g. ’0’).

MODIFY_CONST This operator is similar to RE-
PLACE_CONST, but modifies a ran-
dom constant by e.g. adding or
dividing a random number, in-
stead of replacing it with a de-
fault value.

194

11.1
P

R
E

R
E

Q
U

ISIT
E

S
F

O
R

M
U

TA
T

IO
N

A
N

A
LY

SIS

Table 11.1: EGPP Mutation Operators (continued)

MODIFY_VAR_DATATYPE Target node includes EGPP-
TaggedData with code fragments
that contain at least one variable
declaration. The supported
datatypes are {string, double,
int}.

This operator exchanges the
datatype of a randomly chosen
variable by another one.

Subgraph Mutations

REPLACE_SUBGRAPH_CONST Target node is of type EGPP-
Graph, that represents a func-
tion/method call.

This operator replaces the sub-
graph by a standard node and
the function call statement is re-
placed by a random constant.

REPLACE_SUBGRAPH_OTHER Target node is of type EGPPGraph. This operator replaces the sub-
graph by a random other sub-
graph node in the graph. The
other subgraph is duplicated and
the targeted is removed thereby.

REPLACE_SUBGRAPH_STUB Target node is of type EGPP-
Graph, having a corresponding
stub graph.

This operator replaces the sub-
graph by its stub graph.

EXCHANGE_SUBGRAPH_OTHER This operator is similar to RE-
PLACE_SUBGRAPH_STUB, but ex-
changes the targeted subgraph
with a random other one, instead
of replacing it. The other sub-
graph is not duplicated and the
targeted is not removed.

195

11 MODEL-BASED MUTATION ANALYSIS

11.1.2 Configuration Parameters

As already mentioned at the beginning, Mutation Analysis offers a high potential for
optimization in terms of both adaptation to the application context and performance.
For this reason, some configuration options have been identified for the implementa-
tion of the Mutation Analysis at model-level, which are described in the following.

Mutation Operators Selection

The Mutation Operators contained in table 11.1 represent the complete range of avail-
able operators. In certain cases, like very early development phases, only a subset of
the operators may be useful. For this reason, the expert can specify a subset of opera-
tors, which is then used for the Mutation Analysis. The subset is defined by a concrete
selection of the operator IDs shown above. If the selection of the mutation operators is
left to the algorithm, a suitable subset is determined internally based on characteristics
of the graph structure (see section 10.1.1).

Mutant Sampling Approach

In the literature, many optimization options for Mutation Analysis have been pre-
sented, including the so-called Mutant Sampling. Driven by the goal of an applicable
variant of Mutation Analysis at model-level, this technique is applied in the context of
our solution. Furthermore, different variants of Mutant Sampling exist, of which a se-
lection is implemented on the model-level. A distinction can be made between RANDOM
and EQUIVALENTS, whereby the two variants are described in detail in section 11.2.2.
If none of the mentioned approaches is desirable, the OFF parameter deactivates the
functionality.

Mutation Strategy

Further, different variants for generating mutants by the combined application of Muta-
tion Operators are presented in the literature. Some of these so-called Mutation Strate-
gies have been implemented on the model-level and supplemented by an Omni Model-
specific variant. The range is defined by HIGHERORDER, HIGHERORDER_MIXED, and HIGH-
ERORDER_MIXED, which is discussed in detail in section 11.2.1. If none of the mentioned
variants is desirable, the CLASSIC parameter represents the fallback to the standard ap-
proach of generating mutants.

196

11.2 MUTATION ANALYSIS

11.1.3 Excerpt of the Omni Model

The correlations between the System Model and the Test Model stored in the Integra-
tion Model provide an advantage for Mutation Analysis. On the one hand the selection
process of the mutation targets and on the other hand the selection process during the
subsequent execution of the test cases against the created mutants. The minimum re-
quired Omni Model should therefore include the following models, System Model, Test
Model and the Integration Model. Other domain-specific models currently do not pro-
vide any advantages for the Mutation Analysis. However, e.g linked error models like
fault trees could be evaluated in future variants of a Model-Centric Mutation Analysis
to make the application of mutations more targeted.

11.2 Mutation Analysis

The Mutation Analysis is divided into three main disciplines, namely Mutant Genera-
tion, Mutant Execution, and the final Mutant Execution Result Evaluation.

In the first step, the reference test results are initially determined for the unmodified
system. Each test case of the test suite is evaluated against the System Model using
the Data Flow Aware Abstract Test Execution (DFA-ATE) approach presented in chap-
ter 10. Based on sufficient test verdicts, namely PASSED or PROBABLY PASSED, the set
of test cases is determined which are subject to the Mutation Analysis. At this point,
the actual generation of mutants starts, utilizing the configuration parameters defined.
The relevant part of the System Model is identified from the test cases via mappings in
the Integration Model. The focused part of the System Model is analyzed according to
the selected Mutation Strategy and a set of mutation targets is derived. The identified
mutation targets are compared with the specified set of mutation operators, whereby
operators not applicable are omitted. Finally, the mutants are created by applying the
operators to the identified mutation targets according to the chosen Mutation Strat-
egy.

In the second step, the Mutant Execution, further optimization measures are imple-
mented. The sampling variant specified by the expert is applied, thus reducing the
number of mutants to be analyzed. Clustering is performed, which in turn identifies
a set of test cases based on information from the Integration Model, whose test results
could potentially be changed by the mutant. Once this clustering is complete, the iden-
tified test case sets per mutant are executed using the approach presented in chapter 10
to perform an Abstract Test Execution (ATE).

In the last step, the insights collected in the ATE are evaluated and transformed into
the respective results, which are further processed by the other process steps of the
MCSTLC. In particular, the Mutation Score is calculated for the test cases, whereby
the Equivalent Mutants problem is explicitly addressed. Furthermore, the collected
information of each ATE run is prepared and enriched with metrics, which provide

197

11 MODEL-BASED MUTATION ANALYSIS

the user/expert with helpful information for further improvement of the current test
suite.

11.2.1 Mutant Generation

According to the subtasks described in the overall description, the mutant generation
is divided into the following parts.

Reference Execution and Integration Model-Based System Model Selection

Starting from a test case set created in the Model-Centric Test Case Generation, ref-
erence results are determined by executing each test case against the original System
Model. This System Model is taken from the Integrated Model Basis and can be
uniquely determined by the specified mapping between Test Model and System Model
(via Integration Model). After successful execution of ATE, the generated test reports
are evaluated. In particular, the included test verdicts are used as selection criteria to
determine which test cases are used for the Mutation Analysis. In literature, usually,
only the test cases with a PASSED verdict are used. Due to the more abstract context and
the uncertain information situation in the early phases of development, another Test
Verdict (PROBABLY PASSED) was introduced (see section 10.2.5). Test cases assigned this
Test Verdict in ATE could not be evaluated to PASSED with absolute certainty. This is
due to included data that could not be assessed until now. However, there is significant
evidence, that the outcome is PASSED, in case of all the data may be assessed. For the use
case of Mutation Analysis, such classified test cases are just as valuable as the PASSED
test cases, since in the worst case a mutation affects an aspect that cannot be evaluated,
which would however lead to an Equivalent Mutant afterward. Thus, such test cases
do not affect the Mutation Analysis negatively. Test cases that have received one of
the remaining Test Verdicts (FAIL, INCONCLUSIVE) based on the reference execution are
not used for the Mutation Analysis. However, the reports for such test cases are made
available to the user, whereby improvements for the System Model, as well as the Test
Model, can be derived.

After successful evaluation of the results of the reference executions, the set of test cases
that are processed by the Mutation Analysis is determined. Since the goal of the Mu-
tation Analysis is not to find new test cases through the mutations, but to evaluate the
quality of a given set of test cases, the targeted nature of the mutants plays an impor-
tant role. In this case, targeted means that mutants are designed in such a way that the
mutated model elements are triggered by the respective test case if possible. Therefore,
the extensive model information of the Integrated Model Basis is used to identify corre-
sponding parts of the System Model. Figure 11.2 shows an example of the relationships
between the individual model artifacts and how they are used.

This method of identifying the appropriate System Model was already used earlier in
the reference executions. In the first step, it is determined for a test case from which

198

11.2 MUTATION ANALYSIS

 Test Case (Scoped) Test Model Integration Model System Model

Figure 11.2: Mapping of model artifacts across domains of the Integrated Model Basis

Scoped Test Model it was generated, i.e. from which submodel of the comprehensive
Test Model it emerged (see the left side of figure). In the next step, the links between
model artifacts of the Test Model and the System Model stored in the Integration Model
are used to extract the transitively affected System Model parts (right side of figure). In
the last step, an aggregation of all extracted System Model parts is performed, whereby
a valid Sub-System Model is determined in the case of higher integration levels for a
possibly fragmented Subsystem Model.

Mutation Strategy-Based Mutation Targets Determination

After the relevant parts of the System Model have been identified for the respective test
case, the previously selected Mutation Strategy is applied. A Mutation Strategy tries
to reduce the number of the provided mutants and thus necessary test case executions.
By the reduced number of mutants against which the test cases are executed, we expect
the expressiveness remains constant, shown for the code-level [142]. In addition to
the classical application of mutation operators to generate mutants (CLASSIC), three
strategies are implemented for the model-level. Each of these strategies applies a set
of mutation operators according to various rules. The rules include the selection of
possible targets for the application of the operators.

The first strategy (HIGHERORDER) creates a mutant by applying the same Mutation Op-
erator multiple times to different Mutation Targets of the System Model. In contrast to
the CLASSIC strategy, which applies a Mutation Operator to only one Mutation Target
to produce a new mutant, theoretically, any number of applications of an operator can
result in a new mutant. To control the number of applications per Mutation Operator,
our concept includes the specification of a percentage value that indicates how high
the proportion of actually mutated components is compared to the number of poten-
tial mutation targets. Besides this variant for the numerical restriction of mutations per

199

11 MODEL-BASED MUTATION ANALYSIS

mutant, there are no options for restriction in this strategy.

The second mutation strategy (HIGHERORDER_MIXED) is designed similarly, but different
mutation operators can be included. I.e., the mutants represent the result of a combined
application of different mutation operators. Analogous to the HIGHERORDER strategy, it
is possible to cap the number of mutation operators leading to a mutant by a percent-
age. How mutation operators can be applied to the System Model to produce a mutant
is only subject to the constraints mentioned in table 11.1.

In contrast, the mutation strategy HIGHERORDER_CS introduces a new way of constrain-
ing mutation targets. Different mutation operators can be applied in combination.
However, it is a context-sensitive (CS) strategy that allows mutation targets that are not
part of the same control flow to be mutated in combination. This type of Mutation Strat-
egy is motivated by the fact that emergent effects between mutations are minimized by
such mutants. The proposition of such a killed mutant is therefore more promising in
terms of identifying modeling problems and resulting improvements. The Mutation
Strategy, therefore, yields, as a result, several sets of model elements, where the ele-
ments of one set do not affect each other since they are part of independent control
flows of the System Model by definition. Figure 11.3 illustrates this additional con-
straint on the choice of Mutation Targets on the System Model excerpt CSM_ON of the
Running Example, which is revisited here and reduced to the necessary information,
the mere control flow.

EGPP System Model for the

Subsystem CSM_ON

<<EGPPNode>>

NORMAL

<<EGPPNode>>

WARNING

<<EGPPNode>>

OVERSPEED

<<EGPPNode>>

EMER_BRAKE

<<EGPPNode>>

SERVICE_BRAKE

A B

Figure 11.3: Illustration of sets of independent model elements for the HIGHERORDER_CS
Mutation Strategy (reduced model)

Analyzing this System Model concerning Mutation Targets for the HIGHERORDER_CS
strategy, first, the paths between an EGPPInitialNode and an EGPPFinalNode are de-
termined. All paths with multiple iterations through a contained loop are excluded.
However, a single iteration through a loop is allowed. From the resulting set of paths,
the elements that are part of multiple paths are each added to a separate set (see
«EGPPNode» NORMAL). For such model elements, no combination with other elements
can be made, since there is always the possibility of emergent effects during the ATE.

200

11.2 MUTATION ANALYSIS

Based on the assumptions explained above, the remaining EGPPNodes and connected
EGPPTransitions can be divided into two groups, each of which is highlighted in gray
in the graph (see A and B). If one takes a model element from set A and a model element
from set B, the two mutation targets are guaranteed to be free of mutual influences and
can therefore be mutated in combination. The possible sets of mutation targets that can
be combined to form a mutant represent arbitrary pairings of two model elements of
the addressed sets. It is not necessary to consider all permutations between the sets
because no additional information can be derived, but the number of possible mutants
would be increased enormously. This contradicts the actual goal of a reduction of the
mutant set compared to the CLASSIC strategy.

Altogether, the Mutation Target Determination identifies several sets of Mutation Tar-
gets, where the mutation of all model elements contained in a set produces a mutant.
In short, the Mutation Strategy CLASSIC consists of sets containing a single model ele-
ment. In contrast, the Mutation Strategies HIGHERORDER and HIGHERORDER_MIXED each
create a set that contains all possible Mutation Targets. The last Mutation Strategy
(HIGHERORDER_CS) represents a combination of the other strategies, with the resulting
sets containing only Mutation Targets that do not affect each other.

Expert-, Experience- and Model Characteristics-Based Mutation Operator Selection

Based on the sets of Mutation Targets determined in the previous step, the correspond-
ing Mutation Operators are determined in this step. The selection of operators used to
create mutants depends on the following factors.

Primarily, the choice is reduced by the characteristics of the respective System Model. In
particular, the categorization of EGPP models introduced in section 10.1.1 is used. If the
System Model is categorized as Level 0 (Fragmented Control Flow Graph) or Level 1
(Control Flow Complete Graph), only Mutation Operators targeting structural/control
flow components of the EGPP model are practicable. Specifically, due to such catego-
rization, operators from the following sets are available: Node Mutations, Transition
Mutations. If the System Model is categorized as Level 2 (Data Flow Graph), all re-
maining sets of Mutation Operators (Operator Mutations, Data Mutations, Subgraph
Mutations) are supported. This excludes Mutation Operators that are not applicable
due to missing features of the model. Besides, during the subsequent application, i.e.
the actual generation of the mutants, some of the Mutation Operators are omitted, since
the constructs in question are not expressed in the model.

Moreover, experts can make a selection of the shown Mutation Operators. This
allows the expert to make explicit use of the optimization concepts Selective Mu-
tation/Constrained Mutation and thus improve the entire Mutation Analysis. These
concepts reduce the set of Mutation Operators and thus the set of resulting mutants
[133][175]. In addition to implementing Selective Mutation, this mechanism enables
the expert to select use case-specific operators. This ensures the best possible imitation
of typical error cases in the context of the use case.

201

11 MODEL-BASED MUTATION ANALYSIS

The last aspect of Mutation Operator Selection is the algorithmic preselection of op-
erators. In particular, this kind of selection takes place when the expert has not spec-
ified any concrete subset. For the different characteristics of a System Model (Level
0-2) predefined subsets of the total set of operators are available. These represent in
each case a set of operators that is as broad as possible, but as minimal as possible in
terms of number. The predefined subsets are created based on expert knowledge. For
example, the predefined set for the Level 1 is composed of the following operators:
DELETE_NODE, DUPLICATE_NODE, DELETE_TRANSITION, INSERT_TRANSITION

Taking the cut set of the three explained factors to reduce the Mutation Operator set,
we obtain the set of operators that is finally used for the generation of mutants. To
make the concepts more tangible, the System Model from figure 11.3 is taken up and
transformed into a set of mutants. Based on the included model elements, this System
Model is classified as Level 2, which initially does not restrict the choice of Mutation
Operators. However, in this case, the expert has decided to use the DELETE_TRANSITION
operator to generate mutants. Furthermore, the HIGHERORDER_CS strategy was chosen,
generating the set of mutants indicated in figure 11.4.

M1 M2 M3 M4

M5 M6 M7 M8

M9 M10 M11 Original

Figure 11.4: Generated Mutants for Running Example as per HIGHERORDER_CS

In total, the application of the Mutation Strategy HIGHERORDER_CS with the Mutation
Operator DELETE_TRANSITION results in 11 mutants. As described above, one mutation
of a model element from A and one mutation of a model element from B are each applied
in combination to produce a new mutant. In comparison, the CLASSIC strategy with the
same Mutation Operator applied would have 14 mutants, since each mutation produces
a new mutant.

11.2.2 Mutant Execution

After the successful creation of mutants, the mutants are executed against the deter-
mined test case set. Each test case could be executed against the determined mutants
using ATE. The selection of a representative subset of the mutants, the selective execu-

202

11.2 MUTATION ANALYSIS

tion of test cases against mutants, as well as the actual execution itself is explained to
optimize the approach.

Mutant Sampling

Depending on the selected Mutation Strategy, a large or very large set of mutants is the
starting point for this processing step. Optimizations should reduce this quantity with-
out losing significance. For the application context of code-based Mutation Analysis,
several approaches have been presented [123][176]. Based on the ideas, two approaches
are developed for the model-level that accomplish a mutant set reduction in different
ways.

The first possibility to implement sampling on the mutant set is a randomized selection
procedure (RANDOM). Here, randomly selected mutants are removed from the set until
a reduction is achieved such that the remaining set is only a pre-specified percentage
of the original set. At the code-level, a large number of experiments have determined
that, for example, reducing the mutants to 10% of the original set, produces only a 16%
degradation in effectiveness [100]. For our concept at the model-level, the same general
conditions apply to a large extent and therefore we expect analogous key indicators.

The second option for reducing the mutant set primarily utilizes the atomic mutations
and properties of the mutants and is developed against the background of effective in-
teraction with the subsequent Mutant Clustering. The focus of this variant is on the
elimination of similar mutants in terms of the combination of mutation operator and
mutation target (EQUIVALENTS). All information is captured during the creation of the
mutants and can therefore be used for the selection process. To make the selection pro-
cess stable against errors, the set of mutants has to be sorted in descending order by
the number of applied mutations beforehand. Afterward, the list is examined and mu-
tants that are included in other mutants are removed from the list. Included means that
in an already examined mutant all pairs of mutation operator and target are applied,
which the currently examined mutant also contains. Thus, these mutations are already
covered by the more comprehensive mutant, so no new findings are expected from this
mutant. Once the list of mutants has been fully examined, the reduced set of mutants
determined by the EQUIVALENTS sampling is determined.

If the all-encompassing set of generated mutants is to be used for the Mutation Analy-
sis, sampling can be omitted. However, this can result in a significantly higher execu-
tion time.

Mutant Clustering

Another optimization is Mutant Clustering. Analog to the field of Mutant Sampling,
there are code-based Mutant Clustering methods, which can be shifted to the model-
level [120][54]. In the code-based clustering approaches, clusters are formed by group-

203

11 MODEL-BASED MUTATION ANALYSIS

ing mutants that are guaranteed to affect the same set of test cases. From these clusters
usually, only some representatives are chosen to be used for the subsequent Mutation
Analysis. This approach, initially proposed by Hussain et al. [97] has been refined in
many variants and serves as a starting point for our concept.

The Mutant Sampling variant EQUIVALENT and our Mutant Clustering approach are
closely related. The EQUIVALENT sampling variant covers the second aspect of code-
based clustering methods, namely the selection of suitable representatives. Specifically,
in our case, those mutants represent the superset of other less comprehensive mutants.
The actual task of the model-centric Mutation Clustering concept is therefore to im-
plement the first aspect of the code-based clustering procedures, namely the grouping
of test cases for suitable mutants. The focus is on the information stored in the Omni
Model, which has already been used for the targeted identification of mutation targets.
Figure 11.5 illustrates the essential aspects of grouping.

TC1 TC2 TC3 TC4 TC5

Mutant 1 Mutant 2

Original

TM IMTest Cases System Model
Cluster 1 Cluster 2

Figure 11.5: Schematic figure for the identification of test cases clusters per mutant

On the right side of the figure, the System Modeling area can be seen, showing, on
the one hand, the original System Model, and on the other hand, the mutants created
in the previous step. The middle area of the figure shows both the Integration Model
(IM) and the Test Model (TM), which are part of the Omni Model and form the bridge
between mutants and test cases in this application context. On the left side, the test
cases are shown. In the upper pane, the set of test cases created for the original System
Model shown on the right are illustrated. In the lower pane, one can see the two created
clusters cluster 1 and cluster 2 corresponding to mutants mutant 1 and mutant 2
respectively. A test case is inserted into cluster 1 exactly when model elements of
the mutant control flow path from mutant 1 are connected to model elements of the
respective test case via the Integration Model. This way, it is very likely that the test
case triggers the mutated part of the System Model in the later execution and thus can
prove to kill the mutant, i.e., a change is detectable in the test report. The same applies
to all other mutants and the resulting clusters. Depending on the Mutation Strategy
applied before, it is possible that a test case is part of several clusters, which means that
the intersection of the clusters does not have to be empty.

Overall, this type of Mutant Clustering in combination with the previously introduced
Mutant Sampling ensures that the Mutation Analysis can be performed with maximum

204

11.2 MUTATION ANALYSIS

efficiency. In particular, only the test cases relevant for the mutant are included in the
cluster, executed, and finally evaluated to a Mutation Score (see section 11.2.3).

Parallel Abstract Test Execution

Finally, we discuss the use of ATE in the context of Mutation Analysis. The test cases
are evaluated against the mutants by the interpreter-based approach presented in chap-
ter 10. This approach offers the major advantage that a separate executable version of
the system does not have to be compiled for each mutant created, but the mutant model
information is processed directly. Thus, the execution is less performant than compara-
ble compiled code-based executions but can be applied in early development stages.

The execution of the test cases can be performed against the mutants utilizing the mech-
anism shown in chapter 10. Based on the previously determined clusters per mutant,
parallelization of the execution can be applied. Therefore increasing the scalability, the
individual executions must be independent, which is the case by definition.

In addition to parallelization, other approaches for improving performance are dis-
cussed in code-based Mutation Analysis approaches. For example, in contrast to the
original execution concept of Strong Mutation, which makes the result of Mutation Anal-
ysis dependent on a changed system state at the end of the execution, the variants Weak
and Firm Mutation were presented [95][177]. These variants check the internal system
state throughout execution and abort execution if a mismatch is detected, causing the
mutant to be considered as killed. In our concept, such variants are not applied, since
they would negatively affect our approach to automated detection of Equivalent Mu-
tants in the course of Mutation Score computation (see section 11.2.3).

11.2.3 Execution Result Evaluation

After all executions of test cases against mutants by the ATE approach are completed,
the collected findings are evaluated. This includes the context-sensitive computation
of metrics and the appropriate preparation of detailed information for the respective
follow-up purposes.

(Test Case) Mutation Adequacy Score Computation

After successful execution of all test cases against the respective mutants, a metric is
calculated describing the adequacy of the test suite. This so-called Mutation Adequacy
Score (MAS) indicates the killed mutants with the total set of mutants for a test case
set. In particular, the calculation of the MAS takes into account the so-called Equivalent
Mutants by subtracting them from the total set of mutants. However, the detection

205

11 MODEL-BASED MUTATION ANALYSIS

of these Equivalent Mutants is a core challenge of Mutation Analysis, which can be
identified by experts [100].

As part of our approach to Model-Centric Mutation Analysis, the detection of Equiv-
alent Mutants can be automated, based on the execution logs generated by the ATE
approach. This enables the expert to automate the identification of Equivalent Mutants
during the execution. As shown in chapter 10, such an execution log contains the se-
quence of model elements passed during the traversal of the System Model and the
sequence of model elements of the respective test case including detailed information
about processing steps of the ATE component. Further, for all model elements, the in-
cluded meta information, such as the evaluated code fragments, is recorded. If two
executions of a test case lead to the same Test Verdict, it is examined whether an equiv-
alent mutant is present. Therefore, the logs of the executions are compared. If the logs
just differ in the code fragments or model elements that were changed by the mutation
operators, it is an Equivalent Mutant. If other differences are found, this indicates a
change in control or data flow caused by the mutant and thus an altered internal state
of the system. Therefore, it can be concluded that the test case is not capable of detect-
ing the mutation. This can either be since the test case does not check this type of fault
or is of insufficient quality, i.e. does not cover the mutated parts.

To increase the amount of information provided by a successful Mutation Analysis and
to obtain a statement on the adequacy of individual test cases, a supplementary met-
ric is developed for the model-level, the so-called Test Case Mutation Adequacy Score
(TCMAS). For this purpose, the perspective of the particular test case is taken to deter-
mine the mutants it was executed against. Based on this subset of mutants, the ratio
of the killed mutants to the total subset is determined. Equivalent Mutants are deter-
mined according to the already presented procedure and considered in the calculation
formula accordingly.

Definition 36 (Test Case Mutation (Adequacy) Score)
This metric is defined as follows:

TCMAS = D
M − E

with

• D: number of mutants killed
• M: number of mutants the test case was executed against
• E: number of equivalent mutants the test case was executed against

This metric makes the contribution of each test case to the overall MAS transparent,
used as feedback for the creation of test suites based on it (see chapter 9). It is expected
to significantly increase efficiency, in terms of smaller and more effective test suites,
especially in advanced iterations of MCSTLC. A combination of mutation metrics with
coverage metrics enables a simplified identification of weak points in the test suite. The
expert can then make appropriate adjustments to the affected model parts with the help
of the Omni Model information.

206

11.2 MUTATION ANALYSIS

In addition to the presented mutation metrics, further metrics are conceivable to im-
prove the informative value. A possible extension could be a metric describing the
diversity and heterogeneity in the applied mutation operators of a mutant. From this,
it could be derived to a certain extent how difficult it is to kill the respective mutant and
how high quality a test case is that has killed the mutant.

Human- and Machine-Interpretable Advice Generation

As shown at the beginning of this chapter, the results of the Mutation Analysis are made
available to the Test Case Generation and the Model Creation/Modification. The pure ma-
chine and automated processing of the information within the Test Case Generation do
not require any special preparation of the collected information, but only well-defined
data structures to exchange the information. However, to facilitate the processing of
the information by the modeling expert in the context of Model Creation/Modification, a
Mutation Analysis Report is generated from the collected data, which consists of:

• Overall report on the test suite under investigation

– Composition of the test suite
– Detailed information about the mutants
– Achieved MAS of the test suite

• Detail report per test case

– Achieved TCMAS of the test case
– Execution report per mutant

* Performed substeps of the test case
* Traversed path in the System Model/mutant
* Detailed execution log of ATE component
* Test verdict determined by the ATE component

Metrics like the TCMAS can be found in this list. The individual aspects of the report
are presented in a textual form and, in conjunction with the model elements from the
Integrated Model Basis, provides valuable information for model-side improvements.
Corresponding components of the ATE report have been shown in section 10.2.6. Fur-
thermore, the relationships between the modeling domains specified in the Integration
Model can be used to uncover modeling weaknesses outside the Test and System Model
and to correct them at an early stage. Such possibilities represent another special fea-
ture of the Omni Model-based Mutation Analysis approach and cannot be implemented
easily in classical contexts.

207

11 MODEL-BASED MUTATION ANALYSIS

11.3 Technical Realization within A3F

For the MCSTLC process step just presented, there is a prototypical implementation
of the concepts in the context of the A3F. The analysis, which encapsulates the func-
tionality, in turn, provides the user with several parameters that are used to configure
the internal processing chain and supply it with data. On the one hand, the analysis
results of upstream processing steps are used via the parameters. On the other hand,
the expert can specify parameters to adapt the processing chain to the conditions or to
optimize it for the respective model instances.

Table 11.2 gives an overview of the available parameters, explains them briefly and
shows the underlying concepts.

Table 11.2: Configuration parameters for egpp_mutation_testing analysis
Parameter Description

integrationmodel Determines the Integration Model which manages the Omni
Model around the systemmodel and the testmodels

systemmodel The System Model which represents the basis for the application
of mutations

testmodels The Scoped Test Models from which the test cases are derived

testcases Determines the set of test cases which are processed by the mu-
tation analysis

executor Determines the executor, for the Abstract Test Execution. Possi-
ble values are controlflow and dataflow

executorconfig Determines a set of configuration parameters for the respective
executor

seed A random seed to make all of the processing reproducible

mutopconfig Determines the set of applied mutation operators. If the AUTO
option is specified, a predefined set of operators is configured.
Otherwise, the set of mutation operators is determined by the
passed set of operator IDs (see section 11.1)

mutsamplingconfig Configures the sampling task of the mutation analysis. OFF deac-
tivates sampling, while RANDOM and EQUIVALENTS each together
with a double value between 0 and 1 pick certain samples (see
section 11.2.2)

mutstrategyconfig Configures the applied mutation strategy during mutation anal-
ysis. Possible values are HIGHERORDER, HIGHERORDER_MIXED,
HIGHERORDER_CS and CLASSIC, while the first two each can spec-
ify a double value between 0 and 1 (see section 11.2.1)

Note the overlap with the egpp_execute analysis presented in the last chapter. The
parameters integrationmodel, systemmodel, testmodels, testcases, executor and

208

11.3 TECHNICAL REALIZATION WITHIN A3F

executorconfig are identical to those presented in section 10.3. This is especially
since internally, in the context of mutation analysis, the same execution mechanics are
used.

The remaining parameters seed, mutopconfig, mutsamplingconfig, and
mutstrategyconfig therefore specifically concern the mutation mechanism and the as-
sociated processing logic. The concrete expressions of the parameters can be taken from
the table shown above or found in the respective concept part.

As mentioned above, successful mutation analysis in the context of A3F requires the
combination of several atomic analyses. Again, parts of the already created combina-
tions of analyses are reused, as shown by the grayed-out parts in figure 11.6.

egpp_path_generation(testegpp)

history_loader(mutt)

im_scoping(omni)

egpp_mutation_testing(mutt)

im_validation(imvali)

data_transformer(systemegpp)

Figure 11.6: Analyses dependency graph for the egpp_mutation_testing analysis

The graph shows which analyses represent the input values for further processing
within the egpp_mutation_testing analysis. Listing 11.1 shows a specific configura-
tion of the egpp_mutation_testing analysis. The parameters presented in the previous
section are assigned concrete values, such as those that may occur in practical use in the
course of A3F.

1 <configurations of preceding analyses>
2

3 analysis egpp_mutation_testing(mutt) {
4 integrationmodel=
5 "im_scoping|omni|IMScopingResult|getFilteredIMModel";
6 systemmodel=
7 "data_transformer|systemegpp|DataTransformationResult|getOutputElements";
8 testmodels=
9 "im_scoping|omni|IMScopingResult|getExtractedMBTModel";

10 testcases=
11 "egpp_path_generation|testegpp|EGPPPathGenerationResult|getTestCases";
12 executor="dataflow";
13 executorconfig="10,10";
14 seed="111";
15 mutopconfig="AUTO";
16 mutsamplingconfig="RANDOM,0.2";
17 mutstrategyconfig="CLASSIC";
18 }

Listing 11.1: Example configuration for the egpp_mutation_testing analysis

After the execution of such a configuration by the A3F, the framework generates nu-
merous result artifacts. This includes reports about the execution of the test cases
against the different variants of the original System Model. Furthermore, a compre-
hensive report is generated that shows metrics and reveals the relationships. For the

209

11 MODEL-BASED MUTATION ANALYSIS

Running Example, which has already been used to illustrate the concepts across all
other chapters, excerpts of concrete result artifacts of the prototypical implementation
have already been shown in the concept sections (see listing 10.1). In section 13.4 a more
comprehensive example of a Mutation Analysis report can be seen.

11.4 Related Work

In addition to our concept on model-centric Mutation Analysis, there are a large num-
ber of research contributions in this context. In general, there is a very positive trend
in publications in this area over the last years [100] [135]. This underlines the inter-
est in the subject area whereby a steady improvement of certain aspects of the basic
concept is achieved and solutions for practical use emerge. This research area covers a
large number of research topics due to the variety of activities included, while only a
selection of aspects is discussed in the context of this Related Work. Since the major-
ity of existing research contributions are based on specific programming languages, a
selection of these frameworks and their use cases is considered first. Due to our mod-
eling focus, alternative approaches that enable mutation analysis at the model-level or
through domain-specific languages are discussed. Finally, we consider further opti-
mization techniques in the context of Mutation Analysis, which are not applied in our
context but bring an enormous improvement in other use cases.

Mutation Analysis Frameworks on the Code-Level and its Industrial Applications

As mentioned above, there is a Mutation Analysis framework or at least concepts for
the implementation of such a framework for almost every existing programming lan-
guage. For example, Delgado et al. have studied several mutation operators using
the framework MuCPP in the context of the C++ language [52]. Besides, there are some
very specific approaches, such as the so-called CCmutator, which determines mutants
specifically for parallel execution strings in C/C++ [116]. The popular Java program-
ming language has many frameworks that implement Mutation Analysis. Common
representatives are muJava and Pit [122][45]. In addition to the common mutation op-
erators that are uniform across most programming languages, additional mutations are
usually defined, especially in object-oriented languages. For this purpose, Offutt et al.
have defined a set of so-called Inter-Class Mutation Operators, which aim at the muta-
tion of concepts such as polymorphism [121]. Overall, a very large variety of mutation
operators is available, whereas our EGPP-based implementation of mutations relies on
atomic faults in the context of the control- and data flow of model elements and our
integrated code fragments. This enables our approach to mimic complex operators in a
very specific context but keeps the applicability in heterogeneous contexts.

In practical development scenarios, the challenges of Mutation Analysis, especially the
cost of execution as well as the selection of good mutants, are repeatedly highlighted.
It was shown, for example, by Petrovic et al. in an evaluation of several applications

210

11.4 RELATED WORK

of Mutation Testing in an industrial setting [138]. In particular, this put the claim of a
Mutation Adequate Test Suite into perspective and addressed the number of unproduc-
tive mutants in such test suites. For example, Ahmed et al. applied Mutation Testing to
a test suite of a Linux kernel module [16]. They were able to identify gaps in the test
suite and even found previously undiscovered bugs in the same process.

Mutation Testing on the Model-Level

In addition to the approaches to Mutation Analysis on specific programming lan-
guages, there are some approaches for modeling languages or domain-specific lan-
guages and their metamodels. The first tool to be mentioned here is MoMut::UML,
which emerged from a research project lasting several years and enables Mutation
Analysis of UML models of the SUT [115]. Due to the challenges of Mutation Analysis
at the model-level, optimizations regarding mutant selection are implemented by this
tool. Concepts for Mutation Testing or Mutation Analysis have been implemented for
other popular modeling languages. In particular, some approaches to statemachines or
statecharts, but also System Modeling using Petri nets are available [63][91][62].

Against the background of such Mutation Analysis concepts for modeling languages,
the foundation for our EGPP-based Mutation Analysis was laid. In particular, our con-
cept focuses on applicability across a variety of modeling languages. In this context,
the domain-specific language Wodel should be mentioned, which allows defining muta-
tions on metamodels and thus provides a flexible mechanism and the basis for applying
Mutation Analysis to almost arbitrary models [76]. Building on this language, a frame-
work was created by Gomez-Abajo et al. that provides the necessary functionalities to
implement Mutation Analysis using the Wodel framework [77]. Compared to our con-
cept, the focus here is on the adaptation of the mutations to the target model, whereas
in our approach the target model is mapped to a uniform internal representation uti-
lizing transformations, leaving the mutation definitions unchanged. With this concept,
we can implement a well-tested core framework for mutation and further adapt new
application contexts by simply specifying new model transformations.

Optimization Techniques for Mutation Testing/Analysis

Regardless of the specific modeling or programming language that represents the ba-
sis for Mutation Analysis, the focus is on the efficiency of the respective approach. In
the previous sections, some approaches for optimizing Mutation Analysis have already
been presented in the context of our concept. However, the range of research contri-
butions on further approaches is very extensive, which is why further insight is given
here. Pizzoleto et al. have evaluated a large number of research items that deal with
optimization in the context of Mutation Analysis [140]. In particular, they created cate-
gories that describe and group the different optimization techniques.

For example, the use of Evolutionary Algorithms is mentioned as an alternative to the

211

11 MODEL-BASED MUTATION ANALYSIS

mutant set reduction or even test case set reduction techniques we utilize. Abuljadayel
et al. use such an algorithm to create promising Higher Order Mutants, where the fit-
ness function describes how many test cases in a set were able to kill a mutant [14].
The mutation operators used to create the mutants represent another prominent area
of research. In particular, the focus is on the selection of a targetable subset of the op-
erators, as demonstrated by the concept of Sufficient Operators, which has been studied
by Just et al. [106], among others. This concept is closely related to the variants of
Constrained Mutation and Selective Mutation mentioned earlier. However, the range of
concepts is almost unlimited at this point, which makes a holistic representation impos-
sible. Already during the creation of the mutants, in most cases, potential Equivalent
Mutants are examined. For example, Kintis et al. used compiler detection mechanisms
to identify them before they are executed [111]. In contrast, in our approach, checking
for Equivalent Mutants is only possible after successful execution by our ATE. Against
the background of faster execution of code-based mutants, the concept of Metamutants
is very popular. A Metamutant represents a parameterizable variant of the original sys-
tem that includes all mutants, whereby configuring the parameters, the concrete mu-
tant is expressed [78]. Such approaches reduce the overhead of executing the mutants,
providing a significant overall advantage.

Overall, all approaches to optimize Mutation Analysis can be divided into the cate-
gories Mutant Reduction, Equivalent Mutant Detection, Faster Execution, and Reduction of
Executions. From each of these categories, a concept applicable at the model-level is
implemented to improve our Model-Centric Mutation Analysis in terms of its appli-
cability. In general, however, code-based approaches and corresponding optimization
concepts are much more prevalent compared to the model-level approaches.

11.5 Conclusions and Outlook

In this chapter, we present an approach that implements the concept of Mutation Anal-
ysis based on the Omni Model. The focus is on the evaluation of the test cases created
in the process step Test Case Generation concerning their quality of detecting artificially
inserted faults. In response to the question formulated at the beginning

How could mutation testing concepts together with a mechanism for test case execution applied
on the model-level improve the quality of automatically generated test suites?

the following answer and concluding statement can therefore be given.

To make the concept of Mutation Analysis applicable to our internal metamodel for rep-
resenting the System Model, a set of mutation operators is created and implemented.
This enabled the creation of mutants, which is an essential aspect of this concept. To-
gether with the concept presented in chapter 10 for executing test cases against a System
Model, the foundation for model-centric Mutation Analysis is laid. Based on a variety
of findings on the computational integrity and scalability of the approach, which are

212

11.5 CONCLUSIONS AND OUTLOOK

available in the literature on code-based approaches, a concept for optimizing our con-
cept at the model-level is created. Essentially, established mutant set reduction tech-
niques were adapted to the model-level and improved against the background of the
comprehensive Integrated Model Basis data. Besides, a further enhancement of scala-
bility is implicitly introduced by the ATE technique, further improving the applicability
of the approach. The metrics for the quality of a test case set, which are typical for Mu-
tation Analysis, have been completed by newly designed metrics, whereby overall a
clear picture of the quality of the test case set at hand can be created. In interaction
with the modeling expert, as well as in the automated context with the Test Case Gener-
ation, a continuous improvement of the model basis, as well as the resulting test suite
can be achieved. Also, Mutation Analysis is a useful addition to the established cover-
age metrics, allowing a more comprehensive quality and completeness statement to be
generated.

In addition to the positive aspects of Model-Centric Mutation Analysis mentioned
above, there are some challenges. First of all, the Integrated Model Basis has to be
mentioned again. Here, analogous to the findings of the previous chapters, the qual-
ity of the model information has a not inconsiderable influence on the applicability
and resulting outcomes of Mutation Analysis. As a concrete example, the described
mechanisms for the goal-oriented selection of mutation targets and the implementation
of the Mutation Strategy HIGHERORDER_CS are to be mentioned at this point. Another
challenge is given in the specification of the input parameters by the modeling expert.
In this case, it is always possible to fall back on the non-optimized variant or automatic
default parameters, but this is at the expense of quality and/or performance in the
specific application. In the case of a manual specification of these parameters, however,
experience and knowledge of the application context are necessary, since the choice of
parameters otherwise paints a false picture of the quality of the test case set. The last
thing to mention is the lack of possibility of a purely manual application of mutations
to the System Model, which is not provided for in our concept. Thus, the modeling
expert cannot complete an automatically created set of mutants with mutants that seem
reasonable by experience. However, such functionality can easily be added in future
variants, giving the approach even more flexibility.

Provided that the aspects mentioned do not pose a problem in the specific use case, we
see a future scenario of our model-centric Mutation Analysis in the embedding into a
Continuous Integration process on the model-level. As the overview for the MCSTLC
already suggests, continuous execution of this approach in parallel to other develop-
ment processes is a good idea and provides valuable information about the quality
of the current test suite. Further, we see the potential for machine learning-based ap-
proaches to tackle the selection of a proper mutation operator set for the application
scenario at hand. In general, machine learning is a meaningful technology to boost dis-
ciplines of Mutation Analysis, as long as there is enough data for the concrete problem
domains.

213

Part IV

APPLICATIONS AND
EVALUATION

12
Applications of the Omni Model

Approach

Following the main part of the thesis, the concepts that have been developed are eval-
uated in the following chapters. The qualitative evaluation of the Omni Model ap-
proach marks the beginning. For this purpose, three different case studies are used to
show how concrete instances of the Omni Model look like. In particular, the Integration
Model at the end of each case study covers the main aspects of the modeling concept,
which is reviewed in a concluding overall discussion.

12.1 Tank Control System

The first case study represents a system that is used to visualize and control the level
of liquid tanks. The system is designed in such a way that theoretically any number of
tanks can be managed since the tank functionality is encapsulated. The functionality
is realized via a tank unit that implements the level control. A tank comprises several
physical components, including a level sensor and a valve for emptying the tank. The
logic of the tank unit is represented at its core by a statemachine, which is picked up
again in the next paragraph. Depending on the number of tanks managed, a corre-
sponding number of instances of the tank unit are realized. In addition to the tank unit,
the system has a display unit that shows all information about the tanks, such as the
current fill level, the target fill level, or the status of the valve. The Omni Model of the
Tank Control System presented in the following is used in particular in the context of
section 13.1 to evaluate the Test Case Management functionality.

System Model

The actual development of the described system is done in radCase, which is a domain-
specific modeling tool for embedded systems. The modeling language of the same
name, which is developed by the company IMACS, allows systems to be implemented
as a collection of many reusable function modules and is presented in section 7.1.1.
These function modules can implement only functionality, but also contain components
for visualization or documentation.

12 APPLICATIONS OF THE OMNI MODEL APPROACH

The System Model of the Tank Control System is shown in figure 12.1a. In particular,
the left side shows the components of the System module, which includes the three
submodules Tank1, Tank2, and Display. This instantiates the respective modules Tank
and MDisplay. All in all, the radCase model comprises far more modules, which in
particular realize the hardware-related software components and drivers. The model
components of the Tank Module can be seen on the right side of figure 12.1a. The so-
called Elements describe the internally used variables, which in particular define the
state of the Tank module. For example, TargetLevel describes the target level that can
be specified by the user.

(a) System Model Structure

Init

ValveClosed

entry / Close valve

Delay

entry / Start timer

ValveOpen

entry / Open valve

if the level is too low [$AI_Level < $TargetLevel]

if the level is okay [$AI_Level >= $TargetLevel]

if delay over [$TIM_Delay >= $TargetDelay]

if the level is okay [$AI_Level >= $TargetLevel]

(b) Tank Control Statemachine

Figure 12.1: Tank Control System Model

The functionality of the Tank module is realized by the statemachine shown in fig-
ure 12.1b. This opens or closes the valve according to the target level, with a delay state
preventing permanent actuation of the valve.

Test Model

A Test Model is specified for the presented System Model. For this purpose, the Test
Modeling language of mbtSuite explained in section 7.1.2 is used. As already seen
in figure 12.1a, a Test Model is specified based on the integration levels of the Sys-
tem Model (see for example MBT-System or MBT-Tank). These Test Models describe the
expected behavior at the respective integration level and form the basis for the gen-
eration of concrete test cases. Figure 12.2 shows the structure of the Test Model MBT-
doTankControl for the statemachine specified in the System Model.

The shown Test Model only results in some exemplary test cases and does not claim
to provide complete coverage concerning a specific metric. The focus is on the demon-
stration of the concepts of the individual process steps of the MCSTLC, whereby the

218

12.1 TANK CONTROL SYSTEM

StartTankTest

EndTankTest

«TestStep»

Set Level Lower

«TestStep»

Wait longer than
TargetDelay

«TestStep»

Wait shorter than
TargetDelay

«TestStep»

Set Level Higher

«VP»

Check Delay Started

«VP»

Check Valve Open
(After) depr

«VP»

Check Valve Closed
(After) depr

«TestStep»

Set Values

«VP»

Check Valve Closed

«TestStep»

Set Initial Values

«VP»

Check Valve Closed
(single)

Figure 12.2: Test Model for Tank Control statemachine (MBT-doTankControl)

scalability of the individual partial approaches and the practical applicability can be
concluded.

Requirements Model

Another modeling domain, which is part of the Omni Model of the Tank Control Sys-
tem Case Study, is the Requirements Model. For this purpose, the modeling capabilities
of the radCase metamodel were used, which represents the requirements in a simpli-
fied modeling variant of the SysML requirements. Here, natural language requirements
are utilized, which can be related using connectors. The concrete requirements are not
discussed, but references are made to their use in the context of the Integration Model
(see figure 12.3).

Integration Model

The most important model in the context of the Integrated Model Basis is the Inte-
gration Model. The modeling capabilities of the Integration Model have already been
shown in section 7.1.3 and illustrated for the first time in the Running Example. Fig-
ure 12.3 gives an overview of the general structure of the Integration Model, as well as
the structural links to model elements of connected modeling domains.

The gray model elements show the instantiated tree structure consisting of IMComponents

219

12 APPLICATIONS OF THE OMNI MODEL APPROACH

«IMComponent»
System

«IMComponent»
Tank1

«IMComponent»
Tank2

«IMComponent»
Display

«IMFunctionality»
doTankControl

«IMFunctionality»
doTankControl

«IMComponent»
MRoot

REQ001

(from Requirements)

REQ001.1

(from Requirements)

REQ001.2

(from Requirements)

MRoot
MRoot

«Modul»
LessonH12::System

«Modul»
TankLibH12::Tank

«Element»
+ SIM_Outlet: T_OpenClosed
+ DO_Valve: T_OpenClosed
+ TIM_Delay: T_Tim99_9s
+ TargetDelay: T_Tim99_9s
+ AI_Level: T_Percent
+ TargetLevel: T_Percent

«Modul»
LessonH12::MDisplay

«Element»
+ KeyEsc: T_Boolean
+ KeyF2: T_Boolean
+ KeyEnter: T_Boolean
+ KeyDown: T_Boolean
+ KeyRight: T_Boolean
+ KeyLeft: T_Boolean
+ KeyUp: T_Boolean
+ KeyInfo: T_Boolean

«Modul»
std_system::MRoot

«Element»
+ Diag: T_OnOff
+ TransitEnabled: T_Boolean
+ SystemTime: T_Time
+ SystemDate: T_Date2
+ SystemDay: T_DaySo
+ fPasswLevel: T_UInt8
+ VersSoft: T_Version
+ VersSys: T_Version
+ VersPar: T_Version
+ VersKali: T_Version
+ VersCom: T_Version
+ UnitConv: DEin
+ AlarmStatus: DAlarmSignals
+ Language: T_Language
+ PassUser: T_PIN
+ PassAdmin: T_PIN
+ PassTech: T_PIN
+ PassSuper: T_PIN

«INIT»
+ init(): void

«PERM»
+ perm(): void

MBT-System

(from LessonH12)

«PERM»
doTankControl

(from TankLibH12)

«IMAspectsDefinition»
Aspects Def

MBT-Tank 1

(from LessonH12)

MBT-Tank 2

(from LessonH12)

MBT-doTankControl

(from TankLibH12)

T1ToS

«IMPartOf»

«IMTrace,trace»

«IMTrace,trace»

T2ToS

«IMPartOf»

«IMTrace,trace»

«IMTrace,trace»

dTCToT2

«IMPartOf»

«IMTrace,trace»

«IMTrace,trace»

«IMTrace,trace»

«IMTrace,trace»

«IMTrace,trace»

«IMTrace,trace»

«IMTrace,trace»

dTCToT1

«IMPartOf»

«IMTrace,trace»

SToM

«IMGeneralize»

«IMTrace,trace»

«IMTrace,trace»

«IMTrace,trace»

«IMTrace,trace»

«IMTrace,trace»

DToS

«IMPartOf»

Figure 12.3: General structure of the Integration Model

and IMFunctionalities. An exception is the gray model element at the top right of the
figure, which represents the IMAspectsDefinition of the use case. The aspects defined
in it, which can be used in the context of the Integration Model to implement the Test
Case Management mechanism, look as follows:

productline:String:set [’141414’,’141401’];
risklevel:Integer:ranged [1,10];

testprioritylevel:Integer:ranged [1,10];
encryptionbitcount:String:set [’256’,’512’,’1024’];
reqname:linked requirements:REQRequirement:name;

Next to the model elements of the Integration Model, the linked model elements of
other modeling domains can be seen. Through the IMTrace links the connections be-
tween the Integration Model elements and model elements of other domains are spec-
ified. This level primarily describes structural relationships that specify corresponding
model elements. In contrast, figure 12.4 specifies a subset of the Integration Model of
the IMFunctionality doTankControl.

In particular, the corresponding elements of the behavior descriptions are linked. In
this case, elements of the statemachine doTankControl and parts of the Test Model
MBT-doTankControl. These links are utilized in the context of Abstract Test Execution.
As seen in the previous sections, the individual modeling domains can be processed

220

12.2 AUTOMOTIVE LIGHT CONTROL SYSTEM

«IMSyncPoint»
doTankControl::S2

«IMSyncEntryPoint»
doTankControl::S0

«IMSyncPoint»
doTankControl::S1

«IMTimingSpecification»
doTankControl::TimingEntryToEnd

ValveClosed

entry / Close valve

(from TankLibH12)

ValveOpen

entry / Open valve

(from TankLibH12)

«VP»

Check Delay Started

(from TankLibH12)

Delay

entry / Start timer

(from TankLibH12)

«IMSyncPoint»
doTankControl::S3

«TestStep»

Set Values

(from TankLibH12)

«VP»

Check Valve Closed

(from TankLibH12)

«TestStep»

Set Initial Values

(from TankLibH12)

«VP»

Check Valve Closed
(single)

(from TankLibH12)

«IMTrace,trace»
«IMTrace,trace»

«IMMeasurementStart»

«IMTrace,trace»

«IMTrace,trace»

«IMTrace,trace»

«IMMeasurementEnd» «IMTrace,trace»

«IMTrace,trace»

Figure 12.4: Model data embedded in the IMFunctionality doTankControl

as usual in the environment. The Integration Model links this heterogeneous model
landscape to enable the analyses of the respective MCSTLC steps for the tank control
system.

12.2 Automotive Light Control System

The second case study is a benchmark model developed by Peleska et al. that pro-
vides comprehensive modeling of a lighting control system in an automotive context
[137][136]. The model includes the various control components that are integrated into
the overall system and communicate with other components via different communica-
tion channels. The control logic comprises the following core components:

• NormalAndEmerFlashing: Controls the turn and emergency indication function-
ality and its dependencies

• OpenCloseFlashing: Manages the flashing related to the cars locking mechanism
• CrashFlashing: Controls the flashing behavior in case of a crash scenario indi-

cated by the respective sensor
• TheftFlashing: Manages the flashing in case of unauthorized access to the car,

which is indicated by the alarm system

In addition to these components, the present model includes a large number of compo-
nents that regulate the exchange of information and are necessary due to the practical
implementation of the corresponding hardware. These components are not in the focus
of this presentation of the Omni Model. In particular, the focus is put on the com-
ponents CrashFlashing and TheftFlashing, since they are used in the context of the
evaluation of the Abstract Test Execution approach (see section 13.3).

221

12 APPLICATIONS OF THE OMNI MODEL APPROACH

System Model

To implement the functionalities mentioned, Peleska et al. use the modeling language
UML. The modeling possibilities are very extensive so that in the context of our process-
ing chain only the necessary information is represented by our simplified metamodel
(see section 7.1.1). Figure 12.5 shows the high-level architecture of the described func-
tionality.

RoutedIgnSwitch

SystemUnderTest::
OpenCloseFlashing

RoutedIgnSwitch

OpenCloseFlashingOut

RoutedIgnSwitch

CrashFlashingOut

SystemUnderTest::
NormalAndEmerFlashing

RoutedIgnSwitch

NormalAndEmerFlashingOut

DebouncedEmSwitch

CrashFlashingOut OpenCloseFlashingOut

DebouncedEmSwitch

SystemUnderTest::CrashFlashing

OpenCloseFlashingOut

CrashFlashingOut

DebouncedEmSwitch

OpenCloseFlashingOut
SystemUnderTest::TheftFlashing

- t: clock = 0OpenCloseFlashingOut

TheftFlashingOut

NormalAndEmerFlashingOut OpenCloseFlashingOut CrashFlashingOut TheftFlashingOut

SystemUnderTest::PriorityHandling

- isConditionStable: int = 0

NormalAndEmerFlashingOut OpenCloseFlashingOut CrashFlashingOut TheftFlashingOut

PriorityHandlingOut

OnOffDurationValues

AffectedLampsInterface

SystemUnderTest::
MessageHandling

- t: clock = 0
- prevDecision: int = 0
- prevRequest: int = 0
- onDuration: int = 0

+ sendTIM(): void

SignalsOut

OnOffDurationValues

AffectedLampsInterface

SystemUnderTest::BusRouting

RoutedIgnSwitch

«interface»
SystemUnderTest::RoutedIgnSwitch

+ b3_IgnSwitch: int = 0

«interface»
SystemUnderTest::

NormalAndEmerFlashingOut

+ lre_FlashCmd: int = 0
+ lre_TipFlashing: int = 0
+ lres_FlashCmd: int = 0
+ lres_TipFlashing: int = 0

«interface»
SystemUnderTest::

OpenCloseFlashingOut

+ oc_CentralLockingRequest: int = 0
+ oc_CentralLockingStatus: int = 0
+ oc_TipFlashing: int = 0

«interface»
SystemUnderTest::CrashFlashingOut

+ cr_CrashFlashing: int = 0

«interface»
SystemUnderTest::TheftFlashingOut

+ th_TheftFlashing: int = 0

SignalsOut

SystemUnderTest::LampControl

SignalsOut

SignalsOut

«interface»
SystemUnderTest::PriorityHandlingOut

+ pr_Decision: int = 0
+ pr_LampsOnRequest: int = 0
+ pr_TipFlashing: int = 0

«interface»
SystemUnderTest::DebouncedEmSwitch

+ db_EmSwitch: int = 0

PriorityHandlingOut

RoutedIgnSwitch

SystemUnderTest::OnOffDuration

- isConditionStable: int = 0

PriorityHandlingOut

OnOffDurationValues

RoutedIgnSwitch

«interface»
SystemUnderTest::OnOffDurationValues

+ ood_OnDuration: int = 0
+ ood_OffDuration: int = 0
+ ood_Decision: int = 0
+ ood_LampsOnRequest: int = 0

PriorityHandlingOut

SystemUnderTest::AffectedLamps

PriorityHandlingOut

AffectedLampsInterface

«interface»
SystemUnderTest::

AffectedLampsInterface

+ af_IL_FL: int = 0
+ af_IL_FR: int = 0
+ af_IL_ML: int = 0
+ af_IL_MR: int = 0
+ af_IL_RL: int = 0
+ af_IL_RR: int = 0
+ af_IC_L: int = 0
+ af_IC_R: int = 0
+ af_SM_FL: int = 0
+ af_SM_FR: int = 0
+ af_SM_RL: int = 0
+ af_SM_RR: int = 0
+ af_TR_L: int = 0
+ af_TR_R: int = 0
+ af_EFS: int = 0

Figure 12.5: High-level architecture of Automotive Light Control System (ALCS) [136]

The gray model elements each represent parts of the overall functionality, which on the
one hand contain the implementation of the partial functionality and on the other hand
exchange information via interfaces. In addition to the model elements that concern the
functionalities perceivable by the user, the BusRouting or the PriorityHandling, for
example, is explicitly implemented by a separate component. To give an insight into
the modeling of the partial functionalities, the implementation of the CrashFlashing
and the TheftFlashing is shown in figure 12.6 and figure 12.7.

CrashFlashing is implemented by five different states. The system is switched from
passive mode to active mode through bus signals, with intermediate states ensuring
correct operation in the context of the present platform.

222

12.2 AUTOMOTIVE LIGHT CONTROL SYSTEM

Initial

A. CRASH_FLASHING_PASSIVE

entry / cr_CrashFlashing = 0;

E. CRASH_FLASHING_ACTIVE

entry / cr_CrashFlashing = 1;

B. IMPACT_PENDING C. EM_SWITCH_PRESSED D. EM_SWITCH_SPV_PRESSED

3. [db_EmSwitch]

6. [! in_EmSwitchSPV]

7. [oc_CentralLockingRequest && (oc_CentralLockingStatus == 1)]

1. [cr_ImpactToggle && cr_ImpactX]

8.

2. [! cr_ImpactToggle && cr_ImpactX]

4. [! db_EmSwitch]

5. [in_EmSwitchSPV]

Figure 12.6: System Model for the CrashFlashing Functionality [136]

Initial

A'. THEFT_ALARM_OFF

THEFT_ALARM_ACTIVE

Initial

B'. ALARM_OFF

entry / th_TheftFlashing = 0;

C'. ALARM_ON

entry / t.reset();
entry / th_TheftFlashing = 1;

D'. ALARM_OFF_TIMER

entry / th_TheftFlashing = 0;

4'.

7'. [! in_TheftAlarm]

6'. [t.elapsed(5000)]

5'. [in_TheftAlarm]

2'. [oc_CentralLockingStatus == 2]

1'.

3'. [oc_CentralLockingStatus == 1]

Figure 12.7: System Model for the TheftFlashing Functionality [136]

Similarly, the TheftFlashing is modeled by a statemachine. This hierarchical statema-
chine first distinguishes between an active and a passive mode. Provided that an unau-
thorized entry is detected by the alarm system (in_TheftAlarm), signaling is activated
via the lighting system. This is deactivated if a timer has expired or the all-clear is given
by the alarm system.

Overall, the two functional modules introduced to represent a small part of the overall
functionality. In the context of the evaluation in section 13.3, these model parts are

223

12 APPLICATIONS OF THE OMNI MODEL APPROACH

chosen as representatives, whereby the knowledge gained can be transferred to the
other system model parts. The prefixes of the transitions (<number>. and <number>’.)
and states (<letter>. and <letter>’.) of the respective System Models are used as
identifiers in the evaluation.

Test Model

Test Modeling in the context of the ALCS is realized based on the mbtSuite modeling
language (see section 7.1.2). For this purpose, Test Models are created across the differ-
ent integration levels to check the functionality specified in the System Model. Based on
the System Model parts, CrashFlashing and TheftFlashing used for the evaluation,
the corresponding Test Models are discussed in the further course.

Figure 12.8 shows the Test Model for the CrashFlashing functionality. It should be
noted that the Test Model does not claim to be complete in terms of any coverage metric.
Only a set of interesting test cases is mapped, which partially checks the functionality
in edge cases. For this purpose, the necessary combinatorics of input parameters is
determined systematically.

ActivityInitial

«TestStep»

_db_EmSwitch = 0

«TestStep»

_db_EmSwitch = 1

«TestStep»

_oc_CentralLockingRequest = 0

«TestStep»

_oc_CentralLockingRequest = 1

«TestStep»

_oc_CentralLockingStatus = 0

«TestStep»

_oc_CentralLockingStatus = 1

«TestStep»

_oc_CentralLockingStatus = 2

«VP»

_cr_CrashFlashing == 1

«VP»

_cr_CrashFlashing == 0

«TestStep»

_in_EmSwitchSPV = 1

«TestStep»

_in_EmSwitchSPV = 0

«VP»

_cr_CrashFlashing == 1

ActivityFinal

«TestStep»

_cr_ImpactToggle = 1

«TestStep»

_cr_ImpactX = 1

«TestStep»

_cr_ImpactToggle = 0

«TestStep»

_cr_ImpactX = 0

[!_cr_ImpactToggle || !_cr_ImpactX]

[oc_CentralLockingRequest &&
(oc_CentralLockingStatus == 1)]

[!oc_CentralLockingRequest ||
(oc_CentralLockingStatus != 1)]

[_cr_ImpactToggle && _cr_ImpactX]

Figure 12.8: Test Model for the doCtrlCrashFlashing functionality

The same applies to the Test Model for the TheftFlashing functionality. Temporal con-
siderations cannot be included at this level of abstraction, although the System Model
specifies time-dependent behavior. Such tests are reserved for development phases

224

12.2 AUTOMOTIVE LIGHT CONTROL SYSTEM

that can provide meaningful statements about the temporal behavior of the respective
component and thus out of scope for this Test Model.

ActivityInitial

«TestStep»

_oc_CentralLockingStatus = 0

«TestStep»

_oc_CentralLockingStatus = 1

«TestStep»

_oc_CentralLockingStatus = 2

«TestStep»

_in_TheftAlarm = 0

«TestStep»

_in_TheftAlarm = 1

«VP»

_th_TheftFlashing == 1

«VP»

_th_TheftFlashing == 0
ActivityFinal

«TestStep»

_in_TheftAlarm = 0

«TestStep»

_oc_CentralLockingStatus = 1

[_oc_CentralLockingStatus == 2
&& _in_theftAlarm]

[_oc_CentralLockingStatus != 2
|| !_in_theftAlarm]

[wait(5500)]

Figure 12.9: Test Model for the doTheftFlashing functionality

Requirements Model

Another modeling domain that is covered in this case study is the Requirements Model.
For the ALCS, however, we did not rely on purely natural-language requirements mod-
eling, but on modeling using UML UseCase diagrams. For this purpose, a simplified
metamodel is created, which represents the essential model information for our con-
text. However, it must be emphasized that there is no limitation of our approach, but is
only done for clarity and manageability.

Figure 12.10 shows a snippet of the modeled UseCases and how they are connected to
the actors in the system context.

Internally, the scope of the mapped UseCases is still refined using natural language
requirements. In the process, consistent naming of concepts is usually introduced, par-
ticularly in the functional requirements, which is partially reflected in the naming of
signals of the System Model.

225

12 APPLICATIONS OF THE OMNI MODEL APPROACH

Emergency Flashing

Turn Indication Flashing

Open-Close Flashing

Theft Flashing

SYSTEM

User

Activate
Emergency

Flashing
Impact Sensor

Deactivate
Emergency

Flashing

Unlock Car

Open-Close
Flashing

Central Locking
System

Activate Theft
Flashing

Deactivate Theft
Flashing

Lock Car

Activate left Turn
Indication Flashing

Deactivate left
Turn Indication

Flashing

Activate right Turn
Indication Flashing

Deactivate right
Turn Indication

Flashing

Priority Handling

«include»

«include»
«extend»

«extend»

«include»
«include»

«include»

«include»

«include»

«include»

Figure 12.10: Requirements Model for the ALCS

Integration Model

Finally, we discuss the most important modeling domain, the Integration Model of the
ALCS. Since the described system contains a large number of functionalities, which are
encapsulated and interconnected via several integration levels, the Integration Model
is significantly larger than the respective artifact of the Tank Control System from the
previous section. Figure 16.19 (Supplementary Material) gives an impression of this but
does not claim to provide a comprehensive model. The gray components represent the
structural model elements of the Integration Model, while the white components rep-
resent connected model elements of other modeling domains. Figure 12.11 shows an
excerpt of this comprehensive Integration Model, which concerns the excerpt of Crash-
Flashing focused on in advance.

226

12.2 AUTOMOTIVE LIGHT CONTROL SYSTEM

Figure 12.11: Excerpt of figure 16.19 focusing CrashFlashing-related parts

On the one hand, this figure shows how model elements of System Modeling and Test
Modeling are linked across the different levels of the Integration Model employing IM-
Trace connectors. Furthermore, a linked use case from the respective Model can be
seen at the bottom of the figure. If there were other modeling domains, such as safety
or security models, they could be linked respectively and provide valuable information
for the MCSTLC built on top.

Figure 12.12 shows the models used in the IMFunctionality doCrtlCrashFlashing
stored mappings of behavioral models or their model elements.

«IMSyncPoint»
doCtrlCrashFlashing::

CrashFlashingOn

E. CRASH_FLASHING_ACTIVE

entry / cr_CrashFlashing = 1;

(from SYSTEM)

«IMSyncPoint»
doCtrlCrashFlashing::

CrashFlashingOff

A. CRASH_FLASHING_PASSIVE

entry / cr_CrashFlashing = 0;

(from SYSTEM)

«VP»

_cr_CrashFlashing == 0

(from TEST)

«VP»

_cr_CrashFlashing == 1

(from TEST)

«VP»

_cr_CrashFlashing == 0

(from TEST)

«IMSyncPoint»
doCtrlCrashFlashing::Init

«IMTrace,trace»

«IMTrace,trace»

«IMTrace,trace»

«IMTrace,trace»

«IMTrace,trace»«IMTrace,trace»

Figure 12.12: Internals of the IMFunctionality doCtrlCrashFlashing

227

12 APPLICATIONS OF THE OMNI MODEL APPROACH

Similarly, figure 12.13 shows the links for the corresponding model elements in the
context of IMFunctionality doTheftFlashing.

«IMSyncPoint»
doTheftFlashing::

UnlockedCar

A'. THEFT_ALARM_OFF

(from SYSTEM)

«IMSyncPoint»
doTheftFlashing::
TheftFlashingOn

C'. ALARM_ON

entry / t.reset();
entry / th_TheftFlashing = 1;

(from SYSTEM)

«IMSyncPoint»
doTheftFlashing::

TheftAlarmOff

B'. ALARM_OFF

entry / th_TheftFlashing = 0;

(from SYSTEM)

D'. ALARM_OFF_TIMER

entry / th_TheftFlashing = 0;

(from SYSTEM)

«IMSyncPoint»
doTheftFlashing::

TheftAlarmOffTimer

«VP»

_th_TheftFlashing == 1

(from TEST)

«VP»

_th_TheftFlashing == 0

(from TEST)

«IMTrace,trace»

«IMTrace,trace»

«IMTrace,trace»

«IMTrace,trace»

«IMTrace,trace»

«IMTrace,trace»

«IMTrace,trace»

«IMTrace,trace»

Figure 12.13: Internals of the IMFunctionality doTheftFlashing

In addition to the structural model elements of the Integration Model, the IMAspects-
Definition is included, which defines the valid Aspects in the context of this Integra-
tion Model. The concrete characteristics of the Aspects are not discussed in detail, since
they do not provide any new insights.

12.3 Elevator System

The last case study deals with an elevator system. The system consists of a cabin that
can move over three floors. One feature of the elevator system is a control panel placed
in the cabin that allows the passenger to select the destination floor. The floor, on the
other hand, has a button that enables the passenger to initiate an elevator request on
the floor in question. The specific functionality becomes clearer in the System Model
which is described in the following section. The Omni Model presented throughout the
rest of this chapter with all its modeling domains is primarily used in the context of the
evaluation of the Mutation Analysis approach in section 13.4.

System Model

The system has again been created in the context of the modeling tool radCase and its
homonymous modeling language. The model is divided into the concepts MElevator,
MEtage, and MCabine. An overview of the parts of each component can be seen in
figure 12.14a.

228

12.3 ELEVATOR SYSTEM

(a) System Model structure

warten

entry / Schleichfahrt aus

Initial0

gedrueckt

entry / Anf. setzen
entry / Tasterleuchte ein

erreicht

entry / Anf. löschen
entry / Leuchte Aus
entry / Wartezeit starten

ausserhalb

Schleichfahrt

entry / Schleichfahrt anf.nichtInEtage -> inEtage

Wartezeit vorüber

ausserhalb -> Schleichfahrt

warten -> gedrueckt

inEtage -> ausserhalb

(b) Statemachine managing the floor requests
(anforder)

Figure 12.14: Elevator System Model

MElevator represents the parent concept and contains three instances of MEtage and
one instance of MCabine. Furthermore, a statemachine main and a method control
manage and coordinate the functionality.

MEtage maps the addressed functionality of the respective floor. In particular, the func-
tionality of the control panel is handled, as well as the height control and the waiting
times. The functionality of the floor is again realized by a combination of a C-function
etage and a statemachine request, whose structure can be seen in figure 12.14b. Based
on this snippet of the System Model, the Mutation Analysis functionality is checked in
the further course of the evaluation.

MCabine encapsulates the concepts that are assigned to the elevator cabin in the context
of this System Model. In addition to some variables that primarily control the mechan-
ical components, the functionalities are represented by a combination of a C-function
calc and a statemachine control.

In addition to these components, which are purely limited to the elevator functionality,
a very large number of radCase libraries are included in the model (see figure 12.14a
above). These libraries are responsible for the control of the hardware, the communica-
tion functionality, and other functionalities of the overall system, but are out of scope
for our use case.

229

12 APPLICATIONS OF THE OMNI MODEL APPROACH

Test Model

As already seen in figure 12.14a, the Test Model relies on the modeling capabilities
of the mbtSuite. The Test Model is hierarchically structured and thus covers differ-
ent integration levels of the system at hand. At the system test level, the Test Model
MBT-Elevator ensures that the interaction of the encapsulated components is imple-
mented according to the requirements. Accordingly, on the integration test level, the
Test Models MBT-Cabine and MBT-Etage cover the emergent functionality of the system
parts, which especially concerns the interaction of the algorithms. For unit tests, the
Test Model for the statemachine anforder mapped in figure 12.15 is detailed in this
context.

ActivityInitial

ActivityFinal

«VP»

_self__holen == §True

«VP»

_self__TasteHolen == §OFF

«VP»

_self__AnfSchleich == §False

«TestStep»

_self__istInEtage = §True;
self__TasteHolen = §ON;

«VP»

_self__holen == §True

«VP»

_self__TasteHolen == §OFF &&
self__AnfSchleich == §False

«TestStep»

_self__istInEtage = §True;
self__TasteHolen = §ON;

«TestStep»
Init

«TestStep»

_self__istInEtage = §False;
self__TasteHolen = §ON;
self__SensEtage = §ON;

«VP»

_self__holen == §True &&
self__LeuchteTaster == §ON &&

self__AnfSchleich == §True

Figure 12.15: Scoped Test Model for the anforder System Model

This simple model, which results in three test cases, is used in the context of evaluat-
ing the Mutation Analysis approach. The completeness concerning common coverage
measures is not achieved at this point either, but this is not the focus of this case study.

230

12.3 ELEVATOR SYSTEM

Fault Tree Model

In contrast to the case studies shown so far, the elevator system does not explicitly ad-
dress the Requirement Model. Instead, a fault tree from the safety modeling domain is
included in this Omni Model. To be able to map such model information, a metamodel
is designed that enables the specification of fault trees (see part VI (Supplementary Ma-
terial)). In the modeling scope, all common Event and Gate types of a fault tree are
implemented.

Figure 12.16 shows a fault tree that maps possible faults, the occurrence probabilities,
and their propagation for the presented System Model in a structured way.

In the model, mainly hardware-specific faults are considered, which can be related to
the software-side components as well. In the context of the Omni Model, this model is
used in particular for targeted and risk-sensitive testing. Here, the occurrence proba-
bilities stored in the events are evaluated mainly.

Integration Model

Finally, the Integration Model created for the Elevator System is considered. At this
point, the modeling capabilities of the Integration Metamodel presented in section 7.1.3
are used to implement the relationships between modeling domains as well as the
metainformation. Since the complete Integration Model of the Elevator System is rel-
atively extensive, an overview is shown in figure 16.18 (Supplementary Material), but
the detailed information is no longer readable. An excerpt of the Integration Model can
be seen in figure 12.17, where the focus is again on the components that are used in the
course of ongoing evaluation work.

In particular, the concepts on the part of the Integration Model are shown, which cor-
respond to the three instances of MEtage of the System Model. These are structurally
linked to the corresponding Test Model instances MBT-Etage[0-2] and the System
Model definition MEtage. The same applies to the functional components anfoder and
etage, which are linked to the corresponding model elements of the System and Test
Model, respectively.

Again, if we consider the model components that are stored in the IMFunctionality
anforder, the modeling shown in figure 12.18 can be seen.

Here, the states of the corresponding System Model are connected to the correspond-
ing VPs of the Test Model. These connections are in turn implemented by using the
IMSyncPoint concept. Specifically, the IMSyncPoints SP1 through SP3 are pronounced.
Further meta-information is not implemented in this context, since it has no relevance
for the use case but can be implemented analogously to the modeling in the context of
the other case studies.

231

12 APPLICATIONS OF THE OMNI MODEL APPROACH

Cabin falling

Accident of Elevator
System

Rope breaks
Cabin m

otor gear
broken freely rotating

Cabin not m
oving

Cabin m
otor gear

broken blocking

Cabin m
otor

overheated

Cabin m
otor

overloaded

Cabin m
otor gear

friction too high
Cabin too heavy

Tem
perature sensor

error value too high

Cabin m
otor voltage

not present

Cabin m
otor control 5V

source not present
Cabin m

otor control 12V
source not present

5V w
ire broken

12V w
ire broken

M
ain pow

er supply
error G7

M
ain pow

er supply
error G8

Level butt
on 0 broken

stuck open
Level butt

on 1 broken
stuck open

Level butt
on 2 broken

stuck open

Cabin not stopping

Level sensor 0 broken
stuck low

Level sensor 1 broken
stuck low

Level sensor 2 broken
stuck low

Level butt
on 0 broken

stuck closed
Level butt

on 1 broken
stuck closed

Level butt
on 2 broken

stuck closed
Level sensor 0 broken

stuck high
Level sensor 1 broken

stuck high
Level sensor 2 broken

stuck high

Figure
12.16:FaultTree

M
odelfor

the
Elevator

System

232

12.3 ELEVATOR SYSTEM

Figure 12.17: Excerpt of the Integration Model focusing the three instances of MEtage

«IMSyncPoint»
anforder::SP1

gedrueckt

entry / Anf. setzen
entry / Tasterleuchte ein

(from Core_Aufzug)

«VP»

_self__holen == §True

(from Core_Aufzug)

«VP»

_self__holen == §True

(from Core_Aufzug)

«IMSyncPoint»
anforder::SP2

«VP»
_self__holen == §True &&

self__LeuchteTaster == §ON &&
self__AnfSchleich == §True

(from Core_Aufzug)

«IMSyncPoint»
anforder::SP3

Schleichfahrt

entry / Schleichfahrt anf.

(from Core_Aufzug)

ausserhalb

(from Core_Aufzug)

«IMTrace,trace»

«IMTrace,trace» «IMTrace,trace»

«IMTrace,trace»

«IMTrace,trace»«IMTrace,trace»

Figure 12.18: Behavior mapping information of the Integration Model for the anforder
System Model

233

12 APPLICATIONS OF THE OMNI MODEL APPROACH

12.4 Discussion

Through the presented case studies Tank Control System, Automotive Light Control Sys-
tem, and Elevator System, the application of a variety of modeling possibilities of the
conceptual representations from part III was shown. This demonstrates the flexibility
and extensibility of the Omni Model approach. In terms of a qualitative evaluation of
the Omni Model concept, aspects such as Adaptability, Scalability / Extensibility, Modular-
ity / Reusability, and Maintainability are explicitly discussed in the course of this section
about the case studies.

Adaptability

This aspect primarily considers the ability of the approach to be adapted to the appli-
cation context and the requirements of the concrete use case. The adaptability of the
Omni Model concept is a central component and is essentially achieved through the
interchangeability of the modeling languages of the individual modeling domains, the
model transformations of the use case-specific metamodel to the internal representa-
tion, as well as the link and meta information in the Integration Model. Due to the
adaptability of the artifacts, the approach can be adapted to almost any model-based
development context. The model transformation step allows the expert to correct in-
complete semantics in the source metamodels or to adapt it to other components of
the development process, such as code generators. Furthermore, the specification of
the structural relationships between the System and Test Model inside the Integration
Model enables heterogeneous modeling and development approaches to be adapted.
The meta-information stored in the Integration Model can be used to adapt to the estab-
lished development methods of the application context and the development practice
implemented in the company.

In the context of the case studies and the running example, two of the three mentioned
aspects are demonstrated by combining different modeling languages (UML, SYSML,
radCase, mbtSuite, UTP). Only the aspect of model transformation is not explicitly
shown, but is clarified in the context of the following evaluations of the process steps
of MCSTLC.

Scalability / Extensibility

In the context of this aspect, the scalability and extensibility of the Omni Model are eval-
uated, where this is discussed for the instantiation as well as the underlying concepts.
The former is not limited from a theoretical point of view, i.e. the concept can be scaled
arbitrarily on the part of the model instances. The most comprehensive case study pre-
sented is the ALCS (see section 12.2). In this case study, it turns out that the scalability
of any involved modeling domains remains unchanged compared to non-Omni Model
approaches. Only the newly introduced model artifact, the Integration Model, becomes

234

12.4 DISCUSSION

confusing in its current implementation for very extensive Omni Models. However, this
aspect can be remedied with suitable tool support, for example by collapsing subtrees
of the Integration Model.

Extensibility is also provided from the point of view of the overall concept. For ex-
ample, theoretically, any number of modeling domains can be included in the Omni
Model. The same applies to the modeling of meta-information via the Aspects concept.
Here, any number of Aspects can be defined and expressed on the model elements of
the Integration Model.

The case studies and the running example do not cover very large Omni Models. How-
ever, if the presented Omni Model instances are considered in combination, the men-
tioned properties are tangible. Only the ALCS gives an impression of the aspects of
scalability and extensibility.

Modularity / Reusability

The modularity of the Omni Model concept can be seen in the context of the adaptabil-
ity mentioned at the beginning. The fact that different modeling domains are synchro-
nized via the Integration Model, demonstrates the modularity of the concept in general.
During model-centric development, however, the Omni Model approach promotes the
expression of modules in the software or system architecture. This modularity across
domains creates modules that link related model parts of all involved domains. Exam-
ples of such modularization of the developed overall system can be seen in the case
studies and their sections on the Integration Model (e.g. see section 12.2).

Building on this insight, the second aspect of this section, reusability, is motivated. The
Omni Model approach is reusable by design since the processing chain is detached from
the original modeling artifacts. Considering reusability on the concrete Omni Model
instance, the approach generally leads to more easily reusable software, such that the
modules just addressed from model artifacts of different domains can potentially be
reused in a different application context. This is particularly the case if the modeling
guidelines of the respective modeling languages are heeded to reduce emergent effects
and to guarantee a design for testability (see for example section 7.1.1). During the
application of the Omni Model approach, especially during the implementation of the
respective Integration Model instances, this effect could be confirmed across all case
studies by the developers involved.

Maintainability

The last aspect we discuss in the context of the qualitative evaluation of the Omni
Model approach is maintainability. Because the Omni Model approach largely leaves
the original artifacts of the individual modeling domains unchanged and places the

235

12 APPLICATIONS OF THE OMNI MODEL APPROACH

separation of concerns in the foreground, the maintainability of these models is not
negatively affected. The structural and behavioral links between the information tend
to make changes and their impact easier to understand. This can be supported by ap-
propriate tool support. However, a well-maintained Integration Model is a prerequi-
site at this point, which means that the critical component concerning maintainability is
given. In manageable project sizes, maintainability is not a problem, but merely a ques-
tion of the distribution of responsibilities. If the models become larger, as is indicated
in section 12.2, for example, sufficient tool support is necessary.

Another dimension to be considered in the context of maintainability are the model
transformations to the respective modeling languages. In the case of a change or ex-
tension of the modeling capabilities, the changes have to be made consistently with the
existing implementation of the transformation. Otherwise, the usability of the results
of all processing steps of the MCSTLC based on them can no longer be guaranteed.

236

13
Qualitative and Quantitative Evaluation

of the MCSTLC Approaches

In this chapter, the process steps based on the Omni Model are evaluated. For this
purpose, the case studies presented in the previous chapter, as well as synthetically
generated example models are used to enable a quantitative evaluation. Some aspects
are subjected to a qualitative evaluation, whereby the evaluation setup is presented at
the beginning of each section before the evaluation is carried out.

13.1 Model-based Test Case Management

In this section, the Test Case Management approach is qualitatively evaluated. In par-
ticular, the Tank Control System introduced in section 12.1 is used for this purpose.

Evaluation Setup

As part of the evaluation, the following steps are performed (see figure 13.1) to examine
the developed Test Case Management concept.

Determine

Application

Scenarios for

TCS Context

Discuss Scenario

Specification in

Aspects Context

Discuss

Processing of

Aspects based on

Omni Model

Discuss

Generated

Scoped Test

Model(s)

Figure 13.1: Core aspects of evaluation

In the first step, three test scenarios are specified based on the defined aspects, which
encode different test intentions of the expert in the form of aspect constraints. These
scenarios cover in particular special cases of the concept and demonstrate the function-
ality in practical application. In the second step, the introduced scenarios are trans-
formed into a specification according to the IMAspectDefinition of the Tank Control
System. The transformation of the natural language specified test focus of the selected

13 QUALITATIVE AND QUANTITATIVE EVALUATION OF THE MCSTLC APPROACHES

scenarios to an aspect constraint as well as the mapping of the intended test levels is
discussed. Furthermore, the quantifiability of the contents is briefly considered in this
context. As a result of this step, the created aspect constraint snippets of the scenarios
are shown, which form the basis for the next step of the evaluation. In the third step,
the evaluation of the Aspect Constraint Snippets of the scenarios, based on the model
elements of the Integration Model (see figure 12.3), is shown. Here, the IMAspectSpec-
ifications of the Integration Model, as well as information of linked model elements
of other modeling domains are evaluated. In the last step, it is shown how the resulting
Scoped Test Models are derived from the reduced Integration Models in the context
of the Tank Control System. Finally, the processing of the selected scenarios and the
results are discussed concerning qualitative aspects such as scalability.

The following scenarios are used for the evaluation:

1. As part of the company’s requirements-driven test strategy, the next step is to
test the functional units and their integrations specified in the context of require-
ment REQ001.1. In particular, a risk-sensitive approach has to be implemented,
whereby components with a risk assessment of less than 2 are to be left out at
first.

2. Within the scope of the integration tests of the Tank Control System, all functional
components of any product line that have received a prioritization value greater
than 7 concerning test planning are to be tested.

3. As part of the GUI testing of the Tank Control System, all components of the sys-
tem that are related to requirement REQ001.2 and a risk assessment value below
or equal to 2 shall be tested.

The following representation of the Integration Model (figure 12.3) focuses on the in-
cluded IMAspectSpecifications of the model elements and is used as a basis in the
further course of the evaluation.

doTankControl doTankControl

System

productline = ['141414','141401'];

risklevel = ['6];

reqname = ['REQ001'];

Tank 1
risklevel = ['4'];

testprioritylevel = ['5'];

productline = ['141414'];

reqname = ['REQ001.1'];

Tank 2

risklevel = ['6'];

testprioritylevel = ['6'];

productline = ['141401'];

reqname = ['REQ001.1'];

Display

risklevel = ['1'];

testprioritylevel = ['1'];

displaycolor = ['ffffff'];

reqname = ['REQ001.2'];

risklevel = ['9'];

encryptionbitcount = ['1024'];

risklevel = ['9'];

encryptionbitcount = ['256'];

Figure 13.2: General structure of the Integration Model with the Aspects focused

238

13.1 MODEL-BASED TEST CASE MANAGEMENT

At this point, the intrinsic and the synthetic aspects are represented in the same way.

Evaluation

In this evaluation, the steps for one scenario are presented in their entirety before the
next scenario is discussed. The Aspects shown in section 12.1 are available for the im-
plementation of the Aspect Constraints. According to the described procedure, there-
fore, the natural language description of scenario 1 is first converted into an Aspect
Constraint as well as test level constraint. First, the intended test level is derived from
the text passage “[. . .] the functional units and their integrations [. . .]”, namely both
the unit and the integration test levels. Furthermore, the focus is explicitly put on
components of the system that are related to requirement REQ001.1. Therefore, the first
part of the Aspect Constraint is specified by restricting the intrinsic Aspect reqname
accordingly. The second part of the Aspect Constraint is determined by the text pas-
sage “[. . .] components with a risk assessment of less than 2 are to be left out at first”.
This results in the second constraint, which is based on the synthetic Aspect risklevel.
Overall, the following parameters are determined for the prototypical implementation
of the scoping functionality:

aspectconstraints = reqname:in [’REQ001.1’] & risklevel:gre [’2’];
testlevels = ’unit,integration’;

In this case, the quantification of the thresholds for the Aspect Constraints is clearly
derivable, but this can be challenging in some cases.

In the next step of the Test Case Management concept, the Aspect Constraint is applied
to the Integration Model at hand. According to the described procedure, we start with
the root node of the Integration Model and iteratively evaluate the model elements
about the fulfillment of the Aspect Constraint. Scenario 1 results in a reduced inte-
gration model consisting of the model elements Tank 1, Tank 2, and their respective
doTankControl functionalities.

Based on the reduced Integration Model, the links to Test Models according to sec-
tion 12.1 and the specified test levels, the set of relevant Scoped Test Models is deter-
mined. Specifically, these are the Scoped Test Models MBT-Tank 1, MBT-Tank 2 and
MBT-doTankControl. The fact that no unique Scoped Test Model has emerged in this
case offers the possibility to use the Test Case Management approach by iteratively
increasing the limit of the risklevel to its maximum. In this way, the order of test
execution can be fine-tuned along with the risk assessment values.

After evaluating the implementation of scenario 1 in the context of the tank control
system, we now examine scenario 2. This scenario explicitly focuses on integration
tests, hence this test level is specified in our configuration. First, the text passage “[. . .]
components of any product line [. . .]” is relevant on the part of the Aspect Constraints,

239

13 QUALITATIVE AND QUANTITATIVE EVALUATION OF THE MCSTLC APPROACHES

specifying that test cases should be considered for all defined product lines. Second,
the statement about prioritization based on test planning results in a constraint on the
synthetic Aspect testpriority. Overall, the natural language description results in the
following parameters for the prototypical implementation:

aspectconstraints = productline:in [’141414’,’141401’] &
testpriority:gr [’7’];

testlevels = ’integration’;

In this scenario, the difficulty for the user is the required knowledge about the value
ranges of the existing Aspects. For example, for the specification of the first part, any
IDs of the product lines must be considered, which can be taken from the IMAspect-
Definition. At this point, the language scope of the Aspect Constraint Language can
be utilized and the corresponding logical counter-statement can be formulated.

Next, a reduced Integration Model is determined according to the parameters. The
application of the first component of the Aspect Constraint, namely the restriction with
respect to the product line considered does not result in any reduction. Due to the all-
quantification of the range of values and the partial absence of specifications for this
Aspect, the constraint is never evaluated negatively. The second part of the Aspect
Constraint excludes the model elements Tank 1, Tank 2, and Display and therefore
only the model elements System and doTankControl of each of the two tanks remain in
the reduced Integration Model.

In the last step, the set of relevant Scoped Test Models is determined based on the infor-
mation of the Integrated Model Basis. Based on the relation information, the two Test
Models MBT-System and MBT-doTankControl represent the intermediate result. How-
ever, considering the second parameter, which restricts the test level, the empty set is
the result of this Test Case Management evaluation. This scenario shows that the two-
step application of constraints on separate model artifacts can cause an empty set only
in the last processing step. While the evaluation is correct, it may not reflect the expert’s
intent. Evaluation using this scenario has shown the flexibility of the solution, but also
its pitfalls.

Last, scenario 3 is evaluated throughout the rest of this section. First, the text passage
“[. . .] related to requirement REQ001.2 [. . .]” indicates that part of the Aspect Con-
straint is based on the intrinsic Aspect reqname. Furthermore, the risk assessment of
the model parts is again included, which is limited to values less than or equal to 2.
The intended test level is derived from the GUI test context in this scenario, resulting
in the following parameters for the subsequent evaluation.

aspectconstraints = reqname:in [’REQ001.2’] & risklevel:lee [’2’];
testlevels = ’system’;

240

13.2 MODEL-BASED TEST GENERATION

Evaluating these constraints on the Integration Model of the Tank Control System re-
sults in a reduced Integration Model, which merely consists of the model element Dis-
play. Including the links to model elements of the Test Model as shown in figure 12.3,
the resulting set of Scoped Test Models is the empty set. In this case, the reason is the
absence or missing link of the corresponding Test Model. This scenario shows once
again the importance of the Integration Model in the context of the Test Case Manage-
ment concept. Errors in the specification or maintenance of this model artifact have a
significant influence on the quality of the results.

Overall, the evaluation of the approach based on the example scenarios has shown that
the developed concept for Test Case Management is promising. In terms of Adaptabil-
ity/Reusability, the concept is flexible by definition and can be used in any application
context. During the evaluation runs of the prototypical implementation, a positive im-
pression could be gained on the part of Scalability. For example, across our case studies,
much larger synthetically generated parameter sets are transferred to a set of Scoped
Test Models on a consumer notebook within a few milliseconds. Regarding the Main-
tainability of the concept, there were likewise no negative points. Only the Maintainabil-
ity of the Integration Model stands out as a weak point, but this cannot be attributed to
the Test Case Management concept. The Test Case Management approach was applied
and evaluated across the other case studies as well. The findings obtained are consis-
tent with the facts presented in the course of this section and confirm the objectivity of
the statements made.

13.2 Model-based Test Generation

In this section, the approach for generating test cases from Test Models explained in
chapter 9 is evaluated. Therefore, a quantitative evaluation is performed, which high-
lights the time frame, the scalability, and the adaptation aspect of our approach. Be-
sides, a qualitative evaluation and discussion of the remaining concepts are carried
out.

Evaluation Setup

To be able to investigate the mentioned aspects of this processing step, a suitable eval-
uation setup needs to be selected. An overview of the sub-steps, as well as technical
components of the evaluation, can be found in figure 13.3. In the first step, a module
of our prototypical implementation of A3F uses an EGPP model generator to be able
to generate arbitrary model instances. These EGPP instances are intended to repre-
sent the Scoped Test Models in the context of the evaluation, which usually emerges
from the Test Case Management processing step. The model generator module (egpp_-
generator) provides a variety of configuration options that allow the user to influ-
ence the appearance of the generated model instance. The model generator creates

241

13 QUALITATIVE AND QUANTITATIVE EVALUATION OF THE MCSTLC APPROACHES

Generate

Example EGPP

Models

Run Coverage

Criteria based

Test Case

Generation

Evaluate Metrics

and Discuss

Scalability &

Adaption Approach

Discuss Blacklist

Mechanism with

regard to

Mutation Analysis

Figure 13.3: Core aspects of evaluation

the EGPP instances iteratively, starting from an EGPPInitialNode, by inserting differ-
ent model components (branches, loops, subgraphs, . . .) according to a probability of
occurrence.

As can be seen in listing 13.1, these occurrence probabilities can be specified. In the con-
text of performing the evaluation, two different configurations of the egpp_generator
analysis are used, which produce instances as they occur in practical use cases. Fur-
thermore, the two configurations are executed on two different performing platforms,
respectively used to generate EGPP instances. On the one hand, a Low Performance plat-
form (Intel i7 2 Cores @ 3.6Ghz, 16Gb RAM) and on the other hand, a High Perfor-
mance platform PC (AMD Ryzen 7 8 Cores @ 4.3Ghz, 16GB RAM) are used to show the
differences and at the same time the possibilities of different hardware. Regardless of
the platform or configuration, instances of different sizes are generated by the genera-
tor, whereby the number of model elements of a classic Test Model is usually far below
the model sizes chosen here.

1 analysis egpp_generator(egpp){
2 max_nodes="10";
3 max_depth="1";
4 dec_factor="4";
5 par_factor="1";
6 prob_node="0.5";
7 prob_dec="0.5";
8 prob_par="0.0";
9 prob_loop="0.0";

10 prob_sub="0.0";
11 prob_break="0.0";
12 taggeddata_on="0";
13 }
14 analysis egpp_path_generation(edge) {
15 integrationmodel="";
16 autoadvice="";
17 startcriterion="|edgecoverage|MAX_PATHS:1000";
18 testmodels="egpp_generator|egpp|DataTransformationResult|getOutputElements";
19 blacklistthreshold="0.0";
20 }
21 analysis egpp_path_generation(node) {
22 integrationmodel="";
23 autoadvice="";
24 startcriterion="|nodecoverage|MAX_PATHS:1000";
25 testmodels="egpp_generator|egpp|DataTransformationResult|getOutputElements";
26 blacklistthreshold="0.0";
27 }
28 analysis egpp_path_generation(path) {
29 integrationmodel="";

242

13.2 MODEL-BASED TEST GENERATION

30 autoadvice="";
31 startcriterion="|pathcoverage|MAX_PATHS:1000";
32 testmodels="egpp_generator|egpp|DataTransformationResult|getOutputElements";
33 blacklistthreshold="0.0";
34 }

Listing 13.1: A3F configuration for the evaluation of Test Case Generation approach

In the second step, the generated EGPP instances are respectively processed by our A3F
module to generate test cases according to node, edge, and path coverage. These purely
structural coverage criteria do not take into account the annotated data, which usually
determine the number of loop iterations, which is why generation is aborted for such
cases when the number of 1000 test cases is determined.

In the third step, the data collected during automated processing is elaborated and
suitably presented. It is shown how the processing time, as well as the number of test
cases, behave depending on the model size. Furthermore, the average processing time
is considered as a function of the model size, from which conclusions can be drawn
regarding the scalability of the approach. Also, the empirically determined data are
used to show the meaningfulness of the adaptation mechanism.

In the last step, the blacklisting mechanism based on the determined test case set is
discussed. In particular, the interaction and the improvement potential of this extension
are evaluated.

Evaluation

Besides running the experiments on different performing platforms (Low vs. High Per-
formance), the selection of the generated EGPP instances is additionally chosen to be
as diverse as possible to gain as much expressiveness as possible. As can be seen in
figure 13.4, in each of the four subgraphs different combinations of Platform and ba-
sic properties of EGPP Instances(No Loop/Loop) are shown. In each case, the set of data
represented by discrete measurement points represent the Total Time (ms) relative
to the Number of Graph Elements, i.e. the absolute size of the EGPP instance. Here,
the circle represents the measurements for the Node Coverage Criterion, the cross rep-
resents the measurements for the Edge Coverage Criterion, and the plus represents the
measurements for the Path Coverage Criterion. Similarly, the continuum of measured
values shows the relationship between the Number of Test Cases and the Number of
Graph Elements. Again, a distinction is made between the known criteria. A dashed
line represents the measured values of the Node Coverage Criterion, a dash-dotted line,
in turn, represents the values of the Edge Coverage Criterion, and the dotted line is used
for the Path Coverage Criterion.

The evaluations in figure 13.4a and figure 13.4b show the measured values for EGPP
Instances consisting of 10 to 1200 model elements. The proportions of each model el-
ement type behave according to the A3F configuration introduced in listing 13.1. In

243

13 QUALITATIVE AND QUANTITATIVE EVALUATION OF THE MCSTLC APPROACHES

contrast, for the evaluations in figure 13.4c and figure 13.4d, the said configuration is
adapted. Essentially, the occurrence probability of an EGPPDecisionNode or an associ-
ated case distinction (prob_desc) is decreased from 0.5 to 0.2, whereas the occurrence
probability for a loop construct (prob_loop) is increased from 0.0 to 0.02. Further-
more, in this case, only model instances that have at least one loop construct are in-
cluded in the evaluation. Due to the changed characteristics of these EGPP instances,
only model sizes up to 400 model elements are considered.

(a) Low Performance - no Loop (b) High Performance - no Loop

(c) Low Performance - Loop (d) High Performance - Loop

Figure 13.4: Illustration of total computation time per Test Case with by means of graph
size and the number of Test Cases in relation to graph size

Figure 13.5 is structured in the same way, but in each graph, the average time to gener-
ate a test case (Time per Test Case) is considered with the Number of Graph Elements.
The semantics of the visualization of the discrete measured values remains unchanged.

Looking primarily at the scalability of the implementation, it is noticeable in figure 13.4a
and figure 13.4b that all considered model instances can be transformed into test cases
in under 800ms, respectively 300ms. For the instances with loop constructs, the scale
was adjusted, wherein this case the generation of test cases does not exceed the 40s,
respectively 23s. Overall, the time for generating the test cases is in a very low range.

244

13.2 MODEL-BASED TEST GENERATION

(a) Low Performance - no Loop (b) High Performance - no Loop

(c) Low Performance - Loop (d) High Performance - Loop

Figure 13.5: Illustration of computation time per Test Case with by means of graph size

Especially against the background of practical test model sizes, which based on empir-
ical values are around 100 model elements, the upper bound of the computation time
is reduced again clearly. If the charts in figure 13.5 are utilized for the argumentation
on the scalability, it can be seen that the average calculation time per test case decreases
as the number of model elements increases. Two effects are responsible for this. On
the one hand, the initialization phase of the prototypical implementation is included in
the average calculation time per test case, which has a greater effect with less extensive
models and fewer test cases. On the other hand, especially in the diagrams 13.5c and
13.5d, a stronger decrease of the average computation time can be determined, which
is justified by the technical implementation through data flow analyses. In particular,
already traversed parts in the context of loops can be transferred to a result without
repeated evaluation, which represents a clear saving. Altogether the concept for the
generation of the test cases from EGPP instances has excellent scalability and therefore
offers potential for application in an agile model-based development context.

Furthermore, the adaptation mechanism of Test Case Generation, which is based on a
subsumption hierarchy of coverage criteria, is evaluated against the background of the

245

13 QUALITATIVE AND QUANTITATIVE EVALUATION OF THE MCSTLC APPROACHES

empirical data. In figure 13.4a and figure 13.4b, the measured values for the number of
generated test cases show an identical trend for all three criteria considered. Normally,
one would expect the curves for Edge Coverage and Path Coverage to be above the curve
for Node Coverage in each case. Here, the cause is the implementation of the generator
to create the EGPP instances. For example, for branches, all cases are implemented by
a combination of EGPPNodes and EGPPTransitions in each case, even if the case does
not contain any instructions. In the context of purely structural coverage measures, this
evolves the number of test cases uniformly. In the context of EGPP instances with loop
constructs, this phenomenon also applies, but it can be partially seen that the numbers
of test cases increase from Node Coverage to Edge Coverage to Path Coverage. Based on this,
the use of the aforementioned hierarchy represents a valid solution, because the initial
situation concerning the number of test cases is only increased as required, starting
from a small quantity, and thus results in the smallest possible quantity of test cases
about the utilized metrics.

Finally, we discuss the blacklisting mechanism, which is based on the set of generated
test cases just explained. Unfortunately, the empirical data do not provide any infor-
mation on this, but in the worst case, this filtering of the test case set cannot lead to
any further reduction. In the best case, the already small number of test cases is further
reduced, which benefits the overall process. Overall, the presented Test Case Manage-
ment approach shows predominantly positive characteristics within the scope of the
evaluation, which again underlines its suitability.

13.3 Model-based Abstract Test Execution

In this section, the Abstract Test Execution approach presented in chapter 10 is evalu-
ated. For this purpose, how the evaluation is carried out is explained first, before the
actual evaluation is carried out afterward. In the first place, a qualitative evaluation is
carried out, which is then complemented by a quantitative consideration concerning
scalability.

Evaluation Setup

The evaluation of the Abstract Test Execution concept is composed of four main steps,
which are illustrated in figure 13.6.

Develop Test

Cases for Parts of

ALCS

System Model

Apply Mutation

Operators to

Affected System

Model Parts

Evaluate

Changes of Test

Verdicts

Evaluate Average

Execution Times

of ATE

Figure 13.6: Core aspects of evaluation

246

13.3 MODEL-BASED ABSTRACT TEST EXECUTION

This evaluation is performed on the ALCS use case, whereas the corresponding Omni
Model has already been described in section 12.2. In particular, the explanations of the
Omni Model show the relevant System and Test Models used in the evaluation (see
doCtrlCrashFlashing and doTheftFlashing). These two System Model parts are very
interesting because all types of model elements are included to evoke all different Test
Verdicts. Furthermore, the evaluation results published in our conference paper [83]
are taken up and presented again in detail.

In the first step of the evaluation, the test cases are generated from the two Test Models
for the system parts doCtrlCrashFlashing and doTheftFlashing of the ALCS. Based
on this set of test cases, the modification of the Test Verdicts and thus the functionality
of the presented approach is demonstrated in the evaluation.

In the second step of the evaluation, mutation operators are applied to the linked com-
ponents of the System Model. Similar to the procedure of Mutation Analysis, possibly
triggers changes in the Test Verdicts, which shows that all Test Verdicts are possible and
that the correct Test Verdicts are determined.

The resulting test verdicts are derived for this purpose as part of the third step. On the
one hand, the test cases are evaluated against all System Models by the prototypical
implementation in the A3F. On the other hand, the Test Verdict is derived manually for
some test cases using the presented set of rules, which ensures the correct determination
of the Test Verdicts on a sample basis.

In the final step of the evaluation, the analyses are evaluated by the prototypical imple-
mentations about their runtime, from which in turn conclusions can be drawn regard-
ing the scalability of the implementation.

From a technical point of view, a modified variant of the egpp_mutation_testing anal-
ysis is needed to perform the presented evaluation setup. This is especially because
the implementation for the classical Mutation Analysis only includes test cases whose
reference executions are evaluated with a Test Verdict PASSED (pa). This behavior is
not desired here, since changes in the Test Verdict are of interest in this context. The
modified version of the analysis (egpp_mutation_testing_mod) performs the Mutation
Analysis for any test case, no matter which Test Verdict is derived during the reference
run. The following configuration parameter assignment is chosen to perform the eval-
uation.

247

13 QUALITATIVE AND QUANTITATIVE EVALUATION OF THE MCSTLC APPROACHES

1 analysis egpp_mutation_testing_mod(mutt) {
2 systemmodel="data_transformer|systemegpp|DataTransformationResult|getOutputElements";
3 integrationmodel="im_scoping|omni|IMScopingResult|getFilteredIMModel";
4 testmodels="im_scoping|omni|IMScopingResult|getGeneratedMBTModels";
5 testcases="egpp_path_generation|testegpp|EGPPPathGenerationResult|getTestCases";
6 executor="dataflow";
7 executorconfig="5,5";
8 mutopconfig="DELETE_TRANSITION,DUPLICATE_NODE,REPLACE_CONST,REPLACE_COND_OPERATOR";
9 mutsamplingconfig="OFF";

10 mutstrategyconfig="CLASSIC";
11 }

Listing 13.2: A3F configuration for the evaluation of Abstract Test Execution approach

The analysis steps used to preprocess the model information are not shown here, as this
is identical to the A3F configurations of the concept part except for the use case-specific
parts.

Evaluation

In the context of performing the evaluation steps for the Abstract Test Execution con-
cept, the Test Models are shown in figure 12.8, and figure 12.9 are used. These Test
Models cover common interaction sequences with the respective system components
and consider some edge cases of the modeling. The test cases are derived by the pro-
totypical implementation of Test Case Generation using the node coverage criterion.
Based on the generated test case sets (32 test cases for doCtrlCrashFlashing and 60
test cases for doTheftFlashing), the resulting Test Verdicts are examined.

With the help of the modified Mutation Analysis implemented in the A3F, especially
the changes of the Test Verdicts driven by the applied mutations become apparent.
Figure 13.8 shows the results of the analysis, which have already been presented in
their basic form in [83].

First and foremost, the figure is divided into four segments, with each segment illustrat-
ing the data for a mutation operator related to both application examples. For example,
in figure 13.8a, the mutation operator DELETE_TRANSITION is considered, with the ap-
plication example doCtrlCrashFlashing (Crash) on the left side and the application
example doTheftFlashing (Theft) on the right side. In each of these subgraphs, the
distribution of the resulting Test Verdicts is plotted on the y axis, with the different
mutation targets plotted on the x axis. By using the CLASSIC strategy for the modified
variant of Mutation Analysis, the model elements plotted on the x axis describe the
complete list of mutation targets. Excluded at this point are model elements to which
the respective mutation cannot or may not be applied.

Besides, in the bars describing the distribution of Test Verdicts, an unchanged Test Ver-
dict compared to the reference execution is counted in the set Unchanged. If the test

248

13.3 MODEL-BASED ABSTRACT TEST EXECUTION

execution against the mutant results in an altered Test Verdict, it is assigned to the sets
PASSED, PROBABLY PASSED, INCONCLUSIVE or FAIL accordingly.

It can already be seen from the evaluation that the executions against the mutated Sys-
tem Models have effects on the Test Verdicts. Furthermore, it can be observed that the
selected mutation operators cause changes of the Test Verdict across both use cases to-
wards all theoretically possible Test Verdicts, except for the Test Verdict INCONCLUSIVE.
The reason for this is the derivation rules shown in section 10.2.5 for an INCONCLUSIVE
Test Verdict, which cannot be stimulated by the chosen mutation operators.

Furthermore, some mutations on certain model elements do not affect the resulting Test
Verdict. For example, figure 13.8d plots the data caused by replacing a condition on the
model element in question with the value true. In the context of the doCrtlCrash-
Flashing model, only the manipulation of the condition at edge 7 causes a change in
the Test Verdict. The two test cases that have changed their Test Verdict, in this case, can
be identified in the Test Model. By replacing the condition oc_CentralLockingStatus
== 1 with the value true, two more test cases can potentially run successfully in the
context of the mutants. According to this scheme, further samples are examined and
plausibility checked by hand according to the set of rules for deriving Test Verdicts. No
cases are discovered in which the prototypical implementation produced a different
result than the manual determination of the Test Verdict.

Concerning the newly introduced Test Verdict PROBABLY PASSED, figure 13.8c is dis-
cussed in more detail. In the context of the doTheftFlashing use case, it appears that
manipulation by the REPLACE_CONST operator on the model elements C’ and 6’ does not
affect the Test Verdicts. This is due to time-dependent variables, which are given special
treatment to the evaluation of the Test Verdicts in our approach (see section 10.2.5). This
can essentially be attributed to the fact that temporal considerations are not expedient
due to a lack of concrete information at the model-level.

Overall, the analysis of the test executions shows that the approach allows for an eval-
uation of the test cases at the model-level, which, with the known limitations, corre-
sponds to a test execution at the code-level. However, the correctness of the approach
has not been proven, only confirmed by a series of evaluations against the use cases
presented. A similar picture emerges in all the case studies discussed, which confirms
the applicability of the approach.

In addition to the evaluation regarding the resulting Test Verdicts and the effects of
mutations on the System Model, the scalability is examined in more detail by recording
the execution times. The Mutation Analysis includes a large amount of Abstract Test
Executions, so looking at the total runtime gives a good impression of the time required.
Figure 13.7 compares the execution times of the modified Mutation Analysis in both
application scenarios.

Furthermore, the measurements are again performed on the two platforms introduced
in section 13.2. Here, the mapped values result from runs of the modified Mutation
Analysis in the context of the prototypical implementation in A3F. Due to the difference

249

13 QUALITATIVE AND QUANTITATIVE EVALUATION OF THE MCSTLC APPROACHES

Figure 13.7: Average execution times for Mutation Analysis of doCtrlCrashFlashing
and doTheftFlashing (Low vs. High Performance)

in the number of test cases, which is even strengthened in the context of the Mutation
Analysis, there is a significant difference in the total execution time. For the use case
doCtrlCrashFlashing, the Mutation Analysis is completed in about 30 seconds on both
platforms, whereas in the use case doTheftFlashing the total time is about 195 seconds
each. Furthermore, in the context of Abstract Test Execution, there is a marginal differ-
ence across platforms. Overall, the execution time is still within a reasonable range, i.e.
there is potential for improvement concerning the scalability of the approach, however,
reasonable applicability is given. Investigations in the context of the other use cases
verify these findings, which significantly reduces the probability of a distorted view
due to use case-specific phenomena.

250

13.3 MODEL-BASED ABSTRACT TEST EXECUTION

8
4

3
5

2
1

6
7

0102030

D
el

et
ed

tr
an

si
ti

on

Changeoftestverdict

C
ra

sh

1’
2’

3’
4’

5’
6’

7’
0204060

D
el

et
ed

tr
an

si
ti

on

Th
ef

t

(a
).

..
tr

an
si

ti
on

de
le

ti
on

.

A
B

C
D

E
0102030 St
ar

tn
od

e
of

in
se

rt
ed

tr
an

si
ti

on

C
ra

sh

A
’

B’
C

’
D

’
0204060 St
ar

tn
od

e
of

in
se

rt
ed

tr
an

si
ti

on

Th
ef

t

PA
P

P
IN

FA
U

nc
ha

ng
ed

(b
).

..
no

de
in

se
rt

io
n.

A
E

7
0102030

A
ff

ec
te

d
m

od
el

el
em

en
t

Changeoftestverdict

C
ra

sh

A
’

B’
C

’D
’

3’
2’

6’
0204060

A
ff

ec
te

d
m

od
el

el
em

en
t

Th
ef

t

(c
).

..
co

ns
ta

nt
re

pl
ac

em
en

t.

1
2

3
4

5
6

7
0102030

R
ep

la
ce

d
in

st
ru

ct
io

n
of

tr
an

si
ti

on

C
ra

sh

2’
3’

5’
6’

7’
0204060

R
ep

la
ce

d
in

st
ru

ct
io

n
of

tr
an

si
ti

on

Th
ef

t

(d
).

..
in

st
ru

ct
io

n
re

pl
ac

em
en

t.

Fi
gu

re
13

.8
:R

es
ul

ts
of

...
[8

3]

251

13 QUALITATIVE AND QUANTITATIVE EVALUATION OF THE MCSTLC APPROACHES

13.4 Model-based Mutation Analysis

In this section, we evaluate the Model-level Mutation Analysis approach shown in
chapter 11. First and foremost, a quantitative evaluation is performed, which com-
pares the TCMAS, as well as the execution time required in different configurations,
and compares it with the expectations of experienced testers. Besides, further proper-
ties are evaluated in the context of a qualitative discussion.

Evaluation Setup

As part of the evaluation of the Mutation Analysis concept, the steps depicted in fig-
ure 13.9 are performed to assess the approach. The experiments are carried out on
the models of the case study Elevator System, whose Omni Model is presented in sec-
tion 12.3.

Develop Passing Test

Cases for Parts of ES

System Model with

varying Quality

Perform

Mutation

Analysis of Test

Cases

Discuss

Analysis Results

e.g.

Mutation Scores

Figure 13.9: Core aspects of evaluation

First and foremost, test cases are to be specified for this purpose, which exhibits a
variable quality concerning their level of detail of the verification of a certain subject.
Through this set of test cases derived from the Scoped Test Model and shown in fig-
ure 12.15, different TCMAS values are expected. Specifically, the test case describing
the left path in the Test Model is referred to as test 1. Accordingly, the middle path of
the Test Model is called test 2, and the right path of the Test Model is called test 3. In
this case, the Test Model is created by a test engineer, whose empirical values are used
in the evaluation as a comparison for the classification of the automatically determined
metrics.

In the next step of the evaluation, the test cases are subjected to an automated evalua-
tion by the Mutation Analysis approach. Here, the prototypical implementation in the
context of A3F is utilized. Listing 13.3 shows an excerpt of the basic configuration of
A3F, which contains the parameters of the module implementing the Mutation Analy-
sis.

252

13.4 MODEL-BASED MUTATION ANALYSIS

1 analysis egpp_mutation_testing(mutt) {
2 systemmodel="data_transformer|systemegpp|DataTransformationResult|getOutputElements";
3 integrationmodel="im_scoping|omni|IMScopingResult|getFilteredIMModel";
4 testmodels="im_scoping|omni|IMScopingResult|getGeneratedMBTModels";
5 testcases="egpp_path_generation|testegpp|EGPPPathGenerationResult|getTestCases";
6 executor="dataflow";
7 executorconfig="5,5";
8 mutopconfig="REPLACE_CONST,MODIFY_CONST,EXCHANGE_COND_OPERATOR,REPLACE_COND_OPERATOR";
9 mutsamplingconfig="OFF";

10 mutstrategyconfig="CLASSIC";
11 }

Listing 13.3: A3F configuration for the evaluation of Mutation Analysis approach

To further increase the significance of the experiments, the effect of different optimiza-
tion mechanisms of the Mutation Analysis concept is considered. For this purpose, a
total of three additional configurations are derived from the base configuration (Config
1) shown in listing 13.3. Config 2 modifies the base configuration to use mutant sam-
pling functionality to improve performance. Specifically, at this point, it is set to ran-
dom sampling using 60% as the sampling rate (mutsamplingconfig="RANDOM,0.6").
Config 3 changes the base configuration in such a way that a different mutation
strategy is applied. The previously used CLASSIC strategy, which is known to be
very computationally intensive, is replaced by the HIGHERORDER_MIXED strategy. All
other parameters remain unchanged compared to Config 1. Finally, Config 4 intro-
duces another variation of the base configuration, similar to Config 3, exchanging the
mutation strategy used. In this case, the HIGHERORDER_CS strategy is applied, again
leaving the remaining parameters unchanged. Across all presented configurations,
the same set of mutation operators is used (mutopconfig="REPLACE_CONST,MODIFY_-
CONST,EXCHANGE_COND_OPERATOR,REPLACE_COND_OPERATOR"), which seems reasonable
for the presented System Model (see figure 12.14b) from the Test Engineer’s point of
view.

During the execution of the experiments based on the presented configurations, the
TCMASs of the test cases are evaluated on the one hand and the time required for the
execution of the analysis on the other hand. The collected information is evaluated
and discussed in the last step, which in the end leads to an assessment of the Mutation
Analysis concept.

Evaluation

As described in the evaluation setup, the test cases test 1, test 2, and test 3 derived
from the Test Model are subjected to Mutation Analysis in the context of the different
configurations. First, listing 13.4 shows some fragments of a Mutation Analysis Report
as provided to the user in the context of A3F.

In the upper part of the report, some statistical values for Mutation Analysis are listed.
In the further course, the created mutants are listed first, describing which mutation

253

13 QUALITATIVE AND QUANTITATIVE EVALUATION OF THE MCSTLC APPROACHES

operators are applied to which model elements. The conclusion of the general part of
the Mutation Analysis is an overview, which shows the different Test Verdicts per test
case and additionally quantifies the determined TCMAS.

The lower part of the report lists the individual execution reports of the Abstract
Test Execution. These offer almost the same information as already described in sec-
tion 10.2.6. However, the information regarding the presence of an equivalent mutant is
given additionally.

Based on such Mutation Analysis Reports, the following evaluations are created. First,
the behavior of TCMAS in the different configurations and on different systems is eval-
uated, which can be seen in figure 13.10.

(a) Low Performance (b) High Performance

Figure 13.10: TCMAS of test cases 1-3 based on configurations 1-4

The figure is divided into figure 13.10a, which reflects all evaluations for the Low Per-
formance platform, and into figure 13.10b, which shows all data for the High Performance
platform. The two subgraphs each include a quantified assessment of test case quality
by the expert on the right side of the plot. The absolute values are negligible since even
for an experienced test engineer such an assessment is very difficult. The focus is on
the classification of the test cases to each other, which is provided with a relatively high
standard deviation.

Considering the data on the evaluation context Config 1, we can see that the Mutation
Analysis evaluates the two test cases test 1 and test 2 identically concerning the
TCMAS. Only test 3 receives a better rating, which is in line with the intuition of the
test engineer. However, the range of available values of TCMAS is much smaller than
expected, which makes it more difficult for the user to choose a reasonable threshold
for a selection of the test case set. One possible reason for such an evaluation is the
simplicity of the underlying System Model, which provides relatively few options for
applying mutations.

In contrast, the evaluations on Config 2 provide fewer unambiguous results. On both

254

13.4 MODEL-BASED MUTATION ANALYSIS

platforms, the introduction of random-based mutant set reduction led to a huge scatter
in the recorded TCMASs. Also, since the test cases cover only a small portion of the
System Model, there is a relatively high probability that all mutations potentially stim-
ulable by the test case are dropped from the set of mutants. This sometimes leads to a
TCMAS of 0. As can be seen in figure 13.11, running Mutation Analysis in Config 2
leads to a significant reduction in runtime, but the TCMAS can no longer be meaning-
fully used as a selection criterion.

In the context of the evaluations on Config 3, the determined values of TCMAS tend
to increase, which is due to the mutants. These emerge from a combination of mu-
tations in the context of the HIGHERORDER_MIXED strategy. The significant fluctuations
in the resulting TCMAS of the test cases test 1-3 are again due to the random com-
ponent during the creation of the mutants. Namely, not all mutations are necessarily
incorporated into one mutant, but only a certain percentage (see section 11.2.1). The
use of TCMAS as a criterion to select a subset of high-quality test cases proves to be
problematic in this context.

A similar conclusion can be drawn for the evaluations of the Mutation Analysis in the
context of Config 4. In each case, the values of TCMAS are distributed over a rela-
tively broad spectrum, and the use of this criterion is again questionable. Furthermore,
the advantages of the HIGHERORDER_CS strategy cannot be exploited, since the System
Model includes only a linear control flow and thus the emergent effects can occur in
any case.

In contrast to the ambiguous results in the context of the elevator case study, clearer re-
sults are obtained, for example, when performing the Mutation Analysis on the ALCS.
We see the reason for this in the simplicity of the elevator System Model, which very
much limits the spectrum of mutations and thus, by definition, makes the classifica-
tion of test cases relatively rough. In particular, the focus of our Mutation Analysis
approach is on more complex models, where the evaluation of a test case or a set of test
cases cannot easily be done by hand.

In addition to the considerations of the determined TCMASs, figure 13.11 shows the
execution times in each configuration.

Overall, the two subgraphs clearly show that the execution times on both platforms
are almost identical, which confirms the findings regarding the low influence of the
platform from figure 13.7. Moreover, we see that the random-based mutant set reduc-
tion (see config 2), as well as the mutant set reduction from the combined application
of mutations (see config 3 and config 4), produce significant runtime savings. The
scatter in execution times that occur in figure 13.11b (Config 4, test 2) is caused by
an outlier that is simply due to a system-side delay in the process. Regarding the eval-
uation of the execution times, the findings could be confirmed by experiments in the
context of the other case studies. The scalability of the Mutation Analysis is largely due
to the scalability of the Abstract Test Execution approach. The creation and selection of
mutants take up a negligible portion of the total runtime.

255

13 QUALITATIVE AND QUANTITATIVE EVALUATION OF THE MCSTLC APPROACHES

(a) Low Performance (b) High Performance

Figure 13.11: Average execution time for Mutation Analysis of a test case in the respec-
tive configuration

Overall, the evaluation shows that the present Mutation Analysis concept is a practi-
cal approach, although it must be evaluated concerning the application context and is
consequently only fully recommendable in cooperation with an experienced test engi-
neer.

256

13.4 MODEL-BASED MUTATION ANALYSIS

1 ===
2 ===================== Statistics for Mutation Testing Run =====================
3 Test Cases Total: 3
4 Test Cases Mutation Tested: 3
5 Time Elapsed For Run: 82s
6 Average Mutation Score: 0,40
7 ===
8 Mutants:
9 ---

10 Mutant Name: MUT1337_radcase
11 Mutant ID: MUT1337-2hEmPW2g
12 #Mutations Applied: 1
13 Concrete Mutations:
14 Mutation: EXCHANGE_COND_OPERATOR
15 Applied To: inEtage -> ausserhalb (Etage)
16 ---
17 [... EACH MUTATNT IS SPECIFIED LIKE ABOVE ...]
18 ---
19 ===
20 Legend: <MUTATIONSCORE>: <REFERENCE_VERDICT> -> (PA,PP,IN,FA) for <TESTCASEID>
21 ===
22 0,80: PA -> (4,0,0,2) for TC003_MBT-Etage
23

24 [... BEGINNING OF EXECUTION REPORT PER MUTANT AND TEST CASE ...]
25 ===
26 Mutant Under Test: MUT1337_radcase
27 Test Result: FAIL
28 Mutant Killed: Yes
29 Equivalent Mutant: No
30 Execution Report:
31 ---
32 Test Steps:
33 1. ["_Root__Elevator__Etage0__AnfSchleich == 0 ;"]
34 5. ["_Root__Elevator__Etage0__istInEtage = 1 ;"]
35 6. ["Root__Elevator__Etage0__TasteHolen = 1 ;"]
36 7. ["_Root__Elevator__Etage0__holen == 1 ;"]
37 --
38 System Steps:
39 0. Initial0 (anforder)
40 2. gen-sub-1-of-warten (warten)
41 3. gen-sub-2-of-warten (warten)
42 4. gen-sub-2-of-warten_SPLIT_0 (warten) (["AnfSchleich = 0 ;"])
43 8. gen-sub-1-of-gedrueckt (gedrueckt)
44 9. gen-sub-2-of-gedrueckt (gedrueckt) (["holen = 1 "])
45 --
46 Executor Log:
47 ERROR: Guard
48 "Root__Elevator__Etage0__TasteHolen && (Root__Elevator__Etage0__AnfSchleich)"
49 ignored! Got candidate(s): "[1 && (0)]"!
50

51 WARNING: Startpoint not specified! Using initial node of this (sub)graph.
52

53 INFO: We passed all VPs and last VP was solved with the specified Endpoint!
54 --
55 [... OTHER EXECUTION REPORTS ...]

Listing 13.4: Mutation Analysis Report for an exerpt of the Elevator System

257

14
Discussion on the overall MCSTLC

Since different evaluations were carried out in advance for the individual process steps
of the MCSTLC, the overarching life cycle itself is finally subjected to a qualitative eval-
uation. For this purpose, different properties are examined, as they were already con-
sidered in a similar selection in the context of the evaluation of the Omni Model ap-
proach. Specifically, the MCSTLC is evaluated for Adaptability, Extensibility, Reusability,
and Maintainability.

Adaptability

In terms of the application context, the MCSTLC offers some possibilities for adap-
tation, which are attributable to the concepts of the substeps. Due to the underlying
Omni Model concept, the MCSTLC can be built on top of almost all model-based de-
velopment contexts. The ability to adapt the approach is due to the decoupling of the
processing steps from the original ways of representing the model information. This
continues in the incorporation of meta-information, where full flexibility is given to the
expression of the Aspects as long as it is deterministically quantifiable information.

The adaptability in the context of the MCSTLC exceeds that except for the creation
and maintenance of the additional models and meta information, no change regard-
ing the concrete MCSTLC instance is necessary. Even in the context of a hybrid use
of code-based and model-based techniques during development, an application of the
MCSTLC is possible without further restrictions. Considering all the concepts of MC-
STLC against the background of possible application contexts, the approach shows a
very good overall adaptability.

Extensibility

Concerning the Extensibility of the MCSTLC, similar arguments can be made as for
Adaptability. For example, the adaptability of the set of Aspects includes the extensibil-
ity, whereby theoretically any number of such metainformation can be added and used
for processing.

14 DISCUSSION ON THE OVERALL MCSTLC

However, the MCSTLC itself can be extended. Thus, an extension of the set of pro-
cess steps by additional use case-specific processing steps is conceivable. An example
of this is an enhancement of the test quality to other criteria that are described by an
application domain-specific standard, which requires an analysis of the test case set in
a further process step. Such a process step can be integrated without any problems
as long as the exchanged data structures are only extended and not modified. Due to
the modular structure of the MCSTLC, the concepts can be extended and combined in
other ways as desired. As part of the prototypical implementation, there are analysis
modules deriving processing artifacts for other tooling and bringing its results back
into the processing chain. This demonstrates that there are few limits to extensibility.

Reusability

The MCSTLC adapted or extended for the application context allows smooth reusabil-
ity in other use cases. For this purpose, only the components concerning the adaptation
to the original modeling approaches need to be exchanged or adapted. As long as the
modeling languages and metamodels remain identical, even these adaptations are not
necessary and the MCSTLC can be reused without further action.

Looking at the components of the MCSTLC, the application of the Omni Model concept
enhances reusability for the development artifacts as well. This linking of concepts
across modeling domains promotes synchronization between development domains,
which is comparable to continuous reviews. This implicitly improves quality and en-
ables reusability in the sense of a complete package of models in other contexts.

Maintainability

Finally, the MCSTLC is considered and discussed concerning its maintainability. For
this purpose, maintainability can be considered about the model artifacts that are pro-
cessed within the framework of the MCSTLC. The configuration parameters of the in-
dividual process steps have to be maintained as well so that the automated processing
can be performed in a meaningful way. Regarding the model artifacts, the maintain-
ability is not affected by the application within the MCSTLC. For example, if the main-
tenance of the system modeling in the context of the company’s modeling language or
approach was problematic before, the application in the context of the MCSTLC does
not deteriorate it. The opposite is true: through the aforementioned synchronization of
the modeling domains in conjunction with suitable tool support, maintenance can even
be improved. The only exception is the additional Integration Model, whose maintain-
ability without appropriate tool support represents a sensitive point.

From the point of view of the configuration parameters of the MCSTLC, maintainabil-
ity is given. The fact that all parameters are stored centrally in a configuration means
that there is no danger of parts being overlooked and possibly not maintained. Fur-
thermore, the absolute number of parameters that can be manipulated by the user is

260

limited, so that complexity remains on a low level. Furthermore, in the context of the
prototypical implementation, it is possible to fall back on default parameters in many
places, which do not usually represent the optimal configuration but do further sim-
plify maintainability and still produce useful results.

Considering all evaluated properties of MCSTLC together, the positive properties of the
approach outweigh the shortcomings, whereas the identified issues can be remedied in
the context of future work.

261

Part V

CONCLUSIONS AND
OUTLOOK

15
Conclusions

In the context of this work, a concept including a prototypical implementation has been
developed which, by adapting and combining different modeling and testing tech-
niques, created a solution to tackle the complexity of testing and to evaluate test cases
against a system in the very early phases of MDSD. In particular, this offers the possi-
bility of detecting errors introduced into the system in early phases of development at
a correspondingly early stage and thus minimizing their impact throughout the entire
product life cycle. In response to the research question posed at the beginning

How to carry out a testing life cycle on the model-level to counteract complexity and severe
defects, improving the overall quality of development artifacts in MDSD scenarios?

the following answer can be given.

The basis of any software testing life cycle is first of all the knowledge about the spec-
ified system to be developed and all influencing factors. From the point of view of a
model-centric approach to the problem, this knowledge base was created by first de-
veloping a concept that enables a lightweight integration of model information from all
modeling domains (influencing factors). This so-called Omni Model, which preserves
the Separation of Concerns to the modeling domains, comprises a flexible set of models
and links them employing an Integration Model. Furthermore, this Integrated Model
Basis allows to integrate meta information into the model landscape and to benefit in
subsequent processing steps. In this context, Research Question 2 as well as Objective 2
are covered by the presented Omni Model concept, which has already been discussed
throughout the conclusions in section 7.5.

Based on the Omni Model, a Model-Centric Software Testing Life Cycle (MCSTLC) was
implemented that reinterprets the phases of a traditional software testing life cycle at
the model-level and explicitly provides mechanisms for determining and improving
the quality of test cases. Primarily, however, this widely automated MCSTLC supports
the developer and tester in their model-based development work. The first process
step of MCSTLC, the so-called Test Case Management, enables the user to reduce the
comprehensive Test Model to the current test focus by specifying constraints on the
Omni Model information and subsequently evaluating them. In interaction with other
process steps of the MCSTLC the reduction, prioritization, and selection of test case sets
are realized. This process step represents the response to Research Question 3, whereby

15 CONCLUSIONS

all the objectives identified at the beginning (see Objective 3) could be implemented. As
a closing remark in chapter 8, a more detailed conclusion has already been presented
in section 8.5.

The next process step of the MCSTLC, the so-called Test Case Generation, realizes the
derivation of a test case set from the reduced Test Models, which were determined in the
previous step under consideration of external regulations, such as coverage according
to explicit metrics. Furthermore, this approach considers the quality of the generated
test cases by filtering according to a Mutation Analysis based metric. This concept
provides a promising solution to Research Question 4 and the resulting objectives (see
Objective 4). A detailed conclusion can be found in section 9.5.

The following process step of the MCSTLC, the so-called Abstract Test Execution, en-
ables the execution of the test case set at the model-level. Here, the need for a transition
to code artifacts was explicitly avoided, as this would nullify the benefits of early ap-
plicability. The implementation, therefore, uses an internal model representation of the
original models, to accomplish on the one hand through search algorithms and on the
other hand through data flow analysis techniques the evaluation of the available test
cases against the System Model. The gained knowledge is made available to the devel-
oper and tester to achieve an improvement in subsequent iterations. Based on Research
Question 5, any identified objectives were fulfilled by the concept presented in the the-
sis (see Objective 5). Regarding this part of the thesis, a concluding discussion has been
performed in section 10.5.

In addition to the pure execution of the test cases, the Abstract Test Execution method-
ology is applied in the last process step of the MCSTLC. The so-called Mutation Anal-
ysis on model-level is primarily concerned with the evaluation of the generated test
case set for its quality regarding typical error types. This process step, which is par-
ticularly related to the already mentioned test case generation, represents an excursion
in the classical life cycle and can therefore be optionally integrated. In this context,
Research Question 6 was determined at the beginning of this thesis, whereby the iden-
tified objectives subsumed under Objective 6 are all covered by the presented Omni
Model concept, which has already been discussed in the conclusions of section 11.5.

The evaluation of the developed functionalities has confirmed their usefulness and ap-
plicability with small weaknesses in the context of the prototypical implementation.
In particular, this affects the scalability of the current, not optimized, implementation
of Abstract Test Execution, used in the context of Mutation Analysis. Likewise, the
Maintainability of the Integration Model information, as part of the Omni Model, was
identified as a potential source of error for the usability of the generated results, which,
however, can essentially be remedied by suitable tool support. However, the posi-
tive aspects and opportunities created by the novel MCSTLC outweigh the negative
ones.

266

16
Outlook

Finally, an outlook on further work and future fields of application of the presented
concept is given. In the concluding sections of the concept chapters, we have already
provided an outlook on the further development of the respective concept. Based on the
findings of the evaluation, there are some further aspects that, in our view, represent a
logical continuation of the presented approaches. In the context of the Omni Model, we
see the need for a well-founded concept that supports the creation and maintenance
of the Integration Model on the process side and provides the basis for suitable tool
support. This applies to the creation of model transformations to the internally used
model representation. This is expected to lead to a significant improvement in terms of
the resilience of the model information, which increases confidence in the results of the
MCSTLC and, ultimately, user acceptance of the solution. Furthermore, we see another
point in the development of the Integration Metamodel in terms of the incorporation
of code artifacts. Since code represents a kind of modeling, and thus the transition and
applicability of the concept would merge from the model-level to the code-level, we
see high potential in the expansion/refinement of these concepts. Such an extension
has already been envisaged in the Integration Metamodel, but has not been pursued or
evaluated further due to the scope of the work.

In the context of the Test Case Management concept, the optimization of the Aspect-based
specification of the test focus represents a possible starting point for further work. Here,
an automated derivation of aspect constraints can represent possible tool-side support
for the user, whereby the user’s knowledge of the information in the Integration Model
no longer needs to be detailed. From a conceptual point of view, however, this area of
the MCSTLC represents a unit, i.e. few further topics are suggested here.

The process step of Test Case Generation offers a variety of further topics. For example,
it could be investigated to what extent procedures for deriving test cases from mod-
els that do not fall into the category of coverage criteria can complement the existing
coverage measure-driven criteria. At this point, we believe there is a very large poten-
tial to make the resulting set of test cases even more effective and targeted. The use
of learning algorithmic approaches is conceivable, whereby empirical data on effec-
tive test cases can be applied to the current use case. However, this research direction
should be treated with caution, especially in the testing context, since context plays a
crucial role in testing, which is reflected in the selection of learned parameters. Simi-
larly, the use of mutation in terms of exploratory expansion of the test case set would
be a conceivable technology to extend the existing concept. Another aspect of Test Case

16 OUTLOOK

Generation, which should be investigated in further work, is the diversification of the
test quality criterion, which is currently used to filter the test case set (see TCMAS).
Different characteristics apart from the Mutation Score, which evaluates the ability of a
test case/test suite for frequently occurring fault types could determine an even more
objective picture of a high-quality test suite.

The process step Abstract Test Execution probably offers the most potential for further
work. Similarly, as the Mutation Analysis was developed to a practicable solution by
a multitude of optimizations, the algorithms for test execution can be optimized in
many areas. This can be accomplished either by parallelization variants or suitable
preprocessing of model data. An alternative development of the current approach,
which evaluates all possible paths in the system, would be a user-guided evaluation of
the paths. This could significantly limit the path space to be considered since irrelevant
parts of the execution can be identified and skipped by the user at runtime (similar
to state-of-the-art debugging in an IDE). However, the application context of such a
solution would no longer be as automatable as the current concept. However, it would
open up new application areas, such as model-based debugging in the early stages of
development, which is a more interactive version of the current usage.

For the process step of Mutation Analysis, further work concerns the set of Mutation Op-
erators. In particular, the possibility to define Mutation Operators in a context-specific
way would allow a more effective application of the Mutation Analysis concept. In its
current form, the set of Mutation Operators represents a cross-section of error types
based on research and experience, which have been generalized and implemented in
the context of our internal model representation. While this in principle allows for
flexible use of the Mutation Analysis methodology, it is not necessarily as specific as
it would need to be to achieve better results. In the sense of effective use of the Mu-
tation Analysis concept a learning algorithm approach would be conceivable, which
offers decision support for the configuration of this analysis for the respective use case.
This can also be accomplished by a complementary set of modeling guidelines for test
modeling, thus addressing the challenge at its origin.

From a process point of view, questions concerning the integration of the MCSTLC
methodology into a wide variety of development processes represent a possible start-
ing point. For example, the question arises as to what extent the presented approach
can support a form of agile software development in a model-centric approach. Like-
wise, investigations regarding the possibility of a Model-Level Test Driven Develop-
ment (MTDD) through our MCSTLC represent interesting aspects of further research
topics.

268

Part VI

Annex

Supplementary Material

CSM System Model Diagrams

This section shows the submodels of the Ceiling Speed Monitor (CSM), which was
mapped by the University Bremen in a SYSML model. [38] Starting at the highest level
of the system model, the encapsulated SUD is specified with its ports to the environ-
ment as well as the data structures communicating via the respective ports are spec-
ified. Moreover, the structural breakdown of the SUD blocks into their sub-blocks is
defined. It should be noted that the two blocks TSM and RSM are not included in the
original SYSML model of the University of Bremen, but were added for demonstration
purposes for later processing steps. The behavior of the CSM block is described in the
form of a hierarchical statemachine, which at this level only distinguishes between a
CSM that is either active or inactive. Besides, the behavior in the case of an active CSM is
detailed, which is realized as a sub-statemachine of the CSM_ON state.

ibd [pa cka ge] SYSTEM [SYSTEM]

«flowPort»
OdometryIn

«flowPort»
SpeedRestrictionIn

«flowPort»
NationalValuesIn

«flowPort»
SnDMonitorIn

«flowPort»
DMIOut

«flowPort»
TIOut

«block,SUT»
SystemUnderTest

«flowPort»
OdometryIn

«flowPort»
SpeedRestrictionIn

«flowPort»
NationalValuesIn

«flowPort»
SnDMonitorIn

«flowPort»
DMIOut

«flowPort»
TIOut

«flowPort»
OdometryIn

«flowPort»
SpeedRestrictionIn

«flowPort»
NationalValuesIn

«flowPort»
SnDMonitorIn

«flowPort»
DMIOut

«flowPort»
TIOut

«block,TE»
TestEnvironment

«flowPort»
OdometryIn

«flowPort»
SpeedRestrictionIn

«flowPort»
NationalValuesIn

«flowPort»
SnDMonitorIn

«flowPort»
DMIOut

«flowPort»
TIOut

«Enumeration»
DMICommands

 NORMAL = 0
 INDICATION = 1
 OVERSPEED = 2
 WARNING = 3
 INTERVENTION = 4

«Enumeration»
TICommands

 EMER_BRAKE_CMD = 2
 SERVICE_BRAKE_CMD = 1
 NO_CMD = 0

«SUT2TE»
DMIOut

+ DMICmd: int = NORMAL
+ permittedSpeedToDriver: float = 0
+ speedOnboard: float = 0
+ speedToDriver: float = 0
+ DMIdisplaySBI: bool = false

«SUT2TE»
TIOut

+ TICmd: int = NO_CMD

«TE2SUT»
OdometryIn

+ V_est: float = 0

«TE2SUT»
SpeedRestrictionIn

+ V_mrsp: float = 110

«TE2SUT»
NationalValuesIn

+ allowRevokeEB: int = 0

«TE2SUT»
SnDMonitorIn

+ csmSwitch: int = 1
+ SBAvailable: int = 1

«SUT2TE» DMIOut

«itemFlow»

«SUT2TE» TIOut

«itemFlow»

«TE2SUT» NationalValue sIn

«itemFlow»

«TE2SUT» SpeedRes tricti onIn

«itemFlow»

«TE2SUT» OdometryIn

«itemFlow»

«TE2SUT» SnDMonitorIn

«itemFlow»

Figure 16.1: Overall view of ETCS Ceiling Speed Monitor model

«fl owPort»
OdometryIn

«fl owPort»
SpeedRestrictionIn

«fl owPort»
NationalValues In

«fl owPort»
SnDMonitorIn

«fl owPort»
DMIOut

«fl owPort»
TIOut

ibd [bl ock] SystemUnderTest [SystemUnderTest]

«fl owPort»
OdometryIn

«fl owPort»
SpeedRestrictionIn

«fl owPort»
NationalValues In

«fl owPort»
SnDMonitorIn

«fl owPort»
DMIOut

«fl owPort»
TIOut

«block»
CSM

- sbiCmd: int = SERVICE_BRAKE_CMD

+ calc_permi tted_speed_to_driver(): void
+ calc_speed_onboard(int): void
+ calc_speed_to_driver(): void
+ dV_ebi (float): fl oat
+ dV_sbi (float): fl oat
+ dV_warning(float): float

«block»
TSM

«block»
RSM

Figure 16.2: SYSML block diagram of ETCS Ceiling Speed Monitor model

stm [StateMachine] CSM [CSM]
Ini tial

CSM_OFF CSM_ON

do / ca lc_permi tted_spe ed_to_driver();
do / ca lc_speed_to_driver();

[cs mSwitch && !SBAvaila ble]
/sbiCmd = EMER_BRAKE_CMD;

[!csmSwitch]

[cs mSwitch && SBAvaila ble]
/sbiCmd = SERVICE_BRAKE_CMD;

Figure 16.3: SYSML statemachine diagram of ETCS Ceiling Speed Monitor model

272

stm [State] CSM_ON [CSM_ON]

Ini tial

NORMAL

do / calc_speed_onboard(NORMAL);
entry / calc_speed_onboard(NORMAL);
entry / DMICmd = NORMAL;
entry / DMIdisplaySBI = false;
entry / TICmd = NO_CMD;

WARNING

entry / calc_speed_onboard(WARNING);
do / calc_speed_onboard(WARNING);
entry / DMICmd = WARNING;
entry / DMIdisplaySBI = true;

OVERSPEED

entry / calc_speed_onboard(OVERSPEED);
do / calc_speed_onboard(OVERSPEED);
entry / DMICmd = OVERSPEED;
entry / DMIdisplaySBI = true;

SERVICE_BRAKE

entry / calc_speed_onboard(INTERVENTION);
do / calc_speed_onboard(INTERVENTION);
entry / DMICmd = INTERVENTION;
entry / DMIdisplaySBI = true;
entry / TICmd = sbiCmd;

EMER_BRAKE

entry / calc_speed_onboard(INTERVENTION);
do / calc_speed_onboard(INTERVENTION);
entry / DMICmd = INTERVENTION;
entry / DMIdisplaySBI = true;
entry / TICmd = EMER_BRAKE_CMD;

[V_est > V_mrsp + dV_ebi(V_mrsp)]

[V_est > V_mrsp + dV_warning(V_mrsp)]

[V_est > V_mrsp + dV_sbi(V_mrsp)]

[V_est <= V_mrsp]

[(V_est <= V_mrsp && al lowRevokeEB) || (V_est == 0)]

[V_est > V_mrsp]

[V_est <= V_mrsp][V_est <= V_mrsp]

Figure 16.4: SYSML sub-statemachine diagram of ETCS Ceiling Speed Monitor model

273

Enterprise Architect Metamodel Information

In this section, the metamodel of the Enterprise Architect modeling tool is discussed in
more detail. The metamodel essentially reflects the aspects of the Enterprise Architect
data storage layer.

Figure 16.5: EA metamodel

Table 16.1: Metamodel element descriptions for figure 16.5
Concept Description

EAElement The most abstract concept of the enterprise architect meta-
model defining a unique identifier per element

EANotesElement Concept for an element specifying additional information as a
note

EAGUIDElement Concept for an element with a globally unique identifier

EANamedElement Concept for an element specifying a name attribute

EAVersionedElement Concept for a versioned element

Further, the metamodel structures its model elements into three sub-packages, namely
datatypes, model, and diagram. First, the datatypes package is examined more
closely.

274

Figure 16.6: Datatypes package of the EA metamodel

275

Table 16.2: Metamodel element descriptions for figure 16.6
Concept Description

EAObjectType Enumeration concept for the supported object types

EAConnectorType Enumeration concept for the supported connector types

EAConnectorDirection Enumeration concept for the supported connector directions

EADiagramType Enumeration concept for the supported diagram types

EAAggregationType Enumeration concept for the supported special types of a ag-
gregation connector

EAPackageType Enumeration concept for the supported package types

EACardinality Enumeration concept for the specification of connector’s car-
dinality

EAParameterKind Enumeration concept for the supported kinds of a parameter

EAScope Enumeration concept for the supported scopes of elements

DocumentType Enumeration concept for the specification of the document
type

DocumentElementType Enumeration concept for the specification of different ele-
ment types

The model package is examined in more detail below.

276

Figure 16.7: Model package of the EA metamodel

Table 16.3: Metamodel element descriptions for figure 16.7
Concept Description

EAOperationParameter Concept representing a parameter of a EAOperation

EADocument Concept capturing a document file

EAAttributeTag Concept for additional tag information of a EAAttribute

EAAttribute Concept for attribute of a EAObject

EAOperation Concept representing an operation of a EAObject

277

Table 16.3: Metamodel element descriptions for figure 16.7 (continued)

EAPackage Concept for a package structuring sets of objects

EAStereotype Concept for specifying a stereotype of an element

EAConnector Concept for a connector between EAObjects

EAObject Concept for an object connected to various other detailed
concepts

EACrossReference Concept capturing custom references to other concepts of the
metamodel

EAConnectorTag Concept for additional tag information of a EAConnector

EAObjectScenario Concept putting a EAObject in a certain scenario context

EAObjectProperty Concept capturing additional property information of a
EAObject

Finally, the diagram package is discussed in more detail.

Figure 16.8: Diagram package of the EA metamodel

Table 16.4: Metamodel element descriptions for figure 16.8
Concept Description

EADiagram Concept representing a diagram made of multiple EADiagramOb-
jects and EADiagramLinks

EADiagramLink Concept for the visual aspects of a EADiagramLink

EADiagramObject Concept for the visual aspects of a EAObject

278

UML Metamodel Information

This section deals with a part of the UML metamodel, which shows that GPMLs can
also participate in the context of the Integrated Model Basis. The excerpt is based on
the model scope of the ALCS modeled in the UML, which serves as a case study in the
context of our work. In order to map the system model of the case study in our meta-
model, the following concepts have been included in the metamodel (see figure 16.9)
Further details are given in the context of table 16.5.

Figure 16.9: Simplified UML metamodel

Table 16.5: Metamodel element descriptions for figure 16.9
Concept Description

UMLElement The most abstract concept of this metamodel defining among others a
unique identifier per element

UMLScope Enumeration concept specifying the scope of a UMLAttribute

UMLDiagram Concept for a diagram capturing other model elements

UMLAttribute Concept for the specification of attributes of a UMLClassElement

Note Concept for optional information which is captured in a UMLDiagram

Apart from the generic constructs, some concepts have been defined in their own pack-
ages, which are shown integrated in figure 16.10. Explanations for the elements are
again given in table 16.6.

279

Figure 16.10: Remaining packages of the simplified UML metamodel

Table 16.6: Metamodel element descriptions for figure 16.10
Concept Description

UMLConnector Abstract concept for a connector between metamodel ele-
ments

UMLClassElement Abstract concept for structural elements of the UML meta-
model

UMLTranstion Concept for specifying a connection between UMLStateNodes

UMLDependency Concept for the specification of hierarchies of model ele-
ments

UMLInterface Concept for the specification of a interface

UMLStateNode Abstract concept for states of a statemachine

UMLState Concept for a state which contains additional information
about operations

UMLProvidedInterface Concept for a special type of UMLInterface

UMLRequiredInterface Concept for a special type of UMLInterface

280

RadCase Metamodel Information

In this section the metamodel of the commercial system modeling tool radCase is dis-
cussed. This tool is used in the context of embedded systems, which is also reflected in
the selection of model elements. The modeling scope and its relationships are shown in
figure 16.11, with table 16.7 providing some explanations.

Figure 16.11: Simplified RC metamodel

Table 16.7: Metamodel element descriptions for figure 16.11
Concept Description

RCElement The most abstract concept of the metamodel specifying
among others specifies an identifier

RCConfigurationEntry Concept making up a runtime configuration of the system
under development

RCModel Concept representing a container element for a radCase
project

The metamodel structures its model elements into four subpackages, namely modules,
statemachine, types, and preprocessor. First, the modules package is examined more
closely.

281

Figure 16.12: Modules package of the simplified RC metamodel

Table 16.8: Metamodel element descriptions for figure 16.12
Concept Description

RCModule Concept for a functional unit of the radCase project

RCModuleElement Concept for the elements of a RCModule

RCAssignmentType Enumeration concept for specifying the assignment type
of a RCModuleElement

RCInterfaceType Enumeration concept for the type of an interface

RCModulePort Concept representing a port of a RCModule

RCProcessingTypeMethod Enumeration concept for the specification of a processing
type for a RCModuleMethod

RCModuleMethod Concept for a method within a RCModule

RCSubmoduleType Concept for specifying the type of a RCSubModule

282

Table 16.8: Metamodel element descriptions for figure 16.12 (continued)

RCSubModule Concept enabling the specification of hierarchical module
structures

RCModuleMethodBlock Concept encapsulating Code fragments and a set of RC-
ModuleMethods

The statemachine package is examined in more detail below.

Figure 16.13: Statemachine package of the simplified RC metamodel

Table 16.9: Metamodel element descriptions for figure 16.13
Concept Description

RCProcessingTypeStateMachine Concept for the specification of a processing type
for a statemachine

RCAbstractState Abstract concept subsuming multiple types of
states for a statemachine

RCStateTransition Concept for a transition between states of a
statemachine

RCStateOperation Concept for an operation attached to a RCAb-
stractState

RCFinalState Concept for a special kind of state

RCState Concept for a special kind of state

RCInitialState Concept for a special kind of state

RCStateMachine Concept including all the elements of a statema-
chine like RCAbstractstates and RCStateTransi-
tions

Next, the types package is discussed in more detail.

283

Figure 16.14: Types package of the simplified RC metamodel

Table 16.10: Metamodel element descriptions for figure 16.14
Concept Description

RCType Abstract Concept for the specification of datatypes in the radCase
context

RCTypeDate Concept for a special kind of datatype for date information

RCTypeNumber Concept for a special kind of datatype for number information

RCTypeBinEntry Concept for a special kind of datatype for binary information

RCTypeString Concept for a special kind of datatype for string information

RCTypeTime Concept for a special kind of datatype for time information

RCDateFormat Enumeration concept specifying different types of date formats

RCTypeBin Concept for a special kind of datatype for binary information in-
cluding sets of RCTypeBinEntry

RCNumberType Enumeration concept specifying multiple predefined number types

RCTimeFormat Enumeration concept specifying different types of time formats

284

Finally, the preprocessor package is discussed in more detail.

Figure 16.15: Preprocessor package of the simplified RC metamodel

Table 16.11: Metamodel element descriptions for figure 16.15
Concept Description

RCPrepStmt Abstract concept for the specification of preprocessor
statements to determine the building blocks of the re-
sulting target artifact

RCPrepStmtEntityType Enumeration concept to determine the type of a build-
ing block encapsulated by a RCPrepStmt

RCPrepStmtExpression Concept for the specification of a statement expression

RCPrepStmtEntity Concept for the specification of a element affected by a
preprocessor statement

RCPrepStmtExpressionType Enumeration concept for the determination of a certain
expression type

MBTSuite Metamodel Information

This section discusses the metamodel of test modeling in the context of the commer-
cial tool mbtSuite. The metamodel explained in the following is a modified version of
the conventional UML activity chart and extends it by test-specific aspects. How the
model elements are connected is shown in figure 16.16 and then explained in detail in
table 16.12.

285

Figure 16.16: Simplified MBT metamodel

Table 16.12: Metamodel element descriptions for figure 16.16
Concept Description

MBTElement The most abstract concept of the mbt metamodel defining a
unique identifier per element

MBTGraph Concept capturing the elements on the same abstraction level
and logical test unit

MBTModel Concept representing the container for all graphs specified in a
hierarchical test model

MBTNode Abstract concept representing a node of the activity chart-like
graph-based test model

MBTTransiton Concept connecting two nodes of a test model graph

MBTRequirement Concept encapsulating information about a test-specific require-
ment

MBTStrategy Concept capturing the information for later applied test strategy
which derives the set of concrete test cases from the hierarchical
test model

MBTInitialNode Concept for a special kind of node in the graph structure

MBTFinalNode Concept for a special kind of node in the graph structure

286

Table 16.12: Metamodel element descriptions for figure 16.16 (continued)

MBTStructuredNode Concept for a special node including a sub test model encapsu-
lated in a MBTGraph

MBTTestNode Concept for special kind of node specifying test instructions

MBTStrategyType Enumeration concept for determining the type of applied strat-
egy

MBTElementType Enumeration concept for determining the type of test node

MBTWeight Enumeration concept for specifying the MBTTestNodes weight

MBTWeightType Enumeration concept for detailed specification of the weight
type

FTA Metamodel Information

In this section all the metamodel concepts for a Fault Tree Analysis (FTA) are presented.
At this point, a building structure of possible events is constructed, whose probabilities
of occurrence are propagated to the root node, which in turn represents an abstract fault
event. In the following, the connections between the concepts (figure 16.17) are dealt
with in more detail, which are briefly explained in the context of table 16.13.

Figure 16.17: FTA metamodel

Table 16.13: Metamodel element descriptions for figure 16.17
Concept Description

FTAElement Most abstract concept giving each derived element a globally
unique identifier

FTATreeNode Abstract concept for elements taking part in the tree struc-
ture

287

Table 16.13: Metamodel element descriptions for figure 16.17 (continued)

FTAEvent Abstract concept for elements representing events

FTAGate Abstract concept for elements representing intermediate
nodes which join child events according to a certain logic

FTABasicEvent Concept representing the most basic version of a FTAEvent

FTAHouseEvent Concept for elements representing intermediate events with
binary probability

FTAIntermediateEvent Concept for elements on intermediate levels of the tree struc-
ture

FTAAndGate Concept representing a AND connection of subevents in the
tree structure

FTAXorGate Concept representing a XOR connection of subevents in the
tree structure

FTAOrGate Concept representing a OR connection of subevents in the tree
structure

FTATransferGate Concept for elements which connect to partial FTA trees

288

Additional Figures for the Elevator System

«IMComponent»
System

«IMComponent»
Elevator

«IMComponent»
Hardware

«IMComponent»
Etage[0]

«IMComponent»
Etage[1]

«IMComponent»
Etage[2]

«IMComponent»
Cabine

«IMFunctionality»
control

«IMFunctionality»
Haupt

«IMFunctionality»
anforder

«IMFunctionality»
anforder

«IMFunctionality»
anforder

«IMFunctionality»
etage

«IMFunctionality»
etage

«IMFunctionality»
etage

«IMFunctionality»
control

«IMFunctionality»
calc

MPF_uniCORE3_D128_01

«Modul»
Gen_T3Aufzug-M3::System

«Element»
+ Test1: T_UInt32
+ TI_Sur: DtSec000000

«Modul»
Core_Aufzug::
MElevator

«Element»
+ AktHoehe: TElevAlt

«PERM»
+ control(): void

«Modul»
Core_Aufzug::MEtage

«Element»
+ BasisHoehe: TElevAlt
+ TasteHolen: DOffOn
+ LeuchteTaster: DOffOn
+ SensEtage: DOffOn
+ Hoehe: TElevAlt
+ TWarteMin: TElevSec
+ TIM_Warte: TElevSec
+ HistSensorOff: TElevAlt
+ HistSensorOn: TElevAlt

«PERM»
+ etage(): void

«Modul»
Core_Aufzug::MCabine

«Element»
+ AktHoehe: TElevAlt
+ StimPosTuer: T_Percent
+ HistHoehe: TElevAlt
+ ServoDoor1: T_Percent_IO
+ ServoDoor2: T_Percent_IO
+ MotAuf: DOffOn
+ MotAb: DOffOn
+ Light: DOffOn
+ TIMFahrt: TElevSec
+ TIMTuer: TElevSec
+ tTimeoutFaht: TElevSec
+ tTuer: TElevSec

«PERM»
+ calc(): void

MHardComponent

«Modul»
Gen_T3Aufzug-M3::

MHardware

MBT-System

(from Gen_T3Aufzug-M3)

MBT-Elevator

(from Gen_T3Aufzug-M3)

MBT-Etage[0]

(from Core_Aufzug)

MBT-Etage[1]

(from Core_Aufzug)

MBT-Etage[2]

(from Core_Aufzug)

MBT-etage

(from Core_Aufzug)

MBT-anforder

(from Core_Aufzug)

MBT-Haupt

(from Core_Aufzug)
MBT-control

(from Core_Aufzug)

MBT-calc

(from Core_Aufzug)

MBT-control

(from Core_Aufzug)

«IMAspectsDefinition»
Aspects

calc
(MCabine::)

«Machine»
control

(from Core_Aufzug)

etage
(MEtage::)

«Machine»
anforder

(from Core_Aufzug)

«Machine»
Haupt

(from Core_Aufzug)
control

(MElevator::)

MBT-Cabine

(from Core_Aufzug)

«IMComponent»
MRoot

«Modul»
std_system::MRoot

«Element»
+ RDIDBuildID: T_BuildID
+ RDIDDeviceName: T_String16
+ RDIDFacilityName: T_String16
+ VersSoft: T_Version
+ Diag: T_OnOff
+ TransitEnabled: T_Boolean
+ SystemTime: T_Time
+ SystemDate: T_Date2
+ SystemDay: T_DaySo
+ fPasswLevel: PasswordLevel
+ VersSys: T_Version
+ VersPar: T_Version
+ VersKali: T_Version
+ VersAPI: T_UInt16
+ VersBoot: T_UInt32
+ UnitConv: DEin
+ Language: T_Language
+ PassUser: T_PIN
+ PassAdmin: T_PIN
+ PassTech: T_PIN
+ PassSuper: T_PIN
+ PassVisu: T_String8
+ RunningTime: TRunningTime

Cabin not stopping

«IMPartOf»

«IMGeneralize»

«IMTrace,trace»

«IMPartOf»

«IMTrace,trace»

«IMTrace,trace»

«IMTrace,trace»

«IMPartOf»

«IMTrace,trace»

«IMPartOf»

«IMTrace,trace»

«IMTrace,trace»

«IMPartOf»

«IMPartOf»

«IMTrace,trace»

«IMTrace,trace»

«IMPartOf»

«IMTrace,trace»

«IMPartOf»

«IMTrace,trace»

«IMTrace,trace»

«IMTrace,trace»

«IMTrace,trace»

«IMTrace,trace»

«IMTrace,trace»

«IMPartOf» «IMPartOf»

«IMTrace,trace»

«IMTrace,trace»

«IMTrace,trace»

«IMTrace,trace»

«IMTrace,trace»

«IMPartOf»

«IMPartOf»

«IMTrace,trace»

«IMPartOf»

«IMPartOf»

«IMTrace,trace»

«IMTrace,trace»

«IMTrace,trace»

«IMPartOf»

«IMTrace,trace»

«IMTrace,trace»

«IMTrace,trace»

«IMTrace,trace»

«IMTrace,trace»

«IMTrace,trace»

«IMTrace,trace»

«IMTrace,trace»

«IMTrace,trace» «IMTrace,trace»

«IMPartOf»

Figure 16.18: Overall Integration Model for the Elevator System

289

Additional Figures for the ALCS

«I
M

C
o

m
po

ne
n

t»
F

la
sh

in
g

C
o

n
tr

o
l

A

«I
M

C
o

m
po

ne
n

t»
O

p
e

n
C

lo
se

F
la

sh
in

g

«S
U

T»
S

Y
S

T
E

M
::

S
y

st
e

m
U

n
d

e
rT

e
st

«I
M

F
u

nc
tio

na
lit

y»
d

o
O

p
e

n
C

lo
se

F
la

sh
C

m
d

G
e

n
e

ra
ti

o
n

«I
M

C
o

m
po

ne
n

t»
C

ra
sh

F
la

sh
in

g

«I
M

C
o

m
po

ne
n

t»
O

p
e

n
C

lo
se

F
la

sh
C

m
d

G
e

n
e

ra
ti

o
n

«I
M

C
o

m
po

ne
n

t»
B

u
sR

o
u

ti
n

g

«I
M

F
u

nc
tio

na
lit

y»
d

o
B

u
sR

o
u

ti
n

g

(f
ro

m

R
E

Q
U

IR
E

M
E

N
T

S
)

L
o

ck
 C

a
r

(f
ro

m

R
E

Q
U

IR
E

M
E

N
T

S
)

U
n

lo
c

k
C

a
r

S
Y

S
T

E
M

::
S

y
st

e
m

U
n

d
e

rT
e

st
::

O
p

e
n

C
lo

se
F

la
sh

in
g

S
Y

S
T

E
M

::
S

ys
te

m
U

n
d

e
rT

e
st

::
C

ra
sh

F
la

sh
in

g

«I
M

C
o

m
po

ne
n

t»
S

e
n

d
C

ra
sh

B
it

s
«I

M
C

o
m

po
ne

n
t»

C
tr

lC
ra

sh
F

la
sh

in
g

«I
M

F
u

nc
tio

na
lit

y»
d

o
C

tr
lC

ra
sh

F
la

sh
in

g

(f
ro

m

R
E

Q
U

IR
E

M
E

N
T

S
)

A
c

ti
va

te

E
m

e
rg

e
n

c
y

F
la

sh
in

g

«I
M

F
u

nc
tio

na
lit

y»
d

o
S

e
n

d
C

ra
sh

B
it

s

S
Y

S
T

E
M

::
S

ys
te

m
U

n
d

e
rT

e
st

::
T

h
e

ft
F

la
sh

in
g

-
t:

 c
lo

c
k

=
 0

«I
M

C
o

m
po

ne
n

t»
T

h
e

ft
F

la
sh

in
g

«I
M

F
u

nc
tio

na
lit

y»
d

o
T

h
e

ft
F

la
sh

in
g

(f
ro

m

R
E

Q
U

IR
E

M
E

N
T

S
)

A
c

ti
va

te
 T

h
e

ft

F
la

sh
in

g

(f
ro

m

R
E

Q
U

IR
E

M
E

N
T

S
)

D
e

a
ct

iv
a

te

T
h

e
ft

 F
la

sh
in

g

(f
ro

m

R
E

Q
U

IR
E

M
E

N
T

S
)

O
p

e
n

-C
lo

se

F
la

sh
in

g

«I
M

C
o

m
po

ne
n

t»
N

o
rm

a
lA

n
d

E
m

e
rF

la
sh

in
g

«I
M

C
o

m
po

ne
n

t»
L

e
ft

R
ig

h
tF

la
sh

in
g

«I
M

C
o

m
po

ne
n

t»
E

m
e

rF
la

sh
in

g

«I
M

F
u

nc
tio

na
lit

y»
d

o
L

e
ft

R
ig

h
tF

la
sh

in
g

«I
M

F
u

nc
tio

na
lit

y»
d

o
E

m
e

rF
la

sh
in

g

(f
ro

m

R
E

Q
U

IR
E

M
E

N
T

S
)

D
e

a
ct

iv
a

te

E
m

e
rg

e
n

c
y

F
la

sh
in

g

(f
ro

m

R
E

Q
U

IR
E

M
E

N
T

S
)

A
c

ti
va

te
 l

e
ft

 T
u

rn

In
d

ic
a

ti
o

n
 F

la
sh

in
g

(f
ro

m

R
E

Q
U

IR
E

M
E

N
T

S
)

D
e

a
ct

iv
a

te
 l

e
ft

T

u
rn

 I
n

d
ic

a
ti

o
n

F

la
sh

in
g

(f
ro

m

R
E

Q
U

IR
E

M
E

N
T

S
)

A
c

ti
va

te
 r

ig
h

t
T

u
rn

In

d
ic

a
ti

o
n

 F
la

sh
in

g

(f
ro

m

R
E

Q
U

IR
E

M
E

N
T

S
)

D
e

a
ct

iv
a

te
 r

ig
h

t
T

u
rn

 I
n

d
ic

a
ti

o
n

F

la
sh

in
g

S
Y

S
T

E
M

::
S

ys
te

m
U

n
d

e
rT

e
st

::
N

o
rm

a
lA

n
d

E
m

e
rF

la
sh

in
g

S
Y

S
T

E
M

::
S

ys
te

m
U

n
d

e
rT

e
st

::
N

o
rm

a
lA

n
d

E
m

e
rF

la
sh

in
g

::
L

e
ft

R
ig

h
tF

la
sh

in
g

-
t:

 c
lo

c
k

=
 0

S
Y

S
T

E
M

::
S

ys
te

m
U

n
d

e
rT

e
st

::
N

o
rm

a
lA

n
d

E
m

e
rF

la
sh

in
g

::
E

m
e

rF
la

sh
in

g

-
ol

d
Lr

C
m

d:
 in

t
=

 0

«I
M

C
o

m
po

ne
n

t»
P

ri
o

ri
ty

H
a

n
d

li
n

g

S
Y

S
T

E
M

::
S

y
st

e
m

U
n

d
e

rT
e

st
::

P
ri

o
ri

ty
H

a
n

d
li

n
g

-
is

C
on

d
iti

on
S

ta
bl

e:
 in

t
=

 0

«I
M

F
u

nc
tio

na
lit

y»
d

o
P

ri
o

ri
ty

H
a

n
d

li
n

g

«I
M

C
o

m
po

ne
n

t»
A

ff
e

ct
e

d
L

a
m

p
s

S
Y

S
T

E
M

::
S

ys
te

m
U

n
d

e
rT

e
st

::
A

ff
e

ct
e

d
L

a
m

p
s

«I
M

F
u

nc
tio

na
lit

y»
d

o
T

ra
il

e
rL

a
m

p
s

«I
M

F
u

nc
tio

na
lit

y»
d

o
S

id
e

m
a

rk
s

«I
M

C
o

m
po

ne
n

t»
B

u
sR

o
u

ti
n

g
«I

M
C

o
m

po
ne

n
t»

O
n

O
ff

D
u

ra
ti

o
n

«I
M

C
o

m
po

ne
n

t»
M

e
ss

a
g

e
H

a
n

d
li

n
g

«I
M

C
o

m
po

ne
n

t»
L

a
m

p
C

o
n

tr
o

l
S

Y
S

T
E

M
::

S
y

st
e

m
U

n
d

e
rT

e
st

::
B

u
sR

o
u

ti
n

g

«I
M

F
u

nc
tio

na
lit

y»
d

o
B

u
sR

o
u

ti
n

g

S
Y

S
T

E
M

::
S

ys
te

m
U

n
d

e
rT

e
st

::
N

o
rm

a
lA

n
d

E
m

e
rF

la
sh

in
g

::
D

e
b

o
u

n
ce

T
u

rn
In

d
L

vr

-
t:

 c
lo

c
k

=
 0

-
til

:
in

t
=

 0

«I
M

C
o

m
po

ne
n

t»
D

e
b

o
u

n
ce

T
u

rn
In

d
L

vr

«I
M

F
u

nc
tio

na
lit

y»
d

o
D

e
b

o
u

n
ce

T
u

rn
In

d
L

vr

«I
M

C
o

m
po

ne
n

t»
B

u
sR

o
u

ti
n

g

«I
M

F
u

nc
tio

na
lit

y»
d

o
B

u
sR

o
u

ti
n

g

S
Y

S
T

E
M

::
S

ys
te

m
U

n
d

e
rT

e
st

::
N

o
rm

a
lA

n
d

E
m

e
rF

la
sh

in
g

::
H

a
n

d
le

C
ra

sh
O

ve
rr

id
e

«I
M

C
o

m
po

ne
n

t»
H

a
n

d
le

C
ra

sh
O

ve
rr

id
e

«I
M

F
u

nc
tio

na
lit

y»
d

o
H

a
n

d
le

C
ra

sh
O

ve
rr

id
e

S
Y

S
T

E
M

::
S

ys
te

m
U

n
d

e
rT

e
st

::
N

o
rm

a
lA

n
d

E
m

e
rF

la
sh

in
g

::
D

e
b

o
u

n
ce

E
m

S
w

it
ch

-
t:

 c
lo

c
k

=
 0

-
em

:
in

t
=

 0

«I
M

C
o

m
po

ne
n

t»
D

e
b

o
u

ce
E

m
S

w
it

c
h

«I
M

F
u

nc
tio

na
lit

y»
d

o
D

e
b

o
u

n
ce

E
m

S
w

it
c

h

S
Y

S
T

E
M

::
S

ys
te

m
U

n
d

e
rT

e
st

::
O

p
e

n
C

lo
se

F
la

sh
in

g
::

B
u

sR
o

u
ti

n
g

S
Y

S
T

E
M

::
S

ys
te

m
U

n
d

e
rT

e
st

::
O

p
e

n
C

lo
se

F
la

sh
in

g
::

O
p

e
n

C
lo

se
F

la
sh

C
m

d
G

e
n

e
ra

ti
o

n

-
t:

 c
lo

c
k

=
 0

«I
M

C
o

m
po

ne
n

t»
L

o
ck

U
n

lo
ck

C
m

d
G

e
n

e
ra

ti
o

n

S
Y

S
T

E
M

::
S

ys
te

m
U

n
d

e
rT

e
st

::
O

p
e

n
C

lo
se

F
la

sh
in

g
::

L
o

ck
U

n
lo

ck
C

m
d

G
e

n
e

ra
ti

o
n

-
t:

 c
lo

c
k

=
 0

«I
M

F
u

nc
tio

na
lit

y»
d

o
L

o
c

kU
n

lo
c

kC
m

d
G

e
n

e
ra

ti
o

n

S
Y

S
T

E
M

::
S

ys
te

m
U

n
d

e
rT

e
st

::
C

ra
sh

F
la

sh
in

g
::

S
e

n
d

C
ra

sh
B

it
s

-
t:

 c
lo

c
k

=
 0

-
ct

r:
 in

t
=

 0

S
Y

S
T

E
M

::
S

ys
te

m
U

n
d

e
rT

e
st

::
C

ra
sh

F
la

sh
in

g
::

C
tr

lC
ra

sh
F

la
sh

in
g

S
Y

S
T

E
M

::
S

ys
te

m
U

n
d

e
rT

e
st

::
O

n
O

ff
D

u
ra

ti
o

n

-
is

C
on

d
iti

on
S

ta
bl

e:
 in

t
=

 0

«I
M

F
u

nc
tio

na
lit

y»
d

o
O

n
O

ff
D

u
ra

ti
o

n

S
Y

S
T

E
M

::
S

ys
te

m
U

n
d

e
rT

e
st

::
M

e
ss

a
g

e
H

a
n

d
li

n
g

-
t:

 c
lo

c
k

=
 0

-
pr

e
vD

e
ci

si
on

:
in

t
=

 0
-

pr
e

vR
e

qu
e

st
:

in
t

=
 0

-
on

D
ur

a
tio

n
:

in
t

=
 0

+

se
nd

T
IM

()
:

vo
id

S
Y

S
T

E
M

::
S

y
st

e
m

U
n

d
e

rT
e

st
:

:L
a

m
p

C
o

n
tr

o
l

«I
M

F
u

nc
tio

na
lit

y»
d

o
M

e
ss

a
g

e
H

a
n

d
li

n
g

S
Y

S
T

E
M

::
S

ys
te

m
U

n
d

e
rT

e
st

::
A

ff
e

ct
e

d
L

a
m

p
s:

:
In

d
ic

a
to

rA
n

d
IC

L
a

m
p

s

S
Y

S
T

E
M

::
S

ys
te

m
U

n
d

e
rT

e
st

::
A

ff
e

ct
e

d
L

a
m

p
s:

:S
id

e
m

a
rk

e
rs

S
Y

S
T

E
M

::
S

ys
te

m
U

n
d

e
rT

e
st

::
A

ff
e

ct
e

d
L

a
m

p
s:

:T
ra

il
e

rL
a

m
p

s

S
Y

S
T

E
M

::
S

ys
te

m
U

n
d

e
rT

e
st

:
:A

ff
e

c
te

d
L

a
m

p
s:

:
E

m
e

rF
la

sh
S

w
it

ch
In

d
ic

a
to

r

«I
M

C
o

m
po

ne
n

t»
In

d
ic

a
to

rA
n

d
IC

L
a

m
p

s
«I

M
C

o
m

po
ne

n
t»

E
m

e
rF

la
sh

S
w

it
ch

In
d

ic
a

to
r

«I
M

C
o

m
po

ne
n

t»
T

ra
il

e
rL

a
m

p
s

«I
M

C
o

m
po

ne
n

t»
S

id
e

m
a

rk
s

S
Y

S
T

E
M

::
S

y
st

e
m

U
n

d
e

rT
e

st
::

L
a

m
p

C
o

n
tr

o
l:

:
In

d
ic

a
to

rL
ig

h
ts

«I
M

C
o

m
po

ne
n

t»
In

d
ic

a
to

rL
ig

h
ts

«I
M

F
u

nc
tio

na
lit

y»
d

o
In

d
ic

a
to

rL
ig

h
ts

S
Y

S
T

E
M

::
S

y
st

e
m

U
n

d
e

rT
e

st
::

L
a

m
p

C
o

n
tr

o
l:

:
D

is
p

la
yL

ig
h

ts

«I
M

C
o

m
po

ne
n

t»
D

is
p

la
yL

ig
h

ts

«I
M

F
u

nc
tio

na
lit

y»
d

o
D

is
p

la
y

L
ig

h
ts

(f
ro

m

R
E

Q
U

IR
E

M
E

N
T

S
)

P
ri

o
ri

ty

H
a

n
d

li
n

g

«I
M

F
u

nc
tio

na
lit

y»
d

o
E

m
e

rF
la

sh
S

w
it

ch
In

d
ic

a
to

r
«I

M
F

u
nc

tio
na

lit
y»

d
o

In
d

ic
a

to
rA

n
d

IC
L

a
m

p
s

B
u

sR
o

u
ti

n
g

(f
ro

m
 T

E
S

T
)

B
u

sR
o

u
ti

n
g

In
it

ia
l

R
o

u
ti

n
g

en
tr

y
/

b2
_

Tu
rn

In
dL

vr
 =

 b
1_

Tu
rn

In
d

Lv
r;

do
 /

 b
2

_T
u

rn
In

dL
vr

 =
 b

1
_T

u
rn

In
dL

vr
;

B
u

sR
o

u
ti

n
g

(f
ro

m
 T

E
S

T
)

L
e

ft
R

ig
h

tF
la

sh
in

g

(f
ro

m
 T

E
S

T
)

N
o

rm
a

lA
n

d
E

m
e

rF
la

sh
in

g

(f
ro

m
 T

E
S

T
)

H
a

n
d

le
C

ra
sh

O
ve

rr
id

e

(f
ro

m
 T

E
S

T
)

F
la

sh
in

g
C

o
n

tr
o

lT
e

st

(f
ro

m
 T

E
S

T
)

B
u

sR
o

u
ti

n
g

(f
ro

m
 T

E
S

T
)

L
o

ck
U

n
lo

ck
C

m
d

G
e

n
e

ra
to

r

(f
ro

m
 T

E
S

T
)

O
p

e
n

C
lo

se
F

la
sh

C
m

d
G

e
n

e
ra

ti
o

n

(f
ro

m
 T

E
S

T
)

O
p

e
n

C
lo

se
F

la
sh

in
g

(f
ro

m
 T

E
S

T
)

C
ra

sh
F

la
sh

in
g

(f
ro

m
 T

E
S

T
)

C
tr

lC
ra

sh
F

la
sh

in
g

(f
ro

m
 T

E
S

T
)

T
h

e
ft

F
la

sh
in

g

(f
ro

m
 T

E
S

T
)

P
ri

o
ri

ty
H

a
n

d
li

n
g

(f
ro

m
 T

E
S

T
)

A
ff

e
ct

e
d

L
a

m
p

s

(f
ro

m
 T

E
S

T
)

In
d

ic
a

to
rA

n
d

IC
L

a
m

p
s

(f
ro

m
 T

E
S

T
)

E
m

e
rF

la
sh

S
w

it
ch

In
d

ic
a

to
r

(f
ro

m
 T

E
S

T
)

T
ra

il
e

rL
a

m
p

s

(f
ro

m
 T

E
S

T
)

S
id

e
m

a
rk

L
a

m
p

s

(f
ro

m
 T

E
S

T
)

«I
M

A
s

pe
ct

sD
e

fin
it

io
n»

A
sp

e
c

ts

«I
M

Tr
a

ce
,t

ra
ce

»

«I
M

Tr
a

ce
,t

ra
ce

»

«I
M

Tr
a

ce
,t

ra
ce

»

«I
M

P
a

rt
O

f»

«I
M

Tr
a

ce
,t

ra
ce

»
«I

M
Tr

a
ce

,t
ra

ce
»

«I
M

P
a

rt
O

f»

«I
M

Tr
a

ce
,t

ra
ce

»
«I

M
Tr

a
ce

,t
ra

ce
»

«I
M

Tr
a

ce
,t

ra
ce

»
«I

M
Tr

a
ce

,t
ra

ce
»

«I
M

P
a

rt
O

f»

«I
M

P
a

rt
O

f»

«I
M

P
a

rt
O

f»

«I
M

P
a

rt
O

f»

«I
M

Tr
a

ce
,t

ra
ce

»

«I
M

P
a

rt
O

f»

«I
M

Tr
a

ce
,t

ra
ce

»

«i
n

cl
ud

e»

«I
M

P
a

rt
O

f»

«I
M

P
a

rt
O

f»

«I
M

Tr
a

ce
,t

ra
ce

»

«I
M

Tr
a

ce
,t

ra
ce

»

«I
M

P
a

rt
O

f»

«I
M

P
a

rt
O

f»

«I
M

P
a

rt
O

f»

«I
M

P
a

rt
O

f»

«I
M

Tr
a

ce
,t

ra
ce

»
«I

M
Tr

a
ce

,t
ra

ce
»

«I
M

P
a

rt
O

f»

«I
M

Tr
a

ce
,t

ra
ce

»

«I
M

P
a

rt
O

f»

«I
M

P
a

rt
O

f»

«I
M

P
a

rt
O

f»

«I
M

P
a

rt
O

f»

«I
M

Tr
a

ce
,t

ra
ce

»

«e
xt

en
d»

«I
M

Tr
a

ce
,t

ra
ce

»

«I
M

P
a

rt
O

f»

«I
M

P
a

rt
O

f»

«I
M

Tr
a

ce
,t

ra
ce

»

«I
M

P
a

rt
O

f»

«I
M

P
a

rt
O

f»

«I
M

Tr
a

ce
,t

ra
ce

»

«I
M

P
a

rt
O

f»

«I
M

Tr
a

ce
,t

ra
ce

»

«I
M

Tr
a

ce
,t

ra
ce

»

«I
M

P
a

rt
O

f»

«I
M

Tr
a

ce
,t

ra
ce

»

«I
M

Tr
a

ce
,t

ra
ce

»

«i
n

cl
ud

e»

«I
M

Tr
a

ce
,t

ra
ce

»
«I

M
Tr

a
ce

,t
ra

ce
»

«I
M

P
a

rt
O

f»
«I

M
P

a
rt

O
f»

«I
M

Tr
a

ce
,t

ra
ce

»

«I
M

Tr
a

ce
,t

ra
ce

»

«I
M

Tr
a

ce
,t

ra
ce

»

«I
M

P
a

rt
O

f»

«I
M

Tr
a

ce
,t

ra
ce

»

«I
M

Tr
a

ce
,t

ra
ce

»

«I
M

P
a

rt
O

f»

«I
M

Tr
a

ce
,t

ra
ce

»

«I
M

Tr
a

ce
,t

ra
ce

»

«I
M

P
a

rt
O

f»

«I
M

P
a

rt
O

f»

«I
M

Tr
a

ce
,t

ra
ce

»

«I
M

P
a

rt
O

f»

«I
M

Tr
a

ce
,t

ra
ce

»
«I

M
Tr

a
ce

,t
ra

ce
»

«I
M

Tr
a

ce
,t

ra
ce

»

«I
M

P
a

rt
O

f»

«I
M

P
a

rt
O

f»

«I
M

Tr
a

ce
,t

ra
ce

»
«I

M
Tr

a
ce

,t
ra

ce
»

«I
M

P
a

rt
O

f»

«i
n

cl
ud

e»

«I
M

Tr
a

ce
,t

ra
ce

»

«I
M

Tr
a

ce
,t

ra
ce

»

«i
n

cl
ud

e»

«I
M

Tr
a

ce
,t

ra
ce

»

«I
M

P
a

rt
O

f»

«I
M

Tr
a

ce
,t

ra
ce

»

«I
M

Tr
a

ce
,t

ra
ce

»

«I
M

P
a

rt
O

f»

«I
M

Tr
a

ce
,t

ra
ce

»

«I
M

P
a

rt
O

f»
«I

M
P

a
rt

O
f»

«I
M

Tr
a

ce
,t

ra
ce

»

«I
M

Tr
a

ce
,t

ra
ce

»
«I

M
Tr

a
ce

,t
ra

ce
»

«I
M

P
a

rt
O

f»
«I

M
P

a
rt

O
f»

«I
M

P
a

rt
O

f»

«i
n

cl
ud

e»

«I
M

Tr
a

ce
,t

ra
ce

»

«I
M

Tr
a

ce
,t

ra
ce

»

«I
M

Tr
a

ce
,t

ra
ce

»

«i
n

cl
ud

e»

«I
M

P
a

rt
O

f»

«I
M

Tr
a

ce
,t

ra
ce

»

«I
M

P
a

rt
O

f»
«I

M
P

a
rt

O
f»

«I
M

Tr
a

ce
,t

ra
ce

»

«I
M

P
a

rt
O

f»

«I
M

Tr
a

ce
,t

ra
ce

»

«I
M

Tr
a

ce
,t

ra
ce

»

«I
M

P
a

rt
O

f»

«I
M

Tr
a

ce
,t

ra
ce

»

«I
M

P
a

rt
O

f»

«I
M

Tr
a

ce
,t

ra
ce

»

«I
M

P
a

rt
O

f»

«I
M

Tr
a

ce
,t

ra
ce

»

«I
M

Tr
a

ce
,t

ra
ce

»

«e
xt

en
d»

«I
M

Tr
a

ce
,t

ra
ce

»

«i
n

cl
ud

e»

«I
M

P
a

rt
O

f»

«i
n

cl
ud

e»

Fi
gu

re
16

.1
9:

O
ve

ra
ll

In
te

gr
at

io
n

M
od

el
fo

r
th

e
A

LC
S

290

Bibliography

[1] SysML 1.6. OMG Systems Modeling Language (OMG SysML), Version 1.6. Stan-
dard. Object Management Group, 2019.

[2] DO 178B/C. Software Considerations in Airborne Systems and Equipment Certifica-
tion. Standard. RTCA, 1992.

[3] UML 2. OMG Unified Modeling Language (OMG UML), Version 2.5.1. Standard.
Object Management Group, 2017.

[4] UTP 2. UML Testing Profile 2 (UTP 2), Version 2.0. Standard. Object Management
Group (OMG), 2018.

[5] ISO 26262-6:2018. Road vehicles — Functional safety — Part 6: Product development
at the software level. Standard. International Organization for Standardization,
2018.

[6] ISO 29119-1. Software and systems engineering – Software testing – Part 1: Concepts
and definitions. Standard. International Organization for Standardization, 2013.

[7] ISO 29119-2. Software and systems engineering – Software testing – Part 2: Test Pro-
cesses. Standard. International Organization for Standardization, 2013.

[8] ISO 29119-3. Software and systems engineering – Software testing – Part 3: Test Doc-
umentation. Standard. International Organization for Standardization, 2013.

[9] ISO 29119-4. Software and systems engineering – Software testing – Part 4: Test Tech-
niques. Standard. International Organization for Standardization, 2015.

[10] ISO 29119-5. Software and systems engineering – Software testing – Part 5: Keyword-
Driven Testing. Standard. International Organization for Standardization, 2016.

[11] IEC 62304:2006. Medical device software — Software life cycle processes. Standard.
International Organization for Standardization, 2006.

[12] Muhammad Abbas et al. “Requirements dependencies-based test case prioriti-
zation for extra-functional properties”. In: 2019 IEEE International Conference on
Software Testing, Verification and Validation Workshops (ICSTW). ICSTW ’19. Xi’an,
China: IEEE, 2019, pp. 159–163. DOI: 10.1109/ICSTW.2019.00045.

[13] Fredrik Abbors, Dragos Truscan, and Johan Lilius. “Tracing requirements in
a model-based testing approach”. In: 2009 First International Conference on Ad-
vances in System Testing and Validation Lifecycle. VALID ’09. Porto, Portugal: IEEE,
2009, pp. 123–128. DOI: 10.1109/VALID.2009.15.

[14] Anas Abuljadayel and Fadi Wedyan. “An approach for the generation of higher
order mutants using genetic algorithms”. In: International Journal of Intelligent
Systems and Applications 10 (2018), p. 34.

[15] Ademar Aguiar and Gabriel David. “WikiWiki weaving heterogeneous software
artifacts”. In: Proceedings of the 2005 international symposium on Wikis. WikiSym
’05. San Diego, California: Association for Computing Machinery, 2005, pp. 67–
74. DOI: 10.1145/1104973.1104980.

https://doi.org/10.1109/ICSTW.2019.00045
https://doi.org/10.1109/VALID.2009.15
https://doi.org/10.1145/1104973.1104980

BIBLIOGRAPHY

[16] Iftekhar Ahmed et al. “Applying mutation analysis on kernel test suites: an ex-
perience report”. In: 2017 IEEE International Conference on Software Testing, Verifi-
cation and Validation Workshops (ICSTW). ICSTW 2017. Tokyo, Japan: IEEE, 2017,
pp. 110–115. DOI: 10.1109/ICSTW.2017.26.

[17] ALF. Action Language for Foundational UML (ALF), Version 1.1. Standard. Object
Management Group (OMG), 2017.

[18] Ståle Amland. “Risk-based testing:: Risk analysis fundamentals and metrics for
software testing including a financial application case study”. In: Journal of Sys-
tems and Software 53 (2000), pp. 287–295. DOI: 10.1016/S0164-1212(00)00019-
4.

[19] Paul Ammann and Jeff Offutt. Introduction to software testing. Cambridge Uni-
versity Press, 2016.

[20] Saswat Anand et al. “An orchestrated survey of methodologies for automated
software test case generation”. In: Journal of Systems and Software 86 (2013),
pp. 1978–2001. DOI: 10.1016/j.jss.2013.02.061.

[21] ANSI/IEEE 1008. IEEE Standard for Software Unit Testing. Standard. IEEE Com-
puter Society Press, 1987.

[22] Larry Apfelbaum and John Doyle. “Model based testing”. In: Software Quality
Week Conference. 1997, pp. 296–300.

[23] Md Junaid Arafeen and Hyunsook Do. “Test case prioritization using require-
ments-based clustering”. In: 2013 IEEE sixth international conference on software
testing, verification and validation. ICST ’13. Luxembourg, Luxembourg: IEEE,
2013, pp. 312–321. DOI: 10.1109/ICST.2013.12.

[24] Algirdas Avizienis, Jean-Claude Laprie, Brian Randell, et al. Fundamental con-
cepts of dependability. University of Newcastle upon Tyne, Computing Science,
2001.

[25] James Bach. Exploratory testing explained. 2003.

[26] John Backus. “The history of Fortran I, II, and III”. In: ACM Sigplan Notices 13
(1978), pp. 165–180. DOI: 10.1145/960118.808380.

[27] Christel Baier and Joost-Pieter Katoen. Principles of model checking. MIT press,
2008.

[28] Paul Baker, Shiou Loh, and Frank Weil. “Model-Driven engineering in a large
industrial context—motorola case study”. In: International Conference on Model
Driven Engineering Languages and Systems. MODELS 2005. Montego Bay, Jamaica:
Springer Berlin Heidelberg, 2005, pp. 476–491. DOI: 10.1007/11557432_36.

[29] N Md Jubair Basha, Salman Abdul Moiz, and Mohammed Rizwanullah. “Model
based software development: Issues & challenges”. In: Special Issue of Interna-
tional Journal of Computer Science & Informatics (IJCSI) 3 (2012), pp. 226–230. DOI:
10.47893/IJCSI.2013.1123.

[30] Ted L Bennett and Paul W Wennberg. “Eliminating embedded software defects
prior to integration test”. In: Crosstalk, Journal of Defence Software Engineering
(2005), pp. 13–18. DOI: 10.1.1.434.9838.

292

https://doi.org/10.1109/ICSTW.2017.26
https://doi.org/10.1016/S0164-1212(00)00019-4
https://doi.org/10.1016/S0164-1212(00)00019-4
https://doi.org/10.1016/j.jss.2013.02.061
https://doi.org/10.1109/ICST.2013.12
https://doi.org/10.1145/960118.808380
https://doi.org/10.1007/11557432_36
https://doi.org/10.47893/IJCSI.2013.1123
https://doi.org/10.1.1.434.9838

BIBLIOGRAPHY

[31] Simona Bernardi, Susanna Donatelli, and José Merseguer. “From UML Sequence
Diagrams and Statecharts to Analysable Petri Net Models”. In: Proceedings of the
3rd International Workshop on Software and Performance. WOSP ’02. Rome, Italy:
Association for Computing Machinery, 2002, pp. 35–45. DOI: 10.1145/584369.
584376.

[32] Donald J Berndt and Alison Watkins. “Investigating the performance of genetic
algorithm-based software test case generation”. In: Eighth IEEE International
Symposium on High Assurance Systems Engineering, 2004. Proceedings. Tampa, FL,
USA: IEEE, 2004, pp. 261–262. DOI: 10.1109/HASE.2004.1281750.

[33] Sami Beydeda, Matthias Book, Volker Gruhn, et al. Model-driven software develop-
ment. Vol. 15. Springer, 2005.

[34] Jean Bézivin, Frédéric Jouault, and Patrick Valduriez. “On the need for meg-
amodels”. In: Proceedings of the OOPSLA/GPCE: Best Practices for Model-Driven
Software Development workshop, 19th Annual ACM Conference on Object-Oriented
Programming, Systems, Languages, and Applications. Citeseer, 2004, pp. 1–9.

[35] Xavier Blanc, Marie-Pierre Gervais, and Prawee Sriplakich. “Model bus: To-
wards the interoperability of modelling tools”. In: Model driven architecture.
MDAFA 2003 and MDAFA 2004. Twente, The Netherlands: Springer Berlin
Heidelberg, 2004, pp. 17–32. DOI: 10.1007/11538097_2.

[36] B. W. Boehm. “Software Engineering Economics”. In: IEEE Transactions on Soft-
ware Engineering SE-10 (1984), pp. 4–21. DOI: 10.1109/TSE.1984.5010193.

[37] Marco Brambilla, Jordi Cabot, and Manuel Wimmer. “Model-driven software
engineering in practice”. In: Synthesis Lectures on Software Engineering 1 (2012),
pp. 1–182. DOI: 10.2200/S00751ED2V01Y201701SWE004.

[38] Cécile Braunstein et al. A SysML Test Model and Test Suite for the ETCS Ceiling
Speed Monitor. Technical Report. ITEA2 Project, 2014.

[39] Lionel Briand, Yvan Labiche, and Q Lin. “Improving the coverage criteria of
UML state machines using data flow analysis”. In: Software Testing, Verification
and Reliability 20 (2010), pp. 177–207. DOI: 10.1002/stvr.410.

[40] BS 7925-1. Software testing. Vocabulary. Standard. BSI British Standards, 1998.

[41] BS 7925-2. Software testing. Software Component Testing. Standard. BSI British Stan-
dards, 1998.

[42] Timothy A Budd and Dana Angluin. “Two notions of correctness and their
relation to testing”. In: Acta informatica 18 (1982), pp. 31–45. DOI: 10 . 1007 /
BF00625279.

[43] Federico Ciccozzi, Ivano Malavolta, and Bran Selic. “Execution of UML models:
a systematic review of research and practice”. In: Software & Systems Modeling 18
(2019), pp. 2313–2360. DOI: 10.1007/s10270-018-0675-4.

[44] Tony Clark, Paul Sammut, and James Willans. Applied metamodelling: a foundation
for language driven development. Ceteva, 2008.

293

https://doi.org/10.1145/584369.584376
https://doi.org/10.1145/584369.584376
https://doi.org/10.1109/HASE.2004.1281750
https://doi.org/10.1007/11538097_2
https://doi.org/10.1109/TSE.1984.5010193
https://doi.org/10.2200/S00751ED2V01Y201701SWE004
https://doi.org/10.1002/stvr.410
https://doi.org/10.1007/BF00625279
https://doi.org/10.1007/BF00625279
https://doi.org/10.1007/s10270-018-0675-4

BIBLIOGRAPHY

[45] Henry Coles et al. “Pit: a practical mutation testing tool for java”. In: Proceedings
of the 25th International Symposium on Software Testing and Analysis. ISSTA 2016.
Saarbrücken, Germany: Association for Computing Machinery, 2016, pp. 449–
452. DOI: 10.1145/2931037.2948707.

[46] Michelle L. Crane and Juergen Dingel. “Towards a UML Virtual Machine: Im-
plementing an Interpreter for UML 2 Actions and Activities”. In: Proceedings
of the 2008 Conference of the Center for Advanced Studies on Collaborative Research:
Meeting of Minds. CASCON ’08. Ontario, Canada: Association for Computing
Machinery, 2008, pp. 96–110. DOI: 10.1145/1463788.1463799.

[47] Krzysztof Czarnecki and Simon Helsen. “Feature-based survey of model trans-
formation approaches”. In: IBM Systems Journal 45 (2006), pp. 621–645. DOI: 10.
1147/sj.453.0621.

[48] James B Dabney and Thomas L Harman. Mastering simulink. Pearson, 2004.

[49] JB Dabney. “Return on Investment of Independent Verification and Validation
Study Preliminary Phase 2B Report”. In: Fairmont, WV: NASA IV&V Facility
(2003).

[50] Marcos Didonet Del Fabro and Patrick Valduriez. “Semi-Automatic Model Inte-
gration Using Matching Transformations and Weaving Models”. In: Proceedings
of the 2007 ACM Symposium on Applied Computing. SAC ’07. Seoul, Korea: Asso-
ciation for Computing Machinery, 2007, pp. 963–970. DOI: 10.1145/1244002.
1244215.

[51] Julien Delange et al. Evaluating and Mitigating the Impact of Complexity in Software
Models. Tech. rep. CMU/SEI-2015-TR-013. Pittsburgh, PA: Software Engineering
Institute, Carnegie Mellon University, 2015. URL: http://resources.sei.cmu.
edu/library/asset-view.cfm?AssetID=448083.

[52] Pedro Delgado-Pérez et al. “Assessment of class mutation operators for C++
with the MuCPP mutation system”. In: Information and Software Technology 81
(2017), pp. 169–184. DOI: 10.1016/j.infsof.2016.07.002.

[53] Richard A DeMillo, Richard J Lipton, and Frederick G Sayward. “Hints on test
data selection: Help for the practicing programmer”. In: Computer 11 (1978),
pp. 34–41. DOI: 10.1109/C-M.1978.218136.

[54] Anna Derezińska. “A quality estimation of mutation clustering in c# programs”.
In: Proceedings of the 8th International Conference on Dependability and Complex Sys-
tems, September 9-13, 2013. DepCoS-RELCOMEX. Brunow, Poland: Springer In-
ternational Publishing, 2013, pp. 119–129. DOI: 10.1007/978-3-319-00945-
2_11.

[55] Gergely Dévai et al. “UML Model Execution via Code Generation.” In: Pro-
ceedings of the 1st International Workshop on Executable Modeling co-located with
ACM/IEEE 18th International Conference on Model Driven Engineering Languages
and Systems (MODELS 2015. MODELS ’15. Ottawa, Canada: CEUR-WS.org,
2015, pp. 9–15.

294

https://doi.org/10.1145/2931037.2948707
https://doi.org/10.1145/1463788.1463799
https://doi.org/10.1147/sj.453.0621
https://doi.org/10.1147/sj.453.0621
https://doi.org/10.1145/1244002.1244215
https://doi.org/10.1145/1244002.1244215
http://resources.sei.cmu.edu/library/asset-view.cfm?AssetID=448083
http://resources.sei.cmu.edu/library/asset-view.cfm?AssetID=448083
https://doi.org/10.1016/j.infsof.2016.07.002
https://doi.org/10.1109/C-M.1978.218136
https://doi.org/10.1007/978-3-319-00945-2_11
https://doi.org/10.1007/978-3-319-00945-2_11

BIBLIOGRAPHY

[56] Davide Di Ruscio, Romina Eramo, and Alfonso Pierantonio. “Model Trans-
formations”. In: Formal Methods for Model-Driven Engineering: 12th International
School on Formal Methods for the Design of Computer, Communication, and Software
Systems, SFM 2012, Bertinoro, Italy, June 18-23, 2012. Advanced Lectures. Ed. by
Marco Bernardo, Vittorio Cortellessa, and Alfonso Pierantonio. Springer Berlin
Heidelberg, 2012, pp. 91–136. DOI: 10.1007/978-3-642-30982-3_4.

[57] Arilo C Dias Neto et al. “A survey on model-based testing approaches: a system-
atic review”. In: Proceedings of the 1st ACM International Workshop on Empirical
Assessment of Software Engineering Languages and Technologies: Held in Conjunction
with the 22nd IEEE/ACM International Conference on Automated Software Engineer-
ing (ASE) 2007. WEASELTech ’07. Atlanta, Georgia: Association for Computing
Machinery, 2007, pp. 31–36. DOI: 10.1145/1353673.1353681.

[58] Edsger Wybe Dijkstra et al. Notes on structured programming. 1970.

[59] Dominik Anderle. “Funktionale Absicherung auf dem Weg zum autonomen
Fahren am Beispiel eines Autobahnpiloten”. MA Thesis. University Augsburg,
2017.

[60] Emelie Engström, Per Runeson, and Mats Skoglund. “A systematic review on
regression test selection techniques”. In: Information and Software Technology 52
(2010), pp. 14–30. DOI: 10.1016/j.infsof.2009.07.001.

[61] Eduard Paul Enoiu, Daniel Sundmark, and Paul Pettersson. “Model-based test
suite generation for function block diagrams using the uppaal model checker”.
In: 2013 IEEE Sixth International Conference on Software Testing, Verification and Val-
idation Workshops. ICSTW 2013. Luxembourg, Luxembourg: IEEE, 2013, pp. 158–
167. DOI: 10.1109/ICSTW.2013.27.

[62] Sandra Camargo Pinto Ferraz Fabbri et al. “Mutation testing applied to validate
specifications based on petri nets”. In: International Conference on Formal Tech-
niques for Distributed Objects, Components, and Systems. FORTE 1995. Montreal,
Canada: Springer US, 1995, pp. 329–337. DOI: 10.1007/978-0-387-34945-9_24.

[63] Sandra Camargo Pinto Ferraz Fabbri et al. “Mutation testing applied to validate
specifications based on statecharts”. In: Proceedings 10th International Symposium
on Software Reliability Engineering (Cat. No. PR00443). ISSRE 1999. Boca Raton,
FL, USA: IEEE, 1999, pp. 210–219. DOI: 10.1109/ISSRE.1999.809326.

[64] Peter H Feiler et al. Reliability validation and improvement framework. Tech. rep.
Carnegie-Mellon Univ Pittsburgh Pa Software Engineering Inst, 2012.

[65] Michael Felderer and Ina Schieferdecker. “A taxonomy of risk-based testing”.
In: International Journal on Software Tools for Technology Transfer 16 (2014), pp. 559–
568. DOI: 10.1007/s10009-014-0332-3.

[66] Michael Felderer, Marc-Florian Wendland, and Ina Schieferdecker. “Risk-based
testing”. In: International Symposium On Leveraging Applications of Formal Meth-
ods, Verification and Validation. Springer Berlin Heidelberg, 2014, pp. 274–276.
DOI: 10.1007/978-3-662-45231-8_19.

[67] MDA FM. The MDA Foundation Model. Standard. Object Management Group
(OMG), 2010.

[68] Martin Fowler. Domain-specific languages. Pearson Education, 2010.

295

https://doi.org/10.1007/978-3-642-30982-3_4
https://doi.org/10.1145/1353673.1353681
https://doi.org/10.1016/j.infsof.2009.07.001
https://doi.org/10.1109/ICSTW.2013.27
https://doi.org/10.1007/978-0-387-34945-9_24
https://doi.org/10.1109/ISSRE.1999.809326
https://doi.org/10.1007/s10009-014-0332-3
https://doi.org/10.1007/978-3-662-45231-8_19

BIBLIOGRAPHY

[69] Robert France and Bernhard Rumpe. “Model-driven Development of Complex
Software: A Research Roadmap”. In: Future of Software Engineering. FOSE ’07.
Minneapolis, MN, USA: IEEE Computer Society, 2007, pp. 37–54. DOI: 10.1109/
FOSE.2007.14.

[70] fUML. Semantics of a Foundational Subset for Executable UML Models (fUML), Ver-
sion 1.4. Standard. Object Management Group (OMG), 2018.

[71] Daniel Galin. Software quality assurance: from theory to implementation. Pearson
Education India, 2004.

[72] Erich Gamma. Design patterns: elements of reusable object-oriented software. Pearson
Education India, 1995.

[73] Gregory Gay. “Generating effective test suites by combining coverage criteria”.
In: International Symposium on Search Based Software Engineering. SSBSE 2017.
Paderborn, Germany: Springer International Publishing, 2017, pp. 65–82. DOI:
10.1007/978-3-319-66299-2_5.

[74] Gregory Gay et al. “The risks of coverage-directed test case generation”. In: IEEE
Transactions on Software Engineering 41 (2015), pp. 803–819. DOI: 10.1109/TSE.
2015.2421011.

[75] IMACS GmbH. radCase - Model-Driven Generation. 2020. URL: https://www.
radcase.com/ (visited on 04/14/2021).

[76] Pablo Gómez-Abajo, Esther Guerra, and Juan de Lara. “Wodel: a domain-
specific language for model mutation”. In: Proceedings of the 31st Annual ACM
Symposium on Applied Computing. SAC ’16. Pisa, Italy: Association for Comput-
ing Machinery, 2016, pp. 1968–1973. DOI: 10.1145/2851613.2851751.

[77] Pablo Gómez-Abajo et al. “Wodel-Test: a model-based framework for language-
independent mutation testing”. In: Software and Systems Modeling (2020), pp. 1–
27. DOI: 10.1007/s10270-020-00827-0.

[78] Rahul Gopinath, Carlos Jensen, and Alex Groce. “Topsy-Turvy: a smarter and
faster parallelization of mutation analysis”. In: Proceedings of the 38th Interna-
tional Conference on Software Engineering Companion. ICSE ’16. Austin, Texas: As-
sociation for Computing Machinery, 2016, pp. 740–743. DOI: 10.1145/2889160.
2892655.

[79] O. C. Z. Gotel and C. W. Finkelstein. “An analysis of the requirements trace-
ability problem”. In: Proceedings of IEEE International Conference on Requirements
Engineering. Colorado Springs, CO, USA: IEEE, 1994, pp. 94–101. DOI: 10.1109/
ICRE.1994.292398.

[80] Dorothy Graham, Erik Van Veenendaal, and Isabel Evans. Foundations of software
testing: ISTQB certification. Cengage Learning EMEA, 2008.

[81] Jan Friso Groote, Tim WDM Kouters, and Ammar Osaiweran. “Specification
guidelines to avoid the state space explosion problem”. In: Software Testing, Ver-
ification and Reliability 25 (2015), pp. 4–33. DOI: 10.1002/stvr.1536.

[82] Juergen Grossmann, Diana Alina Serbanescu, and Ina Schieferdecker. “Testing
Embedded Real Time Systems with TTCN-3.” In: 2009 International Conference
on Software Testing Verification and Validation. ICST 2009. Denver, CO, USA: IEEE
Computer Society, 2009, pp. 81–90. DOI: 10.1109/ICST.2009.37.

296

https://doi.org/10.1109/FOSE.2007.14
https://doi.org/10.1109/FOSE.2007.14
https://doi.org/10.1007/978-3-319-66299-2_5
https://doi.org/10.1109/TSE.2015.2421011
https://doi.org/10.1109/TSE.2015.2421011
https://www.radcase.com/
https://www.radcase.com/
https://doi.org/10.1145/2851613.2851751
https://doi.org/10.1007/s10270-020-00827-0
https://doi.org/10.1145/2889160.2892655
https://doi.org/10.1145/2889160.2892655
https://doi.org/10.1109/ICRE.1994.292398
https://doi.org/10.1109/ICRE.1994.292398
https://doi.org/10.1002/stvr.1536
https://doi.org/10.1109/ICST.2009.37

BIBLIOGRAPHY

[83] Noël Hagemann, Reinhard Pröll, and Bernhard Bauer. “Towards abstract test ex-
ecution in early stages of model-driven software development”. In: Proceedings
of the 8th International Conference on Model-Driven Engineering and Software Devel-
opment - Volume 1: MODELSWARD, February 25-27, 2020. MODELSWARD 2020.
Valletta, Malta: SciTePress, 2020, pp. 216–226. DOI: 10.5220/0008934802160226.

[84] David Harel and Michal Politi. Modeling reactive systems with statecharts: the
STATEMATE approach. McGraw-Hill, Inc., 1998.

[85] M Jean Harrold, Rajiv Gupta, and Mary Lou Soffa. “A methodology for control-
ling the size of a test suite”. In: ACM Transactions on Software Engineering and
Methodology (TOSEM) 2 (1993), pp. 270–285. DOI: 10.1145/152388.152391.

[86] Regina Hebig, Andreas Seibel, and Holger Giese. “On the unification of meg-
amodels”. In: Electronic Communications of the EASST 42 (2012). DOI: 10.14279/
tuj.eceasst.42.704.

[87] Mats PE Heimdahl and Devaraj George. “Test-suite reduction for model based
tests: Effects on test quality and implications for testing”. In: Proceedings. 19th
International Conference on Automated Software Engineering, 2004. ASE ’04. Linz,
Austria: IEEE, 2004, pp. 176–185. DOI: 10.1109/ASE.2004.1342735.

[88] Hadi Hemmati et al. “An enhanced test case selection approach for model-based
testing: an industrial case study”. In: Proceedings of the eighteenth ACM SIGSOFT
international symposium on Foundations of software engineering. FSE ’10. Santa Fe,
New Mexico, USA: Association for Computing Machinery, 2010, pp. 267–276.
DOI: 10.1145/1882291.1882331.

[89] Kim Herzig et al. “The art of testing less without sacrificing quality”. In: 2015
IEEE/ACM 37th IEEE International Conference on Software Engineering. ICSE ’15.
Florence, Italy: IEEE, 2015, pp. 483–493. DOI: 10.1109/ICSE.2015.66.

[90] Anders Hessel et al. “Time-optimal real-time test case generation using UP-
PAAL”. In: International Workshop on Formal Approaches to Software Testing. FATES
2003. Montreal, Quebec, Canada: Springer Berlin Heidelberg, 2003, pp. 114–130.
DOI: 10.1007/978-3-540-24617-6_9.

[91] Robert M Hierons and Mercedes G Merayo. “Mutation testing from probabilistic
and stochastic finite state machines”. In: Journal of Systems and Software 82 (2009),
pp. 1804–1818. DOI: 10.1016/j.jss.2009.06.030.

[92] Rich Hilliard. “Using the UML for architectural description”. In: International
Conference on the Unified Modeling Language. UML ’99. Fort Collins, CO, USA:
Springer Berlin Heidelberg, 1999, pp. 32–48. DOI: 10.1007/3-540-46852-8_4.

[93] Dirk W Hoffmann. “Software-Verifikation”. In: Software-Qualität. Springer Berlin
Heidelberg, 2008, pp. 333–369. DOI: 10.1007/978-3-540-76323-9_6.

[94] T. Honglei, S. Wei, and Z. Yanan. “The Research on Software Metrics and Soft-
ware Complexity Metrics”. In: 2009 International Forum on Computer Science-
Technology and Applications. IFCSTA ’09. Chongqing, China: IEEE, 2009, pp. 131–
136. DOI: 10.1109/IFCSTA.2009.39.

[95] William E. Howden. “Weak mutation testing and completeness of test sets”. In:
IEEE Transactions on Software Engineering 4 (1982), pp. 371–379. DOI: 10.1109/
TSE.1982.235571.

297

https://doi.org/10.5220/0008934802160226
https://doi.org/10.1145/152388.152391
https://doi.org/10.14279/tuj.eceasst.42.704
https://doi.org/10.14279/tuj.eceasst.42.704
https://doi.org/10.1109/ASE.2004.1342735
https://doi.org/10.1145/1882291.1882331
https://doi.org/10.1109/ICSE.2015.66
https://doi.org/10.1007/978-3-540-24617-6_9
https://doi.org/10.1016/j.jss.2009.06.030
https://doi.org/10.1007/3-540-46852-8_4
https://doi.org/10.1007/978-3-540-76323-9_6
https://doi.org/10.1109/IFCSTA.2009.39
https://doi.org/10.1109/TSE.1982.235571
https://doi.org/10.1109/TSE.1982.235571

BIBLIOGRAPHY

[96] Antti Huima. “Implementing conformiq qtronic”. In: Testing of Software and Com-
municating Systems. FATES 2007. Tallinn, Estonia: Springer Berlin Heidelberg,
2007, pp. 1–12. DOI: 10.1007/978-3-540-73066-8_1.

[97] Hussain, Shamaila. “Mutation clustering”. MA Thesis. Kings College London,
Strand, London, 2008.

[98] Laura Inozemtseva and Reid Holmes. “Coverage is not strongly correlated with
test suite effectiveness”. In: Proceedings of the 36th international conference on soft-
ware engineering. ICSE 2014. Hyderabad, India: Association for Computing Ma-
chinery, 2014, pp. 435–445. DOI: 10.1145/2568225.2568271.

[99] Jean-Marc Jézéquel. “Model driven design and aspect weaving”. In: Software &
Systems Modeling 7 (2008), pp. 209–218. DOI: 10.1007/s10270-008-0080-5.

[100] Y. Jia and M. Harman. “An Analysis and Survey of the Development of Mutation
Testing”. In: IEEE Transactions on Software Engineering 37 (2011), pp. 649–678.
DOI: 10.1109/TSE.2010.62.

[101] Johannes Kübel. “Model-to-Model Transformationen im Kontext modell-basier-
ter Software- und System-Analysen”. BA Thesis. University Augsburg, 2020.

[102] Johannes Kühbacher. “Model-to-Model Transformationen zur Adaption Model-
lzentrischer Testmechanismen am Beispiel U2TP”. BA Thesis. University Augs-
burg, 2020.

[103] Paul C Jorgensen. Software testing: a craftsman’s approach. Auerbach Publications,
2014.

[104] A. Jossic et al. “Model Integration with Model Weaving: a Case Study in System
Architecture”. In: 2007 International Conference on Systems Engineering and Model-
ing. MBSE ’07. Haifa, Israel: IEEE, 2007, pp. 79–84. DOI: 10.1109/ICSEM.2007.
373336.

[105] Frédéric Jouault et al. “Inter-DSL Coordination Support by Combining Meg-
amodeling and Model Weaving”. In: Proceedings of the 2010 ACM Symposium on
Applied Computing. SAC ’10. Sierre, Switzerland: Association for Computing Ma-
chinery, 2010, pp. 2011–2018. DOI: 10.1145/1774088.1774511.

[106] René Just and Franz Schweiggert. “Higher accuracy and lower run time: efficient
mutation analysis using non-redundant mutation operators”. In: Software Test-
ing, Verification and Reliability 25 (2015), pp. 490–507. DOI: 10.1002/stvr.1561.

[107] J Kamga, J Herrmann, and P Joshi. D-MINT automotive case study. Deliverable.
ITEA2 Project, 2007.

[108] Muhammad Khatibsyarbini et al. “Test case prioritization approaches in regres-
sion testing: A systematic literature review”. In: Information and Software Technol-
ogy 93 (2018), pp. 74–93. DOI: 10.1016/j.infsof.2017.08.014.

[109] Sarfraz Khurshid, Corina S Păsăreanu, and Willem Visser. “Generalized sym-
bolic execution for model checking and testing”. In: International Conference on
Tools and Algorithms for the Construction and Analysis of Systems. TACAS 2003.
Warsaw, Poland: Springer Berlin Heidelberg, 2003, pp. 553–568. DOI: 10.1007/
3-540-36577-X_40.

298

https://doi.org/10.1007/978-3-540-73066-8_1
https://doi.org/10.1145/2568225.2568271
https://doi.org/10.1007/s10270-008-0080-5
https://doi.org/10.1109/TSE.2010.62
https://doi.org/10.1109/ICSEM.2007.373336
https://doi.org/10.1109/ICSEM.2007.373336
https://doi.org/10.1145/1774088.1774511
https://doi.org/10.1002/stvr.1561
https://doi.org/10.1016/j.infsof.2017.08.014
https://doi.org/10.1007/3-540-36577-X_40
https://doi.org/10.1007/3-540-36577-X_40

BIBLIOGRAPHY

[110] James C King. “Symbolic execution and program testing”. In: Communications of
the ACM 19 (1976), pp. 385–394. DOI: 10.1145/360248.360252.

[111] Marinos Kintis et al. “Detecting trivial mutant equivalences via compiler opti-
misations”. In: IEEE Transactions on Software Engineering 44 (2017), pp. 308–333.
DOI: 10.1109/TSE.2017.2684805.

[112] Andrei Kirshin, Dolev Dotan, and Alan Hartman. “A UML simulator based on
a generic model execution engine”. In: Proceedings of the 2006 International Con-
ference on Models in Software Engineering. MoDELS’06. Genoa, Italy: Springer-
Verlag, 2006, pp. 324–326. DOI: 10.5555/1762828.1762882.

[113] Anneke G Kleppe et al. MDA explained: the model driven architecture: practice and
promise. Addison-Wesley Professional, 2003.

[114] Hermann Kopetz. “The complexity challenge in embedded system design”. In:
2008 11th IEEE International Symposium on Object and Component-Oriented Real-
Time Distributed Computing (ISORC). ISORC ’08. Orlando, FL, USA: IEEE, 2008,
pp. 3–12. DOI: 10.1109/ISORC.2008.14.

[115] Willibald Krenn et al. “Momut:: UML model-based mutation testing for UML”.
In: 2015 IEEE 8th International Conference on Software Testing, Verification and Vali-
dation (ICST). ICST ’15. Graz, Austria: IEEE, 2015, pp. 1–8. DOI: 10.1109/ICST.
2015.7102627.

[116] Markus Kusano and Chao Wang. “CCmutator: A mutation generator for concur-
rency constructs in multithreaded C/C++ applications”. In: 2013 28th IEEE/ACM
International Conference on Automated Software Engineering (ASE). ASE 2013. Sili-
con Valley, CA, USA: IEEE, 2013, pp. 722–725. DOI: 10.1109/ASE.2013.6693142.

[117] Janusz W. Laski and Bogdan Korel. “A data flow oriented program testing strat-
egy”. In: IEEE Transactions on Software Engineering SE-9 (1983), pp. 347–354. DOI:
10.1109/TSE.1983.236871.

[118] Linus Daniel Straub. “Abstract Execution of Graph-based Test Descriptions in
Model-Driven Software Development”. MA Thesis. University Augsburg, 2018.

[119] Zhifang Liu, Xiaopeng Gao, and Xiang Long. “Adaptive random testing of mo-
bile application”. In: 2010 2nd International Conference on Computer Engineering
and Technology. ICCET ’10. Chengdu, China: IEEE, 2010, pp. V2-297-V2–301. DOI:
10.1109/ICCET.2010.5485442.

[120] Yu-Seung Ma and Sang-Woon Kim. “Mutation testing cost reduction by cluster-
ing overlapped mutants”. In: Journal of Systems and Software 115 (2016), pp. 18–
30. DOI: 10.1016/j.jss.2016.01.007.

[121] Yu-Seung Ma, Yong-Rae Kwon, and Jeff Offutt. “Inter-class mutation opera-
tors for Java”. In: 13th International Symposium on Software Reliability Engineering,
2002. Proceedings. ISSRE 2002. Annapolis, MD, USA: IEEE, 2002, pp. 352–363.
DOI: 10.1109/ISSRE.2002.1173287.

[122] Yu-Seung Ma, Jeff Offutt, and Yong-Rae Kwon. “MuJava: a mutation system
for Java”. In: Proceedings of the 28th international conference on Software engineer-
ing. ICSE ’06. Shanghai, China: Association for Computing Machinery, 2006,
pp. 827–830. DOI: 10.1145/1134285.1134425.

299

https://doi.org/10.1145/360248.360252
https://doi.org/10.1109/TSE.2017.2684805
https://doi.org/10.5555/1762828.1762882
https://doi.org/10.1109/ISORC.2008.14
https://doi.org/10.1109/ICST.2015.7102627
https://doi.org/10.1109/ICST.2015.7102627
https://doi.org/10.1109/ASE.2013.6693142
https://doi.org/10.1109/TSE.1983.236871
https://doi.org/10.1109/ICCET.2010.5485442
https://doi.org/10.1016/j.jss.2016.01.007
https://doi.org/10.1109/ISSRE.2002.1173287
https://doi.org/10.1145/1134285.1134425

BIBLIOGRAPHY

[123] Aditya P Mathur and W Eric Wong. “An empirical comparison of data flow
and mutation-based test adequacy criteria”. In: Software Testing, Verification and
Reliability 4 (1994), pp. 9–31. DOI: 10.1002/stvr.4370040104.

[124] Tanja Mayerhofer. “Testing and debugging UML models based on fUML”.
In: 2012 34th International Conference on Software Engineering (ICSE). ICSE ’12.
Zurich, Switzerland: IEEE, 2012, pp. 1579–1582. DOI: 10 .1109 / ICSE .2012 .
6227032.

[125] Tanja Mayerhofer and Philip Langer. “Moliz: A model execution framework
for UML models”. In: Proceedings of the 2nd International Master Class on Model-
Driven Engineering: Modeling Wizards. MW ’12. Innsbruck, Austria: Association
for Computing Machinery, 2012, pp. 1–2. DOI: 10.1145/2448076.2448079.

[126] MDA. Model Driven Architecture (MDA), MDA Guide rev. 2.0. Standard. Object
Management Group (OMG), 2014.

[127] Tom Mens and Pieter Van Gorp. “A taxonomy of model transformation”. In:
Electronic Notes in Theoretical Computer Science 152 (2006), pp. 125–142. DOI: 10.
1016/j.entcs.2005.10.021.

[128] Nasir Mehmood Minhas et al. “A systematic mapping of test case generation
techniques using UML interaction diagrams”. In: Journal of Software: Evolution
and Process 32 (2020). DOI: 10.1002/smr.2235.

[129] MOF. About The Meta Object Facility Specification, Version 2.5.1. Standard. Object
Management Group (OMG), 2016.

[130] Mark Mossberg et al. “Manticore: A user-friendly symbolic execution frame-
work for binaries and smart contracts”. In: 2019 34th IEEE/ACM International
Conference on Automated Software Engineering (ASE). ASE 2019. San Diego, CA,
USA: IEEE, 2019, pp. 1186–1189. DOI: 10.1109/ASE.2019.00133.

[131] Noël Hagemann. “Datenfluss-basierte abstrakte Testausführung in der Modell-
basierten Softwareentwicklung”. MA Thesis. University Augsburg, 2019.

[132] OASIS Open Project. Open Services for Lifecycle Collaboration. 2020. URL: https:
//open-services.net/ (visited on 04/14/2021).

[133] A Jefferson Offutt, Gregg Rothermel, and Christian Zapf. “An experimental
evaluation of selective mutation”. In: Proceedings of 1993 15th International Con-
ference on Software Engineering. ICSE 1993. Baltimore, MD, USA: IEEE, 1993,
pp. 100–107. DOI: 10.1109/ICSE.1993.346062.

[134] A Jefferson Offutt and Roland H Untch. “Mutation 2000: Uniting the orthogo-
nal”. In: Mutation testing for the new century. Springer US, 2001, pp. 34–44. DOI:
10.1007/978-1-4757-5939-6_7.

[135] Mike Papadakis et al. “Mutation testing advances: an analysis and survey”. In:
Advances in Computers Vol 112. Elsevier, 2019, pp. 275–378. DOI: 10.1016/bs.
adcom.2018.03.015.

[136] Jan Peleska et al. “A real-world benchmark model for testing concurrent real-
time systems in the automotive domain”. In: IFIP International Conference on Test-
ing Software and Systems. ICTSS 2011. Paris, France: Springer Berlin Heidelberg,
2011, pp. 146–161. DOI: 10.1007/978-3-642-24580-0_11.

300

https://doi.org/10.1002/stvr.4370040104
https://doi.org/10.1109/ICSE.2012.6227032
https://doi.org/10.1109/ICSE.2012.6227032
https://doi.org/10.1145/2448076.2448079
https://doi.org/10.1016/j.entcs.2005.10.021
https://doi.org/10.1016/j.entcs.2005.10.021
https://doi.org/10.1002/smr.2235
https://doi.org/10.1109/ASE.2019.00133
https://open-services.net/
https://open-services.net/
https://doi.org/10.1109/ICSE.1993.346062
https://doi.org/10.1007/978-1-4757-5939-6_7
https://doi.org/10.1016/bs.adcom.2018.03.015
https://doi.org/10.1016/bs.adcom.2018.03.015
https://doi.org/10.1007/978-3-642-24580-0_11

BIBLIOGRAPHY

[137] Jan Peleska et al. Turn indicator model overview. Technical Report. University of
Bremen, 2014.

[138] Goran Petrovic et al. “An industrial application of mutation testing: Lessons,
challenges, and research directions”. In: 2018 IEEE International Conference on
Software Testing, Verification and Validation Workshops (ICSTW). ICSTW 2018.
Västerås, Sweden: IEEE, 2018, pp. 47–53. DOI: 10.1109/ICSTW.2018.00027.

[139] Hoang Pham. Software reliability. Springer Science & Business Media, 2000.

[140] Alessandro Viola Pizzoleto et al. “A systematic literature review of techniques
and metrics to reduce the cost of mutation testing”. In: Journal of Systems and
Software 157 (2019). DOI: 10.1016/j.jss.2019.07.100.

[141] Strategic Planning. “The economic impacts of inadequate infrastructure for soft-
ware testing”. In: National Institute of Standards and Technology (2002).

[142] Macario Polo, Mario Piattini, and Ignacio Garcia-Rodriguez. “Decreasing the
cost of mutation testing with second-order mutants”. In: Software Testing, Verifi-
cation and Reliability 19 (2009), pp. 111–131. DOI: 10.1002/stvr.392.

[143] Alexander Pretschner and Jan Philipps. “10 methodological issues in model-
based testing”. In: Model-Based Testing of Reactive Systems: Advanced Lectures.
Springer Berlin Heidelberg, 2005, pp. 281–291. DOI: 10.1007/11498490_13.

[144] Alexander Pretschner et al. “One evaluation of model-based testing and its au-
tomation”. In: Proceedings of the 27th international conference on Software engineer-
ing. ICSE ’05. St. Louis, MO, USA: Association for Computing Machinery, 2005,
pp. 392–401. DOI: 10.1145/1062455.1062529.

[145] Reinhard Pröll and Bernhard Bauer. “A model-based test case management
approach for integrated sets of domain-specific models”. In: Proceedings of the
2018 IEEE International Conference on Software Testing, Verification and Validation
Workshops (ICSTW), 9-13 April 2018. ICSTW 2018. Västerås, Sweden: IEEE, 2018,
pp. 175–184. DOI: 10.1109/icstw.2018.00048.

[146] Reinhard Pröll and Bernhard Bauer. “Toward a consistent and strictly model-
based interpretation of the ISO/IEC/IEEE 29119 for early testing activities”.
In: Proceedings of the 6th International Conference on Model-Driven Engineering and
Software Development, January 22-24, 2018. AMARETTO 2018. Funchal, Madeira,
Portugal: SciTePress, 2018, pp. 699–706. DOI: 10.5220/0006749606990706.

[147] Reinhard Pröll, Noël Hagemann, and Bernhard Bauer. “Abstract Test Execution
for Early Testing Activities in Model-Driven Scenarios”. In: Communications in
Computer and Information Science 1349 (2021), pp. 273–297. DOI: 10.1007/978-3-
030-67445-8_12.

[148] Reinhard Pröll, Adrian Rumpold, and Bernhard Bauer. “Applying integrated
domain-specific modeling for multi-concerns development of complex sys-
tems”. In: Communications in Computer and Information Science 880 (2018), pp. 247–
271. DOI: 10.1007/978-3-319-94764-8_11.

[149] Sandra Rapps and Elaine J. Weyuker. “Selecting software test data using data
flow information”. In: IEEE transactions on software engineering SE-11 (1985),
pp. 367–375. DOI: 10.1109/TSE.1985.232226.

301

https://doi.org/10.1109/ICSTW.2018.00027
https://doi.org/10.1016/j.jss.2019.07.100
https://doi.org/10.1002/stvr.392
https://doi.org/10.1007/11498490_13
https://doi.org/10.1145/1062455.1062529
https://doi.org/10.1109/icstw.2018.00048
https://doi.org/10.5220/0006749606990706
https://doi.org/10.1007/978-3-030-67445-8_12
https://doi.org/10.1007/978-3-030-67445-8_12
https://doi.org/10.1007/978-3-319-94764-8_11
https://doi.org/10.1109/TSE.1985.232226

BIBLIOGRAPHY

[150] Sanjai Rayadurgam and Mats Per Erik Heimdahl. “Coverage based test-case
generation using model checkers”. In: Proceedings of the Eighth Annual IEEE In-
ternational Conference and Workshop On the Engineering of Computer-Based Systems-
ECBS 2001. Washington, DC, USA: IEEE, 2001, pp. 83–91. DOI: 10.1109/ECBS.
2001.922409.

[151] Adrian Rumpold, Reinhard Pröll, and Bernhard Bauer. “A domain-aware
framework for integrated model-based system analysis and design”. In: Pro-
ceedings of the 5th International Conference on Model-Driven Engineering and Soft-
ware Development: February 19-21, 2017. MODELSWARD 2017. Porto, Portugal:
SciTePress, 2017, pp. 157–168. DOI: 10.5220/0006206301570168.

[152] Christian Saad. “Data-flow based Model Analysis: Approach, Implementation
and Applications”. doctoralthesis. Universität Augsburg, 2015.

[153] Alberto Sangiovanni-Vincentelli, Werner Damm, and Roberto Passerone. “Tam-
ing Dr. Frankenstein: Contract-based design for cyber-physical systems”. In: Eu-
ropean journal of control 18 (2012), pp. 217–238. DOI: 10.3166/ejc.18.217-238.

[154] Ina Schieferdecker et al. “The UML 2.0 testing profile and its relation to TTCN-
3”. In: IFIP International Conference on Testing of Software and Communicating Sys-
tems. TestCom 2003. Sophia Antipolis, France: Springer Berlin Heidelberg, 2003,
pp. 79–94. DOI: 10.1007/3-540-44830-6_7.

[155] Bran Selic. “The pragmatics of model-driven development”. In: IEEE software 20
(2003), pp. 19–25. DOI: 10.1109/MS.2003.1231146.

[156] sepp.med gmbh. MBTsuite - The Testing Framework. 2018. URL: https://mbtsuite.
com (visited on 04/14/2021).

[157] Mahesh Shirole and Rajeev Kumar. “UML behavioral model based test case gen-
eration: a survey”. In: ACM SIGSOFT Software Engineering Notes 38 (2013), pp. 1–
13. DOI: 10.1145/2492248.2492274.

[158] D. I. De Silva et al. “Applicability of three cognitive complexity metrics”. In:
Computer Science Education (ICCSE), 2013 8th International Conference on. ICCSE
’13. Colombo, Sri Lanka: IEEE, 2013, pp. 573–578. DOI: 10.1109/ICCSE.2013.
6553975.

[159] Herbert Stachowiak. Allgemeine Modelltheorie. Springer, 1973.

[160] T. Stahl and M. Völter. Modellgetriebene Softwareentwicklung: Techniken, Engineer-
ing, Management. dpunkt-Verlag, 2005. ISBN: 9783898643108. URL: https : / /
books.google.de/books?id=MKb6AAAACAAJ.

[161] Dominic Steinhöfel and Reiner Hähnle. “Abstract execution”. In: International
Symposium on Formal Methods. FM2019. Porto, Portugal: Springer International
Publishing, 2019, pp. 319–336. DOI: 10.1007/978-3-030-30942-8_20.

[162] Santosh Kumar Swain, Durga Prasad Mohapatra, and Rajib Mall. “Test case gen-
eration based on use case and sequence diagram”. In: International Journal of Soft-
ware Engineering 3 (2010), pp. 21–52.

[163] Luay Ho Tahat et al. “Requirement-based automated black-box test genera-
tion”. In: 25th Annual International Computer Software and Applications Conference.
COMPSAC 2001. COMPSAC 2001. Chicago, IL, USA: IEEE, 2001, pp. 489–495.
DOI: 10.1109/CMPSAC.2001.960658.

302

https://doi.org/10.1109/ECBS.2001.922409
https://doi.org/10.1109/ECBS.2001.922409
https://doi.org/10.5220/0006206301570168
https://doi.org/10.3166/ejc.18.217-238
https://doi.org/10.1007/3-540-44830-6_7
https://doi.org/10.1109/MS.2003.1231146
https://mbtsuite.com
https://mbtsuite.com
https://doi.org/10.1145/2492248.2492274
https://doi.org/10.1109/ICCSE.2013.6553975
https://doi.org/10.1109/ICCSE.2013.6553975
https://books.google.de/books?id=MKb6AAAACAAJ
https://books.google.de/books?id=MKb6AAAACAAJ
https://doi.org/10.1007/978-3-030-30942-8_20
https://doi.org/10.1109/CMPSAC.2001.960658

BIBLIOGRAPHY

[164] Jérémie Tatibouët et al. “Formalizing execution semantics of UML profiles with
fUML models”. In: International Conference on Model Driven Engineering Lan-
guages and Systems. MODELS 2014. Valencia, Spain: Springer International Pub-
lishing, 2014, pp. 133–148. DOI: 10.1007/978-3-319-11653-2_9.

[165] University of Augsburg, IMACS GmbH. Modellgetriebene Software Entwicklung
für Funktionale Sicherheit von Automatisierungslösungen (MDSD4SiL). ZIM KF-
Projekt KF 2751303LT4. Zentrales Innovationsprogramm Mittelstand (ZIM) des
Bundesministeriums für Wirtschaft und Energie (BMWi) - Fördermodul Koop-
erationsprojekte, 2014.

[166] University of Augsburg, IMACS GmbH, AFRA GmbH. Reduction of Test Com-
plexity (ReTeC). ZIM KOOP NKF 16KN044120. Ganzheitliche modellbasierte
Entwicklung und Test von eingebetteten Systemen. Zentrales Innovationspro-
gramm Mittelstand (ZIM) des Bundesministeriums für Wirtschaft und Energie
(BMWi) - Kooperationsnetzwerke, 2015.

[167] University of Augsburg, IMACS GmbH, Razorcat Development GmbH, Vicon-
nis Test Technologie GmbH, XITASO GmbH. Test The Test (T3). ZIM KOOP NKF
16KN044137. Metriken zur Ermittlung der Testqualität, Testergebnismodelle
und Lernalgorithmen. Zentrales Innovationsprogramm Mittelstand (ZIM) des
Bundesministeriums für Wirtschaft und Energie (BMWi) - Kooperationsnetzw-
erke, 2018.

[168] Mark Utting and Bruno Legeard. Practical model-based testing: a tools approach.
Elsevier, 2010.

[169] Mark Utting, Alexander Pretschner, and Bruno Legeard. “A taxonomy of model-
based testing approaches”. In: Software testing, verification and reliability 22 (2012),
pp. 297–312. DOI: 10.1002/stvr.456.

[170] EV Veenendaal. Standard Glossary of Terms used in Software Testing - Version 3.3.
Glossary. International Software Testing Qualification Board, 2019.

[171] Eelco Visser. “A survey of rewriting strategies in program transformation sys-
tems”. In: Electronic Notes in Theoretical Computer Science 57 (2001), pp. 109–143.
DOI: 10.1016/S1571-0661(04)00270-1.

[172] Elaine J Weyuker. “On testing non-testable programs”. In: The Computer Journal
25 (1982), pp. 465–470. DOI: 10.1093/comjnl/25.4.465.

[173] T. W. Williams and K. P. Parker. “Design for testability—A survey”. In: Proceed-
ings of the IEEE 71 (1983), pp. 98–112. DOI: 10.1109/PROC.1983.12531.

[174] Mario Winter et al. Basiswissen modellbasierter Test: Aus-und Weiterbildung zum
ISTQB® Foundation Level–Certified Model-Based Tester. dpunkt. verlag, 2016.

[175] W Eric Wong and Aditya P Mathur. “Reducing the cost of mutation testing: An
empirical study”. In: Journal of Systems and Software 31 (1995), pp. 185–196. DOI:
10.1016/0164-1212(94)00098-0.

[176] Weichen Eric Wong. “On mutation and data flow”. PhD thesis. Purdue Univer-
sity West Lafayette, Indiana, 1993.

303

https://doi.org/10.1007/978-3-319-11653-2_9
https://doi.org/10.1002/stvr.456
https://doi.org/10.1016/S1571-0661(04)00270-1
https://doi.org/10.1093/comjnl/25.4.465
https://doi.org/10.1109/PROC.1983.12531
https://doi.org/10.1016/0164-1212(94)00098-0

BIBLIOGRAPHY

[177] MR Woodward and K Halewood. “From weak to strong, dead or alive? an anal-
ysis of some mutation testing issues”. In: Workshop on software testing, verification,
and analysis. Banff, AB, Canada: IEEE, 1988, pp. 152–153. DOI: 10.1109/WST.
1988.5370.

[178] Justyna Zander et al. “From U2TP models to executable tests with TTCN-3-an
approach to model driven testing”. In: IFIP International Conference on Testing of
Communicating Systems. TestCom 2005. Montreal, QC, Canada: Springer Berlin
Heidelberg, 2005, pp. 289–303. DOI: 10.1007/11430230_20.

304

https://doi.org/10.1109/WST.1988.5370
https://doi.org/10.1109/WST.1988.5370
https://doi.org/10.1007/11430230_20

Glossary

A3F Architecture And Analysis Framework.

ALCS Automotive Light Control System.

ALF Action Language for Foundational UML.

ANSI American National Standards Institute.

AOM Aspect-Oriented Modeling.

AOP Aspect-Oriented Programming.

ASIL Automotive Safety Integrity Level.

ATE Abstract Test Execution.

ATL Atlas Transformation Language.

BFS Breadth First Search.

BSI British Standards Institute.

CBD Contract-Based Design.

CE Coupling Effect.

CFA-ATE Control Flow Aware Abstract Test Execution.

CIM Computation Independent Model.

CMOF Complete MOF.

CPH Competent Programmer Hypothesis.

CSM Ceiling Speed Monitor.

DevOps Development and Operations.

DFA DataFlow Analysis.

DFA-ATE Data Flow Aware Abstract Test Execution.

GLOSSARY

DFS Depth First Search.

DFT Design For Testability.

DSL Domain-Specific Language.

DSML Domain-Specific Modeling Language.

EGPP Execution Graph++.

EGPPMM Execution Graph++ Metamodel.

EMOF Essential MOF.

ETCS European Train Control System.

EVC European Vital Computer.

FMEA Failure Modes And Effects Analysis.

FTA Fault Tree Analysis.

fUML Foundational Subset for Executable UML Models.

GPML General Purpose Modeling Language.

IDL Interface Definition Language.

IEC International Electrotechnical Commission.

IEEE Institute of Electrical and Electronics Engineers.

IM Integration Model.

ISM Implementation Specific Model.

ISO International Organization for Standardization.

ISTQB International Software Testing Qualification Board.

JSON JavaScript Object Notation.

KPI Key Performance Indicator.

306

GLOSSARY

M2CT Model-to-Code Transformation.

M2MT Model-to-Model Transformation.

M2TT Model-to-Text Transformation.

MAF Model Analysis Framework.

MAS Mutation Adequacy Score.

MBSD Model-Based Software Development.

MBT Model-Based Testing.

MC/DC Modified Condition/Decision Coverage.

MCSD Model-Centric Software Development.

MCSTLC Model-Centric Software Testing Life Cycle.

MCT Model-Centric Testing.

MDA Model-Driven Architecture.

MDE Model-Driven Engineering.

MDSD Model-Driven Software Development.

MDT Model-Driven Testing.

MM Metamodel.

MMM Metametamodel.

MOF Meta Object Facility.

MOT Model-Oriented Testing.

MTDD Model-Level Test Driven Development.

OCL Object Constraint Language.

OMG Object Management Group.

OOAS Object Oriented Action System.

307

GLOSSARY

ORM Object Relational Mapper.

OSLC Open Services for Life Cycle Collaboration.

OTS Organizational Test Specification.

PIM Platform Independent Model.

PSD Purpose-Specific Data.

PSM Platform Specific Model.

QVT Query View Transformation.

QVTO Query View Transformation Operational.

RBT Risk-Based Testing.

SDLC Software Development Life Cycle.

SEI Software Engineering Institute.

STLC Software Testing Life Cycle.

SUD System Under Development.

SUT System Under Test.

SYSML Systems Modeling Language.

TCG Test Case Generation.

TCMAS Test Case Mutation Adequacy Score.

TDD Test-Driven Development.

TM Test Model.

TMS Test Model Scoping.

TTCN-3 Testing and Test Control Notation.

UML Unified Modeling Language.

308

GLOSSARY

UTP UML Testing Profile.

V&V Verification and Validation.

VIATRA VIsual Automated model TRAnsformation.

VMI Variable Modifying Instruction.

VVI Variable Verifying Instruction.

309

	I MOTIVATION, RESEARCH ITEMS AND OUTLINE
	1 Introduction
	1.1 Problem Statement and Research Questions
	1.2 Concepts and Objectives

	2 Research Items
	2.1 Publications
	2.2 Research Projects
	2.3 Supervised Thesis

	3 Outline

	II FOUNDATIONS AND RELATED AREAS
	4 Model-Driven Software Development
	4.1 Meta-Object Facility
	4.2 Model Transformations
	4.3 Model-Driven Architecture

	5 Verification and Validation in Software Development
	5.1 Software Testing
	5.1.1 Fundamentals of Testing
	5.1.2 Standardization
	5.1.3 Test Design Techniques

	5.2 Model-Based Testing
	5.2.1 Scenarios of Model-Based Testing
	5.2.2 Model-Based Testing in Practice

	III TOWARDS A MODEL-CENTRIC SOFTWARE TESTING LIFE CYCLE
	6 General Approach and Running Example
	6.1 General Approach
	6.2 Running Example: Ceiling Speed Monitor

	7 Omni Model Approach
	7.1 Domain-Specific Models
	7.1.1 System Structure and Behavior Metamodels
	7.1.2 Test Metamodels
	7.1.3 Integration Metamodel

	7.2 Analysis-Specific Models
	7.2.1 Execution Graph++ Metamodel
	7.2.2 Model to Model Transformations

	7.3 Architecture And Analysis Framework
	7.3.1 Framework Architecture
	7.3.2 Working with the Framework

	7.4 Related Work
	7.5 Conclusions and Outlook

	8 Model-Based Test Case Management
	8.1 Prerequisites for Test Model Scoping
	8.1.1 Test Focus Specification
	8.1.2 Excerpt of the Omni Model

	8.2 Test Model Scoping
	8.2.1 Integration Model based Filtering
	8.2.2 Test Model Mapping and Reconstruction
	8.2.3 Test Model Split and Enrichment

	8.3 Technical Realization within A3F
	8.4 Related Work
	8.5 Conclusions and Outlook

	9 Model-Based Abstract Test Generation
	9.1 Prerequisites for Test Suite Generation
	9.1.1 Expert's Configuration Parameters
	9.1.2 Machine-Interpretable Mutation Analysis Results
	9.1.3 Excerpt of the Omni Model

	9.2 Test Suite Generation
	9.2.1 Artifact and Feedback Evaluation
	9.2.2 Test Case Generation Metric Adaption
	9.2.3 Data Flow Analysis-Based Test Case Generation
	9.2.4 Feedback-Oriented Test Suite Creation

	9.3 Technical Realization within A3F
	9.4 Related Work
	9.5 Conclusions and Outlook

	10 Model-Based Abstract Test Execution
	10.1 Prerequisites for Abstract Test Execution
	10.1.1 Execution Graph++ Characteristics Analysis
	10.1.2 Abstract Test Execution Engine Configuration Parameters
	10.1.3 Excerpt of the Omni Model

	10.2 The Abstract Test Execution Approach
	10.2.1 Digression into a Control Flow-Aware ATE Approach
	10.2.2 Overall Concept for Data Flow-Aware Abstract Test Execution
	10.2.3 Omni Model-Based Path Merging
	10.2.4 Evaluation of Path Space
	10.2.5 Evaluation Result to Test Verdict Mapping
	10.2.6 Result Selection and Test Report Generation

	10.3 Technical Realization within A3F
	10.4 Related Work
	10.5 Conclusions and Outlook

	11 Model-Based Mutation Analysis
	11.1 Prerequisites for Mutation Analysis
	11.1.1 Digression: Mutation applied to the Execution Graph++
	11.1.2 Configuration Parameters
	11.1.3 Excerpt of the Omni Model

	11.2 Mutation Analysis
	11.2.1 Mutant Generation
	11.2.2 Mutant Execution
	11.2.3 Execution Result Evaluation

	11.3 Technical Realization within A3F
	11.4 Related Work
	11.5 Conclusions and Outlook

	IV APPLICATIONS AND EVALUATION
	12 Applications of the Omni Model Approach
	12.1 Tank Control System
	12.2 Automotive Light Control System
	12.3 Elevator System
	12.4 Discussion

	13 Qualitative and Quantitative Evaluation of the MCSTLC Approaches
	13.1 Model-based Test Case Management
	13.2 Model-based Test Generation
	13.3 Model-based Abstract Test Execution
	13.4 Model-based Mutation Analysis

	14 Discussion on the overall MCSTLC

	V CONCLUSIONS AND OUTLOOK
	15 Conclusions
	16 Outlook

	VI Annex
	Bibliography
	Glossary

