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. Introduction

The automatic identification of discrete emotional states from
uman speech has consistently been identified as a challenging
ask for machine learning algorithms. One considerable challenge
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he National Science Fund for Distinguished Young Scholars, China (Grant No:
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∗ Corresponding author at: National Laboratory of Pattern Recognition,
hinese Academy of Sciences, China.

E-mail address: jhtao@nlpr.ia.ac.cn (J. Tao).
1 Both authors contributed equally to this work.
 f
urrently being faced by researchers in the field of discrete SER is
hat of how best to extract discriminative, robust, and emotion-
lly salient features from the acoustic content of a speech signal
tilising a sequence-to-sequence model. The reasons for this are
s follows:
Firstly, previous work on emotion recognition has focused

rimarily on the extraction of features that are carefully hand-
rafted and highly engineered. Results from works of this kind
ave repeatedly demonstrated the importance of discriminative
patio-temporal features in modelling the continual evolutions
f different emotions. Moreover, as the amount of both avail-
ble data and computational power have increased, deep learn-
ng methods are rapidly becoming the predominant approach
n the SER context. In particular, many recent works in this
ield have leveraged either recurrent neural networks (RNNs) or

mailto:jhtao@nlpr.ia.ac.cn
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deep convolutional neural networks (DCNNs) as feature extrac-
tors to facilitate the learning of discriminative representations,
ith varying degrees of success (Huang & Narayanan, 2016; Mir-
amadi, Barsoum, & Zhang, 2017; Tzinis & Potamianos, 2017;
zirakis, Trigeorgis, Nicolaou, Schuller, & Zafeiriou, 2017; Wang,
u, Zhang, & Chen, 2018; Wöllmer, Eyben, Reiter, Schuller, Cox,
ouglas-Cowie, & Cowie, 2008). Owing to the success of CNNs and
NNs, there has been increasing interest in incorporating both of
hese network types into a single architecture in order to capture
oth long-term and local dependencies (Chen, He, Yang, & Zhang,
018; Sainath, Vinyals, Senior, & Sak, 2015).
However, such frameworks are affected by some limitations.

or example, although long short-term memory (LSTM) recurrent
eural networks demonstrate powerful capacity for sequence
odelling (Krause, Lu, Murray, & Renals, 2016), the current state
annot be calculated without the results of previous states, mak-
ng it impossible for these calculations to be conducted in par-
llel; moreover, it is difficult for LSTM to deal with long-range
emporal dependencies, and they converge with a low speed in
raining. By contrast, the training of CNNs does not depend on
he computations of the previous time step, making it possible
o implement parallelisation over every element in sequence (Pu,
hou, & Li, 2018). However, when applying CNNs to SER tasks,
disadvantage of CNNs is that the temporal structure of speech
ill be gradually lost during this process while the progressive
ownsampling provides a strong ability to conduct local context
odelling and emotion-related pattern detection. As the tem-
oral evolution of speech is assumed to be highly related to
motions, such loss of spatial information may hamper the effec-
iveness of the SER system (Li, Wu, Jia, Zhao, & Meng, 2019b; Yu,
oltun, & Funkhouser, 2017). Moreover, it has been shown that
nlarging the receptive field is an effective means of improving
NN performance (Wang, Sun, & Hu, 2017). Thus, the ques-
ion of how to better encode spatial relationships and efficiently
earn representations efficiently without losing resolutions for
NN-based SER system has become increasingly one.
Recent studies have shown that parallel convolutional layers

an be used to extract temporal information at multiple reso-
utions from the data provided, which can improve the system
erformance (Latif, Rana, Khalifa, Jurdak, & Epps, 2019). Addition-
lly, the Squeeze-and-Excitation Network (SEnet) has achieved
mpressive image classification results (Hu, Shen, & Sun, 2018);
nder this approach, a channel-wise transform is appended to
xisting DNN building blocks, such as the Residual unit (Hu et al.,
018). Moreover, the representations produced by CNNs can be
trengthened through the integration of a Squeeze-and-Excitation
SE) block, which is an architectural unit designed to improve
network’s representational power by enabling it to perform
ynamic channel-wise feature recalibration into the network that
elps to capture the spatial correlations between features (Hu
t al., 2018).
Recent successes achieved by Residual Networks (ResNet) (He,

hang, Ren, & Sun, 2016) approaches on various computer vi-
ion tasks prove that ResNet has better image representation
apacity than other deep architectures. Furthermore, another ap-
roach is the Dilated Residual Network (DRN) (Yu et al., 2017),
hich utilises dilated convolutions in residual blocks and inherits
he properties of a residual network, such that the temporal
tructure of the network’s input signals is maintained. Such a
etwork can also compensate for any reduction in the receptive
ield, thereby demonstrating its strong ability to model local
ontext with dilation. Recent studies have also indicated that
he DRN particularly excels at capturing contextual information,
eaning that it can achieve performance that is comparable or
uperior to that of LSTM across a diverse range of tasks and
atasets – including audio generation (Oord, Dieleman, Zen, Si-
onyan, Vinyals, Graves, Kalchbrenner, Senior, & Kavukcuoglu,
53
016) and continuous sign language recognition (Pu et al., 2018)
while demonstrating longer effective memory (Bai, Kolter, &
oltun, 2018). Moreover, the self-attention mechanism (Vaswani,
hazeer, Parmar, Uszkoreit, Jones, Gomez, Kaiser, & Polosukhin,
017), developed in both the encoder–decoder and feed-forward
ontexts, has led to faster training and state-of-the-art results in
everal natural language processing (NLP) tasks (Li, Song, Gao, Liu,
uang, He, & Gan, 2019a; Scialom, Piwowarski, & Staiano, 2019;
hen, Zhou, Long, Jiang, Pan, & Zhang, 2018; Vaswani et al., 2017);
n addition, and more recently, the application of DRNs combined
ith a self-attention mechanism has produced promising SER
esults (Li et al., 2019b; Tarantino, Garner, & Lazaridis, 2019).

Secondly, many works in this field treat the discrete SER task
s a typical sequence classification problem in which each chunk
f speech (such as an utterance) has exactly one label. However,
his type of a conventional sequence-to-label modelling approach
s less than ideal for discrete SER. A critical underlying issue is
he loss of dynamic temporal information, which can strongly
eflect changes in emotional states (Han, Ruan, Chen, Wang, Li,
Schuller, 2018). In order to tackle this problem, the connection-

st temporal classification (CTC) loss function (Graves, Fernández,
omez, & Schmidhuber, 2006) with bidirectional long short-term
emory (BLSTM) networks, which have been widely investigated

n the speech context (Graves & Jaitly, 2014), has been found to
e effective in the SER context (Han et al., 2018; Zhao, Bao, Zhang
t al., 2019). However, the training speed can be very slow and
he training process for BLSTM modelling is difficult.

Accordingly, to solve these issues, some researchers have ex-
lored the application of CNNs to CTC for long-range temporal
ependencies (Wang, Deng, Pu, & Huang, 2017; Zhang, Pezeshki,
rakel, Zhang, Laurent, Bengio, & Courville, 2016). Although this
pproach can greatly improve the training speed, CNNs may per-
orm poorly under these circumstances due to the receptive field
eing insufficiently large. To broaden the receptive fields of CNNs
nd enhance their sequence modelling ability, moreover, we pro-
ose to replace the recurrent layers for CTC with a self-attention
ilated Residual Network in this work.
Motivated by the above observations, this article presents a

ovel hybrid sequence-to-sequence modelling solution for the
ask of discrete SER. Our approach is based on the combination
f PCN, integrated with SEnet (PCNSE), and self-attention-DRN-
TC, namely PCNSE-SADRN-CTC, in order to retain high tem-
oral structure resolution in feature learning, while employing
similar receptive field size to CNN-based approaches. Mean-
hile, we use dilated convolutions with CTC loss to model the
ependencies between different frames. When compared with
NN-CTC (Han et al., 2018), we believe that this combination of
ifferent networks can further improve the performance of dis-
rete SER while also speeding up training. In this work, inspired
y the positive results of 3D log Mel spectrum features in the SER
ontext (Chen, He et al., 2018; Meng, Yan, Yuan, & Wei, 2019),
e first employ log-Mel, deltas, and delta–deltas as 3D input to
he CNN model. We utilise this 3D input as the delta. Moreover,
he delta–delta features are able to effectively capture the effects
f emotion in speech (Chen, He et al., 2018), while also being
ess susceptible to the impact of non-relevant acoustic factors.
og Mel-spectrograms are extracted from the set of acoustic
eatures, after which we calculate deltas and delta–deltas for the
og Mel-spectrogram to make up the 3-D data as the input of
CN. Subsequently, three parallel 2-D convolutional layers with
ifferent filter sizes are utilised to capture both the long-term
nd short-term changes from 3-D spectrograms. Finally, we fuse
ach DRN-CTC block with the self-attention mechanism in order
o further improve our model. The features extracted from the
CNSE block are then fed into SADRN-CTC for classification.
Our two main contributions can, therefore, be summarised

s follows: (1) We have developed a parallel CNN stacked on a
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self-attention DRN, paired with CTC loss for discrete SER, which
operates on both the time and frequency dimensions. The pro-
osed model can model temporal as well as spectral local cor-
elations and achieve translational invariance in speech signals;
2) the presented results demonstrate the effectiveness of this
equence-to-sequence modelling solution for discrete SER tasks.

. Related work

SER is a highly active research field, with many novel ap-
roaches being proposed and investigated over the past decade.
ue to the increases in the amount of available data and com-
utational power, deep learning methods are rapidly becoming
he predominant approach in this area (Wang, Cui, Chen, Avidan,
bdallah, & Kronzer, 2018; Wang, Wu, Pan, Zhang, & Chen, 2017;
ang, Zhang, Wu, Pan, & Chen, 2019). In particular, much of

he recent research in this domain has explored leveraging of
eep neural networks as feature extractors in order to learn
iscriminative representation (Wang et al., 2018). Moreover, due
o their success in many visual recognition tasks, CNNs have been
idely adopted for feature representation learning in various
peech analysis tasks. For example, Huang et al. (2014) used spec-
rograms of speech, together with CNN, to perform SER (Huang,
ong, Mao, & Zhan, 2014). Similar work was also presented
y Mao, Dong, Huang, and Zhan (2014), in which a CNN was em-
loyed to learn affect-salient features from spectrograms. In addi-
ion to being successfully applied to automatic speech recognition
ASR) (Abdel-Hamid, Mohamed, Jiang, Deng, Penn, & Yu, 2014)
nd speaker identification tasks (Nagrani, Chung, & Zisserman,
017), CNNs have also achieved promising results compared with
onventional approaches when applied to SER (Poria, Chaturvedi,
ambria, & Hussain, 2016).
Furthermore, given that context information is crucial to the

etection of emotional states, RNN paradigms are widely used
n SER to exploit the temporal information inherent in speech
ignals. LSTM-RNNs, in particular, are frequently employed in SER
asks (Huang & Narayanan, 2016; Mirsamadi et al., 2017; Tzinis
Potamianos, 2017; Tzirakis et al., 2017; Wöllmer et al., 2008).
Due to the positive results obtained by CNNs and RNNs, there

as been increasing interest in incorporating them both into a
ingle architecture. For example, in Sainath et al. (2015), the
onvolutional Long Short-Term Memory Deep Neural Network
CLDNN) model for speech recognition was proposed; this ap-
roach consists of convolutional layers, LSTM gated recurrent
ayers, and fully connected (FC) layers. In Chen, He et al. (2018),
oreover, a 3-D attention-based convolutional Recurrent Neural
etwork (ACRNN) was proposed for SER. This model combines
NN with LSTM, while the 3-D spectral features of the segments
re employed as input. Another promising network structure that
as recently been developed is the end-to-end network architec-
ure, which can automatically and directly extract representations
rom raw (unprocessed) data, thereby removing the need to man-
ally extract hand-crafted features. In addition, the SER approach
roposed in Tzirakis et al. (2017) jointly exploited a CNN (to
utomatically extract suitable representations from raw audio
ignals) and an LSTM-RNN (to capture the required temporal
nformation). A similar framework was proposed in Ma, Yang,
hen, Huang, and Wang (2016) for the related task of speech-
ased depression detection. Finally, in Ma, Wu, Jia, Xu, Meng, and
ai (2018), a specially designed neural network structure that
ccepts speech segments of variable length was proposed for SER;
his approach combines CNN-based deep spectrogram represen-
ations with an RNN in order to handle the variable-length speech
egments.
Recent research results suggest that Dilated Residual Networks

ave been convincingly shown to achieve both compelling con-
ergence and high accuracy in the computer vision (Yu et al.,
54
017) and speech analysis contexts (Oord et al., 2016). Successful
ttempts along this line have also been reported very recently in
he SER context (Li et al., 2019b).

Recently, attention mechanisms have seen widespread adop-
ion within the deep learning community. Although the com-
ination of an attention mechanism with RNNs has improved
erformance in SER tasks, this is limited by the state of the
ell (e. g., LSTM), which can contain only a limited amount of
nformation. Meanwhile, this approach is also impacted by the
xploding and vanishing gradient problems (Pascanu, Mikolov,
Bengio, 2013). The self-attention mechanism, which can help
ith the capturing of long-term contextual dependencies, was
roposed in Vaswani et al. (2017). This mechanism has been
roven capable of capturing contextual dependencies in several
LP tasks (Li et al., 2019a; Scialom et al., 2019; Shen et al.,
018; Vaswani et al., 2017), and, more recently, has produced
tate-of-the-art SER results (Tarantino et al., 2019).
As an end-to-end acoustic modelling method, CTC based on

ecurrent (RNNs) or convolutional neural networks (CNNs), has
xhibited strong performance in the speech-related tasks such
s end-to-end speech recognition systems (Leung, Liu, & Meng,
019; Shi, Hwang, & Lei, 2019; Wang, Deng et al., 2017). To date,
owever, work exploiting CTC models for discrete SER has been
ery limited (Chen, Han et al., 2018; Chernykh & Prikhodko, 2017;
an et al., 2018).
From the literature discussed above, we can see that recent

orks present strong evidence for the value added by
CN-SEnet and self-attention DRN. Accordingly, our proposed
ethod utilises a combination of these existing approaches,
aired with CTC loss, for discrete SER. To the best of our knowl-
dge, no existing work has yet combined these methods for such
task.

. Methodology

As noted above, CNN and CTC both possess features that make
hem highly suited to the discrete SER task, although the combi-
ation of these two components has not been fully explored. In
his section, we outline the main steps required to implement the
roposed model. We first describe the parallel 2-D convolutional
ayers embedded with SEnet to create the feature extraction
lock. Next, we introduce the stacked multi-layered DRN with
elf-attention mechanism and the CTC loss function.

.1. System overview

The architecture of the proposed model comprises four main
omponents (Fig. 1): (i) an input layer, where 3-D spectrograms
re used as the model input; (ii) a feature extraction layer, de-
igned to derive a high-level representation from step (i), using
CN integrated with SEnet; (iii) a Self-Attention Dilated Residual
etwork, in which the SADRN is used to model long-range de-
endencies; and (iv) a CTC layer, in which the CTC model is used
o automatically align emotional labels to emotionally salient
rames.

.2. 3D Log-Mels spectrogram generation

In recent years, excellent results have been achieved through
he application of CNNs to capture information in the spectro-
rams for SER (Cummins, Amiriparian, Hagerer, Batliner, Steidl, &
chuller, 2017; Zhao, Bao, Zhao et al., 2019). However, static spec-
rograms can contain personalised information about the speaker,
hich can negatively influence the SER performance (Chen, He
t al., 2018). Inspired by the successful use of 3D log-Mel spec-
rograms for SER (Meng et al., 2019), our hybrid system also uses
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Fig. 1. Framework of the proposed PCNSE-SADRN-CTC model.
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og-Mels, together with deltas and delta–deltas, as the inputs to
he DCNN.

First, we split the raw speech signal into short frames with
amming windows of 25 ms and a 10 ms shift. Next, the power
pectrum for each frame is calculated and passed through the
el-filter bank i to produce the output pi. A logarithmic operation

s then conducted on pi to obtain the log-Mel spectrogram mi.
inally, we calculate the md

i feature, which is the deltas of mi
btained via formula (1), while the value of N is set to 3. Sim-
larly, the delta–deltas features mdd

i are calculated by taking the
erivative of the deltas, as shown in Eq. (2).

d
i =

∑N
n=1 n(mi+n − mi−n)

2
∑N

n=1 n2
, (1)

mdd
i =

∑N
n=1 n(m

d
i+n − md

i−n)

2
∑N

n=1 n2
. (2)

After the above calculations are complete, we obtain a three-
imensional feature representation X ∈ Rt×f×c for use as the
nput of the DCNN model, where t denotes the length of frame,
hile f represents the number of Mel-filter banks. In our work,
is set to 80, while c is 3, representing the static, deltas, and
elta–delta log-mel spectrogram respectively.

.3. PCNSE model

For the feature extraction block, we use parallel convolutional
ayers with multiple filter lengths to capture both long-term and
hort-term interactions from the 3-D spectrograms. The PCN in
his article consists of three parallel 2-D convolutional layers,
ollowed by three layers of 2-D convolution (Fig. 2a). We then
oncatenate the outputs of these three pooling layers in order to
btain features with multiple temporal resolutions.

.3.1. Squeeze-and-excitation block
In our work, all 2-D convolution layers are followed by an

E block. This is done to enhance the model’s expression ability
y utilising the relationship between the various channels of the
onvolution feature (Fig. 2b).
The SEnet acts as a computational unit for any transformation,

s follows: Ftr : X → U , X ∈ RW ′
×H ′

×C ′

, U ∈ RW×H×C .
The outputs of Ftr are represented as U[u1, u2, . . . , uc], where:

c = vc ∗ X =

C ′∑
s=1

vs
c ∗ xs. (3)

ere, the convolution operation is denoted by *, while the 2-D
patial kernel is indicated by vs

c . The single channel of vc acts on
he corresponding channel of X . As outlined in Hu et al. (2018),
hannel interdependence is simulated in two steps – namely
queeze and excitation – in order to adjust the filter response.
55
The squeeze operation makes use of a global average pooling
o generate channel-wise statistics by utilising the contextual
nformation outside of the local receptive field. The output of the
ransformation, U , is shrunk through spatial dimensions W × H
o enable the computation of the channel-wise statistics, z ∈ Rc .
he cth element of z is calculated as follows:

c = Fsq(uc) =
1

W × H

W∑
i=1

H∑
j=1

uc(i, j). (4)

The role of the excitation operation, moreover, is to aggregate
he information obtained by the squeeze operation in order to
apture the dependencies between the channels. In order to
chieve this, two full connection layers are employed, as follows:

= Fex(z,W ) = σ (W2δ(W1, z)). (5)

ere, δ and σ denote the Rectified Linear Unit (ReLU) and Sig-
oid activation functions, respectively; moreover, W1 ∈ R

c
r ×c

and W2 ∈ Rc× c
r are all of the training parameters, while r is

etermined empirically to have a value of 8. s is the output of
he excitation operation and can be regarded as a set of channel
eights. Finally, the output of SEnet is represented as follows:

˜c = Fscale(uc, sc) = sc · uc, (6)

here X̃ =
[
x̃1, x̃2, . . . , x̃C

]
and Fscale(uc, sc) refer to the channel-

ise multiplication between the scalar sc and the feature map
c ∈ RH×W .

.4. Dilated residual network

Inspired by the work presented in Bai et al. (2018), Li et al.
2019b), Szegedy, Liu, Jia, Sermanet, Reed, Anguelov, Erhan, Van-
oucke, and Rabinovich (2015), the Dilated Residual Network
mployed in this article comprises five groups of 1-D temporal
onvolutional layers when modelling long-range dependencies
Fig. 2d). By skipping input values with a certain step size, the
etwork can increase the size of the receptive field without the
eed for a high number of convolutional layers or large filter sizes.
n more detail, for a 1-D sequence input X ∈ Rn and a filter f of
ize k, the dilated convolution operation F on element s of the
equence can be defined as follows:

(s) =

k−1∑
i=0

f (i) · xs−d·i. (7)

ere, d is the dilation factor, the value of which is always an
xponent of 2; moreover, k is the filter size, while s − d · i
epresents the previous direction. In other words, we can increase
he DRN’s receptive field size by increasing the dilation factor and
sing a larger filter size, where the effective history r of one such
ayer is r = (k − 1)d. Generally speaking, when using the dilated
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onvolution, we increase the dilation factor d exponentially with
he depth of the network (i. e., d = 2i at number i of the DRN).

The reason for the use of a residual connection here is that
residual network is able to maintain the temporal structure
f the inputs from PCNSE. Within a residual block, the DRN
ontains two dilated convolution layers, which are activated by
eLU. Subsequently, a spatial dropout is added after each dilated
onvolution for regularisation purposes. The output of the top
ropout layer has two branches: one is for the skip-connection
rom each block, while the other is for the next DRN.

.5. Self-attention

Self-attention is an attention technique based on an encoder–
ecoder structure. This approach does not employ any form
f recurrence; instead, it uses weighted correlations between
he elements of the input sequence (Vaswani et al., 2017). In
his paradigm, the encoder maps an input sequence into sev-
ral attention matrices, while the decoder subsequently uses
hese matrices to generate a new output token. The Transformer,
he model that utilises self-attention, has been demonstrated to
chieve state-of-the-art performance in several NLP tasks, and
ith a computing cost that is one or two orders of magnitude
depending on the size of the model) lower than that of con-
entional RNNs (Li et al., 2019a; Scialom et al., 2019; Shen et al.,
018). It should be noted here that this section focuses only on
he implementation of the encoder, as a decoder is not required
y our proposed hybrid network.
Self-attention calculates queries, keys (properties of the input)

nd values (the output) for the frames in a given hidden sequence
by means of linear transformation of the input sequence X , as

ollows:

= WqX; K = WkX; V = WvX, (8)

here the matrices Q , K , and V denote the set of queries, keys
nd values respectively of an input/output sequence, while Wq,
k, and Wv represent the learnt linear operations. A scaled dot-
roduct operation is performed on the query and key to obtain
he similarity weights, which are then normalised by the softmax
unction. The attention matrix is calculated as follows:

= softmax(
QK T

√
dk

)V , (9)

where dk is a scaling factor, set as the dimensionality of K .
Moreover, Z is the attention matrix (N ×dk), where N denotes

he number of elements in the input sequence.
 r

56
.6. CTC approach

The CTC model uses a loss function for sequence labelling that
s able to account for the input and the target label sequence
f different lengths, without the need for any pre-segmentation.
he key concept underpinning CTC is to introduce a blank label,
ull (meaning the network generates no label). This addition
nables the network to suppress frame-wise outputs, including
epetitions of the same labels, into the sequence of target outputs
e. g., phonemes or characters).

When fed an input sequence X = (x1, . . . , xT ), CTC trains
he model to maximise the probability distribution P(l|X) for
he corresponding target label sequence l of length U(≤ T ).
TC expresses this distribution as a summation of all possible
rame-level intermediate representations

π = (π1, . . . , πT ) (hereafter referred to as the CTC path):

(l|X) =

∑
π∈Φ(l)

P(π |X), (10)

here Φ(l) denotes the set of CTC paths that allow for the
nsertion of Null and the repetition of non-blank labels to l, i. e.,

−1(π ) = l, noting that if lu ∈ L = {1, . . . , K }, the softmax
ayer is composed of |L ∪ {blank}| = K + 1 units. Based on the
onditional independence assumption, the decomposition of the
osterior P(π |X) is given by the following:

(π |X) =

T∏
t=1

ytπ t , (11)

here ytk is the kth output of the softmax layer at time t . This can
e interpreted as the occurrence probability of the corresponding
abel. The probability distribution P(l|X) can be efficiently com-
uted using the forward–backward algorithm. The detailed CTC
raining process is described in Zhao, Bao, Zhang et al. (2019).

. Experiments and results

To demonstrate the effectiveness of the proposed methods, we
erformed a set of experiments on the popular interactive emo-
ional dyadic motion capture dataset (IEMOCAP) (Busso, Bulut,
ee, Kazemzadeh, Mower, Kim, Chang, Lee, & Narayanan, 2008)
nd FAU Aibo Emotion corpus (FAU-AEC) (Steidl, 2009).

.1. Datasets

IEMOCAP is a well-known corpus containing audio–visual data
ecordings and transcriptions of dialogues between two actors
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Table 1
nstance distribution over four emotion classes – Neutral, Happy, Sad, and Angry
of the IEMOCAP Dataset.
Session N. H. S. A. Total

1 223 33 104 62 521
2 217 54 100 22 530
3 198 60 190 90 627
4 174 31 81 84 534
5 287 106 133 31 731

Sum 1099 284 608 289 2280

Table 2
nstance distribution over five emotion classes – Angry, Emphatic, Neutral,
ositive, and Rest – of the FAU Aibo Emotion Corpus.

A. E. N. P. R. Total

Train 881 2093 5590 674 721 9959
Test 611 1508 5377 215 546 8257

Sum 1492 3601 10967 889 1267 18216

Table 3
lass weights for data balance when using the FAU Aibo Emotion Corpus.

Angry Emphatic Neutral Positive Rest

weight 1.1 0.5 0.2 1.5 1.4

(Busso et al., 2008). The corpus is divided into two parts: impro-
ise and script. In our experiments, we used only the former part
n order to reduce the potentially confounding effect of semantic
nformation disturbance. The final number of instances for each
motion class are presented in Table 1.
The second corpus used for evaluation is the FAU Aibo Emo-

ion Corpus, which is made up of spontaneous and emotional
erman speech samples (Steidl, 2009). The corpus contains 9.2 h
f German speech obtained from a total of 51 children at two
ifferent schools during their interactions with Sony’s pet robot
ibo. Following Schuller, Steidl, and Batliner (2009), we used
959 utterances from 26 children (13 males, 13 females) as the
raining set, and 8257 utterances from 25 children (8 males, 17
emales) as the test set. We further concentrated on the five-class
roblem, utilising the emotion categories of anger, emphatic,
eutral, positive, and rest. The final number of instances of each
motion class are listed in Table 2.

.2. Features

Our spectrograms were created using the extraction process
escribed in Chen, He et al. (2018). In brief, each spectrogram
as constructed using the output of a 40-dimensional mel-scale

og filter bank. The features were computed over frames 25 ms
n length and with a 10 ms stride. At the final step, we calculated
he delta and delta–deltas of the spectrogram, which reflect the
rocess of emotional change.

.3. Experimental setup and evaluation metrics

On the IEMOCAP dataset, we performed a 5-fold cross-
alidation using a leave-one-session out strategy, in line with
he methodology outlined in previous work (Zhao, Bao, Zhang
t al., 2019; Zhao, Zheng, Zhang, Wang, Zhao, & Li, 2018). Each
raining process involved the use of eight speakers from four
essions as training data; the remaining session was separated
nto two parts, one of which was regarded as validation data
nd the other as test data. For the FAU Aibo Emotion Corpus,
oreover, we followed the Interspeech 2009 Emotion Challenge
57
uidelines (Schuller et al., 2009), consequently employing utter-
nces from one school (the ‘‘Ohm-Gymnasium’’) for training and
he other (the ‘‘Montessori-Schule’’) for testing.2

The proposed PCNSE-SADRN-CTC model has a large number
f hyperparameters, a proportion of which were tuned based
n recommendations from previous works that had utilised the
ame database. We also used the same feature extraction block,
onsisting of three parallel convolutional layers, which provided
ultiple temporal dependencies for comparison. ReLU is used as

he activation function. In this article, all models were imple-
ented using the keras3 framework. Furthermore, cross-entropy
as selected as the loss function for the PCNSE block, while the
dam optimiser (with an initial learning rate of 3 × 10−4 and
decay of 10−6) was used for training; for the dilated residual
etwork, moreover, CTC loss and the Adadelta optimiser (with an
nitial learning rate of 4×10−3 and a decay of 10−6) were utilised
or training. Additional details regarding these hyperparameters
re presented in Table 4.
Standard evaluation criteria were used to evaluate the

esults generated by the two datasets. For the IEMOCAP-generated
esults, unweighted and weighted accuracies (UA and WA respec-
ively) were used as the evaluation metrics. For the FAU-AEC-
enerated results, moreover, we considered only unweighted
ccuracy (UA), since the FAU Aibo Emotion corpus is extremely
nbalanced. Furthermore, in order to tackle the problem of unbal-
nced data, we applied class weights during training (cf. Table 3)
s outlined in Zhao, Bao, Zhao et al. (2019).

.4. Results and discussion

This section presents the results of our experiments, with the
im of verifying the efficiency of our proposed PCNSE-SADRN-CTC
odel. We first performed an ablation analysis to elucidate the
enefits of incorporating PCN, SE block, DRN, self-attention mech-
nism, and CTC loss into the final proposed model. The effec-
iveness of our hybrid framework is further highlighted through
omparison with other key results obtained in the literature on
he IEMOCAP and FAU-AEC datasets (see Table 5). The state-of-
he-art models utilised for comparison purposes listed in Table 5
nclude three methods that have previously achieved good per-
ormance on IEMOCAP. The models that employ PCNSE are used
lone, while the PCN model without SE block, the PCNSE-DRN
odel with different pooling strategies, the PCNSE model with
elf-attention-BLSTM, and our proposed model based on cross
ntropy loss are also compared with our proposed approach.
From the results, it can be seen that the proposed approach

utperforms previous works on the IEMOCAP dataset (cf. Table 5).
or IEMOCAP, the best WA (73.1%) and UA (66.3%) were attained
y our proposed PCNSE-SADRN-CTC model, which achieved a sig-
ificant improvement relative to the baseline CNN-BLSTM model
resented in Satt et al. (2017) (p < 0.05 in a one-tailed z-test).
he same system setup achieved a UA of 41.1%, on the FAU-
EC dataset; this is slightly lower than the best performance
chieved by the BLSTM-CTC model (Zhao, Bao, Zhang et al., 2019).
owever, compared with our proposed model, the use of BLSTM
ombined with CTC loss function has several drawbacks. The
equential dependencies make the computation of BLSTM via
arallel GPU acceleration difficult, which leads to slow training
nd inference when modelling sequences. With the increasing of
he model size and the amount of hyper-parameters, more time

2 All results are entirely reproducible by others. To ease the procedure, upon
cceptance, we will provide a URL for a document containing the details of all
artitions and seeds.
3 https://github.com/keras-team/keras

https://github.com/keras-team/keras
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Table 4
Parameters of the proposed PCNSE-SADRN-CTC and the PCNSE-ABLSTM model. SABLSTM denotes the
self-attention-based BLSTM.
Network Layer Shape Dilations

PCNSE-SADRN-CTC

Input 500 × 40 × 3 –
Conv_1(left) 1 × 1 × 64 –
Conv_2(mid) 3 × 3 × 64 –
Conv_3(right) 5 × 5 × 64 –
Concatenate – –
Conv_4 8 × 8 × 64 –
Conv_5 3 × 3 × 128 –
Conv_6 3 × 3 × 64 –
Maxpooling2D 2 × 2 –
Reshape 243 × 832 –
DRN 2 × 2 × 128 (1,2,4,8,16,32,64,128)
Attention – –
Output 128 –

PCNSE-SABLSTM

Input 500 × 40 × 3 –
Conv_1(left) 1 × 1 × 64 –
Conv_2(mid) 3 × 3 × 64 –
Conv_3(right) 5 × 5 × 64 –
Concatenate – –
Conv_4 8 × 8 × 64 –
Conv_5 3 × 3 × 128 –
Conv_6 3 × 3 × 64 –
Maxpooling2D 2 × 2 –
Reshape 243 × 832 –
BLSTM 64 × 2 –
Attention – –
Output 128 –
Table 5
Performance comparison between the proposed PCNSE-SARDN-CTC model, the PCNSE-ABLSTM model with other models on the
IEMOCAP and FAU Aibo Emotion corpus. SABLSTM denotes the self-attention-based BLSTM.
Methods IEMOCAP FAU-AEC
[%] WA UA UA

CNN-BLSTM (Satt, Rozenberg, & Hoory, 2017) 68.8 58.4 –
CNN-GRU (Ma et al., 2018) 71.5 64.2 –
BLSTM-CTC (Han et al., 2018) 66.9 65.1 41.4

PCN 68.6 56.8 38.4
PCNSE 69.8 58.5 38.8

PCN-SABLSTM 70.8 62.7 39.8
PCNSE-SABLSTM 72.1 65.4 40.5
PCN-SADRN 71.1 62.5 41.1

PCNSE-DRN w/ Global max-pooling 71.5 62.0 38.1
PCNSE-DRN w/ Global average-pooling 71.2 62.5 39.5
PCNSE-SADRN 72.5 65.0 40.4
PCNSE-SADRN-CTC 73.1 66.3 41.1

Note : For IEMOCAP, we provide both unweighted and weighted accuracies (UA and WA respectively) as the evaluation metric; for
FAU-AEC, moreover, we only adopt UA as the evaluation measure, since this dataset is extremely unbalanced.
o
b
d
l

p
b
e
p
p
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p
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w

t
P

s needed in training and hyper-parameters tuning when using
LSTM-CTC.
As for the Squeeze-and-Excitation Network introduced in this

ork, the performance of the model with no SE block can be
bserved to be lower than that achieved by the model integrated
ithin the SE block on both the IEMOCAP and FAU-AEC datasets.
oreover, the PCNSE model performs better than the PCN model,
hile the performance of the PCNSE-SADRN model is better than
hat of the PCN-SADRN model and the PCNSE-SABSTM model
utperformed the PCN-SABLSTM model. From these results, we
an conclude that incorporating an SE block into a PCN model
uch as ours is an effective solution that is well suited for SER
pplications.
We also compared the performance of PCNSE-SADRN with

he PCNSE-DRN model, without self-attention, to determine the
enefits of using a self-attention mechanism in our proposed
odel for SER. As can be seen from Table 5, regardless of which
ind of pooling strategy was adopted in the PCNSE-DRN model,
he experimental results are all lower than those achieved when
self-attention mechanism was employed on both the IEMOCAP
nd FAU-AEC datasets.
58
For the system trained with CTC loss, we can observe that
ur proposed method yields the best performance in terms of
oth WA and UA on the IEMOCAP and FAU-AEC (only UA given)
atasets, outperforming those models that utilise a cross entropy
oss function.

In summary, the present results demonstrate that our pro-
osed model achieves notable performance improvements on
oth the IEMOCAP and FAU-AEC datasets compared to other
xisting methods, which demonstrates the effectiveness of our
roposed hybrid network. Furthermore, we observed that the
erformance of the combined PCNSE and self-attention-DRN-CTC
s superior to that of either of these two methods when they are
sed alone. This validates our hypothesis that the combination
f PCNSE and self-attention-DRN-CTC results in additional im-
rovement, as well as it reveals that our proposed PCNSE module
an effectively extract features from 3D spectrograms, making it
ell-suited to SER tasks.
We can further observe that, although the performance of

he PCNSE-SABLSTM model is slightly inferior to that of the
CNSE-SADRN-CTC, it still surpasses that of most other existing
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baseline models in terms of WA and UA on both the IEMOCAP
and FAU-AEC corpora. In addition, the UA result achieved by the
PCNSE-SABLSTM model is even better than that obtained by our
proposed PCNSE-SADRN model on the IEMOCAP and FAU-AEC
datasets.

5. Conclusion

In this article, we proposed a novel deep CNN architecture,
called PCNSE-SADRN-CTC, which leverages PCN integrated with
an SEnet combined with a self-attention DRN trained with CTC
loss for discrete SER applications. Our proposed model takes full
advantage of the long-range dependencies and local informa-
ion contained in speech sequences. Experimental results indi-
ate that our proposed model, by utilising 3-D spectrograms,
chieves state-of-the-art performance on the IEMOCAP and FAU-
EC datasets, and can also be trained more efficiently on long
tterances. This suggests that convolutional architectures can
ct as a replacement for recurrent ones in the speech emotion
ecognition context. Moreover, the experimental results are rep-
esentative to reveal the effectiveness of our proposed CTC-based
ystem combination.
In future work, we plan to further explore the potential of our

roposed model by determining its suitability for other speech
nd acoustic recognition tasks.
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