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Zusammenfassung

Smartphones haben Einzug in unseren Alltag erhalten und bilden dort ein zunehmend unent-
behrliches Werkzeug. Folglich findet auch die maschinelle Verarbeitung der natürlichen Kom-
munikation, im Forschungsgebiet der Mensch-Maschine-Interaktion (Social Signal Processing),
zunehmend im Alltag statt. Die vorliegende Arbeit betrachtet zum einen das Verarbeiten sozia-
ler Signale mit mobilen Geräten in Alltagssituationen („in the wild”). Dies geschieht etwa am
Beispiel von Lacherkennung. Zum anderen wird darüber hinaus aber auch das Wohlbefinden
des Nutzers in urbanen Räumen, aufgefasst als lokale Klimazonen, untersucht.

Über den Verlauf dieser Arbeit wird MobileSSI entwickelt, ein Open-Source Framework zur Er-
kennung sozialer Signale in Echtzeit. Es basiert auf dem etablierten SSI Framework und bietet
somit die synchronisierte Aufzeichnung mehrerer Sensoren und darauf basierendes maschi-
nelles Lernen. MobileSSI bringt diese Funktionalität auf mehrere Platformen (Android, Linux,
Windows) und erweitert SSI um interaktives maschinelles Lernen, das auch einen Mehrwert
im Bezug auf Personalisierung und Privatsphäre bietet. Um MobileSSI in diversen Szenarien
im Alltag als Komponente zum Erfassen und Steigern von Wohlbefinden einsetzen zu können,
wird Rapidprototyping eingesetzt. Dadurch entstehen nicht nur Konfigurationen der Verarbei-
tungsabläufe, sondern auch Nutzerschnittstellen.

In einem ersten Anwendungsszenario wurde das vergnügte Zusammensein in der Gruppe als
Faktor für Wohlbefinden betrachtet. Dazu wurde der Einsatz mobiler Sensorik zur Lacherken-
nung - insbesondere Bewegungs- und Audiodaten - als Indikator für Vergnügen einer Gruppe
sowie ein asynchrones Fusionsverfahren zur Integration möglicherweise zeitversetzter Lacher
mehrerer Personen untersucht. Das Verfahren kam in einem Demonstrator zur Erkennung der
Stimmung in einer Gruppe zum Einsatz.

Als zweites Szenario wurde das Monitoring von gesundheitsrelevantem Verhalten im Alltag
am Beispiel des Trinkverhaltens von Personen betrachtet. Hierzu wurde Trinkaktivität anhand
von mit Smartwatches aufgezeichneten Armbewegungen erkannt. Da es nicht praktikabel ist,
die für das maschinelle Lernen erforderlichen Bewegungsdaten im Nachhinein zu annotieren,
wurde untersucht, wie sich Annotationsprozesse in den Alltag von Personen integrieren las-
sen. Durch den Einsatz von interaktivem maschinellen Lernen in Verbindung mit aktivem Ler-
nen wurde zum einen der Arbeitsaufwand von Personen durch die Auswahl besonders rele-
vanter Daten im Lernprozess verringert. Zum anderen wurde eine Nutzungsschnittstelle für
eine Smartwatch entwickelt, die eine bequeme Korrektur von Systemvorhersagen im Alltag er-
möglicht. Es wurde untersucht, inwieweit der Einsatz des integrierten DrinkWatch Systems im
Alltag von Personen angenommen wird. Hierbei kam Bodystorming zum Einsatz, ein gängiges



Verfahren aus dem Bereich Usability Engineering, das die Berücksichtigung körperlicher Erfah-
rungen betont, um Einsichten zur Entwicklung und zum Einsatz von Technologie zu gewinnen.

In einem dritten Szenario wurde das Potential mobiler Sensorik zur Erfassung möglicher ge-
sundheitsrelevanter Effekte von urbanen Waldstrukturen in Zusammenarbeit mit dem Institut
für Geographie der Universität Augsburg erforscht. Konkret wurde untersucht, ob physiologi-
sche Signale undAudiodaten Aufschluss über die Umgebung und dasWohlbefinden des Nutzers
erlauben. Grundlage bildete eine Modellierung des Klimas anhand von Temperatur und Luft-
feuchtigkeit. Der Beitrag dieser Arbeit beinhaltet den Entwurf und die Umsetzung von Tech-
nologie und Methoden zum Erfassen und Annotieren von umweltbezogenen Daten in alltägli-
chen Situationen und wurde von Nutzern bei Begehungen von Routen mit unterschiedlichen
Bebaungsformen und Bewuchs validiert.

Schlagwörter:
Mobile Verarbeitung sozialer Signale, Affective Computing, Wohlbefinden, Maschinelles
Lernen





Abstract

The ubiquity of smart devices is increasingly shaping our daily lives. Data processing of natural
communication with computers, the goal of Social Signal Processing, is also moving beyond
controlled settings with the use of mobile computers. Instead of executing data collection in
the lab, it is now realized ”in the wild”. Thismeans that data can now be collected, processed and
evaluated in everyday situations. The challenges of this thesis lie on the one hand in classical
Social Signal Processing, transferred into ”the wild”, by studying laughter recognition. On the
other hand challenges go beyond classical Social Signal Processing into affect recognition in
relation to urban environments viewed in local climate zones.

Throughout this thesis MobileSSI, an open source framework for real-time recognition of social
signals is developed. It builds upon the well established SSI framework and thus provides multi-
sensor data-recording, and machine-learning capabilities. MobileSSI brings those features to a
variety of platforms (Android, Linux, Windows) and extends the capabilities of SSI with inter-
active machine learning for increased personalization and privacy. Using rapid prototyping in
configuration and mobile user interfaces, MobileSSI forms the technical contribution, that is
employed throughout different scenarios ”in the wild”, to measure and improve wellbeing.

As a first field of application, group enjoyment was considered as aspect of wellbeing. Mobile
sensors were employed to recognize laughter based on accelerometer and audio data. Asyn-
chronous fusion was used to aggregate laughter events also when they occur staggered. The
technique led to live demonstration of group enjoyment recognition.

Drink activity as representation of health related behavior in everyday living was used as a
second scenario. Smartwatches were used to record and recognize drink activity. Since it is
not feasible to annotate motion data, recorded with smartwatches retrospectively, the annota-
tion process has to be adapted in such a way, that it can be executed ”in the wild”. Therefore,
Interactive machine learning combined with Active Learning was implemented, to limit the la-
beling effort to selected data that has the biggest training effect for the machine learning model.
Moreover, a user interface for a smart watch was created that allows the comfortable correc-
tion of predictions by the system. The evaluation of the system ”in the wild” was realized with
bodystorming by users with a prototype. Bodystorming is a common practice in usability engi-
neering with focus on embodied experience, to foster insights for the design and development
process of technology.

As a third scenario, mobile sensors were used to measure wellbeing in the context of urban
forests in collaboration with the Institute of Geography of the University of Augsburg. In de-
tail, physiological and audio data were analyzed for the recognition of local climate zones and



the users’ wellbeińg. The study is based on models of urban climate (heat, humidity). The con-
tribution of this thesis includes the design and implementation of techniques and methods to
collect and annotate environment-related data ”in the wild” that have been validated with users
walking along routes comprising varying urban structural types.

Keywords:
Mobile Sociale Signal Processing, Affective Computing, Wellbeing, Machine Learning
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Join us now and share the software;

You´ll be free, hackers, you´ll be free.

Join us now and share the software;

You´ll be free, hackers, you´ll be free.

Hoarders can get piles of money,

That is true, hackers, that is true.

But they cannot help their neighbors;

That´s not good, hackers, that´s not good.

When we have enough free software

At our call, hackers, at our call,

We´ll kick out those dirty licenses

Ever more, hackers, ever more.

Join us now and share the software;

You´ll be free, hackers, you´ll be free.

Join us now and share the software;

You´ll be free, hackers, you´ll be free.

Richard Stallman
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Chapter 1.
Introduction

The most profound technologies are those that disappear. They weave themselves

into the fabric of everyday life until they are indistinguishable from it.

– Mark Weisser

Mobile computing has become an integral component of everyday living. Maps printed on
paper today are a rare sight, and the skill to map oneself’s real world position onto the sheet
of paper, that represents an area, is slowly disappearing. Even interpersonal interaction gets
mediated by smart devices, not just by chatting via instant message services but also by online-
services to ”match” people and bring them together.

In technological advancement, speech recognizers, such as Mozilla’s DeepSpeech¹, are stepping
stones to smart watches, that are lacking space, even for virtual keyboards [142]. Audio pro-
cessing shifts the human computer interaction paradigm from active input by the user to active
listening by the computer. At the same time smart devices are brought to situations of natu-
ral human interaction ”in the wild” that computers in labs rarely witnessed, e.g. being in the
pocket while we have dinner together. Subsequently, mobile computing transforms the society,
changes the way we communicate and meet. As a consequence it has prospects of changing
public organization structure, including the health sector [46], which often is summarized un-
der the label of M-Health.

During the COVID-19 crisis the role of those ubiquitous computers can be seen clearly. For one
in apps such as ”Corona Warn App” ² that help individuals in judging their risk of an infection.

¹https://research.mozilla.org/machine-learning/
²https://github.com/corona-warn-app

1

https://research.mozilla.org/machine-learning/
https://github.com/corona-warn-app


2 Chapter 1. Introduction

For another, for data donation such as ”Corona-Datenspende”³ by the Robert Koch Institute, to
scientifically examine the spread of the disease by observing physiological data samples. Both
apps show the importance of the single citizen’s agency regarding his or her data. In case of
the warn app, agency lies in collecting as few data as necessary and working decentralized,
based on a public discourse, and the pro-active donation of data in the case of the ”Corona-
Datenspende” app [191]. While data collection is a topic that comes naturally with mobile
technology, when it concerns advertising and social networks as provided by big corporations,
data collection is viewed critically when used by public organizations. Smart phones are present
when and where a doctor could not. They as well create the opportunity for people to become
more self-responsible. At the same time, perceived privacy, of not having to see a doctor, hides
data-privacy risks involving corporations and insurances.

There is a wide catalog of risks and chances [3] bound to M-Health, the use of mobile-devices
in the health-sector. Gathering user-data to process them on centralized servers seems to be
an inevitable ingredient to modern machine learning solutions, just as much, as the user seems
powerless in the process of creating machine learning models. This lack of power exists since
the user’s data are collected and processed by corporations, without his involvement, and the
result is implemented into systems as intransparently models are created. Furthermore, mobile
applications can advance in respect of predictive, preventive, personalized, participatory and
psycho-cognitive aspects to tackle obstacles in M-Health adoption [82]. In predicting health
risks, behavior change could be motivated in an empathic way, regarding the affective state of
the user. To shape the use of mobile devices according to this perception of M-Health, tools
and work-flows have to be created, with MobileSSI those are of concern to the text ahead. The
research presented in this thesis transfers active sensing as natural interaction in the lab, to
mobile sensing ”in the wild”, viewed in relation to wellbeing. As such this thesis can be seen as
groundwork for M-Health applications.

Emotion and activity recognition is explored as well as recognition of environmental influences
on the body. To identify and integrate the features of complex signals into a recognition pro-
cess, machine learning is a promising and popular approach in state-of-the-art research. The
machine learning process is viewed as a whole within this thesis, from data collection to model
evaluation.

Firstly, multi-modal recognition is adapted to the circumstances ”in the wild” in the realization
of a mobile laughter recognizer based on auditive cues and chest-movement. Asynchronous
fusion is extended to take multiple users into account.

Secondly, the learning process is reshaped to an interactive approach that supports labeling in
the wild, where the recording of ground truth video evidence is impracticable. Furthermore,

³https://corona-datenspende.de/faq/

https://corona-datenspende.de/faq/
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interactive machine learning is happening on device and as such is personalized and decentral-
ized to preserve users’ privacy.

1.1 Research Objectives

The research objectives of this thesis question the role users and their devices play, in the cre-
ation of mobile machine learning models related to wellbeing. Building upon proven technol-
ogy of Social Signal Interpretation in the lab, a mobile solution, MobileSSI is elaborated over
the course of this work. The mobile approach is concerned with affective computing tasks ”in
the wild”. This involves the design of scenarios, spanning different aspects of wellbeing and
tackling different challenges of data-processing on mobile devices.

1.1.1 Rapid Application Development for the Wild

Mobile applications have to cope with varying requirements with respect to sensors and user-
interfaces. To flexibly design the flow of signal processing, an XML-based definition of pro-
cessing pipelines is already used on the desktop. To cope with the additional requirement of
increased user interaction in label acquisition and visualization, rapid prototyping is extended
by the use of Web-based user interfaces. The need for integrating acquisition of data, ground
truth and machine learning has been identified in the field of mobile sensing [111]. Custom
UI is of increased importance not just due to the increased user involvement in the creation
process, but also due to the combination of devices of different form factors. Applications tar-
get distributed ensembles of devices – wrist bands, smart watches, smart phones and tablets –
rather than a single device with a standardized screen size. Since mobile devices often are used
while pursuing a different primary action, those interfaces have to be efficient and tailored to
the task. Web-based interfaces are widespread and highly customizable. They offer the possi-
bility to distribute input, processing and output and thus meet the demand for applicability in
rapid prototyping.

How can rapid prototyping be extended to involve users in mobile processes of labeling, ma-
chine learning and signal processing within different scenarios?

1.1.2 Heterogeneous Ubiquitous Input

Mobile devices are used in diverse environments and contexts, those different scenarios often
require a varying combination of sensors. Microphone and accelerometer might fit one task in
a certain environment, whereas skin conductance and heart rate are the better fit for another.
Sensors help to identify important context – is the user drinking or uncomfortable due to heat
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stress – but can be combined in case of noise or interference on one signal. Fusion of multiple
signals and sensors has the potential to increase reliability not just by increasing redundancy,
but also in making a solution robust in different contexts and situations. Individual sensors and
modalities convey information at different speeds. Widely used fusion algorithms operate at the
level of feature or classifiers, both locked to operate in sync on a per-frame basis. To tackle the
different nature of each signal, individual processing and asynchronous fusion [110] is required.
Furthermore, fusion might not just be used between modalities but between different devices
and persons as well, at a higher level of abstraction. This higher level of abstraction can bring
Mobile Social Signal Processing towards interaction with social behavior, instead of individual
behavior cues. This is considered a key area of advancement by Palaghias et al. [143]. Are
tailored approaches for both fusion and synchronization, tested in stationary environments, of
value in a mobile application context?

1.1.3 On Device Machine Learning

Machine learning on data collected using mobile devices often conflict with users’ privacy.
Cloud based services are considered a major challenge in mobile emotion sensing [198]. By re-
lying on technology that runsmachine-learning processes locally on smart devices and adapting
them for interactive use, critical data has not to be collected centrally or even collected at all.
The involvement of users in the machine learning process is described as interactive machine
learning (iML). Ideally users label their own data and approve the models quality in an evalua-
tion process. Instead of labeling all data, only samples that are of greater value for the learning
process can be selected. As a method for the selection process active learning is implemented
to alleviate the user. As a consequence the user is given an active role within the machine
learning process, running on his device.

To what extent and in which ways can user privacy be provided and improved within the
processing of mobile data on the user’s device?

1.1.4 Wellbeing related to Mobile Contexts

A chance in mobile processing of human related signals is to see the diversity of emotional,
social, behavioral and environmental contexts not as disturbing factor, but as source of pos-
sibilities. For that purpose, studies involving data collection, labeling, machine learning and
demonstration are executed as an empirical objective in this work. The taken method is illus-
trated with the example of laugh recognition, drinking activity recognition and that of environ-
mental wellbeing. Personal preferences in visual scenery are matter of interest in research of
human computer interaction, as demonstrated in the work on route planning regarding visual
preferences by Runge et al. [173]. In this work there has already been a relation between user
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preference and environment, yet the objective measurement of the user’s wellbeing in connec-
tion to environment has still to be developed. Where the surroundings of a city can have a
negative impact on a person’s wellbeing causing stress, other environments, such as forests,
can have a calming effect. One of the objectives of this work is to make wellbeing objectively
measurable in connection to the environment. The aim of the study was to evaluate the de-
pendence of human physiology with different types of vegetation and buildings in the urban
landscape. An interdisciplinary approach was adopted in the realization of the study, in which
physical geography, human geography and computer science worked together.

Can mobile sensing be successfully used in interdisciplinary research on wellbeing in an envi-
ronmental context? To what extent can personal wellbeing be measured in this respect?

1.2 Outline of the Thesis

This thesis is structured as follows, see also Figure 1.1:

• After introducing how this work is situated within the background of Mobile (Section
2.2) Social Signal Processing (Section 2.6) in Chapter 2, ”in the wild” (Section 2.1) it is de-
scribed, what aspects of wellbeing (Section 2.4.1) are used as common thread throughout
this text. Related work can be found in Chapter 3 that is followed by an overview on
the structure and implementation of the MobileSSI framework in Chapter 4.

• In Chapter 5 follows an evaluation of MobileSSI ”in the wild” in the Affective Comput-
ing challenge of laughter-recognition. This reflects the exemplary transition of a core
scenario from the lab into ”the wild”. Video is substituted by acceleration as modality
to accompany audio. Moreover, asynchronous fusion is applied inter personal as well as
multi-modal for a live demonstration.

• With Chapter 6 the machine-learning capabilities of MobileSSI are extended to an in-
teractive implementation of drink activity recognition. Data-labeling is realized with the
support of a smart scale, evaluation is done comparing simulations of active learners to
a fully trained model for drink-activity recognition. The chapter concludes with remarks
on first user experiences of the interactive machine learning prototype.

• The influence of different environments and their respective local climate zone are exam-
ined usingmachine-learning on physiological data inChapter 7. Self-assessed wellbeing
is used as one basis of a machine learning model, while GPS-based segmentation of the
traversed area is another source of labels for machine learning models. Results of a fusion
of Skin Conductance and Heart Rate signals are presented.
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• Concluding remarks can be found in Chapter 8 summing up results of the individual
chapters related to each other and the research objectives.
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Figure 1.1: Outline of this thesis.
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Chapter 2.
Background

This Chapter gives an overview on topics, that interact with the Mobile Social Signal Processing
as a field of research and a method, as it is understood in this thesis. As such, it goes beyond
my publications to date.

First there is research ”in the wild”, that examines phenomena, as they appear in real life, in-
stead of recreating these phenomena in a controlled lab environment. Mobile Computing forms
the technological foundation as well as the broader field of research, that encapsulates Social
Signal Processing on mobile devices. It follows a model of wellbeing that connects to Affective
Computing and Social Signal Processing.

2.1 In the Wild

The phrase ”in the wild” is seen as contrary to ”In the lab” and has its roots within cognitive
psychology. Here observations in situ, made clear that models created in the lab did not hold
up with processes, as they take place in real life [92]. Going beyond making observations ”in
the wild” is Yvonne Roger’s approach [169] of developing ”in the wild”. Here designs, applica-
tions and solutions are elaborated with target audience within the target scenario. In the field
of emotion recognition, ”in the wild” [206] is contrasted to ”in the lab” as well. Here the lab
has advantages of higher quality setups and data, that often contain acted or alienated emo-
tions. There are data sets of different kinds, that would be labeled as ”in the wild”. To fulfill
the high amount of data to train deep artificial neural networks, data sets are generated from
online video streaming services, containing self recorded data that are not acted. They might
be described as data ”in the wild”. Viewed from the perspective of user interfaces (UI) comput-
ing systems nowadays are relying on many sensors, where video is only one, and not the most
available one. A phone might still acquire information and run an application when carried in
the pocket or while the user sleeps. Here acceleration and audio become the data of greater im-
portance ”in the wild”. According data sets are are also recorded e.g. by the community doing

9



10 Chapter 2. Background

activity recognition or those ”big tech” companies, labeling private conversations recorded by
their services to improve their speech recognition models. Since this thesis deals with work on
a mobile machine learning back-end for wellbeing recognition, rather than full-blown applica-
tions, designing ”in the wild” is not a focus directly. Starting out with data sets recorded ”in
the wild”, it extents to approaches generating models ”in the wild”.

2.2 Challenges and Chances in Mobile Computing

With the widespread adoption of smart devices a central aspect of ubiquitous computing as de-
scribed byWeiser et al. [225] has become part of everyday living. Miniaturization of computers,
better power supply with increased efficiency as well as advances in usability are important fac-
tors of the smart phones success.

When developing applications for everyday living, there are two factors that come to mind. Is
it technically possible to run an application long enough, ideally a full day without charging?
Is the software otherwise usable under the varying circumstances of every day living?

2.2.1 Energy-Efficiency

While Energy efficiency is necessary for long-term studies in science as well as deployed ap-
plications within every day living, advances are made in hardware (Moore’s Law), that enable
us to run today’s complex computing tasks on a not so distant future’s generation of smart
devices. A sufficient energy efficiency is a necessity to be able to use a mobile device in the
daily routine. .

2.2.2 Loss of Control

Limited user control due to increasingly restricted input is an obvious matter of human com-
puter interaction. At a lower level the software in mobile contexts is confronted with more
complex circumstances, not foreseeable for the developer [52]. The user and also the devel-
oper is restricted in his device usage further, by the software-setup delivered in modern smart
phones:

• environmental context influences input directly as in auditory noise, overly bright sun-
light or time restrictions when on the go

• changing environmentswith different noise levels or characteristics of bodymotionwhile
walking or using an a train
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• application use might not be the user’s be primary action when the phone is used for
pedestrian navigation

• limitations due to operating system behavior (killing background processes for energy
saving)

2.3 Persuasive Technologies

With accompanying us in everyday situations, mobile computing also holds the possibility
to interact with our behavior unobtrusively [71]. In terms of M-health, immediate access to
health-information without constraints of time or place is seen as a benefit, as can improved
self-management of those suffering from chronic diseases [3]. Persuasive technologies such as
gamification [122] and nudging [120] as well as reflective design [190] promise the creation of
technology that invokes positive behavior change towards a healthier lifestyle, e.g. in support-
ing people to quit smoking [59].

M-Health chances an challenges can be structured as P5, as suggested by Gorini et al. [82].
This aspects of advancement over today’s intrinsic properties of mobile technology promise a
reduction in adoption issues.

• Predictive

• Personalized

• Preventive

• Participatory

• Psycho-Cognitive

Mobile Social Signal Processing, involving on-device machine learning can be used to create
predictive, personalized and participatory apps. Predictive as in machine learning predicting
patient’s future health state and could then be used to prevent a disease by suggesting and
monitoring behavioral changes. Involving the user into the creation of machine learning solu-
tions leads to both user participation and personalization. SinceMobile Social Signal Processing
handles input, and little influence on the app’s content and behavior, its contribution to psycho-
cognitive is limited by providing the extraction of the users’ state of wellbeing.

A pivotal idea to this thesis is it to create technology that takes the stand of its user. There are a
number of stakeholders involved in using mobile software with reference to health: data-driven
companies, governments, health insurances, physicians and finally the user himself.
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With the decrease of direct input and goals such as power saving, mobile devices can be viewed
as agents as well.

Increasing the individuals’ autarky [129] with respect to their data and the knowledge-transfer
to his device, might turn out to reach goals in society that are impossible to reach otherwise.
As a consequence of labeling data afterwards by foreigners, instead of asking the originators of
the data for labels, can lead to misinterpretation or loss in information.

The circumstance, that machine-learning can happen locally in a feedback-loop with the user,
that evaluates his model and decides what to share, might also increase the overall quality
beyond what can be extracted from individuals participating passively in the process.

This leads to a conflict of interestswithin contemporary approaches tomobilemachine-learning,
where data are gathered on companies servers and knowledge is extracted from people via so-
cial networks and observed (online) behavior.

While capabilities exist, the interest of companies or states in terms of technology is wrongly
seen as superior to the interest of the patronized individual, rather than being based on collab-
oration and common goals.

Viewing the owner, also represented through his device, as autarkic in the sense of:

• agency – taking part actively in the process of using an M-health solution

• collaboration – collaborating in the creation of M-health solutions involving the users’
data

• data ownership – seeing the user as originator and rightful owner of his data

enables progress in health related mobile computing, to be a democratic dialogue of self re-
sponsible participants. Thus, a technological transition is proclaimed towards decentralized
infrastructure that influences behavior also towards an active participation and technological
awareness.

2.4 Wellbeing

Wellbeing has many facets, whereof only a few are topic within the scope of this thesis. While
wellbeing might be defined as a state of good health and fulfillment, it again is a key feature
in the World Health Organizations definition of health as a state of complete wellbeing [139].
The narrowest definition thus focuses on body and mind, from there a social aspect of wellbe-
ing commonly is added, this is common ground to many wellbeing indices [121]. The addition
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of social phenomena, is a step beyond the body and can be accompanied by a person’s sur-
rounding environment. To link individual components of wellbeing, and give an entry-point
for interactivemedia, a behavioral aspect of wellbeing is added to this thesis model of wellbeing.

Thus, the wellbeing model structuring this work is divided in four parts. Starting with emo-
tional wellbeing, that is body and self-oriented. Drawing on the potential of mobile devices to
support us in everyday living the second building block is added focusing on behavior. Extend-
ing the view beyond one person concludes the wellbeing model in this work, by adding a social
component and finally environmental wellbeing.

Figure 2.1: Wellbeing model underlying this thesis

”Action may not always bring happiness, but there is no happiness without action.” – William
James

2.4.1 Emotional Wellbeing

Deriving from a definition of emotions by Plutchik [154], gives an impression of the broad spec-
trum concepts of emotions might cover: ”An emotion is defined as an inferred complex sequence
of reactions to a stimulus, and includes cognitive evaluations, subjective changes, automatic and
neural arousal, impulses to action, and behavior designed to have an effect upon the stimulus that
initiated the complex sequence.”

One can find the attempt of a feedback loop by the human acting emotionally and the stimulus.
The scope of the emotion starts with neuronal arousal and subjective changes and extends to
behaviors that have an intended effect on the stimulus. Where the behavior is what we witness,
the inner state of arousal and subjective change is what we infer.

Thus, be it the right mix of emotions or the amount of positive emotions we show, emotions
are central to the comprehension of a person’s wellbeing [189]. The scope of the emotion starts
with neuronal arousal and subjective changes and extends to behaviors that have an intended
effect on the stimulus. Where the behavior is what we witness, the inner state of arousal and
subjective change is what we infer [18].. While smiling and laughing are important behav-
ioral markers for detecting a persons wellbeing, they also contribute to a person’s wellbeing
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by themselves. The concept of positive body expression, such smiling being the cause, not the
consequence of positive emotions [94] has fueled applications in HCI [211] and thus form an
important basis for related work and work presented in this thesis. Computers are a recent
addition to the communication partners a person can have, which brings us to social aspects of
wellbeing.

2.4.2 Social Wellbeing

In trying to define social wellbeing, loneliness could be seen as an antagonist of social wellbeing
associated with family and community ties [88] within the concept of social capital.

This relates to mobile processing of social signals, since Computers are bringing people to-
gether successfully and contribute to our social behavior, not at last when looking at social
networks. Then again the use of social network correlates with loneliness [30], also social be-
havior towards machines can be harmful [4]. This thesis’ view on social behavior lies in another
granularity though, based on its roots in social signal processing, natural human-human com-
munication is a major inspiration. Instead of taking written, asynchronous communication
or telecommunication as reference, the communication that goes with software prototypes of
the work ahead are face-to-face, through audio or motion. This relates to research on how
much we talk with whom in the ”conversations monitor” [170] by Rossi et al. Reconnecting to
emotional wellbeing, laughter not merely is an indicator of happiness but in contagious way
highly social. On a footnote, laughter is flooding our body with hormones [21] that animate
our appetite, which integrates well with the social aspect of eating and drinking that are also
addressed within this thesis. While social wellbeing might be understood as a state, simple ac-
tions such as having a drink together can influence this social wellbeing, pronouncing the role
of our behavior.

2.4.3 Behavioral Wellbeing

Following the thought by William James [94], that action is a requirement for wellbeing, be-
havior is the connecting point in this thesis’ wellbeing model. One could argue, that drinking
sufficient water, or non-alcoholic fluid equivalent, as well as exercising one’s body should be
categorized as physical wellbeing. Rather than distinguishing in mental and physical phenom-
ena that can be seen as reaction to stimuli, contributing factors are identified. Healthy behavior
and the change towards it is a chance of persuasive technology. This is underlined by B.J. Fogg
[71] to whom behavior change is ”bespoken to have the potential of reshaping our live to be health-
ier and more fulfilled”. Applications might be nudging [7] the user to cope with digital overload
[137]. Nudging here is a tool enabling designs that influence the user subliminal towards a god
decision. The ”HappinessCounter” by Rekimoto et al. [211], is pervading everyday living with
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the aim of changing our behavior in a positive way. It is a fridge that only opens to the smiling.
Behavior also is of interest to the work ahead since it conveys action, that again is related to
interaction with a computer system. This lets us sketch a future were the change towards a
positive state in wellbeing and interaction with an ubiquitous computing system is one. The
health application on our phone detects we are walking, carrying it is all it needs to interact
with the system, the application estimates the benefit and might incite further action.

2.4.4 Environmental Wellbeing

Motivating people to action can be viewed as a central point, that makes an environment ben-
eficial to a people’s wellbeing. That is an perspective taken by using ”Walkability” [74] as
measurand, where grade to which an environment invites to walk through it, is captured. Lim-
iting the set of environments to those, that are beneficial to our health, leads to therapeutic
landscapes. Therapeutic landscapes are defined by Gesler as

” …those changing places, settings, situations, locations and milieus that encompass the physical,
psychological and social environments associated with treatment or healing; they are reputed to
have an enduring reputation for achieving physical, mental, and spiritual healing” [78]

Therapeutic landscapes, with the claim to healing can be found in spas, well-chosen places that
are not necessarily nearby. While they are an important argument in favor of environments
capability to improve our wellbeing, the places examined within the scope of this work are
more ordinary and immediate accessible to a larger population.

Given the importance of multi-modality in this thesis, different channels in that an environment
influence a person’s wellbeing will be underlined.

That as much as the view from a window can have a significant impact on a patients health was
found in research byUlrich et al. [212]. This supports thework of Parsons et al. on scenic beauty
[146], where is argued that, scenic aesthetic environments are holistic in an environmental
psychological and cognitive scientific view, and therefore sustainable.

Beyond the visual scenery there are several modalities that on the one hand define a place and
on the other hand make it possible to sense a place - be it using human or machine percep-
tion. An impression of how physical, cultural and embodied levels might be defined and sensed
in soundscapes can be found in the following passage by George Revill: ”Sounds interact and
mask each other high or low, loud or soft, incessant or fugitive. In spatial terms, heard sounds give
embodied sensation to properties of depth, distance and proximity, suggesting feelings of clarity,
delicacy and intimacy, transforming and animating the experience. Sounds envelope and rever-
berate deeply within bodies in ways which are specific both to their phenomenal properties and to
historically constituted modes of listening, under- standing and interpretation.” [165]
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Soundscapes are a field of interest in ubiquitous computing [171], where classes ranging from
forest to railway station are recognized via machine learning as well as brushing teeth and
raining.

While noise might not be the first association that comes to mindwith pollution, the connection
of pollution and air quality [31]might bemore common. Modern cities have to fight smog, while
spas have air quality as a key feature for recreation. Mobile computing can at first be used to
sense air quality [87] and consequently might consider it as information while interacting with
a user.

Another sensory-channel through which an environment affects us is heat [123]. While it is
not a typical modality researched as a social signal, it is maybe the most direct link to climate.
Climatewithin local zones, varies depending on buildings and vegetation found in that zone [19,
202].

When viewing environments as natural resources one might argue that they have to be guarded
against consumption through humans. The ”One Health” [47] combines the health of animals,
humans and vegetation in an overall concept while maintaining sustainability. Future applica-
tions might consider a holistic approach to environmental wellbeing as well.

2.5 Affect Recognition

Affective Computing is referred to by Picard as computing that relates to, arises from, or in-
fluences emotion, also discriminated into the two classes of computers ”being able recognize
emotion, and to induce emotion” [148]. Affect Recognition focuses on the first of those two
classes. Social Cues such as crying or laughing build a foundation of affect recognition, and the
input side of Affective Computing. It touches on Social Signal Processing (SSP), described in
the next section, in that it aims at achieving a natural handling of emotions in human computer
interaction. As such it intersects with SSP, that has all aspects of natural conversation in focus.
Next to input and output per se, an abstracted understanding of emotions is essential. This
understanding is reflected in models of emotions, usually theoretical at first and implemented
in programming logic finally.

Since emotions and the adjoined measurement of wellbeing are a cornerstone of this thesis, an
introduction to models of emotions can be found in the following.

2.5.1 Models of Emotions

While it is conclusive, that affective computers have to sense emotions, understanding in em-
pirical sciences goes hand in hand with measurements. Thus models of emotions were formed
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and validated via measurements even as early as 1928. William Moulton Marston used blood
pressure to find out if a person was mad or excited [119]. This resulted in his model of emotions
described by Dominance (D), Inducement (I), Submission (S), and Compliance (C) and resulting
into two dimensions: positivity and control. This contrasts in structure from simple models of
emotion that start from discrete basic emotions such as acceptance, anger, anticipation, disgust,
joy, fear, sadness and surprise [140, 154], but is already similar to the valence arousal model by
Russell et al. [174].

While Marston reflects on submission versus compliance and the consequences for a society
as a whole, Russell’s perspective is more focused on the individuum. Nonetheless there is a
continuity, e.g. dominance as axis in a multi-dimensional, continuous space of emotions [175].

Alignment of discrete emotions in that space might vary from culture to culture and also on
the emotion and its term. Focusing on basic emotions [57] promises robustness e.g. across
cultures. From a practical standpoint continuous spaces are sometimes divided into discrete
classes for valence it might be: ”positve” ”neutral” ”negativ” to cover a broader emotional space
than discrete emotions such as ”happy” and ”angry”. An overview on computational models of
emotions can be found in the work of Marsella et al. [118].

Annotation in a three dimensional space of valence arousal and dominance is a demanding task
that requires a tool. A contemporary approach to emotion-annotation unifying discrete emo-
tions, multiple dimensions and supplementary annotation in free-form, is the Geneva Emotion
Wheel [176] in Figure 2.2. Noteworthy here is the stance of the observer. Am I observing my-

Figure 2.2: Geneva Emotion Wheel 3.0 [176] (”no emotion felt” and ”other emotion felt” are additional options of
the Geneva Emotion Wheel missing from this Figure)

self or is another person doing the job? Is the aim to design a system that can recognize what an
by-stander would be able to see, or is self-perception the target, so where lies the ground truth?
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The capturing of emotional states is an important ingredient to SSP and Affective Computing.
This can happen by:

1. self report e.g. using the Geneva Emotion Wheel in Figure 2.2,

2. labeling by one or multiple experts or

3. retrieving the label information directly from the stimulus that induced the situation that
was recorded.

With a shift to ”the wild” it is increasingly hard to have recorded data, that speak enough for
themselves to make option 2. viable. Option 3. is also better suited for lab settings where
environment and stimuli can be controlled. Self-report (1.) therefore is the obvious choice for
mobile labeling processes, not restricted to emotions only. In a mobile setting it might be desir-
able to simplify the annotation process and therefore reduce the complexity of the underlying
model. Here valence [14] is a favorable choice for an overall impression of the user’s wellbeing,
since it is a component that can be found in most models of emotion. Thus it is employed later
on in Chapter 7.

2.6 Social Signal Processing

The community of Social Signal Processing (SSP) [147] is driven by the idea of natural human
communicationwith computers. Thus, one focus lies in analyzing human communication, iden-
tifying howmessages are transmitted. The obvious here is the spoken word procesed by speech
recognition that is a field of research by itself. Speech, at closer look, is accompanied in natural
communication by additional channels, referred to as non verbal communication. Non-verbal
communication can by itself transmit meaning, underline or change themeaning of verbal com-
munication. For a computer to become a more natural communication partner it has to sense
actively rather than passively waiting for instructions. The active sensing is realized via dig-
ital signal processing and in most contemporary cases uses machine learning for information
extraction.

2.6.1 Social Cues

To be able to process conversations automatically, the stream is broken down into a series
of events. Those events are named behavioral or social cues, since they convey a part of the
information that can be extracted by combining all cues [58, 217].

As such, a social cue is not an entity with clear boundaries and content, but rather a beat that
overlaps with others, a modifier for other information channels or a hierarchical part of a larger
construct, e.g. a joke.
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Those cues can be categorized into five different types of signals they are sending:

• State of emotion: cognitive, attitude.

• Manipulators: towards the environment or oneself.

• Cultural emblems: common only in a certain cultural circle, such as ”high five”.

• Illustrators: underlining information transmitted in other channels of communication.

• Regulators: affirm other communication partners or indicate turn-taking.

Verbal communication is naturally combined with non verbal cues that can fulfill different roles
in changing meaning or organizing flow of communication. For an orientation towards wellbe-
ing the emotional and cognitive state of a user can be considered the most valuable information.

2.6.2 Role of Context

A further aspect of natural conversation is, that it is not necessarily self-contained. Next to
aspects of nonverbal communication that manipulates or supplements explicitly spoken com-
munication, there is a wide range of context a conversation might refer to. This is clear within
a task-oriented dialogue [36], where the task defines requirements ”slots” that have to be filled
and the user’s intents can be determined. In the wild contexts are richer and more fluid. Social
interaction can vary depending on environment and main activity, e.g. walking or drinking,
but also depending on the emotional state.

2.6.3 Modalities

Thefindings ofMcGurk [124] led to relying onmultiple modalities when analyzing human com-
munication. In case of ”hearing lips and seeing voices”, visual cues are examined in combination
to voice. By combining lip-movement not fitting the original ”ba” but ”ga” our auditive per-
ception seems to adapt to ”hear” ”da”, a mix from both senses. Consequently, the interleaving
of different senses is an important part of our perception. Since SSP tries to engage computers
in natural conversation, it should not rely on one sense also. The information processed by a
single channel of human communication typically is called a modality.

Processing a multitude of modalities, rather than a single one, also promises advantages in re-
liability. In the extreme one information channel is missing completely, e.g. visual input due
to bad lighting condition, that does not lead to information loss since the other modality, e.g.
audio, transmits information still. The modalities might cooperate by redundancy or comple-
mentary as illustrated by André et al. [8]. To improve recognition, multiple modalities can be
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combined in a fusion process. Wagner et al. [220] moreover discuss the more complicated rela-
tionship of multiple modalities, on natural data, due to contradicting social cues. Similarly the
cooperation of several people might support or disrupt each other. Thus, in scenarios involving
a group rather than a single person, the relation of individuals’ behavior e.g. synchrony [214]
can convey social cues.

2.6.4 Corpora

To develop and test SSP algorithms, data collections are required. Those data collections are
called corpus. A single recording from a sensor consists of samples, since analogue signals
have to be digitalized into a sequence of discrete values. Sensors can be sporadic by sending an
event for every sample or using a fixed sample-rate, generating samples regularly at every even
time-interval. Different sensors’ data might be recorded in different tracks. All recordings that
happened in one go form a session. The people involved in the recordings are usually called
user but they might take different roles.

The recorded data have to be annotated with experts’ knowledge based on a ground-truth, that
might be extracted by viewing audio-visual recordings or by observations. Those annotations
can be done in different schemes e.g. as continuous numbers on different axis (e.g. for regression
learning), per defined labels for classification or as free annotation. The process of labeling
might be executed by several annotators and lead to a gold standard.

Corpora are indispensable for research, especially as long as it has an explorational component
searching for new solutions. This has to be distinguished from final products and later stages
where sharing aggregated knowledge in models rather than full data collections is a viable
option [234]. Corpora could be basis for scientific methods other than Social Signal Processing,
e.g, manual transcription, the further steps along the process, namely training distinguish SSP
further from other approaches.

2.6.5 Recognition Pipelines & Training

Roughly, a machine learning system is composed of two phases, training and recognition. A
recognition pipeline that is running in real-time is important to be able to interact with the user.
Pipelines name graphs of data processing flow, where different stages of the process can happen
in parallel. Thus new sensor data can be recorded while old sensor data is still processed, e.g.
in a machine learning model for classification.

The machine learning workflow is necessary, to create the model used within that recognition
pipeline.

V Sensor
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V Filter & Features

V Classifier

At the beginning of a recognition pipeline, a sensor converts a continuous, analogue signal into
a discrete digital signal. This is processed using filters and feature extraction to be fed into a
classifier that extracts information from the data stream.

The classifier contains a model that resulted from a machine learning workflow. First in that
workflow is the recording, usually done with the same sensor that would be used in the recog-
nition pipeline.

V Record

V Label

V Learn

The data have to be labeled with the information, the classifier should extract later on. Usually
the labeling is based on a ground truth from which annotations are created by one or more
experts. In a training process the machine learning model is created, that later will be attached
to the classifier. Part of the training is also testing or evaluating to judge the quality of the
model before deployment.

With multiple sensors and modalities that are fused at different stages of the pipeline and the
combination of recognition and learning processes, the workflow is reshaped later on in this
thesis. Also training, evaluation and recognition are interleaved.

For implementation details refer to Section 4, an outline can be found at the end of Section 3.

2.6.6 Real-Time Recognition

For user interaction systems have to be designed to rely on the current data instead of a whole
data-collection. This means, that processing takes place on a stream of data, without the ability
to look far into the future or to access all old data, but working iteratively.

Typically this is realized in the recognition process by using a sliding window approach. Data
are cut into chunks of the moving part ”frame” and an overlapping part ”delta” or ”context”.
Thus, a result is presented every frame and creates a responsive system to interact with. This
does not mean that hard time constraints are given and therefore processes consuming more
compute time will not be interrupted. A slow system thus might get increasingly inresponsive,
as the work load piles up.

Offline processing enables a detailed analysis of data, without the need for high performance
and restrictions regarding random access on the processed corpus and is used in several soft-
ware solutions such as Praat [27].
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2.6.7 Incremental Learning

While real-time recognition is a common approach in SSP, the training process usually happens
offline. In incremental-learning, training does happen in smaller batches, without the possibil-
ity to iterate over the whole data collection. Offline, models are often trained in one go, without
warm-starting on an already existent model nor is the process interactive, incremental learning
does not need to preserve all data that result into a model and enable training while observing,
in cases where recording of a ground truth is hard. While data collections could be created with
annotations from observations, incremental learning has the advantage to also enable iterative
evaluation in place. Thus, systems based on machine learning can be more agile.

2.6.8 Social Signal Processing as Methodological Approach

In summary, SSP provides a framework to extract information from natural social behavior via
sensors. This goes beyond mere factual structure but also involves affect. Human behavior
is induced via study design, e.g. causing stress via a Stroop-Test [164], recorded and anno-
tated. As such SSP usually provides a wider believable context to the particular behavior that
forms the research objective, and strives for real world applicability, also by providing real-time
feedback. Those methodological characteristics are common in Chapters 5, 6 and 7, while the
focus is extended from social cues to behavior and wellbeing touching on Affect and Activity
Recognition.
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Figure 3.1: Mobile Lovers (Modern Communication) based loosely on work by Banksy.

Mobile Social Signal Processing (MSSP) at first is the continuation of Social Signal Processing on
mobile hardware. Hardware evolution and miniaturization enables Pocket-PCs to handle the
workload that once needed desktop or main-frame machines. For the study of using natural
communication towards computers, mobile phones seem a obvious choice, since they accom-

23
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pany us ”in the wild”, where people interact naturally. Unobtrusively of devices, sensors and
the sensing-setup has to be considered when examining natural behavior ”in the wild”. This is
important e.g to not restrict natural motion by wires or weight.

This Chapter embeds my contributions in a wider context of other approaches to communica-
tion channels and goes beyond my publications to date.

There are two sides to combining SSP and Mobile Computing. Multimodal interfaces [142]
are a better fit to the requirements of changing contexts, than traditional input. Also, natural
communication has become more digital by itself [216]. We might even go so far as text each
other even if we are in the same room, or make a phone call instead of searching for someone
analogously at a crowded place. Consequently, digital communication is studied as social signal
by a variety of approaches to Social Signal Processing on mobile devices that are e.g. examined
by research of Palaghias et al. [143] and outlined by Vinciarelli et al. [218].

Mobile Affective Computing [155] addresses challenges ranging from detection of emotional
states to personality trades.

Mobile sensing technology is considered to have a key role in studying social factors in behavor
change towards a healthier life-style [2]. Aharony et al presented a year-long study in a lving-
laboratory monitoring physical activity as well as digital media use, while presenting subjects
with incentives to engage in more pyhsical activity.

3.1 Communication Channels in Mobile Social Signal Processing

While the work at hand considers only information from sensors (see 3.1) for the extraction
of social clues, the broader picture of Mobile Social Signal Processing, it is embedded in, is
presented in the following. The taken approach thus can be motivated and defined. In the
following an overview on communication channels inMSSP aswell as further challengeswithin
environmental contexts, affect recognition and current research topics with shared goals such
as crowd sensing. This chapter is concluded by presenting frameworks developed for MSSP and
their features in relation to MobileSSI.

Meta Data

Starting from a high level of abstraction, there are approaches inMobile Social Signal Processing
integrating meta data as data source. Those are attributes raw data, instead of direct streams of
information. Meta data might e.g. be how often calls were made and of what duration. Which
app was used over what amount of time [181]. Also contacts and chat protocols can be source
of meta data, where not the actual content is subject to examination, but rather statistic figures:
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how many contacts, how is the variance in communication frequency within those contacts
and how dense are the contacts interlinked. Those data are readily available in digital form and
can therefore be parsed easily by applications as done by Burke et al., who modeled aspects of
social capital depending on social network parameters such as friend count [30]. Meta data can
also be found in application usage and call logs that are considered e.g. in boredom detection
by Pielot et al. [150]. Meta data typically are restricted to digital communication and due to
its slow evolvement has not to be processed in real-time. Thus, it has not been subject to the
studies and implementation of this work

Text

While text messages also are already digital, in contrast to spoken language for example, natural
language processing, that is needed to gather digital meaning from natural conversations, is a
difficult problem to solve. Personal communication, ”in the wild” is increasingly handled via
instant message services, that can be linked to locations. Consequently it is relevant to mobile
processing of social interaction. It is common for MSSP-Frameworks to use text messages for
information retrieval [130]. Furthermore, there is a variety of work on sentiment analysis, e.g.
using emoticons as labels to classify the twitter posts based on word sequences or n-grams
as realized by Go et al. [81]. The sentiment analysis of text messages extracted from social
networks also serves to investigate the influence of urban greenery on the emotions of visitors.
Studies based on data from New York and San Francisco show, that visitors of urban green are
not only happier, compared to people in other places of town, but also stay happier for several
hours [153, 184].

Network Activity

In a more indirect manner, mobile devices can be used to identify people (if WiFi or Bluetooth
is enabled) and calculate their position [97] in relation to other objects [99] or within places.
While network activity can be viewed as an abstract representation of human behavior, in a
similar manner to meta data or written text, it might also seen as a sensor to measure natural
human behavior, e.g. the proximity [33].

Social Signals not Involving Processing of Digital (Social) Media

As mentioned beforehand, while introducing Social Signal Processing, there is a variety of ”so-
cial cues” such as laughter, that are consequently basic concepts in Mobile Social Signal Pro-
cessing as well.
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Those cues are transmitted in different communication channels. Underlining of a message can
be realized via a hand gesture and thus body motion or paralinguistic in speaking up. Both
can be captured via mobile devices. In the following an overview is given on body and face
related social signals, paralinguistics and physiology. With physical activity a different concept
is presented that is less focused on social interaction but delivers tools for processing of the
same data on mobile devices.

Body Related Social Signals

Body related signals are presented in the following from the least fine granular view of prox-
emics to postures and more fine granular gestures. Proxemics form a high abstraction, since
persons are looked at not as a detailed state of body, by their mere position. Distances between
people underlie continuous negotiation (how close am I to you?) and thus are a relevant social
signal. The space between people depends not only on their relation towards each other but the
social frame and place they inhabit also, imagine a crowded market compared to a few people
waiting for the bus. The proximity is an important measure also for face to face communication
and considered a key variable in the spreading of behavior change [30]. Proxemity might be
sensed via dedicated devices [34] or using signal strength (RSSI) of wireless networks [33] such
as Bluetooth Low Energy. This has become relevant recently e.g. within Corona warn apps,
since proximity influences the spread of the COVID-19 virus – thus the recommendation of
”social distance”.

Back to social signals as a whole, not only the position per se is of importance, but also how
our bodies are positioned in postures. Are we leaned to or from each other, turned sideways or
facing each other.

Posture as social expression might contain crossed arms as closed, and dangling arms as open
position and thus adjoin with gestures. To a certain degree this information can be extracted
using position sensors in mobile devices [90].

Posture next to inter personal communication also is relevant to our state of wellbeing. Soni-
fication of the posture of a persons back can raise awareness the person’s physical capabilities
within a rehabilitation process [199]. In this case posture is not used explicitly as a social cue
within a dialogue and as such is not immediate matter of interest in SSP. Yet postures are a part
of noverbal social behavior and acknowledged as social signal.

While postures are more static, gestures typically capture movement. Gestures are important
ingredients to lively conversation and are connected to personality trades such as extroversion
[72] or culture[60]. In this work gestures have to be distinguished from motion-symbols that
trigger features in applications such as mouse-gestures [172]. On smart devices [20] the ges-
tures in MSSP tend to be between the extremes of application defined and natural interpersonal
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behavior. Gestures follow a similar sequence in every execution and often are matched with
pre-recorded gestures using approaches such as FastDTW [178]. Furthermore a single gesture
is limited to a part of the body in contrast to postures, and therefore a motion tracking device
monitoring a single point can be used for gesture recognition, e.g. an accelerometer. Gestures
are a common concept that is easy to grasp and implement when abstracted to drawing a cir-
cle, yet complex in the natural interaction with verbal communication and consequently still
subject to research in Human Computer Interaction [177].

Face Related Social Signals

Compared to stationary machines that face us most of the time during interaction and thus
are able to recognize our mimic, the role of mimic changes when using mobile devices. Since
mobile devices accompany us on the body most of the time, they might capture more of our
everyday life, but might capture less of our countenance, than traditional personal computers.
Even thoughmobile phones are equippedwith extra sensory namely front cameras, they have to
rely on other channels of communication, e.g. motion, most of the time, since they accompany
us in our pocket or hand bag. Face related signals yet most commonly are extracted from Image
data. Even though video processing is a resource intensive task, recent development has led to
real-time recognition of facial landmarks [10] on mobile devices [114].

A further face related social signal is Gaze: Is the dialogue partner interested in the current
topic, is he lost in thought? Whom do we intend to take the next turn within conversation.
Similar to mimic, the typical use of smart devices in analogue communication scenarios, limits
smart devices ability to capture gaze. Nonetheless there is a trend in MSSP to detect gaze
without using hardware especially build for that purpose [41]. To employ gaze detection on
the go, smart goggles are developed and considered [209], that enable gaze recognition without
bulky devices, that limit users’ movement.

Paralinguistics

Speech recognition might be seen as pre-processing for text and sentiment analysis in natural
language processing, since it generates text from audio. Social Signal Processing often focuses
on information that is lost when just considering a transcript from speech to text. For example,
intonation, prosody, gaps and fillings, along with laughter, can provide insights into mood,
personality [43, 91, 117] and a variety of social aspects in speech. Those aspects of behavior
distinguish verbal social cues from neutral speech, as used by a reporter reading the news on
TV.

Even though the point of view changes from sitting opposite of each other, to being worn on
the body for most of the time, in the use of phones compared to the desktop computers, speech
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stays a reliable communication channel and therefore a modality of central interest in Mobile
Social Signal Processing.

Physiology

Physiology is rarely considered a natural channel of communication, although we can cer-
tainly see when someone sweats under stress, or hear when a person’s heartbeat or breathing
increases in intimate situations. This might be due to the fact that we rarely use physiologi-
cal channels consciously. Nonetheless, physiology can be used to deduct a persons state, that
is relevant within a social context, and therefore is considered part of SSP. Wearables (smart
watches, fitness-bands) have skin contact and thus, physiological signals are becoming a com-
mon input in commercial-grade devices e.g. in relation to sports training and physical activity.
Using physiology for emotion recognition has been realized early on by Picard et al. [149] based
on muscle activity (EMG), pulse (BVP), skin conductance (SC) and respiration (RSP). Physio-
logical data are hard to interpret, compared to video since they do not stand for themselves but
need context and medical knowledge to interpret. Morover, physiological signals have a ten-
dency to motion artifacts, if they are form an unobtrusive source without glued electrodes. This
is especially the case in commercial grade fitness wrist bands, that are relevant for measuring
wellbeing on the go. Thus, BVP commercial grade physiological signal acquisition has been
integrated into MSSP-frameworks for unobstrusive sensing [103], while bulkier GSR and ECG,
requiring adhesive electrode [12, 61] are used due to the higher data quality. Communication
in both cases is typically realized via Bluetooth. Compared to audio the data acquisition is a
restriction only to the wearer’s privacy and not the conversation partner’s privacy as well.

Physical Activity

As already indicated, social cues, such as postures or gestures, can be seen in a broader context
as activities of daily living. Activities such as drinking and walking or sitting might accompany
conversation but can occur disconnected as well without being a social cue. Activities in the
sense of activity recognition [162] can be seen as a super-set of both postures and gestures,
combined with all not necessarily social activities and thus do not integrate into the concept of
communication channels and social cues. Brushing your teeth for instance can be recognized
well using a wrist worn accelerometer but is rarely a social activity. Activity Recognition has
been integrated into MSSP-frameworks to provide applications with context such as, if the user
is walking [12, 12, 103, 112, 130, 224].

Where as physiological signals are influenced mainly by physical activity and therefore can be
used in activity recognition [233], they are associated and used to detect mental load also in
recognition of emotions, mood or stress [204].
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3.2 Emotions, Mood and Stress

Rather than being communication channels, emotions mood and stress are concepts on a higher
level of abstraction that can be traced via different modalities and communication channels.
This makes them a topic in MSSP nonetheless, since emotions are expressed via prosody in par-
alinguistics and here are highly relevant information in conversations. Emotions recognition,
as mentioned in Section 2.4.1, also has a key-role when it comes to wellbeing focused applica-
tions, be it by inducing positive emotion and recognizing them within a feedback-loop or by
affect recognition for the creation of emphatic machines or mood diaries.

Mood and Stress usually spread over a longer period of time, compared to emotions, whichmake
them more attractive to long-term studies. While emotions might be induced in lab conditions,
the observation of mood and stress ”in the wild” is more adequate [11]. Long-term assessment
is also what links MSSP to M-Health. Here applications acquire the ability to provide features
for psycho-cognitive involvement in a person’s ”lived experience of illness” [82].

In the case ofmood and stress recognition pursuing a third person view is not preferable, instead
of relying on a ground-truth such as video and the labels of an expert, mobile solutions have
to increasingly rely on labels by the users themselves, since no ground-truth and therefore no
objective label of an out-stander exists. This shift of perspective comes hand in hand with the
shift of sensors used.

Here has to be distinguished between a sensor and the modality perceived, since a body’s mo-
tion can be recorded using a camera from an bystander’s view or via accelerometers attached
to the body itself. For example, speech might be recognized based on brain-activity instead
of audio data [132]. Physiological signals can be used to recognize activity as well as stress
[61]. Communication channels as seen from a theoretical, human centered background do not
always match the sensors used in a (M)SSP-pipeline.

3.3 Role of Context in the Wild

As mentioned earlier, context plays an important role in natural social conversation. We natu-
rally refer to our environmental ”put that there” [28] but also refer to situational context. Social
interaction might be executed on the go in a wider sense of a shared activity e.g. cycling or
hiking. To interpret the shared activity of cycling as a dialogue is a rather far stretch for nat-
ural understanding of a dialogue. Nonetheless, it is social interactionsun2010activity. Imagine
a agent accompanying you on a cycle trip, making remarks about points of interest or asking
for your wellbeing while approaching a steep section of the route. Would you call that agent
social? Mobile Social Signal Processing focusing on input is bound to tackle corner cases that
would not be considered matter of social behavior in a lab setting.



30 Chapter 3. Related Work

3.4 Environmental Context

While environments might be used in natural conversations as a reference, they also might in-
fluence conversations by noise or similar disturbances. Those noises can overlay recordings and
thus are a challenge for filtering. However they can contribute context information as well e.g.
via noise mapping [159] in urban environments. Here the characteristics of different noises are
mapped to e.g. urban areas. Auditeur [136] and SoundSense [224], as MSSP-frameworks pro-
vides the envronmental noise level as context information, where SoundSense [112] uses audio
to distinguish indoor and outdoor environments within detecting walking-activity. In the wild,
there is little control over the setting, thus the software has to cope with the challenges arisen
and try to benefit from circumstances, where possible. Beyond references in communication,
environments contribute by large to our wellbeing. The environment influences us - activates,
stresses or relaxes us. This information can be extracted with the help of sensors (which mea-
sure our physical reactions). Above all, this could be a valuable insight for preventive M-health
technology.

3.5 Further Framework Features

Aforementioned communication channels and contexts are core features of MSSP-Frameworks.
In the following further features, that work under the hood, are described. Also aspects like
multimodal processing, privacy management, machine-learning approaches and rapid proto-
typing can be seen as technical details, in the case of interactive machine learning and privacy
aspects, they can nonetheless considerably influence the role and interaction concept of the
software. Thus, they are described in the paragraphs below.

Multimodality

Multi-modality, the synchronized processing of multiple data streams from different sensors,
is central already to SSP in the lab. It has arguably become even more important in mobile
settings to expand a system’s accessibility for non-specialist users and enhance the robustness
of the system [142].

While multimodal interfaces see multiple modalities often as choices how an input can be gen-
erated in different situations, needs or preferences, in (M)SSP those modalities are processed at
once, when possible. Multimodal approaches can be introduced at different levels of the frame-
work, but mostly affects different stages of the processing pipeline at the level of calculating
joined features or fusing different models.
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The variety of sensors has to be integrated. Their recorded signals have to be handled in relation
to each other, e.g. by syncing the data streams. With different signals, according features and
fusion approaches have to be engineered. Sensors can be used analogue to senses, such as
microphones for paralinguistic utterances, or across in the case of physiological signals for
activity recognition. This thesis employs fusion of signals that are analogue to senses with
signals that go beyond their analogous use. Sensors are selected to be useful in secondary use
of smart devices, e.g while walking, and thus are as unobtrusive as possible. Conclusively,
multi-modal support stretches across the frameworks design and is not a simple addition.

Privacy Approaches

While data-ownership is a formality in study design and execution in the lab, MSSP aims for
approaches that could be employed in the wild, where ubiquitous recordings are bound to con-
flict with privacy. Furthermore, models that are not created to explicitly respect privacy and
consider fairness tend to discriminate against people based on unethical features such as gen-
der or skin color [54, 55, 96]. Unfair models can be result of data-sets that are created without
explicitly balancing data according to person related features, or by not dismissing features that
are considered unethical.

To counterbalance the problem of software disregarding privacy, different approaches can be
identified in mobile frameworks. On the one hand processing can take place on mobile-devices
solely [112] on the other hand information can be filtered and encrypted to contain only as
much information as is needed and can be handled securely within the distributed processing
pipeline. Both approaches add challenges to the creation of a MSSP-framework.

Considering privacy at a feature level introduces additional filtering [238], that has to be checked
for integrity. Advanced algorithmic reconstruction of reduced information might be possible,
as a counter measure to minimizing features. Moreover, as a result models quality might suffer
from the removal of information in the feature vector.

Local data processing has to cope with the hardware and software limitations of smart devices
and yet might be compromised by other applications such as operating systems or malware
compromising private data. The framework Auditeur, e.g. enables on device processing for
private spaces and requires user authentication to access private ”soundlets” [136].

Those privacy approaches are limited mostly to the prediction process, without creating new
machine learning models. An exception is the use of unsupervised learning in mobisys [112],
where no human labeling effort is needed.
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Interactive Machine Learning & Labeling In The Wild

A consequence of the perspective shift from labeling by an observer to self-report, is a change
in the machine learning approach. Instead of involving experts that deploy and solely super-
vise the machine learning process, the end user is integrated more tightly in the process [5].
This starts with data-labeling [213] and leads towards model validation and pipeline creation.
The work at hand focuses on interactive model creation and therefore labeling. Interactive ma-
chine learning therefore involves machine initiative (Active Learning) and responsiveness, in a
perceivable change in the behavior of a model.

When involving users into labeling there is a variety of approaches imaginable:

1. stimuli induced labeling – as used in the lab, experts are involved in designing the setup
that induces behavior of a certain label in the user,

2. user initiated labeling,

3. labeling from behavior and interaction, with smart objects

4. Active Learning – the model requests labels by theire algorithmic value,

5. mixed initiative cooperative learning.

While 1. - 3. work within a classic machine learning setup, 4. & 5. involve also the initiative
of the system in requesting labels. This is desired in order to reduce the labeling effort, limiting
it to data that are most relevant to the learner. To integrate labeling into natural behavior the
use of smart objects can be beneficial (3.). In Chapter 6 a smart scale is used as smart coaster
to provide labels for drink activity.

In Active Learning it is assumed, that labeling is a pricey effort accomplished by asking an oracle
[192]. The samples are therefore selected for the maximal information gain to reduce the cost.
Within MSSP the user has to play the role of an oracle in that sense.

For actual user interaction several additional constraints that have to be taken into account.
The user has to be provided with feedback, that enables him judge the quality of the model.
Therefore, it is a necessity that the employed algorithms are responsive too. The feedback must
also be provided in a manner that suits the user, queries have to be filtered to not be annoying
without diminishing the information regarding the underlying system behavior. Interactive
machine learning on mobile devices consists of several challenges, where some are algorithmic
and some lie in the design of user interfaces [182]. With the reduction of graphical user inter-
faces in mobile devices such as smart watches, movement based interaction gains in popularity,
interactive machine learning is here seen as a key technology to design interaction [80].
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Rapid Prototyping

Closely connected to user interfaces for data-labeling on the go and custom pipelines is rapid
prototyping. Rapid prototyping describes a method to quickly develop drafts, in the case of
computer science, of applications. Typically, this is especially true for user interfaces, that can
be created interdependently from application logic in different versions and iterations [73].

MSSP-recognition pipelines form user-interfaces themselves, and thus there are mechanisms
that allow their prototyping. Rapid prototyping can be relized through pipeline configuration
via flow diagrams [114] or config files.

Since the user is more tightly involved in the creation process of MSSP creation of traditional
mobile UI [111] is an important part of the prototyping process as well. Web technologies and
corresponding communication-protocols such as websockets can here be of use.

The resulting custom interfaces help to provide the user with visualizations and feedback for
individual applications and MSSP approaches, that are fit for different scenarios and makes
interaction with the application smoother. This also includes a custom way of user input that
is adjusted to different machine learning problems, e.g. the labeling process.

Subsequent Topics

BeneathMSSP there are further research topics that share central aspects and solve similar prob-
lems in hardware, algorithms and field studies. Viewed from the analysis of conversations via
text messages as mass-communication the human as a sensor [42] can be seen as a technologi-
cally related topic. The term crowd sensing [83] [84] [32] follows a similar thought, where peo-
ple are not directly used to sense for events, but information mined from mass-communication
as well. While text messages within social networks are typical data to be processed, other data,
e.g. location via GPS, images shared online etc. are also common scenarios.

When it comes to intelligent environments and being instructed to use different sensor sets
depending on location and situation, the topic of MSSP is joined by opportunistic computing
[37]. Complex Event Processing [229] copes with similar processing pipelines as (M)SSP and
as such can be referred to for data processing and machine learning solutions. In addition,
continuous signal processing is used in M-health and E-health applications [138], which share
emotion, wellbeing and environment as topics in conncetion with MSSP and are partly based
on the same software frameworks.
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3.6 Conclusive Overview

SSP has the goal to add natural communication cues, such as affect and emotions to human-
machine-interaction. With the ability to conduct long-term experiments and user interaction
with mobile devices, this expands experiments from tackling short-term emotional states, to-
wards mood and stress e.g. by Ertin et al. [61]. Together with the ability to recognize environ-
ments and their influence on the user, mobile sensing based on MSSP is a tool that can provide
solutions to challenges in the domain of M-Health [82]. Using mobile phones, it is close at hand
to analyze phone conversations, as done in the dissertation by Anna Polychroniou [156]. Today
a lot of private communication already involves digital media that is increasingly analyzed in
MSSP as well. The approach of this thesis is to go a step further and to study natural behavior
not directly involving a smart device, but rather seeing it as an unobtrusive companion on the
body.

The direct perception of social cues is supplemented by the recognition of higher-level concepts
underlying communication. Higher-level concepts can for example be emotions, which can
be identified using various approaches, e.g. by using physiological signals. The context of
interaction, activities and environments plays a bigger role in research with mobile devices,
what leads to the exploration of corner cases between different research topics, such as Activity
Recognition that can be applied to drink activity as well as on laughter.

Sensing ”in the wild” inevitably takes place in spaces that are more private than an artificial
laboratory environment and at the same time relate to something more personal than a station-
ary computer does, which is limited to the location of the user’s office. Privacy issues such as
”discrimination of individuals based on private personal features”, due to imbalanced training
data or wrongly chosen features [55, 96] are to be avoided by design and user control.

Integration of interactive machine learning (iML in Table 3.1), is rare in frameworks of mo-
bile sensing, which lets us inferre, that infrastructure for the local and therefore, privacy-
compatible, creation of machine-learning models is missing. MobileSSI is providing customly
designed user interfaces for labeling on the one hand and an interface for active learning on
the other hand.

Topics such as crowd sensing, that focus on a larger data-pool but share a lot of principles and
challenges in data-processing and according to Capponi et al. rely on similar frameworks [32]
as Mobile Social Signal Processing, even though the perspective on the matter changes.

When reviewing frameworks in contemporary surveys from mobile crowd sensing [32], con-
tinuous signal processing for M-Health [138] and MSSP [143] it shows that a significant part
of the frameworks in literature target legacy systems (Symbian). The frameworks are rarely
cross-plattform in targeting mobile and desktop-computers and it is not common for frame-
works to provide source-code, see Table 3.1. While frameworks typically support more than
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one modality, only few frameworks support more than three modalities. Similarly only few
frameworks provide more than three classifiers. Prototyping support via configuration files or
UI is also not typically provided.

MediaPipe, a recent addition to synchronized processing of audio-visual data [114], is open
source and runs on various platforms. It’s focus lies in video processing and therefore does
not support other sensors e.g. for capturing physiology and thus, does not provide according
feature sets as well. It has no means of actively engaging in machine learning processes but
rather only relies on their outcome.

Conclusively the approach presented in this work (MobileSSI) distinguishes itself from others
by spanning mobile as well as desktop platforms and being feature-rich across aspects of in-
tegrated sensors, classifiers and flexibility in configuration and UI. It investigates corner cases
of MSSP such as environmental contexts and drinking activity, next to the paralinguistic so-
cial clue of laughing. On a technical note it tackles privacy via interactive machine learning
on mobile devices and uses custom tailored fusion approaches to multimodal data processing.
Technical aspects are described in more detail within the next chapter.



36 Chapter 3. Related Work

Fr
am

ew
or

k
M
od

al
iti
es

O
nl
in
e

iM
L

Pr
ot
ot
yp

in
g

Em
ot
io
n

Pr
iv
ac

y
En

vi
ro
nm

en
ta
l

Pl
att

fo
rm

O
pe

n
Cl

as
sifi

ca
tio

n
(o
nl
in
e,

ac
tiv

e,
UI

)
Re

co
gn

iti
on

Co
nt
ex

t
So

ur
ce

M
ob

ile
SS

I[
68

]
Au

di
o,

Ph
ys

io
lo
gy

,A
ct
iv
ity

,E
nv

iro
nm

en
t,
Vi

de
o,
..

A
N
N
,S

VM
,N

B,
kN

N
,$

1
Y/

Y/
Y

XM
L/
W

eb
Y

Y
Y

W
in
do

w
s,
Li
nu

x,
A
nd

ro
id
,O

SX
Y

SS
J[

44
]

Au
di
o,

Ph
ys

io
lo
gy

,A
ct
iv
ity

,V
id
eo

,..
A
N
N
,S

VM
,N

B
Y/

Y/
N

XM
L/
Fl
ow

-G
ra
ph

Y
Y

N
A
nd

ro
id

Y
Ce

nc
eM

e
[1
30

]
Au

di
o,

Ac
tiv

ity
D
T

N
N

N
Y

N
Sy

m
bi
an

N
Jig

sa
w

[1
13

]
Au

di
o,

Ac
tiv

ity
D
T,

GM
M

N
N

N
N

Y
Sy

m
bi
an

,i
O
S

N
M
ed

ia
Pi
pe

[1
14

]
Vi

de
o

A
N
N

N
JA

M
L/
Fl
ow

-G
ra
ph

N
N

N
A
nd

ro
id
,i
O
S

Y
So

ci
ab

le
Se

ns
e
[1
58

]
Au

di
o,

Ac
tiv

ity
GM

M
N

N
Y/

N
/N

N
N

Sy
m
bi
an

N
So

un
dS

en
se

[1
12

]
Au

di
o

kN
N
,G

M
M
,H

M
M

N
N

N
Y

Y
iO

S
N

Em
ot
io
nS

en
se

[1
57

]
Au

di
o,

Ac
tiv

ity
GM

M
Y

N
Y

N
Y

Sy
m
bi
an

N
Au

di
te
ur

[1
36

]
Au

di
o

D
T,

N
B,

GM
M
,S

VM
,H

M
M
,k

N
N

N
XM

L
N

N
N

A
nd

ro
id

N
CR

N
[1
2]

Au
di
o,

Ac
tiv

ity
,P

hy
sio

lo
gy

H
M
M
,k

N
N

N
Fl
ow

-G
ra
ph

N
N

N
iO

S,
Sy

m
bi
an

Y
EE

M
SS

[2
24

]
Au

di
o,

Ac
tiv

ity
D
T

N
XM

L
N

N
N

Sy
m
bi
an

N
Fi
el
dS

tre
am

[6
1]

Ac
tiv

ity
,P

hy
sio

lo
gy

SV
M

N
N

N
N

N
A
nd

ro
id

Y
Be

Te
lG

eu
se

[1
03

]
Au

di
o,

Ph
ys

io
lo
gy

,A
ct
iv
ity

,P
ho

ne
Us

ag
e,

Vi
de

o,
..

SV
M

N
N

N
N

Y
W

in
do

w
s,
Li
nu

x,
M
ID

O
Y

Table 3.1: Mobile Frameworks for continuous signal processing and classification.



Chapter 4.

MobileSSI - Framework and

Implementation

MobileSSI is no different code base from the Social Signal Interpretation framework (SSI), but
rather an effort to bring the code base to mobile smart devices. Therefore, an introduction to the
approach to Social Signal Processing (SSP), as implemented in the SSI Framework, is given at the
beginning of this chapter. This chapter summarizes the technical aspects added over the course
of my publications [65–69] and goes beyond in showing own work on user-interfaces (head
ache diary), active learning (using SVMs) not published. Since SSI is a collaborative effort it is
hard to draw clear lines, where one’s contribution ends and another one’s starts. Yet, developing
SSI for mobile and embedded devices is an own contribution to the software.

SSI - the Social Signal Interpretation framework is designed as a toolkit to deliver input from
natural social behavior to other applications. Thereby, it provides real-time feedback via sensing
(Section 4.3), processing (Section 4.4) and classification, (Section 4.5) that is communicated to
further application components (Section 4.8). To deliver classifiers for custom applications, SSI
also provides features necessary for recording, e.g. stimuli presentation and machine learning,
e.g. model evaluation.

This chapter also contains an description of the process of porting SSI to UNIX-systems and
Android in Section 4.2. Even though MobileSSI is part of SSI, it includes contributions that
are not useful, when running SSI on other systems than Android e.g. integration with the An-
droid operating system. Components and approaches in signal processing, machine learning,
recording and communication developed for the mobile use, form the main part of this chapter.

There are a number of frameworks that specialize in processing social signals onmobile devices,
such as SociableSense[158]. This framework has the advantage of implementing data sampling
strategies that are more suitable for mobile devices. Porting SSI as an established framework
has the advantage of tested feature-sets and machine learning capabilities. Considering Table
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3.1 only BeTelGeuse [103] and SSJ have an amount of sensors, comparable to MobileSSI. BeTel-
Geuse has the limitation of not running on current mobile platforms, such as Android whereof
SSJ cannot be used on desktop machines or on embedded devices. Media-Pipe [114] is a re-
cent addition to mobile processing frameworks that is limited to audio-visual data only and is
therefore not suitable for the purpose of a companion on the body that relies on accelerometer,
audio and physiological data. The requirement to have a framework with wide spectrum of
functionality that can be tailored to the needs ”in the wild”, motivated the decision to develop
MobileSSI. SSI, also including the mobile port is open source and available on Github ¹ together
with an Android Studio project for building the mobile application ².

4.1 Continuous Processing and Synchronization

SSI is a modular system that can be configured to solve different problems such as the recog-
nition of gestures, postures or laughter [16, 116], loading different plugins at start-up. A core
problem SSI is designed to solve is recording multiple continuous signals of a fixed sample-rate,
which are synchronized. The sample-rate is defined before start-up and watched over each
sync-interval to keep signals from drifting. In the case of a sensor providing to few data, data
is added. For sensors providing too many data, data is removed. There are different approaches
available, e.g. repeating data in the case of a slow sensor or filling with zeros. These continuous
signal streams are processed with filters and can be fed into classification and machine learning
processes. Streams are of a fixed type and can be multi-dimensional.

4.1.1 Events

Beneath continuous data streams, there exist events in SSI, that are sporadic and thus comewith
a time-stamp and duration. They are rather designed for flow-control triggering feature calcu-
lation or classification, then information processing and therefore can not directly be learned or
classified. Events can contain complex information formatted in maps and strings and as such
high-level information. This information is usually the interpretation gathered from low-level
data via classification and is forwarded to other applications finally.

4.1.2 Processing Pipelines

To gain information of a higher level, processing in several stages and lines is employed. The
defined set of those components is called a pipeline. Based on the flow from a source (sensor)
through a processing unit (transformer) to a final stage of the flow (consumer), the basic types of

¹https://github.com/hcmlab/SSI
²https://github.com/hcmlab/mobileSSI-android-studio

https://github.com/hcmlab/SSI
https://github.com/hcmlab/mobileSSI-android-studio
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SSI components can be identified. The sensor can provide multiple output-signals of different
type and sample rate through channels. A basic entity with the ability to receive and send events
is called object and forms the basic class in the inheritance hierarchy. The pipelines construction

Figure 4.1: SSI pipelines consist of three basic types: sensors, transformers and consumers.

can happen via C++ code, but typically is done using XML. Parsing is done using the XML-Pipe
component that triggers the Factory found in core to load library and theFramework, found in
the frame plugin, for assembling and starting the pipeline.

4.1.3 Soft Real Time Processing

Theorganization in processing pipelines is important for real time recognition. A sample can be
processed while a new one is recorded simultaneously. The sample consists of a time-window,
also called frame-step, of certain length (e.g. 400 ms) and can be accompanied by data that
overlap (e.g. 1 s) into the past (delta) or ”future”, resulting in an overall duration of 1400 ms and
with a sample-rate of 5 Hz into seven actual values. In SSI those overlapping data are called left
(past) of right (future) context.

SSI does not enforce real-time behavior in strict time constraints. Plugins for pre-processing
and classification as well as window-sizes and system have to be picked carefully to achieve a
responsive system, since lag might add up over time.

4.2 Mobile Port of SSI

SSI is mainly written on and for Microsoft Windows machines using Visual Studio and C++. It
uses the Win32 threading API, timers and event system. Visual Studio provides both the build
system and the compiler. After contributing additional code paths to the existing framework,
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plugins and concepts are added to make it a better fit for the new circumstances on mobile
platforms

Porting to Mobile

To adapt the code base for mobile devices, a different compiler and build system is needed, as
well as changes to the core system for threading and timers. This results into four steps:

1. replacing the build-system and compiler

2. replacing the Win32 threading model with C++11/Posix

3. changing the operating system to Linux

4. building for Android

At the beginning of 2015 there was no native build support in AndroidStudio, but with a set
of CMake files it was possible to not just build the code but also APK-packages for Android.
Since CMake has good cross-platform support on Windows and Linux, it was the build-system
of choice.

CMake has Visual Studio support, which made it possible to test the new build-system with the
old compiler, before moving to MinGW. MinGW supports Win32 as well as Posix threading,
thus it is possible to replace the threading model without changing the OS.

The change to Linux consisted mainly in adapting the dynamic library loading, timers to
clock_gettime() and CLOCK_MONOTONIC_RAW and rewriting the event system us-
ing condition variables. The Gnu Compile Collection was the natural choice after using its
Windows derivate MinGW.

To be able to run SSI’s UI based tests, a new GUI-backend was written using Cairo and SDL2.
The code base was tested and fixed to run on ARM based platforms such as the RaspberryPi as
well.

Having SSI ported to Linux, building the core libraries for Android using the NDK’s cross-
compilation toolchain and corresponding CMake scripts was the next step.

This process of porting marks the mere foundation on which adaptions of the core plugins such
as audio and additional plugins, e.g. for accelerometer are, built. Since SSI is now a portable
native library, it runs on further mobile platforms and has been used on Tizen Watches such as
the Samsung Gear S2.
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Android Integration

While first attempts were made to build MobileSSI into a native App, using the Andoid-SDK to
load native libraries via Java Native Interface (JNI) turned out to be the more viable approach.
SSI here is started as a background-service that is using a wake lock to be able to continuously
record data. Since various devices such as GPS and bluetooth devices are hard to integrate using
native APIs, it is possible to send data via JNI to MoblieSSI’s native libraries, e.g. for recording.

SSJ Integration

In addition to the native port of SSI there is SSJ, an effort by Damian et al. [44] to rewrite SSI in
Java to run it on Android devices. It allows easy access to sensors via Android’s Java-API and
the design of processing pipelines via a flow-graph based GUI.There are twoways of integrating
SSJ and MobileSSI that supplement each other. SSJ can function as a sensor to MobileSSI and
conclusively a MobileSSI consumer is integrated into SSJ pipelines.

MobileSSI plugins can be loaded in SSJ using a wrapper instead of running the framework as a
whole. This enables SSJ to run compute-intensive filters and feature extractors in native code.

4.3 Sensors

Figure 4.2: Sensors integrated into MobileSSI.

MSSP is about extraction information from natural communication, that typically needs sensors
converting analogue signals into digital data-streams. As mentioned in Section 3.6 there is a
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shift in perspective from desktop or lab SSP to MSSP ”in the wild”. This made it necessary to
integrate new sensors into SSI next to adapting existing implementations. An overview is given
in Figure 4.2.

Audio depicts the bridge where an old code base is extended on the new platforms. The smart
phone sensors are specific to Android but accessible via native C-API, while environment sen-
sors are connected via a (UDP-)network, the physiological and GPS data via SSJ and the anno-
tation interfaces via Websocket-network (smart watch) or Bluetooth (smart scale).

4.3.1 Audio

Audio-support is realized using theWin32-API onWindows. Next to the camera-plugin it forms
the core modalities on the desktop. Audio on Linux is implemented using port-audio, that is
not available on Android, where the OpenSL-API is used instead.

The focus lies in recording audio data at a variety of sample-rates and formats. While on PC
sample-rates of 44kHz and higher are common, on smart phones audio-sample-rates often are
limited to 16 kHz. Also Android does not always provide data at the requested sample-rate and
one might actually record at 8 kHz instead of the requested 16 kHz.

Since streams in SSI have strict types and many filters rely on floating-point types for pro-
cessing, while the hardware does provide 16-bit integer data, the data is converted within the
audio-plugin when option scale is set.

The audio-plugin contributes a range of features next to recording capabilities. On Windows
and Linux there is playback support for audio files also. There are different approaches to Voice
Activity Detection (VAD) contained in the plugin, that will be described under Section 4.4.2.

4.3.2 Accelerometer and Android-Sensors

Motion is a core modality in MSSP. While motion would be extracted from video data in the lab,
inertial sensors are used inmobile set-ups. Accelerometer for linear acceleration andGyroscope
for rotation acceleration are provided on all modern smart devices. With different platforms
there is a need for different APIs to be integrated. On Tizen therefore a different plugin is
created instead of using one plugin with different code paths. Since Android-Sensors have to
be enabled and requested in an initialization process, all smart phone sensors connected via the
Android-C-API are combined in one plugin. Since sample-rates might differ, multiple streams
are provided as the plugin’s out-put. Those streams can have multiple dimensions. This is the
case for accelerometers that have three axis.

Since the ”AndroidSensors” plugin handles the core functionality of SSI on this platform, the
functionality to execute XML-pipelines is part of this plugin as well.
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Android sensors might not be available to the full extent on all smart devices, the maximum
modalities supported in MobileSSI are:

• Accelerometer

• Gyroscope

• Magnetometer

• Light

• Proximity

• Heart-Rate (only on smart watches with BVP-Sensor such as the Moto360)

Further sensors only available through Android’s Java-API, such as GPS, are realized using the
”AndroidJavaSensors” plugin in MobileSSI with the according Java functions provided via JNI.

4.3.3 Physiological Signals

While some physiological sensors are built into the smart devices themselves, formost in smart
watches like the Motorola Moto360 or the Samsung Gear S2, they are mostly external devices
connected via Bluetooth. The key feature of MobileSSI here is to access the data-source directly,
without the use of cloud services.

This need for access to raw data has two reasons. Firstly, it is desirable that the user has a
choice with whom to share privacy-critical data. Secondly, MobileSSI has to synchronize the
physiological sensor with other modalities, such as sound and process the data within a window
of a few seconds to deliver feedback reactivity.

As external sensor for physiological signals the Microsoft Band 2 is used in Chapter 7. It pro-
vides heart rate (HR) and inter beat interval (IBI) via a Bluetooth-based API. Mobile Sensors
mostly rely on Blood Volume Pressure (BVP), an optical method based on green or blue LEDs
and on the amount of light absorbed by body supplied with blood. Moto360 and the Microsoft
Band 2 provide data that is already processed, whereas the Samsung Gear S2 allows access the
raw sensor-data.

SinceMobileSSI is able to process raw sensor data, low-level data accessmeans a broader control
and a wider set of features that can be calculated.

The Microsoft Band 2 is integrated into a MobileSSI pipeline via SSJ. It provides skin conduc-
tance (SC) next to BVP as a physiological signal. Here the resistance of skin between two
electrodes is measured. Usually under stress, physical or mental load, SC increases in the form
of spikes, but is delayed from the source event.
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4.3.4 Environment Sensors

Physiological sensors areworn close to the body, whereas environment-senors take an outwards-
perspective on a situation’s context, that is rarely used in the lab. Anyone who has ever gone
for a walk along a busy road and in a forest on a hot summer day can tell the difference an
environment can make to the same activity.

Temperature, humidity and air-pollution are the three modalities MobileSSI is able to sense
using its environmental sensors.

Device Sensor Data SR (Hz)
Sensor Box SDS011 PM2.5 0.07

PM10 0.07
SHT75 humidity 0.07

temperature 0.07
MICS CO 0.07

NO₂ 0.07
NH₃ 0.07
C₃H₈ 0.07
C₄H₁₀ 0.07
CH₄ 0.07
H₂ 0.07
C₂H₅OH 0.07

BMP280 pressure 0.07
temperature 0.07

Table 4.1: Environment Sensors integrated into MobileSSI via UDP-Network.

As Table 4.1 shows, temperature is measured by SHT75 and BMP280 sensors, whereas SHT75
also measures humidity and BMP280 can also measure air pressure.

MICS sensors are used to detect a wide range of gases, see Table 4.1, such as carbon monoxide
and ammonium. The fine dust concentration is detected via SDS011.

Those gas sensors are not calibrated and as such can not give an absolute concentration but
rather a trend. The sensors’ behavior might change over time and is dependent on other factors
e.g. humidity.

Similarly, noise pollution could be captured with measuring microphones that have undergone
a calibration process. While a microphone could be used via USB and the audio plugin of
MobileSSI, the sensors are built into a custom build sensor-box. The box has a Raspberry Pi
Zero, where the sensors of Table 4.1 are connected by wire and serial bus. The smart phone
hosts an ad-hoc WIFI network over which the data are sent as multidimensional stream via
UDP to the MobileSSI instance running on the phone.
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4.4 Features

Within the flow of the processing pipeline, the sensor recording is followed by feature extrac-
tion Feature extraction marks aspects of a input signal that are of relevance and helpful for the
classification process. This ranges from pre-processing the data in such a way that the classifi-
cation can be as simple as applying a threshold. However, it can also be integrated into a deep
learning process in which an artificial neural network with multiple layers learns features in
its layers that are closer to the input with increasing abstraction towards the output.

Statistical Functionals

A generic form of features looks at the data statistically. What is the mean, minimum or stan-
dard deviation of the data? A set of statistic features is sometimes referred to as functionals
in the literature [183] and also in SSI. Functionals are useful as an additional pass (long-term)
over a big set of features or as a base from which to add specific features. SSI’s functionals
consist of twelve individual values, whereof the following nine are used e.g. as starting point
of accelerometer-features in Chapter 5.

• Mean, Standard deviation

• Minimum, Maximum, Range

• Zero crossing rate

• Peak count, Pulse rate

• Energy

Time Domain

Features can work on the data as recorded, a sequence of samples gathered from a sensor. This
time-domain-features can be based on functionals, e.g. calculating integrals. Peak-detection
can also be implemented in time-domain. Wavelets [151] reconstruct the original signal by
iteratively adding scaled and translated variants of the mother wavelet curve. This can be used
to identify a signals characteristics.

The reconstruction is called (Fast)Wavelet Transform and as such describes a way of identifying
frequency spectrums of relevance in a data-class, even though they are applied in time domain.
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Figure 4.3: Spectrogram of human voice (dark waves, e.g found between 1.0 and 2.0) and background noise (grey
noise pattern throughout the recording), Mel scale. Taken from the data set of Chapter 7.

Spectral Domain

Separating spectral and time domain features comes from the fact, that many features require
a (Fast) Fourier Transformation (FFT). As a result of an FFT, data are organized along their
spectral property. The FFT calculation can be done once on the raw signal and shared across
all spectral domain features.

In spectral domain, it is easier to focus on a certain band of frequencies or determining the most
dominant frequency, see Figure 4.3, where the phonemes of human voice are clearly recogniz-
able ( darkwave pattern) even tough there is a lot of background noise (grey noise pattern across
the picture). In an ECG signal this would be the heart rate. Spectral domain features are used
in a big variety of modalities, next to physiological signals such as Galvanic Skin Conductance
or Blood Volume Pressure, they are used in accelerometer and audio data.

Feature Reduction

An option to reduce compute resources in feature calculation is feature reduction. A common
method of feature reduction is Sequential Feature Search (SFS). It determines the single best
feature and to that adds the feature that improves the classification result the most (or worsens
the least). This way features are ranked and one can restrict the feature-set to those giving the
best results. SFS is used to give insights on the contribution of individual heart rate related
features in Chapter 7. This feature reduction can lead to over-fitting and therefore the resulting
model may perform worse on new data.

4.4.1 Acceleration

Accelerometer features typically are based on statistical features that are applied on the in-
dividual axis, but also considering multiple axis. Those functionals involve: Mean, Standard
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Deviation, Energy, Root Mean Square, Variance and Interquartile Range. Additional time do-
main features are Haar-Filter and a Discrete Cosine Transform (DCT).

In spectral domain Entropy, Flux, Centroid, FFT-Sum and Rolloff are computed. Accelerometer
Features in Mobile SSI are based upon work by Dietz et al. [49] who used the features for
head movement analysis. The feature set was extended to fit drink activity recognition and is
used in Chapter 6. Features can be computed normalized between 0 and 1 to be used without
normalization in an additional step in incremental training.

4.4.2 Audio

Audio feature sets are usually in the spectral domain, after applying a Fast Fourier Transform
(FFT). This is true for audio-object recognition as well, see Section 4.4.2. For speech and par-
aliguistic processing there is a Mel-Scale applied for the spectral domain, which is than ag-
gregated in Mel Frequencies Cepstral Coefficients MFCC [105, 235]. MFCCs simulate human
perception, and generalize a signal in a way that phonemes are underlined. While MFCC’s
by themselves might be calculated over short time windows of ~40ms, there are feature-sets
specifically designed for audio (emotion) recognition that also consider longer time frames and
are used in Chapter 5.

EmoVoice

EmoVoice [219] library provides a feature set (V2) consisting of 1451 features combining pitch,
energy, MFCCs, Frequency SpectrumQuantile and Harmonics-to-Noise Ratio (HNR). Pitch cal-
culations are based on Praat, a tool for speech processing and phoneme-annotation [26], that
works offline. Although EmoVoice, like OpenSmile, provides tools for training and execution of
emotion recognition, they are only considered as libraries providing a feature-set in this work.

OpenSmile

OpenSmile [63] provides different feature-sets, like ComParE [128] with 6373 features and a
minimal GeMAPS feature-set with 58 [62] features. OpenSmile also considers MFCCs, Pitch,
Harmony to Noise Ratio (HNR) as well as functionals over those low-level descriptors (LLD).

Audio Activity Detection

Large feature sets are expensive to compute. Within a frame based approach feature calculation
can be paused as long as no Audio Activity (AAD) or Voice Activity (VAD) is detected. SSI’s
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audio plugin has different approaches to detecting audio activity. The naive approaches are
loudness or intensity based, while more sophisticated approaches are based on signal-to-noise
ration (SNR). Further approaches provide own models to solve the problem of VAD.

Features from Deep Learning

While deep-learning per se is a step towards feature-less machine learningmodels, where train-
ing happens directly on raw data, the layers closer to the input can be cut from the classification
layer (closest to the output) and used as a feature-set themselves. Thus, other classifiers such
as SVMs can be trained on deep-features, to speed up the training process. See Section 4.5.4 for
details. This method, although generic and applicable to many different problems, is used in
Chapter 7.3.3 to use an extractor for image features, based on MobileNet V2, on spectral maps
of audio data.

4.5 Classifiers and Learning Approaches

At the core of Social Signal Interpretation is the extraction of abstract information. Nowadays
this step is mainly realized by machine learning. There are several procedures and structures
involved in the process, the most important procedures are training, evaluation and prediction.
Those can be abstracted to support multiple learners, e.g. k-fold cross validation is implemented
independent of the model implementation in (Mobile)SSI. The individual learning algorithms
or classifiers still are the most central structure. This section takes a closer look at classifiers
integrated and used with MobileSSI.

A modification in MobileSSI regarding the learning process involves users and thus makes ma-
chine learning more interactive: reactive and active. Reactive, while predicting not on a whole
recording, but on a short time frame, to give useful feedback in real time.

Active, as in themodel participating in the learning process by proactively asking for labels. The
model becomes reactive also in a sense of shorter time to perceived change in themodel. Usually
learning happens in batches of samples, it is desired to use small batches, or even individual
samples to update a model incrementally.

Bigger batches enable pre-processing, such as normalization or model specific parameter eval-
uation to make learning more efficient. Real world data would have to be aggregated into those
batches, which requires time and also storage of potentially critical data. Reducing the batch-
size foremost makes the learning system more responsive, see Figure 4.4. This process leads to
stream based, incremental or online learning.
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Figure 4.4: Roles and updates in classical and interactive machine learning.

Balancing

Many ML algorithms (SVM, ANN) are sensitive to imbalanced distribution of samples per class
[15]. This goes as far as incremental learning on a batch with a subset of classes results in a
new model that supports only that subset of classes. Aggregating samples takes, dependent on
the problem at hand, a considerable amount of time, balancing mini-batches with older samples
might make the training harder to grasp for the user. Thus, interactive learning has to come up
with a pooling approach.

4.5.1 Query Methods in Active Learning

When creating an ML-Process that involves both model and user as active parts, selecting the
right samples to ask the user for labels is crucial.

Active Learning [192] provides several techniques for asking an ”expensive oracle” for infor-
mation. This oracle can be a compute intensive simulation or a human, in the case of this work
human are the only considered oracle. They can involve general approaches, approaches in-
volving multiple models and model-specific methods. Model specific approaches for SVMs are
outlined at the introduction of SVMs later on. Uncertainty Sampling, applicable to different
models and Query by Committee involving multiple modes are introduced in the following.

Uncertainty Sampling

Samples can be selected for training by taking the existing model’s certainty in classifying that
new sample into account. Studies [108] led to the insight, that samples classified with low
certainty speed up the learning process more compared to selecting only samples with high
certainty regarding their classification. If the classifiers in use are able to provide certainties,
adding a threshold is sufficient to filter samples according to their usefulness.
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Query by Committee

Another method to generate requests is to use multiple models [193]. Classification results are
viewed as vote for the according classes. Here a common rule is to ask the oracle, the more
likely, the more diverse the voting is. The committee of classifiers is created to be as diverse as
possible by itself [127].

4.5.2 Naive Bayes

A simple but still successful approach to classification is Naive Bayes. Here the Bayes formula
on conditional probabilities is the foundation.

P (A|B) =
P (B|A) ∗ P (A)

P (B)

Where a conditional random event P (A|B) can be expressed by its inverse P (B|A) in relation
to the unconditional probabilities of properties A and B. With respect to classes Ci and features
x1..xn, we would like to know the probability of a class Ci given the observed features:

p(Ci|x1, ..., xn)

Which with application of the Bayes formula results in:

p(Ci|x) =
p(Ci)p(x|Ci)

p(x)

With the a-priori probability p(Ci) the conditional probability of a feature x given a class
p(x|Ci) and the probability of that feature x p(x). The features are naively assumed to be
mutually independent thus, the assignment of the class can take place via:

ci = argmaxi∈{1,..,I}p(Ci)
n∏

j=1

p(xj|Ci)

Given the circumstances of feature calculation, depending on a single sensor of at least a single
matter, this assumption is nearly always false. Nonetheless, Naive Bayes gives an approxima-
tion that is useful in many cases.

For continuous variables (integer of floating-point) Gaussian distributions are common, and
p(x|Ci) for an observed value v can be expressed using mean µ and variance σ of the feature x
in he training set.
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p(x = v|Ci) =
1√
2πσ2

i

e
(v−µi)

2

2σ2
i

Naive Bayes models, as found in MobileSSI, consist of tables storing mean and variance as well
as standard deviation (σ2) and a-priori Probability (p(Ci)) of each class Ci (see Figure 4.5).

Figure 4.5: Schematic of Naive Bayes data structure for online learning [77].

Incremental Learning Naive Bayes

This can be adopted to per sample learning by adding a sample counter and adjusting mean and
standard deviation incrementally [77].

µn = µn−1 +
xn−µn−1

n

σ2
n = σ2

n−1 + (xn − µn−1)(xn − µn)

The principle of adjusting mean and standard deviation is not limited to adding one sample, but
could be extended to merge two models. This makes Naive Bayes a good test bed for different
approaches.

Naive Bayes per se delivers certainties p(Ci|x), to the degree to which it believes the model
describes the situation accurately in his prediction, which enables querying on uncertainty.

4.5.3 Support Vector Machines (SVM)

Support Vector Machines (SVMs) separate data of different classes by finding an according hy-
perplane, meanwhile observed samples are used as support vectors to describe said hyperplane.
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Figure 4.6: Schematic of a linear SVM [38].

As the hyperplane separates the support vectors, there is a space called margin between sup-
port vectors, with multiple possible solutions. The smaller the margin, the better defined the
hyperplane is.

Viewed from the stance of SVM, samples are located in a space with one dimension per fea-
ture. The simplest form of SVM operates with a linear kernel, where feature space and kernel
space are the same. More advanced kernels are often available that transform the samples in a
way that makes them linearly separable, this thesis restricts itself to linear SVMs. Next to the
applied kernels there are further simplifications made in Figure 4.6, such as the introduction of
soft margins. Soft margins allow balancing margin-size and outliers in the case of not linearly
separable data.

Platt Scaling

SVMs cannot per se judge with what certainty an observed sample is put into the accord-
ing class. To extend SVMs’ capabilities, Platt-Scaling was introduced [152]. It is a logistic
transformation, that considers the samples of the training-set to build probability distributions.
Since the iteration over all training samples is needed, Platt-Scaling hinders SVMs from online-
learning.
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Incremental Learning SVM

Nonetheless, online and incremental learning approaches for SVMs exist e.g. in LibLinear [210]
and DLib [101, 196]. LibLinears approach builds upon a warm-start model, small batches can
be used to incrementally improve the model. Those batches should be as big as possible and
have to contain samples of all classes, or else the incremental learning leads to a model with
reduced class-count.

Hyperplane Based Queries

Next to general query methods, there are model dependent ones. In the case of SVM’s it is close
at hand that queries are derived from the hyperplane that is essential to SVMs’ classification
process [208]. A possible method is to select samples that possibly half the margin and thus
reduce the space in which hyperplanes could lay in. This is of interest in a case where general
methods such as query on certainty fail because of missing confidences in online learning SVMs
or if an additional contribution to a committee is desired.

4.5.4 Artificial Neural Networks via TensorFlow

Artificial neural networks are supported in SSI in two ways. TensorFlow is integrated via a
Python interface for training on one hand and via C-API for mobile use on the other. Python on
Android is not supported to such extent, that it allows running full TensorFlow for training. The
C and C++ APIs do not support the training process to an extent suitable for our purpose. This
allows MobileSSI on Android to only load models for classification via a TensorFlow-plugin.
An approach allowing for DNN-training on Android smart phones is running a Gnu/Linux via
Chroot [188].

Input
output

bottleneck

hidden
layers

Figure 4.7: Schematic of an ANN.
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Deep Artificial Neural Networks, as common today are built of a multitude of components. For
simplification and due to the fact, that this thesis only requires a view on a certain abstrac-
tion, only a rough overview is given. DNNs consist of nodes representing a Perceptron or a
comparable more complex structure and weighted connections in between. For classification,
the network starts at input derived from a sensor that is fed into hidden layers and lead to the
output layer representing the classes, the network targets. The layer before the output can be
seen as feature extractor of the network and is called bottleneck in the description of current
network architectures such as MobileNet v2 [180].

4.5.5 Transfer Learning

The approach described in ”Freatures from Deep Learning”, technically is a form of (transduc-
tive) transfer learning, ”where knowledge from one domain is used to solve a problem from another
domain” [144].

In compute-intensive training of Deep Neural Networks this allows to train a model within
minutes on a smart phone based of an Artificial Neural Network (ANN) that took days to train
on a server-farm. Next to compute power, savings in the size of the data set makes a difference.
While millions of images are needed to train e.g. ImageNet [45], only hundreds are needed to
do re-training [188].

Instead of training a full network, only the last layer responsible for the output is replaced with
a layer for the new target classes.

Re-training takes place also in warm-started incremental learning (e.g. using SVMs), where the
number of classes of the new model does not have to match the number of classes of the old
model.

4.6 Fusion

A core challenge in SSP is using multiple modalities to solve the sensing problem to create a
more accurate and reliable system. The process of gathering joined information from two or
more signals is called fusion. Fusion can be handled at different stages of a processing pipeline
and considering a variety of strategies (synchronized/asynchronous) and algorithms. A wide
range of approaches is available in SSI’s Fusion and Vector-Fusion plugins, that build also on
Android.
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Feature Based Fusion

Feature based or early fusion happens before data are fed into a machine learning model. Thus,
it handles the combination of features. In online recognition the fusion of feature vectors works
only when the data are processed in a sliding window of the same size. On merged feature vec-
tors a single classifier for all modalities can be trained, which allows e.g. feature selection across
modalities to identify the share and aspect they contribute to the machine learning solution.

Decision Based Fusion

Decision based fusion, also called late fusion is happening after the training of individual models
per modality, that conclusively handles the combination of different models’ results. This can
happen by having the ensemble of classifiers vote, adding or multiplying their certainties or
following a similar rule. While not used in the scope of this thesis boosting is also a form of
late fusion, where an ensemble of weak classifiers are combined into one strong classifier [75].

Asynchronous Fusion

Feature level fusion is bound to having features work on the same time step or window. In-
dividual modalities convey meaningful information in segments of different length. To cope
efficiently with changing sources of information that depend on sensors available and infor-
mation emitted by the surrounding, fusion on the event level is employed. This asynchronous
fusion approach does not force decisions from all available channels for every time frame, but
instead correlates occurrences of small windows of relevant information over time. Other ways
of fusing modalities without steadily forcing decisions have been successfully investigated in
other approaches: Zeng et al. [236] apply Multi-stream Fused HiddenMarkovModels, in which
state transitions of different components of Hidden Markov Models are allowed to occur at dif-
fering times across multiple streams. Dupont et al. [53] model the asynchronous nature of
audio and video streams using temporal typologies with multi-stream Hidden Markov Mod-
els for continuous speech recognition. Methods pursuing a hand modeled approach for the
asynchronous fusion of streams using Petri-Nets are applied by Navarre et al. [135]. Whereas
fusion engines often focus on high-level dialogues, this chapter’s focus lies on a lower level and
is supported by learned models and events solely. Long Short-Term Memory Neural Networks
have shown great success in paralinguistic tasks (see for example [29, 228]).

Theywere used to replace simple nodes withmemory cells that allow the network to learnwhen
to store or relate to bimodal information over long periods of time. Asynchronous fusion on
event level has proven to be robust in affect recognition scenarios [110]. Events are interpreted
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Figure 4.8: The fusion algorithm considers the temporal flow of occurring, class1 indicating events. Influence of
events decreases over time and a continuous probability of class1 is calculated as the moving centre of mass of
weighted events. Courtesy: Florian Lingenfelser

as short-termed cues that point to a searched target class. An ensemble of trained machine
learning models is used to recognize these events in the available modalities. By monitoring
occurrences of events over time, the higher level fusion plugin is able to decide what is going on
at any point in time. This strategy provides an abstraction level that allows for easy adaption,
as modalities that are able to provide events for the event based fusion algorithm can be easily
added or removed. Therefore it is a good fit for ”in the wild” signal processing, where it is
not guaranteed to have all sensors available at all times (differing hardware, noisy data, energy
consumption, etc.). Recognized events are initially weighted with regard to the confidence of
the classification model and this weight is constantly decreased so that their influence on the
final fusion result descends to zero over time.

Currently active events give an appropriate overall picture, which in turn is judged by the fusion
model on the event level by calculating the center of mass based on currently active events and
their updated weights, see Figure 4.8. On one hand this solves problems with different sampling
rates and segmentation windows on different streams. On the other hand, it is especially useful
if the events of interest can be expressed differently inmultiple modalities. From an engineering
point of view, only transmitting events is leading to much lower network load than sending a
raw data stream.
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4.7 Interactive Machine Learning

In classical machine learning, the process of model creation is hidden from the user. A expert
solves data extraction, processing, labeling and training. The resulting ”AI” solution is deployed
to the user. Next to user control in model creation, additional methods of feature creation
and combination as well as explanation are proclaimed by Amershi [5]. The focus within the
implementation of MobileSSI is on creating a solution that is reactive, as in online learning,
pro-active, as in active learning and easy on resources, as in transfer learning, so that the user
can be involved in the training process.

1. This is realized by an active learning model that creates label requests based on the cer-
tainty of its prediction.

2. The request is forwarded to the user, that labels the sample.

3. With the labeled sample, the online learner is updated.

This process was been refined in MobileSSI’s stream-based process, where a user-given label
can be used over multiple subsequent samples according to annotated activity.

4.8 Recording and Communication

For creating a data set, the obvious requirement lies in writing sensor data into a file or a data-
base. MobileSSI as well as SSJ write files to a ”record” folder, that is moved into a folder named
after the time-stamp. Recording is done by pipelines that consist only of sensors and the accord-
ing file-writers as consumers. As the recording process is often a complex operation involving
a study design with the presentation of stimuli or at least the generation of annotations, SSI
provides a set of tools to support the recording process.

File Writers

First of all File Writers exist for various formats within SSI.

• Streams – Continuous data in multiple dimensions, synchronized

• WAV – Audio files

• Events – Sporadic data points with a time-stamp

• Annotations – Labels in discrete, continuous or free-form

The labeling of recorded data might occur later using tools such as Nova or Elan, but also while
recording using user input, e.g. using a web based presentation.
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Stimuli-Plugin

Originating in a controlled lab setting is the stimuli plugin, which processes lists of stimuli,
iterates them, randomizes them as an experimental setup and writes annotations according to
the selection of the stimuli.

While originally combined with a browser plugin, the adapted stimuli plugin iterates over a set
of HTML-stimuli contained in a folder. The URL of a stimuli URL is send to the responsible
component via event, that might be a websocket instance, described later.

For example a prove of concept of MobileSSI was realized using websites following the Velten
method of emotion inducement [215, 219].

Figure 4.9: Velten Stimulus presented via Stimuli-Plugin

The stimuli plugin can be used with more advanced HTML5 presentations such as videos and
interactive pages for annotation, such as the Geneva Wheel of Emotion in Section 2.5.1 and
Figure 2.2.

Since SSI is specialized in input, it often forms just a part of a larger application. The individual
parts have to communicate with each other, what can be solved with MobileSSI in several ways.

App Integration via JNI

On Android, Java or languages based on the JVM are the best supported language for writing
apps. In this way, the native set of libraries that form MobileSSI is integrated into a Java user
interface to start the background service that runs the SSI pipeline. This is realized on the one
hand by loading the C++ libraries in Java and exposing function such as start, stop and com-
munication via events in JNI (Java Native Interface) notation. This allows the Java application
to call exposed C++ functions, that can be called API. Native integration via APIs is efficient,
since in the best case no copy has to be made of the data processed in different parts of the
application. The downside is a loss in flexibility when it comes to programming languages and
distribution over different machines.

TCP and UDP-Sockets for Streaming

Alternatively to native integration, there is communication via network. This enables different
instances of MobileSSI to run on individual machines while still operating synchronized and



4.8. Recording and Communication 59

sharing an overall pipeline. TCP or UDP sockets are available in MobileSSI to send continuous
streams to other instances or application parts. These network streams have a predefined data
type, such as floating point or integer, as well as a predefined dimensionality.

Therefore, sending and receiving heterogeneous data packages such as events is not supported
via SSI.

OSC-Sockets for Events

OSC sockets have the benefit of defining the data structure that they transmit in their header.
This enables sending/ receiving events as well as streams. Events are important because, in the
case of classification results, they convey the actual interpretation of the input data, which is
most useful for higher-level parts of an application.

Websockets and Web-Interfaces

An additional network socket to communicatewithweb applications is awebsocket. MobileSSI’s
websocket implementation is based on Mongoose ³ and also provides a web server. The results

Figure 4.10: Emotion visualization UI connected to MobileSSI backend

of this allows the hosting of interfaces, of which the simplest form is provided by static pages’
URLs via the stimuli plugin. Those interfaces are not limited to experimental settings but can
provide feedback to the user or whole applications. As a result multi-modal fusion can be vi-
sualized to a group of users via a web interface see Figure 4.10.

³https://github.com/cesanta/mongoose

https://github.com/cesanta/mongoose
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Here an interplay of different MobileSSI instances on different smart devices using Web as well
as OSC sockets is needed. To find the setup described in detail, see Section 5.3 and Figure 5.7.

An example of a whole application can be found in a headache diary in Figure 4.11. It is not
hosted by MobileSSI’s websocket plugin, but deployed as a Tizen WebApp on a Samsung Gear
S2. Nonetheless, the communication is realized via websockets and allows for complex label-
acquisition, synchronized with data collection. Besides the origin of the pain in the first two

Figure 4.11: Headache Diary UI connected to MobileSSI backend

screens on the left, the intensity is recorded on the third screen and the possible cause on the
fourth screen. Websockets allow the integration of MobileSSI into contemporary Apps that can
be created rapidly for a variety of form factors.

Physical Computing

Instead of using touch input and graphical user interfaces, activities of daily living can be aug-
mented using physical computing.

Figure 4.12: Smart Objects for Annotation ”in the wild”



4.9. Summary 61

To ease annotation ”in the wild”, behavior can be tracked through the objects we interact with.
For example, motion sensors on one pen can provide annotations for smart-watch-based learn-
ing of writing or drawing that could later be transferred to other pens without motion sensors.
Communication between smart objects and MobileSSI is realized through Bluetooth Low En-
ergy (BLE). For the tracking of drink behavior, a smart scale is used as drip mat, logging the
event of rising a glass.

4.9 Summary

MobileSSI provides a port of SSI to UNIX platforms and Android, as well as additions for MSSP
that handle new challenges in annotation and machine learning ”in the wild”. Meanwhile,
MobileSSI is integrated into the code base of SSI. It expands the capabilities of SSI in rapid
prototyping, using XML pipelines by HTML5 GUIs and carries over approaches to multi-modal
fusion from the desktop PC to mobile devices.

The implementation of SSI is basis of experiments described in the following chapters. At the
beginning in Chapter 5 a mobile implementation of multi-modal enjoyment recognition is re-
alized, in Chapter 6 interactive machine learning for the recognition of drinking activities is
introduced and finally in Chapter 7 the influence of local climate zones on well-being is exam-
ined.
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Chapter 5.

Multi-Modal Laughter Recognition

Ha Ha

MobileSSI has the goal of utilizing Mobile Social Signal Processing for the recognition of well-
being in the wild. Laughter forms a paralinguistic social cue that is an objective to research
in Social Signal Processing. Furthermore, it is an important marker for emotional and social
wellbeing and thus will be described in this chapter.

To test MobileSSI’s fusion capabilities within a familiar scenario, that has been subject to re-
search on multi-modal emotion recognition [109], multi-modal laughter recognition forms the
first endeavor of this thesis. This Chapter is based on the publicationsMobileSSI - AMulti-modal
Framework for Social Signal Interpretation on Mobile Devices [65],MobileSSI: asynchronous fusion
for social signal interpretation in the wild [66] and Laughter detection in the wild: demonstrating
a tool for mobile social signal processing and visualization [67]. The own contribution lies in pro-
viding support for mobile platforms to the software framework, recording and labeling data in
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mobile
Devices

(Accelerometer)

Clip Micro-
 phones

Figure 5.1: Mobile setup: Three smart phones placed in breast pockets, clip-microphones.

the wild as well as evaluation usingmachine learning. Moreover, the employed fusion approach
was extended to multiple mobile devices and users and presented with the implementation of
a demonstrator.

5.1 Conception of multi-modal, mobile laughter recognition

While the setup in the lab involved video and audio as modalities and rarely sensors beyond
[95], the mobile setup had to rely on a different set of sensors. While the audio input is still
available, video recording is too intrusive and artificial to be considered for group enjoyment
recognition with mobile devices. Since accelerometers are built into smart phones and are
widely used e.g. in the human activity recognition community, they are a natural choice. Since
body movement is important in laughter recognition [115] (Body Laughter Index), having the
smart phone record chest-movement from within a breast pocket seems plausible. This is also
supported by Consentino et al [39] that mention auditive, facial and body movement cues as
characteristic of laughter behavior. They also attest, that most recognition systems rely only on
audio, e.g. the work by Hagerer et al. [85, 86]. Fusion approaches rely mostly on audio visual
information to date. A custom build device by Lacio et al. [48] forms an exception, where
movement and physiological signals are fused using a wrist band. The work presented in this
chapter, to the best of my knowledge, provides the only solution, fusing chest movement and
auditive cues on an mobile device.

SSI’s proven fusion algorithms are tested for their applicability in the wild, running on mobile
devices that do feature extraction and classification in real-time, while employing asynchronous
fusion over wireless network.

To sum this chapter’s efforts, a demonstration with visualization is created, that uses HTML5
to present the recognized group enjoyment state to the user.

Thus, this chapter has four goals listed below:

• Switch to modalities common-place in MSSP
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• Employ SSI’s advanced fusion algorithms

• Create a realtime recognition pipeline for multiple users

• Implement a live demonstration with visualization

5.1.1 Fusion techniques

Fusion of multiple signals and modalities is key challenge of MSSP.There is a range of solutions
to choose from, that apply at different stages of the processing pipeline and therefore bring
different restrictions and possibilities.

Feature based fusion happens early in the process and enables to create one model that classfies
across several modalities, whose features are considered at once.

Decision based fusion happens later, on the predictions of individual models trained on the
according modalities via the features computed on their raw signals. There is an increase in
flexibility, what set of rules is used to combine those results. Nonetheless, the modalities have
to follow the same cycle in the sense of frame size. The models have to deliver classification
results in sync, delay from wireless networks hinders consideration of multiple users.

t [s] event e(E)

5.4
laugh
(audio) 0.9

6.2
laugh
(accel) 0.5

8.0
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e(E)
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0.0

5.0 6.0 7.0 8.0 9.0 10.0 11.0 12.0
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Figure 5.2: The fusion algorithm considers the temporal flow of occurring, laughter indicating events. Influence
of events decreases over time and a continuous laughter probability is calculated as the moving center of mass of
weighted events. Courtesy: Florian Lingenfelser

Asynchronous fusion considers events over a longer time with individual weights and a con-
tinuous decay of events’ influence on the fusion-process over time. This enables to not only
consider modalities, that are evaluated at different pace, but take events into account that are
contributed from other smart devices and their users.

Since human to human communicationwithout technical support takes place in pairs or groups,
it is close at hand to not just fuse one single person’smodalities. The approaches tomulti-person
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fusion can be categorized into two classes. A more detailed look at group behavior uncovers,
that group behavior is not just the aggregation of individuals’ actions, but rather people that
engage into a common activity and adjust to each other. Here synchrony is a reseachedmeasure
[214], synchrony is detected on signal or feature level, the implementation by Varni et al is not
fit for real-time processing and as such of analytic nature. On a more abstract level, multi-
person fusion can aggregate affective cues [40] within the Pleasure Arousal Dominance (PAD)
domain of an model of emotion. Since it is not specialized on a single cue and the PAD-model
is designed for a single person, the provided information is not well-founded.

5.2 Validation in the Wild

As a real world test, a laughter recognition study in an everyday setting is conducted. Laughter
detection is a classic problem when it comes to social cues and SSI has already been used within
an enjoyment recognition system based on audiovisual laugh and smile detection [110]. Data
acquisition, however, was done in a typical stationary lab setting in which up to four study
participants were recorded while telling each other funny stories of their lives [126]. Now,
our aim is to port the existing system to run on mobile phones to investigate the following
questions:

• Can the sensors of the previous system be adapted using solely sensor technology pro-
vided by mobile phones?

• Which parts of the SSP pipeline need adaption to work in a less predictable and changing
environment?

• Can a comparable recognition performance be expected?

In principle, cameras could be used again for detecting visual laughter. However, they would
have to either be place in the environment (which would limit the user’s mobility) or have
to be attached to the user. In the latter case, only visual laughter of the user’s interlocutors
could be captured. Of course, the camera could also be attached in a way that it faces the user.
However, this setup would result into a rather bulky device. Consequently, another solution
had to be found. Accelerometers seem to be a promising option. Indeed there is evidence from
previous work using visual markers [115] or a complete motion capture suit [125] that motion
is a good indicator of laughter. Therefore it was decided to replace the Kinect cameras that were
used in the previous lab setting with accelerometers. For the audio modality no replacement
was necessary since external microphones can be used to circumvent interferences from the
pockets. The advantage of the new setup is that it uses only hardware that is available on smart
phones or very easy to attach (microphones) and can be continuously assessed and analysed.
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Figure 5.3: Overview of one session. Raw data containing audio and acceleration are plotted synchronized. Laugh
(yellow) and talk (orange) events are marked and their proportion per user can be found on the right. The detailed
window shows synchronised laughter between users.

5.2.1 Corpus

As a natural environment for the study a pub was chosen, as it is a common place for people to
meet and have enjoyable conversations. As described above, audio and accelerometer sensors
are used. The new setup is depicted in Figure 7.1 and shows three study participants, each of
them equipped with a smart phone in his breast pocket connected to a clip microphone. The
participants were acquired beforehand and given a brief introduction on how the setup worked.
Apart from starting the session, no further interaction with the system was required from the
participants. Throughout the session the participantswere completely free in choosing the topic
of their conversation, i.e. there were no guidelines were given on the content to be discussed.

Audio was recorded at 16 kHz, as it is the sample rate delivering the most reliable results on our
target system vs. 48 kHz in the reference study. Accelerometer data were sampled at 100Hz.
Figure 5.4 features a signal snippet showing speech followed by a laugh event. For the study
SamsungGalaxy S4 (GT-I9505) phones running Android 5.0.1 (latest official version at that time)
were employed.

First, a pipeline was set up to continuously record audio and accelerometer data and relied on
SSI’s synchronisation techniques to ensure that captured signals are kept in sync (see [222]).
Two sessions on different days were recorded and a total of four hours of natural conversations
per user was collected. The experiments showed that data can be reliably captured with the
sensors provided by the smart phones for up to eight hours per charge. Feature processing of six
hours and online recognition for seven hours is possible with one charge. When reviewing the
data shown in Figure 5.3 a significant amount of laughs was found (about 50 events per session



68 Chapter 5. Multi-Modal Laughter Recognition
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Figure 5.4: In addition to audio analysis acceleration is captured, which is an indicator of body movement to
differentiate laughs from talk.

and user). In total 21500 overall samples were extracted by using a slidingwindow of one second
and 400ms frame shift whereof 875 contain laughter. In comparison, the corpus acquired in the
reference study [110] contains 27000 samples with the same window and shift. Audio was used
as ground truth to annotate laughter on both modalities. Figure 5.3 also shows that laughs are
indeed infectious. Laughs of one person (indicated by the yellow lines) is immediately followed
by the other two interlocutors.

5.2.2 Features

In order to recognize cues for laughter in the observed channels, relevant features had to be
extracted from the segments of raw data. For audio, the EmoVoice feature set was used (1451 in
total) [219] - containing MFCC, pitch, energy and more. For laughter recognition in audio data
MFCC have proven themselves - not surprisingly as they are a useful tool in speech recognition
and laughter has a lot in common with phonemes. For accelerometer data, a series of nine
features was employed (listed in the enumeration below) for each of the three axis. The first
and the second derivation for each calculated feature was added, resulting in a feature vector
of size 81 for the accelerometer modality.

Features used on the raw signal, per axis, as well as their first and second derivation:

• Mean, Standard deviation

• Minimum, Maximum, Range

• Zero crossing rate

• Peak count, Pulse rate

• Energy
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5.2.3 Evaluation

Evaluation is carried out frame-wise over the two recorded sessions. As both sessions feature
the same users, it was decided to use two persons for training of recognition/fusion systems and
keep the third for testing, thus having a fixed training and test set. This evaluation approach
leaving one user out simulates the performance of an online system and allows us to draw a
direct comparison to the reference system [110] evaluated the same way. To get a first im-
pression of recognition performance, one SVM-model for each of the two modalities is trained,
audio and smart phone acceleration separately with two classes (laughter and talk). Frame-wise
recognition results are shown in Table 5.1. The tables present unweighted recognition results
(average accuracy across classes), because the number of frames actually containing laughter
is of course considerably lower than frames that show no hints of laughs. This prevents high
detection rates by only favoring the dominant class (weighting the average with the classes
sample count).

Uni–Modal Classification

Accelerometer Audio

Talk 63.42% 86.70%
Laughter 80.95% 76.19%

Average 72.19% 81.45%

Table 5.1: Results of classification per modality.

While the reference system reached an unweighted accuracy of up to 90 % for laughter recog-
nition on audio frames, now a clear drop to 81 % in recognition accuracy can be observed. The
detection rate for the accelerometer data was lower, too, yielding 72 % compared to 79 % ob-
tained with the video modality in the laboratory study.

In order to compare the performance of the proposed event-based fusion approach a very basic
decision-level fusion strategy is applied also (Table 5.2). Decision-level fusion using the product
rule [221] improved the results by one percent point over uni-modal classification and scored
82.59 %. As a second method, asynchronous fusion on event-level features (Section 5.1.1) was
conducted and improved the classification by three percent points to 84.64 %. Instead of fus-
ing information over fixed time segments, it is decided frame by frame how much recognized
events should contribute to the fusion result. To this end, the following parameters are taken
into account. Each event is assigned a modality-specific weight to emphasize more reliable in-
formation sources. A decay parameter determines how fast the influence of events on the fusion
result decreases (see Figure 5.2). If a particular threshold is achieved for a particular frame, the
frame is classified as laughter. The optimal configuration of these parameters was learned on
the training data by systematically testing a large number of parameter combinations following
the grid search approach described in [110]. Within 12000 combinations of parameters, based
on our previous research and additional adjustments for the new setting, 18 configurations were
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Multi–Modal Classification

Decision Fusion Event Fusion

Talk 86.62% 85.95%
Laughter 78.57% 83.33%

Average 82.59% 84.64%

Table 5.2: Results of classification fused using decision- and event-driven solutions

found that scored an average of 84 % detection rate. These configurations give events from the
audio modality a higher influence (0.7 or 1.0) while accelerometer events are weighted lighter
at 0.1 to 0.3. Audio and acceleration decay parameters are comparable and vary from 0.6 to 1.0
(audio) and 0.5 to 1.5 (acceleration). This is plausible as audio is the modality with better classi-
fication results in Table 5.1, therefore can be relied upon more and faster, while accelerometer
events make a better contribution if they are weighted less.

5.3 Demonstration within a Multi-User Scenario

smart-
phone:

Accelerometer

Events

Group

Feedback

Clip Micro-
        phone

smart-
watch:

individual
feedback

Ha Ha

Figure 5.5: Devices involved in the group enjoyment recognition with multi-user feedback

There are recent advances for uni-modal and single user laughter recognition tailored for mo-
bile device usage [85], that still operate reliably with 50% of droipped frame [86]. Multimodal
solutions with asynchronous fusion, as the one we presented, can still operate correctly if one
modality is fallen out.

MobileSSI allows to build applications that fuse not only multiple modalities but also streams
captured of multiple users. The demonstrator features inter-personal fusion to obtain a group
enjoyment level.
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Figure 5.6: Devices used for information visualization in the laughter demonstrator

Figure 6.8 shows the components of a pipeline that has been created for the laughter demonstra-
tor. It includes mobile audio and accelerometer sensors, transformers applying features on the
captured signals as well as consumers for classification and output. To orchestrate a multitude
of mobile devices, the following components have been added to the pipeline:

• SocketEventWriter : sends events over network

• SocketEventReader : receives events to fuse them in the recognition pipeline

• Websocket: provides an HTTP and WebSocket server used to host a web page on the
device that can be displayed on smart watches and the tablet

5.4 Demo Setup

With the laughter demonstrator, smart phones are combined as sensing devices , smart watches
as personal and tablets as group displays. While users engage in social interactions with each
other, MobileSSI records and synchronizes data from the audio and accelerometer sensors em-
bedded in the mobile smart phones worn in the users’ breast pocket. Using an event-driven fu-
sion approach, the users’ audio and accelerometer data are integrated to determine their degree
of enjoyment. Smart watches and tablets display information on aggregated cues of enjoyment
at the individual and the group level in real-time (see Figure 5.8).
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Figure 5.7: Sketch of the recognition pipeline (signal flow from left to right): features are extracted from the raw
streams when voice activity is detected in the audio channel. Support Vector Machine (SVM) classifiers recognize
the presence of laughter in the channels. Laughter events from both modalities are fused with events received
over the network and visualized through the websocket interface.

Figure 5.8: Visualization of enjoyment at the individual (left) and the group level (right)

5.5 Discussion

Compared to the story–telling corpus there is a clear differences regarding the signal quality.
For instance, in the pub the captured audio signals were overlaid with diverse sources of noise:
music playing in the background, surrounding conversations of varying intensity, utterances of
the waitress while taking orders, interferences with mobile network activity etc. These distur-
bances present great challenges to voice activity detection and audio classification and should
be addressed, for instance, by applying noise reduction techniques. Since the environment in a
mobile setting is subject to great changes, e. g. when the group is temporarily leaving the pub
for a smoke (see Figure 5.9), noise cancellation schemes are required that are able to dynami-
cally adapt to the current situation. It is important to note that the surrounding sound scape
also contains relevant data that should be analysed to gain further information about the envi-
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ronment and the user’s activity. For instance, tailored classification models could be used for
outdoor and indoor settings.

audio amplitude:

outdoor indoor

accelerometer signal:

transition

Figure 5.9: Change in audio amplitude and accelerometer energy before and after entering the pub.

Overall, the experiment demonstrated the benefits of MobileSSI when porting existing lab set-
tings into a mobile environment. Presented classification results are clearly lower than those
obtained in the lab. However, techniques based on event fusion narrow the gap compared to
uni-modal classification. The smile and laugh detector by Fukumoto et al. [76] obtained recog-
nition rates of 89.2 %. However, they had study participants watch videos of ten minutes only
while we investigated social interactions over several hours in a mobile setting. Also they used
a setup with glasses equipped with photo interrupters and relied on a PC for online process-
ing whereas in the presented case all the computing is done on the phone. Since battery life
of today’s smart phones is sufficient to record and process data in real-time for several hours,
MobileSSI is able to run real-life experiments, which provide better insights on the actual chal-
lenges that have to be faced when applying social signal processing ”in the wild”.

5.6 Summary

Themobile adoption of SSI proved to be successful in using acceleration as modality in laughter
recognition. A setup evaluated by Lingenfelser et al. [110] in the lab relying on video and audio
as modalities for group enjoyment recognition served as starting point. Since video can not be
used as modality in the wild due to intrusive setups, it was replaced with the accelerometers of
smart phones worn in the users’ breast pocket. Chest movement provides a source of informa-
tion next to audio, that contributes considerably to a joined recognition process. Functionals,
a collection of statistical features were used in the machine learning process and SVMs served
as classifiers. Acceleration is generally the weaker modality in laughter recognition, scoring
almost 10 percent-points lower that audio, but reaching higher accuracy on the laughter-class
compared to audio, with 80.95 % to 76.19 %. This enabled late fusion such as the application of
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the product rule, but especially the event-based approach to score higher than the individual
modalities at 84.64 % compared to 81.45 %. Furthermore, it was possible to adapt the asyn-
chronous fusion strategy to fuse information of up to three persons to estimate the level of
the group’s amusement. In a live demonstrator the visualization of group enjoyment could
be achieved on basis of online feature-extraction and classification. This was realized by dis-
tributing multi-modal, event-based fusion over multiple devices using OSC-Sockets and using
a self-hosted web-application, connected via websockets.



Chapter 6.
Interactive Training of Drink
Activity Recognition

In M-health, nutrition is the field of use with second most apps (after fitness apps) under teens
and young adults in the US [166]. Yet, nutrition apps make the user log a lot of activity man-
ually [185]. To support the user in the activity of nutrition logging, the fluid intake could be
logged with drink-activity recognition. Since drinking is an activity that can vary in execution
depending on the context, habit and stature of the user, a personalized model is desirable. Here
interactive machine learning (iML) comes into play.

75
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6.1 Conception of interactive, mobile machine learning of drink-activity recog-

nition

Interactive machine learning allows the adaption of an activity recognition system that is based
on machine learning. Next to personalization, it has the advantage of training on the user’s
device, to increase privacy. Interactive machine learning forms an addition to MobileSSI and
can be used in different scenarios.

Drinking as behavior, forms an entry-point for augmentation. This allows to hook applications,
such as health apps, into natural behavior and thus create a seamless integration of computer
interaction. Furthermore, it allows health application to interact with that behavior to support
the user in making a behavior change and therefore improving his health.

This chapter is based on the publication DrinkWatch: A Mobile Wellbeing Application Based
on Interactive and Cooperative Machine Learning [68], where own contributions lie in the im-
plementation of interactive machine learning capabilities into MobileSSI, creating a corpus in
the wild, with annotation, employ machine learning and simulation for evaluation as well as
conducting bodystorming with test users.

6.2 Background

Arguably, the advent of mobile and ubiquitous technology has disrupted how we (as users)
envision technology’s role in our everyday life. While originally mobile devices were perceived
as personal information management tools, and thus as tools in a traditional sense, today’s
mobiles have access to a vast amount of knowledge from which they can learn, and seemingly
become a companion, we become increasingly depended on.

There are some benefits of this ongoing shift of agency and capabilities towards mobiles or
technology in general, such as technology becoming able to recognize harmful behavioral habits
of users and assist users in reflecting on their habits and hopefully provide support in adopting
positive habits. Be it to regularly taking a walk or drinking enough, behavior change bears
great potential towards improving wellbeing.

In the following, related work in human activity recognition is summarized, which is an essen-
tial part in recognizing human behavior, and describe different ML approaches with regard to
their characteristics and application domains.

6.2.1 Human Activity Recognition

Over the last two decades, research in Human Activity Recognition (HAR) has been focusing on
a wide range of applications, such as surveillance and security [201], ambient intelligence [168]
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(e.g. to assist older adults [207]), or health care [231]. In particular, in ubiquitous computing
environments or smart home environments, Human Activity Recognition is a key feature, for
example, to monitor daily activities of users or provide assistance [237].

The rapid technical development of mobile devices and wearables, such as smart phones and
smart watches, has further expanded the possibilities for HAR. Mobile devices are equipped
with a plethora of sensors and are worn or carried around all day. Thus, many activities of
users can potentially be recognized. Consequently, a lot of research that investigated methods
and applications [230] for HAR has emerged, in particular, research employing inertial sensors
of smart phones [131, 197].

In more detail, HAR is used to automatically recognize a person’s activities from a stream of
sensor data, for example to pro-actively provide assistance, log daily routines, or to initiate nec-
essary procedures (such as calling an ambulance or neighbors in case a person has fallen [23]).
This makes them an important entity among today’s E-health topics, be it detecting stereo-
typed movements in children with developmental disabilities [107] or automatic monitoring
of rehabilitation processes [203] or using smart cups to track the behavior of residents of an
inpatient nursing care facility [239]. In comparison to smart phones, smart watches have a
decisive advantage, which makes them particularly suitable for HAR. They are body-mounted
and therefore always at the same place (i.e. constantly attached to the user’s arm throughout
a day). The human arm is actively involved in most of daily activities, whereas movements of
the body can be smaller and may only reveal few activities.

Smart phones usually detect only movements related to the whole body due to their typical
placement in the pocket. Therefore, the number of identifiable activities with smart phones
is limited. Examples from the literature include walking, running, jogging, standing, sitting,
walking up/down stairs, or using an elevator [79, 131, 134]. In contrast, smart watches or wrist
worn wearables have the potential to detect more activities than with smart phones, such as
drinking, smoking, typing on the keyboard, or eating with a knife and fork. Thus, new ap-
plication areas can be addressed, such as food/drink reminders and related habit awareness
applications (e.g. [163, 197]). The fact that smart watches record the subtleties of each individ-
ual’s armmovements in turn allowsML algorithms to generate personalized models for activity
recognition. Personalized models usually result in higher precision of recognition algorithms
and require less amount of sample data than user-independent models.

With the rapid development of smart watch technology, HAR on smart watches is an ascending
topic [22, 194]. In contrast to previous work that utilizes smart watches, the work at hand com-
bines online learning and interactive ML to continuously improve activity recognition models.
Moreover, the complete learning process is done solely on the smart watch without access to
any online resources or requiring network connectivity.
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Figure 6.1: An exemplary health application scenario presenting the interaction and cooperation between a user
and the DrinkWatch application. The second row provides screenshots of the DrinkWatch application and the
third row presents raw accelerometer data of one movement axis as exemplary sensor data, which are used to
recognize the drinking activity.

6.2.2 Active Learning

Miu et al. [131] presented an Online Active Learning framework and studied how to collect
user-provided annotations to bootstrap personalized activity models. They demonstrated that
generating personalized Human Activity Recognition models can be achieved on-the-fly and
does not require expert supervision or retrospective annotation of sample data. While Miu et
al. made use of a smart phone app to query the user, the work at hand queries annotations
through a smart watch interface. A smart watch app has the benefit that queries on a smart
watch can be handled more comfortably and quickly since smart watches don’t require users
to get it out of the pocket first.

Active Learning has been investigated for different models and classification types (e.g. Support
Vector Machines [208]) as well as different types of query strategies. An overview is given by
Settles [192]. The most widely used approach and therefore selected as entry point in Section
6.3.3.5, is Uncertainty Sampling [108] also called Query on Uncertainty. In these approaches, a
labeling system picks up samples for which the target class cannot be determined with a high
certainty. This way the system is not locked into just learning from data that it already handles
well. According to Lewis et al. [108], this approach performs better than relevance sampling
which picks high confidence samples for relabeling.

Also common is the approach called Query by Committee [193], where multiple models, that
have a strongly different way of operating, are grouped into a committee. Those samples are
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chosen for labeling by an oracle, where the individual models disagree most. Other query
methods are focused on error reduction [192]. They either directly try to maximize the expected
error reduction with the selected sample or they look at the expected model change that is
expected from all possible labels of the sample.

6.2.3 Interactive Machine Learning (iML)

Fails et al. [64] iML within perceptual user interfaces to allow the user to train view and cor-
rect classifications. They discussed their approach within the scenario of image processing and
object detection. Interactive Machine Learning gives the user control over systems that else
are intransparent and inadaptive [5]. While it is not widely adopted, Gilles et al. see an impor-
tant role with iML in movement design [80]. This is connected to the property of accelerometer
data, that are much harder to interpret by themselves without audio-visual reference. Nonethe-
less, motion data are important in mobile computing e.g. within the context of drink activity
recognition as proposed in this chapter.

Few recent works on HAR have investigated iML based on a smart watch [194, 197] or online
learning with a smart watch [131], but no one has attempted to combine both approaches to
realize interactive online machine learning solely on a smart watch independent of external
computing resources.

Shahmohammadi et al. [195] use a smart watch for interactive machine learning, since smart
watches can be worn and allow the display of user interfaces. Active learning is used to identify
five common activities of daily living. The data are not processed on device but send to a web
server. The activities (Walking, Standing, Sitting, Lying Down, Running) are not selected to
serve within the context of a certain task or application but to prove the concept. Study par-
ticipants were asked via smart watch interface to perform certain activity instead of capturing
natural behavior that is labeled by the user. Active learning was not run asking the user directly
but used the collected data for label requests.

With DrinkWatch, design and implementation of an application prototype for smart watches
is presented, that combines both, local processing and active learning. Furthermore, insights
from a technical evaluation are shared.

6.3 DrinkWatch Prototype

Across all the state-of-the-art and off-the-shelf mobile devices, smart watches seem most suit-
able in providing least intrusive and immediate feedback in mobile settings, and thus, allowing
users to reflect on their immediate activities and contextual habits. While their form factor and
small size is indeed an advantage when considering their integration in everyday situations, it



80 Chapter 6. Interactive Training of Drink Activity Recognition

is also often challenging to design and to develop interactive applications for smart watches.
For example, smart watches provide only a very small-sized screen which limits the amount of
information that can be presented to users. This limitation is, however, not relevant for the in-
tended use case of DrinkWatch as it mainly makes use of the movements of the smart watch for
hand activity logging. The presented system only occasionally shows notifications to users and
asks them for feedback related to activities. The prototype system further aims to reduce the
complexity and amount of interaction (required to recognize and log drink activities) through
automation.

DrinkWatch aims at recognizing drink activities (by means of inertial sensor data of the smart
watch) and tracks each drink activity for later analysis (see Figure 6.1). If DrinkWatch senses
“interesting data“, which potentially represent a drink activityworth learning from (Figure 6.1a),
the smart watch queries the user for assigning a label to the recorded sample data (Figure 6.1b).
Thereby, the user is actively involved in the ML process and may choose to adapt the drink ac-
tivity model or not. Consequently, not only drinking, but also activities, such as blowing one’s
nose or wiping one’s mouth (Figure 6.1c) may lead to a query to the user (Figure 6.1d).

DrinkWatch serves three main functions.

• First, it offers a graphical user interface for querying the user for annotations and for
reviewing recognized/logged activities.

• Second, DrinkWatch continuously collects data samples from the watch’s accelerometer
and other potential data sources. In the prototype, a smart scale is included, as outlined
in Section 6.3.2.2. This data collection, the corpus (Section 6.3.2), serves as the basis for a
warmstart model in the ongoing classic machine learning (cML) process. For the purpose
of later evaluations, all collected data samples are also locally logged on the smart watch.
However, this is not required for the online learning approach since the learning process
requires only the latest annotated sample, see Section 6.3.3.4.

• Third, Drinkwatch integrates an ML logic, which runs as a service on the smart watch.
While most of the logic, such as the online learning classifier, are implemented in the C++
programming language, part of the logic is embedded in a thin Java layer connecting the
ML logic with the Android system (e.g. user interface) via JNI.

In the following,each of the three parts of the DrinkWatch are described, including the imple-
mentation of the ML logic (see Section 6.3.3) in detail.

6.3.1 User Interface

DrinkWatch is implemented as a stand-alone application that runs on the smart watch Asus
ZenWatch 2, which is using the mobile operating system Android Wear 2 (Figure 6.2). Beneath
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Figure 6.2: Cooperative Learning Interface on the smart watch. The first two buttons enable the user to start or
stop the recognition pipeline. Whenever a drinking activity is detected, the user can inform the system whether
the recognitionwas correct (”Yes”) or incorrect (”No”). Additionally, with the last button, the user is able to indicate
whether a drinking activity was not detected.

the up-to-date OS, it can be charged and programmed fast using a USB connection, which is
handy for development and experiments. There are hardware solutions with a wider range of
sensors or fitted input hardware, such as a bezel, that might be more attractive for long-term
use. A minimal user interface on the watch (see Figure 6.2) is used to handle queries to the user
and to start and stop the learning pipeline. Thus, users have control over when and whether
to provide labels. The simple interface allows non-expert users to easily provide feedback on
the go. Drink activities that lie within the desired confidence range of the iML model trigger a
request/notification. Notifications are given by playing the standard notification sound of the
watch and displaying a text ( ”Have you been drinking?” instead of ”Waiting on Event” ). In
the current prototype implementation, the vibration function of the watch had to be turned
off, since it influenced its accelerometer sensor. This issue will be solved in a next iteration by
disabling sensor reading while a vibration is being executed by the watch.

6.3.2 Corpus for the Warmstart Model

6.3.2.1 Recording setup

In contrast to many other studies on activity recognition, people are not asked to perform
specific actions, but rather sample data in everyday situations are recorded to be labeled af-
terwards based on a ground truth. The recording setup was slightly different from session to
session. Recording of acceleration data from the wrist was always performed using an Asus
Zenwatch 2. In addition, the setup also included a camera to record video of the user when
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Camera

Smartwatches

Smartscale

Figure 6.3: Recording setup with up to three people wearing smart watches to record labeled accelerometer data
for the initial classification model. The weight of one person’s drinking vessel acquired by a smart scale and video
data were additionally recorded to be able to annotate drink activities afterwards.

possible. The number of users per session varied from three to one, while 22 sessions (out of
25) had only a single user (see Figure 7.1). All users were asked to wear the watch on their
preferred hand. All recordings, except for five sessions, contained smart scale data, which can
be used by our iML approach to speed up the annotation process.

6.3.2.2 Smartscale

The smart scale prototype [186] in the presented system (see Figure 6.4) continuously broadcasts
weight data of vessels placed on it via Bluetooth 4.0 to every receiver that is nearby. In this case,
the smart watch received and recorded the data whenever the watch was in reach of the smart
scale.

Figure 6.5 exemplary shows recorded data of the smart scale. The graph resulted from drinking
from two 0.5 l PET bottles (one by one). After each drinking activity the bottle was placed on
the smart scale. When the first bottle was empty it was replaced by a full one. The plot shows
that the first bottle was not completely full and has not been placed on the sensor, after being
empty.

Whenever someone wants to drink out of a vessel placed on the scale, he or she usually first
takes the vessel from the smart scale (weight is 0 g), drinks out of the vessel, and places the
vessel back on the smart scale. The weight is now lower than before. The mass can increase
if additional fluid is filled into a vessel or another vessel is being used which is heavier and/or
contains more fluid.

In comparison to accelerometer data, the weight data of the smart scale is easier to interpret
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Figure 6.4: A glass of apple juice standing on the smartscale.

so that an annotator can quickly detect a drink activity, but also enables automated annota-
tions. The video data can be used to validate the labeled time segments but does not have to be
completely watched.

6.3.2.3 Dataset

The data set contains 25 recorded sessions, which overall consist of 16 hours and 30 minutes of
every day activities containing 5117 samples of drink activities and 26288 samples of non-drink
activities. One sample consists of a 1 second frame step together with 7 seconds of overlapping
preceding data. A typical snippet of a drink activity is shown in Figure 6.7. Such an activity is
characterized by three phases: picking up, bringing the vessel to the mouth and back as well as
finally putting the vessel down.

Random under-sampling was used to balance both classes in the training process. Acceler-
ation data were recorded with 25 samples per second using the accelerometer sensor of an
Asus ZenWatch 2. As ground truth video and smart scale data were recorded synchronously.
An annotation session containing all data can be found in Figure 6.9. Furthermore, the Android
system provides a so-called linear acceleration sensor, which represents the raw acceleration
sensor exempt from the earth gravitation influence. The DrinkWatch prototype makes use of
this linear acceleration sensor as it provides better performance for HAR [194]. These data were
used to simulate a cML process and to gain a warmstart model for further iML, see Section 6.4.
Thus, the data set is an important input for the ML module described in the following.



84 Chapter 6. Interactive Training of Drink Activity Recognition

13:30 14:00 14:30 15:00 15:30 16:00

0
10

0
20

0
30

0
40

0
50

0

t

m
 (

g)

bottle 1 bottle 2

Figure 6.5: Weight data of the smart scale. Two filled 0.5ml PET bottles have been drunken during this session.
Whenever the drinking vessel is lifted the weight is 0 g (short lifting is omitted). After drinking the weight is
reduced.
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Figure 6.6: Battery level of Asus ZenWatch 2 running the MobileSSI iML pipeline

6.3.3 Implementation of the ML Module

DrinkWatch employs activity recognition to reduce manual logging effort that is required by
the user when using a notebook or a conventional logging app. To this end, DrinkWatch con-
tinuously tracks the user’s wrist activities in order to detect specific time windows (frames)
that may be interpreted as an indicator of drinking. In case of high confidence, a drink event
is automatically registered by a higher level app, e.g. a nutrition logging app. In case of low
confidence, the system has to decide whether to ask the user for confirmation or not. Informa-
tion gain is considered as well as the user’s situation, as discussed by Amershi et al. [5]. For
example, the user should not be disturbed if the expected information gain is very low.

The maximum run-time of the system without WiFi is about four hours, as can be seen in the
graph of Figure 6.6. In case of low battery (2 %), the prototype app stops the ML pipeline in
order to properly finish the session. From the two days maximum battery life under optimized
circumstances, this means a strong reduction.
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Figure 6.7: Three axis accelerometer data of a drink activity. The start and end of the signal describe themovement
of the drinking vessel to and from the mouth. In the middle of the signal the rotation of the vessel by turning the
wrist takes place.

The prototype relies on MobileSSI. . While MobileSSI already has ML capabilities for a range
of classifiers, implementation followed a classic non-interactive approach. The extensions in-
clude online learning capabilities (see Section 6.3.3.4) that enable the user to interact with the
model using a simple user interface while the model actively (see Section 6.3.3.5) queries the
user. The prototype also shares parts with a classic ML pipeline, such as data collection and
feature extraction, which are also described in the following. A brief overview of the pipeline
and application concept is given in Figure 6.8. The red arrows mark continuous streams with a
fixed sample rate kept in sync by the SSI framework. Blue dotted arrows mark events that are
sporadic, but contain a time stamp and duration. Gray components are either future work, the
user moderation and context component, or not described in this thesis, namely the integration
with the nutrition logging app. User moderation, is an additional layer atop of activity recog-
nition and requires an own model that relies on further sensors such as application meta data.
First work into this direction was conducted by the author of this thesis with the nutrition app
presented in Seiderer et al. [187], which allows the user to choose in each situation the most
appropriate device combination out of a smartphone, smartwatch and smartscale.

6.3.3.1 Frame Size

In order to continuously process data, segmentation of the data has to be addressed. A fixed
window is set to a size of 1 second together with an overlap of preceding 7 seconds. This allows
the whole event to be captured, in most cases while having a reactive system, giving quick
feedback. Given the chosen sample rate of 25Hz 200 raw data points in three dimensions can
be gained, as the accelerometer in use has three axes.
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Figure 6.8: Overview over iML Pipeline and future system components.

6.3.3.2 Feature Selection

Accelerometer data are widely used in Human Activity Recognition and a lot of features have
been experimented with. Features are needed to simplify the classification process since train-
ing classifiers directly on raw data typically uses more resources both in data demand and
computing power. The selected feature set for DrinkWatch is based on related work. In partic-
ular, a range of features that are known to work well on acceleration data [13, 35, 93, 106, 161]
and have been used for the recognition of drink activities are implemented [104, 226].

On each axis/dimension , the following features were calculated:

• Mean, Min, Max, Std. deviation, Variance, Energy

• Interquartile range (IQR)

• Mean absolute deviation (MAD)

• Root mean square (RMS)

Additionally following features are generalizing over all axes:

• Correlation between XY, XZ, YZ axis

• Mean, Std. deviation, Min, Max, IQR on length of per sample vector over all axes (mag-
nitude)

This results in overall 35 features calculated on the previously described 1 + 7 seconds contain-
ing 200 samples.
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6.3.3.3 Normalization

Normalization is scaling all features’ data range to fit a certain range, in this case within 0 and
1. This is, for example, done by using the accelerometer’s maximum output value that can be
queried using the Android API. Compared to a classical approach in MobileSSI and many other
implementations of classical ML, the responsibility of data normalization is moved from the
training process, iterating over all samples in the data set, to the feature calculation, on the
current chunk of data. This is necessary because with low initial sample count determining
the minimum and maximum on already known data might not be representative for future
data. There are alternatives to feature based normalization, such as adaptive scaling. While
normalization is not strictly necessary for Naive Bayes based on a normal distribution, it is
recommended to keep features with higher values from dominating features with small values.
The pipeline provides a feature vector of dimension 35 that is fed into the following online
classifier component every second.

6.3.3.4 Incremental Learner

Classification of the current data frame is handled by the pipeline, as it would be the case in
a classic ML pipeline. The main objective is to continuously improve learned models for fluid
intake based on tracked data and user input. Incremental [205] or online learning enables us
to learn a new model from scratch in the deployed application. Furthermore, the model can be
improved at the moment the user provides new labeled data and the next input can be analyzed
with the improved model without the need to restart or stop the application. To speed up the
process, a classically trained model is used as a starting point for further incremental training.
This procedure is called warm-start.

Naive Bayes is the classifier of choice, which can be easily adapted for online learning (see
e.g. the implementation used in MOA [24]). The online learning variant of Naive Bayes incre-
mentally calculates mean, variance and standard derivation and additionally stores the sample
count to be able to adjust with new data proportionally. The algorithm is described in detail by
Knuth [102] on page 115. The calculations are executed per feature and class, thus the model
consists of 210 float values and a sample count. As Naive Bayes classification results into confi-
dence values, it enables us to query the user based on the level of uncertainty. Furthermore, it
is fast in training and execution. This makes Naive Bayes a good option for restricted platforms,
such as smart watches. Moreover, it offers an advantage in data security, as no other data that
can give an insight in user behavior or health related information are permanently saved to
the watch. At this point LibLinear is only integrated without online learning capabilities, but a
solution exists according to Tsai et al. [210]. The future integration of LibLinear as additional
online learning library depends on the result of the evaluation, see Section 6.4.
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Figure 6.9: Cooperative Machine Leaning in NOVA: Predictions of LibLinear (left) and Naive Bayes (right) on
one session. Video, smart scale and acceleration data are followed by annotations. The first line contains the hand
labeled annotation and is followed by predictions of models with increased number of training data. Areas marked
in green are drinking activity.

SVM
SVM

Figure 6.10: Training progression using different confidences and models

6.3.3.5 Active Learning

Our Active Learning implementation uses query on uncertainty for sample selection, see Sec-
tion 6.2.2 for further background. The credibility range that triggers user requests can be speci-
fied, thus DrinkWatch supports relevance sampling as well as uncertainty sampling. The option
is part of an online classifier component shown in Figure 6.8. It manages the assembly of sam-
ple lists from user annotations and data streams as well as the training process of our online
model. The model’s predictions are also handled by the online classifier. Both, requests and
predictions, are handled as events instead of streams with fixed sample rate.

6.4 Evaluation and Results

Following system implementation and data collection, three steps of evaluation are presented in
this section: the static evaluation of the fully annotated data set in Section 6.4.1, the evaluation
of different learning strategies in Section 6.4.2, and the interactive run performedwith end users
in Section 6.4.3.
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6.4.1 Evaluation of Static Models

To give an overview of the collected data and provide an impression of what accuracy fully
trained models are able to achieve, Table 6.1 shows results of Naive Bayes and linear SVM
(implementation: LibLinear) models trained on the full data set, evaluated on the fixed test set
that is also used for the simulation of cooperative ML.

Results of full Training

Naive Bayes linear SVM

Drinking 81.4% 84.9%
Not drinking 71.6% 79.8%

Unweighted Average 76.5% 82.3%

Table 6.1: Results of training on all annotations contained in the training set, evaluated on the test set.

Our results are in line with other results on drink activity recognition found in literature, where
drink activity is can be classified on accelerometer data with 70 % to 80 % accuracy [226]. The
linear SVMmodel shows a six percent points lead over Naive Bayes, which again is as expected.
While there is a difference on the ”Drinking” class, the difference is larger on the ”Not drinking”
class. As ”Not drinking” is by far larger and more complex, Naive Bayes struggles in finding a
model, that depicts the classes’ behavior in recorded data.

6.4.2 Learning Strategy Simulation

Since it is intended to utilize the learning process within an end user application, that is de-
signed to continuously adapt to the specific activity patterns of the user, it makes sense to not
only evaluate the complete model, but also the relative improvements of the classifier when
increasing the amount of training data. To evaluate this continuous refinement of the classifi-
cation system, the iterative training process is simulated by using the NOVA [17] toolkit.

First of all, the base model is trained on a small stack of eight annotations from one session.
From there on this is used as baseline classifier to predict the rest of the training data. Subse-
quently, the first label where the confidence is equal or greater than the lower end of a pre-
defined confidence interval is selected. In case the confidence value lies within the interval
the oracle is queried to correct the answer. The oracle is simulated by the full hand-labeled
annotation. In case the confidence value of the prediction is higher than the upper limit of the
interval it is assumed that the classification of the sample is correct, and forwarded to the log-
ging application. Afterwards the newly annotated sample is added to the training data and the
classifier is retrained before repeating the same steps again. This process continues iteratively
until all available data has been annotated. While in theory the classifier could learn from data
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with high classification confidence and improve without explicit user input, the system sticks
to user (oracle) labeled data only because those are guaranteed to be true positive samples as
long as the user gives correct feedback.

The study has been conducted by applying an uncertainty sampling strategy which utilizes a
low confidence interval ranging from 0.5 to 0.7 as well as a relevance sampling strategy using
a high confidence interval from 0.7 to 0.9, see Figure 6.10. While one would expect the un-
weighted average accuracy to increase steadily with the number of available training data our
simulation results paints a different picture as shown in Figure 6.10. Naive Bayes is clearly more
unstable than LibLinear’s linear SVM. Obviously, it is less robust against variations across ses-
sions and users as well as untypical drink activities, for example, those with long pauses while
holding the vessel.

All models stabilize over the course of the simulation. By the time 30 additional labels are
added to the base stock, the variations in accuracy narrow down to five percent points for
Naive Bayes and three percent points for LibLinear, when adding new labels to the training
process. While low confidences seem to be preferred by the LibLinear SVM model, queries
based on high confidences seem to be the better choice for Naive Bayes. The progress of both
models is best judged using predictions, as shown in Figure 6.9. One can see where the classifier
triggers and with what confidence, as indicated by hatching and color. The first line contains
the hand labeled annotation and is followed by predictions of models with increased number of
training data. Areas marked in green are drinking activity. Naive Bayes changes in accuracy,
seen in Figure 6.10 manifest themselves as low confidence, red bars on the right.

6.4.3 Interactive Machine Learning Sessions involving Bodystorming

Bodystorming [141, 164] typically is associated with early stages in the creation of embodied
interaction design ”in the wild”. Since DrinkWatch is targeting natural behavior of drinking
as means of interaction with a smart watch, Bodystorming is in this case used as evaluation
method. In a natural setting users are confronted with DrinkWatch to describe their experi-
ence of body motion and system feedback. Thus, aspects of the users’ motion, described aloud
can be gathered together with system behavior. The feedback can be seen as final step of the
first iteration in development of our interactive machine learning system based on hand mo-
tion. Adoption of Bodystorming as evaluation is a step towards employing interactive machine
learning for movement interaction design as sketched by Gilles et al. [80].

Two users were invited to use DrinkWatch for one hour to track their drink activities. For this
experiment, the high confidence range is picked (0.7 to 0.9) since it promises an earlier stabi-
lization for Naive Bayes. To create a reliable base model, at least 40 annotations were used.
The users were able to judge the quality of the model by the appropriateness and frequency of
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queries. While both users had the impression that drink activities were accurately recognized
in general (e.g. “Five out of six” stated by one of the two users), there were many wrong pos-
itives due to the unbalanced nature of both classes. The unfiltered requests were described as
annoying by the users and made the system unusable. The behavior of the system appeared
transparent to users. They noted that moving a vessel containing fluid, slow and steady was
a key trigger for recognizing drink activities. It was also easy for them to mimic activities
triggering the model, describing properties of the movement that lead to requests.

6.4.4 Discussion

The need for mobile interactive and cooperative ML approaches is motivated by shortcomings
of classical ML approaches, considering (i) difficulties in getting authentic data of every day liv-
ing, and (ii) a deficit of transparency and user control. Interactively integrating users into the
ML process would have the potential to address both issues, allowing users to label their own
activities, to gain some understanding of and control over machine functionalities, and to ulti-
mately peek behind the curtain of automation and to leave users with a feeling of competence
and self-efficacy.

Since mobile cooperative learning is a novel research area with many conceptually and techni-
cally open issues, this chapter exposed the process of developing the DrinkWatch application
and its integration with smart data sources, such as the smartscale. The intention and aim was
to become able to infer limitations and potentials of future mobile cooperative ML application.
After developing the core functionalities of the DrinkWatch application, a time period of six
months followed, iterating the application based on multiple tests, including a longer period of
time testing the application with myself and short episodes collecting insights from letting col-
leagues and friends try the application. Building and testing DrinkWatch, showed that interac-
tive cooperative machine learning is already feasible on today’s state of the art smart watches.
Feedback provided by the model (i.e. the machine intelligence) as a direct consequence to a
drink activity is intuitively graspable by users, as think-aloud sessions indicated, even when
feedback is provided through simple audio notifications. Based on the model performance in
recognizing drink activities, it can be assumed (as it is typical with many ML based models)
that it can be adopted easily to recognize other hand-based activities.

LibLinear’s linear SVM does not only show higher accuracy compared to Naive Bayes, but
also a smoother learning curve. Since both models have opposing tendencies when it comes to
confidence intervals, fusing bothmodels in aQuery by Committee [193] implementation, seems
promising. The committee might also be accompanied by static models, such as the warmstart
model or save points that can be created by the user as well.

As also described in the interactive ML paradigm [5], queries should be forwarded to the user
with care, since wrong positives cause frustration and users tend to describe the experience
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associated with wrong positives as “annoying”. When it comes to adaptability to new health
related hand activities, this chapter presented several observations that can be used as reference
points. The minimal strength of the Naive Bayes warmstart model for the problem of drink
activity recognition can be set at circa 40 overall annotations, this equals about eight hours
of recording in this case while the linear SVM stabilizes at about 30 overall annotations or six
hours of recording.

The smart scale was introduced as an option to integrate data from other data sources, in the
hope to improve the (initial) quality of the model. The use of a smart scale reduced the annota-
tion effort drastically and helped to understand that it is a suitable physical object to facilitate
logging of fluid intake as well as to support annotation and online learning on smart watches
in a stationary setting. Interactive machine learning on mobile devices also was researched
with respect to explainability in [70], that goes a step further in visualization of the process of a
machine learning classification on images. Here, saliency maps of a deep neural network were
calculated on images of aesthetic and not aesthetic forest. Moreover, a study was presented
that underlined that saliency maps increase transparency of the machine learning process and
help the user to sharpen his view regarding images of forest scenery.

6.5 Summary

The design and evaluation of DrinkWatch, a smart watch application for drink activity recog-
nition, showed possibilities and challenges when it comes to the method and the technology
of mobile interactive machine learning systems. A key motivation for the development of a
mobile system employing interactive machine learning, lies in the circumstance, that it is not
feasible to annotate data of recorded wrist motion in retrospective. Instead annotation has to
take place at the time an action is executed. With DrinkWatch, the effort in annotation can
be shared between user and smart objects. Moreover, active learning is implemented to select
only data that are the most important for the machine learning process for labeling.

Since machine learning models can be trained incrementally without the need for storing data,
the user can be providedwith amore reactive system that improves his privacy at the same time.
For this purpose, SVM and Naive Bayes were evaluated with simulated strategies of different
confidence ranges. Here data recorded using MobileSSI in the wild were used as a basis.

As a further evaluation step, bodystorming was conducted with users and the DrinkWatch
prototype. Bodystorming lies an emphasis on embodied experience and is usually employed
early in the design process. First experience of users with the prototype lead to the insight that
users were able to identify properties of their hand motion the classifier reacted to. They noted
that moving a vessel containing fluid, slow and steady was a key trigger for recognizing drink
activities.



Chapter 7.

Mobile Recognition of Wellbeing

within Local Climate Zones

This Chapter is based on the publicationMobile Sensing for Wellbeing Estimation of Urban Green
using Physiological Signals [69]. Own contributions lie in developing the software setup for data
collection, creating mobile user interfaces and evaluation via machine learning. Study design
was realized with the help of Christoph Beck and Joachim Rathmann working at the Insti-
tute of Geography at the University of Augsburg, while Andreas Seiderer contributed custom
hardware. In addition to the evaluation presented in the paper, relying only on blood volume
pressure, evaluation of further sensors (skin conductance, audio) and fusion of physiological
sensors (blood volume pressure and skin conductance) was integrated in this chapter.

7.1 Conception of mobile label acquisition and context recognition

In Chapter 5, environment with their different noise levels are identified as challenges in MSSP.
Beyond auditive characteristics there are further influences thus as heat and humidity that have
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influence on us, depending on where we are. When viewed from the perspective of wellbeing,
environments can bring a multitude of positive factors, such as an incentive to exercise one’s
body in walkability [74] or positive effects on recreation.

Thus, this chapter tackles environment, foremost in regard to personalized models of wellbeing,
depending on local climate zones. For this purpose study participants were exposed to three
different local climate zones, while a variety of sensors was recorded synchronized with the
participant’s self-assessed rating of wellbeing (valence). Later on machine learning was used to
classify on the one hand the local climate zone and on the other hand the self-assessed valence
based on recorded sensor data.

1.

2. 3. 4.

Figure 7.1: Two participants taking part in the field study. The following sensor devices are visible in the photo:
1. Aspiration psychrometer, 2. Microsoft Band 2, 3. Samsung Gear S2, 4. Custom built Environmental sensor box

Nature therapies, such as garden therapy [1] or Shinrin-yoku forest bathing [145], have pro-
vided evidence of the positive effects of green on humans’ mind and physique [160]. Previous
research argues for a healthy effect of natural environments even when only viewed through
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a window [212]. Going beyond the typical quantified-self notion ”know thyself”, this chapter
aims to employ sensory data to investigate the potential of health-transpiring environments.

There is a large body of work that employs HCI technology to enhance interaction with nature
(e.g., [25]), including explorations of human-plant interactions. However, understanding what
aspects of an environment influencewellbeing and integrating this knowledge dynamically into
(technology) design is a challenging task. Relevant data to analyse a person’s wellbeing may be
acquired, for example, with mobile and stationary sensors. Since sensor other data other than
video or audio do not speak for themselves when viewed out of context, it is essential to request
specific annotations from the user in the very moment of data recording [50]. To this end, com-
fortable mobile interfaces have to be provided that facilitate the input of annotations without
affecting the user’s experience of the outer-body environment. A number of applications draw
on the interdependencies between the aesthetics of a landscape and an individual’s wellbeing.
Examples include navigation systems that aim to reduce environment-induced stress on the
user. Contemporary approaches consider routes with beautiful scenery instead of the fastest
route [173] when generating recommendations. Such applications go beyond routing and can
even recommend on which side of a bus [179] passengers should sit on a bus tour to experience
the most aesthetic views during their trip. Usually, these applications rely on machine learning
models that are trained using image data from the categories of interest, i.e. aesthetic and non-
aesthetic scenery, such as a highway. However, they do not employ objective physiological or
behavioral measures to assess the user’s wellbeing.

A variety of wellbeing models has been proposed in the literature [56] to capture relevant fac-
tors, such as sufficient sleep and healthy nutrition, that influence an individual’s wellbeing. Be-
sides subjective measures, usually drawing on valence-based self-reports, objective measures,
such as physiological data, are employed to assess an individual’s wellbeing [98, 100]. Also,
the influence of an individual’s environment on physiology has been researched by measur-
ing heart rate and heart rate variability [200], skin temperature and pulse rate [133]. Climate
is a key environmental influence on the human body, therefore it plays a central role in this
study design. Fine grain assessment on environmental and personal factors combined so far
have not been used together with machine learning to gain models that can be personalized.
Nonetheless, adaption of machine learning models on mobile device is a feasible task [188].
While deep learning is becoming increasingly popular in Affective Computing [227] this chap-
ter relies upon handcrafted features due to the sparse nature of the data set [223]. This leads
to the main question to be answered with following work: How can the influence between the
users’ urban environment and their physiological and psychological wellbeing be modeled? To
shed light on this question, a field study with 20 participants is conducted. Measurements were
recorded with a wide range of sensors associated with the participants’ inner-body states and
their urban environment. In addition, self-reports of psychological parameters are recorded,
including valence-based ratings of the pleasantness of the moment as well as subjective assess-
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ments of thermal sensation and perceived air quality. Due to different screen sizes of smart
phone and smart watches, the users are provided with dedicated graphical user interfaces for
each of these devices, to conduct the labeling. Since people are usually able to distinguish easily
between a pleasant and an unpleasant feeling [14], it is possible to annotate data related to well-
being on the go. In the following, the setup and results of a study are presented to investigate
dependencies between the urban environment and the user’s wellbeing as a first step towards
an application fostering the user’s wellbeing while employing an interactive machine learning
subsystem [68, 167].

Figure 7.2: GUI used for self-assessment on smart phone (left) and smart watch (right). Each version gathers
wellbeing in terms of valence (5 point scale), subjective impression of temperature and air quality (9 point scales).

7.2 Setup and Data

In each recording session, data was collected from two participants, with one participant using
a smart watch for labeling, and the other using a smart phone. The user interfaces for both
devices are shown in Figure 7.2. In addition to the annotation devices, both participants wore
fitness bands to collect physiological data. The per-person setups also varied in the addition
of an aspiration psychrometer, for the detection of ambient air temperature, relative humid-
ity and further derived variables relevant for wellbeing. Aspiration psychrometers are bulky
professional devices, the established standard for measuring relative humidity. They serve as
high-quality reference for low cost alternatives integrated into the custom-built sensor box as
displayed in Figure 7.1.
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Figure 7.3 shows the setup for acquistion of sensor data and users’ self ratings. Different sensors
tend to provide data at different speeds, see Table 7.1. Especially, on mobile devices, chunks
of data at one moment would span different time periods for different sensors. Therefore syn-
chronization of the individual data streams is required. To record data, mobile tools for the
acquisition and analysis of sensory data are employed, SSJ [44] and MobileSSI [66], which in-
clude specific mechanisms for synchronizing multi-sensor data.

Figure 7.3: Setup including sensor configuration, recording software and annotation interfaces.

7.2.1 Sensors and Devices

While the evaluation of this chapter focuses on physiological signals, the recording setup was
done using a wide range of sensors that promise useful input for context-aware applications.
Environment-related data were collected using microphones connected to the smart phones,
GPS provided by the smart phones, and a custom-built sensor box. The sensor box contained
a sensor for temperature, humidity (SHT75) and air pressure measurement (BMP280) as well
as dust (SDS011) and gas (MICS) sensors. For a detailed overview, see Table 7.1. Person-
related data were collected via a Microsoft Band 2 providing galvanic skin conductance (GSR),
heart-rate (HR) and the heart’s inter-beat-interval (IBI) as physiological signals. Aspiration
psychrometers were used to collect temperature and humidity as an indicator of heat stress.
These devices only store data locally, thus synchronization was required which was conducted
retrospectively via GPS and timestamp information.
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Device Sensor Data SR (Hz)
MS Band 2 BVP sensor IBI 30

HR 1
GSR GSR 5
Accelerometer ACC 62.5

Smart phone GPS coordinates 5
Microphone audio (raw) 16000
UI ratings event based

Smart watch UI ratings event based
Sensor Box SDS011 PM2.5 0.07

PM10 0.07
SHT75 humidity 0.07

temperature 0.07
MICS CO 0.07

NO₂ 0.07
NH₃ 0.07
C₃H₈ 0.07
C₄H₁₀ 0.07
CH₄ 0.07
H₂ 0.07
C₂H₅OH 0.07

BMP280 pressure 0.07
temperature 0.07

Aspiration humidity 0.5
Psychrometer GPS 0.5

temperature 0.5

Table 7.1: Devices involved in the recording setup.

7.2.2 Experience Samples - Label Acquisition

In order to gain information on the participants’ wellbeing, they are asked to provide explicit
experience samples about their momentary state, related to valence (5-point scale, good to bad),
perceived temperature (9-point scale, hot to cold) and air quality (9-point scale, good to bad).

On the back-end side, annotations were serialized synchronously with the collected data de-
scribed in Section 7.2.1. Participants were asked to annotate whenever they felt a change of
the respective states. Thus, a label was valid until a new label replaced it. Overall 769 labels
where annotated on the go by the study’s participants with an average of 38 labels per session.
Since those samples represent impressions for a short time period only, questionnaires includ-
ing ratings related to mean and variance of wellbeing, temperature and air quality concluded
each session.

7.2.3 Route and Sessions

The route used for recording was selected due to the variety of local climate zones including
the built up “Open Mid Rise” as well as the mainly natural “Scattered Trees” and “Dense Trees”
categories [19, 202] (see Figure 7.6). These local climate zones covered both exposure to heat
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Figure 7.4: Plot of temperature acquired along the route in one exemplary measurement.

Figure 7.5: compact high-rise, open midrise, low plants, scattered trees, dense trees

in city and open meadow as well as sheltering forest. In addition to the GPS-track marking
the route, Figure 7.4 also shows the temperature along the track for one exemplary walk. Each
session took about 80 minutes for the 5 km walk. Days with similar weather conditions were
chosen for the study in order to reduce a weather-based bias on data. Measurement campaigns
were performed under clear and calm weather conditions around noon on midsummer days
to ensure maximum thermal differences between local climate zones and thus increasing the
chance of capturing potential heat stress. The path used for data-acquisition is conceptualized
as a loop, to prevent the participant’s time walking from influencing physiological data. A
total of 20 sessions with 7 participants were included in the data set used for the evaluation in
Section 7.3.

7.3 Evaluation and Machine Learning Models

To cope with the complexity of the data, machine learning techniques are utilized, while search-
ing for meaningful patterns across physiological data (BVP), characteristics of the environment
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Figure 7.6: Occurring local climate zone types: Open Mid Rise (City), Scattered Trees (Meadow), Dense Trees
(Forest).

and the users’ self-reported wellbeing. Since the environment is a key independent variable
in this study’s design, the influence of environment on physiology is tested by discriminating
different climate zones using physiological data. An important objective of the taken approach
is to investigate to what extent the user’s experience in terms of wellbeing, temperature and
air quality may be predicted from the recorded physiological data. The user’s subjective ratings
for pleasantness of the moment, perceived temperature and air quality were used as a golden
standard in the training and evaluation process. Once a model is trained, it can directly be
employed to generate context information for an application in real-time [66]. In addition, the
ability to process data directly on the device is an important prerequisite to respect the user’s
privacy, that again is a desirable feature when processing health related, physiological data. In
the following the steps involved in the data processing pipeline are described.

7.3.1 Feature set for Machine Learning

In order to calculate features for the classification approach, data provided by the Microsoft
Band 2 are used for physiological data, which provides inter-beat-interval (IBI) and heart rate
(HR) and Galvanic Skin Response (GSR) that are analyzed in the following. Usually, physiolog-
ically measurable effects of a change in the state of mind (such as an spontaneous increase in
valence) are slightly delayed and rather long-lasting. While the Microsoft band provides raw
data for GSR, the Blood Volume Pressure (BVP) is already processed into HR and IBI (see Figure
7.7). Therefore, a range of statistical features is applied over multiple data samples to cover the
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characteristics of the input signal over an extended time period.

Figure 7.7: Physiological Data: GSR, HR and IBI

To assess the contribution of each statistical feature on HR and IBI to the overall classification
result, a Sequential Forward Selection (SFS) was applied. The results of this SFS are shown in
Table 7.2. SFS identifies the most useful single feature to which the next best feature is added
subsequently. Recognition rate at rank 2 therefore is achieved using feature 1 and 2. The full
feature set is used for the training of models presented in the following section.

In Table 7.2, the score peaks the first time at rank 9with a score of 0.5. A closer look at the results
of the SFS reveals that mostly IBI-Features are used to reach peak performance, which indicates
that the heart’s inter-beat-interval conveysmore valuable information than the heart rate in our
case. HR (1.0Hz) and IBI (5.0Hz) features are calculated on the same time slice, consisting of a
10 second frame containing new data, and a 240 to 380 seconds overlap containing old data.

rank feature score rank feature score

1 IBI_MAXPOS 0.40 12 HR_ZEROS 0.50
2 HR_MAXPOS 0.43 13 IBI_PEAKS 0.50
3 IBI_MIN 0.43 14 IBI_MINPOS 0.49
4 IBI_STD 0.43 15 HR_STD 0.41
5 HR_PEAKS 0.43 16 HR_RANGE 0.35
6 IBI_ZEROS 0.43 17 IBI_LEN 0.34
7 IBI_MAX 0.42 18 HR_LEN 0.34
8 IBI_ENERGY 0.45 19 HR_MEAN 0.33
9 HR_MINPOS 0.50 20 HR_ENERGY 0.33
10 IBI_MEAN 0.48 21 HR_MAX 0.34
11 IBI_RANGE 0.50 22 HR_MIN 0.31

Table 7.2: Sequential Forward Selection (SFS) of 22 BVP related Features.

In addition to features concerning HR and IBI, features on GSR are used. Since the the most
valuable information in GSR is not on the overall value, but in the signals characteristica such
as peaks and slopes, those events are the foundation of the employed GSR-feature-set. Addi-
tionally area, amplitude and duration of each event are calculated that again are fed into five
functionals, see Figure 7.8.
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Figure 7.8: 64 GSR Features, based on peaks, slopes and drops

Next to person related, physiological data, audio data are used for classification. The audio fea-
tures are based on MobileNet [89]. Audio data are converted into images of mel-spectrograms,
that are subsequently put into MobileNet to produce 1792 features that represent MobileNet’s
last layer before reduction to the target class-count takes place. The ANN is so to speak cut,
to gain a feature extractor. Using spectrograms with network architectures for image based
recognition is known to perform well on classification on audio data [6].

7.3.2 Machine Learning Models

The models described in this section were evaluated using cross-validation, see Table 7.3 to
Table 7.15 for details. As a classificator we chose Support Vector Machines (SVM). Since SVM’s
are sensitive to unbalanced sample distributions across classes, random undersampling was
used. An important factor for real-time applications is the responsiveness. Therefore, the frame
sizes are kept as low as possible, which enables classification results at a higher frequency and
thus increases the responsiveness of the system.

7.3.2.1 Environmental Context on Physiological Data

In the first experiment it is investigated, to what extent it is possible to infer the outer-body
environmental context from the recorded physiological data. This outer-body environmental
context is modeled by means of the landscape the user is currently situated in. Consequently,
it is the goal of the model to distinguish between the three classes dense trees, scattered trees,
and open midrise, representing the according local climate zones. This helps us counter-check if
there is an influence of the environment on the participants’ physiology. The labels were gained
by manually defining the different landscapes on the route and automatically establishing a
mapping with the GPS coordinates of the user. This mapping is also shown in Figure 7.6.
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Heart Rate and Inter Beat Interval

BVP sensors are common in consumer fitness wearables and therefore a desirable modality for
measuring the influence of environments onto wellbeing ”in the wild”.

Environment HR & IBI (SVM)

dense trees scattered trees open midrise Acc. %

dense trees: 132 16 12 82.50 %
scattered trees: 10 61 89 38.12 %
open midrise: 12 87 61 38.12 %

Average 52.92%

Table 7.3: User related model trained over 945 samples, 10 seconds frame, 240 seconds overlap, 2-fold cross-
validation

Results on the classification of the local climate zones chosen in the original experiment design,
shows that dense trees can be recognized well while scattered trees and open midrise are often
confused.

Environment reduced HR & IBI (SVM)

dense trees open midrise & scattered trees Acc. %

dense trees: 167 50 76.96 %
open midrise & scattered trees: 77 140 64.52 %

Average 70.74%

Table 7.4: User related model trained over 434 samples, 10 seconds frame, 240 seconds overlap, 10-fold cross
validation.

This leads to reducing the target classes from three to two, raising the classification results
drastically.

Galvanic Skin Response

GSR is tested as second physiological modality. It is trained on the same frame-sizes as BVP-
related data and results in a higher accuracy that could be achieved on BVP even with class
reduction.

Here classification of open midrise is best, scattered trees second best and classification of dense
trees is lower at 70.62 % than when relying on BVP-related data, where dense trees is classified
with 82.50% accuracy.
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Environment GSR (SVM)

dense trees scattered trees open midrise Acc. %

dense trees: 113 19 28 70.62 %
scattered trees: 18 118 24 73.75 %
open midrise: 16 16 128 80.00 %

Average 74.79%

Table 7.5: User related model trained over 480 samples, 10 seconds frame, 240 seconds overlap, 2-fold cross
validation

Feature Fusion

Consequently fusion of both modalities is promising. Since both BVP and GSR related data are
typically giving best results in the same time-window, feature fusion is employed, by merging
the individual feature vectors.

Environment Fusion (SVM)

dense trees scattered trees open midrise Acc. %

dense trees: 129 10 21 80.62 %
scattered trees: 9 148 3 92.50 %
open midrise: 9 4 147 91.88 %

Average 88.33%

Table 7.6: User related model evaluated on 480 samples, 10 seconds frame, 240 seconds overlap, 2-fold cross
validation

This results in another mayor boost, reaching 88 % accuracy on three classes. It can be noted
that dense trees are still classified worse than they would be with a BVP-based model, which is
why reducing class-count from three to two is reconsidered.

Environment reduced Fusion (SVM)

dense trees open midrise & scattered trees Acc. %

dense trees: 203 14 93.55 %
open midrise & scattered trees: 16 201 92.63 %

Average 93.09%

Table 7.7: User related model evaluated on 434 samples, 10 seconds frame, 240 seconds overlap, 10-fold cross
validation.

combining open midrise and scattered trees leads to an additional improvement to over 90 %
accuracy. Environments, especially viewed as forest and and not forest, have an impact on the
human body that can be automatically recognized via consumer grade hardware and mobile
machine learning.
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7.3.3 Environment Related Wellbeing on Audio Data

The individual’s wellbeing relying on self-assessment is an additional key question that is tried
to be answered with the experiment-setup. While the environment’s state was classified above
using the measured body state, classifying how good or bad a person feels in five discrete steps
is firstly examined relying on audio data.

The LibLinear SVM classifier is trained on a feature vector of size 1792, that is extracted from
MobileNet V2 [180]. MobileNet V2 is selected based on evaluation done by Seiderer et al. [188]
for Convolutional Neural Networks’ performance on mobile devices. Since environment classi-
fication is different from classification of paralinguistic phenomena such as laughter in Chapter
5, a feature-set different from EmoVoice [219] is selected. While specialized architectures exist
[9] their performance is inferior to the application of MobileNet on spectrograms in our tests.
The use of SVMs increases the flexibility and speed of the learning progress compared to only
using a Deep Neural Network.

Regarding data quality, audio data proved to be not as robust as physiological data. Duemissing
and unusable data only four sessions remained for model creation and evaluation. While there
is a considerable amount of talking next to environmental sounds such as birds on the recording,
cutting out sections with human voice did not lead to a change in model quality.

Valence on Audio (SVM)

1 2 3 4 5 Acc. %

1 (good) 172 32 26 20 18 64.18%
2 11 174 53 24 6 64.93%
3 15 61 158 32 2 58.96%
4 23 21 35 141 48 52.61%
5 (bad) 18 19 14 34 183 68.28%

Average 61.79,%

Table 7.8: User related model evaluated on 1340 samples of audio data with 4.13 seconds frame without overlap
using 10-fold cross validation.

This leads to over 60% accuracy, which is clearly over chance. The classes ”1”, ”2” and ”5” score
best, as can be seen in Table 7.8, with class ”4” scoring worst.

Reducing classes from five to three improves the results, since the newly created extreme classes
are recognized well, whereas the neutral class stays unchanged, compare Table 7.9.

7.3.4 Environment Related Wellbeing on Physiological Data

It is more common to classify a persons wellbeing by measuring the body-state directly instead
of relying on modalities that describe his context.
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Valence on Audio (SVM)

1 & 2 3 4 & 5 Acc. %

1 & 2 (good) 86 7 2 90.53 %
3 20 56 19 58.95 %
4 & 5 (bad) 5 22 68 70.58 %

Average 73.68%

Table 7.9: User related model evaluated on 285 samples audio data, with 4.13 seconds frame, without overlap
using 10-fold cross validation.

Heart Rate and Inter Beat Interval

Therefore physiological signals are considered in the following.

Valence on HR & IBI (SVM)

1 2 3 4 5 Acc. %

1 (good) 575 56 96 92 40 66.94 %
2 40 541 199 89 55 62.98 %
3 147 172 148 179 213 17.23 %
4 114 149 120 307 169 35.74 %
5 (bad) 137 104 109 177 332 38.65 %

Average 44.31%

Table 7.10: User related model evaluated on 4295 samples, 10 seconds frame, 240 seconds overlap, 10 fold cross
validation.

A model based on BVP-related features scores lower than the Audio related model, while clas-
sifying the neutral ”3” class lower than chance at 17 % whereas classes ”1” and ”2” score best at
over 60 % accuracy.

Valence on HR & IBI (SVM)

1 & 2 3 4 & 5 Acc. %

1 & 2 (good) 214 26 57 72.05 %
3 41 205 51 69.02 %
4 & 5 (bad) 102 84 111 37.37 %

Average 59.48%

Table 7.11: User related mod elevaluated on 891 samples, 10 seconds frame, 240 seconds overlap, 10-fold cross
validation.

Reducing classes to three, improves the results for the good (”1&2”) and neutral class (”3”)
whereas the bad class scores worse, leading to an overall improved result.
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Galvanic Skin Response

Considering GSR only, classification results are better than those achieved on audio data with
65.53% on the five-class problem and 75.08 % on the three-class problem.

Valence on GSR (SVM)

1 2 3 4 5 Acc. %

1 (good) 141 5 16 13 24 70.85 %
2 15 150 15 9 10 75.38 %
3 18 17 142 2 20 71.36 %
4 23 23 8 107 38 53.77 %
5 (bad) 27 22 13 25 112 56.28 %

Average 65.53%

Table 7.12: User related model evaluated on 995 samples, 10 seconds frame, 240 seconds overlap, 10-fold cross
validation.

Valence on GSR (SVM)

1 & 2 3 4 & 5 Acc. %

1 & 2 (good) 245 16 40 81.40 %
3 13 226 62 75.08 %
4 & 5 (bad) 43 51 207 68.77 %

Average 75.08%

Table 7.13: User related model evaluated on 903 samples, 10 seconds frame, 240 seconds overlap, 10-fold cross
validation.

Classes ”4” & ”5” score worst, and the gap is reduced only slightly compared to neutral and
good classes with class-reduction.

Feature Fusion

Since Feature fusion helped drastically on the problem of environment classification, it is em-
ployed here also, even though both modalities are the weakest on bad self-assessed wellbeing.

Where feature fusion boosts results, to 79.68% from 75.08% the leap is not as big as it was in
classifying environments on physiological data. Reducing classes leads to a model that is more
evenly strong on its individual classes compared to the five-class model. That apart, improve-
ments are sightly.
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Valence on Feature Fusion (SVM)

1 2 3 4 5 Acc. %

1 (good) 176 0 7 3 0 94.62 %
2 0 170 2 5 9 91.40 %
3 6 9 163 3 5 87.63 %
4 7 21 13 100 45 53.76 %
5 (bad) 9 4 13 28 132 70.97 %

Average 79.68%

Table 7.14: User related model evaluated on 930 samples, 10 seconds frame, 240 seconds overlap, 10-fold cross-
validation.

Valence on Feature Fusion (SVM)

1 & 2 3 4 & 5 Acc. %

1 & 2 (good) 257 12 28 86.53 %
3 7 254 36 85.52 %
4 & 5 (bad) 41 43 213 71.72 %

Average 81.26%

Table 7.15: User related evaluated on 891 samples, 10 seconds frame, 240 seconds overlap, 10-fold cross validation.

7.4 Discussion

This chapter investigated different modalities and their fusion in respect to environment related
wellbeing. Further work to a personalized approach to the research of the recreational aspects
of forests has been presented [70], where aesthetic scenery is classified on the go.

Audio data of soundscapes as well as physiological signals were evaluated in respect to classi-
fication of users’ self-assessed wellbeing and environmental classes. Thus, a mutual influence
between body state and environment can be outlined. Starting at widely available BVP sensors’
data such as heart rate, adding Skin Conductance (GSR) in the progress. The relation between
body and environment is approached by classifying physiological data under two annotation
schemes. Firstly considering local climate zones (LCZ) derived fromGPS and secondly referring
to participants’ self-assessed wellbeing.

Considering the concrete classification results on LCZ, dense trees can be classifiedwell (82.50 %)
on BVP related data only, while overall classification results score low at 52.92 %.

GSR-data yield better results at 74.79% unweighted accuracy, while achieving best results on
the open midrise class.

Feature fusion of GSR and HR/IBI improves classification results by over 13 percent points to
88.33%, class reduction, restricting the problem complexity to classifying dense trees or ¬dense
trees (open midrise & scattered trees) improves the results again to 93.09%.
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This suggests that physiological data from consumer grade hardware can be used to recognize
the influence of certain environment classes on the human body.

When investigating self-assessed valence on five classes, on HR/IBI 44.31 % can be achieved, a
class-reduction to three classes improves results to 59.48 %. Accuracy on a per class level de-
creases from good to bad consistently. This observation stays valid for GSR-data, while overall
score rises to 65.53 % on five classes and 75.08 % on three classes. Feature fusion of HR/IBI and
GSR improves results to 79.68% on five classes, where class ”4” is a noticeable outlier at 53.76 %,
more than 17 percent points lower than the next worst class ”5”. Reduction from five to three
classes leads to a more balanced model when it comes to per-class accuracy but only improving
overall by less than two percent-points.

Both environment and user related models might be interpreted so that the cooling effect of the
forest and the decrease in stress on the body is an important factor for identifying the surround-
ing via physiological data. Thus, results are promising, considering the distinction of different
environments using physiological data, suggesting that it is possible to integrate the detection
of an environment class (e.g., forest) with relaxing influence into wellbeing applications.

Considering practical use, the presented setup relied on consumer grade hardware only, which
enables deployment of the shown approach to a wide audience.

7.5 Summary

This chapter extended SSI’s field of operation towards recognizing wellbeing not just within the
context of dyadic communication using social signals. The smart device in this chapter, forms
a companion on the body, with a joined perspective rather than a conversational partner. Thus,
not mimic or laughter, or even social cues are focus of the recognition process, but rather body
reactions and environmental influences’ characteristics.

Rapid prototyping was used for creating the record pipeline involving SSJ and MobileSSI and
for the creation of mobile user interface to enable users to annotate ”in the wild”.

The influence of three environment classes (local climate zones), namely ”dense trees” corre-
sponding to forest, ”scattered trees” (meadow) and ”openmidrise” (city) were studied. Moreover
self assessed valence on five classes was also recorded using MobileSSI as another dependent
variable. Recognition of valence and environment class was done based on audio on the one
hand and physiological signals (GSR and BVP) on the other hand.

Feature level fusion of both physiological signals resulted in scores of 88.33 % on the three
environment classes and 79.68 % on the five levels of self assessed valence.
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Moreover audio based recognition was evaluated based on image features from DNNs (Mo-
bileNet V2) on spectrograms. Three environment classes could be recognized with 73.68% ac-
curacy, whereas 61.79% were achieved with audio in the five-class valence problem.

MobileSSI enabled the combination of feature-sets created for in-the lab recordings , with con-
sumer grade fitness-bands for unobstrusive use ”in the wild”. The processing and learning
pipeline is light weight which enables it to run locally on mobile devices.



Chapter 8.
Conclusion

Today we are used to communication via smart devices to the extent, where we would feel the
interaction with mobile devices comes naturally – we have to distinguish digital and analogue
rather than natural and digital. With recent adoption of speech recognition, the transforma-
tion of input and interaction paradigms is still in progress. Devices such as smart watches
become smaller and have to rely on active sensing, e.g. speech recognition. Thus, the initiative
regarding input shifts from an active user to an active device.

Society is undergoing a similar transition, making use of mobile technology, as discourse on
topics such as M-Health attests, e.g. in context of the COVID-19 crisis. To have an app that
tracks human proximity and in that, the risk of infection, is seen as important part of over-
coming the crisis. This discourse has also led to a decentralized approach with minimal data-
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footprint. This shows both the topicality and importance of mobile processing of social signals
under consideration of data privacy.

Mobile Social Signal Processing forms a community that mirrors that techno-social process
within scientific research. Affective Computing and Social Signal Processing in the lab adapt
to challenges ”in the wild”, where perspectives change from dyadic conversation, to accompa-
niment on the body.

The consideration of wellbeing as model of the users’ state, emerges from using models of
emotion in human computer interaction, but focusing on longer periods of use as well as the
necessity to rely more on environmental and situational context within mobile device usage.
This thesis studied wellbeing social and emotional aspects regarding laughter recognition, in
respect of drinking behavior and environment within local climate zones.

This work contributes the process of transforming SSI, a Social Signal Processing toolkit devel-
oped in the lab, into the wild, by porting it fromWindows to Android. This required technolog-
ical advancement, extending its areas of use to new circumstances of mobile devices and their
usage in regard of wellbeing.

Laughter detection served as validation of the port, within the core domain of recognizing
paralinguistic social cues. Drinking activity was chosen as use-case for interactive machine
learning, to train machine learning models on users’ devices, with their help. Environmental
context in relation to wellbeing was detected based on body worn sensors and labeling in the
wild.

The studies presented in this thesis validate the technological advancement in hands on execu-
tion of new workflows.

8.1 Contributions

MobileSSI, presented in Chapter 4, contributes a software framework for mobile devices that
enables a broad field of application. MobileSSI is expanding from the existing desktop imple-
mentation in aspects, such as rapid prototyping, coping with heterogeneous input, using fu-
sion approaches, and integrated machine learning capabilities. It supports workflows of Social
Signal Processing (SSP) such as recording, annotation, machine learning and real-time classifi-
cation. Thus, it provides the basis of a tool to apply the methodology of SSP ”in the wild”, using
mobile devices. MobileSSI is open-source, licensed under GPL and available online ¹.

¹https://github.com/hcmlab/SSI

https://github.com/hcmlab/SSI
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Into the Wild

As a validation of the technical work (MobileSSI) and as an empirical realization employing it,
a multi-modal laughter and group-enjoyment recognition, representing the core domain of SSP
was conducted in Chapter 5. A social component was added to fusion usingmulti-person fusion
and rapidly prototyped web based visualization. This addition was possible due to the high level
of abstraction in the asynchronous fusion approach developed in the lab.

With newly integratedmobile capacities, recording ”in thewild”was executed, to create amulti-
modal corpus of six hours, involving three participants and two sessions. The created model
lead to a live demonstration, presented at an international conference, combining two input
devices with one displaying visualization of the recognized group enjoyment. The presented
approach fits between fine-granular work on synchrony [214], not working in real time in
contrast to the approach in MobileSSI and aggregation of individuals’ affective states based on
a Pleasure Arousal Dominance model [40], where interpretation of the outcome is not clear.

Interactive Machine Learning

Technical advancement and empirical validation can be found Chapter 6. Here the machine
learning capabilities already integrated in SSI were extended with an interactive machine learn-
ing approach. Smart objects, in form of a digital drip mat, were used for labeling of drink behav-
ior. Interactive machine learning conceptually is regarded as active and responsive, whereas
user interaction is seen as defining characteristic. This on-device approach to machine learn-
ing, together with on-device real-time recognition tackle the challenge to respect users’ privacy
as presented in Chapter 6. An incremental (reactive) implementation of Naive Bayes is evalu-
ated in an active learning scenario, querying the user based on a classification’s certainty. The
evaluation is based on a corpus containing 16.5 hours of data. Insights on interactive machine
learning were generated by simulations based drink activity recorded using a smart watch.
Here sampling based on high confidence intervals, is more effective with Naive Bayes whereas
low confidence intervals are more efficient with linear SVMs. From recordings a base model
was derived that was also foundation of users’ bodystorming. While the prototype is perceived
as intrusive in its requests for labels, users learned to simulate aspects of movement, that trig-
gered recognition of a certain class. Drink activity recognition moves away from SSP’s strict
focus on social interaction but conveys the potential of reacting to situational context.
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Wellbeing related Environmental Context

The core focus of Social Signal Processing is extended in Chapter 7, to also take environmental
context into account as input, moving away from the picture of dyadic conversations that is
underlying the study of laughter as social cue in Chapter 5. This change in concept is validated
empirically with a field study. Physiological signals (GSR, BVP) are used to classify environ-
ments and users’ wellbeing (valence) within selected local climate zones. MobileSSI was used
for the recording of multi-modal data related to user, their self-assessment ”in the wild” and
their environment, resulting in a corpus of 26.6 hours of data by seven participants. Rapid pro-
totyping was used to create annotation interfaces for a smart watch and a smart phone, that are
suitable to labeling ”in the wild”. Classification of the local climate zone based on physiological
data from consumer grade hardware, as well as audio data yielded similar results when relying
on a single signal. Applying fusion on two physiological signals improved results considerably
and underlined the importance of coping with heterogeneous ubiquitous input. This contribution
adds objective measures of wellbeing in relation to environments and goes beyond applications
based on user preferences of visual scenery as used e.g in routing applications [173].

Wellbeing, as presented in Chapter 2.4 is studied along four aspects over the course of this the-
sis. At first laughter is recognized from multi-modal data, representing emotional and social
characteristic of wellbeing. Drink activity recognition is studied as aspect of behavioral wellbe-
ing, where technology is enabled to interact with natural behavior to influence health related
activities. Third environmental wellbeing is recognized based on local climate zones and their
impact on physiological data.

Mobile Social Signal Processing enables M-Health technology to be more predictive by using
classification, personalized by using machine learning on personal labels and participatory by
using interactive machine learning.

8.2 Future Work

From this thesis’ focus, the technological outlook can be found mainly in respect algorithmic
evolvement and user integrationwithin the process of machine learning inMSSP andM-Health.

Interactive machine learning [5] as well as federated machine learning [232] is a topic, that
comes to mind naturally, when handling privacy-critical data. Instead of collecting data cen-
trally, models are trained privately on the mobile devices the data originate from. Later on,
the individual models are merged into one, that combines the decentrally acquired knowledge.
Nonetheless, it can hardly be found in toolkits of Mobile Social Signal Processing or related
topics, maybe since this approach contradicts the con-temporal principle of hoarding data, as a
dragon would his treasure.
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Interactive machine learning investigates a bottom up perspective to model generation, that
focuses just on the user’s private model, without giving an answer to the emergence of a uni-
fied knowledge pool. Future work would have to also explore solutions to combine individual
models into one. Next to structural isolation by federation, there is a systemic approach to fair-
ness [55] and privacy [54, 96] in machine learning. To reliably bind data-processing to ethical
standards, those standards have to be implemented within software frameworks.

Motion, captured via accelerometers are a valuable, maybe themost valuablemodality inmobile
computing today, due to the wide availability. Therefore, interactive machine learning has
been proposed for the design of movement interaction [80]. To enable the user not only to
contribute to a machine learning model, but to also judge its quality, explainability might here
meet embodiment [51] to give the user an intuitive grasp of an algorithm’s doings.

Applying machine learning on a longer scope, with focus on predicting illness, MSSP can pro-
vide tools for preventive applications. Since MSSP involves models of Affective Computing,
apps using MSSP can be aware of psycho-cognitve aspects and thus, contribute to the M-Health
ecosystem [82].

THE END
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