
                                           

                                     

                            

                                                 
Towards automatic airborne pollen monitoring: From commercial
devices to operational by mitigating class-imbalance in a deep
learning approach
Jakob Schaefer a, Manuel Milling a, Björn W. Schuller a,b, Bernhard Bauer a, Jens O. Brunner c,
Claudia Traidl-Hoffmann d,e, Athanasios Damialis d,⁎
a Chair of Embedded Intelligence for Health Care & Wellbeing, Faculty of Applied Computer Science, University of Augsburg, Augsburg, Germany
b GLAM, "The Group on Language, Audio & Music", Imperial College, London, UK
c Chair of Health Care Operations/Health Information Management, Faculty of Business and Economics, Faculty of Medicine, University of Augsburg, Augsburg, Germany
d Department of Environmental Medicine, Faculty of Medicine, University of Augsburg, Augsburg, Germany
e Institute of Environmental Medicine, Helmholtz Center Munich - German Research Center for Environmental Health, Augsburg, Germany
H I G H L I G H T S G R A P H I C A L A B S T R A C T
• We used deep learning-based convo-
lutional neural networks to classify
pollen.

• Our algorithm was compared against
the built-in of an automated device
BAA500.

• We achieved an unweighted average F1
score of 93.8% across 15 allergenic taxa.

• The majority of pollen taxa (9 of 15)
showed a recall of at least 95%.

• Deep learning algorithms can make au-
tomated pollen monitoring devices
operational.
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1. Introduction

Pollen-induced allergic rhinitis and allergic bronchial asthma pose a
substantial burden on the quality of life for a large part of theworldwide
population, particularly in the industrialisedworld (Brożek et al., 2017).
In the context of emerging climate change and as the pollen seasons
shift significantly earlier, and the pollen peaks have been evidenced as
dramatically higher over the last few decades (Ziska et al., 2019;
Anderegg et al., 2021), questions are raised regarding the magnitude
of these effects on the severity and frequency of allergic diseases. Until
today, the first line of defense for pollen allergies is avoidance of the al-
lergen. This can be only achieved by acquiring reliable, accurate and
timely information on the airborne pollen concentrations at a fine tem-
poral resolution, so that allergic individuals and their treating practi-
tioners may plan ahead their daily activities and the necessary
medication. Muzalyova et al. (2021) have highlighted the existence of
consistent diurnal pollen distribution patterns and the importance to
take these into account in short-term operational, real-time forecasting
models for the optimum allergy management. The importance of inte-
grating hourly-resolution pollen measurements to forecasting models
and, even more, using real-time data from novel, automatic monitoring
devices has been suggested and discussed by Sofiev (2019), highlight-
ing that such an approach could boost the predictive power of future
models. Currently, allergic people are relying on conventional pollen in-
formation that exhibits a delay of 1–8 days (or more), as this measure-
ment process involves laborious monitoring methods, requires high
taxonomic expertise and achieves a forecasting horizon limited to the
daily scale. The above limitations, as well as the necessity for upgrading
to automated and short-term health information services, have been
highlighted also by Geller-Bernstein and Portnoy (2018).

Hence, during the last decade approximately, automation in air-
borne pollen monitoring (and less frequently airborne allergenic fungal
spores) has been adopted. Until today, continuous and intensive efforts
have been made to commercialise such monitoring systems and make
them operational so as to substitute the almost 70-year-old conven-
tional method of the Hirst-design (Hirst, 1952). The newly developed
techniques, being very promising, showcase already remarkable results
and many positive aspects (among which automation and near-real-
time temporal resolution); at the same time, with their development
being underway, they exhibit also some disadvantages, common with
the conventional Hirst-type technique too (among which reliability,
comparability and price). While there might still be a long way until
they lead the way in atmospheric biomonitoring, their progress is fast-
pacing.

At the moment, only few countries stand out developing innovative
monitoring sites. Among those, the first to establish such a network
were in Japan, even though not able to distinguish among different
pollen types (Kawashima et al., 2017); nonetheless, they have
recently managed to improve their automation technique (Miki and
Kawashima, 2021). Moreover, Germany has also been a pioneer
(Oteros et al., 2020), where the Bavarian State has developed a network
based on the automatic pollen monitoring devices BAA500 (Bio Aerosol
Analyzer 500, Hund GmbH, Wetzlar) (Oteros et al., 2019, 2020). This
technique has been described in detail in Oteros et al. (2015, 2020). Fur-
thermore, automatic pollen and spore monitoring devices have been
operating also in Lithuania (Šaulienė et al., 2019), Serbia (Šaulienė
et al., 2019; Tešendić et al., 2020), and Switzerland (Crouzy et al.,
2016; Šaulienė et al., 2019; Sauvageat et al., 2020). There are even
more automated devices from additional countries and research
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teams, like from the U.S.A. (www.pollensense.com), nonetheless, no
published information exists yet, to the best of our knowledge.

In Germany, based on previous research using the same automatic
device as in the current study, it was stated (Oteros et al., 2015) that
they achieved an accuracy score of 93.3% of correct positive classified
cases versus the automatically classified cases. More recently, Oteros
et al. (2020), in the frame of a State-funded network found that an au-
tomatic pollen monitoring network has achieved a 13-class identifica-
tion average accuracy of 90%, similar to the result in 2015.

Nonetheless, the above findings, being the first of their kind and
under lack of cross-validation against other research teams and
methods, have been set already under dispute. Recent studies have
shown on the one hand the non-biased, unfiltered andmuch lower per-
formance of the commercial units (including a considerable amount of
missing values, particularly during the pollen season peak) of these pol-
len monitoring devices (Schiele et al., 2019), but at the same time a
great potential of automated pollen classification systems, only when
trained on large data sets and with sophisticated statistical methods
(de Geus et al., 2019; Schiele et al., 2019; Sevíllano et al., 2020).

In recent years, studies for automated classification of pollen grains
have gained momentum. Several research groups have collected various
types of image-based pollen data for this purpose. Deep learning-driven
progress in computer vision has led to high recognition rates. Marcos
et al. (2015) prepared pollen, which were collected by bees, in laboratory
conditions, before acquiringmagnified pollen images under amicroscope.
On a total dataset of 1800 images from 15 classes they achieved an accu-
racy of 95% using texture feature extraction and a k-nearest neighbour
classification. Daood et al. (2016) utilised a two-stage classification ap-
proach based on feature extraction and support vector machines to iden-
tify pollen from 30 classes. The total of 10,063 images was provided by
Florida Tech's Palaeoecology Laboratory. A 134-class pollen dataset,
claimed to be the largest pollen dataset, was introduced by de Geus et al.
(2019). The 3640 coloured pollen images were captured under a micro-
scope after preparing the pollen with different reagents. Besides several
approaches based on pre-designed feature, de Geus et al. (2019) applied
pre-trained convolutional neural networks (CNNs) and achieved an accu-
racy of up to 96.24%. Further interest in automatic pollen classification has
been sparked by the 2020 Pollen Challenge (https://iplab.dmi.unict.it/
pollenclassificationchallenge/). The rise ofMachine Learning and in partic-
ularDeep Learning has led topromising results towards healthmonitoring
systems (Dong et al., 2020; Qian et al., 2021).

Even though part of the research has not been, yet, tested in ‘real-life’
monitoring conditions, it has been still shown in several cases how sophis-
ticated analytical tools (convolutional neural networks among others) can
make a big difference in the accuracy of the classification algorithms in the
automated pollen monitoring systems, as highlighted by Gallardo-
Caballero et al. (2019), Schiele et al. (2019), Daunys et al. (2021), etc.

The aim of this work was to go beyond the state-of-the-art in auto-
matic pollen monitoring and the commercial pollen classification algo-
rithms and optimise them to the best possible operational level. To
achieve this, our approachwas based on pre-trained convolutional neu-
ral networks (CNNs). We utilised a manually classified database of air-
borne pollen images, as derived from the automatic device BAA 500
(Hund GmbH, Wetzlar, Germany; as described in detail by Oteros
et al., 2015) established in Augsburg, Germany. Finally, this database
refers to the whole spectrum of pollen taxa (approximately 40 in
total) detected throughout a whole pollen season (year 2016),
completely avoiding filters, thresholds and any convenience samples
that could bias our results.

http://www.pollensense.com
https://iplab.dmi.unict.it/pollenclassificationchallenge/
https://iplab.dmi.unict.it/pollenclassificationchallenge/


                                                                                 
Even though there is obviously still a longway to go to be able to dis-
cuss about fully operational networks that may provide real-time al-
lergy risk alerts, our work here attempts to unveil the actual status of
the research progress on the specific topic, but also the great potential
for improvement.

2. Materials

As specified by Schiele et al. (2019), the pollen grains used in our re-
searchwere gathered between November 2015 and October 2016 by an
automated BAA 500 device located at ground-level, in Augsburg, Ba-
varia, Germany. Airborne pollen is trapped through anorifice on this de-
vice, by an intermittent high-throughput inflow of ambient air, thus
collecting airborne particles on a sticky surface. A built-in light micro-
scope equipped with a camera then captures images of each air sample
and analyses them to extract crops of individual pollen grains. The latter
are stored as an image library and then compared to an already existing,
pre-classified image library, based onwhich the commercial device clas-
sifies airborne pollen per taxon.

Given the spherical shape ofmost pollen types, as soon as they are in
contact to the sticky substance on the collection surface, most of the
cropped images approximate a square shape with image sizes ranging
from 56 × 56 to 179 pixels to 367 × 411 pixels. Even though the weak-
ness of the BAA500 cropping algorithm has been pointed out before
(Schiele et al., 2019), this pollen identification study relies on a high
quality subset of the cropped images, whichwas carved out by amanual
choice of suitable crops, and a parallel manual assignment of categorical
(true/false) pollen labels.

In addition to the 15-class dataset presented in Schiele et al. (2019),
here we introduce an extended and stricter-approached dataset con-
taining samples of 31 different classes. Table 1 lists all considered pollen
taxa in this study, aswell as their abundance in our datasets. Pollen taxa
marked with 'a' are part of the smaller data set Dataset-15, while all
listed classes are part of the larger data set Dataset-31.

Fig. 1 shows an example image per each object class for all 31 classes.
Table 2 summarises important characteristics of both data records.
Since class imbalance was a major issue for both data sets, we intro-
duced an imbalance indicator ρ, which is the ratio of the maximum
and minimum number of samples in any class of the dataset.

2.1. Dataset-15

Our first, and smaller, dataset is composed of 15 classes, following
the choice of Schiele et al. (2019): these 15 classes represent both the
Table 1
Pollen taxa (in alphabetical order) and their frequency in Dataset-31.

Latin name Number of samples Latin name Number of samples

Alnusa 10063 Picea 23
Apiaceae 12 Pinaceae 450
Artemisia 76 Plantagoa 1721
Betulaa 2399 Platanus 63
Cannabaceae 12 Poaceaea 3600
Carpinusa 8010 Populusa 2066
Castanea 56 Quercusa 611
Chenopodiaceae 39 Rumex 80
Corylusa 11667 Salixa 526
Cyperaceae 30 Taxusab 6944
Fagusa 728 Tiliaa 181
Fraxinusa 460 Ulmusa 339
Juglans 110 Urticaceaea 2829
Larix 42 Fungal sporesc 86
Papaveraceae 25 No pollenc 578

a The most abundant taxa, which are also included in the Dataset-15.
b Taxus refers to the total of objects deriving from both families Cupressaceae and

Taxaceae.
c Classes that do not refer to pollen, Fungal Spores and No Pollen (air particles other

than Pollen or Spores).
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most common pollen types in the atmosphere of the majority of
temperate-climate urban environments, aswell as someof themost im-
portant allergenic pollen taxa worldwide. The overall 51,277 samples
were unequally distributed among the classes, with the most frequent
class Corylus having 11,667 observations, whereas the least frequent
taxon Tilia accounted for 181 samples. Therefore, the imbalance ratio
ρ is equal to 64.46.

2.2. Dataset-31

Dataset-31 extends Dataset-15 by additionally including 2549 sam-
ples from 16 more classes, which are less frequently captured. This
datasetwas constructed by taking each class from the entire data record
with at least 10 sample images. Due to the very low number of samples
in specific taxa in this group, for example only 12 samples from the taxa
of Apiaceae and Cannabaceae, the imbalance indicator dramatically in-
creased to ρ = 972.25. An increased number of classes as well as a
much higher imbalance indicator compared to Dataset-15 poses addi-
tional challenges to the handling of Dataset-31. However, Dataset-31
mitigates the problem of comparability pointed out by Schiele et al.
(2019) as both the classifiers for Dataset-31, as well as the classification
algorithm of the BAA500 are designed to distinguish between more
than 30 classes. Nevertheless, a true comparison is actually not possible,
as the BAA500 has been reported to be able to recognise at least 34 clas-
ses, based on the commercial, built-in image library, and therefore test
sets are not identical and there is no possibility for direct comparisons
and independent evaluation.

3. Methodology

Below, the major concepts are introduced that built up our deep
learning-based classification approaches, as well as the evaluation
metrics, which lead to our obtained results. The best configurations
were found by running multiple experiments exploring a predefined
hyperparameter space. All our approaches apply transfer learning,
i.e., by fine-tuning a CNN that has been pre-trained on the ImageNet
dataset. Moreover, data augmentation and weight penalties have
been adopted as regularisation techniques to reduce overfitting.
Finally, focal loss, class weights and weight vector normalisation
were employed to mitigate biases resulting from datasets'
imbalances.

3.1. Neural network design

Transfer learning approaches for CNNs are based on the idea that the
first convolutional layers of a network learn generic features like edges
which are crucial for most image-related tasks. Pre-training these layers
on a large data set can often improve results on tasks with small data
sets. In order to train the model on the small dataset, we replace the
classification layer of the pre-trained model and we continue to opti-
mise the model, which is referred to as fine-tuning. In some cases, it
can be beneficial to freeze a certain number of the model's early
layers, i.e., said layers are removed from the optimisation procedure.
Our general network architecture is illustrated in Fig. 2. Four
different architectures trained on the 2012 ImageNet image data
set (Deng et al., 2009) are utilised and fine-tuned on the pollen
data. We employ the publicly available networks ResNet50 (He
et al., 2016a), ResNet101-V2 (He et al., 2016b), InceptionV3
(Szegedy et al., 2016) and DenseNet121 (Huang et al., 2017) as
basemodels. The fully-connected layer on top of each basemodel
was replaced by a dropout layer followed by a fully connected layer
with softmax activation. The number of neurons in the latter layer
is equal to the number of classes and consequently produces a
normalised probability prediction for each class. Optimisation is
based on the cross-entropy loss.



Fig. 1. Example images for each identified object class (29 different pollen types, Spores and NoPollen).
Size scales differ among classes, for better visualisation.

Table 2
Characteristics of the data sets.

Dataset-15 Dataset-31

Number of classes 15 31
Number of samples 51277 53826
Imbalance ratio ϱ 64.46 972.25
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3.2. Regularisation

We use several regularisation techniques in order to decrease
the generalisation error. Besides the already mentioned dropout layer,
this includes data augmentation and weight penalties.



Fig. 2. Schematic network architecture consisting of a pre-trained basemodel as feature extractor and one-layered classifier.

                                                                                 
3.2.1. Data augmentation
We aimed to make our model more robust against translational and

rotational variances in images by artificially extending the training data
with transformed images.We implemented five different data augmen-
tation techniques, each of which was applied to each image that the al-
gorithm ‘reads’ during training with 25% probability:

• Random crop (RC) to a bounding box,which contains between 70 and
90% of the original image pixels.

• Random rotation (RR) with angles between 45 and−45 degrees.
• Horizontal flip (HF).
• Vertical flip (VF).
• Additive white Gaussian noise (GN) with a mean of 0 and a standard
deviation of 1, multiplied by a constant value of 15 is added to the
pixel values in the range of [0; 255].

3.2.2. Weight penalties
We add a weight penalty - proportional to the L2 norm ǁ•ǁ2 of the

network weights W - to the loss function L, in order to encourage
small weights and therefore less complex models. The updates for the
weights W from step t to step t + 1 can be expressed as

W tþ1 ¼W t−η∇W t Lþ λjjW t jj2
� �

, ð1Þ

with the learning rate η and the weight penalty factor λ (Goodfellow
et al., 2016). We set λ = 0.0005 in our experiments.

3.3. Class imbalance

Amajor problem of the classification tasks, especially for Dataset-31,
is a strong imbalance between the different classes. The bias towards
the majority of classes can either be mitigated by altering the training
data to decrease imbalance or by modifying the model's underlying
learning process to increase sensitivity towards the minority group.
In our approach, we focus on different algorithm-level techniques,
class weighted loss, focal loss, and weight vector normalisation, to
shift the bias towards the minority classes (Johnson and Khoshgoftaar,
2019).

3.3.1. Class weighted loss
To increase the importance of minority classes, the learning process

can be adjusted by assigning weights to samples to match a given data
distribution. Our approach is to weigh the cross-entropy loss with a
factor equal to the ratio between the number of samples in the
majority class nmax and the considered class ni according to Schiele
et al. (2019):

Lα ¼ nmax

ni
log pið Þ: ð2Þ
5

3.3.2. Focal loss
The focal loss designed by Lin et al. (2020) addresses the extreme

imbalance between foreground and background classes in an object de-
tection task. The loss function weighs down easy examples such that
they contribute less to the total loss, even if their number is large. Al-
though the initial purpose of focal loss was to improve object detection,
it has since been successfully applied to different classification tasks
(Nemoto et al., 2018; Wang et al., 2020). Focal loss is derived from
cross entropy, which measures the deviation of the predicted probabil-
ity from the actual label, and can be calculated as

FL pið Þ ¼− 1−pið Þγ log pið Þ, ð3Þ

where pi is the model's estimated probability for the ground-truth class
and γ is a hyperparameter. Samples from minor classes tend to have
lower prediction probabilities for the ground truth class. By increasing
the value of γ, we increase the contribution of seemingly more difficult
samples to the overall loss. In our experiments, we set γ = 2.

3.3.3. Weight vector normalisation
Previous research by Kim and Kim (2020) suggests that imbalanced

data leads to a difference in weight vector norms in the classification
layer of a neural network, which causes a decision boundary bias to-
wards classes with lower sample frequency. It is hypothesised that a
normalisation of the weight vectors and an adjustment of the decision
boundary reduces this bias. During the training, we therefore normalise
all weight vectors wi – connecting the second-to-last layer of the net-
workwith the ith neuron of the classification layer – after each gradient
descent step according to

wi  
wi

∣∣wijj2
: ð4Þ

After the training is finished, we finally adjust the decision boundary
by rescaling all weight vectors of the classification layer applying

wi  
nmax

ni

� �β

wi, ð5Þ

where again ni denotes the number of samples belonging to class i and
nmax is themaximumnumber of samples of one class in the data set. The
hyperparameter β correlates with the feature space size for infrequent
classes, with higher values of β leading to increased feature space sizes.
In our experiments we employ β = 0.3.

3.4. Evaluation metrics

The performance evaluation of our experiments is based on the com-
monmetrics precision p= TP/(TP+ FP), recall r= TP/(TP+ FN), and F1
measure f1 = 2pr/(p + r), expressed in terms of true (T) and false (F)
positives (P) and negatives (N). Considering the imbalance of the data



Table 4
Results on the test data sets (in %) for 15 object classes (pollen types), compared among
three different classification algorithms.

Algorithms tested UAP UAR UAF1

Commercial algorithm (Schiele et al., 2019) 59.4 54.5 56.4
Algorithm by Schiele et al. (2019) 83.0 77.1 79.1
Current algorithm 94.3 ± 0.4 93.5 ± 0.1 93.8 ± 0.1

For our algorithm, we report the average results and standard deviations over five runs.

                                                                                 
set and an equal importance of each pollen taxa, thesemetrics are calcu-
lated for each class before the unweighted average is formed, i.e., we re-
port unweighted average precision (UAP), unweighted average recall
(UAR), and unweighted average F1 measure (UAF1) for each experi-
mental setup. To compute the latter quantity, we choose the approach
of the unweighted arithmetic mean over harmonic means, which can
be expressed as

UAF1 ¼ 1
N
∑
N

x
F1 xð Þ ¼ 1

N
∑
N

x

2P xð ÞR xð Þ
P xð Þ þ R xð Þ , ð6Þ

with N being the number of classes.

3.5. Experiments

Before conducting our experiments, we randomly split the available
data set into a training (60% of the data), a validation, and test set (20%
of the data, each). The validation set is only used to evaluate the perfor-
mance of the model and is excluded from gradient-descent optimisa-
tion. Every experimental setup is trained five times to detect statistical
variance and is evaluated on the test set based on the UAP, UAR, and
UAF1 measures. Potential overfitting could be detected by monitoring
the performance on the validation set. During training, whenever the
validation F1 measure stops improving for more than four epochs, the
learning rate is halved. A setup is generally trained for 40 epochs
deploying the Adam optimiser (Kingma and Ba, 2014) and a mini-
batch size of 64 samples. Based on an adapted strategy of early stopping
we choose the model state, which achieves the best UAF1 measure on
the validation set, for evaluation on the test set.

For each data set, we investigate 30 experimental setupswith differ-
ent hyperparameter configurations. Hyperparameters are assigned to
one of the three categories basemodel, regularisation, and class
balancing, the former of which includes the initial learning rate as
well as the number of layers to freeze. Hyperparameter optimisation is
performed in an iterative manner by subsequently optimising each of
the mentioned categories. Even though this procedure might not lead
to the best possible hyperparameter configuration, it seems the most
reasonable approach under the given resource limitations.

4. Results

The best among the tested configurations for each data set is shown
in Table 3.

4.1. Results for Dataset-15

For Dataset-15, the best setup uses the DenseNet121 architecture
with an initial learning rate of 10−4, while the first 36 layers in this net-
work are excluded from weight updates during training. We combine
that with a dropout rate of 50% and L2-normalised weight penalties.
In addition, augmentation in the form of vertical and horizontal flips
plus random rotations and crops is employed. Focal loss andweight vec-
tor normalisation are applied to reduce the bias of the learning algo-
rithm towards minority classes. Table 4 shows the obtained results by
Table 3
Overview of the network's best configurations.

Dataset-15 Dataset-31

Basemodel DenseNet121 InceptionV3
Initial LR 10−4 Initial LR 10−4

First 36 layers frozen No layers frozen
Regularisation Dropout rate 0.5 Dropout rate 0.3

L2 weight penalties
Augmentations: HF, VF, RR, RC

Class balancing Focal loss Class weighted loss
WVN WVN
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our model, compared with the results obtained also by Schiele et al.
(2019) and the BAA 500 internal classification (commercial) algorithm.
Note that the considered random data split is different from the evalua-
tion in Schiele et al. (2019).

Overall, as can be concluded from Table 4, ourmodelmanages to im-
prove the commercial system's rates of UAP, UAR, and UAF1 relatively
by 58.8%, 71.6% and 66.3%, respectively. Our proposed model shows su-
perior performance, achieving a UAP of 94.3%, a UAR of 93.5%, and a
UAF1 of 93.8%. The normalised confusion matrix depicted in Fig. 3
shows the performance of the model for each individual class. Each
row of the confusion matrix considers the samples, which are assigned
to one given class, considering the ground truth, and indicates the per-
centage of these samples, which are assigned to each class by the classi-
fication algorithm. The confusion matrix shows very high performance
measures for all classes, with the majority (9 out of the 15 classes)
showing a recall equal to or greater than 95% and only Quercus barely
missing a recall of 80%. The pollen types of Taxus, Tilia and Urticaceae
show a remarkable 100% recall rate.

4.2. Results for Dataset-31

Table 5 shows the results obtained by our model on the Dataset-31
data set, next to an evaluation of the BAA 500 classification based on
34 classes done by Schiele et al. (2019). The best setup relies on a
completely trainable InceptionV3 backbone with an initial learning
rate of 10−4. A dropout rate of 30% is utilised for regularisation, class
weighted loss, and weight vector normalisation mitigate the high class
imbalance. We are aware that a direct comparison between our ap-
proach and the BAA 500 algorithm is not feasible, since the latter has
been designed for an even broader variety of classes and not all classes
of Dataset-31 are present in the 34 class-evaluation of the BAA 500
Fig. 3. Normalised confusion matrix for our best Dataset-15 configuration, averaged over
five runs.
Results are rounded to integer percentage points.



Table 5
Results on the test data sets (in %) for 31 object classes, compared among two different
classification algorithms.

Algorithms tested UAP UAR UAF1

Algorithm by Schiele et al. (2019) 66.6 62.3 60.1
Current algorithm 74.9 ± 2.7 78.3 ± 1.7 75.9 ± 1.8

For our algorithm, we report the average results and standard deviations over five runs.

                                                                                 
evaluation. The main reason for this is that only the classes present in
Dataset-31 offer at least 10 labelled samples within the collected data.
Nevertheless, the 15.8% difference in UAF1 score leads us to expect
that our approach will still be competitive in a fair comparison with
the BAA 500 algorithm.

The confusion matrix in Fig. 4 shows that many classes still achieve
very high scores and only few classes achieve a rather low score. Overall,
as expected, the least performing classes refer to the smallest classes in
the database (Apiaceae: 12 samples, recall= 16%; Platanus: 63 samples,
recall = 29%), whereas the best performances were observed in the
most abundant classes, i.e. those included in Dataset-15; in Dataset-
31, the recall drops, but never lower than 79%.

5. Discussion

In this paper, we investigated transfer learning-based CNN models
for classifying airborne pollen grains. Our models were evaluated
based on two large data sets, whichwere collected by a BAA 500 device.
We have used different techniques of regularisation and class balancing
to cope with emerging issues of overfitting and bias towards majority
classes. Our best models achieve an unweighted F1 measure of 93.8%
across 15 classes and anunweighted average F1measure of 75.9% across
31 classes. In the 15-classmodel, themajority of classes achieves a recall
higher than 95%.

Our findings here point out that there is plenty of room for improve-
ment in the commercial, built-in algorithmof BAA500, although a direct
comparison to the BAA 500 algorithm proves to be difficult. At this
stage,wemanaged to obtain relative improvements of 58.8% - 71.6% de-
pending on the considered evaluation metric.

Our results showed a remarkable prediction of specific pollen types,
namely those of Taxus, Tilia, and Urticaceae, which are among the easi-
est to microscopically classify. On the other hand, the worst predictions
Fig. 4. Normalised confusion matrix for our best Dataset-31 configuration, averaged over
five runs.
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of our algorithm are for the pollen types of (in ascending order of accu-
racy): Quercus, Fraxinus, and Ulmus. These taxa are among those with
the smallest abundance in the database, but also some could be
characterised of comparatively higher difficulty to manually classify
their pollen, as it might be in the case of Quercus; apparently, this is
also dependent on the co-occurrence of other pollen taxa too, as well
as the environmental conditions in the atmosphere that may obscure
the quality of the pollen samples. Therefore, one can observe that our
own-developed algorithm seems to exhibit the same advantages, disad-
vantages and particularities like the conventional manual classification
procedure, even though to a lesser extent, because of the automation.

Since the length of the datasets is obviously of decisive importance,
we have been already expanding our dataset by labelling additional pol-
len samples, which have been continuously collected by two different
BAA 500 devices, from two different locations and from two different
years. We anticipate that such a dataset would allow not only for
cross-calibration and improvement of existing algorithms, but also for
testing the comparability of the monitoring devices.

Moreover, for further improving classification algorithms, the
hyperparameter space seems to be important to explore. Due to the
fast pace of the deep learning research community, state-of-the-art
models in computer vision at present tend to become outdated quickly.
Experiments with novel pre-trained base models might therefore lead
to even better results, for instance, utilisingMeta Pseudo Labels, the cur-
rently best performing model on ImageNet (February 2021) (Pham
et al., 2020). Further, data-level methods for class-balancing have been
successfully applied to other related problems, for instance, in the clas-
sification of ocean plankton (Lee et al., 2016).

Moreover, as has been highlighted by Schiele et al. (2019), the
cropping technique of acquired images via the commercial devices is
not the most efficient. It clearly appears to be effective mainly for
round objects, thus focusing on the usually circle-shaped pollen grains,
which, however, fails to correctly classify non-round objects, either de-
formed or broken pollen grains, or other airborne particles, like
variable-shaped fungal spores. This, exactly, is one of the limitations of
our study presented here: our currently developed algorithm still relies
on a flawed cropping algorithm of the commercial BAA 500 device. The
ultimate goal would be to move forward to an operational system of
real-time, automatic pollen monitoring, which would improve and,
when needed, bypass the existing commercial algorithms and other
units' traits.

Given that airborne pollen monitoring usually is conducted in the
frameof environmental health services to informandprotect allergic in-
dividuals on high-risk time intervals, it is timely and important to de-
velop the most accurate monitoring systems. Nevertheless, most
pollen and spore monitoring networks are not publicly funded and
data are not freely available; towards this direction, an increasing num-
ber of various automatic pollen and spore monitoring systems across
the world has been established (Buters et al., 2018). The fundamental
question immediately raised is whether there is one single pollenmon-
itoring system that can outperform the others and this can assess the
‘genuine pollen exposure’.

Albeit an increasing number of countries have already established
innovative automated pollen and spore monitoring devices, only few
are completely operational or belonging to open real-time information
networks. Still, it is obvious that the bioaerosol monitoring methods
gradually move to a new era of automated systems. Hence, there is an
apparent need for the evaluation of the reliability, performance and ac-
curacy of emerging automatic devices, particularly if one takes into ac-
count the current cost of renting or purchasing such an automatic
device. Towards this direction, dedicated campaigns have been already
set up across Europe (Clot et al., 2020). The establishment of external,
independent panels of experts to conclude on this seems essential.

In the long run, the herein presented deep learningmodels can pro-
vide a valuable tool for accurate and real-time pollen classification algo-
rithms in some of the existing automatic monitoring devices. Such



                                                                                 
advancements, in combination with hardware improvements, and on-
line automated platforms for data flow, including mobile technologies,
will all significantly contribute to the optimum provision of most effi-
cient allergenic pollen information services. In combination with novel
pollen apps, a real-time environmental health service can be created
for the benefit of those affected by aeroallergens, usable as first-line of
defense against high-risk pollen exposure intervals.

Such pioneer methods and automation in detection methods, along
with real-time, open-access pollen data, can additionally serve a huge
societal purpose: not only they would be necessary as a first-line pro-
phylaxis tool against allergic diseases, but also for emerging health
risks as for viral infections. It has been recently reported by Damialis
et al. (2021) that airborne pollen concentrations are positively corre-
lated with increased SARS-CoV-2 infection rates (Damialis et al.,
2021). Real-time, automated, pollen flight information is more impor-
tant than ever, especially if climate change effects are also considered:
earlier pollen seasons and higher pollen abundances (Ziska et al.,
2019; Anderegg et al., 2021) would make the co-occurrence of any
winter-spring viruses and high pollen concentrations a common phe-
nomenonwith additive health implications in the forthcoming decades.
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