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Preface

Given the huge number of responses and comments to the first
edition of our book, we felt obliged to come up with the second
edition within such a short period of time. Stochastic Dynamic
General Equilibrium modeling is certainly among the most rapidly
changing fields in economics and we try to cover the most recent
developments.

In this edition, we reorganize and extend the presentation of
solution methods in the former Chapters 1 through 4 and add ma-
jor new material. Different from the first edition Chapter 1 serves
as introduction, but does not present any solution techniques. It
covers deterministic and stochastic representative agent models,
elaborates on their calibration and evaluation, and ends with a
characterization of the solution methods presented in Chapters
2 through 6. Chapter 2 now includes a section on the second-
order approximation of policy functions, the extended determin-
istic path algorithm in Chapter 3 is applied to an open economy
model with a unit root, and we consider various techniques to
speed up value function iteration in Chapter 4. In the second part
of the book on heterogenous agent economies we split the for-
mer Chapter 7 on overlapping generations (OLG) models. The
solution of OLG models with perfect foresight is now covered in
Chapter 9, where we also consider different ways to compute the
transitional dynamics of these models. A new application deals
with a model of the demographic transition. OLG models with
aggregate and individual uncertainty are solved in Chapter 10.

Computer Code. As one of our main ambition, we keep the es-
sential feature of this book to make all our programs that we used
for the computations available on our website www.wiwi.uni-
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augsburg.de/vwl/maussner/. Therefore, the reader does not
need to download any program code from other websites in or-
der to replicate any of our findings, for example, on the statis-
tics and characteristics of business cycle models or the dynamics
of the distribution function in heterogeneous-agent economies. In
the email correspondence with our readers this very feature of our
book has often been pointed out as a crucial one by the graduate
students in order to get started with his or her own research. If
you are endowed with the programs for all the basic models of the
business cycle, growth, and the distribution that we cover in this
book, it is easy to start modifying them and work on your own
projects.

Numerical methods are introduced one after the other and
every new method is illustrated with the help of an example. This
book and its accompanying web page is particularly designed for
those students with little or no prior computing experience. We
start from the scratch and deliberately concentrate on models that
are formulated in discrete time so that we are able to bypass the
technical complexities that arise when stochastic elements are in-
troduced into continuous time optimizing models. The computer
code is available either in Gauss or Fortran or both. The for-
mer computer language is almost identical to Matlab and can be
translated without any effort. This way, the reader of this book
can easily learn advanced programming techniques and, starting
from very simple problems, she or he learns to apply them to
more complex models, for example, a stochastic growth model
with heterogeneous households.

Dynamic General Equilibrium Models. Dynamic General
Equilibrium (DGE) models have become the workhorses of mod-
ern macroeconomics. Whatever textbook on advanced macroeco-
nomics you consider you will find three kinds of models: the Solow
model, the Ramsey model, and the overlapping generations model.
The elementary versions of all three models can be studied with
paper and pencil methods. But as soon as the researcher starts
asking important questions of economic policy, these methods
break down.
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There are three questions researcher are most interested in.
The first concerns transitional dynamics. For example, in growth
theory, we are interested in the question of how countries converge
to their long-run equilibrium, or, in public finance, we want to
understand the behavior of the economy after an enduring tax
cut. The second kind of problem concerns economic fluctuations
that are caused by supply and demand shocks. Notably stochastic
versions of the Ramsey model have been applied successfully to
the study of business cycle dynamics. In these models demand
and supply shocks trigger intra- and intertemporal substitution
between leisure, consumption, and asset holdings and generate
patterns in time series that mimic those found in macroeconomic
data. The third issue, which has only received limited attention in
the recent textbook literature, concerns models with heterogenous
agents. Important applications of heterogeneous-agent economies
can be found in the theory of income distribution, in the theory of
asset pricing or in the field of public finance, to name but a few.
To address any of these economic problems that are formulated
as a DGE model, the researcher needs to apply computational
methods.

Scope. The book is aimed at graduate students or advanced un-
dergraduates. It may be used for both class-room and self study.
It contains a great deal of new research both in the field of com-
putational economics and in the field of macroeconomic theory.
In essence, this book makes the following contributions:

1. The book tells the student in a simple way starting from a
very basic level how to compute dynamic general equilibrium
models. The emphasis is not on formal proofs, but rather on ap-
plications with codes and algorithms. Students should be able
to start to program their own applications right away. Only
some prior knowledge of statistics, linear algebra, and analysis
is necessary. The relevant material from numerical analysis is
gathered in a separate chapter for those readers who are unfa-
miliar with these techniques.

2. We also emphasize some problems of the practitioner that have
only received limited if any attention at all in the recent text-
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book literature. For example, we make an extensive effort to
discuss the problem of finding a good initial value for the policy
function in complex models so that the algorithm converges to
the true solution. Likewise, we discuss the problem of modeling
the dynamics of the distribution of the individual state variable
in heterogeneous-agent economies in detail. Like econometrics,
for example, numerical analysis is also as much an art as a
science, and a young researcher in this field may often wonder
why his or her particular computer program does not converge
to an equilibrium value or fails to produce a sound solution. In
other word, experience is important for the solution of numer-
ical problems and our aim is to share as many as possible of
our practical knowledge.

3. Our applications also reflect many recent research from the field
of business cycle theory. For example, we compute the standard
RBC model, monetary business cycle models, or the business
cycle dynamics of the asset market. For this reason, the book is
also valuable to both the student and the researcher of business
cycles.

4. For this reason, the book is also interesting for researchers both
in the field of (income and wealth) distribution theory and in
the field of public finance.

The presentation in our book is self-contained and the reading
of it is possible without the consultation of other material. The
field of computational economics, however, is vast and we do not
pretend to survey it. Fortunately, there are several other recent
good textbooks that are complementary to ours. Kenneth Judd

(1998) is giving a comprehensive survey of computational eco-
nomics and remains the standard reference, while Miranda and
Fackler (2002) have written a book that, like ours, is more di-
rected towards the illustration of examples and algorithms, while
their focus, however, is more on continuous time models. Mari-

mon and Scott (1999) have edited a textbook that also illus-
trates methods in order to compute the stochastic growth model
that we have not covered in this book, for example the finite-
element method. In our book, we also do not cover the process
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of calibration and estimation methods of stochastic DGE models
with the help of econometric techniques such as maximum likeli-
hood and method of moments. The textbooks of Canova (2007)
and DeJong with Dave (2007) are excellent references for the
study of these empirical methods. The textbook by Ljungqvist

and Sargent (2004) on recursive macroeconomic theory and the
monograph by Stokey and Lucas with Prescott (1989) on
recursive methods may serve as a helpful reference for the eco-
nomic theory and mathematical background applied in this book.
McCandless (2008) provides a detailed presentation of various
monetary and open economy models and their log-linearization
together with the Matlab code, while Gaĺı (2008) gives a concise
introduction to the New Keynesian framework with an emphasis
on monetary theory.

Organization. The book consists of three parts. Part I stud-
ies methods in order to compute representative-agent economies,
Part II looks at heterogeneous-agent economies, while we collected
numerical and other mathematical tools in part III. In the first
Chapter, we introduce the benchmark model which is the sto-
chastic Ramsey model and give an overview of possible solution
methods. We compare different methods in the following five chap-
ters with a focus on accuracy, speed and ease of implementation.
After the study of the Part I, the reader should be able to choose
among the different methods the one that suits the computation
of his particular business cycle model best. The second part of
the book is devoted to the application of numerical methods to
the computation of heterogeneous-agent economies. In particular,
we consider the heterogeneous-agent extension of the stochastic
growth model on the one hand and the overlapping generations
model on the other hand. A detailed description of numerical tools
from the field of non-linear equations, approximation theory, dif-
ferential and integration theory or numerical optimization is del-
egated to Chapter 11 that, together with Chapter 12 on other
mathematical tools, constitutes Part III of the book.

We appreciate that this book cannot easily be covered in one
semester, but one can conveniently choose parts of it as the ba-
sis of a one-semester course. For example, a course on computa-
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tional methods in business cycle theory may choose the Chapters
1 through 5 or 6 where we covered the methods that we judge to
be most useful for the computation of representative-agent busi-
ness cycle and growth models. Chapter 1 introduces the stochastic
growth model and gives an overview of the basic techniques for
its computation. Chapter 2 reviews local approximation meth-
ods which have been predominantly applied in the analysis of
business cycle models. Different from the first edition, we now
also look at second-order perturbation methods. Chapters 3 and
4 cover the extended deterministic path approach and discrete
state space methods. Chapters 5 and 6 present the parameter-
ized expectations approach and projection methods, respectively.
While a standard course on business cycles should minimally cover
Chapter 1 with the benchmark model and a description of the ba-
sic statistics and calibration exercise as well as the first part of
Chapter 2 that covers the computation of the linearized model,
the instructor of a more specialized course should cover Chap-
ters 1 and 2 and may pick any one of the remaining chapters. A
reading list for a course on monetary economics may also include
Chapters 1 and 2 of our book as it enables the student to compute
the monetary business cycle model presented in Chapter 2 and,
in addition, introduces him to the New Keynesian Phillips curve.

Graduate students with prior knowledge of numerical analysis
may use Chapters 7 through 10 for an introduction to the compu-
tation of heterogeneous-agent economies and the theory of income
distribution. Chapter 7 extends the stochastic growth model to
a heterogeneous-agent economy and introduces different ways to
compute the stationary distribution of wealth. Chapter 8 consid-
ers the dynamics of the income and wealth distribution. In Chap-
ters 9 and 10, we look at overlapping generations models. Chap-
ter 9 considers deterministic models. We compute the station-
ary equilibrium and transition dynamics in the perfect-foresight
Auerbach-Kotlikoff model. Chapter 10 introduces individual and
aggregate uncertainty in this model. We compute the stationary
distribution of wealth in a model with idiosyncratic shocks to in-
dividual productivity and the business cycle dynamics in a model
with shocks to total factor productivity. Therefore, a one-semester
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course in computational public finance that is aimed at the com-
putation of Auerbach-Kotlikoff models can be based on Chapters
1-3, 9 and 10.
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Chapter 1

Basic Models

Overview. This chapter introduces you to the framework of dy-
namic general equilibrium models. Our presentation serves two
aims: first, we prepare the ground for the algorithms presented in
subsequent chapters that use one out of two possible characteriza-
tions of a model’s solution. Second, we develop standard tools in
model building and model evaluation used throughout the book.

The most basic DGE model is the so called Ramsey model,
where a single consumer-producer chooses an utility maximiz-
ing consumption profile. We begin with the deterministic, finite-
horizon version of this model. The set of first-order conditions
for this problem is a system of non-linear equations that can be
solved with adequate software. Then, we consider the infinite-
horizon version of this model. We characterize its solution along
two lines: the Euler equations provide a set of difference equa-
tions that determine the optimal time path of consumption; dy-
namic programming delivers a policy function that relates the
agent’s choice of current consumption to his stock of capital. Both
characterizations readily extend to the stochastic version of the
infinite-horizon Ramsey model that we introduce in Section 1.3.
In Section 1.4 we add productivity growth and labor supply to
this model. We use this benchmark model in Section 1.5 to il-
lustrate the problems of parameter choice and model evaluation.
Section 1.6 concludes this chapter with a synopsis of the numer-
ical solution techniques presented in Chapters 2 through 6 and
introduces measures to evaluate the goodness of the approximate
solutions.

Readers who already have experience with the stochastic growth
model with endogenous labor supply (our benchmark model) may
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consider to skip the first four sections and to start with Section
1.5 to become familiar with our notation and to get an idea of the
methods presented in subsequent chapters.

1.1 The Deterministic Finite-Horizon Ramsey
Model and Non-Linear Programming

1.1.1 The Ramsey Problem

In 1928 Frank Ramsey, a young mathematician, posed the prob-
lem ”How much of its income should a nation save?”1 and devel-
oped a dynamic model to answer this question. Though greatly
praised by Keynes,2 it took almost forty years and further pa-
pers by David Cass (1965), Tjalling Koopmans (1965), and
William Brock and Leonard Mirman (1972) before Ram-
sey’s formulation stimulated macroeconomic theory. Today, vari-
ants of his dynamic optimization problem are the cornerstones of
most models of economic fluctuations and growth.

At the heart of the Ramsey problem there is an economic agent
producing output from labor and capital who must decide how to
split production between consumption and capital accumulation.
In Ramsey’s original formulation, this agent was a fictitious plan-
ning authority. Yet, we may also think of a yeoman growing corn
or of a household, who receives wage income and dividends and
buys stocks.

In the following we use the farmer example to develop a few
basic concepts. Time t is divided into intervals of unit length and
extends from the current period t = 0 to the farmers planning

1
Ramsey (1928), p. 543.

2
Keynes (1930) wrote:

... one of the most remarkable contributions to mathematical eco-
nomics ever made, both in respect of the intrinsic importance and
difficulty of its subject, the power and elegance of the technical meth-
ods employed, and the clear purity of illumination with which the
writer’s mind is felt by the reader to play about its subject.
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horizon t = T . Kt and Nt denote the amounts of seed and labor
available in period t, respectively. They produce the amount Yt of
corn according to

Yt = F (Nt, Kt). (1.1)

The production function F has the usual properties:

1. there is no free lunch: 0 = F (0, 0),
2. F is strictly increasing in both of its arguments,
3. concave (i.e. we rule out increasing returns to scale),
4. and twice continuously differentiable.

At each period the farmer must decide how much corn to produce,
to consume and to put aside for future production. The amount
of next period’s seed is the farmer’s future stock of capital Kt+1.
His choice of consumption Ct and investment Kt+1 is bounded by
current production:

Ct +Kt+1 ≤ Yt.

The farmer does not value leisure but works a given number of
hours N each period and seeks to maximize the utility function

U(C0, C1, . . . , CT ).

In the farmer example capital depreciates fully, since seed used for
growing corn is not available for future production. When we think
of capital in terms of machines, factories, or, even more generally,
human knowledge, this is an overly restrictive assumption. More
generally, the resource constraint is given by

Yt + (1− δ)Kt ≥ Ct +Kt+1,

where δ ∈ [0, 1] is the rate of capital depreciation. In the follow-
ing, notation will become a bit simpler if we define the production
function to include any capital left after depreciation and drop the
constant N :

f(Kt) := F (N,Kt) + (1− δ)Kt. (1.2)
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Since production without seed is impossible, we assume f(0) = 0,
while the other properties of F carry over to f .

We are now in the position to state the finite-horizon deter-
ministic Ramsey problem formally as follows:

max
(C0,...,CT )

U(C0, . . . , CT )

s.t.

Kt+1 + Ct ≤ f(Kt),
0 ≤ Ct,
0 ≤ Kt+1,

⎫⎬⎭ t = 0, . . . , T,

K0 given.

(1.3)

There is no uncertainty in this problem: the farmer knows in ad-
vance how much corn he will get when he plans to work N hours
and has Kt pounds of seed. Furthermore, he is also sure as to how
he will value a given sequence of consumption {Ct}Tt=0. Therefore,
we label this problem deterministic. Since we assume T <∞, this
is a finite-horizon problem.

1.1.2 The Kuhn-Tucker Theorem

Problem (1.3) is a standard non-linear programming problem:
choose an n-dimensional vector x ∈ Rn that maximizes the real-
valued function f(x) in a convex set D determined by l constraints
of the form hi(x) ≥ 0, i = 1, . . . , l. The famous Kuhn-Tucker the-
orem provides a set of necessary and sufficient conditions for a
solution to exist:3

Theorem 1.1.1 (Kuhn-Tucker) Let f be a concave C1 func-
tion mapping U into R, where U ⊂ Rn is open and convex. For
i = 1, . . . , l, let hi : U → R be concave C1 functions. Suppose
there is some x̄ ∈ U such that

hi(x̄) > 0, i = 1, . . . , l.

3 See, for instance, Sundaram, 1996, Theorem 7.16, p. 187f.
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Then x∗ maximizes f over D = {x ∈ U |hi(x) ≥ 0, i = 1, . . . , l} if
and only if there is λ∗ ∈ Rl such that the Kuhn-Tucker first-order
conditions hold:

∂f(x∗)
∂xj

+

l∑
i=1

λ∗i
∂hi(x

∗)
∂xj

= 0, j = 1, . . . , n,

λ∗i ≥ 0, i = 1, . . . , l,

λ∗ih
i(x∗) = 0, i = 1, . . . , l.

It is easy to see that problem (1.3) fits this theorem if the utility
function U and the production function f are strictly concave,
strictly increasing, and twice continuously differentiable. Applying
Theorem 1.1.1 to problem (1.3) provides the following first-order
conditions:4

0 =
∂U(C0, . . . , CT )

∂Ct
− λt + μt, t = 0, . . . , T, (1.4a)

0 = −λt + λt+1f
′(Kt+1) + ωt+1, t = 0, . . . , T − 1, (1.4b)

0 = −λT + ωT+1, (1.4c)

0 = λt (f(Kt)− Ct −Kt+1) , t = 0, . . . , T, (1.4d)

0 = μtCt, t = 0, . . . , T, (1.4e)

0 = ωt+1Kt+1, t = 0, . . . , T, (1.4f)

where λt is the Lagrangean multiplier attached to the resource
constraint of period t,

f(Kt)− Ct −Kt+1 ≥ 0,

and where μt and ωt+1 are the multipliers related to the non-
negativity constraints on Ct and Kt+1, respectively. The multipli-
ers value the severeness of the respective constraint. A constraint

4 As usual, a prime denotes the first (two primes the second) derivative of a
function f(x) of one variable x. Condition (1.4c) derives from the budget
constraint of period T , f(KT )−CT −KT+1 ≥ 0, which has the multiplier
λT , and the non-negativity constraint on KT+1, which has the multiplier
ωT+1.
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that does not bind has a multiplier of zero. For example, if Ct > 0
then (1.4e) implies μt = 0. If we want to rule out corner solutions,
i.e., solutions where one or more of the non-negativity constraints
bind, we need to impose an additional assumption. In the present
context this assumption has a very intuitive meaning: the farmer
hates to starve to death in any period. Formally, this translates
into the statement

∂U(C0, . . . , CT )

∂Ct
→∞ if Ct → 0 for all t = 0, . . . , T.

This is sufficient to imply Ct > 0 for all t = 1, . . . , T , μt = 0
(from (1.4e)), and the Lagrangean multipliers λt equal the mar-
ginal utility of consumption in period t and, thus, are also strictly
positive:

∂U(C0, . . . , Ct)

∂Ct
= λt.

Condition (1.4d), thus, implies that the resource constraints al-
ways bind. Furthermore, since we have assumed f(0) = 0, positive
consumption also requires positive amounts of seed Kt > 0 from
period t = 0 through period T . However, the farmer will consume
his entire crop in the last period of his life, since any seed left
reduces his lifetime utility. More formally, this result is implied
by equations (1.4f) and (1.4c), which yield λTKT+1 = 0. Taking
all pieces together, we arrive at the following characterization of
an optimal solution:

Kt+1 = f(Kt)− Ct, (1.5a)

∂U(C0, . . . CT )/∂Ct

∂U(C0, . . . CT )/∂Ct+1

= f ′(Kt+1). (1.5b)

The lhs of equation (1.5b) is the marginal rate of substitution
between consumption in two adjacent periods. It gives the rate
at which the farmer is willing to forego consumption in t for con-
sumption one period ahead. The rhs provides the compensation
for an additional unit of savings: the increase in future output.
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1.2 The Deterministic Infinite-Horizon Ramsey
Model and Dynamic Programming

In equation (1.5b) the marginal rate of substitution between two
adjacent periods depends on the entire time profile of consump-
tion. For this reason, we must solve the system of 2T − 1 non-
linear, simultaneous equations (1.5) at once to obtain the time
profile of consumption. Though probably difficult in practice this
is, in principle, a viable strategy as long as T is finite. However,
if we consider an economy with indefinite final period, that is, if
T approaches infinity, this is no longer feasible. We cannot solve
for infinitely many variables at once. To circumvent this prob-
lem, we restrict the class of intertemporal optimization problems
to problems that have a recursive structure. Recursive problems
pose themselves every period in the same, unchanged way. Their
solution is not a time profile of optimal decisions determined at
an arbitrary initial period t = 0 but consists in decision rules that
determine the agent’s behavior at each future point in time. The
time additive separable (TAS) utility function, which we introduce
in the next subsection, allows for a recursive formulation of the
Ramsey problem. For this problem we derive first-order conditions
via the Kuhn-Tucker method in Subsection 1.2.2. There is, how-
ever, an alternative approach available: dynamic programming,
which we consider in Subsection 1.2.3. Subsection 1.2.4 provides
a characterization of the dynamics of the infinite-horizon Ramsey
model. We close this section with a brief digression that considers
the few models that admit an analytic solution of the Ramsey
problem.

1.2.1 Recursive Utility

The TAS utility function is defined recursively from

Ut = u(Ct) + βUt+1, β ∈ (0, 1). (1.6)

In this definition β is a discount factor and β−1 − 1 is known as
the pure rate of time preference. The function u : [0,∞) → R
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is called the one-period, current-period, or felicity function. We
assume that u is strictly increasing, strictly concave and twice
continuously differentiable.

The solution to the finite-horizon Ramsey model depends upon
the chosen terminal date T . Yet, in as far as we want to portray
the behavior of the economy with Ramsey type models there is
no natural final date T . As a consequence, most models extend
the planning horizon into the indefinite future by letting T →∞.
Iterating on (1.6) we arrive at the following definition of the utility
function

Ut =
∞∑

s=0

βsu(Ct+s). (1.7)

If we want to rank consumption streams according to this crite-
rion function, we must ensure that the sum on the rhs is bounded
from above, i.e., Ut < ∞ for every admissible sequence of points
Ct, Ct+1, Ct+2, . . . . This will hold, if the growth factor of one-
period utility u, gu := u(Ct+s+1)/u(Ct+s), is smaller than 1/β
for all s = 0, 1, 2, . . . . Consider the Ramsey problem (1.3) with
infinite time horizon:

max
C0,C1,...

U0 =
∞∑
t=0

βtu(Ct)

s.t.

Kt+1 + Ct ≤ f(Kt),
0 ≤ Ct,
0 ≤ Kt+1,

⎫⎬⎭ t = 0, 1, . . . ,

K0 given.

(1.8)

In this model we do not need to assume that the one-period util-
ity function u is bounded. Since u is continuous, it is sufficient
to assume that the economy’s resources are finite. In a dynamic
context this requires that there is an upper bound on capital ac-
cumulation, i.e., there is K̄ such that for each K > K̄ output is
smaller than needed to maintain K:

∃K̄ so that ∀Kt > K̄ ⇒ Kt+1 < Kt. (1.9)
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For instance, let f(K) = Kα, α ∈ (0, 1). Then:

K ≤ Kα ⇒ K̄ = 11/(α−1) = 1.

Given condition (1.9), any admissible sequence of capital stocks is
bounded by Kmax := max{K̄,K0} and consumption in any period
cannot exceed f(Kmax). Figure 1.1 makes that obvious: consider
any point to the left of K̄ such asK1 and assume that consumption
equals zero in all periods. Then, the sequence of capital stocks
originating in K1 approaches K̄. Similarly, the sequence starting
in K2 approaches K̄ from the right.

K

f(K)

45o

K̄K1 K2

Figure 1.1: Boundedness of the Capital Stock

1.2.2 Euler Equations

There are two approaches to characterize the solution to the Ram-
sey problem (1.8). The first is an extension of the Kuhn-Tucker
method5 and the second is dynamic programming.6 According

5 See, e.g., Chow (1997), Chapter 2 and Romer (1991).
6 Here, the standard reference is Chapter 4 of Stokey and Lucas with

Prescott (1989).
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to the first approach necessary conditions may be derived from
maximizing the following Lagrangean function with respect to
C0, C1, . . . , K1, K2, . . . :

L =
∞∑

t=0

βt
[
u(Ct) + λt (f(Kt)− Ct −Kt+1)

+ μtCt + ωt+1Kt+1

]
.

Note that in this expression the Lagrangean multipliers λt, μt,
and ωt+1 refer to period t values. Period t = 0 values are given by
βtλt, β

tμt, and βtωt+1. The first-order conditions for maximizing
L are given by:

u′(Ct) = λt − μt, (1.10a)

λt = βλt+1f
′(Kt+1) + ωt+1, (1.10b)

0 = λt(f(Kt)− Ct −Kt+1), (1.10c)

0 = μtCt, (1.10d)

0 = ωt+1Kt+1. (1.10e)

We continue to assume that the farmer hates starving to death,

lim
C→0

u′(C) =∞, (1.11)

so that the non-negativity constraints never bind. Since u is
strictly increasing in its argument, the resource constraint always
binds. Therefore, we can reduce the first-order conditions to a
second order difference equation in the capital stock:

u′(f(Kt)−Kt+1)

u′(f(Kt+1)−Kt+2)
− βf ′(Kt+1) = 0. (1.12)

This equation is often referred to as the Euler equation, since
the mathematician Leonhard Euler (1707-1783) first derived it
from a continuous time dynamic optimization problem. To find
the unique optimal time path of capital from the solution to this
functional equation we need two additional conditions. The period
t = 0 stock of capital K0 provides the first condition. The second
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condition is the so called transversality condition, which is the
limit of the terminal condition λTKT+1 = 0 from the finite-horizon
Ramsey problem (1.3). It requires

lim
t→∞

βtλtKt+1 = 0, (1.13)

that is, the present value of the terminal capital stock must ap-
proach zero. In the Ramsey model (1.8), condition (1.13), is a
necessary condition,7 as well as conditions (1.10).

1.2.3 Dynamic Programming

We now turn to a recursive formulation of the Ramsey problem.
For this purpose we assume that we already know the solution
(denoted by a star) {K∗

1 , K
∗
2 , . . . } ≡ {K∗

t }∞t=1 so that we are able
to compute the life-time utility from

v(K0) := u(f(K0)−K∗
1 ) +

∞∑
t=1

βtu(f(K∗
t )−K∗

t+1).

Obviously, the maximum value of life-time utility v(K0) depends
upon K0 directly – via the first term on the rhs of the previ-
ous equation – and indirectly via the effect of K0 on the opti-
mal sequence {K∗

t }∞t=1. Before we further develop this approach,
we will adopt the notation that is common in dynamic program-
ming. Since K0 is an arbitrary initial stock of capital, we drop the
time subscript and use K to designate this variable. Furthermore,
we use a prime for all next-period variables. We are then able to
define the function v recursively via:

v(K) := max
0≤K ′≤f(K)

u(f(K)−K ′) + βv(K ′). (1.14)

The first term to the right of the max operator is the utility of
consumption C = f(K) − K ′ as a function of the next-period
capital stock K ′. The second term is the discounted optimal value

7 See Kamihigashi (2002).
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of life-time utility, if the sequence of optimal capital stocks starts
in the next period with K ′. Suppose we know the function v so
that we can solve the optimization problem on the rhs of equation
(1.14). Obviously, its solution K ′ depends upon the given value of
K so that we may write K ′ = h(K). The function h is the agent’s
decision rule or policy function. Note that the problem does not
change with the passage of time: when the next period has arrived,
the agent’s initial stock of capital is K = K ′ and he has to make
the same decision with respect to the capital stock of period t = 2,
which we denote by K ′′. In this way he can determine the entire
sequence {K∗

t }∞t=1.
Yet, we may also view equation (1.14) as an implicit defini-

tion of the real-valued function v and the associated function h.
From this perspective, it is a functional equation,8 named Bell-
man equation after its discoverer the US mathematician Richard
Bellman (1920-1984). His principle of optimality states that the
solution of problem (1.8) is equivalent to the solution of the Bell-
man equation (1.14). Stokey and Lucas with Prescott(1989),
pp. 67-77, establish the conditions for this equivalence to hold. In
this context of dynamic programming v is referred to as the value
function and h as the policy function, decision rule, or feed-back
rule. Both functions are time invariant. The mathematical theory
of dynamic programming deals with the existence, the properties,
and the construction of v and h. Given that both u(C) and f(K)
are strictly increasing, strictly concave and twice continuously dif-
ferentiable functions of their respective arguments C and K, and
that there exists a maximum sustainable capital stock K̄ as de-
fined in (1.9), one can prove the following results:9

1. The function v exists, is differentiable, strictly increasing, and
strictly concave.

2. The policy function g is increasing and differentiable.
3. The function v is the limit of the following sequence of steps
s = 0, 1, . . . :

8 As explained in Section 12.1, a functional equation is an equation whose
unknown is a function and not a point in Rn.

9 See, e.g., Harris (1987), pp. 34-45 or Stokey and Lucas with Prescott

(1989), pp. 103-105.
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vs+1(K) = max
0≤K ′≤f(K)

u(f(K)−K ′) + βvs(K ′),

with v0 = 0.

We illustrate these findings in Example 1.2.1

Example 1.2.1
Let the one-period utility function u and the production function f
be given by

u(C) := lnC,
f(K) := Kα, α ∈ (0, 1),

respectively. In Appendix 1 we use iterations over the value function
to demonstrate that the policy function Kt+1 = h(Kt) that solves the
Ramsey problem (1.8) is given by

Kt+1 = αβKα
t .

Furthermore, the value function is linear in lnK and given by

v(K) = a+ b lnK,

a :=
1

1− β
[
ln(1− αβ) +

αβ

1− αβ lnαβ
]
, b :=

α

1− αβ .

The dynamic programming approach also provides the first-order
conditions (1.12). It requires two steps to arrive at this result.
First, consider the first-order condition for the maximization prob-
lem on the rhs of equation (1.14):

u′(f(K)−K ′) = βv′(K ′). (1.15)

Comparing this with condition (1.10a) (assuming μt = 0) reveals
that the Lagrange multiplier λt ≡ βv′(Kt+1) is a shadow price for
newly produced capital (or investment expenditures): it equals
the current value of the increase in life-time utility obtained from
an additional unit of capital. Second, let K ′ = h(K) denote the
solution of this implicit equation in K ′. This allows us to write
the Bellman equation (1.14) as an identity,
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v(K) = u(f(K)− h(K)) + βv(h(K)),

so that we can differentiate with respect to K on both sides. This
yields

v′(K) = u′(C) (f ′(K)− h′(K)) + βv′(K ′)h′(K),

where C = f(K) − h(K). Using the first-order condition (1.15)
provides

v′(K) = u′(C)f ′(K). (1.16)

Since K is an arbitrarily given stock of capital, this equation re-
lates the derivative of the value function v′(·) to the derivative
of the one-period utility function u′(·) and the derivative of the
(net) production function f ′(·) for any value of K. Thus, letting
C ′ = f(K ′)−K ′′ denote next period’s consumption, we may write

v′(K ′) = u′(C ′)f ′(K ′).

Replacing v′(K ′) in (1.15) by the rhs of this equation yields

1 = β
u′(f(K ′)−K ′′)
u′(f(K)−K ′)

f ′(K ′).

This equation must hold for any three consecutive stocks of capital
(K,K ′, K ′′) that establish the optimal sequence {K∗

t }∞t=1 that
solves the Ramsey problem (1.8). Thus, it is identical to the Euler
equation (1.12), except that we used primes instead of the time
indices.

1.2.4 The Saddle Path

To gain insights into the dynamics of the Ramsey model (1.8) we
use the phase diagram technique to characterize the solution of the
Euler equation (1.12). Substituting the resource constraint Ct =
f(Kt)−Kt+1 into (1.12) yields a first-order, non-linear system of
difference equations that governs the optimal time path of capital
accumulation:
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Kt+1 = f(Kt)− Ct, (1.17a)

1 = β
u′(Ct+1)

u′(Ct)
f ′(Kt+1). (1.17b)

Together with the initial capital stock K0 and the transversality
condition (1.13) these equations determine a unique solution. We
use Figure 1.2 to construct it.10

The thick line in this figure represents the graph of the func-
tion Ct = f(Kt) that divides the plane into two regions. All points
(Kt, Ct) on and below this graph meet the non-negativity con-
straint on the future capital stock, Kt+1 ≥ 0. No time path that
starts in this region can leave it via the abscissa, since for all pairs
(Kt, Ct) > 0 the solution to equations (1.17) in Ct+1 is positive
due to assumption (1.11). We divide the area below the graph of
Ct = f(Kt) into four parts, labeled A1 through A4.

Consider first the locus of all pairs (Kt, Ct) along which con-
sumption does not change, i.e., Ct = Ct+1. According to equation
(1.17b) this happens when the capital stock reaches K∗, given by

1

β
= f ′(K∗).

Since to the right (left) of K∗ the marginal product of capital
is smaller (larger) than 1/β, consumption decreases (increases)
within that region. The vertical arrows in Figure 1.2 designate
that behavior.

Consider second the locus of all pairs (Kt, Ct) along which the
capital stock does not change. Assuming Kt = Kt+1 in equation
(1.17a) implies:

Ct = f(Kt)−Kt.

The graph of this function equals the vertical distance between the
function f(Kt) and the 45–degree line in Figure 1.1. Thus, it starts

10 The time paths shown in this figure are obtained from a numerical simula-
tion. Since they represent the solution of a system of difference equations
and not of a system of differential equations they are connected line seg-
ments rather than smooth curves.
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Ct

Kt

K∗ K̄

C∗

A1

A2

A3

A4

Ct = Ct+1

Ct = f(Kt) ⇔ Kt+1 = 0

Kt+1 = Kt ⇔ Ct = f(Kt) −Kt

S

S

Km

Figure 1.2: Phase Diagram of the Infinite-Horizon Ramsey Model

at the origin, attains a maximum at Km, defined by 1 = f ′(Km),
and cuts the K-axis at K̄. Points above (below) that locus have a
higher (smaller) consumption and, thus, the capital stock declines
(increases) in that region, as shown by the horizontal arrows.

The optimal path of capital accumulation is given by the line
segment labeled SS, the so called saddle path. Points on that
locus converge towards the stationary equilibrium at (K∗, C∗).
All other time paths either violate the non-negativity constraint
on Kt+1 in finite time or the transversality condition (1.13). To
derive this assertion, we study the behavior of the dynamic system
(1.17) in the four different regions. Consider a time path starting
in region A1. According to the arrows, it either

1. moves towards the graph of Ct = f(Kt),

2. enters the region A4,

3. converges towards the stationary solution (K∗, C∗),
4. converges towards K̄,

5. or enters the region A2.



1.2 Infinite-Horizon Ramsey Model and Dynamic Programming 19

It can be shown (by a straightforward but somewhat tedious ar-
gument) that paths that move towards the graph of Ct = f(Kt)
hit that line in finite time, and thus, constitute no feasible paths.
Likewise, all paths that originate in the region A4 violate the non-
negativity constraint on Kt+1 in finite time since they can only
move towards the border of the feasible region as designated by
the arrows. Time paths that originate in A3 either

1. enter the region A4,

2. converge towards the stationary solution,

3. or enter the region A2.

Consider a path starting in A2. We already know that it cannot
cross the abscissa. In addition, it cannot move into A1. To see
this, consider a point P0 := (K0, C0) on the border – so that
C0 = f(K0) −K0 – and a point P1 := (K1, C0), K1 < K0 to the
left of P0 (see Figure 1.3). The length of the horizontal arrow that
points from P1 to the right is given by

Δ1 := (f(K1)− C0)−K1 = f(K1)− f(K0) +K0 −K1,

Ct

Kt

P1

K0K1

P0

A2

A1

C0

Δ1

Δ2

Figure 1.3: No Path Leaves the Region A2
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which is less than the horizontal distance between P0 and P1,
Δ2 = K0 − K1, since f(K1) − f(K0) < 0. Therefore, each path
in A3 must converge to K̄. Consider what happens along this
path. Since A2 lies to the right of K∗ the marginal product of
capital along that path decreases from 1/β at K∗ to f ′(K̄) < 1/β.
Therefore, there exists a point (K0, C0) on that path so that the
growth factor of the marginal utility of consumption implied by
(1.17b) exceeds c > 1/β:

gu′ :=
u′(C1)

u′(C0)
=

1

βf ′(K1)
> c,

and there is a lower bound on u′(Ct) given by

u′(Ct) ≥ ctu′(C0).

This implies

lim
t→∞

βtu′(Ct)Kt+1 ≥ (βc)tu′(C0)Kt+1 =∞,

since limt→∞Kt+1 = K̄ and limt→∞(βc)t = ∞. Thus, we have
shown that a path converging to K̄ violates the transversality
condition. A similar argument applies to all paths that approach
K̄ from the right.

Summarizing, the only paths left are those that start on the
line SS and that converge to the stationary solution at the point
(K∗, C∗). From the point of view of dynamic programming, this
line is the graph of the policy function for consumption implied by
the decision rule for the next-period capital stock via the resource
constraint: Ct = g(Kt) := f(Kt) − h(Kt). It relates the capital
stock at each date t to the optimal choice of consumption at this
date. Given the initial capital stock K0 the optimal strategy is
to choose C0 = g(K0) and then to iterate either over the Euler
equations (1.17) or, equivalently, over the policy functions h and
g.

The problem that we have to deal with is how to derive the
function h. Unfortunately, the Ramsey model (1.8) admits an an-
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alytical solution of the policy function only in a few special cases,
which we consider in the next subsection.11

1.2.5 Models with Analytic Solution

Logarithmic Utility and Log-Linear Technology. In Exam-
ple 1.2.1 we assume a logarithmic utility function u(Ct) = lnCt

and a net production function of the Cobb-Douglas type f(Kt) =
Kα

t . If capital depreciates fully, that is, if δ = 1, this function
also describes the gross output of the economy. In Appendix 1 we
show that the policy function of the next-period capital stock is
given by

Kt+1 = h(Kt) := αβKα
t . (1.18)

A multi-sector version of this model was used in one of the seminal
articles on real business cycles by Long and Plosser (1983) to
demonstrate that a very standard economic model without money
and other trading frictions is capable to explain many features of
the business cycle. Radner (1966) is able to dispense with the
assumption of 100% depreciation. He, instead, assumes that each
vintage of capital investment is a separate factor of production
in a log-linear technology. The disadvantage of his model is that
output is zero if gross investment in any prior period is zero.

Figure 1.4 displays the time path of the stock of capital implied
by the solution of Example 1.2.1. We used α = 0.27 and β = 0.994
and set the initial capital stock K0 equal to one tenth of the
stationary capital stock K∗ = (αβ)1/(1−α). It takes only a few
periods for K0 to be close to K∗.

Logarithmic Utility and Log-Linear Adjustment Costs.
A second class of models with logarithmic utility and log-linear
production function for gross output is provided in an article by
Hercowitz and Sampson (1991). Instead of full depreciation

11 We do not pretend that the following list completely exhausts the class of
models with exact solution for the policy function.
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Figure 1.4: Convergence of the Stock of Capital in the Infinite-Horizon
Ramsey Model

the authors assume adjustment costs of capital that give rise to the
following transition function for the stock of next-period capital:

Kt+1 = K1−δ
t Iδ

t , (1.19)

where gross investment It equals output Yt = Kα
t minus consump-

tion:

It = Yt − Ct.

We ask you in Problem 1.2 to show that the policy functions for
the next-period capital stock and for consumption are given by

Kt+1 = k0K
α
t ,

Ct =
(
1− k1/δ

0

)
Kα

t ,

where the constant k0 is a unique function of the model’s para-
meters α, β, and δ.
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Iso-Elastic Utility and CES-Technology. Benhabib and
Rustichini (1994) provide a class of models where the utility
function is not restricted to the logarithmic case but is given by
the iso-elastic function

u(Ct) =
C1−η

t − 1

1− η , η > 0,

which approaches lnCt for η → 1. There are two vintages of cap-
ital, K1t and K2t, respectively, that produce output according to
the constant elasticity of substitution function

Yt =
[
aK1−ε

1t + (1− a)K1−ε
2t

] 1
1−ε .

The two vintages are related to each other via the equation

K2t+1 = δK1t,

that is, capital lasts for two periods and new vintages depreciate
at the rate δ ∈ (0, 1). The economy’s resource constraint is given
by

Yt = Ct +K1t+1.

Assuming η = ε, the solution of this model is a constant savings
rate s determined from

1− s =
[
βa+ β2(1− a)δ1−ε

] 1
ε ,

so that the policy function for K1t+1 is given by

K1t+1 = sYt.

Antony and Maußner (2007) argue that this model can be
extended and interpreted as a model with adjustment costs of
capital that give raise to the transition equation

Kt+1 =
[
aK1−ε

t + (1− a)I1−ε
t

] 1
1−ε ,

with generalizes equation (1.19) to the case ε �= 1. The production
function in their model is
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Yt =
[
bN1−ε + (1− b)K1−ε

t

] 1
1−ε .

N is the given amount of labor used in the production. The savings
rate that solves this model is determined from

1− s =

[ ∞∑
j=1

(1− b)a(1 − a)j−1βj

] 1
ε

.

The Linear Quadratic Model. In Section 2.2 we consider a
special class of models known as linear quadratic models or opti-
mal linear regulator problems. The Ramsey model that we sketch
here is an example of this class. We assume a quadratic current
period utility function

u(Ct) := u1Ct − u2

2
C2

t , u1, u2 > 0

and a linear (net) production function

f(Kt) := AKt, A > 0.

With these functions the system of difference equations (1.17)
may be written as:

Kt+1 = AKt − Ct, (1.20a)

Ct+1 =
u1

u2

(
1− 1

βA

)
+

1

βA
Ct. (1.20b)

We use the method of undetermined coefficients explained in Ap-
pendix 1 to find the policy function. We guess this function for
consumption g is linear:

Ct = c1 + c2Kt.

Substituting this function into (1.20b) provides:

c1 + c2Kt+1 =
u1

u2

(
1− 1

βA

)
+

1

βA
(c1 + c2Kt),

c1 + c2(AKt − c1 − c2Kt) =
u1

u2

(
1− 1

βA

)
+

1

βA
(c1 + c2Kt).
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The last equation holds for arbitrary values of Kt if the constant
terms on both sides sum to zero:

0 = c1

(
1− c2 − 1

βA

)
− u1

u2

(
1− 1

βA

)
, (1.21a)

and if the coefficients of the variable Kt sum to zero, too. This
condition provides the solution for c2:

c2 = A− 1

βA
, (1.21b)

which can be used to infer c1 from equation (1.21a). Inserting the
solution for c2 in equation (1.20a) delivers the policy function for
capital:

Kt+1 = h(Kt) :=
1

βA
Kt − c1.

If 1/β > A, the stock of capital approaches the stationary solution

K∗ = − c1
1− 1

βA

,

from any given initial value K0, and consumption converges to

C∗ = u1/u2,

so that the transversality condition (1.13) holds.

1.3 The Stochastic Ramsey Model

1.3.1 Stochastic Output

In the Ramsey problem (1.8) everything is under the farmer’s
control. Yet, this is an overly optimistic picture of farming. Less
rain during the summer causes harvest failure, whereas the right
balance between rainfall and sunshine boosts crop growth. The
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amount of rainfall is outside the control of the farmer and, usu-
ally, he is unable to predict it accurately. The ensuing uncertainty
turns the crop and, hence, consumption into stochastic variables.
As a consequence, we must restate the farmer’s decision problem
in the framework of expected utility maximization. We illustrate
the points that are involved in this task in Example 1.3.1. Since
an in-depth treatment of the analytical framework that underlies
stochastic control is beyond the scope of this book we refer the
interested reader to Stokey and Lucas with Prescott (1989).

Example 1.3.1
Assume the farmer’s planing horizon is T = 1. His one-period utility
function u(Ct) is strictly increasing in consumption Ct. Output in pe-
riod t = 0 is given by f(K0) and in period t = 1 by Z1f(K1), where
Z1 = Z with probability π and Z1 = Z̄ > Z with probability 1 − π.
f(Kt) is strictly increasing in the capital stock Kt. K0 is given. Since
the farmer does not plan beyond t = 1, we already know that he will
choose C1 = Z1f(K1). Given his investment decision in the current pe-
riod K1 his future consumption is a random variable with realizations
C1(Z) = Zf(K1) and C1(Z̄) = Z̄f(K1). Hence, the farmer’s expected
life-time utility is

E0 [u(C0) + βu(C1)] := u(f(K0)−K1)
+ β

[
πu(Zf(K1)) + (1− π)u(Z̄f(K1))

]
,

where E0 denotes expectations as of period = 0. The farmer chooses
K1 to maximize this expression. Differentiating with respect to K1 and
setting to zero the resulting expression yields the following first-order
condition:

u′(C0) = β
[
u′(Zf(K1))Zf ′(K1)π + u′(Z̄f(K1))Z̄f ′(K1)(1− π)

]︸ ︷︷ ︸
=:E0[u′(C1)Z1f ′(K1)]

.

This equation is the stochastic analog to the respective Euler equation
in the deterministic case. It states that the utility loss from increased
savings in the current period, u′(C0), must be compensated by the
discounted expected future utility increase.

We will consider the following stochastic infinite-horizon Ramsey
model, which is also known as the stochastic growth model:



1.3 The Stochastic Ramsey Model 27

max
C0

E0

[ ∞∑
t=0

βtu(Ct)

]
s.t. (1.22)

Kt+1 + Ct ≤ Ztf(Kt) + (1− δ)Kt,
0 ≤ Ct,
0 ≤ Kt+1,

⎫⎬⎭ t = 0, 1, . . . ,

K0, Z0 given.

Note that from here on f(K) ≡ F (N,K) for fixed N denotes gross
value added and we consider depreciation explicitly. We need to
do so, since using our specification of the production function
from (1.2), Ztf(Kt) would imply stochastic depreciation other-
wise. Problem (1.22) differs from the deterministic model in two
respects: first, output at each period t depends not only on the
amount of capital Kt but also on the realization of a stochas-
tic variable Zt capturing weather conditions. We assume that the
farmer knows the amount of rainfall Zt at harvest time, when he
must decide about consumption. Second, and as a consequence of
this assumption, in the current period t = 0 the farmer chooses
only current consumption C0. In the deterministic case, he gets no
new information when the future unfolds. Therefore, he can safely
determine consumption from the present to the very distant fu-
ture. In technical terms, his decision problem is open-loop control,
as opposed to close-loop control in the stochastic case. Here, as in
Example 1.3.1, future consumption is a stochastic variable from
the perspective of the current period. Thus, the farmer does bet-
ter if he postpones the decision on period t consumption until this
period t. As a consequence of the uncertainty with respect to con-
sumption, the farmer aims at maximizing the expected value of
his life-time utility. More specifically, the notation E0[·] denotes
expectations with respect to the probability distribution of the
sequence of random variables {Ct}∞t=1 conditional on information
available at t = 0. The fact that we use the mathematical expec-
tations operator means that agents use the true – or objective as
opposed to subjective – probability distribution of the variables
they have to forecast. Since the seminal article of Muth (1961)
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economists use the term ’rational expectations’ to designate this
hypothesis on expectations formation.

The solution of the deterministic, infinite-horizon Ramsey mod-
el in terms of a time-invariant policy function rests on the recur-
sive structure of the problem that in turn is implied by the time-
additive utility function. To preserve this structure in the context
of a stochastic model requires us to restrict the class of probability
distributions to stochastic processes that have the Markov prop-
erty. If you are unfamiliar with Markov processes we recommend
to consult Section 12.2, where we sketch the necessary definitions
and tools. We proceed to derive the first-order conditions that
governs the model’s evolution over time. As in the previous sec-
tion we obtain these conditions via two tracks: the Kuhn-Tucker
approach and stochastic dynamic programming.

1.3.2 Stochastic Euler Equations

First order conditions for the stochastic Ramsey model (1.22) can
be derived in a manner analogous to the deterministic case. Con-
sider the following Lagrangean function:

L = E0

{ ∞∑
t=0

βt
[
u(Ct) + μtCt + ωt+1Kt+1

+ λt (Ztf(Kt) + (1− δ)Kt − Ct −Kt+1)
]}
.

Since the expectations operator is a linear operator we can dif-
ferentiate the expression in curly brackets with respect to C0 and
K1 (see Example 1.3.1). This delivers

∂L

∂C0
= E0{u′(C0)− λ0 + μ0} = 0,

∂L

∂K1
= E0{−λ0 + ω1 + βλ1(1− δ + Z1f

′(K1))} = 0,

0 = λ0(Z0f(K0) + (1− δ)K0 − C0 −K1),

0 = μ0C0,

0 = ω1K1.
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Since, as in Example 1.3.1, C0, K1, and hence the multipliers λ0,
μ0, and ω1 are non-stochastic, we can replace the first condition
with

u′(C0) = λ0 − μ0

and the second with

λ0 = βE0λ1{1− δ + Z1f
′(K1)}+ ω1.

Now, consider the problem from t = 1 onwards, when Z1 is known
and K1 given. The Lagrangean for this problem is

L = E1

{ ∞∑
t=1

βt−1
[
u(Ct) + μtCt + ωt+1Kt+1

+ λt (Ztf(Kt) + (1− δ)Kt − Ct −Kt+1)
]}
.

Proceeding as before, we find

u′(C1) = λ1 − μ1,

λ1 = βE1λ2{1− δ + Z2f
′(K2)}+ ω2.

Continuing in this way, we find, since Kt must be optimal at t,
that the plan for choosing C0, C1, . . . and K1, K2, . . . must solve
the system:

u′(Ct) = λt − μt, (1.23a)

λt = βEtλt+1 [1− δ + Zt+1f
′(Kt+1)] + ωt+1, (1.23b)

0 = λt(Ztf(Kt) + (1− δ)Kt − Ct −Kt+1), (1.23c)

0 = μtCt, (1.23d)

0 = ωt+1Kt+1. (1.23e)

Thus, an interior solution with strictly positive consumption and
capital at all dates t (i.e., ∀t : μt = ωt+1 = 0) must satisfy the
stochastic analog to the Euler equation (1.12)

1 =βEt
u′(Zt+1f(Kt+1) + (1− δ)Kt+1 −Kt+2)

u′(Ztf(Kt) + (1− δ)Kt −Kt+1)

× (1− δ + Zt+1f
′(Kt+1)).

(1.24)
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In addition to the stochastic Euler equation (1.24) there is also the
stochastic analog of the transversality condition (1.13), namely

lim
t→∞

βtEtλtKt+1 = 0 (1.25)

that provides a boundary condition for the solution to (1.24).
Kamihigashi (2005) shows that condition (1.25) is a necessary
optimality condition in the following cases:

1. the utility function u(Ct) is bounded,
2. the utility function is logarithmic u(Ct) = lnCt,
3. the utility function is of the form u(Ct) = C1−η

t /(1 − η), η ∈
[0,∞)\{1} and life-time utility at the optimum is finite.

1.3.3 Stochastic Dynamic Programming

As in the deterministic Ramsey model there is a dynamic pro-
gramming approach to characterize solutions of the stochastic
Ramsey model (1.22). The value function v(K,Z) is now defined
as the solution to the following stochastic functional equation:

v(K,Z) = max
0≤K ′≤Zf(K)+(1−δ)K

u(Zf(K) + (1− δ)K −K ′)

+ βE [v(K ′, Z ′)|Z] ,

where expectations are conditional on the given realization of Z
and where a prime denotes next period values. In the case of a
Markov chain with realizations [z1, z2, . . . , zn] and transition ma-
trix P = (pij) the expression E [v(K ′, Z ′)|Z] is given by

E [v(K ′, Z ′)|zi] =
n∑

j=1

pijv(K
′, zj)

and in the case of the continuous valued Markov process with
conditional probability density function π(z, Z ′) over the interval
[a, b] it is

E [v(K ′, Z ′)|z] =

∫ b

a

v(K ′, Z ′)π(z, Z ′)dZ ′.
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It requires some sophisticated mathematics to prove the existence
and to find the properties of the value function and the associ-
ated policy function K ′ = h(K,Z). We refer the interested reader
to Stokey and Lucas with Prescott (1989), Chapter 9 and
proceed under the assumption that both the value and the policy
function exist and are sufficiently differentiable with respect to K.
Under this assumption it is easy to use the steps taken on page
15 to show that the dynamic programming approach also delivers
the stochastic Euler equation (1.24). We leave this as an exercise
to the reader (see Problem 1.4).

Example 1.3.2 extends Example 1.2.1 to the stochastic case.
As in this example, there is an analytic solution for the policy
function h.

Example 1.3.2
Let the one-period utility function u and the production function f
be given by

u(C) := lnC,
f(K) := Kα, α ∈ (0, 1),

respectively.
In Example 1.2.1 we find that K ′ is directly proportional to Kα.

So let us try

Kt+1 = h(Kt, Zt) := AZtK
α
t

as policy function with the unknown parameter A. If this function
solves the problem, it must satisfy the stochastic Euler equation (1.24).
To prove this assertion, we replace Kt+1 in equation (1.24) by the rhs
of the previous equation. This gives

1 = βEt

[
(1−A)ZtK

α
t

(1−A)Zt+1[AZtK
α
t ]α

αZt+1[AZtK
α
t ]α−1

]
=
αβ

A
.

If we put A = αβ the function h(Zt,Kt) = αβZtK
α
t indeed satisfies

the Euler equation, and thus is the policy function we look for.

The solution of the deterministic Ramsey model is a time path
for the capital stock. In the stochastic case K ′ = h(K,Z) is a ran-
dom variable, since Z is random. The policy function induces a
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time-invariant probability distribution over the space of admissi-
ble capital stocks. This distribution is the counterpart to the sta-
tionary capital stock K∗ in the deterministic Ramsey model (1.8).
We illustrate this point with the aid of Example 1.3.2 for α = 0.27
and β = 0.994. We assume that Zt has a uniform distribution over
the interval [0.95, 1.05] and employ a random number generator
to obtain independent draws from this distribution. Starting with
K∗ = (αβ)1/(1−α) we then iterate over Kt+1 = αβZtK

α
t to ob-

tain a path with one million observations on Kt. We divide the
interval between the smallest and the highest value of K attained
along this path into 100 non-overlapping intervals and count the
number of capital stocks that lie in each interval. Figure 1.5 dis-
plays the result of this exercise. Since it rests on a sample from
the distribution of K it provides an approximate picture of the
density function of the capital stock implied by the model of Ex-
ample 1.3.2. Note that despite the fact that each small subinterval
S ⊂ [0.95, 1.05] of length l has the same probability of l/0.1, the

Figure 1.5: Stationary Distribution of the Capital Stock in the
Stochastic Infinite-Horizon Ramsey Model
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distribution of the capital stock is not uniform. To understand
this note that for each fixed Z ∈ [0.95, 1.05] the capital stock ap-
proaches K(Z) = (αβZ)1/(1−α). Since the mean of the uniform
distribution over [0.95, 1.05] is Z = 1, neither very small nor very
high values of K have a high chance to be realized.

1.4 Labor Supply, Growth, and the
Decentralized Economy

1.4.1 Substitution of Leisure

So far we have taken labor supply as exogenous. Yet, it is well
known that there are considerable employment fluctuations over
the business cycles. In the context of our farming example, varia-
tions in labor input may arise from shocks to labor productivity, if
the farmer values both consumption and leisure. To allow for that
case we include leisure in the one-period utility function. Leisure
L is the farmer’s time endowment, which we normalize to 1, minus
his working hours N . Thus we may state the one-period utility
function now as

u(C, 1−N). (1.27)

In the following subsection we will ask what kinds of restrictions
we must place on u besides the usual assumptions with respect to
concavity and monotonicity when we deal with a growing econ-
omy. Before we proceed, we consider briefly what we can expect in
general from including leisure into the one-period utility function.

Assume that the farmer observes an increase in today’s mar-
ginal product of labor that he considers short-lived. How will he
react? In the current period the shock increases the farmer’s op-
portunity set, since at any given level of labor input his harvest
will be higher than before the shock. At the same time the shock
changes the relative price of leisure: the farmer loses more output
for each additional unit of leisure he desires. The overall effect of
the shock on the intra-temporal substitution between labor and
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consumption depends upon the relative size of the associated in-
come and substitution effect. If leisure and consumption are nor-
mal goods, the farmer wants both more consumption and more
leisure (income effect). Yet, since leisure is more costly than be-
fore the shock, he also wants to substitute consumption against
leisure (substitution effect).

In the intertemporal setting we are considering here, there is an
additional, inter-temporal substitution effect. The shock raises the
current reward for an additional hour of work vis-à-vis the future
return. Consequently, the farmer will want to work more now and
less in the future. He can achieve this goal by increasing today’s
savings and spending the proceeds in subsequent periods. Thus,
investment serves as vehicle to the intertemporal substitution of
consumption and leisure.

1.4.2 Growth and Restrictions on Technology
and Preferences

Labor Augmenting Technical Progress. When we refer to
economic growth we think of increases in output at given levels of
input brought about by increases in technological knowledge. This
kind of technological progress is called disembodied as opposed to
embodied progress that operates via improvements in the quality
of the factors of production. Disembodied technological progress
simply shifts the production function outward. Equivalently, we
may think of it as if it redoubled the available physical units of
labor and capital. For instance, if N is the amount of physical or
raw labor and A its efficiency level, effective labor is AN . Using
this concept, output is given by

Yt = ZtF (AtNt, BtKt),

where the efficiency factors At and Bt as well as the productivity
shock Zt are exogenously given time series or stochastic processes.
We continue to assume that the production function F has posi-
tive but diminishing marginal products, that both factors of pro-
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duction are essential, and that F exhibits constant returns to
scale. Formally:12

1. Fi > 0 and Fii < 0 for i = 1, 2,
2. F (AN, 0) = 0 and F (0, BN) = 0,
3. λY = F (λAN, λBK)

In Section 1.2.4 we have seen that the solution to the deter-
ministic, infinite-horizon Ramsey model approaches a stationary
equilibrium. There is an appropriate concept of stationarity in
models of growth, the so-called balanced growth path. Referring
to Solow (1988), p. 4, we define a balanced growth path by two
requirements:

1. output per working hour grows at a constant rate,
2. and the share of net savings in output is constant.

The motivation for this definition has two different sources. Firstly,
from the empirical perspective, the balanced growth path repli-
cates the broad facts about growth of advanced industrial econ-
omies.13 Secondly, from the theoretical perspective, the balanced
growth path allows to define variables relative to their trend path
that are stationary like the unscaled variables in no-growth mod-
els. Therefore, the techniques used to study stationary economies
remain valid.

In Appendix 2 we show that for a balanced growth path to
exist technical progress must be of the labor augmenting type, i.e.,
Bt ≡ 1 ∀t. As a consequence, we specify the production function
as

Yt = ZtF (AtNt, Kt). (1.28)

Trend versus Difference Stationary Growth. The specifica-
tion (1.28) leaves two possible modeling choices for the process
governing the evolution of the efficiency factor of raw labor. If we

12 Here, and in the following, for any function F (x1, . . . , xn) the expression Fi

denotes the first partial derivative of F with respect to xi, and Fij denotes
the derivative of Fi(x1, . . . , xn) with respect to xj .

13 See, Solow (1988), p. 3ff.
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consider growth a deterministic process, the efficiency factor At

grows at a given and constant growth factor a > 1:

At+1 = aAt. (1.29)

Variations around the long-run path are induced by the stochas-
tic process {Zt}∞t=0. For this variations to be temporary and not
permanent, the process that governs Zt must be covariance sta-
tionary. This requires

1. that the unconditional mean E(Zt) = Z is independent of time,
2. and that the covariance between Zt and Zt+s, cov(Zt, Zt+s) =
E[(Zt − Z)(Zt+s − Z)], depends upon the time lag s but not
on time t itself.

To find the long-run behavior of output assume that Zt is equal
to its unconditional mean Z ≡ 1. Since F has constant returns to
scale we may write

Yt = AtF (Nt, Kt/At).

Note that according to our utility function (1.27) labor supply Nt

is bounded above by 1. Since At grows at the constant rate a− 1,
output will grow at the same constant rate, if both labor input and
the quantity Kt/At are constant. Therefore, capital must grow at
the same rate as output.

The assumption of deterministic growth has obvious empirical
implications: output is a trend stationary stochastic process, i.e.,
when we subtract a linear trend from log-output, the resulting
time series is a covariance stationary stochastic process.

In an influential paper Nelson and Plosser (1982) ques-
tion this implication. They provide evidence that major macro-
economic aggregates are better modeled as difference stationary
stochastic processes. A stochastic process {xt}t∈Z is difference sta-
tionary if the process {(xt+1 − xt)}t∈Z is a covariance stationary
stochastic process. In the context of our neoclassical production
function we get this result, if we set Zt ≡ 1 and let a difference sta-
tionary Markov process govern the evolution of the efficiency level
of labor. For instance, we may assume At to follow the process
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At+1 = Ate
a+εt , εt ∼ N(0, σ2), a > 0. (1.30)

Under this process the growth factor of the efficiency level of labor,
At+1/At fluctuates around its long-run mean of ea and the first
difference of log-output, ln Yt+1 − ln Yt, is covariance stationary.
To see this, use

Yt = AtF (Nt, Kt/At)

and set F (·) equal to its long-run value F̄ := F (N,K/A). Using
(1.30), we get

ln Yt+1 − ln Yt = lnAt+1 − lnAt = a+ εt,

which is a white noise process.

Restrictions on Preferences. The restriction to labor aug-
menting technical progress is not sufficient to guarantee the exis-
tence of a balanced growth path when labor supply is endogenous.
To see this, we restrict attention to the deterministic case and put
Z ≡ 1 in (1.28). Using the one-period utility function (1.27), the
farmer’s maximization problem is

max
{Ct,Nt}∞t=0

∞∑
t=0

βtu(Ct, 1−Nt)

s.t. (1.31)

Kt+1 + Ct ≤ F (AtNt, Kt) + (1− δ)Kt,
0 ≤ Ct,
1 ≥ Nt ≥ 0,
0 ≤ Kt+1,

⎫⎪⎪⎬⎪⎪⎭ t = 0, 1, . . . ,

K0 given.

Since we are interested in a long-run solution with positive con-
sumption and leisure, we will ignore the non-negativity restric-
tions and the upper bound on labor in setting up the respective
Lagrangean:

L =

∞∑
t=0

βt
[
u(Ct, 1−Nt) + Λt

(
F (AtNt, Kt)

+ (1− δ)Kt − Ct −Kt+1

)]
.
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Differentiating this expression with respect to Ct, Nt, and Kt+1

provides the following set of first-order conditions:

0 = u1(Ct, 1−Nt)− Λt, (1.32a)

0 = −u2(Ct, 1−Nt) + ΛtF1(AtNt, Kt)At, (1.32b)

0 = −Λt + βΛt+1(1− δ + F2(At+1Nt+1, Kt+1)). (1.32c)

Conditions (1.32a) and (1.32b) imply that the marginal rate of
substitution between consumption and leisure, u2/u1, equals the
marginal product of labor:

u2(Ct, 1−Nt)

u1(Ct, 1−Nt)
= AtF1(AtNt, Kt). (1.33)

Conditions (1.32a) and (1.32c) yield

u1(Ct, 1−Nt)

u1(Ct+1, 1−Nt+1)
= β(1− δ + F2(At+1Nt+1, Kt+1)). (1.34)

Consider the rhs of this equation. Since F is homogenous of degree
one, F2 is homogenous of degree zero, i.e.,

F2(At+1Nt+1, Kt+1) = F2(Nt+1, Kt+1/At+1).

We have already seen that on a balanced growth path both Nt+1

and Kt+1/At+1 are constants. Thus, in the long run, the rhs of
equation (1.34) is constant and the lhs must be, too. Now consider
the resource constraint

Kt+1 = Yt − Ct + (1− δ)Kt.

If capital and output grow at the common rate a−1, consumption
must grow at the same rate, since otherwise the growth factor of
capital gK ,

gK :=
Kt+1

Kt
=
Yt

Kt
− Ct

Kt
+ (1− δ),

is not constant. If consumption grows at the rate a− 1 the mar-
ginal utility of consumption must fall at a constant rate. As we
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show in Appendix 2 this restricts the one-period utility function
u to the class of constant-elasticity functions with respect to con-
sumption. Further restrictions derive from condition (1.33). Since
the marginal product of labor increases in the long run at the
rate a − 1 there must be exactly off-setting income and substi-
tution effects with respect to the static labor supply decision. As
we demonstrate in Appendix 2 we must restrict the one-period
utility function (1.27) to

u(C, 1−N) =

{
C1−ηv(1−N) if η �= 1,

lnC + v(1−N) if η = 1.
(1.35)

The function v must be chosen so that u(C, 1 − N) is concave.
Remember, that a function is concave, if and only if uii ≤ 0 and
(u11u22 − u2

12) ≥ 0, and that it is strictly concave, if u11 < 0
and (u11u22 − u2

12) > 0.14. For example, in the parameterization
of u that we use in Example 1.5.1 below, the restriction of η to
η > θ/(1 + θ) implies that u is strictly concave.

Transformation to Stationary Variables. Given the restric-
tions on technology and preferences it is always possible to choose
new variables that are constant in the long run. As an example,
consider the deterministic Ramsey model (1.31). Assume η �= 1
in (1.35) and deterministic growth of the efficiency level of labor
according to (1.29). The static labor supply condition (1.33) can
then be written as

v′(1−Nt)

(1− η)v(1−Nt)

Ct

At

= F1(Nt, Kt/At) (1.36)

and the intertemporal condition (1.34) is:

C−η
t v(1−Nt)

C−η
t+1v(1−Nt+1)

=
(aAt)

ηC−η
t v(1−Nt)

Aη
t+1C

−η
t+1v(1−Nt+1)

=
aη(Ct/At)

−ηv(1−Nt)

(Ct+1/At+1)−ηv(1−Nt+1)

= β(1− δ + F2(Nt+1, Kt+1/At+1)).

(1.37)

14 See, e.g., Takayama (1985), Theorem 1.E.13.
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Since F is homogenous of degree one, we can transform the re-
source constraint to

Kt+1

At+1/a
= F (Nt, Kt/At) + (1− δ)(Kt/At)− (Ct/At). (1.38)

Equations (1.36) through (1.38) constitute a dynamic system in
the new variables Nt, ct := Ct/At, and kt = Kt/At. Their station-
ary values N , c and k are found as solution to the system of three
equations

c =
(1− η)v(1−N)

v′(1−N)
F1(N, k),

1 = βa−η(1− δ + F2(N, k)),

0 = F (N, k)− (1− δ − a)k − c.

Note, that we can derive the efficiency conditions (1.36) through
(1.38) from solving the problem

max
{ct,Nt}∞t=0

∞∑
t=0

β̃tc1−η
t v(1−Nt)

s.t.

ct ≤ F (Nt, kt) + (1− δ)kt − akt+1,
k0 given,

with discount factor β̃ := βa1−η in the stationary decision vari-
ables ct := Ct/At and kt+1 := Kt+1/At+1.

1.4.3 The Decentralized Economy

So far we have considered a single agent for ease of exposition.
For each of the Ramsey models considered above, it is, however,
straightforward to develop a model of a decentralized economy
whose equilibrium allocation coincides with the equilibrium allo-
cation of the respective Ramsey model. Since the latter is a utility
maximizing allocation, the decentralized equilibrium is optimal in
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the sense of Pareto efficiency. In the static theory of general equi-
librium with a finite-dimensional commodity space the correspon-
dence between a competitive equilibrium and a Pareto efficient al-
location of resources is stated in the Two Fundamental Theorems
of Welfare Economics.15 The infinite-horizon Ramsey model has
infinitely many commodities. Nevertheless, as shown by Debreu

(1954), it is possible to extend the correspondence between com-
petitive equilibrium and Pareto efficiency to infinite-dimensional
commodity spaces.

We illustrate the relation between efficiency and intertemporal
equilibrium by means of a simple example.

Firms. The production side of the economy consists of a large
number of identical firms i = 1, 2, . . . , n. Each firm uses labor
Ni and capital Ki to produce a single output Yi. The production
function ZF (ANi, Ki) has the usual properties, in particular, it
is homogenous of degree one (see page 35). Each firm hires labor
and capital services on the respective markets. Let w and r denote
the rental rates of labor and capital, respectively, in units of the
final good. Since there is no link between successive periods, max-
imization of the firm’s present value is equivalent to maximizing
one-period profits

Πi := ZF (ANi, Ki)− wNi − rKi.

The first-order conditions imply

w = ZAF1(ANi, Ki) = ZAF1(A,Ki/Ni),

r = ZF2(ANi, Ki) = ZF2(A,Ki/Ni),

due to the homogeneity of degree zero of Fi. Since all firms face
the same factor prices, they choose the same capital-labor ratio
k := Ki/Ni from the solution to the above equations. Therefore,
output per unit of labor yi = Yi/Ni = ZF (A,Ki/Ni) is the same
for all firms: yi = y = ZF (A, k). These results imply the existence
of an aggregate production function

15 For a statement, see, e.g., Mas-Colell, Whinston and Green (1995)
pp. 545ff or Starr (1997), pp. 144ff.
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Y =
∑

i

Yi =
∑

i

Niy = Ny = NZF (A, k) = ZF (AN,K),

where N =
∑

iNi and K =
∑

iKi. In terms of this function,
equilibrium on the markets for labor and capital services is given
by

w = ZAF1(AN,K),

r = ZF2(AN,K),
(1.39)

and the profits of all firms are zero:16

Πi = Yi − wNi − rKi

= ZF (ANi, Ki)−ZAF1Ni − ZF2Ki︸ ︷︷ ︸
−ZF (ANi,Ki)

= 0.

Households. Our example economy is populated by a continuum
of households of mass 1, i.e., each individual household is assigned
a unique real number h from the interval [0, 1]. All households
have the same one-period utility function and the same time t = 0
capital stock. When they face a given path of output and factor
prices they choose identical sequences of consumption and labor
supply. Let x(h) denote an arbitrary decision variable of household
h ∈ [0, 1] and put

x(h) = x̄∀h ∈ [0, 1].

Since

x̄ =

∫ 1

0

x(h)dh =

∫ 1

0

x̄dh

aggregate and individual variables are identical. As a consequence,
we can consider a representative member from [0, 1] without ex-
plicit reference to his index h.

This representative household supplies labor services Nt with
efficiency factor At and capital services Kt at the given real wage

16 This is just Euler’s theorem. For a general statement of this theorem, see,
e.g., Sydsæter, Strøm and Berck (1999), p.28.
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wt and rental rate of capital rt, respectively. He saves in terms of
capital which depreciates at the rate δ ∈ (0, 1]. Thus, his budget
constraint reads:17

Kt+1 −Kt ≤ wtNt + (rt − δ)Kt − Ct. (1.40)

The household seeks time paths of consumption and labor supply
that maximize its life-time utility

∞∑
t=0

βtu(Ct, 1−Nt), β ∈ (0, 1), (1.41)

subject to (1.40) and the given initial stock of capital K0. From
the Lagrangean of this problem,

L =

∞∑
t=0

βt
[
u(Ct, 1−Nt) + Λt(wtNt + (1− δ + rt)Kt

− Ct −Kt+1)
]

we derive the following first-order conditions:

u1(Ct, 1−Nt) = Λt, (1.42a)

u2(Ct, 1−Nt) = Λtwt, (1.42b)

Λt = βΛt+1(1− δ + rt+1). (1.42c)

Using the factor market equilibrium conditions (1.39) to substi-
tute for wt and rt+1 and applying the Euler theorem to F ,

Yt = ZF (AtNt, Kt) = ZAtF1(AtNt, Kt)Nt + ZF2(AtNt, Kt)Kt

equations (1.42) reduce to

u2(Ct, 1−Nt)

u1(Ct, 1−Nt)
= ZAtF1(AtNt, Kt), (1.43a)

u1(Ct, 1−Nt)

u1(Ct+1, 1−Nt+1)
= β(1− δ + ZF2(At+1Nt+1, Kt+1)),

(1.43b)

Kt+1 = ZF (AtNt, Kt) + (1− δ)Kt − Ct. (1.43c)

17 Here we use the fact that firms’ profits are zero. In general, we must include
the profits that firms distribute to their shareholders.
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This system is identical to the first-order conditions that we de-
rived for the Ramsey model (1.31) in equations (1.33) and (1.34)
with the resource constraint being equal to (1.43c). Thus, the
equilibrium time path of the decentralized economy is optimal
in the sense that it maximizes the utility of all households given
the resource constraint of the economy. On the other hand, a
benevolent planer who solved the Ramsey problem (1.31) could
implement this solution in terms of a competitive equilibrium. He
simply has to choose time paths of wages and rental rates equal
to the equilibrium sequences of the respective marginal products.

1.5 Model Calibration and Evaluation

The task of numerical DGE analysis is to obtain an approximate
solution of the model at hand and to use this solution to study
the model’s properties. Before this can be done, specific values
must be assigned to the model’s parameters. In this section we
illustrate both the calibration and the evaluation step with the
aid of an example that we introduce in the next subsection.

1.5.1 The Benchmark Model

Example 1.5.1 presents our benchmark model. More or less similar
models appear amongst others in the papers by Hansen (1985),
by King, Plosser, and Rebelo (1988a), and by Plosser

(1989). It is a stripped down version of the celebrated model of
Kydland and Prescott (1982), who were awarded the Nobel
Price in economics 2004 for their contribution to the theory of
business cycles and economic policy. The model provides an inte-
grated framework for studying economic fluctuations in a growing
economy. Since it depicts an economy without money it belongs
to the class of real business cycle models. The economy is inhab-
ited by a representative consumer-producer who derives utility
from consumption Ct and leisure 1 − Nt and uses labor Nt and
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capital services Kt to produce output Yt. Labor augmenting tech-
nical progress at the deterministic rate a > 1 accounts for out-
put growth. Stationary shocks to total factor productivity Zt in-
duce deviations from the balanced growth path of output. Similar
models have been used to demonstrate that elementary economic
principles may account for a substantial part of observed economic
fluctuations. In the following chapters we will apply various meth-
ods to solve this model. It thus serves as a point of reference to
compare the performance of different algorithms.

Example 1.5.1
Consider the following stochastic Ramsey model. The representative
agent solves:

max
C0,N0

E0

[ ∞∑
t=0

βtC
1−η
t (1−Nt)θ(1−η)

1− η

]
,

β ∈ (0, 1), θ ≥ 0, η > θ/(1 + θ),
s.t.

Kt+1 + Ct ≤ Zt(AtNt)1−αKα
t + (1− δ)Kt, α ∈ (0, 1),

At+1 = aAt, a ≥ 1,
lnZt+1 = 
 lnZt + εt+1, 
 ∈ (0, 1), εt ∼ N(0, σ2),

0 ≤ Ct,
0 ≤ Kt+1,

⎫⎪⎪⎪⎪⎬⎪⎪⎪⎪⎭ ∀t,

K0, Z0 given.

First-Order Conditions. From the Lagrangean

L := E0

{ ∞∑
t=0

βt
[C1−η

t (1−Nt)
θ(1−η)

1− η
+ Λt

(
Zt(AtNt)

1−αKα
t + (1− δ)Kt − Ct −Kt+1

) ]}
we derive the following first-order conditions:
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0 = C−η
t (1−Nt)

θ(1−η) − Λt,

0 = θC1−η
t (1−Nt)

θ(1−η)−1 − Λt(1− α)ZtAt(AtNt)
−αKα

t ,

0 = Kt+1 − (1 + δ)Kt + Ct − Zt(AtNt)
1−αKα

t ,

0 = Λt − βEtΛt+1

(
1− δ + αZt+1(At+1Nt+1)

1−αKα−1
t+1

)
.

In terms of stationary variables λt := Aη
t Λt, ct := Ct/At, and

kt := Kt/At this system is:

0 = c−η
t (1−Nt)

θ(1−η) − λt, (1.45a)

0 = θc1−η
t (1−Nt)

θ(1−η)−1 − (1− α)λtZtN
−α
t kα

t , (1.45b)

0 = akt+1 − (1− δ)kt + ct − ZtN
1−α
t kα

t , (1.45c)

0 = λt − βa−ηEtλt+1

(
1− δ + αZt+1N

1−α
t+1 k

α−1
t+1

)
. (1.45d)

Stationary Solution. From these equations we can obtain the
balanced growth path of the deterministic counterpart of the
model. For that purpose we assume that the productivity shock is
equal to its unconditional mean Z ≡ 1 for all periods. This allows
us to drop the expectation operator Et from equation (1.45d).
Since Nt and all scaled variables are constant in the long-run, we
find the stationary solution if we neglect the time indices of all
variables. This delivers:18

N

1−N =
1− α
θ

N1−αkα

c
=

1− α
θ

y

c
, (1.46a)

1 = βa−η(1− δ + αN1−αkα−1) (1.46b)

= βa−η(1− δ + α(y/k)),

y

k
=
N1−αkα

k
=
c

k
+ (a+ δ − 1). (1.46c)

1.5.2 Calibration

Definitions. In this book we use the term calibration for the
process by which researchers choose the parameters of their DGE
models from various sources. The most common ways are:

18 Equation (1.46a) derives from equation (1.45b) after substitution for λ
from equation (1.45a).
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1. the use of time series averages of the levels or ratios of economic
variables,

2. the estimation of single equations,
3. reference to econometric studies based on either macroeco-

nomic or microeconomic data,
4. gauging the parameters so that the model replicates certain

empirical facts as second moments of the data or impulse re-
sponses from structural vector autoregressions.

Very good descriptions of this process are given by Cooley and
Prescott (1995) and by Gomme and Rupert (2007). Other
authors, for instance Canova (2007), p. 249 and DeJong with
Dave (2007), p. 248ff., use the term calibration in the sense of an
empirical methodology that involves the following steps:

1. select an economic question,
2. decide about a DGE model to address this question,
3. choose the functional forms and the parameters of this model,
4. solve the model and evaluate its quality,
5. propose an answer.

In this sense, calibration is an empirical research program dis-
tinct from classical econometrics. An econometric model is a fully
specified probabilistic description of the process that may have
generated the data to be analyzed. The econometric toolkit is
employed to estimated this model, to draw inferences about its
validity, to provide forecasts and to evaluate certain economic
policy measures.

The distinction between calibration and classical econometrics
is most easily demonstrated with the aid of Example 1.3.2. The
policy function for the next-period capital stock is

Kt+1 = αβZtK
α
t . (1.47)

From this equation we can derive an econometric, single-equation
model once we specify the stochastic properties of the productivity
shock Zt. Since, empirically, the stock of capital is a time series
with clear upward trend, we could assume that ln Zt is a difference
stationary stochastic process with positiv drift a, that is
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lnZt+1 − lnZt = a+ εt,

where εt is a serially uncorrelated process with mean E(εt) = 0
and variance E(ε2t ) = σ2. Then, equation (1.47) implies

lnKt+1 − lnKt = a+ α(lnKt − lnKt−1) + εt.

This is a first-order autoregressive process in the variable xt :=
lnKt − lnKt−1. The method of ordinary least squares provides
consistent estimates of the parameters a, α, and σ2. It should
come as no surprise that the data will usually reject this model.
For instance, using quarterly data for the German capital stock
we get an estimate of α of about 0.89 and of a = 0.00058. Yet,
if capital is rewarded its marginal product, α should be equal
to the capital share of income which is about 0.27 (see below).
Furthermore, a should be equal to the quarterly growth rate of
output, which – between 1974 and 1989 – was about ten times
larger than our estimate from this equation. In addition, standard
test for homoscedastic and autocorrelation free error terms reject
both assumptions, which is an additional sign of a misspecified
model. The view that DGE models are too simple to provide a
framework for econometric research does not mean that they are
useless. In the words of Edward Prescott (1986), p. 10:

The models constructed within this theoretical framework are
necessarily highly abstract. Consequently, they are necessarily
false, and statistical hypothesis testing will reject them. This
does not imply, however, that nothing can be learned from such
quantitative theoretical exercises.

We have already demonstrated how we can use the model of Ex-
ample 1.3.2 for ’quantitative theoretical exercises’ in Section 1.2.5
where we constructed the distribution of the capital stock implied
by the model. For this exercise we set α = 0.27 and β = 0.994.
We will explain in a moment on which considerations this choice
rests. At this point it should suffice to recognize that these values
are not derived from the estimated policy function for capital but
rely on time series averages.

Calibration – in the sense of empirically grounded theoretical
exercises – is the main use of DGE models. However, there is also
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a substantial body of more recent work, that employs econometric
techniques – such as moment and Likelihood based methods – to
estimate DGE models. Since our focus is on numerical solutions,
we refer the interested reader to the books by De Jong with
Dave (2007) and Canova (2007) that cover the application of
econometric techniques to the estimation of DGE models.

Parameter Choice for the Benchmark Model. We start
with the assumption that the real economic data were produced
by the model of Example 1.3.2. To account for the representative
agent nature of the model it is common to scale the data by the
size of the population if appropriate. Since the model from Exam-
ple 1.5.1 displays fluctuations around a stationary state, a valid
procedure to select the model’s key parameters is to use long-run
time series averages.

We use seasonally adjusted quarterly economic data for the
West German economy over the period 1975.i through 1989.iv.19

We limit our attention to this time period for two reasons. Firstly,
between 1960.i and 1975.i the West German average propensity to
consume, c/y, has a clear upward trend. Had the German economy
been on a balanced growth path this relation had been constant.
Yet, the calibration step requires the steady state assumption to
be approximately true. Secondly, the German unification in the
fall of 1990 is certainly a structural break that violates the steady
state assumption for the period after 1989.

In the stationary equilibrium of our model, output per house-
hold grows at the rate of labor augmenting technical progress a−1.
Thus, we can infer a from fitting a linear time trend to gross do-
mestic product at factor prices per capita. This gives a = 1.005,
implying a quarterly growth rate of 0.5 percent. The second pa-
rameter of the production technology, α, equals the average wage
share in gross domestic product at factor prices. The national
accounts present no data on the wage income of self-employed
persons. Yet, from the viewpoint of economic theory, this group
of households also receives wage income as well as capital income.

19 Usually, the U.S. economy is taken for this purpose. But since this economy
has been the focus of numerous real business cycle models we think it is
interesting to use an economy that differs in a number of aspects.
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To account for that fact we assume that the self-employed earn
wages equal to the average wage of employees. Therefore, we get a
higher wage share of 1− α = 0.73 than the commonly used num-
ber of 0.64. The third parameter that describes the economy’s
production technology is the rate of depreciation δ. We compute
this rate as the average ratio of quarterly real depreciation to the
quarterly capital stock.20 As compared to the number of 0.025
commonly used for the U.S. economy21 our figure of δ = 0.011
is much smaller. With these parameters at hand we can infer the
productivity shock Zt from the production function using the time
series on the gross domestic product at factor prices Yt, on hours
Ht and on the stock of capital Kt:

Zt =
Yt

((1.005)tHt)0.73K0.27
t

.

Since our specification of the Markov process for Zt implies

lnZt =  lnZt−1 + εt,

where lnZt ≈ (Zt−Z)/Z, we fit an AR(1)-process to the percent-
age deviation of Zt from its mean. This delivers our estimates of
 = 0.90 and of σ = 0.0072.

It is not possible to determine all of the parameters that de-
scribe the preferences of the representative household from aggre-
gate time series alone. The critical parameter in this respect is
the elasticity of the marginal utility of consumption −η. Micro-
economic studies provide evidence that this elasticity varies both
with observable demographic characteristics and with the level of
wealth. Browning, Hansen, and Heckman (1999) argue that
if constancy of this parameter across the population is imposed
there is no strong evidence against η being slightly above one. We
use η = 2 which implies that the household desires a smoother

20 For this purpose we construct a quarterly series of the capital stock from
yearly data on the stock of capital and quarterly data on investment and
depreciation using the perpetual inventory method. The details of this
approach can be found in the Gauss program GetPar1.g.

21 See, e.g., King, Plosser, and Rebelo (1988a), p. 214 and Plosser

(1989), p. 75.



1.5 Model Calibration and Evaluation 51

consumption profile than in the case of η = 1, i.e., the case of
logarithmic preferences, which has been used in many studies.
The reason for this choice is that a larger η reduces the variabil-
ity of output, working hours, and investment, and, thus, provides
a better match between the model and the respective German
macroeconomic variables.

Once the choice of η is made there are several possibilities to
select the value of the discount factor β. The first alternative uses
the observed average (quarterly) capital-output ratio k/y to solve
for β from equation (1.46b). In our case this violates the restriction
β < 1. King, Plosser, and Rebelo (1988a), p. 207, equate the
average rate of return on equity to α(y/k) − δ in (1.46b) and
solve for βa−η. Other studies, e.g., Lucke (1998), p. 102, take
the ex post real interest rate on short term bonds as estimators
of α(y/k)− δ in equation (1.46b). The average yearly return on
the West German stock index DAX was about 8.5 percent, on the
FAZ index 11.5 percent, and the ex post real interest rate on three
month money market bonds about 2.7 percent. Given a and η, we
use β = 0.994, which implies a yearly return of slightly above 6.5
percent. The final choice concerns the preference parameter θ. We
use condition (1.46a) and choose θ so that N = 0.13, which is the
average quarterly fraction of 1440 (=16 × 90) hours spend on work
by the typical German employee. Note that many other studies
put N = 1/3 arguing that individuals devote about 8 hours a day
to market activities.22 However, we consider the typical individual
to be an average over the total population, including children and
retired persons. Therefore, we find a much smaller fraction of a
sixteen hours day engaged in income earning activities. Table 1.1
summarizes our choice of parameters.

1.5.3 Model Evaluation

We have already noted above that while formal econometric tests
of DGE models are available, they are not the typical way to

22 See, e.g., Hansen (1985), p. 319f.
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Table 1.1

Preferences Production

β=0.994 a=1.005 α=0.27
η=2.0 δ=0.011 
=0.90
N=0.13 σ=0.0072

evaluate these models.23 Instead, it is common to compute impulse
responses and second moments from these models and to compare
these with the respective empirical counterparts.

Impulse Responses. Impulse responses are the deviations of the
model’s variables from their stationary solution that occur after
a one-time shock that hits the economy. Figure 1.6 displays the
response of several variables, measured in percentage deviations
from their stationary values. They are computed from the Gauss
program Benchmark_LL.g.

The time path of productivity is displayed in the upper left
panel. It is given by

lnZt+1 =  lnZt + εt+1.

In period t = 1 the economy is in its stationary equilibrium. In
period t = 2 total factor productivity increases. We set εt equal to
one standard deviation for t = 1 and to zero thereafter. Since lnZt

is highly autocorrelated ( = 0.9), Zt remains above Z = 1 for
many periods. The above average productivity raises the real wage
and the representative household substitutes leisure for consump-
tion so that working hours increase (see the upper right panel of
Figure 1.6). Both, the increased productivity and the additional
supply of labor boost output. Investment expenditures show by
far the strongest reaction. To see this, note that the ordinate of all
four panels of Figure 1.6 has the same scale. To understand the re-
action of investment note first that the household wants to spread

23 Estimation of DGE models is explained, among others, in the books by
Canova (2007), De Jong with Dave (2007) and Lucke (1998).
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Figure 1.6: Impulse Responses in the Benchmark Model

the extra income earned in period t = 1 in order to smooth con-
sumption. Second, the household anticipates higher real interest
rates in the future since the productivity increase also raises the
future marginal product of capital providing an additional incen-
tive to invest. Since investment expenditures are a small part of
the existing capital stock (I/K = δ in the steady state), we only
observe a modest, hump-shaped increase of capital in panel four.
However, the above average supply of capital explains why real
wages remain high even after the productivity shock has almost
faded.

Figure 1.7 displays impulse responses from a vector autoregres-
sive (VAR) model estimated from the same quarterly data that
we used to calibrate the parameters of our benchmark model. To
maximize the degrees of freedom, we used the sample period from
1960.i through 1989.iv for which consistent data are available.
The variables of the model are (in this order) real gross domestic
product at factor prices per capita y, real private consumption per
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Figure 1.7: Impulse Responses from an Estimated VAR

capita c, real investment expenditures per capita i, and working
hours per capita n. The VAR was estimated with two lags as indi-
cated by the Schwarz information criterion. We used HP-filtered
variables to remove the apparent trend in the data. Identification
of the productivity shock was achieved by placing y at the top
and by using the Cholesky factorization of the covariance matrix
of the estimated residuals to obtain orthogonal shocks. 95-percent
confidence bounds (the broken lines in Figure 1.7) were obtained
from a bootstrap procedure.24

Similar to our theoretical model investment expenditures dis-
play the largest amplitude. According to our model the relation

24 Readers that are unfamiliar with structural vector autoregressive mod-
els may want to consult, for instance, Amisano and Giannini (1997),
Canova (2007), Chapter 4, Favero (2001), Chapter 6 or Hamilton

(1994), Chapters 10 and 11. The Gauss program SVar.g and the data
set used for this estimation can be downloaded from the web side of this
book.
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between the maximum increase of investment and the maximum
increase of output is about five. In the estimated impulse re-
sponses of Figure 1.7, however, this relation is just about two.
There is another striking difference between the model and the
data. In the model, the maximum increase of all variables occurs
in the period of the shock. In the data, the maximum increase of
output, investment, and working hours takes place in the period
after the shock hit the economy. The failure of the benchmark
model to replicate this hump-shaped pattern has been a concern
among researchers since it was pointed out first by Cogley and
Nason (1995).

Second Moments. A second typical tool to evaluate small scale
DGE models is to compare the second moments of the time series
obtained from simulations of the model to those of the respec-
tive macroeconomic aggregates. Most of these aggregates have an
upward trend that must be removed to render the time series sta-
tionary. Most applications subject the logs of these aggregates to
the Hodrick-Prescott or – for short – HP-filter that we describe in
more detail in Section 12.4. The cyclical component of a time se-
ries that the filter returns is then the percentage deviation of the
original series from its HP-trend component. The solution of our
model consists of time paths of stationary variables xt := Xt/At,
where Xt denotes the level of the respective variable. Therefore,
given our specification of the evolution of labor augmenting tech-
nical progress,

At+1 = aAt ⇔ At = A0a
t,

we can recover the time paths of the logs of the levels from

lnXt = lnxt + lnAt = lnxt + lnA0 + at.

To get comparable results, we must apply the HP-filter to lnXt.
Yet, we can bypass the computation of lnXt, since, as we demon-
strate in 12.4, the cyclical component of ln xt is equal to the cycli-
cal component of lnXt.

Table 1.2 displays the results from solving and simulating the
model from Example 1.5.1 using the most widely employed log-
linear solution method that we describe in Chapter 2. The second



56 Chapter 1: Basic Models

moments from the model are averages over 500 simulations. The
length of the simulated time series is equal to the number of quar-
terly observations from 1975.i through 1989.iv. At the beginning
of the first quarter our model economy is on its balanced growth
path. In this and in the following 59 quarters it is hit by produc-
tivity shocks that drive the business cycle.

Consider the match between the data and the model’s time
series. The numbers in Table 1.2 reveal well known results. The
model is able to reproduce the fact that investment is more volatile
than output and consumption, but it exaggerates this stylized fact
of the business cycle. Consumption is too smooth as compared
to its empirical counterpart. The autocorrelations, however, are
quite in line with the data. The cross correlations between output
and the other variables are almost perfect in the model, quite in
contrast to the cross-correlations found in the data.

The quite obvious mismatch between the data and the artifi-
cial time series can be traced to two different sources. First, we
have not attempted to construct aggregates from the national in-
come and product accounts (NIPA) that are consistent with the

Table 1.2

Variable sx rxy rx

Output 1.44 1.00 0.64
(1.14) (1.00) (0.80)

Investment 6.11 1.00 0.64
(2.59) (0.75) (0.79)

Consumption 0.56 0.99 0.66
(1.18) (0.79) (0.84)

Hours 0.77 1.00 0.64
(0.78) (0.40) (0.31)

Real Wage 0.67 0.99 0.65
(1.17) (0.41) (0.91)

Notes: Empirical values from HP-filtered German data in
parenthesis. sx:=standard deviation of HP-filtered simulated
series of variable x, rxy:=cross correlation of variable x with
output, rx:=first order autocorrelation of variable x.
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definition of output, capital, and labor in our model. Second, the
benchmark model may be too simple to give an adequate account
of the empirical facts.

Cooley and Prescott (1995) and Gomme and Rupert

(2007) present nice accounts of consistent measurement. Let us
just consider two examples. The first one relates to consumption,
the second to the capital stock.

In our model consumption is the flow of non-durables, whereas
the German NIPA only report the sum of the quarterly expendi-
tures on consumer durables and non-durables. From the viewpoint
of our model, consumer durables are capital goods, and their pur-
chases represent investment expenditures. Since the model pre-
dicts the latter to be more volatile than consumption, it should
come as no surprise that the consumer aggregate taken from
the NIPA is more volatile than the consumption series from our
model. As a second example take the capital stock. Since our
model gives no explicit account of the government sector our
measure of the capital stock includes the public stock of capi-
tal. Yet, the NIPA provide no data on depreciation for the public
infrastructure. As a consequence, our measure of the rate of cap-
ital depreciation is biased downwards. Yet, with lower user costs
of capital, the household’s incentive for intertemporal substitution
increases and investment becomes more volatile. For instance, if
we increase δ from 0.011 to 0.025, the ratio between the standard
deviations of investment and output declines from about 4.3 to
3.5, which is much closer to the empirical ratio of 2.3.

To understand in what respects our benchmark model may be
too simple, consider the household’s first-order conditions with re-
spect to consumption and labor supply given in equation (1.45a),
which may also be written as:

wt := (1− α)ZtN
−α
t kα

t ,

wt = θλ
−1/η
t (1−Nt)

θ(1−η)
η

−1.

The first line posits that the real wage per efficiency unit of la-
bor wt equals the marginal product of effective labor Nt. For a
given capital stock kt this relation defines a downward sloping la-
bor demand schedule (see Figure 1.8). The second line defines an
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Nt

wt

Labor
Supply
Schedule

Labor Demand
Schedule for Z = Z1

Labor Demand
Schedule for
Z = Z2 > Z1

N1
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w1 w2

Figure 1.8: Productivity Shock in the Benchmark Business Cycle
Model

upward sloping labor supply schedule for a fixed multiplier λt.
25

A productivity shock raising Z from Z1 to Z2 shifts the labor de-
mand schedule outward. Equilibrium in the labor market requires
higher wages, and, as a result, the representative household sup-
plies more hours. Thus, the immediate impact of the shock is to
raise the real wage, hours, and output. Since current consump-
tion is a normal good, it increases as a consequence of the higher
current income. Investment increases for several reasons: Firstly,
future consumption as well as future leisure are normal goods.
Thus, the household wants to spend part of his higher current
income on future consumption and future leisure. He builds up
his stock of capital over the next periods so that future produc-
tion is potentially higher. Secondly, since the productivity shock
is highly autocorrelated, the household expects above normal re-
turns to capital. Thus, all variables in the model move closely

25 Note, that we restricted η to η > θ/(1 + θ) so that the one-period utility
function is strictly concave.
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together with income which, in turn, is driven by a single shock.
In reality, however, there may be additional shocks. For instance,
think of a preference shock that shifts the labor supply curve to
the left. That shock increases the real wage and reduces employ-
ment and output. As a consequence, the tight positive correlation
between output, hours, and the real wage loosens.

In subsequent chapters you will see how these and other exten-
sions help to bring artificial and empirical data closer together.
Before we close this chapter we present an overview of the so-
lution techniques to be introduced in the following chapters and
relate them to the different characterizations of a model’s solution
presented in the preceding sections.

1.6 Numerical Solution Methods

We have seen in Sections 1.2.4 and 1.3.3 that only very special
DGE models admit an exact solution. Thus, usually we must re-
sort to numerical methods that provide approximate solutions.
What are the general ideas behind these solutions and how are
we able to determine how close they are to the true but unknown
solution? The next two subsections deal with these issues.

1.6.1 Characterization

We characterize solutions along two dimensions (see Table 1.3).
First, we distinguish between techniques that provide approxi-
mate solutions to the model’s Euler equations and methods that
deliver approximations to the model’s policy functions. Second,
we discern local from global methods. Local methods use informa-
tion about the true model at a certain point in the model’s state
space. One such point, for instance, is the stationary equilibrium.
Global methods incorporate information from the model’s entire
state space.

There is a long tradition in mathematics to characterize the so-
lution of a system of non-linear difference equations locally by the
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Table 1.3

Local methods Global methods

E
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E
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ns

Log-linear approximation
➞ Chapter 2

Extended path
➞ Chapter 3

P
ol

ic
y

Fu
nc

ti
on

LQ-approximation,
Second order approximation
➞ Chapter 2

Value function iteration
➞ Chapter 4,
Parameterized expectations ➞
Chapter 5,
Projection methods
➞ Chapter 6

dynamics of a linear system, since linear systems admit an exact
solution. The methods presented in Chapter 2 rest on this tradi-
tion. They linearize (or log-linearize) the model’s Euler equations
and solve the ensuing linear system using well-known techniques
from linear algebra. This delivers linear approximations to the
model’s policy functions.

Closely related to this approach is the LQ-approximation. The
linear-quadratic (LQ) model features a quadratic one-period util-
ity function and a linear transition function that relates the cur-
rent state of the system to the state of the system in the next
period. The LQ-approximation incorporates all non-linear restric-
tions of the model in the one-period utility function and obtains a
quadratic Taylor-series expansion of this function at the model’s
stationary equilibrium. It then solves for the linear policy func-
tions of this approximate model.

It is well known from calculus that any sufficiently differen-
tiable function can be approximated arbitrarily well by a Taylor
series expansion around a given point in its domain. Second-order
(or even higher-order) approximations of the model’s policy func-
tions rest on this result. They infer the magnitudes of the (partial)
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derivatives in this expansion from the model’s properties at the
stationary solution.

The extended path method, which we consider in Chapter 3,
replaces the system of difference equations formed by the model’s
Euler equations by a large but finite-dimensional non-linear sys-
tem of equations. In the stochastic case a related deterministic
system of equations is solved repeatedly to trace out the time
path of the model under a given sequence of shocks.

In Chapter 4 we consider methods that approximate the state
space of the model by a denumerable grid of points. On this grid
it is relatively easy to compute the value and the associated policy
function via elementary mathematical operations.

The methods considered in Chapter 5 and Chapter 6 resort
to functional analysis. The parameterized expectations approach
recognizes that agent’s conditional expectations are time invariant
functions of the model’s state variables and approximates these
functions by polynomial functions or neural networks. The para-
meters of the approximating function are determined using infor-
mation from the entire state space of the model. Projection meth-
ods approximate the policy functions predominantly by families
of orthogonal polynomials. They also use global information.

1.6.2 Accuracy of Solutions

How shall we compare the solutions obtained from different meth-
ods and decide which one to use? In this subsection we consider
three different criteria.

Second Moments. In as much as we are interested in the kind
of model evaluation considered in Section 1.5 the second moments
of time series obtained from simulating the model provide a first
benchmark. For this reason, each of the following chapters pro-
vides the results from the solution of the benchmark model of
Example 1.5.1. Our simulations use the same sequence of shocks
so that differences in the results can be traced to differences in
the solution procedure. As in Heer and Maußner (2008), we
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will find that there are no noteworthy differences in second mo-
ments that favor the more advanced global methods over the local
ones.26

Euler Equation Residuals. There are, however, considerable
differences with respect to a measure of accuracy known as Euler
equation residuals. To develop this measure we will introduce a
more general framework.

Suppose we want to approximate a function h : X → Y that
maps the subset X of Rn into the subset Y of R. The function h
is implicitly defined by the functional equation

G(h) = 0.

The operator G : C1 → C2 maps the elements of the function
space C1 to the function space C2. Examples of functional equa-
tions are the Bellman equation (1.14) of the deterministic growth
model and the Euler equation of the stochastic growth model
(1.24). The unknown function of the former is the value function
v(K), the policy function h(K,Z) is the unknown of the latter.
Suppose we have found an approximation ĥ. Then, for each x ∈ X
we can compute the residual

R(x) := G(ĥ(x)).

Since ĥ approximates h, R(x) will in general not be equal to zero,
and we can use the maximum absolute value of R over all x ∈ X
as a measure of the goodness of our approximation.

For instance, let ĥ(K) denote an approximate solution of the
policy function of the next-period capital stock in the determinis-
tic growth model. Then, we can compute the residual of the Euler
equation (1.12) from

R(K) = 1− βu′(f(ĥ(K))− ĥ(ĥ(K)))

u′(f(K)− ĥ(K))
f ′(ĥ(K)).

26 A related but independent study with similar results is Aruoba,
Fernández-Villaverde, and Rubio-Raḿırez (2006).
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A more interpretable definition of the Euler equation residual is
due to Christiano and Fisher (2000). In the context of equa-
tion (1.12) it is given by

R̃(K) :=
C̃

C
− 1,

C = f(K)− ĥ(K),

1 =
βu′(f(ĥ(K))− ĥ(ĥ(K)))

u′(C̃)
f ′(ĥ(K)).

(1.48)

Thus, R̃(K) is the rate by which consumption C̃ had to be raised
above consumption given by the policy function ĥ in order to
deliver an Euler equation residual equal to zero.

In Heer and Maussner (2008) we find for the benchmark
model that both the extended path and the projection method
provide very accurate results. The second-order approximation of
the policy functions also delivers good results and outperforms
the solutions obtained from value function iteration and the pa-
rameterized expectations approach. The least accurate solutions
are linear approximations of the policy functions.

DM-Statistic. Euler equation residuals can be computed for
both deterministic and stochastic DGE models. The measure pro-
posed by Den Haan and Marcet (1994) is related to stochastic
models only. They propose to compute the residuals et from the
model’s Euler equations along a simulated time path. For instance,
if ĥ(Kt, Zt) is the approximate policy function of the next-period
capital stock in the stochastic Ramsey model in equation (1.22),
et is given by

et = u′(Ct)− βu′(Ct+1)(1− δ + Zt+1f
′(ĥ(Kt, Zt))),

Ct = Ztf(Kt) + (1− δ)Kt − ĥ(Kt, Zt),

Ct+1 = Zt+1f(ĥ(Kt, Zt)) + (1− δ)ĥ(Kt, Zt)

− ĥ(Zt+1, ĥ(Kt, Zt)).

The variable et is an ex-post forecast error of

βEtu
′(Ct+1)(1− δ + Zt+1f

′(Kt+1)).
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With rational expectations this forecast error should be uncorre-
lated with past observation. This assertion can be tested by re-
gressing et on lagged variables. The estimated coefficients should
be statistically insignificant. We provide the details of this test
in Section 12.3. The test statistic, the so called DM-statistic,27

is asymptotically distributed as a χ2-variable. If this test rejects
the null of independence, this may stem from an inaccurate so-
lution that gives raise to systematic ex-post forecast errors. Den

Haan and Marcet (1994) propose to run a large number of
simulations of the model and to record the simulations where the
DM-statistic is either smaller than the 2.5-percent critical value or
larger than the 97.5-percent critical value. From a good solution
we expect that about 5 percent of the simulations fall into these
two regions.

27 There is another statistic labeled DM-statistic that should not be confused
with the statistic considered here. The statistic developed by Diebold and
Mariano (1995) is used to evaluate the predictive accuracy of different
econometric forecasts.
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Appendix 1: Solution to Example 1.2.1

We derive the solution to Example 1.2.1 using iterations over the value
function. Thus, letting v0 = 0 we solve

v1 = max
K′

ln(Kα −K ′)

yielding K ′ = 0 and v1 = α lnK. In the next step we seek K ′ that
solves

v2 = max
K′

ln(Kα −K ′) + βα lnK ′.

From the first order condition

1
Kα −K ′ =

αβ

K ′

we get

K ′ =
αβ

1 + αβ
Kα,

v2 = α(1 + αβ) lnK +A1,

A1 := ln(1/(1 + αβ)) + αβ ln(αβ/(1 + αβ)).

The value function in step s = 3 is given by

v3 = max
K′

ln(Kα −K ′) + βα(1 + αβ) lnK ′ + βA1

yielding

K ′ =
αβ + (αβ)2

1 + αβ + (αβ)2
Kα,

v3 = α(1 + αβ + (αβ)2) lnK +A2,

A2 = ln
[

1
1 + αβ + (αβ)2

]
+
(
αβ + (αβ)2

)
ln
[

αβ + (αβ)2

1 + αβ + (αβ)2

]
+ βA1.

Continuing in this fashion we find the policy function in step s given
by

K ′ =
∑s−1

i=1 (αβ)s∑s−1
i=0 (αβ)s

Kα
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with limit s→∞ equal to

K ′ = αβKα.

Obviously, from the first two steps, the value function is a linear func-
tion of lnK. To infer the parameters of v := lims→∞ vs, we use the
method of undetermined coefficients.

This method postulates a functional form for the solution with un-
known parameters, which are also called the undetermined coefficients.
The parameterized function is inserted into the equations that are
describing our model and solved for the unknown coefficients. Thus,
assume v = a+ b lnK with a and b as yet undetermined coefficients.
Solving

max
K′

ln(Kα −K ′) + β(a+ b lnK ′)

yields

K ′ =
βb

1 + βb
Kα.

Therefore

v = α(1 + βb)︸ ︷︷ ︸
b

lnK + βa+ ln
[

1
1 + βb

]
+ βb ln

[
βb

1 + βb

]
︸ ︷︷ ︸

a

.

Equating the constant on the rhs of this equation to a and the slope
parameter to b, we get:

b = α(1 + βb)⇒ b =
α

1− αβ ,

a = βa+ ln
[

1
1 + βb

]
+ βb ln

[
βb

1 + βb

]
,

⇒ a =
1

1− β
[
ln(1− αβ) +

αβ

1− αβ lnαβ
]
.
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Appendix 2: Restrictions on Technology and Preferences

Here we derive formally the restrictions that we must place on technol-
ogy and preferences to ensure the existence of a balanced growth path.
We draw heavily on the Appendix to King, Plosser, and Rebelo

(1988) and, like Solow (1988), p. 35f., define a balanced growth path
as an equilibrium that features (see page 35)

1. a constant rate of output growth,
2. and a constant share of savings in output.

Technology. The constant share of savings St in output implies that
output and capital must grow at the same rate: using the economy’s
resource constraint, we find:28

gK =
Kt+1

Kt
=

St︷ ︸︸ ︷
Yt −Ct +(1− δ)Kt

Kt
=
St

Yt

Yt

Kt
+ (1− δ).

So, if St/Yt is constant, so must be Yt/Kt, and, hence, output and
capital must grow at the same rate.

Now, consider the general case of labor and capital augmenting
technical progress:

Yt = F (AtNt, BtKt), At = A0a
t, Bt = B0b

t.

Since F is linear homogenous, the growth factor of output, gY , can be
factored as follows

gY =
Yt+1

Yt
=
Bt+1Kt+1

BtKt

F (Xt+1, 1)
F (Xt, 1)

= bgKgF , (A.2.1a)

Xt := (A0/B0)(a/b)t(Nt/Kt)⇒ gX =
agN

bgK
. (A.2.1b)

Since gY = gK we get from (A.2.1a)

1 = bgF .

There are two cases to consider:

1) b = gF ≡ 1

28 In the following the symbol gX denotes the growth factor of the variable
X .
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2) and gF = 1/b, b > 1.

In the first case technical progress is purely labor augmenting and
for gF ≡ 1 we must have gX = 1, implying gK = agN . Now, in our
representative agent framework with a constant population size, N
is bounded between zero and one. Thus, a constant rate of capital
and output growth requires gN = 1 (otherwise N → 1 or N → 0).
Therefore, output and capital grow at the rate of labor augmenting
technical progress a− 1. For the share of savings to remain constant,
consumption must also grow at this rate.

Now consider the second case. For

gF :=
F (Xt+1, 1)
F (Xt, 1)

= constant < 1

Xt must grow at the constant rate

gX =
agN

bgK

gN=1
=⇒ gX =

a

bgK
.

Let

Xt = X0c
t, c =

a

bgK
,

and define f(Xt) := F (Xt, 1) so that the condition reads

f(X0c
t+1)

f(X0ct)
= constant.

Since this must hold for arbitrary given initial conditions X0, differ-
entiation with respect to X0 implies

0 =
1

f(Xt)2

{
f(Xt)f ′(Xt+1)

Xt+1

X0
− f(Xt+1)f ′(Xt)

Xt

X0

}
dX0,

0 =
{
f ′(Xt+1)Xt+1

f(Xt+1)
− f ′(Xt)Xt

f(Xt)

}
f(Xt+1)
f(Xt)

dX0

X0
.

For the term in curly brackets to be zero, the elasticity of f with
respect to Xt must be a constant, say α:

f ′(Xt)Xt

f(Xt)
= α.
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Yet, the only functional form with constant elasticity is

f(X) = ZXα

with Z an arbitrary constant of integration. Thus, output must be
given by a Cobb-Douglas function

Y = F (AN,BK) = BK(f(AN/BK)) = BKZ(AN/BK)α

= Z(AN)α(BK)1−α.

Yet, if F is Cobb-Douglas, technical progress can always be written as
purely labor-augmenting, since

Yt = Z(AtNt)α(BtKt)1−α = Z(ÃtNt)αK1−α
t , Ãt := AtB

(1−α)/α
t .

Preferences. Consider equation (1.34) which determines the farmer’s
savings decision. We reproduce it here for convenience:

u1(Ct, 1 −Nt)
u1(Ct+1, 1 −Nt+1)

= β(1− δ + F2(At+1Nt+1,Kt+1)). (A.2.2)

On a balanced growth path with constant supply of labor the right
hand side of this equation is a constant, since At and Kt grow at the
same rate and F2(AN,K) = F2(N,K/A). On that path the resource
constraint is given by

Ct = F (AtNt,Kt) + (1− δ)Kt −Kt+1

= At

[
F (N,K/A) + (1− δ)(K/A) − a(K/A)

]
.

Since the term in brackets is constant, consumption grows at the rate
a− 1, and we may write:

Ct = C0a
t.

On the balanced growth path equation (A.2.2), thus, may be written
as:

u1(C0a
t, 1−N)

u1(C0at+1, 1−N)
= Δ = constant.

This must hold irrespective of the arbitrary constant C0. Differentiat-
ing with respect to C0 yields:
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Δ
dC0

C0

{
u11(Ct, 1−N)
u1(Ct, 1−N)

Ct − u11(Ct+1, 1−N)
u1(Ct+1, 1 −N)

Ct+1

}
= 0.

The term in curly brackets is zero, if the elasticity of the marginal
utility of consumption (u11/u1)C, is a constant, say −η. Integrating

du1(C, 1−N)
u1(C, 1 −N)

= −ηdC
C

on both sides gives

ln u1(·) = −η lnC + ln v1(1−N), ⇒ u1(·) = C−ηv1(1−N)

where v1 is an arbitrary function of leisure 1 − N . Integrating once
more with respect to C yields

u(C, 1 −N) =

{
C1−ηv1(1−N)

1−η + v2(1−N) if η �= 1,
v1(1−N) lnC + v2(1−N) if η = 1.

(A.2.3)

Restrictions on the functions v1 and v2 derive from the static condition
on labor supply in equation (1.33). Remember, this condition is

u2(Ct, 1−Nt)
u1(Ct, 1−Nt)

= AtF1(AtNt,Kt),

in general, and

u2(C, 1 −N)
u1(C, 1 −N)

= AF1(N,K/A)

along the balanced growth path. Write this as

ln[u2(C, 1 −N)] = ln[u1(C, 1 −N)] + lnA+ ln[F1(N,K/A)],

and differentiate with respect to C and A. The result is

u21(·)
u2(·) C︸ ︷︷ ︸

ξ

dC

C
=
u11(·)
u1(·) C︸ ︷︷ ︸

−η

dC

C
+
dA

A
,

where ξ denotes the elasticity of the marginal utility of leisure with
respect to consumption. Since dC/C = dA/A in the long-run, this
condition restricts ξ to

ξ = 1− η.
Using (A.2.3) this implies that
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• v2(1−N) is a constant in the case of η �= 1,
• v1(1−N) is a constant in the case of η = 1.

Setting the respective constants equal to zero and 1, respectively, yields
the functional forms of the one-period utility function given in (1.35).
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Problems

1.1 Finite-Horizon Ramsey Model. Prove that the finite horizon Ramsey
model stated in (1.3) meets the assumptions of the Kuhn-Tucker theorem
1.1.1.

1.2 Infinite-Horizon Ramsey Model with Adjustment Costs. Con-
sider the following Ramsey model: A fictitious planer maximizes

∞∑
t=0

βt lnCt, β ∈ (0, 1),

subject to

Kt+1 = K1−δ
t Iδ

t , δ ∈ (0, 1),
It = Kα

t − Ct, α ∈ (0, 1),
K0 given.

The symbols have the usual meaning: Ct is consumption, Kt is the stock
of capital, and It is investment.
a) State the Lagrangian of this problem and derive the first-order condi-

tions of this problem. (Hint: Substitute for It in the transition equation
for capital from the definition of It.)

b) Suppose the policy function for capital is given by

Kt+1 = k0K
k1
t .

Use this equation to derive the policy functions for investment and
consumption.

c) Assume that the policy function for consumption can be written as

Ct = c0K
c1
t .

If this guess is true, how are c0, c1, k0 and k1 related to the model’s
parameters α, β, and δ?

d) Substitute the policy functions into the Euler equation for capital.
Show that the assumptions made thus far hold, if k0 meets the con-
dition

k
1/δ
0

(
k−α
0 − β(1 − δ)) = αβδ.

e) Prove that there is a unique k0 that solves this equation.

1.3 A Vintage Model of Capital Accumulation. In Section 1.2.5 we
consider the problem
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max
∞∑

t=0

βtC
1−η
t − 1
1− η , β ∈ (0, 1), η > 0,

subject to

K2t+1 = δK1t, δ ∈ (0, 1),

Yt =
[
aK1−η

1t + (1− a)K1−η
2t

] 1
1−η

, a ∈ (0, 1),

Yt = Ct +K1t+1,

K10 and K20 given.

a) Use dynamic programming to derive the first-order conditions for this
problem. (Hint: Use v(K1,K2) as value function, note that K ′

2 = δK1,
and substitute for K ′

1 the economy’s resource constraint.)
b) Prove that K1t+1 = sYt, where s is determined from

1− s =
[
βa+ β2(1− a)δ1−η

] 1
η ,

solves this problem.

1.4 Dynamic Programming and the Stochastic Ramsey Model. The
stochastic Euler equations of the Ramsey model (1.22) are given in (1.24).
Use stochastic dynamic programming as considered in Section 1.3.3 to
derive these conditions.

1.5 Analytic Solution of the Benchmark Model. Consider the bench-
mark model of Example 1.5.1. Assume η = 1 so that the current period
utility function is given by

u(Ct, Nt) := lnCt + θ ln(1−Nt).

Furthermore, suppose δ = 1, that is, full depreciation. Use the method
of undetermined coefficients (see Appendix 1) to verify that

kt+1 = AZtN
1−α
t kα

t ,

with A to be determined, is the policy function for the next-period capital
stock. Show that working hours Nt are constant in this model.

1.6 A Model With Flexible Working Hours and Analytic Solution
In Section 1.2.5 we considered a model with adjustment costs. We extend
this model to a stochastic model with endogenous labor supply. Assume
the current period utility function

u(Ct, Nt) = ln
(
Ct − θ

1 + ω
N1+ω

t

)
, θ, ω > 0.
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The transition equation for the capital stock is

Kt+1 = K1−δ
t Iδ

t , δ ∈ (0, 1).

The production function is

Yt = ZtN
1−α
t Kα

t .

Determine the coefficients of the following guesses for the policy functions
for consumption Ct working hours Nt, and the next-period capital stock
Kt+1:

Ct = c1Z
c2
t K

c3
t ,

Nt = n1Z
n2
t Kn3

t ,

Kt+1 = k1Z
k2
t Kk3

t .



Chapter 2

Perturbation Methods

Overview. In the previous chapter we have seen that the solu-
tion of a DGE model with a representative agent is given by a
set of policy functions that relate the agent’s choice variables to
the state variables that characterize the agent’s economic envi-
ronment. In this chapter we explore methods that use local in-
formation to obtain either a linear or a quadratic approximation
of the agent’s policy function. To see what this means, remember
from elementary calculus that a straight line that is tangent to
a function y = f(x) at x∗ locally approximates f : according to
Taylor’s theorem (see Section 11.2.1) we may write

f(x∗ + h) = f(x∗) + f ′(x∗)h︸ ︷︷ ︸
linear function in h

+φ(h),

where the error φ(h) has the property

lim
h→0
h�=0

φ(h)

h
= 0.

Thus, close to x∗, f equals a slightly perturbed linear function.
To set up the linear function, we only need to know (i) the value
of f at x∗ and (ii) the value of its first derivative f ′ at the same
point.

Probably less well known is the following result. If xt = f(xt−1)
is a non-linear difference equation and x̄t = f ′(x∗)x̄t−1, x̄t = xt −
x∗ its linear approximation at x∗ defined by x∗ = f(x∗), then
the solution of the linear model provides a local approximation
of the solution of the non-linear equation.1 Perturbation methods

1 See Section 12.1 on difference equations, if you are unfamiliar with this
subject.
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rest on these observations. As we will see, they are not limited to
linear approximations. If f is n-times continuously differentiable,
we may use a polynomial in h of degree up to n − 1 to build a
local model of f .

In this chapter we mainly consider linear approximations. They
are the most frequently used solutions in applied research and are
easy to apply. As you will see in later chapters they also provide
a first guess for more advanced, non-local methods.

The next section considers deterministic models. In this con-
text it is relatively easy to demonstrate by means of an example
(the Ramsey model of Section 1.2) that we can get linear approx-
imations to the policy functions by either solving the linearized
system of Euler equations or by applying the implicit function
theorem to the steady state conditions of the model. We use this
result to provide a procedure that computes the solution of an ar-
bitrary deterministic model with n variables from the linearized
system of Euler equations.

Before we turn to the solution of stochastic DGE models in
Sections 2.3 and 2.4, we consider a model where the linear policy
functions provide an exact solution. This is the linear-quadratic
(LQ) model outlined in Section 2.2. Two different approximation
methods derive from the LQ problem. The first approach, consid-
ered in Section 2.3, approximates a given model so that its return
function is quadratic and the law of motion is linear and solves
the approximate model by value function iterations. The second
approach, taken up in Section 2.4, relies on a linear approximation
of the model’s Euler equations and solves the ensuing system of
linear stochastic difference equations.

We close the methodological part of this chapter in Section
2.5 with the quadratic approximation of the policy functions of
an arbitrary stochastic DGE model. The bottom line of Sections
2.3 through 2.5 are three programs: SolveLA and SolveLQA com-
pute linear approximations to deterministic as well as stochastic
DGE models. The difference between the two programs is the
way you must set up your model. SolveLA is a general purpose
routine, while SolveLQA is limited to models whose solution can
be obtained by solving a central planing problem. Yet, in some
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kinds of problems it is much easier to cast your model into the
framework of SolveLQA. The third program, SolveQA, computes
quadratic approximations of the policy functions of an arbitrary
DGE model. Various applications illustrate the use of these pro-
grams in Section 2.6.

2.1 Linear Solutions for Deterministic Models

This Section applies two tools. The implicit function theorem,
sketched in Section 11.2.2, allows us to compute the derivatives
of a system of policy functions that is implicitly determined by a
system of non-linear Euler equations. The close relation between
the local solution of a system of non-linear, first-order difference
equations and the solution of the related linearized system, out-
lined in Section 12.1, provides a second route to compute linear
approximations of a model’s policy functions. If you are unfamiliar
with any of these tools, you might consider reading the respective
sections before proceeding.

We use the deterministic growth model from Section 1.2 to
illustrate both techniques before we turn to the general approach.
We begin with the solution of the system of non-linear difference
equations that governs the model’s dynamics.

Approximate Computation of the Saddle Path. Consider
equations (1.17) that characterize the solution of the Ramsey
problem (1.8) from Section 1.2:

Kt+1 − f(Kt) + Ct =: g1(Kt, Ct, Kt+1, Ct+1)= 0,
(2.1a)

u′(Ct)− βu′(Ct+1)f
′(Kt+1) =: g2(Kt, Ct, Kt+1, Ct+1)= 0.

(2.1b)

Equation (2.1a) is the farmer’s resource constraint.2 It states that
seed available for the next period Kt+1 equals production f(Kt)

2 Remember, that in the notation of Section 1.2 f(K) := (1−δ)K+F (N,K),
where N are the farmer’s exogenously given working hours.
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minus consumption Ct. The first-order condition with respect to
the next-period stock of capital Kt+1 is equation (2.1b). These
two equations implicitly specify a non-linear system of difference
equations xt+1 = Ψ(xt) in the vector xt := [Kt, Ct]

′:

g(xt,Ψ(xt)) = 02×1, g = [g1, g2]′.

The stationary solution defined by

1 = βf ′(K∗), (2.2a)

K∗ = f(K∗)− C∗ (2.2b)

is a fixed point of Ψ. We obtain the linear approximation of Ψ at
x∗ = [K∗, C∗]′ via equation (11.38):

x̄t+1 = J(x∗)x̄t, x̄t := xt − x∗. (2.3)

with the Jacobian matrix J determined by

J(x∗) =

[
∂g1(x∗,x∗)

∂Kt+1

∂g1(x∗,x∗)
∂Ct+1

∂g2(x∗,x∗)
∂Kt+1

∂g2(x∗,x∗)
∂Ct+1

]−1 [
∂g1(x∗,x∗)

∂Kt

∂g1(x∗,x∗)
∂Ct

∂g2(x∗,x∗)
∂Kt

∂g2(x∗,x∗)
∂Ct

]
. (2.4)

The derivatives of g at the fixed point are easily obtained from
(2.1a) and (2.1b) (we suppress the arguments of the functions and
write f ′ instead of f ′(K∗) and so forth):

J(x∗) = −
[

1 0
−βu′f ′′ −u′′

]−1 [− 1
β

1

0 u′′

]
=

[ 1
β

−1

−u′f ′′
u′′ 1 + βu′f ′′

u′′

]
.

In computing the matrix on the rhs of this equation we used the
definition of the inverse matrix given in (11.14). The eigenvalues
λ1 and λ2 of J satisfy (see (11.24)):

det J =
1

β
= λ1λ2,

tr J = 1 +
1

β
+
βu′f ′′

u′′︸ ︷︷ ︸
=:Δ

= λ1 + λ2.
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Δ

45o

λ
λ = 1

1/β
λ

φ(λ) := λ+ 1/β
λ

λ1 λ2

Figure 2.1: Eigenvalues of W

Therefore, they solve equation

φ(λ) := λ+
1/β

λ
= Δ.

The solutions are the points of intersection between the horizontal
line through Δ and the hyperbola φ(λ) (see Figure 2.1). The graph
of φ obtains a minimum at λmin = 1/

√
β > 1, where φ′(λmin) =

1 − (1/β)λ−2 = 0.3 Since φ(1) = 1 + (1/β) < Δ, there must be
one intersection to the right of λ = 1 and one to the left, proving
that J has one real eigenvalue λ1 < 1 and another real eigenvalue
λ2 > 1.

Let J = TST−1 with

S =

[
λ1 s12

0 λ2

]
denote the Schur factorization of J (see (11.27) in Section 11.1.8).
In the new variables (where T−1 = (tij))

3 In Figure 2.1 λmin is so close to λ = 1 that we do not show it.
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yt = T−1x̄t ⇔
[
y1t

y2t

]
=

[
t11 t12

t21 t22

] [
Kt −K∗

Ct − C∗

]
(2.5)

the system of equations (2.3) is given by

yt+1 = Syt.

The second line of this matrix equation is

y2t+1 = λ2y2t.

Since λ2 > 1, the variable y2t will diverge unless we set y20 = 0.
This restricts the system to the stable eigenspace. Using y2t = 0
in (2.5) implies

0 = t21x̄1t + t22x̄2t, (2.6a)

y1t = (t11 − t12(t21/t22))x1t. (2.6b)

The first line is the linearized policy function for consumption:

Ct − C∗ = −t
21

t22
[Kt −K∗] . (2.7a)

The second line of (2.6) implies via y1t+1 = λ1y1t the linearized
policy function for savings:

Kt+1 −K∗ = λ1 [Kt −K∗] . (2.7b)

We illustrate these computations in the program Ramsey2a.g,
where we use u(C) = [C1−η − 1]/(1 − η) and F (N,K) = Kα.
In this program we show that it is not necessary to compute the
Jacobian matrix analytically as we have done here. You may also
write a procedure that receives the vector [Kt, Ct, Kt+1, Ct+1]

′ as
input and that returns the rhs of equations (2.1). This procedure
can be passed to a routine that numerically evaluates the partial
derivatives at the point (K∗, C∗, K∗, C∗). From the output of this
procedure you can extract the matrices that appear on the rhs of
equation (2.4).

Figure 2.2 compares the time path of the capital stock under
the analytic solution Kt+1 = αβKα

t (which requires η = δ = 1)
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Figure 2.2: Approximate Time Path of the Capital Stock in the
Deterministic Growth Model

with the path obtained from the approximate linear solution. The
parameters are set equal to α = 0.27 and β = 0.994, respectively.
The initial capital stock equals one-tenth of the stationary capital
stock. As we would have expected, far from the fixed point, the
linear approximation is not that good. Yet, after about five iter-
ations it is visually indistinguishable from the analytic solution.

Approximate Policy Functions. We now apply the implicit
function theorem directly to find the linear approximation of the
policy function for optimal savings. Let Kt+1 = h(Kt) denote this
function. Since K∗ = h(K∗), its linear approximation at K∗ is
given by

Kt+1 = h(Kt) � K∗ + h′(K∗)(Kt −K∗). (2.8)

Substituting equation (2.1a) for Ct = f(Kt)−h(Kt) into equation
(2.1b) delivers:

g(Kt) := u′ [(f(Kt)− h(Kt)]

− βu′ [(f(h(Kt))− h(h(Kt))] f
′(h(Kt)).
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We know that g(K∗) = 0. Theorem 11.2.3 allows us to compute
h′(K∗) from g′(K∗) = 0. Differentiating with respect to Kt and
evaluating the resulting expression at K∗ provides the following
quadratic equation in h′(K∗) (we suppress the arguments of all
functions):

(h′)2 − (1 + (1/β) + (βu′f ′′)/u′′)︸ ︷︷ ︸
=:Δ

h′ + (1/β) = 0 (2.9)

Let h′1 and h′2 denote the solutions. Since (by Viète’s rule)
h′1 + h′2 = Δ and h′1h

′
2 = 1/β, the solutions of equation (2.9)

equal the eigenvalues of the Jacobian matrix λ1 and λ2 ob-
tained in the previous paragraph. The solution is, thus, given
by h′(K∗) = λ1 and the approximate policy function coincides
with equation (2.7a). Note that we actually do not need to com-
pute the approximate policy function for consumption: given the
approximate savings function (2.7a) we obtain the solution for
consumption directly from the resource constraint (2.1a).

Observe further that this way to compute h′(K∗) is less read-
ily implemented on a computer. In order to set up (2.9) we need
software that is able to do symbolic differentiation. Our general
procedure for non-linear, deterministic DGE models therefore re-
lies on the approach considered in the previous paragraph.

The General Method. It is straightforward to generalize the
method outlined above to compute the linear approximate solu-
tion of a non-linear system of difference equations implied by a
deterministic DGE model. Suppose the map

g(xt,xt+1) = 0n×1, xt ∈ Rn

implicitly describes the model’s dynamics. Assume, further, that
n1 of the elements in xt have given initial conditions (as the capital
stock in the deterministic growth model) and that n2 = n−n1 are
jump variables (as consumption), whose initial conditions must
be chosen in order to satisfy the model’s transversality condi-
tions. Let x∗ denote the fixed point. Since the analytic compu-
tation of the Jacobian matrix is usually very cumbersome and
failure prone, it is advisable to write a procedure that returns
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the rhs of g(xt,xt+1). This procedure serves as input to a pro-
gram that performs numeric differentiation. Given the matrices
A := gxt+1(x

∗,x∗) and B := gxt(x
∗,x∗), the Jacobian matrix of

the linearized system (2.3) is given by J = A−1B. This matrix
must have n1 eigenvalues inside and n2 eigenvalues outside the
unit circle.

Let yt := T−1x̄t with J = TST−1 denote the new variables in
which the system is decoupled[

y1t+1

y2t+1

]
=

[
S11 S12

0n2×n1 S22

] [
y1t

y2t

]
.

Since all the eigenvalues on the main diagonal of S22 are outside
the unitUnit circle circle, we must set y2t = 0n2×1 to secure con-
vergence. Thus, the second block of the matrix equation[

y1t

0n2×1

]
=

[
T 11 T 12

T 21 T 22

] [
x̄1t

x̄2t

]
implies the policy function for the jump variables:

x̄2t = −(T 22)−1T 21x̄1t. (2.10a)

Using this result to substitute for x̄2t in the first block of equations
yields:

y1t =
(
T 11 − T 12(T 22)−1T 21

)
x̄1t.

Observe that the inverse of the matrix in parenthesis is T11 (apply
the formula for the inverse of a partitioned matrix (11.15a) to the
matrix T−1). Thus,

y1t+1 = (T11)
−1x̄1t+1 = S11y1t = S11T

−1
11 x̄1t

so that the policy function for x̄1t+1 is given by

x̄1t+1 = T11S11T
−1
11 x̄1t. (2.10b)

You will see in Section 2.4 that our procedure SolveLA that com-
putes the linear approximate solution of stochastic DGE models
provides the policy functions (2.10) as a special case.
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2.2 The Stochastic Linear Quadratic Model

This section presents the stochastic linear quadratic model and
derives some of its important properties. Since its main purpose
is to provide a framework for both linear quadratic and linear
approximation methods, we postpone detailed algorithms for the
computation of the policy function until Section 2.3 and Section
2.4, respectively.

Description. Consider an economy governed by the following
stochastic linear law of motion:

xt+1 = Axt +But + εt. (2.11)

The n-dimensional column vector xt holds those variables that
are predetermined at period t. A fictitious social planner sets the
values of the variables stacked in in the m-dimensional column
vector ut. We refer to x as the state vector and to u as the control
vector. A ∈ Rn×n and B ∈ Rn×m are matrices. Due to the presence
of shocks, the planner cannot control this economy perfectly. The
n vector of shocks ε has a multivariate normal distribution with
E(ε) = 0 and covariance matrix4 E(εε′) = Σ. The planner must
choose ut before he can realize the size of the shocks.

Given x0 the planner’s objective is to maximize

E0

∞∑
t=0

βt [x′
tQxt + u′

tRut + 2u′
tSxt] , β ∈ (0, 1), (2.12)

subject to (2.11). The current period objective function

g(xt,ut) :=
[
x′

t, u′
t

] [Q S ′

S R

] [
xt

ut

]
(2.13)

is quadratic and concave in (x′
t,u

′
t). This requires that both the

symmetric n × n matrix Q and the symmetric m ×m matrix R
are negative semidefinite.

Note that this specification encompasses non-stochastic state
variables and first-order (vector) autoregressive processes.

4 Remember that a prime denotes transposition, i.e., ε′ is a row vector and
ε a column vector.
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Derivation of the Policy Function. The Bellman equation for
the stochastic LQ problem is given by

v(x) := max
u

x′Qx + 2u′Sx + u′Ru

+ βE [v(Ax +Bu + ε)] ,
(2.14)

where we used (2.11) to replace next-period state variables in
Ev(·) and where we dropped the time indices for convenience, be-
cause all variables refer to the same date t. Expectations are taken
conditional on the information contained in the current state x.
We guess that the value function is given by v(x) := x′Px + d,
P being a n dimensional symmetric, negative semidefinite square
matrix and d ∈ R an unknown constant.5 Thus, we may write
(2.14) as follows:6

x′Px + d =

max
u

x′Qx + 2u′Sx + u′Ru

+ βE [((Ax +Bu + ε)′P (Ax +Bu + ε) + d)] .

(2.15)

Evaluating the conditional expectations on the rhs of (2.15) yields:

x′Px + d =

max
u

x′Qx + 2uSx + u′Ru

+ βx′A′PAx + 2βx′A′PBu + βu′B′PBu

+ β tr(PΣ) + βd.

(2.16)

In the next step we differentiate the rhs of (2.16) with respect to
the control vector u, set the result equal to the zero vector, and
solve for u. This provides the solution for the policy function:

5 Note, since x′
tPxt is a quadratic form, it is not restrictive to assume that

P is symmetric. Furthermore, since the value function of a well defined
dynamic programming problem is strictly concave, P must be negative
semidefinite.

6 If you are unfamiliar with matrix algebra, you may find it helpful to consult
Section 11.1. We present the details of the derivation of the policy function
in Appendix 3.



86 Chapter 2: Perturbation Methods

u = − (R + βB′PB)−1(S + βB′PA)︸ ︷︷ ︸
F

x. (2.17)

To find the solution for the matrix P and the constant d, we
eliminate u from the Bellman equation (2.16) and compare the
quadratic forms and the constant terms on both sides. It turns
out that P must satisfy the following implicit equation, known as
algebraic matrix Riccati equation:

P = Q+ βA′PA

− (S + βB′PA)′ [R + βB′PB]
−1

(S + βB′PA),
(2.18)

and that d is given by:

d =
β

1− β tr(PΣ).

The solution of (2.18) can be obtained by iterating on the matrix
Riccati difference equation

Ps+1 = Q+ βA′PsA

− (S + βB′PsA)′ [R + βB′PsB]
−1

(S + βB′PsA)

starting with some initial negative definite matrix P0.
7 Other

methods to solve (2.18) rely on matrix factorizations. Since we
will use iterations over the value function later on, we will not
explore these methods any further. Once the solution for P has
been computed, the dynamics of the model is governed by

xt+1 = Axt +But + εt+1 = (A− FB)xt + εt.

Certainty Equivalence. The solution of the stochastic LQ prob-
lem has a remarkable feature. Since the covariance matrix of the
shocks Σ appears neither in equation (2.17) nor in equation (2.18),
the optimal control is independent of the stochastic properties of
the model summarized by Σ. Had we considered a deterministic

7 For example P0 = −0.01In.
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linear quadratic problem by assuming εt = 0∀t, we would have
found the same feedback rule (2.17). You may want to verify this
claim by solving Problem 2.1. This property of the stochastic LQ
problem is called certainty equivalence principle. It is important
to note that if we use the LQ approximation to solve an arbitrary
economic model we enforce the certainty equivalence principle on
this solution. This may hide important properties of the model.
For instance, consider two economies A and B which are identical
in all respects except for the size of their productivity shocks. If
economy’s A shock has a much larger standard deviation than
economy B’s shock, it is hard to believe that the agents in both
economies use the same feed-back rules.

Derivation of the Euler Equations. As we have seen in Chap-
ter 1 an alternative way to derive the dynamic path of an opti-
mizing model is to consider the model’s Euler equations. It will
be helpful for the approach taken in Section 2.4 to separate the
state variables into two categories. Variables that have a given
initial condition but are otherwise determined endogenously are
stacked in the n dimensional vector x. Purely exogenous shocks
are summarized in the l dimensional vector z. As in the previous
subsection u is them dimensional vector of controls. The planner’s
current period return function is the following quadratic form:

g(xt,ut, zt) := x′
tAxxxt + u′

tAuuut + z′tAzzzt

+ 2u′
tAuxxt + 2u′

tAuzzt + 2x′
tAxzzt.

(2.19)

Aij , i, j ∈ {x, u, z} are given matrices. The transition law of the
endogenous state variables is

xt+1 = Bxxt +Buut +Bzzt, (2.20)

where Bx ∈ Rn×n, Bu ∈ Rn×m, and Bz ∈ Rn×l are given matrices.
The shocks follow a first-order vector autoregressive process

zt+1 = Πzt + εt+1, ε ∼ N(0,Σ). (2.21)

The eigenvalues of Π ∈ Rl×l lie inside the unit circle. The planner
maximizes
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E0

∞∑
t=0

βtg(xt,ut, zt) (2.22)

subject to (2.20) and (2.21).
Let λt denote the n vector of Lagrange multipliers. The La-

grangian of this LQ problem is

L = E0

∞∑
t=0

βt
[
g(xt,ut, zt) + 2λ′

t(Bxxt +Buut +Bzzt−xt+1)
]
.

Differentiating this expression with respect to ut and xt+1 provides
the following set of first-order conditions:

0 = Auuut + Auxxt + Auzzt +B′
uλt,

λt = βEt [Axxxt+1 + Axzzt+1 + A′
uxut+1 +B′

xλt+1] .

The first of these equations may be rewritten as:

Cuut = Cxλ

[
xt

λt

]
+ Czzt, (2.23a)

whereas the second equation and the transition law (2.20) can be
summarized in the following matrix difference equation:

DxλEt

[
xt+1

λt+1

]
+ Fxλ

[
xt

λt

]
= DuEtut+1 + Fuut (2.23b)

+DzEtzt+1 + Fzzt.

The matrices in these equations relate to those of the original
problem as follows:

Cu:=Auu, Cxλ:=− [Aux, B
′
u] ,

Cz:=−Auz ,

Dxλ:=

[
βAxx βB′

x

In 0n×n

]
, Fxλ:=

[
0n×n −In
−Bx 0n×n

]
,

Du:=

[−βA′
ux

0n×m

]
, Fu:=

[
0n×m

Bu

]
,

Dz:=

[−βAxz

0n×l

]
, Fz:=

[
0n×l

Bz

]
,
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where In and 0n×m denote the n dimensional identity matrix and
the n×m zero matrix, respectively.

Equations (2.23) describe a system of stochastic linear differ-
ence equations in two parts. The first part (2.23a) determines the
control variables as linear functions of the model’s state variables,
xt, exogenous shocks zt, and the vector of Lagrange multipliers
λt, often referred to as the vector of costate variables. The sec-
ond part (2.23b) determines the dynamics of the vector of state
and costate variables. In Section 2.4 equations (2.23) will serve
as framework to study the approximate dynamics of non-linear
models. Before we explore this subject and discuss the solution
of (2.23), we consider the computation of the policy function via
value function iterations in the next section.

2.3 LQ Approximation

This section provides the details of an algorithm proposed by
Hansen and Prescott (1995). Their approach rests on a lin-
ear quadratic approximation of a given model and they device
a simple to program iterative procedure to compute the policy
function of the approximate model. In Section 2.3.2, we use the
deterministic Ramsey model from Example 1.2.1 to illustrate the
various steps. Section 2.3.3 outlines the general approach and its
implementation in the Gauss program SolveLQA.

2.3.1 A Warning

Before we begin, we must warn you. As has been pointed out
by Judd (1998), pp. 506-508 and, more recently, by Benigno

and Woodford (2007), the method provides a correct linear
approximation to the policy function only when the constraints
are linear. A different policy function arises from maximizing a
quadratic approximation of the objective function subject to lin-
earized constraints. To see this, consider a simple static problem.
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Maximize U(x1, x2) subject to x2 = f(x1, ε), where ε is a parame-
ter of the problem. Let x1 = h(ε) denote the policy function that
solves this problem and assume that a solution at ε = 0 exists.
This solution solves

g(ε = 0) := U1 [h(ε), f(h(ε), ε)]

+ U2 [h(ε), f(h(ε), ε)] f1(h(ε), ε) = 0.

The implicit function theorem 11.2.3 allows us to compute h′(0)
from g′(0) = 0. This provides8

h′(0) = − U12f2 + U22f1f2 + U2f12

U11 + 2U12f1 + U22f
2
1 + U2f11

. (2.24)

The quadratic approximation of U at x∗1 = h(0) and x∗2 = f(x∗1, 0)
is obtained from applying equation (11.32) to U at (x∗1, x

∗
2):

UQ = U(x∗1, x
∗
2) + U1x̄1 + U2x̄2 +

1

2

[
x̄1, x̄2

] [U11 U12

U21 U22

] [
x̄1

x̄2

]
.

Maximizing this expression with respect to x̄1 := x1 − x∗1 subject
to the linearized constraint

x̄2 = x2 − x∗2 = f1x̄1 + f2ε

provides (since U1 + U2f1 = 0)

x̄1 = − U12f2 + U22f1f2

U11 + 2U12f1 + U22f 2
1

ε. (2.25)

This solution differs from (2.24) with respect to the rightmost
terms in the numerator and the denominator in the solution for
h′(0), U2f12 and U2f11, respectively. Both terms vanish, if the
constraint is linear.

Benigno and Woodford (2007) propose to use the quadratic
approximation of the constraint to replace the linear terms in UQ.
Indeed, if we replace x̄2 by

x̄2 = f1x̄1 + f2ε+
1

2
[x̄1, ε]

[
f11 f12

f21 f22

] [
x1

ε

]
in the expression for UQ and optimize this new function, we obtain
the same linear policy function as given in equation (2.24).

8 We used U12 = U21, which holds, if U is twice continuously differentiable.
See, e.g., Theorem 1.1 on p. 372 in Lang (1997).
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2.3.2 An Illustrative Example

The Model. We know from Section 2.2 that the policy function
of the LQ problem is independent of the second moments (and, a
fortiori, of any higher moments) of the shocks. Therefore, nothing
is lost but much is gained in notational simplicity, if we use the
deterministic Ramsey model from example 1.2.1 to illustrate the
approach of Hansen and Prescott (1995). In this example the
farmer solves

max
{Ct}∞t=0

∞∑
t=0

βt lnCt, β ∈ (0, 1),

s.t. Kt+1 + Ct ≤ Kα
t , α ∈ (0, 1), t = 0, 1, . . . ,

K0 given.

Ct denotes consumption at time t, and Kt is the stock of capital.
The dynamics of this model is determined by two equations:

1 = β
Ct

Ct+1

αKα−1
t+1 , (2.26a)

Kt+1 = Kα
t − Ct. (2.26b)

The first equation is a special case of the Euler equation (1.12)
in the case of logarithmic preferences and a Cobb-Douglas pro-
duction function. The second equation is the economy’s resource
constraint.

Approximation Step. We want to approximate this model by
a linear quadratic problem. Towards this end we must look for a
linear law of motion and put all remaining nonlinear relations into
the current period return function lnCt. We achieve this by using
investment expenditures It = Kα

t − Ct instead of consumption
as a control variable. Remember, this model assumes 100 percent
depreciation (i.e., δ = 1), so that the linear transition law is:

Kt+1 = It. (2.27)

Let g(Kt, It) := ln(Kα
t − It) denote the current period utility

function. We approximate this function by a quadratic function
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in (K, I) at the point of the stationary solution of the model. This
solution derives from equations (2.26) and (2.27) for Kt+1 = Kt =
K̄ and Ct+1 = Ct = C̄. Thus,

K̄ = (αβ)(1/(1−α)), (2.28a)

Ī = K̄. (2.28b)

A second order Taylor series approximation of g yields:

g(K, I) � g(K̄, Ī) + gK(K − K̄) + gI(I − Ī)
+ (1/2)gKK(K − K̄)2 + (1/2)gII(I − Ī)2

+ (1/2)(gKI + gIK)(K − K̄)(I − Ī).
(2.29)

For latter purposes, we want to write the rhs of this equation
by using matrix notation.9 To take care of the constant and the
linear terms we define the vector (1, K, I)T and the 3 × 3 matrix
Q = (qij) and equate the rhs of (2.29) to the product

[1, K, I ]Q

⎡⎣ 1
K
I

⎤⎦ .
Comparing terms on both sides of the resulting expression and
using the symmetry of the second order mixed partial derivatives
(gKI = gIK) yields the elements of Q:

q11=g − gKK̄ − gI Ī + (1/2)gKKK̄
2 + gKIK̄Ī + (1/2)gII Ī

2,
q12=q21 = (1/2)(gK − gKKK̄ − gKI Ī),
q13=q31 = (1/2)(gI − gII Ī − gKIK̄),
q23=q32 = (1/2)gKI,
q22=(1/2)gKK,
q33=(1/2)gII .

In the next step we use Q and the even larger vector w =
[1, K, I, 1, K ′] (where K ′ denotes the next-period stock of capi-
tal) to write the rhs of the Bellman equation, g(K, I) + βv(K ′),
in matrix notation. This gives:

9 To prevent confusion, we depart from our usual notation temporarily and
let the superscript T denote the transpose operator. As usual in dynamic
programming, the prime ′ denotes next-period variables.



2.3 LQ Approximation 93

[1, K, I, 1, K ′]
[
Q 03×2

02×3 βV 0
2×2

]
︸ ︷︷ ︸

R5×5

⎡⎢⎢⎢⎢⎣
1
K
I
1
K ′

⎤⎥⎥⎥⎥⎦ , V 0 :=

[
v0
11 v0

12

v0
21 v0

22

]
. (2.30)

We initialize V 0 with a negative definite matrix, e.g., V 0 =
−0.001I2, where I2 denotes the two-dimensional identity matrix.
Our aim is to eliminate all future variables (here it is just K ′) us-
ing the linear law of motion. Then, we perform the maximization
step that allows us to eliminate the controls (here it is just I).
After that step we have a new guess for the value function, say
V 1. We use this guess as input in a new round of iterations until
V 0 and V 1 are sufficiently close together.

Reduction Step. We begin to eliminate K ′ and the constant
from (2.30) so that the resulting quadratic form is reduced to a
function of the current state K and the current control I. Note
that K ′ = I can be written as dot product:

K ′ = [0, 0, 1, 0]

⎡⎢⎢⎣
1
K
I
1

⎤⎥⎥⎦ ,
and observe that⎡⎢⎢⎢⎢⎣

1
K
I
1
K ′

⎤⎥⎥⎥⎥⎦ =

[
I4

0 0 1 0

]⎡⎢⎢⎣
1
K
I
1

⎤⎥⎥⎦ .
Thus, we may express (2.30) equivalently as:

[1, K, I, 1, K ′]R5×5

⎡⎢⎢⎢⎢⎣
1
K
I
1
K ′

⎤⎥⎥⎥⎥⎦ = [1, K, I, 1]R4×4

⎡⎢⎢⎣
1
K
I
1

⎤⎥⎥⎦ ,
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where

R4×4 =

[
I4

0 0 1 0

]T

R5×5

[
I4

0 0 1 0

]
︸ ︷︷ ︸

S5×4

.

So what was the trick? In words: use the rightmost variable in
wT = [1, K, I, 1, K ′] and write it as linear function of the remain-
ing variables. This gives a row vector with 4 elements. Append
this vector to the identity matrix of dimension 4 to get the trans-
formation matrix S5×4. The matrix of the Bellman equation with
K ′ eliminated is R4×4 = ST

5×4R5×5S5×4.
In the same way we can eliminate the second constant. The

constant in terms of the remaining variables [1, K, I ] is determined
by the dot product:

1 = [1, 0, 0]

⎡⎣ 1
K
I

⎤⎦ .
Thus, the matrix S4×3 is now

S4×3 =

[
I3

1 0 0

]
,

and the rhs of the Bellman equation in terms of [1, K, I ] is

g(K, I) + βv(I) = [1, K, I ]R3×3

⎡⎣ 1
K
I

⎤⎦ , R3×3 = ST
4×3R4×4S4×3.

Maximization Step. In this last step we eliminate I from the
rhs of the Bellman equation to find

[1, K]R2×2

[
1
K

]
.

The matrix R2×2 will be our new guess of the value function. After
the last reduction step, the quadratic form is:
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[1, K, I ]

⎡⎣r11 r12 r13
r21 r22 r23
r31 r32 r33

⎤⎦⎡⎣ 1
K
I

⎤⎦
= r11 + (r12 + r21)K + (r13 + r31)I + (r23 + r32)KI

+ r22K
2 + r33I

2.

Setting the derivative of this expression with respect to I equal
to zero and solving for I gives:

I = − r13 + r31
2r33︸ ︷︷ ︸

i1

− r23 + r32
2r33︸ ︷︷ ︸

i2

K = −r13
r33
− r23
r33

K,

where the last equality follows from the symmetry of R. Thus, we
can use

S =

[
I2

−i1 − i2
]

to reduce R3×3 to the new guess of the value function:

V 1 = STR3×3S.

We stop iterations, if the maximal element in |V 1−V 0| is smaller
than ε(1−β) for some small positive ε (see (11.84) in Section 11.4
on this choice).

2.3.3 The General Method

Notation. Consider the following framework: There is a n vector
of state variables x, a m vector of control variables u, a current
period return function g(x,u), and a discount factor β ∈ (0, 1).
As you will see in a moment, it will be helpful to put x1 = 1. All
non-linear relations of the model are part of the specification of
g, and the remaining linear relations define the following law of
motion:

x′ = Ax +Bu. (2.31)

Furthermore, there is a point [x∗T ,u∗T ]T . Usually, this will be the
stationary solution of the deterministic counterpart of the model
under consideration.
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Approximation Step. Let Q ∈ Rl×l, l = n + m, denote the
matrix of the linear quadratic approximation of the current period
return function g(·), and define the n + m column vector y =
[xT ,uT ]T . From a Taylor series expansion of g at y∗, we get:

yTQy = g(y∗)+
n+m∑
i=1

gi(yi−y∗i )+
1

2

n+m∑
i=1

n+m∑
j=1

gij(yi−y∗i )(yj−y∗j ),

where gi and gij are first and second partial derivatives of g at y∗,
respectively.10 Comparing terms on both sides of this expression
delivers the elements of Q = (qij):

q11=g(y
∗) +

∑n+m
i=1 giy

∗
i + 1

2

∑n+m
i=1

∑n+m
j=1 gijy

∗
i y

∗
j ,

q1i = qi1=
1
2
gi − 1

2

∑n+m
j=1 gijy

∗
j , i = 2, 3, . . . , n+m,

qij = qji=
1
2
gij, i, j = 2, 3, . . . , n+m.

Except in very rare cases, where gi and gij are given by sim-
ple analytic expressions, one will use numeric differentiation (see
Section 11.3.1). For instance, to use our program SolveLQA, the
user must supply a procedure gproc that returns the value of
g at an arbitrary point [xT ,uT ]T . Note that you must pass
(1, x2, . . . , xn, u1, . . . , un)

T to that procedure, even if the 1 is not
used in gproc. This ensures that any procedure that computes
the gradient of g returns a vector with l elements and that any
procedure that returns the Hesse matrix returns a l × l matrix.
Given this procedure, our Gauss programs CDJac and CDHesse

compute the gradient vector ∇g = [0, g2, g3, . . . , gn+m] and the
Hesse matrix H := (hij) ≡ (gij), i, j = 1, 2, . . . , n+m from which
SolveLQA builds Q using the above formulas. All of this is done
without any further intervention of the user. If higher accuracy
in the computation of the Hesse matrix is desired, the user can
supply a routine MyGrad that returns the gradient vector of g. He
must then set the flag _MyGrad=1 to let the program know that
an analytic gradient is available. SolveLQA will then use MyGrad

to compute the Hesse matrix by using the forward difference Ja-
cobian programmed in CDJac.

10 Note, since x1 = 1, we have g1 = 0 and g1i = gi1 = 0 for i = 1, 2, . . . , l.
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Reduction Steps. Let Rs denote the matrix that represents the
quadratic form on the rhs of the Bellman equation at reduction
step s, where

R1 :=

[
Qn+m×(n+m) 0(n+m)×n

0n×(n+m) βV 0
n×n

]
.

In addition, let cT
s denote the n+ 1− s-th row of the matrix

Cs =
[
A B 0n×(n−s)

]
.

Then, for s = 1, 2, . . . , n iterate on

Rs+1 =

[
I2n+m−s

cT
s

]T

Rs

[
I2n+m−s

cT
s

]
.

Maximization Steps. After the last reduction step the matrix R
is reduced to a square matrix of size n+m. There are mmaximiza-
tion steps to be taken until R is reduced further to a square matrix
of size n, which is our new guess of the value function. At step
s = 1, 2, . . . , m the optimal choice of the control variable um+1−s

as a linear function of the variables [x1, . . . , xn, u1, . . . , um−s] is
given by the row vector

dT
s =

[
−r1k

rkk

,−r2k

rkk

, . . . ,−rk−1,k

rkk

]
, k = n +m− s.

Therefore, we iterate on

Rs+1 =

[
In+m−s

dT
s

]T

Rs

[
In+m−s

dT
s

]
, s = 1, 2, . . . , m.

If R is reduced to size n, we have found a new guess of the value
function V 1 = Rm+1, and we compare its elements to those of V 0.
If they are close together,

max
ij
|v0

ij − v1
ij | < ε(1− β),

we stop iterations. Otherwise we replace V 0 with V 1 and restart.



98 Chapter 2: Perturbation Methods

Computation of the Policy Function. It is a good idea to
store the vectors ds in a m × (n + m − 1) matrix D. After
convergence, we can use D = (dij) to derive the policy matrix
F ∈ Rm×n = (fij) that defines the controls as functions of the
states. This works as follows: The policy vector dm (i.e., the last
row of D) holds the coefficients that determine the first control
variable u1 as function of the n state variables:

u1 =

n∑
i=1

dmixi ⇒ f1i = dmi.

The second control is given by

u2 =

n∑
i=1

dm−1,ixi + dm−1,n+1u1

⇒ f2i = dm−1,i + dm−1,n+1f1i.

Therefore, we may compute the coefficients of F recursively from:

fji = dm+1−j,i +

j−1∑
k=1

dm+1−j,n+kfki,

j = 1, . . . , m, i = 1, . . . , n.

As a final check of the solution, we can use

|u∗ − Fx∗|.

i.e. the discrepancy between the stationary solution of the con-
trols from the original model and those computed using the linear
policy function.

2.4 Linear Approximation

In this section we return to the system of stochastic difference
equations (2.23). Remember, this system is one way to charac-
terize the solution of the linear quadratic problem. However, we
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are by no means restricted to this interpretation. More generally,
we may consider this system as an approximation of an arbitrary
non-linear model. In the next subsection we explain this approxi-
mation by means of the stochastic growth model. Our discussion
closely parallels the presentation in Section 2.1. First, we demon-
strate that both, the solution to a linearized system of stochastic
difference equations and the application of the implicit function
theorem provide the same set of equations for the coefficients of
the policy function. Second, we obtain these coefficients from the
solution of a linear system of stochastic difference equations. Sec-
tion 2.4.2 presents the solution method for the general case of
equations (2.23) and explains the use of our program SolveLA

that implements this method.

2.4.1 An Illustrative Example

There are two equations that determine the time path of the sto-
chastic Ramsey model from Section 1.3 with strictly positive con-
sumption. They are obtained from equations (1.23):

0 = Kt+1 − (1− δ)Kt − Ztf(Kt) + Ct, (2.32a)

0 = u′(Ct)− βEtu
′(Ct+1)(1− δ + Zt+1f

′(Kt+1)). (2.32b)

We assume that the productivity shock Zt follows the process

lnZt =  lnZt−1 + σεt, εt ∼ N(0, 1). (2.32c)

Since lnZt � Z̄t, Z̄t = Zt − Z∗, Z∗ ≡ 1 this equation may be
approximated by

Z̄t = Z̄t−1 + σεt. (2.32d)

Note, that for σ = 0 and Z∗ = 1 this model reduces to the deter-
ministic growth model with the stationary equilibrium determined
from

C∗ = f(K∗)− δK∗, (2.33a)

1 = β(1− δ + f ′(K∗)). (2.33b)

More generally, equations (2.32) may be written as Etg(xt,xt+1) =
02×1, xt := [Kt, Ct, Zt]

′.
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Linear Stochastic Difference Equations. At (K∗, C∗, Z∗) the
linearized version of this system of equations is given by:[

0
0

]
=

[
g1
1 g1

2

g2
1 g2

2

] [
K̄t

C̄t

]
+

[
g1
4 g1

5

g2
4 g2

5

]
Et

[
K̄t+1

C̄t+1

]
+

[
g1
3

g2
3

]
Z̄t +

[
g1
6

g2
6

]
EtZ̄t+1,

(2.34)

where x̄t denotes xt−x∗. Since equation (2.32d) implies EtZ̄t+1 =
Z̄t the last term in equation (2.34) may also be written as
[g1

6, g
2
6]

′Z̄t. We assume that the linear policy functions for K̄t+1

and C̄t are of the form

K̄t+1 = hK
KK̄t + hK

Z Z̄t, (2.35a)

C̄t = hC
KK̄t + hC

Z Z̄t, (2.35b)

where hi
j , i, j ∈ {K,C} denotes the derivative of the policy func-

tion of variable i with respect to its jth argument. Substituting
this guess in equation (2.34) yields[

a1

a2

]
K̄t +

[
b1
b2

]
Z̄t =

[
0
0

]
,

where ai and bi, i = 1, 2 are collections of coefficients to be given
in a moment. Obviously, if (2.35) is a solution to (2.34), this re-
quires ai = bi = 0, i = 1, 2 and, thus, provides four (non-linear)
equations in the unknown coefficients hK

K , hK
Z , hC

K , hC
Z . A modest

amount of algebra reveals these relations:

a1 = g1
1 + g1

2h
C
K + (g1

4 + g1
5h

C
K)hK

K = 0, (2.36a)

a2 = g2
1 + g2

2h
C
K + (g2

4 + g2
5h

C
K)hK

K = 0, (2.36b)

b1 = (g1
3 + g1

6) + (g1
2 + g1

5)h
C
Z + (g1

4 + g1
5h

C
K)hK

Z = 0, (2.36c)

b2 = (g2
3 + g2

6) + (g2
2 + g2

5)h
C
Z + (g2

4 + g2
5h

C
K)hK

Z = 0. (2.36d)

Application of the Implicit Function Theorem. We will now
demonstrate that the same set of conditions emerges, if we apply
the implicit function theorem to the system Etg(xt,xt+1) = 02×1.
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This allows us also to show that the linear policy functions are
indeed independent of the parameter σ. We assume non-linear
policy functionsKt+1 = hK(Kt, Zt, σ) and Ct = hC(Kt, Zt, σ) with
the property K∗ = hK(K∗, Z∗, 0), C∗ = hC(K∗, Z∗, 0) so that a
solution of g(·) = 02×1 at (K∗, Z∗, 0) exists. It is not difficult to
see that differentiating g with respect to Kt and Zt provides the
same conditions on the derivatives of hC and hK at the stationary
solution as presented in equations (2.36). Just note, that gi, i =
1, 2 can be written as

gi
(
Kt, h

C(Kt, Zt, σ), Zt, h
K(Kt, Zt, σ),

hC
(
hK(Kt, Zt, σ), e� lnZt+σεt+1, σ

)
, e� ln Zt+σεt+1

)
,

so that, for instance,

∂g1(·)
∂Kt

= g1
1 + g1

2h
C
K + g1

4h
K
K + g1

5h
C
Kh

K
K ≡ a1.

Consider the derivatives with respect to σ. They imply:11[
(g1

4 + g1
5h

C
K) (g1

2 + g1
5)

(g2
4 + g2

5h
C
K) (g2

2 + g2
5)

] [
hK

σ

hC
σ

]
=

[
0
0

]
.

This is a system of homogenous equations in hK
σ and hC

σ . Since
its matrix of coefficients is regular, the only possible solution is
hK

σ = hC
σ = 0.

We have, thus, seen by means of an example that the applica-
tion of perturbation methods to a stochastic DGE model allows us
to derive linear approximations of the policy functions via the so-
lution of the linearized system of stochastic difference equations.12

11 The derivative of the term Zt+1 = e� ln Zt+σεt+1 with respect to σ evaluated
at Z∗ = 1 and σ = 0 is εt+1. The expectation of this term as of time t,
Etεt+1, equals zero, the mean of N(0, 1).

12 The generalization of this result is obvious but involves either intricate
formulas or the use of tensor notation so that we have decided not to
pursue it here. See Schmitt-Grohé and Uribe (2004) for a proof.
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Derivation of the Solution. Rather than solving (2.36), we de-
termine the coefficients of the policy functions via the same proce-
dure that we used in Section 2.1. From (2.32) and (2.34) we obtain
the following system of linear, stochastic difference equations:

Et

[
K̄t+1

C̄t+1

]
=

[ 1
β

−1

−u′f ′′
u′′ 1 + βu′f ′′

u′′

]
︸ ︷︷ ︸

=:W

[
K̄t

C̄t

]
+

[
f

−βu′ff ′′+�u′
u′′

]
︸ ︷︷ ︸

=:R

Z̄t.

(2.37)

The matrix W equals the Jacobian matrix of the deterministic
system (2.3), and, thus, has eigenvalues λ1 < 1 and λ2 > 1. In the
new variables13[

K̃t

C̃t

]
:= T−1

[
K̄t

C̄t

]
⇔ T

[
K̃t

C̃t

]
:=

[
K̄t

C̄t

]
(2.38)

the system of difference equations may be written as:14

Et

[
K̃t+1

C̃t+1

]
=

[
λ1 s12

0 λ2

]
︸ ︷︷ ︸

S

[
K̃t

C̃t

]
+

[
q1
q2

]
︸︷︷︸

Q=T−1R

Ẑt. (2.39)

Consider the second equation of this system, which is a relation
in the new variable C̃t and the exogenous shock:

EtC̃t+1 = λ2C̃t + q2Z̄t. (2.40)

We can solve this equation for C̃t via repeated substitution: from
(2.40) we get

C̃t =
1

λ2
EtC̃t+1 − q2

λ2
Z̄t. (2.41)

Shifting the time index one period into the future yields:

13 Remember, T is the matrix that puts W into Schur form W = TST−1.
14 Pre-multiply (2.37) by T−1 and use the definitions in (2.38) to arrive at

this representation.
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C̃t+1 =
1

λ2

Et+1C̃t+2 − q2
λ2

Z̄t+1.

Taking expectations as of period t on both sides and noting that
(via the law of iterated expectations) Et(Et+1C̃t+2) = EtC̃t+2

yields:

EtC̃t+1 =
1

λ2
EtC̃t+2 − q2

λ2
EtZ̄t+1 =

1

λ2
EtC̃t+2 − q2

λ2
Z̄t, (2.42)

due to (2.32d). Substitution of this solution for EtC̃t+1 into (2.41)
results in:

C̃t =
1

λ2
2

EtC̃t+2 −
[
q2
λ2

+
q2
λ2



λ2

]
Z̄t.

We can use (2.42) to get an expression for C̃t+3 and so on up to
period t+ τ :

C̃t =

[
1

λ2

]τ

EtC̃t+τ − q2
λ2

τ−1∑
i=0

[


λ2

]i

Z̄t. (2.43)

Suppose that the sequence{
1

λτ
2

EtC̃t+τ

}∞

τ=0

converges towards zero for τ → ∞. This is not very restrictive:
since 1/λ2 < 1, it is sufficient to assume that EtC̃t+τ is bounded.
Intuitively, this assumption rules out speculative bubbles along
explosive paths and renders the solution unique. In addition, it
guarantees that the transversality condition (1.25) is met. In this
case we can compute the limit of (2.43) for τ →∞:

C̃t = − q2/λ2

1− (/λ2)
Z̄t. (2.44)

We substitute this solution into the second equation of (2.38),15

15 We denote the elements of T−1 by (tij).
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C̃t = t21K̄t + t22C̄t,

to get the solution for C̄t in terms of K̄t and Z̄t:

C̄t = − t21

t22︸︷︷︸
=:hC

K

K̄t − q2/λ2

t22(1− (/λ2))︸ ︷︷ ︸
=:hC

Z

Z̄t. (2.45)

From the first equation of (2.37),

K̄t+1 =
1

β
K̄t − C̄t + fZ̄t,

we can derive the solution for K̄t+1:

K̄t+1 =
1

β
K̄t − (hC

KK̄t + hC
Z Z̄t)︸ ︷︷ ︸

=C̄t

+fZ̄t

K̄t+1 =

(
1

β
− hC

K

)
︸ ︷︷ ︸

=:hK
K

K̄t +
(
f − hC

Z

)︸ ︷︷ ︸
=:hK

Z

Z̄t.

Thus, given a sequence of shocks {εt}Tt=0 and an initial K̄0 we
may compute the entire time path of consumption and the stock
of capital by iteration over

C̄t = hC
KK̄t + hC

Z Z̄t, (2.46a)

K̄t+1 = hK
KK̄t + hK

Z Z̄t, (2.46b)

Z̄t+1 = Z̄t + εt+1. (2.46c)

The Gauss program Ramsey3a.g computes the linear approxima-
tions of the policy function of the stochastic growth model from
Section 1.3 along the lines described above. The utility function
is parameterized as u(C) = [C1−η−1]/(1−η) and the production
function as f(K) = Kα. The program shows how to derive the
coefficients of the matrices in equation (2.34) by using numeric
differentiation. In the case with logarithmic preferences, complete
depreciation δ=1, α = 0.27, β = 0.994  = 0.90, and σ = 0.0072
the program delivers the following policy functions:
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C̄t = 0.736K̄t + 0.450Z̄t,

K̄t+1 = 0.270K̄t + 0.165Z̄t.

In this case, the exact analytic solution is

Ct = 0.268ZtK
0.27
t ,

Kt+1 = 0.732ZtK
0.27
t

Figure 2.3 shows the histograms of the distribution for the cap-
ital stock that result from the simulation of both solutions. The
simulations use the same sequence of shocks to prevent random
differences in the results. By and large, the linear model implies
the same stationary distribution of the capital stock as does the
true, non-linear model.

Figure 2.3: Stationary Distribution of the Capital Stock from the
Analytic and the Linear Approximate Solution of the
Stochastic Infinite-Horizon Ramsey Model

In most applications we want a unit free measure of deviations
around the deterministic steady state. Given the linear approxi-
mations from above, this is easy to obtain: Just divide both sides
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of the policy function by the stationary value of the respective lhs
variable and rearrange. For instance, using (2.46a), we may write:

Ĉt :=
Ct − C∗

C∗ = hC
K

K∗

C∗
Kt −K∗

K∗︸ ︷︷ ︸
=:K̂t

+hC
Z

Z∗

C∗
Zt − Z∗

Z∗︸ ︷︷ ︸
=:Ẑt

.

Since ln(Xt/X
∗) � (Xt−X∗)/X∗, this is a log-linear approxima-

tion of the policy function for consumption that relates the per-
centage deviation of consumption to the percentage deviations of
the stock of capital and the productivity shock, respectively.

In the next subsection we basically use the same steps to derive
the policy functions for the general system (2.23). If you dislike
linear algebra, you may skip this section and note that the pro-
gram SolveLA performs the above explained computations for the
general case. The program requires the matrices from (2.23) as in-
put and returns matrices Li

j that relate the vectors ut, λt and xt+1

to the model’s state variables in the vectors xt and zt.

2.4.2 The General Method

In this subsection we consider the solution of a system of lin-
ear stochastic difference equations given in the form of (2.23),
which derives from the LQ problem. There are related ways to
state and solve such systems. The list of references includes the
classical paper by Blanchard and Kahn (1980), Chapter 3 of
the book by Farmer (1993), the papers of King and Watson

(1998), (2002), Klein (2000) and the approach proposed by Uh-

lig (1999). Our statement of the problem is the one proposed by
Burnside (1999), but we solve it along the lines of King and
Watson (2002).

The Problem. Consider the system of stochastic difference equa-
tions (2.47):
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Cuut = Cxλ

[
xt

λt

]
+ Czzt, (2.47a)

DxλEt

[
xt+1

λt+1

]
+ Fxλ

[
xt

λt

]
= DuEtut+1 + Fuut (2.47b)

+DzEtzt+1 + Fzzt.

To ease notation we use n(x) to denote the dimension (i.e., the
number of elements) of the vector x. We think of the n(u) vector
ut as the collection of variables that are determined within period
t as linear functions of the model’s state variables. We distinguish
between three kinds of state variables: those with given initial con-
ditions build the n(x) vector xt; the n(λ) vector λt collects those
variables, whose initial values may be chosen freely. In the LQ
problem these are the costate variables. In the stochastic growth
model it is just the Lagrange multiplier of the budget constraint.
Purely exogenous stochastic shocks are stacked in the n(z) vector
zt. We assume that zt is governed by a stable vector autoregres-
sive process of first-order with normally distributed innovations
εt:

zt = Πzt−1 + εt, εt ∼ N(0,Σ). (2.48)

Stability requires that the eigenvalues of the matrix Π lie within
the unit circle.

System Reduction. We assume that the first equation can be
solved for the vector ut:

ut = C−1
u Cxλ

[
xt

λt

]
+ C−1

u Czzt. (2.49)

Shifting the time index one period into the future and taking
expectations conditional on information as of period t yields:

Etut+1 = C−1
u CxλEt

[
xt+1

λt+1

]
+ C−1

u CzEtzt+1. (2.50)

The solutions (2.49) and (2.50) allow us to eliminate ut and Etut+1

from (2.47b):
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(
Dxλ −DuC

−1
u Cxλ

)
Et

[
xt+1

λt+1

]
= − (Fxλ − FuC

−1
u Cxλ

) [xt

λt

]
+
(
Dz +DuC

−1
u Cz

)
Etzt+1

+
(
Fz + FuC

−1
u Cz

)
zt.

Assume that this system can be solved for Et(xt+1,λt+1)
′. In other

words, the matrix Dxλ − DuC
−1
u Cxλ must be invertible. Using

Etzt+1 = Πzt, which is implied by (2.48), we get the following
reduced dynamic system:

Et

[
xt+1

λt+1

]
= W

[
xt

λt

]
+Rzt,

W = − (Dxλ −DuC
−1
u Cxλ

)−1 (
Fxλ − FuC

−1
u Cxλ

)
,

R =
(
Dxλ −DuC

−1
u Cxλ

)−1

× [(Dz +DuC
−1
u Cz

)
Π +

(
Fz + FuC

−1
u Cz

)]
.

(2.51)

Change of Variables. Consider the Schur factorization of the
matrix W :

S = T−1WT,

which gives raise to the following partitioned matrices:

S =

[
Sxx Sxλ

0 Sλλ

]
=

[
T xx T xλ

T λx T λλ

]
︸ ︷︷ ︸

T−1

[
Wxx Wxλ

Wλx Wλλ

]
︸ ︷︷ ︸

W

[
Txx Txλ

Tλx Tλλ

]
︸ ︷︷ ︸

T

.
(2.52)

We assume that the eigenvalues of W appear in ascending order on
the main diagonal of S (see 11.1). To find a unique solution, n(x)
eigenvalues must lie inside the unit circle and n(λ) eigenvalues
must have modulus greater than one. In the new variables[

x̃t

λ̃t

]
:=

[
T xx T xλ

T λx T λλ

] [
xt

λt

]
(2.53)
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the dynamic system (2.51) can be rewritten as

Et

[
x̃t+1

λ̃t+1

]
=

[
Sxx Sxλ

0 Sλλ

] [
x̃t

λ̃t

]
+

[
Qx

Qλ

]
zt,

Q = [Qx, Qλ]
′ = T−1R.

(2.54)

Policy Function for λt. Consider the second line of (2.54),
which is a linear system in λ̃ alone:

Etλ̃t+1 = Sλλλ̃t +Qλzt. (2.55)

Its solution is given by:

λ̃t = Φzt. (2.56)

There is a quick and a more illuminating way to compute the
matrix Φ. Here is the quick one: Substitute (2.56) into equation
(2.55) to obtain

EtΦzt+1 = ΦΠzt = SλλΦzt +Qλzt.

Thus, Φ must solve the matrix equation

ΦΠ = SλλΦ +Qλ.

Applying the vec operator to this equations yields (see the rule
(11.10b))

vec Φ =
[
Π′ ⊗ In(λ) − In(z) ⊗ Sλλ

]−1
vecQλ.

One may also compute the rows of the matrix Φ in the following
steps: The matrix Sλλ is upper triangular with all of its eigenvalues
μi on the main diagonal being larger than one in absolute value:

Sλλ =

⎡⎢⎢⎢⎣
μ1 s12 . . . s1n(λ)

0 μ2 . . . s2n(λ)
...

...
. . .

...
0 0 . . . μn(λ)

⎤⎥⎥⎥⎦ .



110 Chapter 2: Perturbation Methods

Therefore, the last line of (2.55) is a stochastic difference equation
in the single variable λ̃n(λ), just like equation (2.40):

Etλ̃n(λ) t+1 = μn(λ)λ̃n(λ) t + q′
n(λ)zt, (2.57)

where q′
n(λ) denotes the last row of the matrix Qλ. Note, that

λ̃n(λ) t – as every other component of λ̃t – may be a complex
variable. Yet, since the modulus (i.e., the absolute value) of the
complex number μn(λ) is larger than one, the sequence{

1

μτ
n(λ)

Etλ̃n(λ) t+τ

}∞

τ=0

will converge to zero if the sequence{
Etλ̃n(λ) t+τ

}∞

τ=0

is bounded (see Section 12.1). Given this assumption, we know
from equation (2.44) that the solution to (2.57) is a linear function
of zt:

λ̃n(λ) t = (φn(λ) 1, φn(λ) 2, . . . , φn(λ),n(z))
′︸ ︷︷ ︸

φ′
n(λ)

zt.

To determine the yet unknown coefficients of this function, i.e.,
the elements of the row vector φ′

n(λ), we proceed as follows: we
substitute this solution into equation (2.57). This yields:

φ′
n(λ)Etzt+1 = μn(λ)φ

′
n(λ)zt + q′

n(λ)zt,(
φ′

n(λ)Π− φ′
n(λ)μn(λ)

)
zt = q′

n(λ)zt,

φ′
n(λ)

(
Π− μn(λ)In(z)

)
zt = q′

n(λ)zt,

where the second line follows from (2.48). Equating the coefficients
on both sides of the last line of the preceding expression gives the
solution for the unknown vector φn(λ):

φ′
n(λ) = q′

n(λ)

(
Π− μn(λ)In(z)

)−1
. (2.58)
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Since the eigenvalues of Π are inside the unit circle, this solution
exists.

Now, consider the next to last line of (2.55):

Etλ̃n(λ)−1 t+1 = μn(λ)−1λ̃n(λ)−1 t + sn(λ)−1,n(λ)λ̃n(λ) t + q′
n(λ)−1zt,

Etλ̃n(λ)−1 t+1 = μn(λ)−1λ̃n(λ)−1 t + sn(λ)−1,n(λ)φ
′
n(λ)zt + q′

n(λ)−1zt.

The solution to this equation is given by the row vector φ′
n(λ)−1.

Repeating the steps from above, we find:

φ′
n(λ)−1 =

(
q′

n(λ)−1 + sn(λ)−1 n(λ)φ
′
n(λ)

) (
Π− μn(λ)−1In(z)

)−1
.

(2.59)

Proceeding from line n(λ)− 1 to line n(λ)− 2 and so forth until
the first line of (2.55) we are able to compute all of the rows φ′

i

of the matrix Φ. The respective formula is:

φ′
i =

⎡⎣q′
i +

n(λ)∑
j=i+1

si,jφ
′
j

⎤⎦(Π− μiIn(z)

)−1
,

i = n(λ), n(λ)− 1, . . . , 1.

(2.60)

Given the solution for λ̃t we can use (2.53) to find the solution
for λt in terms of xt and zt. The second part of (2.53) is:

λ̃t = T λxxt + T λλλt.

Together with (2.56) this gives:

λt = − (T λλ
)−1

T λx︸ ︷︷ ︸
Lλ

x

xt +
(
T λλ
)−1

Φ︸ ︷︷ ︸
Lλ

z

zt. (2.61)

Policy Function for xt+1. In obvious notation the first part of
(2.51) may be written as:

xt+1 = Wxxxt +Wxλλt +Rxzt.

Substitution for λt from (2.61) gives:
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xt+1 =
(
Wxx −Wxλ

(
T λλ
)−1

T λx
)

︸ ︷︷ ︸
Lx

x

xt

+
(
Wxλ

(
T λλ
)−1

Φ + Rx

)
︸ ︷︷ ︸

Lx
z

zt.
(2.62)

The expression for Lx
x may be considerably simplified. In terms of

partitioned matrices the expression W = TST−1 may be written
as:[

Wxx Wxλ

Wλx Wλλ

]
=

[
Txx Txλ

Tλx Tλλ

] [
Sxx Sxλ

0 Sλλ

] [
T xx T xλ

T λx T λλ

]
,

which implies:

Wxx = TxxSxxT
xx + TxxSxλT

λx + TxλSλλT
λx,

Wxλ = TxxSxxT
xλ + TxxSxλT

λλ + TxλSλλT
λλ.

Substituting the rhs of these equations into the expression for Lxx

from (2.62) gives:

Lx
x = TxxSxx

(
T xx − T xλ

(
T λλ
)−1

T λx
)
.

Since[
Txx Txλ

Tλx Tλλ

]
=

[
T xx T xλ

T λx T λλ

]−1

the formula for the inverse of a partitioned matrix (11.15a) im-
plies:

(Txx)
−1 = T xx − T xλ

(
T λλ
)−1

T λx.

Putting all pieces together, we find:

Lx
x = TxxSxxT

−1
xx .
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Policy Function for ut. Using equation (2.49) the solutions for
xt and λt imply the following policy function for the vector ut:

ut = C−1
u Cxλ

[
In(x)

Lλ
x

]
︸ ︷︷ ︸

Lu
x

xt

+

(
C−1

u Cxλ

[
0n(x)×n(z)

Lλ
z

]
+ C−1

u Cz

)
︸ ︷︷ ︸

Lu
z

zt.

(2.63)

Implementation. Our Gauss program SolveLA performs the
computation of the policy matrices according to the formulas
given by equations (2.61), (2.62), and (2.63). It uses the Gauss
intrinsic command Schtoc to get the matrices S and T . However,
the eigenvalues on the main diagonal of S are not ordered. We use
the Givens rotation described in Section 11.1 to sort the eigen-
values in ascending order. The program’s input are the matrices
from (2.47), the matrix Π from (2.48), and the number of elements
n(x) of the vector xt. The program checks whether n(x) of the
eigenvalues of W are inside the unit circle. If not, it stops with an
error message. Otherwise it returns the matrices Lx

x, L
x
z , L

λ
x, L

λ
z ,

Lu
x, and Lu

z . A second version of this program, SolveLA2, uses the
Gauss foreign language interface and calls a routine (written in
Fortran) that returns S and T so that the eigenvalues of the com-
plex matrix S with modulus less than one appear in the upper left
block of S. This routine in turn calls the program ZGEES from the
Fortran LAPACK library. Our Fortran version of SolveLA also
uses ZGGES to get the Schur decomposition with sorted eigenval-
ues. The Gauss version of SolveLA (and SolveLA2) also solves
purely deterministic models. Just set the matrices Cz, Fz, Dz and
Π equal to the Gauss missing value code.

The matrices that are an input to both programs can be ob-
tained in two ways. The first and probably more cumbersome
approach is to use paper and pencil to derive the coefficients of
the matrices analytically. If the differentiation is done with re-
spect to the (natural) logs of the variables, SolveLA returns the
coefficients of the log-linear policy functions. Otherwise the coef-
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ficients refer to the linear approximation. One may, however, also
use numeric differentiation to obtain the matrices from (2.47). We
provide an example in the Gauss program Ramsey3a.g where we
show how to solve the stochastic growth model by using SolveLA.

2.5 Quadratic Approximation

In this section we consider quadratic approximations of the pol-
icy functions of DGE models. We introduce you to this topic in
the next subsection. Then, we consider two examples before we
provide the general algorithm in Subsection 2.5.4.

2.5.1 Introduction

We begin with the quadratic approximation of the solution of a
system of static equilibrium conditions. Consider the equilibrium
condition g(x, y) = 0 and suppose that a solution exists at (x∗, y∗).
Let y = h(x) be the solution in an ε neighborhood of x∗. A second-
order Taylor series approximation of h at x∗ is given by

h(x∗ + ε) � y∗ + h′(x∗)ε+
1

2
(h′′)2(x∗)ε2.

Differentiating g(x, h(x)) once provides

g1(x, h(x)) + g2(x, h(x))h
′(x). (2.64)

At (x∗, y∗) this expression must equal zero, from which we obtain
the solution

h′(x∗) = −g1(x
∗, y∗)

g2(x∗, y∗)
.

Differentiating (2.64) again and setting the result equal to zero
yields:
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h′′(x∗) = −g11 + (g12 + g21)h
′ + g22(h

′)2

g2
.

This formula still looks pretty simple. Though straight forward,
the generalization to the case of n exogenous and m endogenous
variables g(x,y) = 0m×1 produces formulas with lots of indices.
First note that in this context the quadratic approximation of the
solution hj(x), j = 1, 2, . . . , m is given by

ĥj(x) = hj(x∗) + hj
xx̄ +

1

2
x̄′Hjx̄, (2.65)

where hj
x = [hj

x1
, hj

x2
, . . . , hj

xn
]′ is the vector of linear coefficients

and Hj = (hj
il) is the n-by-n matrix of quadratic coefficients. The

vectors hj
x are determined from the matrix equation

hx = −D−1
y Dx

where Dy (Dx) is the matrix of partial derivatives of g(x,y) with
respect to the variables in the vector y (x) (see equation (11.38)).
Note, that a single element in this matrix equation is given by

0 = gj
xk

(x,h(x)) +

m∑
l=1

gj
yl
(x,h(x))hl

xk
,

j = 1, 2, . . . , m, k = 1, 2, . . . , n.

Differentiating this expression with respect to variable xi provides

0 = gj
xkxi

+

m∑
l=1

gj
xkyl

hl
xi

+

m∑
l=1

gj
yl
hl

xkxi
+

m∑
l=1

gj
ylxi

hl
xk

+

m∑
s=1

m∑
l=1

gj
ylys

hs
xi
hl

xk
, j = 1, . . . , m; i, k = 1, . . . , n.

These mn2 equations can be arranged to n2 matrix equations in
the coefficients hj

xkxj
, j = 1, 2, . . . , m. Due to the symmetry of the

Hesse matrices n(n+1)/2 of these equations are redundant. As you
will see in the next examples, since the structure of the equilibrium
conditions of DGE models is not as simple as g(x,h(x)) = 0m×1,
the respective formulas to compute the Hesse matrices Hj are
more involved.
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2.5.2 The Deterministic Growth Model

We return to the deterministic growth model considered in Sec-
tions 1.2 and 2.1. We let Kt+1 = hK(Kt) and Ct = hC(Kt) denote
the policy functions for the next-period capital stock and con-
sumption, respectively. For both functions we seek a second order
approximation at the stationary solution K∗ of the form

K̄t+1 = hK
KK̄t +

1

2
hK

KKK̄t
2
,

C̄t = hC
KK̄t +

1

2
hC

KKK̄t
2
,

where hi
K and hi

KK , i ∈ {K,C} denote the first and second deriv-
ative of the policy function of variable i with respect to the stock
of capital K. Of course, all derivatives are evaluated at the sta-
tionary solution K∗. To obtain the coefficients hi

K and hi
KK , we

use a more general exposition. Observe that the resource con-
straint g1(·) and the Euler equation for the optimal next-period
capital stock g2(·), equations (2.1a) and (2.1b), have the following
structure:

gi(K,C,K ′, C ′)

≡ gi(K, hC(K), hK(K), hC(hK(K))) = 0, i = 1, 2,

where we have omitted the time indices. To distinguish between
current period variables and next-period variables we used a prime
to denote the latter. Differentiating with respect to K yields (we
suppress the arguments of gi but not of hi)

gi
K + gi

Ch
C
K(K) + gi

K ′hK
K(K) + gi

C′hC
K(K ′)hK

K(K) = 0, (2.66)

i = 1, 2.

We have already solved these two equations in Section 2.1, so let
us assume here that we know hK

K and hC
K . To obtain equations

in hK
KK and hC

KK , we must differentiate (2.66) with respect to K.
This yields:[
g1

K ′ + g1
C′hC

K g1
C + g1

C′
(
hK

K

)2
g2

K ′ + g2
C′hC

K g2
C + g2

C′
(
hK

K

)2
][

hK
KK

hC
KK

]
=

[
hT

KH(g1)hK

hT
KH(g2)hK

]
, (2.67)
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where

hT
K =

[
1, hC

K , h
K
K , h

C
Kh

K
K

]
, H(gi) :=

⎡⎢⎣g
i
KK . . . gi

KC′
...

. . .
...

gi
C′K . . . gi

C′C′

⎤⎥⎦ .
Since (2.67) is a system of two linear equations it is easily solved
for hK

KK and hC
KK . Usually, we will use numeric differentiation

to obtain the coefficients of equation (2.67). If u(C) := (C1−η −
1)/(1 − η) and f(K) = (1 − δ)K + Kα, the matrix on the lhs of
(2.67) is given by[

1 1[
ηhC

K + αβ(1− α)C∗(K∗)α−2
]
η
[(
hK

K

)2 − 1
]]

and the vector on the rhs, say b, has elements

b1 := α(α− 1)(K∗)α−2

and

b2 := η(1 + η)
1

C∗

[(
hK

KK

)2 − 1
] (
hC

K

)2
+ αβ(1− α)(K∗)α−2

(
hK

K

)2(
2ηhC

K + (2− α)
C∗

K∗

)
.

In the Gauss program Ramsey2b.g we compute the coefficients of
the quadratic policy functions using both analytic and numeric
derivatives. Figure 2.4 displays the policy function for consump-
tion from the linear, the quadratic solution and the analytic solu-
tion (α = 0.27 and β = 0.994).

To compare the accuracy of the linear with the accuracy of the
quadratic approximation this program also computes the residuals
of the Euler equation (2.1b) over a grid of 200 points in the interval
[0.9K∗, 1.1K∗]. For the parameter values α = 0.27, β = 0.994,
η = 2, and δ = 0.011 we find that the maximum absolute Euler
equation residual from the linear solution is about 13 times larger
than that obtained from the quadratic policy function which is
2.4 × 10−6, and, thus, very small. We also find that there is no
noteworthy difference in accuracy, if we use analytic instead of
numeric derivatives.
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Figure 2.4: Policy Functions of Consumption of the Deterministic
Growth Model

2.5.3 The Stochastic Growth Model

The Framework. We return to the stochastic growth model con-
sidered in Sections 1.3 and 2.4.1 assuming u(C) = [C1−η−1]/(1−
η) and f(K) = Kα. As in the previous subsection, we drop the
time indices from all variables and use a prime to designate vari-
ables that pertain to the next period. This allows us to the write
the equilibrium conditions as16

0 = Egi(K,C, z,K ′, C ′, z′), i = 1, 2, (2.68a)

C = hC(K, z, σ),

C ′ = hC(hK(K, z, σ), z′, σ),

16 You may probably wonder why we use z = lnZ as a state variable and not
Z itself. In the present context, in which we know what the equilibrium
conditions look like, we could indeed have used Z. Yet, when writing a
general purpose routine, we have no information about the structure of
the equilibrium conditions. In this case, we are bound to assume that the
shocks evolve according to a linear first-order autoregressive process.
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K ′ = hK(K, z, σ),

z′ = z + σε′, ε′ ∼ N(0, 1),

where

g1(·) = K ′ − (1− δ)K − ezKα + C, (2.68b)

g2(·) = C−η − β(C ′)−η
(
1− δ + αez′(K ′)α−1

)
. (2.68c)

The operator E denotes expectations with respect to information
available at the current period.

As in Section 2.4.1 we consider the model in a neighborhood
of σ = 0, where it reduces to the deterministic growth model
with stationary solution (K∗, C∗, z∗ = 0) determined by equations
(2.33). For i ∈ {C,K} we look for quadratic approximations of
the policy function hi given by

hi(K, z, σ) = hi(K∗, z∗, σ = 0) (2.69)

+ hi
KK̄ + hi

z z̄ + hi
σσ

+
1

2

[
K̄, z̄, σ

] ⎡⎣hi
KK hi

Kz hi
Kσ

hi
zK hi

zz hi
zσ

hi
σK hi

σz hi
σσ

⎤⎦⎡⎣K̄z̄
σ

⎤⎦ ,
where the bar denotes deviations from the stationary solution.
Note that the Hesse matrix in (2.69) is a symmetric matrix, i.e.,
hi

jk = hi
kj, j, k ∈ {K, z, σ}. To determine the coefficients of these

functions we closely follow Schmitt-Grohé and Uribe (2004).17

As in Section 2.4.1 we differentiate (2.68a) with respect to K,
z, and σ. To represent the respective formulas we define the vector
function

h :=

⎡⎣ hC(K, z, σ)
hK(K, z, σ)

hC(hK(K, z, σ), z + σε′, σ)

⎤⎦
with the vector of derivatives denoted by hK , hz , and hσ, re-
spectivley. In addition, we use gi

[i] for the (column) vector of first

17 In a recent paper Lombardo and Sutherland (2007) outline an algo-
rithm that also provides second-order accurate solutions. Their procedure
relies on methods developed for the solution of linear models.
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derivatives of gi with respect to the indices in the vector i and
gi
[i1][i2]

for the matrix of second partial derivatives with respect
to the indices in i1 (for the rows of the matrix) and i2 (for the
columns). To avoid confusion, we denote the transpose of a vector
by the superscript T .

Consider the derivatives of conditions (2.68a) with respect to
K, z, and σ:

0 = E
{[

1,hT
K

]
gi
[K,C,K ′,C′]

}
, (2.70a)

0 = E
{[

hT
z , 1, 

]
gi
[C,K ′,C′,z,z′]

}
, (2.70b)

0 = E
{[

hT
σ , ε

′] gi
[C,K ′,C′,z′]

}
. (2.70c)

Since we have already seen how we can compute the coefficients
of the linear part of (2.69) in Section 2.4.1, we proceed to the
coefficients of the quadratic part. For the following derivations we
will keep in mind that we found hi

σ = 0.

Coefficients of the Hesse Matrices. Differentiating equation
(2.70a) with respect to K provides two linear equations in the
coefficients hi

KK:

0 = hT
KKg

i
[C,K ′,C′] +

[
1,hT

K

]
gi
[K,C,K ′,C′][K,C,K ′,C′]

[
1

hK

]
, (2.71a)

where hKK is the vector of second derivatives of h with respect
to K. This equation corresponds to equation (2.67) in the deter-
ministic case.

To determine hi
Kz, we differentiate (2.70a) with respect to z,

yielding

0 = hT
Kzg

i
[C,K ′,C′] +

[
1,hT

K

]
gi
[K,C,K ′,C′][C,K ′,C′,z]

[
hZ

1

]
(2.71b)

+ 
[
1,hT

K

]
gi
[K,C,K ′,C′][z′].

The first term in this equation equals(
gi

K ′ + gi
C′hC

K

)
hK

KZ +
(
gi

C + gi
C′hK

K

)
hC

KZ + gi
C′hK

Kh
C
KKh

K
Z .

Thus, (2.71b) provide two linear equations in hK
KZ and hC

KZ .
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Differentiating conditions (2.70a) with respect to σ provides
conditions on hi

Kσ:

0 = E

{
hT

Kσg
i
[C,K ′C′] +

[
1,hT

K

]
gi
[K,C,K ′,C′][C,K ′,C′]hσ (2.71c)

+
[
1,hT

K

]
gi
[K,C,K ′,C′][z′]ε

′
}
.

The expectation of the first term in curly brackets is

E
{
hT

Kσg
i
[C,K ′,C′]

}
=
(
gi

K ′ + gi
C′hC

K

)
hK

Kσ +
(
gi

C + gi
C′hK

K

)
hC

Kσ,

since hK
σ = 0 and E(hK

Kh
C
KZε

′) = 0. At the stationary solution
the second term in (2.71c) is obviously zero, since hσ is a vector
with zeros. The expectation of the third term is also zero since
E(ε′) = 0. Thus, system (2.71c) is a linear homogeneous system
with solution hi

Kσ = 0.
To determine the coefficients hi

zz, we differentiate (2.70b) with
respect to z. The result is:

0 = hT
zzg

i
[C,K ′,C′]

+
[
hT

z , 1, 
]
gi
[C,K ′,C′,z,z′][C,K ′,C′,z,z′]

⎡⎣hz

1


⎤⎦ . (2.71d)

The first term on the rhs of this equation equals

hT
zzg

i
[C,K ′,C′] =

(
gi

K ′ + gi
C′hC

K

)
hK

ZZ +
(
gi

C + gi
C′2

)
hC

ZZ

+ gi
C′hK

Z

(
hC

KKh
K
Z + 2hC

KZ

)
.

Differentiating (2.70b) with respect to σ provides

0 = E

{
hT

zσg
i
[C,K ′,C′]

+
[
hT

z , 1, 
]
gi
[C,K ′,C′,z,z′][C,K ′,C′,z′]

[
hσ

ε′

]}
. (2.71e)
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As in equation (2.71c) all terms except the coefficients of hK
Zσ and

hC
Zσ are equal to zero. Therefore, hK

Zσ = hC
Zσ = 0.

Finally, we turn to the coefficients hi
σσ. They are obtained from

differentiating equations (2.70c) with respect to σ. This delivers:

0 = E
{
hT

σσg
i
[C,K ′,C′]

+
[
hT

σ , ε
′] gi

[C,K ′,C′,z′][C,K ′,C′,z′]

[
hσ

ε′

]}
, (2.71f)

hT
σσ =

[
hC

σσ, h
K
σσ, h

C
σσ + hC

Kh
K
σσ + Δ

]
,

Δ := hK
σ

(
hC

KKh
K
σ + hC

KZε
′ + hC

Kσ

)
+ ε′

(
hC

ZKh
K
σ + hC

ZZε
′ + hC

zσ

)
+ hC

σKh
K
σ + hC

σzε
′.

To evaluate this expression, observe that

1. at σ = 0 the vector of derivatives hT
σ equals [0, 0, hC

Zε], since
hi

σ = 0,
2. hi

σj = hi
jσ = 0 for i ∈ {K,C} and j ∈ {K, z},

3. E(ε′)2 = 1 and E(ε′) = 0.

Thus, equations (2.71f) reduce to

0 =
(
gi

K ′ + gi
C′hC

K

)
hK

σσ +
(
gi

C + gi
C′
)
hC

σσ

+ gi
C′C′(hC

Z)2 + 2gi
C′z′h

C
Z + gi

z′z′ + gi
C′hC

ZZ .

Our Gauss program Ramsey3b.g computes the quadratic approx-
imation of the policy function from these formulas. It employs
numeric differentiation to compute gi

[·] as well as the Hesse matri-
ces that appear in (2.71).

Table 2.1 presents the coefficients from this exercise for the
parameter values α = 0.27, β = 0.994, η = 1, and δ = 1.
The second column shows solutions obtained from using the
Gauss commands gradp and hessp that provide forward differ-
ence approximations of the first and second partial derivatives,
respectively.18 Our own procedures CDJac and CDHesse imple-

18 See Section 11.3.1 on numeric differentiation, where we explain forward dif-
ference as well as central difference formulas for the numeric computation
of derivatives.
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Table 2.1

Coefficient Forward
Differences

Central
Differences

Analytic
solution

hK
K 0.270000 0.270000 0.270000
hK

Z 0.164993 0.164993 0.164993
hK

KK −1.194628 −1.194595 −1.194595
hK

KZ 0.269781 0.270000 0.270000
hK

ZZ 0.156787 0.164995 0.164993
hK

σσ −0.023160 0.000001 0.000000
hC

K 0.736036 0.736036 0.736036
hC

Z 0.449782 0.449781 0.449781
hC

KK −3.256642 −3.256537 −3.256538
hC

KZ 0.735831 0.736036 0.736036
hC

ZZ 0.479034 0.449782 0.449781
hC

σσ 0.023160 −0.000001 0.000000

ment central difference formulas that involve a smaller approx-
imation error. The fourth column presents the coefficients com-
puted from the quadratic approximation of the analytic solutions
hK = αβezKα and hC = (1− αβ)ezKα, respectively. There is no
noteworthy difference in the linear coefficients as well as in hi

KK .
There is a small difference between the solutions for hK

KZ , but the
numeric value of hi

σσ is far from its true value of zero when we
use forward difference formulas. This imprecision can also be seen
from the residuals of the Euler equation

C−η
t = EtβC

−η
t+1

(
1− δ + α(e�zt+σεt+1)Kα−1

t+1

)
. (2.72)

We compute the residuals on a grid of 400 equally spaced points
on the square [0.9K∗, 1.2K∗] × [ln(0.95), ln(1.05)]. With respect
to the maximum absolute value of these residuals the solution
displayed in the second column of Table 2.1 is about 2.5 times
worse than the solution based on the numbers in column four.
The Euler equation residual from the linear solution is almost 37
times larger than the Euler equation residual from the quadratic
solution displayed in column four. When we use the parameter
values from Table 1.1 for α, β, η, δ, , and σ, the linear solution
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is about 13 times less accurate than the quadratic solution, whose
maximum absolute Euler equation residual is 4.6× 10−6.

Computation of the Euler Equation Residual. Here we
briefly explain our computation of the residual in the stochastic
growth model. Given the approximate policy functions ĥK and ĥC

the term to the right of the expectations operator Et in equation
(2.72) can be written as

φ(K,Z, σ, ε) := β
(
ĥC(ĥK(K,Z, σ), e�zt+σε, σ)

)−η

×
(

1− δ + αe�zt+σε
(
ĥK(K,Z, σ)

)α−1
)
.

For given values of K, z, and σ this is a function of the stochastic
variable ε that has a standard normal distribution. Therefore, the
rhs of equation (2.72) is given by

Δ :=

∫ ∞

−∞
φ(K,Z, σ, ε)

e−
ε2

2√
2π
dε.

We use the Gauss-Hermite four point integration formula given in
equation (11.77) to compute this expectation. Given Δ, the Euler
equation residual at (K,Z) is defined as

R̃ =
Δ−1/η

ĥC(K,Z, σ)
− 1.

2.5.4 Generalization

Framework. Equations (2.68a) are readily generalized. Just re-
place K by an n(x) vector x of state variables, C by a n(y) vector
y of control and costate variables, Z by an n(z) vector of shocks
z, and ε by a n(z) vector ε of N(0n(z), In(z)) distributed inno-
vations so that zt = Πzt−1 + σΩε. The n(z) by n(z) matrix Ω
allows for possible correlations between the elements of z. To see
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this, note that the conditional variance of zt given zt−1 is given
by E(σΩε)(σΩε)T = σ2ΩΩT , where the superscript T denotes the
transposition of a matrix or a vector.

The n(x) + n(y) equilibrium conditions are

0 = Egi(x,y, z,x′,y′, z′), i = 1, 2, . . . , n(x) + n(y), (2.73a)

where

y = hy(x, z, σ), (2.73b)

x′ = hx(x, z, σ), (2.73c)

y′ = hy(x′, z′, σ), (2.73d)

z′ = Πz + σΩε′ (2.73e)

The quadratic approximation of the policy function hi, i ∈
{x1, . . . , xn(x), y1, . . . , yn(y)} is an expression of the form

hi = hi(x∗, z∗, σ = 0) + (li)T

[
x̄
z̄

]

+
1

2

[
x̄T , z̄T , σ

]⎡⎣H i
xx H i

xz 0
H i

zx H i
zz 0

0 0 H i
σσ

⎤⎦
︸ ︷︷ ︸

Hi

⎡⎣x̄
z̄
σ

⎤⎦ . (2.74)

The row vector li holds the coefficients of the linear part and
the matrices H i

xx, H
i
xz, and H i

zz contain the coefficients of the
quadratic part with respect to the state variables x and z. As
before, the bar denotes deviations from the equilibrium x∗ and
z∗, respectively. The scalar H i

σσ is the coefficient of σ2. Note that
in the general model both the linear coefficients of σ are zero and
the matrices H i

xσ and H i
zσ are zero matrices as in the example of

the previous subsection.19

Computation of the Quadratic Part. To obtain these matri-
ces we proceed as in our example. Given the vector

19 See Schmitt-Grohé and Uribe (2004) for a proof.
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h :=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

hy1(x, z, σ)
...

hyn(y)(x, z, σ)
hx1(x, z, σ)

...
hxn(x)(x, z, σ)
hy1(x′, z′, σ)

...
hyn(y)(x′, z′, σ)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
, (2.75)

we use hi to denote the vector whose elements are the derivatives
of the elements of h with respect to variable i.

We begin with the coefficients of the matrices Hxx. We dif-
ferentiate equations (2.73a) with respect to xj and evaluate the
result at the point (x∗, z∗, σ = 0):

0 =
[
1, hT

xj

]
gi
[xj ,y,x′,y′], i = 1, 2, . . . , n(x) + n(y). (2.76)

Differentiating this expression with respect to xk provides a set of
(n(x) + n(y))n(x)2 conditions in the unknown coefficients of the
matrices H i

xx:

hT
xjxk

gi
[xj ,y,x′,y′] = −

[
1,hT

xj

]
gi
[xj ,y,x′,y′][xk,y,x′,y′]

[
1

hxk

]
, (2.77a)

i = 1, . . . , n(x) + n(y), j = 1, . . . , n(x), k = 1, . . . , n(x),

where

hT
xj

=
[
hy1

xj
, . . . , h

yn(y)
xj , hx1

xj
, . . . , h

xn(x)
xj ,Δ1

1, . . . ,Δ
1
n(y)

]
, (2.77b)

Δ1
i =

n(x)∑
l=1

hyi
xl
hxl

xj
.

and

hT
xjxk

=
[
hy1

xjxk
, . . . , h

yn(y)
xjxk , h

x1
xjxk

, . . . , h
xn(x)
xjxk ,Δ

2
i , . . . ,Δ

2
n(y)

]
,

(2.77c)

Δ2
i =

n(x)∑
l=1

hyi
xl
hxl

xjxk
+

n(x)∑
l=1

hxl
xj

n(x)∑
r=1

hyi
xlxr

hxr
xk
.
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Different from our example in the previous subsection the system
of equations (2.77a) cannot be factored into smaller systems in
the pairs of coefficients (xj , xk), since all the unknown coefficients
hyi

xlxr
appear in each equation. The huge linear system (2.77a) may

be written as Aw = q, where

w := vec
[
Hx1

xx, . . . , H
xn(x)
xx , Hy1

xx, . . . , H
yn(y)
xx

]
.

The element hxi
xjxk

in this vector has the index ix(i, j, k) = (i −
1)n(x)2+(j−1)n(x)+k. The index of hyi

xjxk
is iy(i, j, k) = n(x)3+

ix(i, j, k). Using the functions ix and iy it is easy to loop over
j = 1, . . . , n(x), k = 1, . . . , n(x), and i = 1, . . . , n(x) + n(y) to set
up the matrix A and the vector q from (2.77a).

The elements of the matrices H i
xz solve

hT
xjzk

gi
[y,x′,y′] = −

[
1,hT

xj

]
gi
[xj ,y,x′,y′][y,x′,y′,zk,z′]

⎡⎢⎢⎢⎢⎢⎣
hzk

1
π1k
...

πn(z)k

⎤⎥⎥⎥⎥⎥⎦ ,
i = 1, . . . , n(x) + n(y), j = 1, . . . , n(x), k = 1, . . . , n(z),

(2.78)

where πlk is the element in the lth row and kth column of the
matrix Π from equation (2.73e). This system is derived from dif-
ferentiating (2.76) with respect to zk. The elements of the vector
hzk

are the derivatives of (2.75) with respect to zk:

hT
zk

:=
[
hy1

zk
, . . . , h

yn(y)
zk , hx1

zk
, . . . , h

xn(x)
zk ,Δ3

1, . . . ,Δ
3
n(y)

]
,

Δ3
i =

n(x)∑
l=1

hyi
xl
hxl

zk
+

n(z)∑
l=1

hyi
zl
πlk.

(2.79)

Differentiating the elements of (2.77b) with respect to zk provides
the vector hxjzk

:

hT
xjzk

:=
[
hy1

xjzk
, . . . , h

yn(y)
xjzk , h

x1
xjzk

, . . . , h
xn(y)
xjzk ,Δ

4
1, . . . ,Δ

4
n(y)

]
,

Δ4
i :=

n(x)∑
l=1

hyi
xl
hxl

xjzk
+

n(x)∑
l=1

hxl
xj

⎡⎣n(x)∑
r=1

hyi
xlxr

hxr
zk

+

n(z)∑
r=1

hyi
xlzr

πrk

⎤⎦ .
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The system of equations (2.78) may also be written as Aw = q.
But note that different from (2.77a) the lhs of (2.78) not only
contains the elements of H i

xz but also terms that belong to the
vector q.

To obtain the matrices H i
zz we first differentiate (2.73a) with

respect to zj and then with respect to zk. The result is:

hT
zjzk

gi
[y,x′,y′] = −

[
hT

zj
, 1, π1j, . . . , πn(z),j

]

× gi
[y,x′,y′,zj ,z′][y,x′,y′,zk,z′]

⎡⎢⎢⎢⎢⎢⎣
hzk

1
π1k
...

πn(z),k

⎤⎥⎥⎥⎥⎥⎦ , (2.80)

hT
zjzk

=
[
hy1

zjzk
, . . . , h

yn(y)
zjzk , h

x1
zjzk

, . . . , h
xn(x)
zjzj ,Δ

5
1, . . . ,Δ

5
n(y)

]
,

Δ5
i =

n(x)∑
l=1

hyi
xl
hxl

zjzk

+

n(x)∑
l=1

hxl
zj

⎡⎣n(x)∑
r=1

hyi
xlxr

hxr
zk

+

n(z)∑
r=1

hyi
xlzr

πrk

⎤⎦
+

n(z)∑
l=1

πlj

⎡⎣n(x)∑
r=1

hyi
zlxr

hxr
zk

+

n(z)∑
r=1

hyi
zlzr

πrk

⎤⎦ .
In the last step, we determine H i

σσ. Differentiating (2.73a) twice
with respect to σ yields

0 = E
{
hT

σσg
i
[y,x′,y′]

}
+ E

⎧⎪⎪⎪⎨⎪⎪⎪⎩
[
hT

σ ,Δ
6
1, . . . ,Δ

6
n(z)

]
gi
[y,x′,y′,z′][y,x′,y′,z′]

⎡⎢⎢⎢⎣
hσ

Δ6
1

...
Δ6

n(z)

⎤⎥⎥⎥⎦
⎫⎪⎪⎪⎬⎪⎪⎪⎭ ,

Δ6
i :=

n(z)∑
s=1

ωisε
′
s, (2.81)



2.5 Quadratic Approximation 129

where ωis is the element in the ith row and sth column of the
matrix Ω from equation (2.73e). At the stationary equilibrium,
the vector hσ is given by

hT
σ =

⎡⎣ 0, . . . , 0,︸ ︷︷ ︸
n(y) elements

0, . . . , 0,︸ ︷︷ ︸
n(x) elements

Δ7
1, . . . ,Δ

7
n(y)

⎤⎦ ,
Δ7

i =

n(z)∑
s=1

hyi
zs

n(z)∑
r=1

ωsrε
′
r,

since in the general model as well as in our example hyi
σ = h

xj
σ = 0.

The vector hσσ is given by

hT
σσ =

[
hy1

σσ, . . . , h
yn(y)
σσ , hx1

σσ, . . . , h
xn(x)
σσ ,Δ8

1, . . . ,Δ
8
n(y)

]
,

Δ8
i =

n(x)∑
s=1

hyi
xs
hxs

σσ

+

n(x)∑
s=1

hxs
σ

⎛⎝n(x)∑
r=1

hyi
xsxr

hxr
σ +

n(z)∑
r=1

hyi
xszr

n(z)∑
t=1

ωrtε
′
t + hyi

xsσ

⎞⎠
+

n(z)∑
s=1

⎛⎝n(z)∑
r=1

ωsrε
′
r

⎞⎠⎡⎣n(x)∑
t=1

hyi
zsxt

hxt
σ +

n(z)∑
t=1

hyi
zszt

n(z)∑
u=1

ωtuε
′
u

⎤⎦
+

n(x)∑
s=1

hyi
σxs
hxs

σ +

n(z)∑
s=1

hyi
σzs

n(z)∑
r=1

ωsrε
′
r + hyi

σσ.

Consider the expectation of the first term on the rhs of (2.81) and
note that

1. the vector gi
[y,x′,y′] does not contain any stochastic variables,

2. in addition to hyi
σ = 0 and hxi

σ = 0 also hyi
σzs

= hyi
σxs

= 0,

3. E(ε′iε
′
j) = 0 for all i �= j and E(ε′iε

′
i) = 1.

Therefore, we get
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E
{
hT

σσg
i
[y,x′,y′]

}
=
[
hy1

σσ, . . . , h
yn(y)
σσ , hx1

σσ, . . . , h
xn(x)
σσ ,Δ9

1, . . . ,Δ
9
n(y)

]
gi
[y,x′,y′],

Δ9
i =

n(x)∑
s=1

hyi
xs
hxs

σσ + hyi
σσ +

n(z)∑
s=1

n(z)∑
r=1

hyi
zszr

n(z)∑
t=1

ωstωrt.

By using a well known property of the trace operator, the expec-
tation of the second term on the rhs of (2.81) equals20

tr

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩
gi
[y′,z′][y′,z′]E

[
Δ7

1, . . . ,Δ
7
n(y),Δ

6
1, . . . ,Δ

6
n(z)

]
⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

Δ7
1

...
Δ7

n(y)

Δ6
1

...
Δ6

n(z)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎭
.

The expectation of the cross-products involved in this expression
are readily evaluated to be

E
[
Δ7

i Δ
7
j

]
=

n(z)∑
q=1

n(z)∑
s=1

hyi
zq
hyj

zs

n(z)∑
r=1

ωqrωsr,

E
[
Δ7

i Δ
6
j

]
=

n(z)∑
s=1

hyi
zs

n(z)∑
r=1

ωsrωjr,

E
[
Δ6

i Δ
6
j

]
=

n(z)∑
r=1

ωirωjr.

Implementation. Our Gauss program SolveQA implements the
computation of the Hesse matrices H i in (2.74). It requires the
coefficients of the linear part, the matrices Π, Ω, the Jacobian
matrix of g stored in a matrix gmat, say, and the n(x) + n(y)
Hesse matrices of gi as input. The latter must be gathered in
a three-dimensional array hcube, say. The program returns two

20 The second term on the rhs of (2.81), say a, is a scalar so that a = tr(a).
Yet, for any two conformable matrices A and B, it holds that tr(AB) =
tr(BA).
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three-dimensional arrays: xcube contains the n(x) Hesse matrices
Hxi and ycube stores the n(y) Hesse matrices Hyi.

Of course, there is other software available on the world wide
web. Schmitt-Grohé and Uribe (2004) provide Matlab pro-
grams that compute the matrices of the quadratic part in our
equation (2.74). An advantage of their program is its ability to
handle symbolic differentiation if you own the respective Matlab
toolbox. Other programs that can handle quadratic approxima-
tions are Dynare21 mainly developed by Juillard and Gensys
written by Sims.22

2.6 Applications

In this section we consider three applications of the methods pre-
sented in the previous sections. First, we solve the benchmark
model introduced in Chapter 1, second, we consider a simplified
version of the time-to-build model of Kydland and Prescott

(1982), and third, we develop a monetary model with nominal
rigidities that give raise to what has been called the New Keyne-
sian Phillips curve.

2.6.1 The Benchmark Model

In Example 1.5.1, we present the benchmark model, in which a
representative agent chooses feed-back rules for consumption and
labor supply that maximize his expected live time utility over
an infinite time horizon. This section shows how we can obtain
linear and quadratic approximations of these feed-back rules by
using the methods introduced in Sections 2.2 through 2.5.

Linear and Quadratic Policy Functions. Our starting point
is the system of stochastic difference equations which we obtained

21 See the user’s guide written by Griffoli (2007).
22 See Kim, Kim, Schaumburg, and Sims (2005) on this program.
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in Section 1.5. We repeat these equations for your convenience:23

0 = c−η
t (1−Nt)

θ(1−η) − λt, (2.82a)

0 = θc1−η
t (1−Nt)

θ(1−η)−1 − (1− α)λtZtN
−α
t kα

t , (2.82b)

0 = akt+1 − (1− δ)kt + ct − ZtN
1−α
t kα

t , (2.82c)

0 = λt − βa−ηEtλt+1

(
1− δ + αZt+1N

1−α
t+1 k

α−1
t+1

)
. (2.82d)

Equation (2.82a) states that the shadow price of an additional unit
of capital, λt, must equal the agent’s marginal utility of consump-
tion. Condition (2.82b) equates the marginal rate of substitution
between consumption and leisure with the marginal product of
labor. Equation (2.82c) is the economy’s resource constraint. Ac-
cording to equation (2.82d) the marginal utility of consumption
must equal the discounted expected utility value of the return on
investment in the future stock of capital. We complete the model
by specifying the law of motion for the natural log of the produc-
tivity shock zt := lnZt:

zt = zt−1 + εt, εt ∼ N(0, σ2). (2.82e)

In Section 1.5 we explain the choice of the model’s parameters α,
β, δ, η, and θ. With these values at hand, we can compute the
stationary solution (k, λ, c, N) from equations (1.46). The vectors
xt, ut, and λt from equations (2.47) are then given by xt ≡ kt−k,
λt ≡ λt − λ, ut := [ct − c, Nt − N ]′, and zt ≡ lnZt. In our
Fortran program Benchmark.for we use numeric differentiation
of (2.82) at (k, λ, c, N) to obtain the Jacobian matrix gmat. From
this matrix we derive the coefficients of the matrices Cu, Cxλ, Cz,
Dxλ, Fxλ, Du, Fu, Dz, and Fz, that appear in (2.47). A call to
SolveLA returns the coefficients of the linear approximate policy
functions. To obtain the coefficients of the quadratic part, we
differentiate each equation of (2.82) twice using CDHesse. This

23 The symbols have the following meaning: Ct is consumption, Nt are work-
ing hours, Kt is the stock of capital, Λt is the shadow price of an additional
unit of capital and Zt is the level of total factor productivity. Except for
λt := Aη

t Λt, the other lower case variables are scaled by the level of labor-
augmenting technical progress At , that is, ct := Ct/At and kt := Kt/At.
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provides the three dimensional array hcube that is an input to
SolveQA. Thus, it requires four steps to compute the solutions:

Step 1: solve for (k, λ, c, n),
Step 2: write a procedure that receives the vector of 10 elements

(k, λ, c, n, z, k′, λ′, c′, n′, z′) and that returns the lhs of
(2.82),

Step 3: compute gmat and hcube by using CDJac and CDHesse,
respectively,

Step 4: set up the matrices required by SolveLA and SolveQA.

Linear Quadratic Algorithm. At first sight, it seems that the
law of motion of the productivity shock zt in equation (2.82e) is
the only linear equation of the benchmark model. Yet, if we use
investment expenditures

it = ZtN
1−α
t kα

t − ct (2.83)

instead of consumption ct, equation (2.82c) can be written as:

kt+1 =
1

a
it +

1− δ
a

kt, (2.84)

which is linear in kt+1, kt, and it. Let xt := [1, kt, zt]
′ denote the

vector of states and ut := [it, Nt]
′ the vector of controls. Then, for

our model, the transition equation (2.31) is given by:

xt+1 =

⎡⎣1 0 0
0 (1− δ)/a 0
0 0 

⎤⎦
︸ ︷︷ ︸

A

xt +

⎡⎣ 0 0
1/a 0
0 0

⎤⎦
︸ ︷︷ ︸

B

ut +

⎡⎣0
0
εt

⎤⎦ . (2.85)

The remaining non-linearities are handled by the algorithm. The
current period return function in the scaled variables is given by:

g(x,u) :=
1

1− η
(
eztN1−α

t kα
t − it

)1−η
(1−Nt)

θ(1−η).

You must write a subroutine, say GProc, that takes the vector
ybar=[1, k, z, i, N ]′ as input and returns the value of g at this
point.
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There is a final issue that concerns the appropriate discount
factor. The value function v that solves the Bellman equation

v(k, z) = max
k′,N

u
(
ezN1−αkα + (1− δ)k − ak′, 1−N)

+ β̃E [v(k′, z′)|z]
is a function in the scaled variables. It is, thus, inappropriate to use
β which pertains to the original variables. β̃ is found by observing
that equations (2.82) solve the following scaled problem:

max
c0,N0

∞∑
t=0

β̃t

{[c1−η
t (1−Nt)

θ(1−η)

1− η

+ λt

(
ZtN

1−α
t kα

t + (1− δ)kt − ct − akt+1

) ]}
,

β̃ := βa1−η.

(2.86)

Other Variables of Interest. Both the program SolveLA and
SolveQA provide approximations of the policy functions for kt+1,
ct, and Nt. From these we obtain the solution for output yt, in-
vestment it, and the real wage wt, respectively, via

yt = ZtN
1−α
t kα

t , (2.87a)

it = yt − ct, (2.87b)

wt = (1− α)ZtN
−α
t kα

t . (2.87c)

The program SolveLQA provides linear approximate solutions for
it and Nt from which we derive ct via equation (2.87b). Given ct
the resource constraint (2.82c) yields the solution for kt+1.

Time series for output yt, consumption ct, investment it, hours
Nt, and the real wage wt are derived by iterations that start at the
stationary solution k1 = k. We use a random number generator to
obtain a sequence of innovations {εt}Tt=1. The sequence of capital
stocks and the sequence of productivity shocks follow from

kt+1 = ĥk(kt, zt),

zt+1 = zt + εt+1,

}
t = 1, 2, . . . , T − 1,
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where ĥk(·) denotes the approximate policy function for the next-
period stock of capital. Once we have computed the sequences
{kt}Tt=1 and {zt}Tt=1, the sequences for the other variables of the
model are obtained from the respective approximate policy func-
tions and from (2.87).

Results. Table 2.2 summarizes the results of our simulations car-
ried out with the Fortran program Benchmark.for. We used the
parameter values from Table 1.1. The length T of our artificial
time series for output, investment, consumption, working hours,
and the real wage is 60 quarters.24 The second moments displayed
in Table 2.2 refer to HP-filtered percentage deviations from a vari-
able’s stationary solution.25 They are averages over 500 simula-
tions. We use the same sequence of shocks for all three solution
methods to prevent random differences in the results.

The first message from Table 2.2 is that except for the small dif-
ference in the standard deviation of investment of 0.01 between
the linear and the linear quadratic solution there are virtually no
differences in the second moments across our three different meth-
ods. There are, however, differences in accuracy. As explained in
Section 1.6.2, we use two measures of accuracy: the residuals of
the Euler equation (2.82d) and the DM-statistic.

The Euler equation residuals are computed over a grid of 400
equally spaced points over the square [k; k] × [z; z]. We choose
z = ln 0.95 and z = ln 1.05 because in more than ninety percent
of our simulations zt remains in this interval. The largest interval
for the stock of capital that we consider is K = [0.8; 1.2]k, where
k is the stationary solution. Yet, even the much smaller inter-
val [0.9; 1.1]k covers all simulated sequences of the capital stock.
We compute the Euler equation residual as the rate by which con-
sumption had to be raised over ĥc(k, z) so that the lhs of equation
(2.82d) matches its rhs. The numbers displayed in Table 2.2 are
the maximum absolute values over the square indicated in the
left-most column of the table.

24 See Section 1.5 on the issues of parameter choice and model evaluation.
25 See Section 12.4 on the HP-Filter.
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Table 2.2

Linear Linear Quadratic Quadratic

Second Moments

Variable sx rxy rx sx rxy rx sx rxy rx

Output 1.44 1.00 0.64 1.44 1.00 0.64 1.44 1.00 0.64

Investment 6.11 1.00 0.64 6.12 1.00 0.64 6.11 1.00 0.64

Consumption 0.56 0.99 0.66 0.56 0.99 0.66 0.56 0.99 0.66

Hours 0.77 1.00 0.64 0.77 1.00 0.64 0.77 1.00 0.64

Real Wage 0.67 0.99 0.65 0.67 0.99 0.65 0.67 0.99 0.65

Euler Equation Residuals

[0.90; 1.10]k 1.835E-4 7.656E-4 1.456E-5

[0.85; 1.15]k 3.478E-4 9.322E-4 4.085E-5

[0.80; 1.20]k 5.670E-4 1.100E-3 8.845E-5

DM-Statistic

<3.816 2.0 1.3 2.7

>21.920 3.4 8.9 3.0

Notes: sx:=standard deviation of variable x, rxy:=cross correlation of variable x with
output, rx:=first order autocorrelation of variable x. All second moments refer to HP-
filtered percentage deviations from a variable’s stationary solution. Euler equation
residuals are computed as maximum absolute value over a grid of 400 equally spaced
points on the square K × [ln 0.95; ln 1.05], where K is defined in the respective row
of the left-most column. The 2.5 and the 97.5 percent critical values of the χ2(11)-
distribution are displayed in the last two lines of the first column. The table entries
refer to the percentage fraction out of 1,000 simulations where the DM-statistic is
below (above) its respective critical value.

First, note that all residuals are quite small. Even in the worst
case, the required change of consumption is merely 0.11 percent.
Second, and as expected from a local method, accuracy dimin-
ishes with the distance from the stationary solution. For instance,
consider the linear policy function. The Euler equation residual
over [0.85; 1.15]k ([0.8; 1.2]k) is almost two times (three times)
larger than the maximum residual over [0.9; 1.1]k. Third, the Euler
equation residuals of the linear quadratic approach are worse than
those of the linear approach. For the former, the maximum ab-
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solute Euler equation residual over [0.9; 1.1]k is more than four
times larger than the Euler equation residual of the linear solution
method. Fourth, although the quadratic policy function delivers
a more accurate solution than the linear policy function, the dif-
ference between the respective Euler equation residuals becomes
smaller as one moves further away from the stationary solution:
Over [0.9; 1.1]k the Euler equation residual of the linear solution
is more than twelve times larger than the Euler equation residual
of the quadratic solution. Yet over [0.8; 1.2]k it is only six times
larger. Fifth, there are several possible ways to compute the Euler
equation residuals. For instance, since both the linear and the
quadratic perturbation method deliver a policy function for λ, we
could use this function in the computation. We, however, used the
policy functions for consumption and hours and inferred λ from
equation (2.82a), since the linear quadratic approach delivers only
policy functions for investment and hours. The difference is con-
siderable: When we use the linear approximate policy function for
λ we find a maximum Euler equation residual over [0.9; 1.1]k that
is 26 times larger than that displayed in Table 2.2.

As explained in Section 1.6.2 (and more formally in Section
12.3), the DM-statistic aims to detect systematic forecast errors
with respect to the rhs of the Euler equation (2.82d). For this
purpose, we simulate the model and compute the ex-post forecast
error

et := βa−ηλt+1

(
1− δ + αZt+1N

1−α
t+1 k

α−1
t+1

)− λt,

where λt is given by equation (2.82a). We use simulated time series
with many periods so that the asymptotic properties of the test
statistic will apply. The simulations always start at the station-
ary solution. To prevent the influence of the model’s transitional
dynamics on our results, we discard a small fraction of the initial
observations. In effect, we use 3,000 points. We regress et on a con-
stant, five lags of consumption, and five lags of the productivity
shock and compute the Wald-statistic (which is the DM-statistic
in this context) of the null that all coefficients from this regres-
sion are equal to zero. We use White’s (1980) heteroscedasticity
robust covariance estimator. Under the null the Wald-statistic has
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a χ2-distribution with 11 degrees of freedom. We run 1,000 tests
and computed the fraction of the DM-statistic below (above) the
2.5 (97.5) percent critical value (displayed in the first column of
Table 2.2). If systematic errors are not present, about 2.5 per-
cent of our simulations should yield test statistics below (above)
the respective critical values. Both, the linear and the quadratic
policy functions provide satisfactory results. Yet, the linear pol-
icy functions obtained from the linear-quadratic approach are less
good. The null is far more often rejected than can be expected,
namely in almost 9 percent of our simulations.

Finally, note that the second moments as well as the DM-
statistic depend on the random numbers used for the productivity
shock zt. Thus, when you repeat our calculations, you will find at
least small differences to our results.

2.6.2 Time to Build

Gestation Period. In the benchmark model investment projects
require one quarter to complete. In their classic article Kydland

and Prescott (1982) use a more realistic gestation period. Based
on published studies of investment projects they assume that it
takes four quarters for an investment project to be finished. The
investment costs are spread out evenly over this period. Yet, the
business cycle in this extended model is similar to the business
cycle in their benchmark model with a one quarter lag. We in-
troduce the time-to-build assumption into the benchmark model
of the previous section. Our results confirm their findings. Nev-
ertheless, we think this venture is worth the while, since it nicely
demonstrates the ease of applying the linear quadratic solution
algorithm to a rather tricky dynamic model.

The model that we consider uses the same specification of the
household’s preferences and production technology as the model
in the previous section. The timing of investment expenditures
differs from this model in the following way. In each quarter t
the representative household launches a new investment project.
After four quarters this project is finished and adds to the cap-
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ital stock. The investment costs are spread out over the entire
gestation period. More formally, let Sit, i = 1, 2, 3, 4 denote an in-
vestment project that is finished after i periods and that requires
the household to pay the fraction ωi of its total costs. At any pe-
riod, there are four unfinished projects so that total investment
expenditures It amount to

It =

4∑
i=1

ωiSit,

4∑
i=1

ωi = 1. (2.88)

Obviously, the Sit are related to each other in the following way:

S1t+1 = S2t,

S2t+1 = S3t,

S3t+1 = S4t,

(2.89)

and the capital stock evolves according to

Kt+1 = (1− δ)Kt + S1t. (2.90)

First-Order Conditions. Since the model exhibits growth, we
transform it to a stationary problem. As in Section 2.6.1 we put
ct := Ct/At, it := It/At, kt := Kt/At, λt := ΛtA

η
t , sit = Sit/At,

and β̃ := βa1−η. In this model, the vector of states is xt =
[1, kt, s1t, s2t, s3t, lnZt]

′ and the vector of controls is u = [s4t, Nt]
′.

From (2.89) and (2.90) we derive the following law of motion of
the stationary variables:

xt+1 =

⎡⎢⎢⎢⎢⎢⎢⎣
1 0 0 0 0 0
0 1−δ

a
1
a

0 0 0
0 0 0 1

a
0 0

0 0 0 0 1
a

0
0 0 0 0 0 0
0 0 0 0 0 ρ

⎤⎥⎥⎥⎥⎥⎥⎦
︸ ︷︷ ︸

:=A

xt +

⎡⎢⎢⎢⎢⎢⎢⎣
0 0
0 0
0 0
0 0
1
a

0
0 0

⎤⎥⎥⎥⎥⎥⎥⎦
︸ ︷︷ ︸

=:B

ut +

⎡⎢⎢⎢⎢⎢⎢⎣
0
0
0
0
0
εt

⎤⎥⎥⎥⎥⎥⎥⎦ . (2.91)

The remaining task is to compute the stationary equilibrium.
Consider the Lagrangean of the stationary problem:
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L = E0

∞∑
t=0

β̃t

{
c1−η
t (1−Nt)

θ(1−η)

1− η

+ λt

(
ZtN

1−α
t kα

t −
4∑

i=1

ωisit − ct
)

+ γt((1− δ)kt + s1t − akt+1)

}
,

where γt is the Lagrange multiplier of the transformed constraint
(2.90). Differentiating this expression with respect to ct, Nt, s4t

and kt+4 provides the following conditions:26

λt = c−η
t (1−Nt)

θ(1−η), (2.92a)

θct
1−Nt

= (1− α)ZtN
−α
t kα

t , (2.92b)

0 = Et

[− ω4λt − (β̃/a)ω3λt+1 − (β̃/a)2ω2λt+2 (2.92c)

− (β̃/a)3ω1λt+3 + (β̃/a)3γt+3

]
,

0 = Et

[− (β̃/a)3γt+3 + (β̃/a)4(1− δ)γt+4 (2.92d)

+ (β̃/a)4λt+4αZt+4N
1−α
t+4 k

α−1
t+4

]
.

The first and the second condition are standard and need no com-
ment. The third and the fourth condition imply the following
Euler equation in the shadow price of capital:

0 = Et

{
ω4[(β̃/a)(1− δ)λt+1 − λt]

+ ω3(β̃/a)[(β̃/a)(1− δ)λt+2 − λt+1]

+ ω2(β̃/a)
2[(β̃/a)(1− δ)λt+3 − λt+2]

+ ω1(β̃/a)
3[(β̃/a)(1− δ)λt+4 − λt+3]

+ (β̃/a)4αλt+4Zt+4N
1−α
t+4 k

α−1
t+4

}
.

26 To keep track of the various terms that involve s4t and kt+4, it is helpful
to write out the sum for t = 0, 1, 2, 3, 4.
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Stationary Equilibrium. On a balanced growth path, where
Zt = 1 and λt = λt+1 for all t, this expression reduces to

y

k
=
a− β̃(1− δ)

αβ̃

[
ω1 + (a/β̃)ω2 + (a/β̃)2ω3 + (a/β̃)3ω4

]
.

(2.93)

Given a, β, δ, and η, we can solve this equation for the output-
capital ratio y/k. From (1−δ)k+s1 = ak we find s1 = (a+δ−1)k,
the stationary level of new investment projects started in each
period. Total investment per unit of capital is then given by

i

k
=

1

k

4∑
i=1

ωisi = (a + δ − 1)

4∑
i=1

ai−1ωi.

Using this, we can solve for

c

k
=
y

k
− i

k
.

Since y/c = (y/k)/(c/k), we can finally solve the stationary
version of (2.92b) for N . This solution in turn provides k =
N(y/k)1/(α−1), which allows us to solve for i and c. The final step
is to write a procedure that returns the current period utility as
a function of x and u. The latter is given by:

g(x,u) :=
1

1− η

(
eln ZtN1−α

t kα
t −

4∑
i=1

sit

)1−η

(1−Nt)
θ(1−η).

Results. The Gauss program ToB.g implements the solution. We
use the parameter values from Table 1.1 and assume ωi = 0.25, i =
1, . . . , 4. Table 2.3 displays the averages of 500 time series mo-
ments computed from the simulated model. We used the same
random numbers in both the simulations of the benchmark model
and the simulations of the time-to-build model. Thus, the differ-
ences revealed in Table 2.3 are systematic and not random.

In the time-to-build economy output, investment, and hours
are a little less volatile than in the benchmark economy. The in-
tuition behind this result is straightforward. When a positive tech-
nological shock hits the benchmark economy the household takes
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Table 2.3

Benchmark Time to Build

Variable sx rxy rx sx rxy rx

Output 1.45 1.00 0.63 1.37 1.00 0.63

Investment 6.31 0.99 0.63 5.85 0.99 0.65

Consumption 0.57 0.99 0.65 0.58 0.97 0.56

Hours 0.78 1.00 0.63 0.71 0.98 0.65

Real Wage 0.68 0.99 0.64 0.68 0.98 0.58

Notes: sx:=standard deviation of HP-filtered simulated series of variable x,
rxy:=cross correlation of variable x with output, rx:=first order autocorrela-
tion of variable x.

the chance, works more at the higher real wage and transfers part
of the increased income via capital accumulation into future peri-
ods. Since the shock is highly autocorrelated, the household can
profit from the still above average marginal product of capital in
the next quarter. Yet in the time-to-build economy intertemporal
substitution is not that easy. Income spent on additional invest-
ment projects will not pay out in terms of more capital income
until the fourth quarter after the shock. However, at this time a
substantial part of the shock has faded. This reduces the incentive
to invest and, therefore, the incentive to work more.

Lawrence Christiano and Richard Todd (1996) embed
the time-to-build structure in a model where labor augmenting
technical progress follows a random walk. They use a different
parameterization of the weights ωi. Their argument is that in-
vestment projects typically begin with a lengthy planning phase.
The overwhelming part of the project’s costs are spent in the
construction phase. As a consequence, they set ω1 = 0.01 and
ω2 = ω3 = ω4 = 0.33. This model is able to account for the pos-
itive autocorrelation in output growth, whereas the Kydland

and Prescott (1982) parameterization of the same model –
ωi = 0.25, i = 1, . . . , 4 – is not able to replicate this empirical
finding. However, the random walk assumption does not lent it-
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self to the linear quadratic approach, and, therefore we will not
pursue this matter any further.

2.6.3 New Keynesian Phillips Curve

Money in General Equilibrium. So far we have restricted our
attention to non-monetary economies. In this subsection we focus
on the interaction of real and monetary shocks to explain the
business cycle.

Introducing money into a dynamic general equilibrium model
is not an easy task. As a store of value money is dominated by
other interest bearing assets like corporate and government bonds
or stocks, and in the basically one-good Ramsey model there is
no true need for a means of exchange. So how do we guarantee a
positive value of pure fiat outside money in equilibrium?

Monetary theory has pursed three approaches (see, e.g., Walsh

(2003)). The first device is to assume that money yields direct util-
ity, the second strand of the literature imposes transaction costs,
and the third way is to guarantee an exclusive role for money as a
store of value. We will pursue the second approach in what follows
and assume transaction costs to be proportional to the volume of
trade. Moreover, a larger stock of real money balances relative to
the volume of trade reduces transaction costs (see Leeper and
Sims (1994)). Different from other approaches, as, e.g., the cash-
in-advance assumption, our particular specification implies the
neutrality of monetary shocks in the log-linear model solution.
This allows us to focus on other deviations from the standard
model that are required to explain why money has short-run real
effects.

The most prominent explanation for the real effects of money
that has been pursued in the recent literature are nominal rigidi-
ties that arise from sticky wages and/or prices.27 Among the var-

27 A non-exhaustive list of models of nominal rigidities includes Bergin

and Feenstra (2000), Chari, Kehoe, and McGrattan (2000), Cho

and Cooley (1995), Cooley and Hansen (1995, 1998), Christiano,
Eichenbaum, and Evans (1997), Hairault and Portier (1995).
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ious models probably the Calvo (1983) model has gained the
most widespread attention. For this reason we use the discrete
time version of his assumption on price setting to introduce nom-
inal frictions into the monetary economy that we consider in the
following paragraphs.

The Calvo (1983) hypothesis provides a first-order condition
for the optimal relative price of a monopolistically competitive
firm that is able to adjust its price optimally whereas a fraction
of other firms is not permitted to do so. The log-linear version of
this condition (see equation (A.4.11e) in Appendix 4) relates the
current inflation rate to the expected inflation rate and a measure
of labor market tension. It thus provides solid microfoundations
for the well-known Phillips curve that appears in many textbooks.
This curve plays the role of a short-run aggregate supply function
and relates inflation to expected inflation and cyclical unemploy-
ment.28 In the Calvo (1983) model the deviation of marginal
costs from their average level measures labor market tension. Since
this equation resembles the traditional Phillips curve it is some-
times referred to as the New Keynesian Phillips curve.

The Household Sector. The representative household has the
usual instantaneous utility function u defined over consumption
Ct and leisure 1 −Nt, where Nt are working hours:

u(Ct, 1−Nt) :=
C1−η

t (1−Nt)
θ(1−η)

1− η . (2.94)

The parameters of this function are non-negative and satisfy
η > θ/(1 + θ). The household receives wages, rental income from
capital services, dividends Dt and a lump-sum transfer from the
government Tt. We use Pt to denote the aggregate price level. The
wage rate in terms of money is Wt and the rental rate in terms of
consumption goods is rt. The household allocates its income net
of transaction costs TCt to consumption, additional holdings of
physical capital Kt and real money balances Mt/Pt, where Mt is
the beginning-of-period stock of money. This produces the follow-
ing budget constraint:

28 See, e.g., Mankiw (2000), pp. 364.
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Mt+1 −Mt

Pt
+Kt+1 − (1− δ)Kt ≤ Wt

Pt
Nt + rtKt +Dt

+ Tt − TCt − Ct.

(2.95)

Transactions costs are given by the following function

TCt = γ

(
Ct

Mt+1/Pt

)κ

Ct, γ, κ > 0. (2.96)

Importantly, the assumption that the costs TCt depend upon
the ratio of consumption to real end-of-period money holdings
Mt+1/Pt is responsible for the neutrality of money in our model.
The household maximizes the expected discounted stream of fu-
ture utility

E0

∞∑
t=0

βtu(Ct, 1−Nt)

subject to (2.95) and (2.96).

Money Supply. The government sector finances the transfers to
the household sector from money creation. Thus,

Tt =
Mt+1 −Mt

Pt
. (2.97)

We assume that the monetary authority is not able to monitor
the growth rate of money supply perfectly. In particular, we posit
the following stochastic process for the growth factor of money
supply μt := Mt+1/Mt:

μ̂t+1 = ρμμ̂t + εμt , μ̂t := lnμt − lnμ, εμt ∼ N(0, σμ). (2.98)

In the stationary equilibrium money grows at the rate μ− 1.

Price Setting. To motivate price setting by individual firms we
assume that there is a final goods sector that assembles the output
of a large number Jt of intermediary producers to the single good
Yt according to

Yt =

[
J
−1/ε
t

Jt∑
j=1

Y
(ε−1)/ε
jt

]ε/(ε−1)

, ε > 1. (2.99)
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The money price of intermediary product j is Pjt and final output
sells at the price Pt. The representative firm in the final sector
takes all prices as given. Maximizing its profits PtYt−

∑Jt

j=1 PjtYj

subject to (2.99) produces the following demand for good j:

Yjt =

(
Pjt

Pt

)−ε
Yt

Jt
. (2.100)

Accordingly, ε is the price elasticity of demand for good j. It is
easy to demonstrate that the final goods producers earn no profits
if the aggregate price index Pt is given by the following function:

Pt =

[
1

Jt

Jt∑
j=1

P 1−ε
jt

]1/(1−ε)

. (2.101)

An intermediary producer j combines labor Njt and capital
services Kjt according to the following production function:

Yjt = Zt(AtNjt)
1−αKα

jt − F, α ∈ (0, 1), F > 0. (2.102)

F is a fixed cost in terms of forgone output. We will use F to
determine the number of firms on a balanced growth path from
the zero profit condition. As in all our other models At is an
exogenous, deterministic process for labor augmenting technical
progress,

At+1 = aAt, a ≥ 1,

and Zt is a stationary, stochastic process for total factor produc-
tivity that follows

Ẑt+1 = ρZẐt + εZt , Ẑt = lnZt, ε
Z
t ∼ N(0, σZ).

Note that α, F , At, and Zt are common to all intermediary pro-
ducers, who also face the same price elasticity ε.

From now on we must distinguish between two types of firms,
which we label A and N , respectively. Type A firms are allowed
to set their price PAt optimally, whereas type N firms are not. To
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prevent their relative price PNt/Pt from falling short of the aggre-
gate price level, type N firms are permitted to increase their price
according to the average inflation factor π. This is the inflation
factor on a balanced growth path without any uncertainty. Thus

PNt = πPNt−1. (2.103)

To which type an individual firm j belongs is random. At each
period (1−ϕ)Jt of firms receive the signal to choose their optimal
relative price PAt/Pt. The fraction ϕ ∈ [0, 1] must apply the rule
(2.103). Those firms that are free to adjust their price solve the
following problem:

max
PAt

Et

∞∑
τ=t

ϕτ−tτ

[(
πτ−tPAt

Pτ

)
YAτ − gτ (YAτ + F )

]
s.t. YAτ =

(
πτ−tPAt

Pτ

)−ε
Yτ

Jτ

.

(2.104)

The sum to the right of the expectations operator Et is the dis-
counted flow of real profits earned until the firm will be able to
reset its price optimally again. Real profits are given by the value
of sales in units of the final good [(πτ−tPAt)/Pτ ]Yτ minus produc-
tion cost gτ (YAτ +F ), where gτ are the firm’s variable unit costs.29

The term ϕτ−t captures the probability that in period τ the firm
is still a type N producer. τ is the discount factor for time τ
profits. We show in Section 6.3.4 that this factor is related to the
household’s discount factor β and marginal utility of wealth Λτ

by the following formula:

τ = βτ−tΛτ

Λt
. (2.105)

Intermediary producers distribute their profits to the household
sector. Thus,

29 We show in Appendix 4 that gτ also equals the firm’s marginal costs.
Note further that equation (2.102) implies that the firm must produce the
amount Yjt + F in order to sell Yjt.
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Dt :=

Jt∑
j=1

Pjt

Pt
Yjt − Wt

Pt
Njt − rtKjt. (2.106)

This equation closes the model. To streamline the presentation we
restrict ourselves to the properties of the stationary equilibrium
and the simulation results. Appendix 4 provides the mathemat-
ical details of the analysis and the loglinear model used for the
simulation.

Stationary Equilibrium. The model of this section depicts a
growing economy. For this reason we must scale the variables so
that they are stationary on a balanced growth path. As previ-
ously, we use the following definitions: ct := Ct/At, yt := Yt/At,
kt := Kt/At, λt := ΛtA

η
t . In addition, we define the infla-

tion factor πt := Pt/Pt−1 and real end-of-period money balances
mt := Mt+1/(AtPt). The stationary equilibrium of the determin-
istic model has the following properties:

1. The productivity shock and the money supply shock equal their
respective means Zt = Z ≡ 1 and μt = μ for all t.

2. Inflation is constant: π = Pt

Pt−1
for all t.

3. All (scaled) variables are constant.
4. All firms in the intermediary sector earn zero profits.

There are two immediate consequences of these assumptions.
First, inflation is directly proportional to the growth rate of money
supply μ− 1:30

π =
μ

a
.

Second, the optimal relative price of type A firms satisfies

PA

P
=

ε

ε− 1
g,

i.e., it is determined as a markup on the firm’s marginal costs g.
Furthermore, the formula for the price index given in equation
(A.4.5) implies PA = P so that g = (ε− 1)/ε and PN = P . Since

30 See equation (A.4.2c) for mt = mt+1.
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all firms charge the same price, the market share of each producer
is Y/J . Therefore, working hours and capital services are equal
across firms, Nj = N/J , and Kj = K/J , and profits amount to

Dj =
Y

J
− g

(
Y

J
+ F

)
.

Imposing Dj = 0 for all j and using Y/J = (AN/J)1−α(K/J)α −
(F/J) yields

j :=
Jt

At
=
N1−αkα

εF
.

Thus, to keep profits at zero, the number of firms must increase
at the rate a− 1 on the balanced growth path.31 The production
function (2.102) thus implies

y =
ε− 1

ε
N1−αkα.

Using this in the first-order condition for cost minimization with
respect to capital services (see equation (A.4.3b)) implies

r = α(y/k).

Eliminating r from the Euler equation for capital delivers the well
known relation between the output-capital ratio and the house-
hold’s discount factor β:

y

k
=
aη − β(1− δ)

αβ
. (2.107a)

This result allows us to solve for the consumption-output ratio
via the economy’s resource constraint (see (A.4.9)):

c

y
=

(
1 +

1− a− δ
y/k

)[
1 + γ

(
C

μ(M/P )

)κ]−1

.

31 Alternatively, we could have assumed that fixed costs are given by AtF so
that the number of firms does not grow without bounds.
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The stationary version of the Euler condition for money balances
(see equation (A.4.2e)) delivers:

βa1−η

μ
= 1− κγ

(
C

μ(M/P )

)1+κ

. (2.107b)

We need a final equation to determine the stationary level of work-
ing hours. Using the results obtained so far we derive this relation
from the household’s first-order condition with respect to labor
supply (see equation (A.4.2b)):

N

1−N =
1− α
θ

(
1 +

1− a− δ
y/k

)−1

h(c/x), (2.107c)

h(c/x) :=
1 + γ(c/x)κ

1 + γ(1 + κ)(c/x)κ
,
c

x
:=

PC

μM
.

It is obvious from equation (2.107a) that the output-capital ratio
and therefore also the capital-labor ratio k/N and labor produc-
tivity y/N are independent of the money growth rate. As can be
seen from (2.107b), the velocity of end-of-period money balances
c/x ≡ C/(μ(M/P )) is an increasing function of the money growth
rate. In the benchmark model of Section 2.6.1 working hours are
determined by the first two terms on the rhs of (2.107c). The
presence of money adds the factor h(c/x). It is easy to show that
h(c/x) is an decreasing function of the velocity of money (c/x).
Since N/(1−N) increases with N , steady-state working hours are
a decreasing function of the money growth rate.

Calibration. We do not need to assign new values to the stan-
dard parameters of the model. The steady state relations pre-
sented in the previous paragraph show that the usual procedure
to calibrate β, α, a, and δ is still valid. We will also use the em-
pirical value of N to infer θ from (2.107c). This implies a slightly
smaller value of θ as compared to the value of this parameter in
the benchmark model. Nothing is really affected from this choice.

Unfortunately, there is no easy way to determine the parame-
ters of the productivity shock, since there is no simple aggregate
production function that we could use to identify Zt. The problem
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becomes apparent from the following equation, which we derive
in Appendix 4:

ŷt = ϑ(1 − α)N̂t + ϑαk̂t + ϑẐt(1− ϑ)ĵt, ϑ =
ε

ε− 1
. (2.108)

This equation is the model’s analog to the log-linear aggregate
production function in the benchmark model given by

ŷt = (1− α)N̂t + αk̂t + Ẑt.

Since ϑ > 1 we overstate the size of Ẑt, when we use this latter
equation to estimate the size of the technology shock from data
on output, hours, and the capital stock. Furthermore, in as much
as the entry of new firms measured by ĵt depends upon the state
of the business cycle, the usual measure of Ẑt is further spoiled.
We do not consider this book to be the right place to develop
this matter further. Possible remedies have been suggested for
instance by Rotemberg and Woodford (1995) and Hairault

and Portier (1995). Instead, we continue to use the parameters
from the benchmark model so that we are able to compare our
results to those obtained in the Section 2.6.1 and Section 2.6.2.

What we further need are the parameters of the money supply
process, of the transaction costs function, and of the structure of
the monopolistic intermediary goods sector.

Our measure of money supply is the West-German monetary
aggregate M1 per capita. As in Section 1.5 we focus on the period
1975.i through 1989.iv. The average quarterly growth rate of this
aggregate was 1.67 percent. We fitted an AR(1) process to the
deviations of μt from this value. The autocorrelation parameter
from this estimation is not significantly different from zero and the
estimated standard deviation of the innovations is σμ = 0.0173.
We use the average velocity of M1 with respect to consumption
of 0.84 to determine γ from (2.107b). Finally, we can use the
following observation to find an appropriate value of κ: The lhs
of equation (2.107b) is equal to

1

π(1− δ + r)
.
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The term in the denominator is the nominal interest rate factor,
i.e., one plus the nominal interest rate q, say. This implies the
following long run interest rate elasticity of the demand for real
money balances:

d(M/P )/(M/P )

dq/q
=

−1

(1 + κ)π(1− δ + r)
.

The estimate of this elasticity provided by Hoffman, Rasche,
and Tieslau (1995) is about -0.2. Since 1/R ≈ 1 we use κ = 4.

Table 2.4

Preferences Production
β=0.994 a=1.005 α=0.27
η=2.0 δ=0.011 ρZ=0.90
N=0.13 σZ=0.0072

Money Supply Transactions Costs Market Structure
μ=1.0167 C/(M/P )=0.84 ϕ=0.25
ρμ=0.0 κ=4.0 ε=6.0
σμ=0.0173

The degree of nominal rigidity in our model is determined by
the parameter ϕ. According to the estimates found in Rotem-

berg (1987) it takes about four quarters to achieve full price
adjustment. Therefore, we use ϕ = 0.25. Linnemann (1999)
presents estimates of markups for Germany, which imply a price
elasticity of ε = 6. Table 2.4 summarizes this choice of parameters.

Results. The Gauss program NKPK.g implements the solution.
To understand the mechanics of the model, we consider the case
without nominal frictions first. Figure 2.5 displays the time paths
of several variables after a one-time shock to the money supply
process (2.98) in period t = 3 of size σμ. Before this shock the
economy was on its balanced growth path, after this shock the
growth factor of money follows (2.98) with εμt = 0.

The case ρμ = 0 highlights the unanticipated effect of the
shock, since after period 3 the money growth rate is back on its
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Figure 2.5: Real Effects of a Monetary Shock in the Model Without
Nominal Rigidities

stationary path. The money transfer in period 3 raises the house-
hold’s income unexpectedly. Since both consumption and leisure
are normal goods the household’s demand for consumption in-
creases and its labor supply decreases. The latter raises the real
wage so that marginal costs increase. Higher costs and excess de-
mand raise inflation. This increase just offsets the extra amount of
money so that the real stock of money does not change. Therefore,
none of the real variables really changes. Money is neutral. This
can be seen in Figure 2.5 since the impulse responses of output,
consumption, and investment coincide with the zero line.

Things are different when the shock is autocorrelated. In this
case there is also an anticipated effect. Households know that
money growth will remain above average for several periods and
expect above average inflation. This in turn increases the expected
costs of money holdings and households reduce their cash hold-
ings. As a consequence, the velocity of money with respect to
consumption increases. To offset this negative effect on transac-
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tion costs the households reduce consumption. Their desire to
smooth consumption finally entails less investment. Note however
that these effects are very small. For instance, consumption in pe-
riod 3 is 0.16 percent below its stationary value, and investment
is 0.08 percent below its steady state level.

We find very different impulse responses, if nominal rigidities
are present. This can be seen in Figure 2.6. Since inflation cannot
adjust fully, households expect above average inflation even in the
case of ρμ = 0. This creates a desire to shift consumption to the
current period so that there is excess demand. Monopolistically
competitive firms are willing to satisfy this demand since their
price exceeds their marginal costs. Thus output increases. The
household’s desire to spread the extra income over several periods
spurs investment into physical capital.

There is another noteworthy property of the model: The spike-
like shape of the impulse responses. Consumption, hours, output,
and investment are almost back on their respective growth paths

Figure 2.6: Impulse Responses to a Monetary Shock in the New
Keynesian Phillips Curve Model
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after period 3, irrespective of whether or not the monetary shock
is autocorrelated. This is in stark contrast to the findings of em-
pirical studies. For instance, according to the impulse responses
estimated by Cochrane (1998) and, more recently, by Chris-

tiano, Eichenbaum, and Evans (2005) the response of output
is hump shaped and peaks after eight quarters. The apparent fail-
ure of the model to explain the persistence of a monetary shock
has let many researches to question the usefulness of the New
Keynesian Phillips curve. In a recent paper Eichenbaum and
Fisher (2004) argue that the Calvo (1983) model is able to
explain persistent effects of monetary shocks if one abandons the
convenient but arbitrary assumption of a constant price elasticity.
Walsh (2005) argues that labor market search, habit persistence
in consumption, and monetary policy inertia together can explain
the long-lasting effects of monetary shocks. However, as Heer

and Maußner (2007) point out, this result may be due to the
assumption of prohibitively high costs of capital adjustment. In
Christiano, Eichenbaum, and Evans (2005) wage staggering
and variable capacity utilization account for the close fit between
the estimated and the model-implied impulse responses of output
and inflation.

Table 2.5 reveals the contribution of monetary shocks to the
business cycle. To fully understand the model we must disentan-
gle several mechanisms that work simultaneously. For this rea-
son, columns 2 to 4 present simulations, where neither mone-
tary shocks, nor nominal rigidities, nor monopolistic elements are
present. This requires to set ϑ = 1, ϕ = 0, and σμ = 0 in the
program NKPK.g. Obviously, this model behaves almost like the
benchmark model (see Table 2.2).

Next consider columns 5 to 7. In this model, there are no mon-
etary shocks, but there are monopolistic price setters facing nomi-
nal rigidities. The most immediate differences are: output is more
volatile and hours are less volatile than in the benchmark model.
How can this happen? Note that under monopolistic price setting
the marginal product of labor is larger than it is under perfect
competition. The same is true for the marginal product of capi-
tal. Thus, a technology shock that shifts the production function
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Table 2.5

ϑ = 1, ϕ = 0, σμ = 0 σμ = 0 σμ = 0.0173

Variable sx rxy rx sx rxy rx sx rxy rx

Output 1.43 1.00 0.63 1.55 1.00 0.68 1.69 1.00 0.56

(1.14) (1.00) (0.80) (1.14) (1.00) (0.80) (1.14) (1.00) (0.80)

Consump- 0.53 0.99 0.65 0.55 0.98 0.72 0.64 0.98 0.52

tion (1.18) (0.79) (0.84) (1.18) (0.79) (0.84) (1.18) (0.79) (0.84)

Invest- 6.16 1.00 0.63 6.87 1.00 0.67 7.31 1.00 0.58

ment (2.59) (0.75) (0.79) (2.59) (0.75) (0.79) (2.59) (0.75) (0.79)

Hours 0.76 1.00 0.63 0.59 0.99 0.75 0.97 0.86 0.23

(0.78) (0.40) (0.31) (0.78) (0.40) (0.31) (0.78) (0.40) (0.31)

Real 0.67 0.99 0.65 0.66 0.99 0.72 0.81 0.97 0.45

Wage (1.17) (0.41) (0.91) (1.17) (0.41) (0.91) (1.17) (0.41) (0.91)

Inflation 0.27 −0.53 −0.07 0.31 −0.48 −0.05 1.62 0.30 −0.06

(0.28) (0.04)(−0.03) (0.28) (0.04)(−0.03) (0.28) (0.04) (−0.03)

Notes: sx:=standard deviation of HP-filtered simulated series of variable x, rxy:=cross
correlation of variable x with output, rx:=first order autocorrelation of variable x.
Empirical magnitudes in parenthesis.

outward boosts output more than it would do in a competitive
environment. Due to the fixed costs of production, the shock also
raises profits and thus dividend payments to the household. This
in turn increases the household’s demand for leisure. Since prices
do not fully adjust, these effects are a bit smaller than they are
in a purely real model without nominal frictions.32

Columns 8 to 10 present the results from simulations where
both technology shocks and monetary shocks are present. The
most noteworthy effect concerns working hours. The standard de-
viation of this variable increases by 64 percent. The wealth effect
that we identified above now works in the opposite direction: A
monetary shock squeezes the profits of firms, since marginal costs
rise and prices cannot fully adjust. As a consequence, the house-

32 A detailed comparison between a real and a monetary model of monopo-
listic price setting appears in Maußner (1999).
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hold’s demand for leisure falls. But note, most of the shock is
absorbed by inflation, which increases substantially.
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Appendix 3: Solution of the Stochastic LQ Problem

In this Appendix we provide the details of the solution of the stochas-
tic linear quadratic (LQ) problem. If you are unfamiliar with matrix
algebra, you should consult 11.1 before proceeding.

Using matrix algebra we may write the Bellman equation (2.15) as
follows:

x′Px + d = max
u

[
x′Qx + u′Ru + 2u′Sx

+ βE
(
x′A′PAx + u′B′PAx + ε′PAx

+ x′A′PBu + u′B′PBu + ε′PBu

+ x′A′Pε+ u′B′Pε+ ε′Pε+ d
)]
.

(A.3.1)

Since E(ε) = 0 the expectation of all linear forms involving the vector
of shocks ε evaluate to zero. The expectation of the quadratic form
ε′Pε is:

E

(
n∑

i=1

n∑
i=1

pijεiεj

)
=

n∑
i=1

n∑
j=1

pijσij ,

where σij (σii) denotes the covariance (variance) between εi and εj
(of εi). It is not difficult to see that this expression equals tr(PΣ).
Furthermore, since P = P ′ and

z := u′B′PAx = z′ = (x′A′PB′u)′

we may write the Bellman equation as

x′Px + d = max
u

[
x′Qx + 2uSx + u′Ru + βx′A′PAx

+ 2βx′A′PBu + βu′B′PBu + β tr(PΣ) + βd
]
.

(A.3.2)

This is equation (2.16) in the main text. Differentiation of the rhs of
this expression with respect to u yields

2Sx + 2Ru + 2β(x′A′PB)′ + 2β(B′PB)u.

Setting this equal to the zero vector and solving for u gives
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(R+ βB′PB)︸ ︷︷ ︸
C−1

u = − (S + βB′PA)︸ ︷︷ ︸
D

x

⇒ u = −CDx.
(A.3.3)

If we substitute this solution back into (A.3.2), we get:

x′Px + d = x′Qx− 2(CDx)′Sx + (CDx)′RCDx + βx′A′PAx

− 2βx′A′PBCDx + β(CDx)′B′PBCDx + β tr (PΣ) + βd

= x′Qx + βx′A′PAx

− 2x′D′C ′Sx− 2βx′A′PBCDx

+ x′D′C ′RCDx + βx′D′C ′B′PBCDx

+ β tr (PΣ) + βd.

The expression on the fourth line can be simplified to

− 2x′D′C ′Sx− 2βx′A′PBCDx︸ ︷︷ ︸
=2βx′D′C′B′PAx

= −2x′D′C ′ (S + βB′PA)︸ ︷︷ ︸
D

x = −2x′D′C ′Dx.

The terms on the fifth line add to

x′D′C ′ (R + βB′PB)C︸ ︷︷ ︸
I

Dx = x′D′C ′D.

Therefore,

x′Px+d = x′Qx+βx′A′PAx−x′D′C ′Dx+β tr(PΣ)+βd. (A.3.4)

For this expression to hold, the coefficient matrices of the various
quadratic forms on both sides of equation (A.3.4) must satisfy the
matrix equation

P = Q+ βA′PA+D′C ′D,

and the constant d must be given by

d =
β

1− β tr(PΣ).

This finishes the derivation of the solution of LQ the problem.
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Appendix 4: Derivation of the Log-Linear Model of the New
Keynesian Phillips Curve

In this appendix we provide the details of the solution of the model
from Section 2.6.3.

The Household’s Problem. The Lagrangean of the household’s
problem is:

L = E0

∞∑
t=0

βt

{
C1−η

t (1−Nt)θ(1−η)

1− η

+ Λt

[
Wt

Pt
Nt + (rt − δ)Kt +Dt + Tt

− γ
(

Ct

Mt+1/Pt

)κ

Ct − Ct − (Kt+1 −Kt)− Mt+1 −Mt

Pt

]}
.

Differentiating this expression with respect to Ct, Nt, Kt+1 and Mt+1

provides the following first-order conditions:

0 = C−η
t (1−Nt)θ(1−η) − EtΛt

[
1 + γ(1 + κ)

(
Ct

Mt+1/Pt

)κ]
,

0 = θC1−η
t (1−Nt)θ(1−η)−1 − Λt

Wt

Pt
, (A.4.1)

0 = Λt − βEtΛt+1(1− δ + rt+1),

0 = Et

{
−Λt

Pt
+ κγ

(
Ct

Mt+1/Pt

)κ+1 Λt

Pt
+ β

Λt+1

Pt+1

}
.

As usual, we must define variables that are stationary. We choose
ct := Ct/At, kt := Kt/At, λt := ΛtA

η
t , wt := Wt/(PtAt), mt+1 :=

Mt+1/(AtPt), and jt := Jt/At. The inflation factor is πt := Pt/Pt−1.
Since the price level is determined in period t, this variable is also a
period t variable. The growth factor of money supply, also determined
in period t, is given by μt := Mt+1/Mt, where Mt is the beginning-of-
period money stock and Mt+1 the end-of-period money stock. In these
variables, we can rewrite the system (A.4.1) as follows:

c−η
t (1−Nt)θ(1−η) = λt

(
1 + γ(1 + κ)

(
ct

mt+1

)κ)
, (A.4.2a)

λtwt = θc1−η
t (1−Nt)θ(1−η)−1, (A.4.2b)
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mt+1 =
μt

aπt
mt, (A.4.2c)

λt = βa−ηEtλt+1 (1− δ + rt+1) , (A.4.2d)

βa−ηEt
λt+1

πt+1
= λt

(
1− κγ

(
ct

mt+1

)κ+1
)
. (A.4.2e)

Price Setting. To study the price setting behavior, it is convenient
to first solve the firm’s cost minimization problem

min
Njt,Kjt

Wt

Pt
Njt + rtKjt s.t. (2.102).

The first-order conditions for this problem are easy to derive. They
are:

wt = gt(1− α)ZtN
−α
jt (Kjt/At)α = gt(1− α)Zt(kt/Nt)α, (A.4.3a)

rt = gtαZtN
1−α
jt (Kjt/At)α−1 = gtαZt(kt/Nt)α−1, (A.4.3b)

where gt is the Lagrange multiplier of the constraint (2.102), and wt :=
Wt/(PtAt) is the real wage rate per unit of effective labor.33 It is well
known from elementary production theory that gt equals the marginal
costs of production. Furthermore, the constant scale assumption with
respect to Yjt + F also implies that gt are the variable unit costs of
production:

gt =
(Wt/Pt)Njt + rtKjt

Yjt + F
.

Marginal costs as well as the capital-output ratio are the same in
all intermediary firms due to the symmetry that is inherent in the
specification of the demand and production function. For later use
we note the factor demand functions that are associated with this
solution:
33 Note that gt is equal for all firms. This can be seen by using

wt

rt
=

1− α
α

Kjt

Njt
,

which implies that all firms choose the same capital-labor ratio kt/Nt ≡
Kjt/Njt, since all firms face the same real wages and rental rates. Via
equation (A.4.3b) this also implies gt = gjt for all j.
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Njt =
Yjt + F

AtZt

(
1− α
α

)α(wt

rt

)−α

, (A.4.4a)

Kjt =
Yjt + F

Zt

(
1− α
α

)α−1(wt

rt

)1−α

. (A.4.4b)

In each period (1 − ϕ)Jt firms choose their optimal money price
PAt and ϕJt firms increase their price according to average inflation,

PNt = πPNt−1.

Therefore, the aggregate price level given in equation (2.101) is:

Pt =
[
(1− ϕ)P 1−ε

At + ϕ(πPNt−1)1−ε
] 1

1−ε .

Now observe that the pool of firms that are not allowed to choose
their price optimally consists itself of firms that were able to set their
optimal price in the previous period and those unlucky ones that were
not allowed to do so. Thus, PNt−1 is in turn the following index:

PN t−1 =
[
(1− ϕ)P 1−ε

A t−1 + ϕ(πPN t−2)1−ε
] 1

1−ε .

Using this formula recursively establishes:

Pt =
[
(1− ϕ)

{
P 1−ε

A t + ϕ(πPA t−1)1−ε + ϕ2(π2PA t−2)1−ε + . . .
}] 1

1−ε ,

which implies

ϕ(πPt−1)1−ε =
[
(1− ϕ){ϕ(πPA t−1)1−ε + ϕ2(π2PA t−2)1−ε + . . . }] .

Thus, the aggregate price level can equivalently be written as

Pt =
[
(1− ϕ)P 1−ε

At + ϕ(πPt−1)1−ε
] 1

1−ε . (A.4.5)

We now turn to the first-order conditions that determine the opti-
mal price of type A firms. Maximizing the expression in (2.104) with
respect to PAt provides the following condition:

ε− 1
ε︸ ︷︷ ︸

=:1/ϑ

PAtEt

∞∑
τ=t

ϕτ−t
τ

(
πτ−t

Pτ

)(1−ε)
Yτ

Jτ

=Et

∞∑
τ=t

ϕτ−t
τ

(
πτ−t

Pτ

)−ε

gτ
Yτ

Jτ
.
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We multiply both sides by P−ε
t and replace 
τ by the rhs of equation

(2.105). The result is:

1
ϑ

(
PAt

Pt

)
Et

∞∑
τ=t

(ϕβa−η)τ−tλτ

λt
π(1−ε)(τ−t)

(
Pτ

Pt

)ε−1 Yτ

Jτ

= Et

∞∑
τ=t

(ϕβa−η)τ−tλτ

λt
π−ε(τ−t)gτ

(
Pτ

Pt

)ε Yτ

Jτ
.

(A.4.6)

Our next task is to determine aggregate output and employment. Note
from (2.100) that final goods producers use different amounts of type
A and N goods since the prices of these inputs differ. Therefore, ag-
gregate output is:

Yt = (1− ϕ)Jt
PAt

Pt
YAt + ϕJt

π

πt
YNt

= (1− ϕ)Jt

[
PAt

Pt

(
ZtAtNAt(KAt/AtNAt)1−α − F )]

+ ϕJt

[
π

πt

(
ZtAtNNt(KNt/AtNNt)1−α − F )] .

Using the fact that all producers choose the same capital-labor ratio
kt/Nt provides:

Yt = At

⎡⎢⎣PAt

Pt
Zt (1− ϕ)JtNAt︸ ︷︷ ︸

ntNt

(kt/Nt)1−α +
π

πt
Zt ϕJtNNt︸ ︷︷ ︸

(1−nt)Nt

(kt/Nt)1−α

⎤⎥⎦
− JtF

[
(1− ϕ)

PAt

Pt
+ ϕ

π

πt

]
,

where the fraction of workers employed by type A firms nt is given by:

nt :=
(1− ϕ)JtNAt

Nt
. (A.4.7)

From this we derive the following equation in terms of aggregate out-
put per efficiency unit At:

yt :=
Yt

At
= ZtN

1−α
t kα

t

[
nt
PAt

Pt
+ (1− nt)

π

πt

]
− jtF

[
(1− ϕ)

PAt

Pt
+ ϕ

π

πt

]
.

(A.4.8)
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In the log-linear version of this equation the variable nt drops out.
Thus, there is no need to derive the equation that determines this
variable.

Finally, consider the household’s budget constraint (2.95). In equi-
librium it holds with equality. Using the government’s budget con-
straint (2.97) and the definition of dividends (2.106), we end up with
the following resource constraint:

akt+1 = yt + (1− δ)kt − γ
(

ct
mt+1

)κ

ct − ct. (A.4.9)

The Log-Linear Model. The dynamic model consists of equations
(A.4.2), (A.4.3), (A.4.5),(A.4.6), (A.4.8), and (A.4.9). The stationary
equilibrium of this system is considered in the main text so that we can
focus on the derivation of the log-linear equations. First, consider the
variables that play the role of the control variables in the system (2.47).
These are the deviations of consumption, working hours, output, the
inflation factor, the real wage rate, and the rental rate of capital from
their respective steady state levels:

ut := [ĉt, N̂t, ŷt, π̂t, ŵt, r̂t]′.

The state variables with predetermined initial conditions are the stock
of capital and beginning-of-period money real money balances. Thus,
in terms of (2.47):

xt = [k̂t, m̂t]′.

Purely exogenous are the technological shock Ẑt, the monetary shock
μ̂t, and the entrance rate of firms ĵt into the intermediary goods sector.
For the latter we will assume it is independent of the state of the
business cycle so that ĵt = 0 for all t.34 Thus,

zt = [Ẑt, μ̂t]′.

The remaining variables are the shadow price of capital λt, firms’
marginal costs gt, and real end-of-period money balances mt+1. Note,
that we cannot determine the latter from equation (A.4.2c), since we

34 For instance, Rotemberg and Woodford (1995) link ĵt to the techno-
logical shock.
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need this equation to determine πt. Thus, in addition to λt and gt,
this variable is a costate. To keep to the dating convention in (2.47)
we define the auxiliary variable xt ≡ mt+1. Hence, our vector of costate
variables comprises:

λt = [λ̂t, ĝt, x̂t]′.

We first present the static equations that relate control variables
to state and costate variables. The log-linear versions of equations
(A.4.2a) through (A.4.2c) are

−(η + ξ1)ĉt − ξ2N̂t = λ̂t − ξ1x̂t, (A.4.10a)

(1− η)ĉt − ξ3N̂t − ŵt = λ̂t, (A.4.10b)
π̂t = m̂t − x̂t + μ̂t, (A.4.10c)

ξ1 :=
κγ(1 + κ)(c/x)κ

1 + γ(1 + κ)(c/x)κ
,
c

x
=

C

μ(M/P )
,

ξ2 := θ(1− η) N

1−N ,

ξ3 := [θ(1− η)− 1]
N

1−N .

The log-linear cost-minimizing conditions (A.4.3) deliver two further
equations:

αN̂t + ŵt = αk̂t + ĝt + Ẑt, (A.4.10d)

(α− 1)N̂t + r̂t = (α− 1)k̂t + ĝt + Ẑt. (A.4.10e)

To derive the sixth equation we use the formula for the price level to
write

πt =
Pt

Pt−1
=

⎡⎢⎢⎣(1− ϕ)

⎛⎜⎜⎝PAt

Pt

Pt

Pt−1︸ ︷︷ ︸
πt

⎞⎟⎟⎠
1−ε

+ ϕπ1−ε

⎤⎥⎥⎦
1

1−ε

.

Log-linearizing at PA/P = 1 provides:

π̂t =
1− ϕ
ϕ

P̂At/P t.

We use this relation to derive
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ŷt − ϑ(1− α)N̂t = ϑαk̂t + ϑẐt + (1− ϑ)ĵt. (A.4.10f)

from equation (A.4.8). The six equations (A.4.10a) through (A.4.10f)
determine the control variables. We now turn to the dynamic equa-
tions that determine the time paths of k̂t, m̂t, x̂t ≡ m̂t+1, λ̂t, and ĝt.
The log-linear versions of the resource constraint (A.4.9), the Euler
equations for capital and money balances (A.4.2d) and (A.4.2e), and
the definition xt := mt+1 are:

aEtk̂t+1 − (1− δ)k̂t − ξ4x̂t =
y

k
ŷt − ξ5ĉt, (A.4.11a)

−Etλ̂t+1 + λ̂t = ξ6Etr̂t+1, (A.4.11b)

Etλ̂t+1 − λ̂t − ξ7x̂t = −ξ7ĉt + Etπ̂t+1, (A.4.11c)
Etm̂t+1 − x̂t = 0, (A.4.11d)

ξ4 := κγ(c/x)κ(c/k),
ξ5 := (1 + γ(1 + κ)(c/x)κ)(c/k),
ξ6 := 1− βa−η(1− δ),

ξ7 :=
κγ(1 + κ)(c/x)1+κ

1− γκ(c/x)1+κ
.

The remaining fifth equation is the log-linear condition for the firms’
optimal price:

(1− ϕ)(1 − ϕβa−η)
ϕ

ĝt = −βa−ηEtπ̂t+1 + π̂t. (A.4.11e)

This looks nice and resembles a Phillips curve since it relates the
current inflation rate to the expected future rate of inflation and a
measure of labor market tension, which is here given by the deviation
of marginal costs from their steady state level. It requires a substantial
amount of algebra to get this relation and it is this task to which we
turn next. Considering (A.4.6) we find:

̂(PAt/Pt)
1
ϑ

y

j

(
1 + ϕβa−η + (ϕβa−η)2 + . . .

)︸ ︷︷ ︸
(1−ϕβa−η)−1

+
1
ϑ

y

j

∞∑
τ=t

(ϕβa−η)τ−tEt

[
̂(λτ/λt) + (ε− 1) ̂(Pτ /Pt) + ̂(yτ/jτ )

]
= g

y

j

∞∑
τ=t

(ϕβa−η)τ−tEt

[
̂(λτ/λt) + ε ̂(Pτ/Pt) + ̂(yτ/jτ ) + ĝτ

]
.
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Since ϑg = 1 and P̂At/Pt = [ϕ/(1−ϕ)]π̂t (see above), we can simplify
this expression to

ϕ

(1− ϕ)(1 − ϕβa−η)
π̂t =

∞∑
τ=t

(ϕβa−η)τ−tEt

[
̂(Pτ/Pt) + ĝτ

]
.

(A.4.12)

Next, we shift the time index one period into the future, multiply
through by ϕβa−η , and compute the conditional expectation of the
ensuing expression:35(

ϕ

1− ϕ
)(

ϕβa−η

1− ϕβa−η

)
Etπ̂t+1

= Et

[ (
ϕβa−η

)2 ̂(Pt+2

Pt+1

)
+
(
ϕβa−η

)3 ̂(Pt+3

Pt+1

)
+ · · · + ϕβa−η ĝt+1

+ (ϕβa−η)2ĝt+2 + . . .

]
.

We subtract this equation from (A.4.12) to arrive at:

ϕ

(1− ϕ)(1 − ϕβa−η)
(
π̂t − ϕβa−ηEtπ̂t+1

)
= ĝt + Et

[
ϕβa−η

̂(Pt+1

Pt

)
+
(
ϕβa−η

)2{ ̂(Pt+2

Pt

)
−

̂(Pt+2

Pt+1

)}

+
(
ϕβa−η

)3{ ̂(Pt+3

Pt

)
−

̂(Pt+3

Pt+1

)}
+ . . .

]
. (A.4.13)

Since(̂
Pτ

Pt

)
=

τ∑
s=t+1

π̂s,

the terms in curly brackets reduce to π̂t+1 so that the sum in brackets
equals

35 Here we use the law of iterated expectations according to which Etxt+1 =
Et (Et+1xt+1).
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π̂t+1

[
ϕβa−η + (ϕβa−η)2 + . . .

]︸ ︷︷ ︸
(ϕβa−η)/(1−ϕβa−η)

.

Substituting these results back into (A.4.13) delivers equation (A.4.11e).
To determine the time path of investment, we start from

it = yt −
(

1 + γ

(
ct
xt

)κ)
ct, xt ≡ mt+1.

The log-linearized version of this equation is:

ît = ι1ŷt − ι2ĉt + ι3x̂t,

ι1 := (y/i) =
y/k

a+ δ − 1
, ι2 :=

(
1 + (1 + κ)γ

( c
x

)κ) c
i
,

ι3 := κγ

(
C

μ(M/P )

)κ c

i
,

c

i
=
y

i
− 1.
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Problems

2.1 Certainty Equivalence
Consider the deterministic linear quadratic optimal control problem of
maximizing

∞∑
t=0

βt [x′
tQx + u′

tRut + 2u′
tSxt]

subject to the linear law of motion

xt+1 = Axt +But.

Adapt the steps followed in Section 2.2 and Appendix 3 to this prob-
lem and show that the optimal control as well as the matrix P are the
solutions to equations (2.17) and (2.18), respectively.

2.2 Relation Between the LQ Problems (2.12) and (2.19)
Show that the linear quadratic problem with the current period return
function

g(xt,ut, zt) := x′
tAxxxt + u′

tAuuut + ztAzzzt

+ 2u′
tAuxxt + 2u′

tAuzzt + 2xtAxzzt

and the law of motion

xt+1 = Bxxt +Buut +Bzzt

is a special case of the problem stated in equations (2.12) and (2.11).
Toward that purpose define

x̃t =
[
xt

zt

]
, ε̃t =

[
0n×1

εt

]
and show how the matrices A, B, Q, R, and S must be chosen so that
both problems coincide.

2.3 Convex Costs of Price Adjustment
Instead of the Calvo (1983) model, consider the following model of price
setting introduced in Hairault and Portier (1995). Intermediate pro-
ducers face convex costs of adjusting their price given by

PCjt := (ψ/2)
(

Pjt

Pjt−1
− π
)2

.

Thus they solve the following problem:
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max E0

∞∑
t=0


t [(Pjt/Pt)Yjt − (Wt/Pt)Njt − rtKjt − PCjt] ,

s.t.

Yjt = (Pjt/Pt)−ε(Yt/Jt),

Yjt = Zt(AtNjt)αK1−α
jt − F.

Calibrate the parameter ψ so that a one percent deviation of the firm’s
inflation factor Pjt/Pjt−1 from average the average inflation factor en-
tails costs of 0.01 percent of the firm’s value added. Do you find more
persistence of a money supply shock with this alternative specification of
nominal rigidities? What happens, if you increase ψ?

2.4 Government Spending in a Real Business Cycle Model
In most OECD countries, wages and labor productivity are acyclic or
even negatively correlated with output and working hours, while, in the
stochastic Ramsey model, however, these correlations are positive and
close to one (please compare table 2.2). One possible remedy for this
shortcoming of the stochastic growth model is the introduction of a gov-
ernment spending shock. The following model is adapted from Baxter

and King (1993) and Ambler and Paquet (1996).
Consider the stochastic growth model where the number of agents is nor-
malized to one. Assume that utility is also a function of government
consumption, where due to our normalization per capita government
spending Gt is also equal to total government spending Gt. In partic-
ular, government consumption substitutes for private consumption Cp

t :

Ct = Cp
t + ϑGt,

with ϑ < 1 as some forms of government spending, for example military
spending, do not provide utility for private consumption. The household
maximizes her intertemporal utility:

max
Cp

0 ,N0

E0

[ ∞∑
t=0

βtC
1−η
t (1−Nt)θ(1−η)

1− η

]
,

β ∈ (0, 1), η ≥ 0, θ ≥ 0, η > θ/(1 + θ),

subject to the budget constraint

Cp
t + Ip

t = (1− τ)(wtNt + rtK
p
t ) + Trt.

Both wage income wtNt and interest income rtKt are taxed at the con-
stant rate τ . The household also receives lump-sum transfers Trt from
the government. The private capital stock evolves according to:
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Kp
t+1 = (1− δ)KP

t + Ip
t ,

where δ denotes the depreciation rate. Production is described by a Cobb-
Douglas Production Function, Yt = ZtN

α
t K

1−α
t , where the productivity

Zt follows an AR(1) process, Zt+1 = Z�
t e

εt , with εt ∼ N(0, σ2) and

 = 0.90 and σ = 0.007. Factors are rewarded by their marginal products.
Government consumption Gt = gtḠ follows a stochastic process:

ln gt = ρg ln gt−1 + εgt ,

with εgt ∼ N(0, σ2
g) and ρg = 0.95 and σg = 0.01. In the steady state,

government consumption is constant and equal to 20% of output, Ḡ =
0.2Ȳ . In equilibrium, the government budget is balanced:

τ(wtNt + rtK
p
t ) = Gt + Trt.

The model is calibrated as follows: β = 0.99, η = 2.0, ψ = 0.5, α = 0.6,
δ = 0.02. θ and τ are chosen so that the steady state labor supply N̄ and
transfers Tr are equal to 0.30 and 0, respectively.
a) Compute the steady state.
b) Compute the log-linear solution. Simulate the model and assume that

εt and εgt are uncorrelated. What happens to the correlation of labor
productivity and wages with output and employment?

c) Assume that transfers are zero, Trt = 0, and that the income tax τt
always adjusts in order to balance the budget. How are your results
affected?

d) Assume now that the government expenditures are split evenly on
government consumption Gt and government investment IG

t . Govern-
ment capital KG

t evolves accordingly

KG
t+1 = (1− δ)KG

t + IG
t ,

and production is now given by

Yt = Zt = ZtN
α
t K

1−γ
t

(
KG

t

)1−α−γ

with α = 0.6 and γ = 0.3. Recompute the model.

2.5 Government Spending and Nominal Rigidities
In the previous problem, you have learned about the ’wealth effect’ of
government demand. An increase in government expenditures results in
a reduction of transfers and, hence, wealth of the households is decreased.
Consequently, the households increase their labor supply and both em-
ployment and output increase. In this problem, you will learn about the
traditional Keynesian IS-LM effect. Expansionary fiscal policy increases
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aggregate demand and demand-constrained firms increases their output
as prices are fixed in the short run. The model follows Linnemann and
Schabert (2003).
Households maximize the expected value of a discounted stream of in-
stantaneous utility:

max
C0,N0

E0

[ ∞∑
t=0

βtC
1−η
t (1−Nt)θ(1−η)

1− η

]
,

β ∈ (0, 1), η ≥ 0, θ ≥ 0, η > θ/(1 + θ).

A role for money is introduced into the model with the help of a cash-in-
advance constraint:

PtCt ≤Mt + PtTrt,

Nominal consumption purchases PtCt are constrained by nominal be-
ginning-of period money balances Mt and nominal government transfers
PtTrt.36 The household holds two kinds of assets, nominal money Mt and
nominal bonds, Bt. Bonds yield a gross nominal return Rt. In addition,
agents receive income from labor, PtwtNt, government transfers, PtTrt,
and from firm profits,

∫ 1

0
Ωit di. The budget constraint is given by:

Mt+1 +Bt+1 + Ptct = PtwtNt + RtBt +Mt + PtTrt +
∫ 1

0

Ωitdi.

The number of firms i is one, i ∈ (0, 1). Firms are monopolistically com-
petitive and set their prices in a staggered way as in the model of Section
2.6.3. Accordingly, profit maximization of the firms implies the New Key-
nesian Phillips curve:

π̂t = ψm̂ct + βEt {π̂t+1} , ψ = (1− ϕ)(1− βϕ)ϕ−1,

where mct denotes marginal costs (compare (A.4.11e)).
Firms produce with labor only:

yit = Nit.

Cost minimization implies that the real wage is equal to marginal costs:

36 Government transfers are included in this cash-in-advance specification in
order to avoid the following: an expansionary monetary policy consisting
in a rise of Mt+1 already increases prices Pt due to the expected infla-
tion effect. Accordingly, real money balances Mt/Pt fall and so does real
consumption Ct if government transfers do not enter the cash-in-advance
constraint. This, however, contradicts empirical evidence.
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wt = mct.

The government issues money and nominal riskless one-period bonds and
spends its revenues on government spending, Gt, and lump-sum transfers:

PtTrt + PtGt +Mt +RtBt = Bt+1 +Mt+1.

Real government expenditures follow an AR(1)-process:

lnGt = ρ lnGt−1 + (1 − ρ) lnG+ εt

with εt ∼ N(0, σ2) and ρ = 0.90 and σ = 0.007.
Monetary policy is characterized by a forward-looking interest-rate rule:

R̂t+1 = ρπE − tπ̂t+1 + ρyEtŷt+1, ρpi > 1.

The restriction ρπ is imposed in order to ensure uniqueness of the equi-
librium.
a) Compute the first-order conditions of the household.
b) Compute the stationary equilibrium that is characterized by a zero-

supply of bonds, Bt = 0,37 and R > 1 (in this case, the cash-in-
advance constraint is always binding). Furthermore, in equilibrium,
the aggregate resource constraint is given by yt = ct + Gt and firms
are identical, yit = yt = Nt = Nit. Define the equilibrium with the
help of the stationary variables {πt, wt,mt ≡ Mt

Pt−1
, Rt, yt, Gt}.

c) Compute the steady-state.
d) Calibrate the model as in the previous problem. In addition, set ρπ =

1.5, ρy ∈ {0, 0.1, 0.5}, π = 1, and ϕ = 0.75.
e) Log-linearize the model and compute the dynamics. How does con-

sumption react to an expansionary fiscal policy? Does it increase (as
IS-LM implies) or decrease (due to the wealth effect)?

f) Assume now that the interest-rate rule is subject to an exogenous
autocorrelated shock with autoregressive parameter ρR ∈ {0, 0.5}.
How does a shock affect the economy?

g) Assume that monetary policy is described by a money-growth rule
that is subject to an autoregressive shock. Recompute the model for
an autoregressive parameter ρμ ∈ {0, 0.5} and compare the impulse
responses to those implied by an interest-rate rule.

37 Why can we set the nominal bonds supply equal to zero?
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Deterministic Extended Path

Overview. We know from Section 1.1 that the first-order condi-
tions of the deterministic finite-horizon Ramsey model constitute
a system of non-linear equations. The first section of this chapter
employs a non-linear equations solver to obtain the approximate
time profile of the optimal capital stock. We then extend this
approach to the infinite-horizon deterministic Ramsey model of
Section 1.2. At first sight this may seem impossible since this
model has an infinite number of unknowns. However, we know
from Section 1.2.4 that the optimal time profile of the capital
stock converges monotonically to the stationary solution. We use
this observation to reduce the system of first-order conditions to a
finite number of equations. In Section 3.2 we turn to the stochas-
tic Ramsey model (1.22). We use the property of this model to
converge after a one-time productivity shock, to trace out a Ratio-
nal expectations path for its variables. From this path we obtain
the solution for the decision variables of the current period. This
observation dates back to Fair and Taylor (1983) and was ap-
plied to the stochastic Ramsey model by Gagnon (1990) from
whom we borrowed the label ’deterministic extended path’. More
broadly speaking, the method is a forward iteration method, since
we solve for current-period variables by determining a specific fu-
ture path of the economy. We sketch the general structure of this
approach at the end of Section 3.2 and close the chapter with
two further applications in Section 3.3: our benchmark model of
Example 1.5.1 and the small open economy model of Correia,
Neves and Rebelo (1995). This latter model is less suited for
the methods of Chapter 2, since it has no uniquely determined
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stationary solution. This feature, however, poses no problem for
the deterministic extended path algorithm.

The mathematical tools that we employ in this chapter are al-
gorithms that obtain approximate numeric solutions to systems
of non-linear equations. We explain the mathematical background
behind the most common routines in Section 11.5. It is the task
of each researcher to prepare the system of non-linear equations
to which her or his model gives rise so that a non-linear equations
solver is able to obtain the solution. For this reason, this chapter
is a collection of example applications that demonstrate the use
of the deterministic extended path approach. Since the solution
of non-linear equations with numerical methods is a delicate busi-
ness, we hope nevertheless that it will be useful for the reader to
go through the following pages.

3.1 Solution of Deterministic Models

In this section we use the finite-horizon deterministic Ramsey
model (1.3) to illustrate the use of non-linear equation solvers. We
then explain the computation of the saddle path of the infinite-
horizon Ramsey model (1.8).

3.1.1 Finite-Horizon Models

The Model. Consider the first-order conditions of the finite-
horizon Ramsey model (1.5), which we here repeat for your con-
venience:

Kt+1 = f(Kt)− Ct, (3.1a)

∂U(C0, . . . , CT )/∂Ct

∂U(C0, . . . , CT )/∂Ct+1

= f ′(Kt+1). (3.1b)

The first equation is the economy’s resource constraint, the second
condition determines the farmer’s savings. As usual, Kt denotes
the capital stock of period t = 0, 1, . . . , T and Ct consumption.
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To determine the time path of capital and consumption from this
system, we must specify functional forms for U and f . We assume
that U is given by the time-separable utility function

U(C0, . . . , CT ) :=

T∑
t=0

βtC
1−η
t − 1

1− η , β ∈ (0, 1), η > 0,

and that

f(Kt) := (1− δ)Kt +Kα
t , α ∈ (0, 1), δ ∈ [0, 1],

where β is the discount factor and δ the rate of capital deprecia-
tion. Using these two functions, equations (3.1) simplify to

0 = [(1− δ)Kt +Kα
t −Kt+1]

−η

− β [(1− δ)Kt+1 +Kα
t+1 −Kt+2

]−η (
1− δ + αKα−1

t+1

)
,

t = 0, 1, . . . , T − 1,

0 = KT+1. (3.2)

For a given initial capital stock K0, this is a system of T non-linear
equations in the T unknown capital stocks K1, K2, . . . , KT . Thus,
it is an example of the general non-linear system of equations
f(x) = 0, x ∈ Rn considered in Section 11.5 and can be solved by
using the algorithms considered there.

Non-Linear Equations Solvers. For their proper use, you
should know how non-linear equations solvers work. The com-
mon structure of the algorithms that we employ in this book is
the iterative scheme:

xs+1 = xs + μΔxs, s = 0, 1, . . . .

They start with an initial guess of the solution x0, determine a
direction of change Δx and a step length μ, and proceed to the
next guess of the solution x1. This process is continued until either
f(xs) � 0, in which case the problem is solved, or xs+1 − xs � 0
so that no further progress can be achieved. The algorithms differ
in the way they determine both μ and Δx.
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The first problem that one, thus, encounters, is the choice of
the initial value x0. In the problems of this chapter, the stationary
solution of the model is usually an adequate choice. In subsequent
chapters, where we will face more complicated non-linear systems,
we will employ genetic search algorithms to tackle the initial value
problem. At least, we must find an x0 so that f is defined at this
point. In our model, this amounts to ensure that consumption is
positive at x0, because in the set of real numbers it is an undefined
operation to raise a negative number to an arbitrary power. In
our Gauss program Ramsey1.g we set the starting value equal
to a fraction of (1 − δ)K0 + Kα

0 for all initial Kt, t = 1, . . . , T
guaranteeing Ct > 0, where K0 is the capital stock inherited from
the past – an exogenously given, arbitrary number.

The second problem that may surface is that the algorithm
selects a point xs+1 at which f cannot be evaluated. Note, that
many algorithms do not control for undefined operations, should
they occur during the course of iterations. Usually, the program
will stop with an error message. To prevent this, our own non-
linear equation solvers keep track of an error flag that you can set
before an undefined operation will be executed. If possible, the
algorithm then reduces μ accordingly to way around this problem.
A second work around is to tell the algorithm that there are upper
and lower bounds for x. In the problems considered in this chapter
this will usually be the case.

Solutions. Figure 3.1 displays four different solutions for the
time path of the capital stock. They differ in the values of δ andK0

but rest on the same choice of α = 0.27, β = 0.994, and T = 60.
The left panel displays solutions for the case δ = 1. If the initial
capital stock K0 is small, the farmer quickly builds up his capital
to a certain level, to which he sticks until shortly before the end
of his planning horizon. Then he rapidly depletes this stock to the
terminal value of KT+1 = 0. The farmer displays a similar behav-
ior if his initial capital stock is very high. He dissaves to reach a
target level, which he again maintains almost up to the end of his
planning horizon.

The right panel displays solutions which rest on a more realistic
value of δ = 0.011 so that the farmer’s savings are small relative



3.1 Solution of Deterministic Models 179

Figure 3.1: Example Solutions of the Finite-Horizon Ramsey Model

to his wealth Kt. Under this assumption the time path of the
capital stock is hump-shaped if the given initial capital stock K0 is
small. If the farmer starts with a high capital stock, he continually
depletes his resources over his entire planning period.

3.1.2 Infinite-Horizon Models

It is easy to extend the approach of the previous subsection to ob-
tain approximate solutions of the transitional dynamics of infinite-
horizon deterministic models. We take advantage of a model’s
property to approach a stationary solution from arbitrary ini-
tial conditions. An example of this property is the saddle path
of the Ramsey model (1.8), which we study in Section 1.2.4. To
approximate this path, we simply replace the terminal condition
KT+1 = 0 in (3.2) with the stationary capital stock KT+1 = K∗.
In this way, we obtain a finite-dimensional system of non-linear
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equations from the infinite number of equations that determine
the true solution.

The Model. The Euler equations of the Ramsey model (1.8)
are given in (1.17). Using the same functional forms as in the
previous subsection, these equations also simplify to the system
given in (3.2) except that they hold for all t = 0, 1, . . . . This is a
system with an infinite number of unknown variables. However,
we know that this system determines a convergent path to the
stationary capital stock determined by the condition 1 = βf ′(K∗)
(see Section 1.2.4 on this point). Using the definition of f given
above, we can solve this condition for K∗ resulting in

K∗ =

[
1− β(1− δ))

αβ

] 1
α−1

. (3.3)

To reduce the infinite number of equations, we assume that the
economy will be close to K∗ in period t = T . This allows us to
replace KT+1 = 0 by KT+1 = K∗ in (3.2).

Solution. To generate a reliable approximation of the true saddle
path, we must set T large enough so that KT+1 is indeed close
to K∗. An appropriate method to determine T is to start with
some small T , increase this to T ′, solve the larger system and
compare the first T elements of this solution to the T elements of
the previous solution. Should they differ by a small amount only,
the proper T has been found. Otherwise this process is continued
until sufficiently close solutions are found.

In the infinite-horizon model, the choice of the starting value is
more delicate than in the finite-horizon model. The strategy that
was successful in the latter model does not work if the economy’s
inherited capital stock K0 (remember, this is a parameter of our
model!) is small relative to K∗, because it implies CT < 0. On
the other hand, if we set all initial values equal to K∗, and K0

is small, we get C0 < 0. Instead of using different starting values
for each Kt, we employ a homotopy method to approach K0: We
use K∗ for all Kt to initialize the non-linear equations solver. This
works, if we set K0 very close to K∗. We then use this solution as
starting value for a smaller K0 and continue in this fashion until
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Figure 3.2: Approximate Time Path of the Capital Stock in the
Deterministic Growth Model

K0 has reached the value we desire. In our program Ramsey2c.g

we reduce K0 in this way to ten percent of the stationary capital
stock. Figure 3.2 displays the time path of the capital stock for
the case where an analytical solution is available, that is for η = 1
and δ = 1. It is, thus, similar to Figure 2.2. Very obviously, the
forward iteration method produces a much better approximation
of the saddle path than the linear solution which we computed in
Section 2.1. It is visually indistinguishable from the path obtained
from the analytic solution Kt+1 = αβKα

t (see Section 1.2.5).

3.2 Solution of Stochastic Models

In this section we use forward iterations to solve for the time path
of stochastic DGE models. We use the infinite-horizon stochastic
Ramsey model (1.22) to develop this method before we outline
the algorithm in general.
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3.2.1 An Illustrative Example

The time path of the stochastic infinite-horizon Ramsey model
(1.22) is determined from the Euler equations (1.24). Let u(Ct) :=
(C1−η

t − 1)/(1 − η) and f(Kt) = Kα
t denote the current-period

utility function and the production function, respectively. In this
case, these conditions may be written as:

0 = [(1− δ)Kt + ZtK
α
t −Kt+1]

−η

− βEt

{ [
(1− δ)Kt+1 + Zt+1K

α
t+1 −Kt+2

]−η

× (1− δ + αZt+1K
α−1
t+1

) }
, t = 0, 1, 2, . . . . (3.4)

As previously, we assume that the natural log of the productivity
level Zt, lnZt, is governed by a first-order autoregressive process:

lnZt =  lnZt−1 + εt,  ∈ [0, 1), εt ∼ N(0, σ2). (3.5)

Assume that the farmer observes the initial Z0. His expected value
of Z1, then, is

E0(lnZ1) = E0 ( lnZ0 + ε1) =  lnZ0

since E0(ε1) = 0. Iterating on equation (3.5), he is, thus, able to
determine the expected future path of Zt:

{Z0, Z1, . . . } = {Zt}∞t=0 =
{
Z�t

0

}∞

t=0
.

Given this path, we can determine the time path of the capital
stock under the assumption that no further shocks will occur, that
is εt = 0, ∀t = 1, 2, . . . . Under this assumption Zt will approach
Z = 1, and, consequently, Kt will converge to K∗, as given by
equation (3.3). We can obtain an approximation of this path from
the solution of the system of T non-linear equations

0 =
[
(1− δ)Kt + Z�t

0 K
α
t −Kt+1

]−η

− β
[
(1− δ)Kt+1 + Z�t+1

0 Kα
t+1 −Kt+2

]−η

(3.6)

×
(
1− δ + αZ�t+1

0 Kα−1
t+1

)
,

t = 0, 1, 2, . . . T − 1,

KT+1 = K∗.
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This solution approximates the Rational expectations equilibrium
of the model from the point of view of period t = 0. From this
solution the farmer chooses K1 as his next-period capital stock.
At t = 1 he will observe a new shock ε1 that will alter the ex-
pected path of Zt. From this new path, we can again compute the
Rational expectations equilibrium and obtain K2. Proceeding in
this way, we are able to compute the approximate dynamics of
the model for an arbitrary number of periods.

Figure 3.3 plots a time path computed from the Gauss model
Ramsey3c.g. The parameters are α = 0.27, β = 0.994,  = 0.9,
σ = 0.0072, η = 1, and δ = 1 so that an analytic solution
Kt+1 = αβZtK

α
t exists. The time path obtained from the de-

terministic extended path (DEP) method is so close to the true
solution that it is virtually impossible to distinguish them from
each other with the naked eye. Numerically, the maximum ab-
solute relative distance between the two paths,

max
t=0,1,...,100

∣∣∣∣KDEP
t −KTrue

t

KTrue
t

∣∣∣∣

Figure 3.3: Simulated Time Path of the Stochastic Ramsey Model
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is about 1.7E-08. In Problem 3.1 we ask you to compute the linear
solution and to compare it to those shown in Figure 3.3. You will
find that the maximum absolute relative distance of the linear
solution to the true one is about 1.4E-3, and, thus, several orders
of magnitude worse than the DEP solution.

3.2.2 The Algorithm in General

In this subsection we provide the general structure of the deter-
ministic extended path algorithm. We resort to the notation of
Section 2.5.4 to describe an arbitrary stochastic DGE model.

Notation. xt ∈ Rn(x) is the vector of those state variables that
have given initial conditions x0 but are otherwise determined en-
dogenously. yt ∈ Rn(y) is the vector of control and costate vari-
ables. Sometimes – as in our example consumption Ct – it may be
easy to substitute these variables out of the dynamic system, but
in general this will not be the case. The vector of purely exoge-
nous variables, the vector of shocks, is denoted by zt ∈ Rn(z). The
system of stochastic difference equations that governs this model
is

0 = Et

[
gi(xt,yt, zt,xt+1,yt+1, zt+1)

]
,

zt = Πzt−1 + σΩεt, εt ∼ N(0n(z), In(z)), σ ≥ 0,

i = 1, 2, . . . , n(x) + n(y),

t = 0, 1, . . . .

(3.7)

The eigenvalues of the matrix Π are all within the unitUnit circle
circle so that zt will approach 0n(z), if εt = 0n(z)∀t. We further
assume that in this case xt and yt converge to the stationary
values x∗ and y∗, respectively. The local convergence of the model
can be verified from the linearized model at (x∗,y∗, 0). In the
notation of the reduced system (2.51) the matrix W must have
n(x) eigenvalues within the unitUnit circle circle.

The Algorithm. Given these properties, we can obtain a finite-
dimensional system of non-linear equations from (3.7) which al-
lows us to compute the Rational expectations path of the model
for each given zt.
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Algorithm 3.2.1 (Deterministic Extended Path)

Purpose: Simulation of the stochastic DGE model (3.7)

Steps:

Step 1: Initialize: Let p denote the number of periods to consider
and (x0, z0) the initial state of the model.
Step 1.1: Use a random number generator and draw a se-

quence of shocks {εt}pt=0.
Step 1.2: Compute the time path {zt}pt=1 from zt = Πzt−1+

σΩεt.
Step 1.3: Choose T large enough so that (x∗,y∗) is a good

approximation of (xT ,yT ) under the maintained
assumption that after t = 0, 1, . . . , p the vector
of innovations equals its unconditional mean:
εt+s = 0 ∀s = 1, 2, . . . , T . (Iterate over T to
see whether this condition holds.)

Step 2: For t = 0, 1, . . . , p repeat these steps:
Step 2.1: Compute the expected time path of {zt+s}t+T

s=0

from zt+s = Πszt.
Step 2.2: Solve the system of T (n(x) + n(y)) equations

0 = gi(xt+s,yt+s,Π
szt,xt+s+1,yt+s+1,Π

s+1zt),

i = 1, 2, . . . , n(x) + n(y),

s = 0, 1, . . . , T − 1,

x∗ = xt+T ,

for {xt+s}Ts=1 and {yt+s}Ts=0. From the solution,
keep xt+1 and yt.

Step 2.3: Use xt+1 as starting value for period t+ 1.

Note that it is not possible to set yt+T equal to y∗ in Step 2.2,
since this would yield a system with more equations than unknown
variables. As a consequence, it is, thus, not possible to iterate
backwards starting from

0 = gi(xt+T−1,yt+T−1,Π
T−1z,x∗,y∗,ΠT ),

i = 1, 2, . . . , n(x) + n(y).
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We must, indeed, solve the entire system of interdependent equa-
tions. Even with a moderate number of variables this systems
will comprise several hundreds of equations. Algorithms which
compute the Jacobian of the system to determine the direction
of progress will consume a considerable amount of computation
time. It is, thus, advisable to reduce the system as far as possible.
For instance, one may use static equations to substitute out a part
or even all of the control variables of the model. The applications
of the next section illustrate this approach.

3.3 Further Applications

The first application which we consider is the benchmark model
of Example 1.5.1.

3.3.1 The Benchmark Model

Our starting point is the system of stochastic difference equations
from Section 1.5. We repeat these equations for your convenience
but assume that you are familiar with our notation. If not, please
refer either to Chapter 1 or to footnote 23 in Chapter 2 for a quick
reference.

0 = c−η
t (1−Nt)

θ(1−η) − λt, (3.8a)

0 = θc1−η
t (1−Nt)

θ(1−η)−1 − (1− α)λtZtN
−α
t kα

t , (3.8b)

0 = akt+1 − (1− δ)kt + ct − ZtN
1−α
t kα

t , (3.8c)

0 = λt − βa−ηEtλt+1

(
1− δ + αZt+1N

1−α
t+1 k

α−1
t+1

)
. (3.8d)

This system is an example of the general model defined in equa-
tions (3.7), with xt ≡ kt, yt ≡ [ct, Nt, λt]

′, and zt ≡ lnZt. For a
given T , for example T = 150, we have to solve a system of 600
unknown variables. This is a pretty large number. In Problem 3.2
we ask you to write a program that solves this system. We, in-
stead, will use the two static equations (3.8a) and (3.8b) to reduce
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the above system to a system with 2T variables. Substituting for
λt in equation (3.8b) from equation (3.8a) yields:

ct =
1− α
θ

(1−Nt)ZtN
−α
t kα

t .

This allows us to eliminate consumption ct from the resource con-
straint (3.8c). In addition, we solve (3.8a) for λt and use the solu-
tion to replace this variable from equation (3.8d). In the ensuing
equation we eliminate ct with the help of the resource constraint
(3.8c). The result is a system of 2T equations in the unknown
variables {Nt+s}Ts=0 and {kt+s}T−1

s=1 :

0 = Z�s

t N
1−α
t+s k

α
t+s + (1− δ)kt+s − akt+s+1

− 1− α
θ

(1−Nt+s)Z
�s

t N
−α
t+sk

α
t+s,

0 =

(
Z�s+1

t N1−α
t+s+1k

α
t+s+1 + (1− δ)kt+s+1 − akt+s+2

Z�s

t N
1−α
t+s k

α
t+s + (1− δ)kt+s − akt+s+1

)η

×
(

1−Nt+s

1−Nt+s+1

)θ(1−η)

− βa−η
(
1− δ + αZ�s+1

t N1−α
t+s+1k

α−1
t+s+1

)
,

s = 0, . . . , T − 1, kT = kT+1 = k.

Our program Benchmark.for solves this system with our non-
linear equations solver FixvMN2 . This program takes care of the
upper and lower bounds for both the capital stock and working
hours. In addition, we use a flag that signals the program if con-
sumption becomes negative. If this should occur during the simu-
lations, the program computes a homotopy path: The distance be-
tween (kt, zt) – the state of the system at period t from which the
rational expectations path is to be computed – and the stationary
solution (k, lnZ = 0) is divided into n small steps (Δk,Δ lnZ).
The non-linear equations solver is restarted from (k+Δk,Δ lnZ)
using the stationary solution as initial value. This always works
if Δk and ΔZ are small enough. The solution is then taken as
starting value for the next pair of states (k + 2Δk, 2Δ lnZ). In
this way, the algorithm proceeds until it arrives at (kt, zt).

Table 3.1 compares the results of our simulations to those ob-
tained in Chapter 2 from the linear policy functions (see Table 2.2).
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Table 3.1

Linear DEP

Second Moments

Variable sx rxy rx sx rxy rx

Output 1.44 1.00 0.64 1.44 1.00 0.64

Investment 6.11 1.00 0.64 6.11 1.00 0.64

Consumption 0.56 0.99 0.66 0.56 0.99 0.66

Hours 0.77 1.00 0.64 0.77 1.00 0.64

Real Wage 0.67 0.99 0.65 0.67 0.99 0.65

Euler Equation Residuals

[0.90; 1.10]k 1.835E-4 8.370E-7

[0.85; 1.15]k 3.478E-4 9.130E-7

[0.80; 1.20]k 5.670E-4 1.101E-6

DM-Statistic

<3.816 5.0 2.8

>21.920 3.0 3.0

Notes: sx:=standard deviation of variable x, rxy:=cross correlation of
variable x with output, rx:=first order autocorrelation of variable x. All
second moments refer to HP-filtered percentage deviations from a vari-
able’s stationary solution. Euler equation residuals are computed as max-
imum absolute value over a grid of 400 equally spaced points on the
square K × [ln 0.95; ln 1.05], where K is defined in the respective row
of the first column. The 2.5 and the 97.5 percent critical values of the
χ2(11)-distribution are displayed in the last two lines of the first column.
The table entries refer to the percentage fraction out of 1,000 simulations
where the DM-statistic is below (above) its respective critical value.

The parameters of the model are those presented in Table 1.1. The
length of the deterministic extended path (DEP) is T = 150. We
have chosen this number, because it implies a high degree of ac-
curacy. When we reduced T to 100, the maximum absolute Euler
equation residual increased by a factor of 14. Table 3.1 confirms
our first finding in Section 2.6.1: There are no numeric differences
(up to the second digits) between the second moments. However,
the DEP method provides a remarkable increase in the degree of
accuracy. The respective Euler equation residuals are about 500
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times smaller than those of the linear method. This comes, how-
ever, at the cost of computing time. It requires less than a second
to compute the second moments by using the linear policy func-
tions. The DEP method consumes more than two and half an
hour for the same task. There is a second difference between the
two methods. The Euler equation residuals of the DEP method
do not change much if we increase the interval around the sta-
tionary solution. The DEP is not a local method. It computes a
Rational expectations path from the given state of the system to
the stationary solution implied by this state. If T is reasonably
large, this path will be very close to the true saddle path, even if
the initial state is far from the stationary solution. The smaller
fraction of simulations that result in a DM-statistic below the 2.5
percent critical value also indicates that the DEP method pro-
vides a more accurate solution than the linear method. However,
it took almost two weeks to compute the DM-statistic.

3.3.2 A Small Open Economy

As a second example we present the small open economy model of
Correia, Neves, and Rebelo (1995). We portray this economy
from the perspective of a representative household who is both
a consumer and a producer. This will streamline the derivation
of the necessary equations. Problem 3.3 sketches a decentralized
economy with the same dynamic properties.

The Model. Consider a consumer-producer in a small open econ-
omy who uses domestic labor Nt and domestic capital Kt to pro-
duce output Yt according to

Yt = ZtF (AtNt, Kt).

The natural logarithm of total factor productivity Zt follows the
AR(1) process

lnZt =  lnZt−1 + εt,  ∈ [0, 1), εt ∼ N(0, σ2),

while the level of labor augmenting technical progress At grows
deterministically
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At+1 = aAt, a ≥ 1.

Capital formation is subject to frictions, that is, investment ex-
penditures It do not produce additional capital one-to-one. In-
stead, it becomes more and more difficult to build up capital, if
investment expenditures increase. This is captured by

Kt+1 = φ(It/Kt)Kt + (1− δ)Kt, δ ∈ (0, 1), (3.10)

where φ(·) is a concave function. The usual, frictionless process of
capital accumulation, Kt+1 = It + (1 − δ)Kt, is a special case of
(3.10) for φ(It/Kt) ≡ It/Kt.

The consumer in this economy can freely borrow or lend on the
international capital market at the real interest rate rt. At period
t, his net foreign wealth is Bt. Accordingly, his budget constraint
is given by

Bt+1 − Bt ≤ TBt + rtBt, (3.11)

where

TBt = Yt − Ct − It
is the country’s trade balance. However, there are legal restric-
tions on the amount of international borrowing that prevent the
consumer from accumulating debt at a rate that exceeds the re-
spective interest rate, that is:

lim
t→∞

Bt+1

(1 + r0)(1 + r1)(1 + r2) · · · (1 + rt)
≥ 0.

A country that is initially a net debtor (B0 < 0) must therefore
allow for future trade surpluses so that the inequality

−B0 ≤
∞∑
t=0

TBt

(1 + r0)(1 + r1) · · · (1 + rt)
(3.12)

will be satisfied. The consumer-producer chooses consumption Ct,
investment It, working hours Nt, his future domestic capital stock
Kt+1 and net foreign wealth Bt+1 to maximize
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Ut = Et

∞∑
s=0

βsu(Ct+s, Nt+s), β ∈ (0, 1)

subject to his budget constraint (3.11), the capital accumulation
equation (3.10), the solvency condition (3.12), and given initial
stocks Kt and Bt, respectively.

First-Order Conditions. The Lagrangian of this problem is

L = Et

∞∑
s=0

βs
{
u(Ct+s, Nt+s)

+ Λt+s

[
Zt+sF (At+sNt+s, Kt+s) + (1 + rt+s)Bt+s

− Ct+s − It+s −Bt+s+1

]
+ Λt+sqt+s

[
φ(It+s/Kt+s)Kt+s + (1− δ)Kt+s

−Kt+s+1

]}
.

The multiplier qt is the price of capital in terms of the consumption
good so that Λtqt is the price in utility terms (that is, in the units
in which we measure utility u). Differentiating this expression
with respect to Ct, Nt, It, Kt+1 and Bt+1 provides the first-order
conditions

0 = uC(Ct, Nt)− Λt, (3.13a)

0 = uN(Ct, Nt) + ΛtZtFAN (AtNt, Kt)At, (3.13b)

0 = qt − 1

φ′(It/Kt)
, (3.13c)

0 = qt − βEt
Λt+1

Λt

[
Zt+1FK(At+1Nt+1, Kt+1) (3.13d)

+ qt+1

(
1− δ + φ(It+1/Kt+1)

)− (It+1/Kt+1)
]
,

0 = Λt − βEtΛt+1(1 + rt+1). (3.13e)

The first two equations and the last equation are standard and
need no further comment. The third equation determines invest-
ment expenditures as a function of the current capital stock and
the price of capital qt. According to the fourth equation (3.13d),
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the current price of capital must equal the expected discounted
future reward from an additional unit of capital. This reward has
several components: the increased output as given by the marginal
product of capital Zt+1FK(At+1Nt+1, Kt+1), the residual value of
the remaining unit of capital qt+1(1 − δ), and the increased pro-
ductivity of future investment

qt+1φ(·)− qt+1φ
′(·)︸ ︷︷ ︸

=1

(It+1/Kt+1).

Functional Forms. Correia, Neves, and Rebelo (1995) as-
sume that F is the usual Cobb-Douglas function

F (AtNt, Kt) = (AtNt)
1−αKα

t , α ∈ (0, 1). (3.14)

For the current period utility function they consider the speci-
fication proposed by Greenwood, Hercowitz and Huffman

(1988):

u(Ct, Nt) =

(
Ct − θ

1+ν
AtN

1+ν
t

)1−η

1− η , θ, ν > 0. (3.15)

They do not need to specify the function φ, because they resort
to the linear solution method, which only requires the elasticity
of φ′. We, however, need an explicit function to solve for the de-
terministic extended path and use

φ(It/Kt) =
φ1

1− ζ
(
It
Kt

)1−ζ

+ φ2, ζ ≥ 0. (3.16)

This is an increasing, concave function of its argument It/Kt. The
parameter ζ is the elasticity of φ′ and determines the degree of
concavity. For ζ close to zero, adjustment costs play a minor role.

Temporary Equilibrium. The model depicts a growing econ-
omy. Therefore, we must define new variables that are stationary.
As in the benchmark model this is accomplished by scaling the
original variables (in as far as they are not themselves stationary)
by the level of labor augmenting technical progress At. We think
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by now your are familiar with this procedure and able to derive
the following system from (3.13) and the functional specifications
(3.14), (3.15), and (3.16), respectively.

0 =

(
ct − θ

1 + ν
N1+ν

t

)−η

− λt, (3.17a)

0 = θNν
t − (1− α)ZtN

−α
t kα

t , (3.17b)

0 = it − (φ1qt)
1/ζkt, (3.17c)

0 = qt − βa−ηEt
λt+1

λt

[
αZt+1N

1−α
t+1 k

α−1
t+1 (3.17d)

+ qt+1 (1− δ + φ(it+1/kt+1))− (it+1/kt+1)
]
,

0 = λt − βa−ηEtλt+1(1 + rt+1), (3.17e)

0 = akt+1 − φ(it/kt)kt − (1− δ)kt, (3.17f)

0 = abt+1 − ZtN
1−α
t kα

t − (1 + rt)bt + ct + it. (3.17g)

The lower case variables are defined as xt := Xt/At, Xt ∈
{Ct, It, Kt, Bt} except for λt := Aη

t Λt. Equation (3.17b) follows
from (3.13b) if Λt is replaced by (3.13a). It determines working
hours Nt as a function of the marginal product of labor. In a de-
centralized economy the latter equals the real wage per efficiency
unit of labor wt. Viewed from this perspective, equation (3.17b)
is a static labor supply equation with wt as its single argument
so that there is no operative income effect. This is an implication
of the utility function (3.15). Equation (3.17f) is the scaled tran-
sition law of capital (3.10), and equation (3.17g) derives from the
households budget constraint (3.11).

Calibration. We do not intend to provide a careful, consistent
calibration of this model with respect to a specific small open
economy (say, the Portuguese one to which Correia, Neves, and
Rebelo (1995) refer), since we left out a few details of the original
model (as government spending and international transfers) and
since our focus is on the technical details of the solution but not
on the model’s descriptive power. For this reason we continue to
use the values of the parameters a, α, β, η, δ, , σ, N from Table
1.1. As we have just noted, (3.17b) defines a labor supply schedule
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with 1/ν as the elasticity of labor supply with respect to the real
wage. As in Heer and Maußner (2008), we use ν = 5 and
calibrate θ so that the stationary fraction of working hours equals
N = 0.13. We borrow the value of ζ = 1/30 from the authors of
the original model and choose the remaining parameters of (3.16)
so that adjustment costs play no role on the model’s balanced
growth path. This requires i = (a+ δ − 1)k and q = 1, implying

φ1 = (a+ δ − 1)ζ,

φ2 = (a+ δ − 1)
ζ

ζ − 1
.

Balanced Growth Path. Given the choices made so far, we can
solve equations (3.17) for the economy’s balanced growth path by
ignoring the expectations operator and by setting xt = xt+1 = x
for all variables x. Equation (3.17e) then implies

r =
aη

β
− 1. (3.18a)

This is a restriction on the parameters of our model, since the
real interest rate r is exogenous to the small open economy. The
properties of the function φ imply the solution for the output-
capital ratio from equation (3.17d):

y

k
=
aη − β(1− δ)

αβ
. (3.18b)

Given N we can infer k and y from this solution. This, in turn,
allows us to solve (3.17c) for i. It is, however, not possible to
obtain definite solutions for both b and c: on the balanced growth
path the budget constraint (3.17g) simplifies to

(a− (1 + r))b = y − c− i. (3.18c)

Formally, the parameter restriction (3.18a) deprives the model
of one equation. Economically, the possibility to borrow on the
international capital market allows consumption smoothing to a
degree that imposes a unit root. To understand this, consider
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equation (3.17e) and assume a constant real interest rate r and
perfect foresight. This implies

λt+1

λt
= 1

so that there is no tendency for λt to return to its initial value λ,
say, after a shock. However, N is determined from a, α, β, δ, θ,
and ν, and will converge, if the stock of capital will converge to
k. As a consequence, any permanent jump of λt translates into a
permanent jump of consumption and – via the budget constraint
– into a permanent change of bt.

This unit root is an obstacle for any local solution method.
After all, these methods determine the parameters of the policy
function from the stationary solution. A model without tendency
to return to its balanced growth path can be driven far apart from
it, even by a sequence of shocks that are themselves generated
from a stationary stochastic process. The policy functions that are
used to simulate this model, thus, might become more and more
unreliable. As we will demonstrate in the next paragraph, the
deterministic extended path algorithm is immune to this problem.

Before we turn to the solution of our model, we resolve the
problem with c and b. We simply assume that the economy starts
with zero net foreign debt, b = 0, so that c = y − i.
Solution and Results. The system of equations (3.17) fits
into the general structure of equations (3.7). The shocks are
zt = [lnZt, rt]

′, the state variable with initial conditions are xt =
[kt, bt]

′, the control and costate variables are yt = [ct, it, Nt, λt, qt]
′.

As in the previous subsection, we reduce this system by substitut-
ing out the control variables (ct, it, Nt). This is easily accomplished
since equations (3.17a) through (3.17c) can be solved analytically
for these three variables. We can further reduce the number of un-
known variables by noting that equation (3.17e) determines the
entire path of {λt}Tt=0 from the exogenous path {rt}Tt=0 of the world
interest rate and from λ0. We assume – without proof – that the
capital stock approaches k, but invite you to use the methods from
Section 2.4.2 and check numerically that at (k, 0, λ, 1) the model
has indeed one root equal to unity, one root between zero and one
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and two roots outside the unitUnit circle circle. As noted above,
this implies that Nt, yt, and it also approach their stationary val-
ues. For the model to be consistent with the solvency condition
(3.12), it must hold that bt does not grow without bounds but
converges to a certain limit in response to a shock. We induce
this condition by assuming bT = bT−1 for some large T . In this
way we reduce (3.17) to a system of 3T equations in {kt}T−1

t=1 ,
{bt}T−1

t=1 , {qt}Tt=0, and λ0. The Gauss program SOE.g computes
impulse responsesImpulse response function to productivity and
interest rate shocks from this system.

Consider, first, a productivity shock. Figure 3.4 plots the re-
sponse of the model’s state and costate variables, Figure 3.5 shows
the time paths of several other variables.

The figures confirm what we have noted in the previous para-
graph. The shock boosts the current – and since it is highly au-
tocorrelated – the expected future rewards of labor. In Figure 3.5
this appears as a temporary increase of the real wage. Due to the

Figure 3.4: Response of State and Costate Variables to a Productivity
Shock in the Small Open Economy
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Figure 3.5: Response of Control Variables to a Productivity Shock in
the Small Open Economy

small elasticity of labor supply, working hours increase slightly,
and raise output beyond the level which is implied by the in-
creased total factor productivity. The household also anticipates a
temporary increase of the marginal product of capital. This higher
reward raises investment and induces the hump-shaped response
of the capital stock seen in Figure 3.4. Note that the shadow
price of capital falls below unity on its way back to the station-
ary value of q = 1. Consider, now the reaction of consumption.
Different from the closed economy, where the interest rate will ap-
proach its former level after a temporary productivity shock, the
household can earn the rate r on his savings forever. This allows
him to increase consumption permanently – a much stronger way
to smooth consumption. To achieve this, the household sells part
of the domestic production on the world market in exchange for
bonds. After domestic production and investment have returned
to their respective pre-shock values, the interest income allows for
a permanently higher level of consumption. The mirror image of



198 Chapter 3: Deterministic Extended Path

this exchange is the development of the trade balance: initially,
we observe a surplus that finally turns into a permanent deficit.
Corresponding to the permanent increase of consumption is the
once and for all drop of the marginal utility of consumption dis-
played in the lower left panel of Figure 3.4, where the broken line
indicates the pre-shock value of λ.

Consider, second, a shock to the world interest rate. If this shock
is not autocorrelated, and if – as assumed here – the domestic
economy is initially neither a net debtor nor a net creditor, this
shock has no impact: the current income does not change (since
r0b0 = 0), so λ does not need to adjust, and in t = 1 the world
interest rate is back to its initial value so that there are no further,
anticipated effects. In Figure 3.6 we display the consequences of
an autocorrelated, positive interest rate shock (see the upper left
panel) that hits the economy in period t = 1. The autocorrela-
tion coefficient of the shock equals 0.90 and the shock increases
the world interest rate by one percent in t = 1. The prospect of

Figure 3.6: Response to an Interest Rate Shock in the Small Open
Economy
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temporarily higher returns on the international capital market in-
creases savings (see the small, but visible fall of consumption) and
triggers a portfolio adjustment. Temporarily, investment in the
home country stock of capital declines in favor of foreign bonds.
The reduced stock of capital decreases the marginal product of
labor so that the real wage and employment shrink. This occurs
no sooner than in period t = 2, so that output begins to decline in
the period after the incidence of the shock. In the end, we observe
a permanent increase of consumption financed from the interest
income on foreign bonds. Therefore, the initial trade surplus is
being replaced by a permanent trade deficit in the long-run.
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Problems

3.1 Stochastic Ramsey Model. Figure 3.3 displays a simulated time path
of the stochastic Ramsey model 1.22 obtained from the deterministic
extended path method. Use our program Ramsey3c and the vector of
productivity levels zvec_Figure3_3 to recompute this path. In addition,
compute the linear solution as explained in Section 2.4. Compare the
linear solution to the analytic solution and to the deterministic extended
path solution.

3.2 Benchmark Model. In Section 3.3.1 we use a reduced system of equa-
tions to compute the deterministic extended path solution of the Bench-
mark model from Example 1.5.1. Use the system of equations (3.8) in-
stead of this system and recompute the solution. Compare the run-time
of your program to the run-time of our program.

3.3 A Small Open Economy with Consumers and Producers. The
economy is populated by a unit mass of identical consumers. The rep-
resentative consumer supplies labor services Nt and allocates his wealth
between the stocks St of domestic firms and an internationally traded
bond Bt. The rate of return of this bond is determined on the world
capital market and denoted by rt. Domestic firms are distributed on the
unit interval and are identical. As a result, the consumer must choose
how much of his wealth he wants to put in the stocks of domestic firms,
but he has no need to decide about the allocation of funds invested into
specific firms. The stock price of the representative firm is vt. Each stock
yields a dividend payment of dt. The consumer’s budget constraint, thus,
is:

Bt+1 −Bt + vt(St+1 − St) = wtAtNt + (1 + rt)Bt + dtSt − Ct,

where Ct denotes consumption, wt is the real wage per efficiency unit of
labor AtNt. At period t = 0 the consumer chooses C0, N0, S1, and B1 to
maximize

E0

∑
t=0

βt

(
Ct − θ

1+νN
1+ν
t

)1−η

− 1

1− η , β ∈ (0, 1), θ > 0, ν > 0,

subject to his budget constraints and given his initial portfolio (B0, S0).
The consumer is not allowed to accumulate debt at an ever increasing
rate. Thus

lim
t→∞

Bt+1

(1 + r0)(1 + r1) · · · (1 + rt)
≥ 0.

The representative firm produces output Yt according to the function
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Yt = Zt(AtNt)1−αKα
t , α ∈ (0, 1).

Zt is a stationary random process and the level of labor augmenting
technical progress At is governed by

At+1 = aAt, a ≥ 1.

The firm is not able to rent capital services but must accumulate capital
according to

Kt+1 = φ(It/Kt)Kt + (1− δ)Kt.

The firm funds its investment expenditures It from retained earnings REt

and the emission of new stocks vt(St+1 − St):

It = REt + vt(St+1 − St).

Profits Yt−wtAtNt which are not retained for investment are distributed
to its share holders:

dtSt = Yt − wtAtNt −REt.

Let Rt = (vt + dt)/vt−1 denote the gross return on shares. At t = 0 the
firm maximizes

V0 := E0

∞∑
t=0

Yt − wtAtNt − It
R0R1 · · ·Rt

subject to the above given constraints with respect to N0, I0, and K1.
Show that the first-order conditions of the consumer’s and the firm’s
problem together with the various constraints specified above imply the
system of stochastic difference equations given in (3.17).

3.4 Consumption Smoothing in the Small Open Economy. According
to our findings in Section 3.3.2, a small open economy should display more
consumption smoothing than an otherwise identical closed economy. To
confirm this assertion, we ask you to write a program that computes
second moments of consumption from simulated time series. To stick as
close to our benchmark model of Example 1.5.1 use the traditional utility
function

u(Ct, Nt) =
C1−η

t (1 −Nt)θ(1−η) − 1
1− η

instead of equation (3.15). Assume a constant world interest rate given
by r = (aη/β) − 1 so that productivity shocks are the single cause of
the business cycle. Calibrate ζ from equation (3.16) so that the standard
deviation of investment equals the standard deviation of investment in
the benchmark model.
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3.5 Productivity and Preference Shocks. Empirically the correlation
between working hours and the real wage is close to zero. The benchmark
model, however, predicts a strong positive correlation. In the following
model, which is adapted from Holland and Scott (1998), we introduce
a preference shock in the benchmark model of Example 1.5.1. Specifically,
we assume that the parameter θ in the momentary utility function of the
representative household is not a constant but a random variable θt that
is governed by a first-order autoregressive process:

θt = θ1−γθγ
t−1e

ξt , γ ∈ [0, 1], ξt ∼ N(0, σ2
ξ ).

The innovations ξt induce shifts of the labor supply schedule along a given
labor demand schedule. By this, they counteract the positive correlation
between the real wage and working hours introduced by shocks to total
factor productivity Zt. The planer’s problem is as follows:

max
C0,N0

E0

{ ∞∑
t=0

βtC
1−η
t (1−Nt)θt(1−η)

1− η

}
s.t.

Kt+1 + Ct ≤ Zt(AtNt)1−αKα
t + (1− δ)Kt,

At = aAt−1, a ≥ 1,
Zt = Z�

t−1e
εt , εt ∼ N(0, σ2

ε ),
0 ≤ Ct,
1 ≥ Nt ≥ 0,
0 ≤ Kt+1,

⎫⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎭
t = 0, 1, . . . ,

K0, A0 Z0 given.

Use the parameter values given in Table 1.1 to calibrate this model. In
addition, put γ = 0.9 and σξ = 0.01 and calibrate θ so that the stationary
fraction of working hours equals N = 0.13.
a) Derive the first-order conditions for the planer’s problem and write

it down in terms of stationary variables. Modify the extended path
algorithm 3.2.1 to suit this model.

b) Simulate the model several hundred times. Pass the time series for
working hours and the real wage to the HP-filter and compute the
average cross-correlation between those two variables.

c) Repeat this exercise for a value of σξ close to zero.

3.6 Transition Dynamics and Endogenous Growth. The following en-
dogenous growth model is based on Lucas (1990). The description of the
dynamics is adapted from Grüner and Heer (2000).
Consider the following deterministic Ramsey problem that is augmented
by a human capital sector. Households live infinitely maximizing in-
tertemporal utility:



Problems 203

∞∑
t=0

βt

(
ctl

θ
t

)1−η

1− η , 0 < β < 1, 0 < θ,

where ct and lt denote consumption and leisure in period t. The individual
can allocate his time endowment B to work n, learning v and leisure l:

B = nt + vt + lt.

The human capital of the representative individual h is determined by
the time v he allocates to learning according to:

ht+1 = ht (1 +Dvγ
t ) .

Physical capital kt accumulates according to:

kt+1 = (1− τw)nthtwt + (1 + (1− τr)rt) kt + bt − ct,

where wage income and interest income are taxed at the rates τw and
τr, respectively. Pre-tax wage income is given by the product of the wage
rate wt, the working hours nt, and the human capital ht. rt and bt denote
the real interest rate and government transfers, respectively.
Production per capita y is a function of capital k and effective labor nh.
Output is produced with a CES technology:

yt = F (k, nh) = a0 (a1k
σp + a2 (nh)σp)

1
σp ,

where σp denotes the elasticity of substitution in production. Define the
state variable z ≡ k

nh . The production per effective labor is defined by
f(z) ≡ F (z, 1). In a factor market equilibrium, factors are rewarded with
their marginal products:

w = f(z)− zf ′(z),
r = f ′(z).

The government receives revenues from taxing labor income and capital
income. The government budget is balanced so that government con-
sumption g and transfers b equal tax revenues in any period:

gt + bt = τwnthtwt + τrrtkt.

Periods t correspond to years. The model is calibrated as follows: η = 2.0,
θ = 0.5, η = 0.97, B = 2.13, D = 0.035, γ = 0.8, σp = −2/3, a0 = 0.77,
a1 = 0.36, a2 = 0.64, τw = 0.36, τr = 0.40. The share of government
consumption in output is g/y = 0.21.
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a) Derive the first-order conditions of the household and the equilibrium
conditions of the model.

b) On a balanced growth path, consumption, output, physical capital,
and human capital grow at a constant rate μ, while the time alloca-
tion is constant. Derive the equations that characterize the balanced
growth equilibrium. For this reason, express the equations with the
help of stationary variables. For example, divide the government bud-
get constraint by yt.

c) Use our non-linear equation solver to compute the stationary equi-
librium.

d) How does the growth rate react to a reduction of the capital income
tax rate τr from 40% to 25% that is financed i) by a reduction in
transfers bt and ii) by an increase in the wage income tax rate τw?
Explain why the growth rate decreases in the latter case.

e) Compute the dynamics for the transition between the old steady
state that is characterized by a capital income tax rate τr = 40%
and the new steady state that is characterized by τr = 25%. Assume
that during the transition and in the new steady state, g/y and b/y
are constant and that the wage income tax rate τw adjusts in order
to balance the government budget. Use forward iteration to compute
the dynamics. (difficult)

3.7 Business Cycle Fluctuations and Home Production.
In the US economy, hours worked fluctuate considerably more than pro-
ductivity, and the correlation is close to zero. The standard real business
cycle model presented in Section 1.4 has considerable difficulties to repli-
cate this fact. For our German calibration, forCalibration example, hours
worked and productivity have approximately equal standard deviations
(0.77% and 0.72%, respectively). The following extension of the stochastic
growth model is based on Benhabib, Rogerson, and Wright (1991).
In their model, agents work in the production of both a market-produced
good M and a home-produced good H .
Households maximize intertemporal utility

E0

{ ∞∑
t=0

βt
[C1−η

t (Lt)θ(1−η)

1− η
]}

where Ct is the following composite of the consumptions of good M and
H :

Ct =
(
aCφ

Mt + (1− a)Cφ
Ht

) 1
φ

.

The time endowment of one unit is allocated to market and home pro-
duction according to:
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1 = Lt −NMt −NHt.

Notice that the two types of work are assumed to be perfect substitutes,
while the two consumption goods are combined by an aggregator that
implies a constant elasticity of substitution equal to φ/(1− φ).
The model has two technologies:

YMt = F (ZMt,KMt, NMt) = ZMtK
α
MtN

1−α
Mt ,

YHt = G (ZHt,KHt, NHt) = ZHtK
γ
HtN

1−γ
Ht .

The technology shocks follows the processes:

lnZM,t+1 = ρ lnZMt + εMt,

lnZH,t+1 = ρ lnZHt + εHt,

where εit ∼ N(0, σ2
i ) are normally i.i.d. for i = M,H and have a contem-

poraneous correlation rMH = cor(εMt, εHt).
Total capital Kt = KMt +KHt accumulates according to

Kt+1 = (1− δ)Kt + It.

New capital is produced only in the market sector implying the con-
straints:

CMt + It = YMt,

CHt = YHt.

Model periods correspond to quarters. The model is calibrated as follows:
β = 0.99, α = 0.36, δ = 0.025, η = 1.5, φ = 0.8, γ = 0.08, rMH = 0.66,
ρ = 0.9, σM = σH = 0.007. The steady state leisure L̄ = 0.7 is used to
calibrate θ. a is set so that CH/CM = 1/4.
a) Derive the first-order conditions of the model.
b) Compute the steady state and calibrate the parameters a and θ.
c) Compute the standard deviation of hours worked in the market ac-

tivity, NMt , and productivity, ZMt, as well as the correlation of NMt

and ZMt. Apply the HP-filter to the simulated time series. Explain
why the variance of hours worked has increased. Vary φ and analyze
the sensitivity of your result with regard to this parameter. Explain
your result.





Chapter 4

Discrete State Space
Methods

Overview. In this chapter we explore methods that replace the
original model by a model whose state space consists of a finite
number of discrete points. In this case, the value function is a
finite dimensional object. For instance, if the state space is one-
dimensional and has elements X = {x1, x2, . . . , xn}, the value
function is just a vector of n elements where each element gives
the value attained by the optimal policy if the initial state of the
system is xj ∈ X . We can start with an arbitrary vector of val-
ues representing our initial guess of the value function and then
obtain a new vector by solving the maximization problem on the
rhs of the Bellman equation. This procedure will converge to the
true value function of this discrete valued problem. Though simple
in principle, this approach has a serious drawback. It suffers from
the curse of dimensionality. On a one-dimensional state space, the
maximization step is simple. We just need to search for the maxi-
mal element among n. Yet, the value function of an m-dimensional
problem with n different points in each dimension is an array of
nm different elements and the computation time needed to search
this array may be prohibitively high.

For this reason we will confine ourselves in this chapter to
problems where the maximization step can be reduced to search
a vector of n elements. While this limits the class of representative
agents models to which we can apply this method, this endeavor
is nevertheless worth the while. As you will learn in the second
part of the book, there are many heterogenous agent models in
which discrete state space methods play an integral part of the
solution procedure.
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In Section 4.1 we use the infinite-horizon Ramsey model (1.8)
to discuss the choice of the set X , the choice of the initial value
function, the maximization step, and the termination of the se-
quence of iterations. In addition, we consider methods to speed up
convergence and to increase precision. Section 4.2 extends these
methods to the stochastic growth model (1.22). Additional appli-
cations in Section 4.3 cover the stochastic growth model with irre-
versible investment and our benchmark model of Example 1.5.1.

4.1 Solution of Deterministic Models

In this section we introduce discrete state space methods. The de-
terministic infinite-horizon Ramsey model of Section 1.2 serves as
our point of departure. We repeat its main properties in the next
paragraph. Then we present a simple algorithm that computes the
value function of a discrete version of this model. Subsequently
we consider several improvements of this algorithm with respect
to computation time and precision.

The Model. In the model of Section 1.2 a fictitious planer (or
farmer) equipped with initial capital K0 chooses a sequence of
future capital stocks {Kt}∞t=1 that maximizes the life-time utility
of a representative household

U0 =

∞∑
t=0

βtu(Ct), β ∈ (0, 1),

subject to the economy’s resource constraint

f(Kt) ≥ Ct +Kt+1,

and non-negativity constraints on consumption Ct and the capital
stock Kt+1. The utility function u(Ct) is strictly concave and twice
continuously differentiable. The function f(Kt) = F (N,Kt)+(1−
δ)Kt determines the economy’s current resources as the sum of
output F (N,Kt) produced from a fixed amount of labor N and



4.1 Solution of Deterministic Models 209

capital services Kt and the amount of capital left after deprecia-
tion, which occurs at the rate δ ∈ (0, 1). The function f is also
strictly concave and twice continuously differentiable.

The method that we employ rests on a recursive formulation
of this maximization problem in terms of the Bellman equation
(1.14): ,

v(K) = max
0≤K ′≤f(K)

u(f(K)−K ′) + βv(K ′). (4.1)

This is a functional equation in the unknown value function v.
Once we know this function, we can solve for K ′ as a function h
of the current capital stock K. The function K ′ = h(K) is known
as the policy function.

Discrete Approximation. We know from the analysis of Sec-
tion 1.2.4 that the optimal sequence of capital stocks monotoni-
cally approaches the stationary solution K∗ determined from the
condition βf ′(K∗) = 1. Thus, the economy will stay in the inter-
val [K0, K

∗] (or in the interval [K∗, K0] if K0 > K∗). Instead of
considering this uncountable set, we use n discrete points of this
set to represent the state space. In this way, we transform our
problem from solving the functional equation (4.1) in the space of
continuous functions (an infinite dimensional object) to the much
nicer problem of determining a vector of n elements. Note, how-
ever, that the stationary solution of this new problem will differ
from K∗. For this reason we will use K̄ > K∗ as an upper bound
of the state space.

Our next decision concerns the number of points n. A fine
grid K = {K1, K2, . . .Kn}, Ki < Ki+1, i = 1, 2, . . . , n, provides
a good approximation. On the other hand, the number of func-
tion evaluations that are necessary to perform the maximization
step on the rhs of the Bellman equation increases with n so that
computation time places a limit on n. We will discuss the rela-
tion between accuracy and computation time below. For the time
being, we consider a given number of grid-points n.

A related question concerns the distance between neighboring
points in the grid. In our applications we will work with equally
spaced points Δ = Ki+1 − Ki for all i = 1, 2, . . . , n − 1. Yet, as
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the policy and the value function of the original problem are more
curved for low values of the capital stock, the approximation is
less accurate in this range. As one solution to this problem one
might choose an unequally-spaced grid with more points in the
lower interval of state space; for instance Ki = K1 + Δ(i − 1)2,
Δ = (Kn−K1)/(n−1)2, or choose a grid with constant logarithmic
distance, Δ = lnKi+1− lnKi. However, one can show that neither
grid type dominates uniformly across applications.

In our discrete model the value function is a vector v of n
elements. Its ith element holds the life-time utility U0 obtained
from a sequence of capital stocks that is optimal given the initial
capital stock K0 = Ki ∈ K . The associated policy function can
be represented by a vector h of indices. As before, let i denote
the index of Ki ∈ K , and let j ∈ 1, 2, . . . , n denote the index of
K ′ = Kj ∈ K , that is, the maximizer of the rhs of the Bellman
equation for a given Ki. Then, hi = j.

The vector v can be determined by iterating over

vs+1
i = max

Kj∈Di

u(f(Ki)−Kj) + βvs
j , i = 1, 2, . . . , n,

Di := {K ∈ K : K ≤ f(Ki)}.
Successive iterations will converge to the solution v∗ of the dis-
crete valued infinite-horizon Ramsey model according to the con-
traction mapping theorem.1

A Simple Iterative Procedure. The following steps describe
an algorithm that is very simple to program. It computes v∗ iter-
atively. Since the solution to

max
K ′

u(f(K)−K ′) + β × 0

is obviously K ′ = 0, we start the iterations with v0
i = u(f(Ki)) for

all i = 1, . . . , n. In the next step we find a new value and policy
function as follows: For each i = 1, . . . , n :

Step 1: compute

wj = u(f(Ki)−Kj) + βv0
j , j = 1, . . . , n.

1 See, e.g., Theorem 12.1.1 of Judd (1998), p. 402.
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Step 2: Find the index j∗ such that

wj∗ ≥ wj ∀j = 1, . . . , n.

Step 3: Set h1
i = j∗ and v1

i = wj∗.

In the final step, we check if the value function is close to its
stationary solution. Let ‖v0 − v1‖∞ denote the largest absolute
value of the difference between the respective elements of v0 and
v1. The contraction mapping theorem implies that ‖v0−v1‖∞ ≤
ε(1 − β) for each ε > 0. That is, the error from accepting v1 as
solution instead of the true solution v∗ cannot exceed ε(1− β).

If one uses a standard programming language (as, e.g., C, For-
tran, Gauss, or Matlab) there is no need to care about finding the
maximal element of w = [w1, w2, . . . , wn]

′ in Step 2, since there
are built-in subroutines (as. e.g., the maxindc command in Gauss
or the MaxLoc function in Fortran 95).

Exploiting Monotonicity and Concavity. The algorithm that
we have just described is not very smart. We can do much better,
if we exploit the structure of our problem. The first thing we can
do is to select the initial value function more carefully. We can
save on iterations, if the initial value function is closer to its final
solution. Using K∗ from the continuous valued problem as our
guess of the stationary solution, the stationary value function is
defined by

v∗i = u(f(K∗)−K∗) + βv∗i , ∀i = 1, 2, . . . , n,

and we can use v∗i = u(f(K∗)−K∗)/(1− β) as our initial guess.
Second, we can exploit the monotonicity of the policy function

(see Section 1.2.3 on this result), that is:

Ki ≥ Kj ⇒ K ′
i = h(Ki) ≥ K ′

j = h(Kj).

As a consequence, once we find the optimal index j∗1 for K1, we
need no longer consider capital stocks smaller than Kj∗1 in the
search for j∗2 . More generally, let j∗i denote the index of the max-
imization problem in step 2 for i. Then, for i + 1 we evaluate
u(F (N,Ki)−Kj) + βv0

j only for indices j ∈ {j∗i , . . . n}.
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Third, we can shorten the number of computations in the max-
imization Step 2, since the function

φ(K ′) := u(f(K)−K ′) + βv(K ′) (4.2)

is strictly concave.2 A strictly concave function φ defined over
a grid of n points either takes its maximum at one of the two
boundary points or in the interior of the grid. In the first case
the function is decreasing (increasing) over the whole grid, if the
maximum is the first (last) point of the grid. In the second case the
function is first increasing and then decreasing. As a consequence,
we can pick the mid-point of the grid, Km, and the point next to it,
Km+1, and determine whether the maximum is to the left of Km (if
φ(Km) > φ(Km+1)) or to the right of Km (if φ(Km+1) > φ(Km)).
Thus, in the next step we can reduce the search to a grid with
about half the size of the original grid. Kremer (2001), pp. 165f,
proves that search based on this principle needs at most log2(n)
steps to reduce the grid to a set of three points that contains
the maximum. For instance, instead of 1000 function evaluations,
binary search requires no more than 13! We describe this principle
in more detail in the following algorithm:

Algorithm 4.1.1 (Binary Search)

Purpose: Find the maximum of a strictly concave function f(x)
defined over a grid of n points X = {x1, ..., xn}
Steps:

Step 1: Initialize: Put imin = 1 and imax = n.
Step 2: Select two points: il = floor((imin+imax)/2) and iu = il+1,

where floor(i) denotes the largest integer less than or equal
to i ∈ R.

Step 3: If f(xiu) > f(xil) set imin = il. Otherwise put imax = iu.
Step 4: If imax − imin = 2, stop and choose the largest element

among f(ximin
), f(ximin+1

), and f(ximax). Otherwise re-
turn to Step 2.

2 Since the value function, as well as the utility and the production function,
is strictly concave. See Section 1.2.3.
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Finally, the closer the value function gets to its stationary so-
lution, the less likely it is that the policy function changes with
further iterations. So usually one can terminate the algorithm,
if the policy function has remained unchanged for a number of
consecutive iterations.

Putting all pieces together we propose the following algorithm
to solve the infinite horizon deterministic Ramsey problem via
value function iteration on a discrete state space:

Algorithm 4.1.2 (Value Function Iteration 1)

Purpose: Find an approximate solution of the policy function for
the Ramsey model (1.8)

Steps:

Step 1: Choose a grid

K = {K1, K2, . . . , Kn}, Ki < Kj, i < j = 1, 2, . . . n.

Step 2: Initialize the value function: ∀i = 1, . . . , n set

v0
i =

u(f(K∗)−K∗)
1− β ,

whereK∗ denotes the stationary solution to the continuous-
valued Ramsey problem.

Step 3: Compute a new value function and the associated policy
function, v1 and h1, respectively: Put j∗0 ≡ 1. For i =
1, 2, . . . , n, and j∗i−1 use Algorithm 4.1.1 to find the index
j∗i that maximizes

u(f(Ki)−Kj) + βv0
j

in the set of indices {j∗i−1, j
∗
i−1 + 1, . . . , n}. Set h1

i = j∗i
and v1

i = u(f(Ki)−Kj∗i ) + βv0
j∗i

.

Step 4: Check for convergence: If ‖v0 − v1‖∞ < ε(1 − β), ε >
0 (or if the policy function has remained unchanged for
a number of consecutive iterations) stop, else replace v0

with v1 and h0 with h1 and return to step 3.
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Policy Function Iteration. Value function iteration is a slow
procedure since it converges linearly at the rate β (see Section
11.4 on rates of convergence), that is, successive iterates obey

‖vs+1 − v∗‖ ≤ β‖vs − v∗‖,

for a given norm ‖x‖. Howard’s improvement algorithm or policy
function iteration is a method to enhance convergence. Each time
a policy function hs is computed, we solve for the value function
that would occur, if the policy were followed forever. This value
function is then used in the next step to obtain a new policy
function hs+1. As pointed out by Puterman and Brumelle

(1979), this method is akin to Newton’s method for locating the
zero of a function (see Section 11.5) so that quadratic convergence
can be achieved under certain conditions.

The value function that results from following a given policy h
forever is defined by

vi = u(f(Ki)−Kj) + βvj, i = 1, 2, . . . , n.

This is a system of n linear equations in the unknown elements vi.
We shall write this system in matrix-vector notation. Towards this
purpose we define the vector u = [u1, u2, . . . , un], ui = u(f(Ki)−
Kj)), where, as before, j is the index of the optimal next-period
capital stock Kj given the current capital stock Ki. Furthermore,
we introduce a matrix Q with zeros everywhere except for its row
i and column j elements, which equal one. The above equations
may then be written as

v = u + βQv, (4.3)

with solution v = [I − βQ]−1u.
Policy function iterations may either be started with a given

value function or a given policy function. In the first case, we com-
pute the initial policy function by performing Step 3 of Algorithm
4.1.2 once. The difference occurs at the end of Step 3, where we
set v1 = [I − βQ1]v0. Q1 is the matrix obtained from the policy
function h1 as explained above.
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If n is large, Q is a sizeable object and you may encounter a
memory limit on your personal computer. For instance, if your
grid contains 10,000 points Q has 108 elements. Stored as dou-
ble precision (that is eight bytes of memory for each element) this
matrix requires 0.8 gigabyte of memory. Fortunately, Q is a sparse
matrix (that is a matrix with few non-zero elements) and many
linear algebra routines are able to handle this data type. For in-
stance, using the Gauss sparse matrix procedures allows to store
Q in an n×3 matrix which occupies just 240 kilobyte of memory.

If it is not possible to implement the solution of the large linear
system or if it becomes too time consuming to solve this system,
there is an alternative to full policy iteration. Modified policy
iteration with k steps computes the value function v1 at the end
of Step 3 of Algorithm 4.1.2 in these steps:

w1 = v0,

wl+1 = u + βQ1wl, l = 1, . . . , k,

v1 = wk+1.

(4.4)

As proved by Puterman and Shin (1978) this algorithm achieves
linear convergence at rate βk+1 (as opposed to β for value function
iteration) close to the optimal value of the current-period utility
function.

Interpolation Between Grid-Points. In the Ramsey model
that we have considered so far, we are able to restrict the state
space to a small interval. This facilitates a reasonably accurate
solution with a moderate number of grid-points so that conver-
gence is achieved in a few minutes. Yet, in the heterogenous agent
models of the second part, we will encounter problems, where the
relevant state space is large and where we repeatedly need to com-
pute the value function. In these situations, computation time on
a grid with many points may become a binding constraint. We,
thus, look for methods that increase precision for a given number
of grid-points without a compensating rise in computation time.

How do we accomplish this? Consider Step 3 of Algorithm
4.1.2, where we maximize the rhs of the Bellman equation (4.2)
with respect to K ′. Assume that Kj is this solution. Since the
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value function is increasing and concave, the true maximizer must
lie in the interval [Kj−1, Kj+1]. If we were able to evaluate the rhs
of the Bellman equation at all K ′ ∈ [Kj−1, Kj+1], we could pick
the maximizer of φ(K ′) in this interval. Two things are necessary
to achieve this goal: an approximation of the value function over
the interval [Kj−1, Kj+1] and a method to locate the maximum of
a continuous function.

We consider function approximation in Section 11.2. The meth-
ods that we will employ here assume that a function y = f(x) is
tabulated for discrete pairs (xi, yi). Linear interpolation computes
ŷ � f(x) for x ∈ [xi, xi+1] by drawing a straight line between
the points (xi, yi) and (xi+1, yi+1). The cubic spline determines a
function f̂i(x) = ai + bix+ cix

2 + dix
3 that connects neighboring

points and puts ŷ = f̂i(x), x ∈ [xi, xi+1]. The first method pro-
vides a smooth function between grid-points that is continuous
(but not differentiable) at the nodes (xi, yi). The second meth-
ods determines a smooth (continuously differentiable) function
over the complete set of points (xi, yi). Since the current-period
utility function is smooth anyway, these methods allow us to ap-
proximate the rhs of the Bellman equation (4.2) by a continuous
function φ̂(K):

φ̂(K) := u(f(Ki)−K) + v̂(K), (4.5)

where v̂ is determined by interpolation, either linearly or cubically.
In the interval [Kj−1, Kj+1] the maximum of φ̂ is located ei-

ther at the end-points or in the interior. For this reason, we need
a method that is able to deal with both boundary and interior
solutions of a one-dimensional optimization problem. The golden-
section search considered in Section 11.6.1 satisfies this require-
ment.

We are now able to modify Step 3 of Algorithm 4.1.2 in the
following way: we determine j∗i as before and then refine the solu-
tion. First, assume that j∗i is the index neither of the first nor of
the last grid-point so that the optimum of (4.2) is bracketed by
Ij = [Kj∗i −1, Kj∗i +1]. Instead of storing the index j∗i , we now locate
the maximum of (4.5) in Ij with the aid of Algorithm (11.6.1) and

store the maximizer K̃j∗i ∈ Ij in the vector h in position i. φ̂(K̃j∗i )
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is stored in vi. If j∗i = 1, we evaluate (4.5) at a point close to
K1. If this returns a smaller value than at K1, we know that the
maximizer is equal to K1. Otherwise, we locate K̃j∗i in [K1, K2].
We proceed analogously, if j∗i = n.

Evaluation. In the preceding paragraphs, we introduced six dif-
ferent algorithms:

1. Simple value function iteration, which maximizes the rhs of the
Bellman equation by picking the maximizer from the list of all
possible values,

2. value function iteration (Algorithm 4.1.2), which exploits the
monotonicity of the policy function and the concavity of the
value function,

3. policy function iteration, i.e., Algorithm 4.1.2, where we use
v1 = u + [I − βQ1]−1v0 in Step 3,

4. modified policy function iteration, i.e., Algorithm 4.1.2, where
v1 in Step 3 is computed via (4.4),

5. value function iteration according to Algorithm 4.1.2 with lin-
ear interpolation between grid-points,

6. value function iteration according to Algorithm 4.1.2 with cubic
interpolation between grid-points.

We use these six algorithms to compute the approximate solu-
tion of the infinite-horizon Ramsey model with u(C) = [C1−η −
1]/(1 − η) and F (N,K) = Kα and evaluate their performance
with respect to computation time and accuracy as measured by
the residuals of the Euler equation (see (1.48) for the definition of
this variable)

u′(Ct) = βu′(Ct+1)f
′(Kt+1).

We used a notebook with a dual core 2 gigahertz processor. The
source code is available in the Gauss program Ramsey2d.g. The
parameters of the model are set equal to α = 0.27, β = 0.994,
η = 2.0, and δ = 0.011. The value and the policy function are
computed on a grid of n points over the interval [0.75K∗, 1.25K∗].
We stopped iterations if the maximum absolute difference between
successive approximations of the value function became smaller
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than 0.01(1− β) or if the policy function remained unchanged in
30 consecutive iterations. (This latter criterium is only applicable
for methods 1 through 4.) Modified policy iterations use k = 30.
The Euler equation residuals are computed for 200 equally spaced
points in the smaller interval [0.8K∗, 1.2K∗]. Linear – and in the
case of method 6 – cubic interpolation was used to compute the
policy function between the elements of the vector h. Table 4.1
presents the maximum absolute value of the 200 residuals.

Table 4.1

Run Time

Method n=250 n = 500 n = 1, 000 n = 5, 000 n = 10, 000

1 0:00:43:06 0:03:04.44 0:12:39:51 7:16:36:28

2 0:00:05:63 0:00:12:91 0:00:28.94 0:04:00:67 0:09:16:91

3 0:00:02:08 0:00:05:02 0:00:14:22 0:06:18:61 0:22:11:48

4 0:00:02:31 0:00:04:47 0:00:08:31 0:01:18:53 0:04:39:17

5 0:01:05:97 0:02:34:89 0:06:36:89 1:25:07:61 7:43:13:78

6 0:01:15:92 0:02:27:94 0:04:48:80 0:22:41:84 0:44:14:28

Euler Equation Residuals

Method n = 250 n = 500 n = 1, 000 n = 5, 000 n = 10, 000

1 4.009E-2 2.061E-2 9.843E-3 1.835E-3

2 4.009E-2 2.061E-2 9.843E-3 1.835E-3 8.542E-4

3 4.026E-2 2.061E-2 9.363E-3 2.562E-3 8.722E-4

4 4.026E-2 2.061E-2 8.822E-3 3.281E-3 8.542E-4

5 5.814E-4 4.605E-4 2.339E-4 4.093E-5 2.013E-5

6 3.200E-7 3.500E-7 3.200E-7 3.800E-7 3.600E-7

Notes: Method numbers are explained in the main text. Run time is given in
hours:minutes:seconds:hundreth of seconds on a dual core 2 gigahertz processor. The
empty entry pertains to a simulation which we interrupted after 8 hours of compu-
tation time. Euler equation residuals are computed as maximum absolute value of
200 residuals computed on an equally spaced grid of 200 points over the interval
[0.8K∗, 1.2K∗].
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As can be seen from the first row of this table, computation time
becomes prohibitive for simple value function iteration if n is large.
Even on a grid of 5,000 points the algorithm requires more than
7 hours to converge. For the same n, Algorithm 4.1.2 needs just 4
minutes and modified policy iteration (method 4) 1 minute and 18
seconds! The rows labeled 3 and 4 in the upper panel of Table 4.1
convey a second finding. Policy iteration requires more time than
modified policy iteration if n is reasonably large. In our example,
this occurs somewhere between n = 250 and n = 500. The time
needed to solve the large linear system (4.3) considerably slows
down the algorithm. For a sizable grid of n = 10, 000 points,
method 4 is about five times faster than method 3. It should come
as no surprise that adding interpolation between grid-points to
Step 3 of Algorithm 4.1.2 increases computation time. After all,
we must determine the line connecting two points of the grid and
must locate the maximizer of (4.5) via a search routine. Method
5 requires almost eight hours to converge, if n equals 10,000. It
is, however, surprising, that cubic interpolation, which requires
additional computations as compared to linear interpolation, is
nevertheless quite faster for large grids. In the case of n = 10, 000
the algorithm converged after about three quarters of an hour. It
seems that the smoother cubic function – though more expensive
to compute – allows a quicker determination of K̃j∗i .

In the case of methods 1 through 4 the Euler equation residuals
decrease from about 4.E-2 to about 9.E-4, if n increases from 250
to 10,000. It, thus, requires a sizable grid to obtain an accurate
solution. Linear interpolation (method 5) achieves residuals of size
6.E-4 already with n = 250. In the case of n = 10, 000 (i.e., with
40 times more points), the Euler residual shrinks by a factor of
20 at the cost of many hours of patience before we could discover
this result. Cubic interpolation achieves very high accuracy at
n = 250 that cannot be increased by making the grid finer. The
high degree of accuracy that can be achieved with this method
even for a small number of grid-points is further illustrated in
Figure 4.1.

The upper panel of this figure plots the analytic policy func-
tion of the model, which is given by K ′ = αβKα in the case of
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Figure 4.1: Policy Functions of the Next-Period Capital Stock of the
Infinite-Horizon Ramsey Model

η = δ = 1 (see (1.18)) together with two approximate solutions.
Both use a grid of n = 100 points over [0.75K∗, 1.25K∗]. The so-
lution obtained from linear interpolation between the grid-points
wriggles around the true solution, whereas the solution based on
cubic interpolation is visually not distinguishable from the latter.
Although even the first approximate solution is close to the true
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one (the maximum absolute value of the distance to the true solu-
tion is less than 4.E-4), the second approximation is so close that
the distance to the analytic solution is almost zero (see the lower
panel of Figure 4.1).

The cubic interpolation between grid-points, thus, outperforms
the other five methods. It needs only slightly more than a minute
(see Table 4.1) to compute a highly accurate approximate solution
of the deterministic growth model (see the column n = 250 in
Table 4.1).

4.2 Solution of Stochastic Models

In this section we adapt the methods presented in the previous
section to the stochastic growth model (1.22). This model belongs
to a more general class of recursive problems that we will describe
in the next paragraph. We then develop a flexible algorithm that
solves a discrete version of this problem via value function itera-
tion.

The Framework. Let K denote the endogenous state variable
of the model and Z a purely exogenous shock governed by a
stationary stochastic process. The current-period return u de-
pends on the triple (Z,K,K ′), where K ′ denotes the next-period
value of K. The choice of K ′ is restricted to lie in a convex set
DK,Z that may depend on K and Z. In the stochastic growth
model of Section 1.3 u is the current-period utility of consump-
tion C = Zf(K) + (1 − δ)K −K ′ and DK,Z := {K ′ : 0 ≤ K ′ ≤
Zf(K)+(1−δ)K}. The solution of the problem is a value function
v(K,Z) that solves the Bellman equation

v(K,Z) = max
K ′∈DK,Z

u(Z,K,K ′) + βE [v(K ′, Z ′)|Z] , (4.6)

where E[·|Z] is the mathematical expectations operator condi-
tional on the realization of Z at the time the decision on K ′ is to
be made.
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Approximations of E[·|Z]. As in Section 4.1 we replace the
original problem by a discrete valued problem and approximate
the value function by an n × m matrix V = (vij), whose row i
and column j argument gives the value of the optimal policy, if
the current state of the system is the pair (Ki, Zj), Ki ∈ K =
{K1, K2, . . . , Kn}, Zj ∈ Z = {Z1, Z2, . . . , Zm}.

The further procedure depends on the model’s assumptions
with respect to Z. There are models that assume that Z is gov-
erned by a Markov chain with realizations given by the set Z and
transition probabilities given by a matrix P = (pjl), whose row j
and column l element is the probability of moving from Zj to state
Zl (see Section 12.2 on Markov chains). For instance, in Section
7.1 you will encounter a model with just two states. A household
is either employed (Z1 = 1) or unemployed (Z2 = 0), and he faces
given probabilities p12 to loose his job (if he is employed) or p21

to find a job (if he is unemployed). Since the probability to stay
employed p11 must equal 1 − p12 and the probability not to find
a job must equal p22 = 1− p21, the matrix P is fully determined.
Given Z and the matrix P , the Bellman equation of the discrete
valued problem is

vij = max
Kk∈Dij

u(Zj, Ki, Kk) + β
m∑

l=1

pjlvkl,

i = 1, 2, . . . , n, j = 1, 2, . . . , m,

(4.7)

where we use Dij as a shorthand for the set DKi,Zj
. As in the previ-

ous section, we can use iterations over this equation to determine
the matrix V .

Suppose, as it is the case in the benchmark model of Example
1.5.1, that lnZ follows an AR(1)-process:

lnZ ′ =  lnZ + σε′,  ∈ [0, 1), ε′ ∼ N(0, 1). (4.8)

The first approach to tackle this case is to use Algorithm 12.2.1
(see Section 12.2) that provides a Markov chain approximation
of the continuous-valued AR(1)-process. To use this algorithm,
you must provide the size of the interval IZ = [Z1, Zm] and
the number of grid-points m. The algorithm determines the grid
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Z = {Z1, Z2, . . . , Zm} and the matrix of transition probabilities
P = (pjl) so that the discrete-valued Bellman equation (4.7) still
applies. The boundaries of Z must be chosen so that Z remains
in the interval IZ . The usual procedure is to set Zm−Z1 equal to
a multiple of the unconditional standard deviation of the process
(4.8), which equals3

σZ =

√
σ2

1− 2
.

One can use simulations of this process to find out if it leaves a
given interval. Usually, an interval of size equal to 9σZ or 10σZ

is large enough. Tauchen (1986) provides evidence that even 9
grid-points are sufficient for a reasonably good approximation of
(4.8).

The second approach to approximate the conditional expecta-
tion on the rhs of the Bellman equation (4.6) rests on the analytic
expression for E(·|Z). In the case of the process (4.8) this equals

E [v(K ′, Z ′)|Z] =

∫ ∞

−∞
v
(
K ′, e� ln Z+σε′

) e−(ε′)2
2√
2π

dε′.

If the value function is tabulated in the matrix V = (vij), we
can interpolate between the row-elements of V to obtain an in-
tegrable function of Z, which allows us to employ numeric in-
tegration techniques to obtain E[·|Z]. As explained in Section
11.3.2, Gauss-Hermite quadrature is a suitable method. In Heer

and Maußner (2008), we point to a serious drawback of this ap-
proach. Gauss-Hermite quadrature requires a much larger interval
for Z than it will be necessary for simulations of the model. IZ
must contain the integration nodes ±√2σx, where x denotes the
largest node used by the respective Gauss-Hermite formula. For
instance, x � 1.65 in the four-nodes formula that we usually em-
ploy to compute a conditional expectation. Thus, instead of using
an interval of size 10σZ , say, you must use an interval of size 21σZ .
In particular, we have to ascertain that  lnZm +

√
2σx ≤ lnZm

3 See, e.g., Hamilton (1994), pp. 53-56 for a derivation of this formula.
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and  lnZ1 −
√

2σx ≥ lnZ1. For given , σ, and x these equa-
tions can be solved for the lower and the upper bound ln Z1

and lnZm, respectively. For our parameter values this delivers
| lnZm − lnZ1| � 21σZ . Yet, as explained below, the boundaries
of K will usually depend on the boundaries of Z . For a given
number of grid-points n, a larger interval IK = [K1, Kn] implies
a less accurate solution that may outweigh the increase of preci-
sion provided by the continuous-valued integrand. With respect
to the benchmark model of Example 1.5.1 we indeed find that the
Markov chain approximation allows a much faster computation of
the value function for a given degree of accuracy.4 For this reason,
we will consider this approach only.

The Basic Algorithm. The problem that we, thus, have to
solve, is to determine V iteratively from

vs+1
ij = max

Kk∈Dij

u(Zj, Ki, Kk) + β
m∑

l=1

pjlv
s
kl,

i = 1, 2, . . . , n, j = 1, 2, . . . , m.

(4.9)

This process will also deliver the policy function H = (hij). In our
basic algorithm, this matrix stores the index k∗ij of the optimal
next-period state variable K ′

k ∈ K in its ith row and jth column
element. The pair of indices (i, j) denotes the current state of
the system, that is, (Ki, Zj). We assume that the value function
v of our original problem is concave in K and that the policy
function h is monotone in K so that we can continue to use all of
the methods encountered in Section 4.1. As we have seen in this
section, a reasonable fast algorithm should at least exploit the
concavity of v and the monotonicity of h. Our basic algorithm,
thus, consists of steps 1, 2.1, and 2.2i of Algorithm 4.2.1 (see
below). We first discuss the choice of K and V 0 before we turn
to methods that accelerate convergence and increase precision.

Choice of K and V 0. This choice is a bit more delicate than
the respective step of Algorithm 4.1.2. In the deterministic growth
model considered in the previous section the optimal sequence of

4 See Heer and Maußner (2008).
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capital stocks is either increasing or decreasing, depending on the
given initial capital stock K0. This makes the choice of K easy. In
a stochastic model, the future path of K depends on the expected
path of Z, and we do not know in advance whether for any given
pair (Ki, Zj) the optimal policy is to either increase or decrease
K. For this reason, our policy to choose K is ”guess and verify”.
We will start with a small interval. If the policy function hits the
boundaries of this interval, that is, if hij = 1 or hij = n for any pair
of indices, we will enlarge K . In the case of the stochastic growth
model (1.22) an educated guess is the following: If the current
shock is Zj and we assume that Z = Zj forever, the sequence of
capital stocks will approach K∗

j determined from

1 = β(1− δ + Zjf
′(K∗

j )). (4.10)

Approximate lower and upper bounds are, thus, given by K∗
1 and

K∗
m, respectively. Since, the stationary solution of the discrete-

valued problem will not be equal to the solution of the continuous-
valued problem, K1 (Kn) should be chosen as a fraction (a mul-
tiple) of K∗

1 (K∗
m).

As we already know from Section 4.1 computation time also
depends on the initial V 0. Using the zero matrix is usually not
the best choice, but it may be difficult to find a better starting
value. For instance, in the stochastic growth model we may try
v0

ij = u(Zjf(Ki)−δKi), that is, the utility obtained from a policy
that maintains the current capital stock for one period. Or, we
may compute V 0 from the m different stationary solutions that
result if Z equals Zj forever:

v0
ij = u(Zjf(K∗

j )− δK∗
j ) + β

m∑
l=1

pjlv
0
il,

where K∗
j solves (4.10). This is a system of linear equations in the

nm unknowns v0
ij with solution

V 0 = (I − βP ′)−1
U,

U = (uij), uij = u(Zjf(K∗
j )− δK∗

j ) ∀i, j.
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A third choice is v0
ij = u(f(K∗)− δK∗)/(1− β), that is, the value

obtained from the stationary solution of the deterministic growth
model.

There is, however, an even better strategy: i) start with a coarse
grid on the interval [K1, Kn]; ii) use the basic algorithm to com-
pute the value function V ∗ on this grid; iii) make the grid finer by
using more points n. iv) interpolate column-wise between neigh-
boring points of the old grid and the respective points of V ∗ to
obtain an estimate of the initial value function on the finer grid.
Since on a coarse grid the algorithm will quickly converge, the
choice of V 0 in step i) is not really important and V 0 = 0 may be
used.

Acceleration. In Section 4.1 we discovered that policy function
iteration is a method to accelerate convergence. This method as-
sumes that a given policy H1 is maintained forever. In the context
of the Bellman equation 4.7 this provides a linear system of equa-
tion in the nm unknowns vij (for the moment, we suppress the
superscript of V ):

vij = uij + β

m∑
l=1

pjlvhij l,

uij := u(Zj, Ki, Khij
), i = 1, 2, . . . , n, j = 1, 2, . . . , m.

(4.11)

In matrix notation, this may be written as

vec V = vecU + βQ vecV, U = (uij). (4.12)

vec V (vecU) is the nm column vector obtained from vertically
stacking the rows of V (U). The nm × nm matrix Q is obtained
from H and P : Its row r = (i − 1)m + j elements in columns
c1 = (hij − 1)m+ 1 through cm = (hij − 1)m+m equal the row j
elements of P . All other elements of Q are zero. Even for a grid Z
with only a few elements m, Q is much larger than its respective
counterpart in equation (4.3). In the previous section we have
seen that for n > 500 (and, in the notation of this section m = 1),
modified policy iteration is faster than full policy iteration. For
this reason, we only will implement modified policy iteration into
our algorithm. This is done in Step 2.3 of Algorithm 4.2.1
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Interpolation. We know from the results obtained in Section 4.1
that interpolation between the points of K is one way to increase
the precision of the solution. Within the current framework the
objective is to obtain a continuous function φ̂(K) that approxi-
mates the rhs of the Bellman equation (4.6) given the tabulated
value function in the matrix V and the grid K . We achieve this
by defining

φ̂(K) = u(Zj, Ki, K) + β

m∑
l=1

pjlv̂l(K). (4.13)

The function v̂l(K) is obtained from interpolation between two
neighboring points Ki and Ki+1 from K and the respective points
vil and vi+1l from the matrix V . Thus, each time the function φ̂(K)
is called by the maximization routine, m interpolation steps must
be performed. For this reason, interpolation in the context of a
stochastic model is much more time consuming than in the case
of a deterministic model. Our algorithm allows for either linear or
cubic interpolation in the optional Step 2.2.ii.

Algorithm 4.2.1 (Value Function Iteration 2)

Purpose: Find an approximate policy function of the recur-
sive problem (4.6) given a Markov chain with elements Z =
{Z1, Z2, . . . , Zm} and transition matrix P .

Steps:

Step 1: Choose a grid

K = {K1, K2, . . . , Kn}, Ki < Kj, i < j = 1, 2, . . . n,

and initialize V 0.
Step 2: Compute a new value function V 1 and an associated policy

function H1: For each j = 1, 2, . . . , m repeat these steps:
Step 2.1: Initialize: k∗0j = 1.
Step 2.2: i) For each i = 1, 2, . . . , n and k∗i−1j use Algo-

rithm 4.1.1 to find the index k∗ that maximizes

wk = u(Zj, Ki, Kk) + β

m∑
l=1

pjlv
0
kl
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in the set of indices k ∈ {k∗i−1j, k
∗
i−1j +1, . . . , n}.

Set k∗ij = k∗. If interpolation is not desired, set
h1

ij = k∗ and v1
ij = wk∗, else proceed as follows:

ii) (optional) If k∗ = 1 evaluate the function φ̂
defined by equation (4.13) at a point close to K1.
If this returns a smaller value than at K1, set
K̃ = K1, else use Algorithm 11.6.1 to find the
maximizer K̃ of φ̂ in the interval [K1, K2]. Store
K̃ in h1

ij and φ̂(K̃) in v1
ij. Proceed analogously

if k∗ = n. If k∗ equals neither 1 nor n, find the
maximizer K̃ of φ̂ in the interval [Kk∗−1, Kk∗+1]
and put h1

ij = K̃ and v1
ij = φ̂(K̃).

Step 2.3: (optional, if Step 2.2.i was taken) Set w1 =
vec V 1, and for l = 1, 2, . . . , k iterate over

wl+1 = vecU + βQ1wl,

and replace V1 by the respective elements of
wk+1.

Step 3: Check for convergence: if

max
i=1,...n
j=1,...m

|v1
ij − v0

ij | ≤ ε(1− β), ε ∈ R++

(or if the policy function has remained unchanged for a
number of consecutive iterations) stop, else replace V 0

with V 1 and H0 with H1 and return to Step 2.

We provide both a Gauss and a Fortran version of this algorithm
in the program SolveVI . The program facilitates four different
methods:

1. Value function iteration (Step 1, Step 2.1, Step 2.2.i, and Step
3),

2. modified policy function iteration (method 1 amended by Step
2.3)

3. value function iteration with linear interpolation (Step 2.2.ii in
addition to Step 2.2.i),

4. value function iteration with cubic interpolation.
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Evaluation. We apply these four methods to the stochastic
growth model presented in (1.22). As in the previous chapters,
we use

u(C) =
C1−η − 1

1− η ,

f(K) = Kα,

and measure the accuracy of the solution by the residuals of the
Euler equation5

C−η = βE
{[

(C ′)−η
(
1− δ + α(e� ln Z+σε′)(K ′)α−1

)]∣∣∣Z} .
The residual is computed by replacing C and C ′ in this equation
by the approximate policy function for consumption,

ĥC(K,Z) = ZKα + (1− δ)K − ĥK(K,Z),

where the policy function for the next-period capital stock ĥK is
obtained from bilinear interpolation between the elements of the
matrix H . The residuals are computed over a grid of 2002 points
over the interval [0.8K∗, 1.2K∗] × [0.95, 1.05]. Table 4.2 displays
the maximum absolute value of the 2002 residuals. We used a
notebook with a dual core 2 gigahertz processor. The source code
is available in the Gauss program Ramsey3d.g. The parameters of
the model are set equal to α = 0.27, β = 0.994, η = 2.0, δ = 0.011,
 = 0.90, and σ = 0.0072. The value and the policy function are
computed on a grid of n×m points. The size of the interval IZ =
[Z1, Zm] equals 11 times the unconditional standard deviation of
the AR(1)-process in equation (4.8). We stopped iterations, if the
maximum absolute difference between successive approximations
of the value function became smaller than 0.01(1 − β) or if the
policy function remained unchanged in 50 consecutive iterations.
(This latter criterium is only applicable for methods 1 and 2.)
Modified policy iterations use k = 30.

5 See Section 1.3.2, where we derive this equation and Section 2.5.3 where
we explain the computation of the residuals in more detail.
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Table 4.2

Method n m Run Time Euler Equation

Residual

i ii

2 250 9 0:00:22:06 7.407E-2

4 250 9 0:00:22:94 7.407E-2

5 250 9 2:13:37:84 0:13:31:16 1.272E-3

6 250 9 2:04:01:67 0:21:01:69 1.877E-4

6 500 9 5:12:58:44 0:23:17:52 1.876E-4

6 250 15 1:04:39:22 4.930E-6

2 10,000 9 2:33:26:16 0:20:10:94 1.933E-3

4 10,000 9 1:06:48:58 0:03:52:42 1.933E-3

4 10,000 31 1:06:49:52 0:13:40:80 1.931E-3

4 100,000 15 0:17:59:56 2.089E-4

4 500,000 15 3:43:03:81 4.387E-5

Notes: The method numbers are explained in the main text. Run time is given in
hours:minutes:seconds:hundreth of seconds on a dual core 2 gigahertz processor. The
column labeled i gives the run time where the initial value function was set equal
to u(f(K∗) − δK∗)/(1 − β), column ii presents computation time from a sequential
approach: we start with a coarse grid of n = 250 and increase the number of grid
points in a few steps to the desired value of n given in the second column. Except in
the first step – where we use the same initial V 0 as in the third column – each step
uses the value function obtained in the previous step to initialize V 0. Euler equation
residuals are computed as maximum absolute value of 2002 residuals computed on
an equally spaced grid over the interval [0.8K∗, 1.2K∗] × [0.95, 1.05]. Empty entries
indicate simulations, which we have not performed for obvious reasons.

On a coarse grid for the capital stock, n = 250, the first four
rows in Table 4.2 confirm our intuition. Interpolation increases
computation time drastically, from about 25 seconds (for meth-
ods 1 and 2) to over 2 hours but provides reasonably accurate
solutions. In the case of method 3 (method 4) the Euler equation
residual is about 50 times (400 times) smaller than that obtained
from methods 1 and 2. The run times given in column ii high-
light the importance of a good initial guess for the value function.
The results presented there were obtained in the following way.
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We used method 2 to compute the value function on a grid of
n = 250 points (given the choice of m as indicated in the ta-
ble). For this initial step we use vij = u(f(K∗)− δK∗)/(1− β) as
our guess of V . In successive steps we made the grid finer until
the number of points given in column 2 was reached. Each step
used the previous value function, employed linear interpolation to
compute the additional points in the columns of V , and took the
result as initial guess of the value function. The computation time
in column ii is the cumulative sum over all steps. In the case of
method 3 this procedure reduced computation time by about 2
hours! The entries for method 1 and 2 and n = 10, 000 in column
i confirm our findings from the deterministic Ramsey model that
modified policy iteration is an adequate way to reduce computa-
tion time (by almost one and half an hour). Since it is faster close
to the true solution, it clearly outperforms method 1 in successive
iterations (compare the entries for n = 10, 000 and n = 9 in col-
umn i and ii): it is about 5 times faster as compared to 2.3 times
in the simulations without a good initial value function.

The entries for method 4 document that increased precision
does not result from additional points in the grid for the capi-
tal stock but in the grid for the productivity shock. In the case
n = 250 and m = 15 the Euler equation residual of about 5.E-6
indicates a very accurate solution. However, even with good start-
ing values, it takes about an hour to compute this solution.

There are two adequate ways to compute a less precise but
still sufficiently accurate solution with Euler equation residuals
of magnitude of about 2.E-4: either with method 4 on a coarse
grid, n = 250 and m = 9 or with method 2 on a much finer grid,
n = 100, 000 and m = 15. Both methods require about 20 minutes
to compute the policy function. Thus, different from our findings
in the previous section, cubic interpolation is not unambiguously
the most favorable method.

However, if high precision is needed, cubic interpolation on
a coarse grid is quite faster than method 2. As the last row of
Table 4.2 shows, even on a fine grid of n = 500, 000 points the
Euler equation residual is still about 10 times larger than that
from method 4 for n = 250 and m = 15. Yet, whereas method 4



232 Chapter 4: Discrete State Space Methods

requires about an hour to compute the policy function, method 2
needs almost four hours.

4.3 Further Applications

In this section we consider two applications of Algorithm 4.2.1.
First, we consider the stochastic growth model under the assump-
tion that the given stock of capital cannot be transferred into
consumption goods. This places a non-negativity constraint on
investment. Second, we compute a discrete approximation of the
policy function of our benchmark model.

4.3.1 Non-Negative Investment

The methods presented in Chapters 2 and 3 are not suitable for
models with binding constraints. The local methods of Chapter 1
require that the system of equations that determines the model’s
dynamics is sufficiently differentiable at a certain point. This will
not hold with binding constraints. If the constraints do not bind
at this point but nearby, the true policy functions will have kinks
that the approximate policy functions do not display. Thus, as
soon as the model leaves the close vicinity of the stationary point,
the approximate policy functions are no longer applicable. The
non-linear methods that we employ to solve for the model’s Ra-
tional expectations path in Chapter 3 also rely on differentiable
functions. Yet, even if one resorts to derivative-free methods, con-
straints are hard to embed. Each time when a constraint binds it
creates a different branch of the economy’s future time path. All
these different paths must be compared to each other to single
out the correct one. Even in models with one state variable this
a formidable task, which easily encounters reasonable limits on
computation time.

Within the recursive approach taken in this chapter, however,
it is not very difficult to take care of constraints. The stochastic
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growth model with a binding constraint on investment is a good
example to make that point.

The Model. Suppose that it is not possible to eat up the current
stock of capital so that consumption cannot exceed production.
This places the restriction

K ′ ≥ (1− δ)K

on the choice of the future capital stock. Equivalently, investment
i = K ′ − (1 − δ)K cannot be negative. The problem, thus, is to
find a value function that solves the Bellman equation

v(K,Z) = max
K ′∈DK,Z

u(Zf(K) + (1− δ)K −K ′)

+ βE [v(K ′, Z ′)|Z] , (4.14)

DK,Z = {K ′ : (1− δ)K ≤ K ′ ≤ Zf(K) + (1− δ)K} .

In Problem 4.1 we ask you to derive the first-order conditions for
this maximization problem from the Kuhn-Tucker Theorem 1.1.1
under the assumption of a given value function v. These conditions
are required to compute Euler equation residuals for this model.
Yet, in order to find v, it is not necessary to know these conditions
at all.

Modifications of the Algorithm. It requires just one line of
additional programming code to adapt Step 2.2.i of Algorithm
4.2.1 to take care of the constraint on investment. Consider the
set of indices {k∗i−1j, k

∗
i−1j + 1, . . . , n} which we search to find the

maximizer Kk ∈ K of the rhs of the Bellman equation. Instead
of starting the search with k = k∗i−1j, we first check if Kk ≥
(1− δ)Ki. If Kk violates this condition, we try Kk+1 and so forth
until we arrive at a point Kk+r, r = 1, 2, . . . , n−k that meets this
condition. Since (1 − δ)Ki < Ki, there is always an r that meets
this requirement. Then, we locate k in the set {k∗i−1j + r, . . . , n}.

Similar changes must be made to Step 2.2.ii. We think this is a
good exercise, and leave these changes to the reader (see Problem
4.1).
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Results. You will find the modified Algorithm 4.2.1 in the Gauss
program SGNNI_a.g . For the constraint to bind, it requires large
productivity shocks. Instead of σ = 0.0072 (the value that we
used in the model of the previous section), we set σ = 0.05 and
left all other parameter values unchanged. We use a Markov chain
of m = 31 points on a grid of size 9σZ to approximate the AR(1)-
process of the natural log of the level of productivity Z. Our grid
of the capital stock has n = 50, 000 elements.

Figure 4.2 displays the policy function of consumption ĥC(K,Z)
in the domain [0.6K∗, 1.6K∗] × [0.6, 1.6]. In simulations of the
model with a large number of periods, both K and Z never left this
square. The policy function was computed at 1002 pairs (K,Z) via
bilinear interpolation from the policy function of the next-period
capital stock. The graph displays a clear kink. For each K there is
a threshold value of the level of total factor productivity (TFP).
Below this point the household would like to consume some of his
capital stock to smooth consumption. Above this point, the con-

Figure 4.2: Policy Function for Consumption of the Stochastic Growth
Model with Non-Negative Investment
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straint does not bind and the consumption function is identical
to the function of the model without constraint.

4.3.2 The Benchmark Model

We have already encountered the recursive formulation of the
benchmark model of Example 1.5.1 in Section 2.6.1. For your con-
venience, we restate the Bellman equation of this model:

v(k, z) = max
k′,N

u
(
ezN1−αkα + (1− δ)k − ak′, 1−N)

+ β̃E [v(k′, z′)|z] ,
where the utility function u is specified as

u(c, 1−N) :=
c1−η(1−N)θ(1−η) − 1

1− η .

Remember,

c = ezN1−αkα + (1− δ)k − ak′

and k refer to consumption C and capital K per unit of labor
augmenting technical progress A, and β̃ = βa1−η. The next-period
capital k′ stock must lie in the interval

0 < k′ ≤ (ezN1−αkα + (1− δ)k)/a

and working hours N are restricted to (0, 1).
It is easy to apply Algorithm 4.2.1 to this model. There is just

one change compared with the stochastic growth model of Section
4.2: Inside the procedure that returns the household’s utility as a
function of (Z = ez, k, k′), we must solve for N . We can use the
first-order condition with respect to working hours for this pur-
pose. Differentiating the rhs of the Bellman equation with respect
to N and setting the result equal to zero yields

θ(ezN1−αkα +(1− δ)k−ak′) = (1−α)(1−N)ezN−αkα. (4.15)
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Table 4.3

Linear Value Function Iteration

Approximation n = 5, 000 n = 250

m = 9 m = 19

Second Moments

Variable sx rxy rx sx rxy rx sx rxy rx

Output 1.44 1.00 0.64 1.40 1.00 0.64 1.44 1.00 0.64

Investment 6.11 1.00 0.64 5.79 1.00 0.64 6.11 1.00 0.64

Consumption 0.56 0.99 0.66 0.58 0.99 0.66 0.56 0.99 0.66

Hours 0.77 1.00 0.64 0.72 0.99 0.63 0.77 1.00 0.64

Real Wage 0.67 0.99 0.65 0.68 0.99 0.65 0.67 0.99 0.65

Euler Equation Residuals

[0.90; 1.10]k 1.835E-4 1.373E-3 2.390E-6

[0.85; 1.15]k 3.478E-4 1.277E-3 2.370E-6

[0.80; 1.20]k 5.670E-4 1.691E-3 2.396E-6

DM-Statistic

<3.816 2.0 0.0 2.7

>21.920 3.4 54.8 3.1

Notes: sx:=standard deviation of variable x, rxy:=cross correlation of variable
x with output, rx:=first order autocorrelation of variable x. All second moments
refer to HP-filtered percentage deviations from a variable’s stationary solution.
Euler equation residuals are computed as maximum absolute value over a grid
of 400 equally spaced points on the square K × [ln 0.95; ln 1.05], where K is
defined in the respective row of the left-most column. The 2.5 and the 97.5
percent critical values of the χ2(11)-distribution are displayed in the last two
lines of the first column. The table entries refer to the percentage fraction out of
1,000 simulations where the DM-statistic is below (above) its respective critical
value.

For each k′ < (ezkα + (1 − δ)k)/a this equation has a unique
solution in (0, 1). We use the modified Newton-Raphson method
described in Section 11.5.2 to solve this equation. From this solu-
tion, we can compute c and, thus, u(c, 1−N).

Table 4.3 depicts the results from two simulations of the model
with our program Benchmark.for. The first one rests on a policy
function for the next-period capital stock k′ computed on a grid
of n = 5, 000 and m = 9 points without interpolation between
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these points. The second was computed on a grid of n = 250
and m = 19 points with cubic interpolation between the points of
the grid of the capital stock. To reduce run-time, we first solved
the problem on a grid of n = 250 and m = 9 points and used the
result to initialize the value function for subsequent computations.
It took about six and half a minute to find the first solution and
two hours to compute the second policy function.

The first solution is obviously inferior to the linear solution,
whose results are reproduced from Table 2.2. The Euler equa-
tion residuals are about three times larger and the DM-statistic
clearly indicates that the errors are correlated with past informa-
tion. The differences in the second moments, however, are insignif-
icant. For instance, the standard deviation of output (computed
as the average from 500 simulations) has itself a standard devia-
tion of 0.24 so that the difference of 0.04 is between two standard
error bounds. The same is true for the differences between the
other second moments. The reason for these relatively bad results
is the coarse grid for the productivity shock. A simulation (the
results of which are not presented in the table) with the same
n but m = 19 performs better. From 1,000 simulations 3.1 (2.5)
percent have a DM-statistic below (above) the 2.5-percent (97.5-
percent) critical value, and except for the standard deviation of
investment (which differs by 0.01) the other standard deviations
match those from the linear solution. Cubic interpolation between
the points of a coarse grid provides an even more accurate solu-
tion. There is no difference to the second moments obtained from
the linear solution. Yet, the Euler equation residuals are about
200 times smaller and, thus, indicate a highly accurate solution.
Note, finally, that the size of the Euler equation residual is almost
independent of the length of the interval on which it is computed.
We have already seen this property of non-linear, global methods
in the chapter on the deterministic extended path method and it
is confirmed here.
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Problems

4.1 Stochastic Growth Model with Non-Negative Investment. In
Section 4.3.1 we consider the stochastic growth model with non-negative
investment.
a) Use the Kuhn-Tucker-Theorem 1.1.1 and the procedure outlined in

Section 1.2.3 to derive the Euler equation of this model from the
Bellman equation (4.14).

b) Devise a procedure to compute the residuals of this equation.
c) Modify the program SolveVIS so that it can handle the non-negativity

constraint on investment in the case of interpolation between grid-
points.

4.2 Stochastic Growth. In the benchmark model of Example 1.5.1 labor-
augmenting technical progress grows deterministically. Suppose instead
the following production function

Yt = (AtNt)1−αKα
t ,

where the log of labor augmenting technical progress At is a random walk
with drift μ:

lnAt = μ+ lnAt−1 + εt, εt ∼ N(0, σ2).

The household’s preferences are the same as those presented in Example
1.5.1. Use μ = 0.00465 and σ = 0.006 and the parameter values given
in Table 1.1 to calibrate the model. Except for the stock of capital de-
fine stationary variables as in Section 1.4.2. For the capital stock define
kt := Kt/At−1. This ensures that the stationary capital stock kt is still a
predetermined variable at the beginning of period t.
a) Derive the first-order conditions for the planers problem:

max
C0,N0

E0

{ ∞∑
t=0

βtC
1−η
t (1−Nt)θ(1−η)

1− η

}
s.t.

Kt+1 + Ct ≤ (AtNt)1−αKα
t + (1− δ)Kt,

At = At−1e
μ+εt ,

0 ≤ Ct,
1 ≥ Nt ≥ 0,
0 ≤ Kt+1,

⎫⎪⎪⎪⎪⎬⎪⎪⎪⎪⎭ t = 0, 1, . . . ,

K0, A0 given.

b) State this set of equations in terms of stationary variables and com-
pute the balanced growth path.
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c) Place a grid over kt and solve the model via value function iteration.
(Hint: Don’t forget to use the correct discount factor!).

d) Use a random number generator and simulate the model. Compute
second moments from first-differences of the logged variables (why?)
and compare their empirical analogs obtained from German data (see
the following table).

Variable sx rxy rx

Output 0.75 1.00 0.24
Consumption 0.76 0.56 0.04
Investment 1.99 0.68 0.25
Hours 0.97 0.59 −0.26
Real Wage 1.01 −0.14 −0.23

Notes: Second moments from first differences of
logged German data, 70.i to 89.iv. sx:= standard de-
viation of variable x, sxy:=cross correlation of x with
output y, rx:=first order autocorrelation.

4.3 Wealth Allocation. Erosa and Ventura (2002) analyze the money
demand of households in a heterogeneous-agent economy. In order to
compute the optimal household decision they cannot rely upon pertur-
bation methods because households differ with regard to their individ-
ual asset holdings. Instead, they use value function iteration. In order
to facilitate the computation, they apply a nice trick that may become
handy whenever you consider household optimization problems where
the households hold different kinds of assets. In the present problem,
households can choose to allocate their wealth ω on real money m and
capital k. In the following, we will compute the steady state for a simple
representative-agent economy.
The household supplies one unit of labor inelastically. The individual
consumes a continuum of commodities indexed by i ∈ [0, 1]. The repre-
sentative household maximizes intertemporal utility

∞∑
t=0

βtu(c), u(c) =
c1−η

1− η ,

where c denotes a consumption aggregator c = infi c(i). As a consequence,
the household consumes the same amount of all goods i. Following Dot-

sey and Ireland (1996) the households chooses whether to buy the
goods with cash or credit. Let s ≥ 0 denote the fraction of goods that
are purchased with credit. The cash goods are purchased with the help
of real money balances giving rise to the cash-in-advance constraint:
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c(1 − s) = m.

In order to purchase the good i by credit, the household must purchase
wγ(i) of financial services:

γ(i) = γ0

(
i

1− i
)θ

,

with θ > 0. w denotes the wage rate, and the financial services are pro-
vided by competitive financial intermediaries who only use labor Lf as
an input. Clearly, some goods will be purchased with cash as the credit
costs go to infinity for i→ 1. Therefore, real money balances m will not
be zero. Likewise, credit costs go to zero for i→ 0 and some goods will be
purchased with credit as long as nominal interest rates are above zero,
which will be the case in our economy. Therefore, we have an interior
solution for 0 < s < 1.
Let π denote the exogenous inflation rate that characterizes monetary
policy. The decision problem can be formulated by the following Bellman
equation

v(k,m) = max
c,s,m′,k′

{u(c) + βv(k′,m′)}

subject to the cash-in-advance constraint and the budget constraint

c+ w

∫ s

0

γ(c, i) di + k′ +m′(1 + π) = (1 + r)k + w +m,

where r denotes the interest rate.
Production uses capital K and labor Ly:

Y = Kα (Ly)1−α
.

Capital depreciates at rate δ. In a factor market equilibrium,

w = (1− α)Kα (Ly)−α ,

r = αKα−1 (Ly)1−α − δ.
In general equilibrium, the government spends the seignorage πM on
government consumption G. The equilibrium conditions are given by

G = πM,

M = m, ,C = c, K = k,

1 = Ly + Lf ,

Y = G+ δK + C.

Periods correspond to quarters. The model parameters are set as follows:
β = 0.99, η = 2.0, δ = 0.02, α = 0.36, π = 0.01, γ0 = 0.0421, θ = 0.3232.
The algorithm consists of the following steps:
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Step 1: Choose initial values for K, M , and Ly and compute w and r.
Step 2: Solve the household decision problem.
Step 3: Compute the steady state with k′ = k′(k,m) = k and m′ =

m′(k,m) = m.
Step 4: Return to step 1 if k �= K and m �= M .
Compute the steady state of the model as follows:
a) Use value function iteration over the state space (k,m).6 Provide a

good initial guess for K and M (Hint: 1) assume that r = 1/β and
Ly ≈ 1 implying a value for K from the first-order condition of the
firm. 2) Assume that c = Y − δK and that households finance about
82% of consumption with M1, which is the approximate number for
the US.)

b) Use the following two-step procedure in order to solve the household
optimization problem (as suggested by Erosa and Ventura (2002)
in their Appendix A):

i. Assume that the household allocates his wealth ω ≡ k+(1+π)m
on capital and money according to the optimal portfolio functions
m = gm(ω) and k = gk(ω). As an initialization of these functions
in the first iteration over K and M , use a linear function that
represents the weights of K and M in total wealth K+(1+π)M .
Solve the following Bellman equation in the first stage:

v(ω) = max
c,s,ω′

{u(c) + βv(ω′)}

subject to the cash-in-advance constraint

c(1− s) = gm(ω)

and the budget constraint:

c+ w

∫ s

0

γ(c, i) di+ ω′ = (1 + r)gk(ω) + w + gm(ω).

This provides the policy function ω′ = gω(ω).
ii. In the second stage, solve the optimization problem:

(gk(ω), gm(ω)) = arg max
k,m

{
max
c,s

u(c)
}

6 In order to compute the optimum, you need to know the Leibniz rule:∫ b(x)

a(x)

f(t, x) dt = f(b(x), x)b′(x)− f(a(x), x)a′(x) +
∫ b(x)

a(x)

∂

∂x
f(t, x) dt.
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subject to

(1 + π)m+ k = ω

c(1− s) = m,

c+ w

∫ s

0

γ(c, i) di+ ω′ = (1 + r)k + w +m,

where ω′ = gω(ω).
Iterate until convergence and compare the policy functions, Euler
equation residuals and the computational time of the two proce-
dures.

c) How does an increase of the quarterly inflation rate from 1% to 2%
affect the equilibrium allocation?
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Parameterized Expectations

Overview. We know from Chapter 1 that there are two ways
to characterize the solution of a Ramsey problem or, more gen-
erally, of a recursive dynamic general equilibrium (DGE) model:
(1) in terms of a policy function that relates the model’s decision
or control variables to the model’s state variables or (2) in terms
of a system of stochastic difference equations that determines the
time paths of the model’s endogenous variables. The method pre-
sented in this chapter rests on yet a third solution concept. In
the Rational expectations equilibrium of a recursive DGE model
agents’ conditional expectations are time invariant functions of
the model’s state variables. The parameterized expectations ap-
proach (PEA) applies methods from function approximation (see
Section 11.2) to these unknown functions. In particular, it uses
simple functions instead of the true but unknown expectations
and employs Monte Carlo techniques to determine their parame-
ters.

The PEA has several advantages vis-a-vis both the value func-
tion iteration approach and the extended path algorithm. In con-
trast to the former, it does not suffer as easily from the curse
of dimensionality and, therefore, can be applied to models with
many endogenous state variables. Unlike the latter, it deals easily
with binding constraints. Our applications in Section 5.3 illustrate
these issues.

We describe the PEA in two steps. (1) In the next section we
look at the solution of a Ramsey problem from a different angle.
Instead of focusing on agents’ policy functions, we consider their
conditional expectations of future prices, quantities, and shocks.
Except in our discussion of the deterministic extended path al-
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gorithm considered in Chapter 3, we have tacitly assumed that
these expectations are consistent with the model. It is now the
time to make this more obvious. The ensuing concept of a ratio-
nal expectations equilibrium is yet another way to describe the
solution of a DGE model. Its feature is a time invariant (possibly
vector-valued) function E used by agents to predict their future
economic environment. An approximate solution is a simple func-
tion Ê , for example a finite degree polynomial, that approximates
E sufficiently well. We will see that the definition of conditional
expectations provides the clue to compute the parameters of Ê .
This naturally implies a general framework for the PEA.

(2) Section 5.2 considers the single steps of this algorithm in
more detail. Specifically, we will deal with two approaches to solve
the fixed-point problem that defines the PEA solution. The first
approach is iterative, the second solves a non-linear equations
problem. Both approaches require good starting values and so
we will consider this problem subsequently.

Having read this chapter you will have seen applications of
almost every tool from the collection of numerical methods pre-
sented in Chapter 11.

5.1 Characterization of Approximate Solutions

This section provides a general description of the parameterized
expectations approach (PEA). In the first subsection we use the
stochastic growth model of Section 1.3 to illustrate the basic idea.
The second subsection provides the general framework and the
third subsection highlights the relation between the PEA and
models of adaptive learning.

5.1.1 An Illustrative Example

The Model. The dynamics of the stochastic Ramsey model from
(1.22) is governed by two equations:1

1 See Section 1.3.2 for their derivation.
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Kt+1 = Ztf(Kt) + (1− δ)Kt − Ct, (5.1a)

u′(Ct) = βEt

[
u′(Ct+1) (1− δ + αZt+1f

′(Kt+1))
]
. (5.1b)

Ct denotes consumption, Kt the stock of capital, and Zt the total
factor productivity that evolves over time according to

Zt = Z�
t−1e

εt , εt ∼ N(0, σ2). (5.1c)

Equation (5.1a) is the economy’s resource constraint. Implicit in
the Euler equation (5.1b) is the statement that the expected mar-
ginal rate of substitution between current and future consumption
must equal the expected gross return on investment, i.e., one plus
the marginal product of capital net of depreciation δ.

Conditional Expectations. We know from Chapter 1 that the
solution to this set of equations can be written in terms of a
time invariant policy function Kt+1 = hK(Kt, Zt). Accordingly,
the conditional expectation on the rhs of equation (5.1b) is also
a time invariant function E of the model’s state variables Kt and
Zt. To see this, let

hC(Kt, Zt) := Ztf(Kt) + (1− δ)Kt − hK(Kt, Zt)

denote the solution for consumption given Kt and Zt. Therefore,
Ct+1 = hC(hK(Kt, Zt), Zt+1). Using (5.1c) to replace Zt+1, we may
summarize the expression inside the expectations operator Et in
a function φ(Kt, Zt, εt+1):

φ(Kt, Zt, εt+1) :=u′
(
hC(hK(Kt, Zt), Z

�
t e

εt+1)
)

× (1− δ + Z�
t e

εt+1f ′ (hK(Kt, Zt)
))
.

Since the innovations to (5.1c) are normal variates, we get E via
integration:

E (Kt, Zt) :=

∫ ∞

−∞
φ(Kt, Zt, εt+1)

e
−(εt+1)2

2σ2

√
2πσ2

dεt+1.
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Approximation of E . Suppose we knew E . Then, given an ar-
bitrary initial capital stock K0 and an arbitrary initial level of
the total factor productivity Z0, we can compute the rhs of equa-
tion (5.1b) and solve the system of two equations (5.1) for K1

and C0. With K1 at hand, Z1 derived from Z0, and a draw from
the N(0, σ2)-distribution, we can use E (K1, Z1) and (5.1) again
to solve for (K2, C1). Repeating these steps over and over, we
can trace out an entire time path for the variables of our model
economy.

As with the policy function hK , there is generally no analytic
solution for E . The idea behind the PEA is to approximate the
unknown function E by a simple function ψ. For instance, den

Haan and Marcet (1990) use ψ(γ1, γ2, γ3, Kt, Zt) = γ1K
γ2
t Z

γ3
t

to approximate the solution of the stochastic difference equation
(5.1).

Given the choice of the approximating function, the remaining
task is to fix its parameters. Remember the definition of condi-
tional expectations: let y denote a random variable that we wish to
forecast using observations on (x1, x2, . . . , xn). We seek a function
h that minimizes the expected mean quadratic error

E[(y − h(x1, x2, . . . , xn))2].

The solution to this problem is the conditional expectation:2

E[y|(x1, x2, . . . , xn)] := arg min
h

E[(y − h(x1, x2, . . . , xn))2].

The parameter choice mimics this definition. We need some ad-
ditional notation to describe this procedure. For simplicity, we
collect the model’s variables in the vector st := [Ct, Kt, Kt+1, Zt]

′

and stack the model’s state variables in the vector wt := [Kt, Zt]
′.

We use ψ(γ,wt) to denote the function approximating E for a
given p-vector of parameters γ := [γ1, γ2, . . . , γp] and assume that
a time path {st}Tt=0 of length T + 1 has been computed based on
a given (K0, Z0) and T draws from the N(0, σ2)-distribution. To
emphasize the dependence on γ we write st(γ) and wt(γ). Given
this, let

2 See, e.g., Sargent (1987), p. 224.
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φ(st+1(γ)) := u′(Ct+1) (1− δ + Zt+1f
′(Kt+1))

denote the (ex post) rhs of equation (5.1b) associated with this
time path so that φ(st+1(γ))− ψ(γ,wt(γ)) is the time t+ 1 pre-
diction error. Next, define the map Γ : Rp → Rp by

Γ(γ) := arg min
ξ

T−1∑
t=0

[φ(st+1(γ))− ψ(ξ,wt(γ))]2 .

Thus, Γ(γ) is the parameter vector ξ that minimizes the sum
of squared prediction errors associated with the time path that
results from predictions of the rhs of equation (5.1b) using the
function ψ(γ, ·). The fixed point γp,T of this mapping,

γp,T = Γ(γp,T ),

is the approximate model solution. It depends on the length of
the time path T and the function ψ(·).

5.1.2 A General Framework

This section describes the parameterized expectations approach
in more general terms. Each of the representative agent models
that you will encounter in this book fits the following framework.

Let st denote an n(s)-dimensional vector that collects all of the
model’s variables. This vector belongs to some subset U of Rn(s).3

It is convenient to consider two further subsets of the variables in
st. The first subset, the n(z)-vector zt, includes all exogenous sto-
chastic processes with the Markov property that drive the model.4

The second subset collects the model’s state variables in the n(w)-
dimensional vector wt ∈ X ⊂ Rn(w). Note that wt includes zt and

3 Many of the variables of an economic model are restricted to belong to
a given subinterval of the real line. For instance, output, consumption,
investment, and the stock of capital cannot be negative. For this reason, we
restrict st to a subset U of Rn(s). This set implicitly imposes the restrictions
on the values which the variables can take.

4 See Section 12.2 on this property.
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all those variables from the vector st that have given initial condi-
tions but are otherwise determined endogenously. In the notation
of Section 2.5.4, wt = [x′

t, z
′
t]
′. The variables in wt summarize the

information that is relevant to predict the future economic envi-
ronment. In addition, there are two vector-valued functions that
govern the model’s dynamics. The function φ with argument st+1

maps U to V , a subset of Rk. The function g with arguments
Et[φ(st+1)] and st collects the model’s Euler equations, defini-
tions, resource constraints, and so forth. In the example from the
previous subsection φ equals the single-valued expression to the
right of the conditional expectations operator Et while g is given
by equations (5.1), and V is the one-dimensional space of positive
real numbers R+. Accordingly, the system of stochastic difference
equations that drive the model can be written as follows:

g (Et [φ(st+1)] , st) = 0 for all t = 0, 1, . . . ,∞. (5.2)

Due to the recursive nature of the model (that allows for its solu-
tion in terms of a time invariant policy function) there is a time
invariant conditional expectations function E given as the solution
to

E := arg min
h:X→V

E
[
(φ(st+1)− h(wt))

′ (φ(st+1)− h(wt))
]

that solves (5.2), i.e.,

g (E (wt), st) = 0 for all t = 0, 1, . . . ,∞. (5.3)

The parameterized expectations approach approximates this so-
lution in the following steps:

Algorithm 5.1.1 (PEA)

Purpose: Approximate the solution to (5.3)

Steps:

Step 1: Choose a function ψ(γ, ·) : X → V that depends on the
vector of parameters γ ∈ Rp.

Step 2: Draw a sequence of shocks {zt}Tt=0.
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Step 3: Iterate on

g (ψ(γ,wt(γ)), st(γ)) = 0

to find the sequence {wt(γ)}Tt=0.
Step 4: Find the fixed point γp,T = Γ(γp,T ) of the map Γ defined

by

Γ(γ) := arg min
ξ

1

T

T−1∑
t=0

‖φ(st+1(γ))−ψ(ξ,wt(γ))‖2,

where ‖ · ‖ denotes the Euclidean norm.
Step 5: Decide whether ψ(γp,T , ·) is close to the true but unknown

solution E . If not, change either T or ψ(·) and return to
Step 1.

Marcet and Marshall (1992, 1994) provide conditions on
the functions g, φ, ψ as well as on the process {zt}∞t=0 that make
the PEA a meaningful concept. Using a weaker definition of an
approximate solution than that given in Step 4 they are able to
show that the approximation can be made arbitrarily close to the
true solution (5.3) by letting T → ∞ and p → ∞. Since we will
be dealing with the computation of γp,T for a fixed T and p we
can sidestep the involved technical details and can proceed with
the definition given in Step 4.

5.1.3 Adaptive Learning

Models of Learning. There is an interesting relation between
the approximate solution discussed in the previous section and
attempts to formalize how agents learn about their environment.

The rational expectations equilibrium defined in (5.3) presup-
poses two requirements: individual rationality and mutual con-
sistency of perceptions of the environment. The agents in the
model use the true conditional expectations function for their
forecasts. They have somehow solved estimation and inference
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problems that an econometrician must deal with. Models of learn-
ing depict economic agents as econometricians that use current
and past observations to estimate the parameters of the econ-
omy’s law of motion. Since the actual law of motion depends
upon the law perceived by agents, this is like chasing a mov-
ing target. Agents that act like econometricians are not as smart
as those that populate the rational expectations equilibrium. For
that reason, Sargent (1993) refers to the former as agents with
’bounded rationality’, a term coined by Herbert Simon (1957).
Others use the term ’adaptive learning’ to characterize this ap-
proach. Evans and Honkapohja (2001) provide an introduction
into the related methods and present many applications. In the
following paragraphs we will sketch an adaptive learning process
whose stationary point is the approximate solution discussed in
the previous subsection.

Recursive Least Squares. Assume that you want to estimate
the linear equation

yi = γ ′xi + εi, i = 1, 2, ..., t,

where γ is a p-dimensional column vector of parameters related
to the observations of p independent variables collected in the
column vector xi = [xi1, xi2, . . . , xip]

′. Put y = [y1, y2, . . . , yt]
′ and

X = [x1,x2, . . . ,xt]
′. The well-known formula for the least squares

estimator gives:5

γt = (X ′X)−1X ′y =

(
t∑

i=1

xix
′
i

)−1( t∑
i=1

xiyi

)
. (5.4)

Suppose you have estimated γ from t−1 observations and now you
are given one additional observation (yt, xt1, xt2, ..., xtp). There is
a convenient formula that updates your estimate as follows:6

5 This formula is derived in most introductory and advanced textbooks on
econometrics. See, e.g., Greene (2003), pp. 19ff. or Judge,Hill, Grif-

fiths, and Lütkepohl (1988), p. 164ff.
6 You can verify this formula by substituting the definitions of γt from (5.4)

and of Rt into (5.5).
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γt = γt−1 +
1

t
R−1

t xt(yt − γ ′
t−1xt),

Rt = Rt−1 +
1

t
(xtx

′
t − Rt−1),

(5.5)

where

Rt :=
1

t

(
t∑

i=1

xix
′
i

)

is a square matrix of dimension p and R−1
t its inverse. The update

of γ in the first line of (5.5) uses the most recent forecast error
yt − γ ′

t−1xt.

Learning Dynamics and the PEA. Suppose the agents in our
model economy were not able to compute the true conditional
expectations function E . For ease of exposition assume that the
range of φ : X → V is a subset of the real line (as in the Ramsey
model of Section 5.1.1). Let ψ(γt, ·) denote the agents’ forecast of
φ(·) using their most recent estimate of the parameter vector γt.
Since the entire history of the model economy depends upon the
sequence of estimates {γτ}tτ=0 the time sequence of the model’s
variables is different from the sequence {sτ}tτ=0 obtained for a
given and constant vector γ. To emphasize this difference, we
use s̃t and w̃t to denote the vector of variables and the vector
of states, respectively, that are associated with a given sequence
of estimates {γτ}tτ=0. Assume that agents use non-linear least
squares to estimate γ, i.e., at period t they choose γt to minimize

1

t

t−1∑
i=0

[φ(s̃i+1)− ψ(γt, w̃i)]
2.

A solution to this problem that fits into the framework of recursive
least squares can be found as follows. Linearize ψ(γ, ·) at the
previous estimate γt−1:

ψ(γt, ·) � ψ(γt−1, ·) +∇ψ(γt−1)(γt − γt−1),

where the symbol ∇ψ(γt−1) denotes the row vector of first deriv-
atives of the function ψ evaluated at the point γt−1. Put
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ȳi := φ(s̃i+1)− ψ(γt−1, w̃i) +∇ψ(γt−1)γt−1,

w̄′
i := ∇ψ(γt−1),

and solve

min
γt

1

t

t−1∑
i=0

[ȳi − γ ′
tw̄i]

2.

The solution is given by (5.4) with yi and xi replaced by ȳi and
w̄i, respectively. Now, we are able to apply the recursive formula
(5.5) to formulate the dynamics of our model under non-linear
least squares learning:

γt = γt−1 +
1

tRt

∇ψ(γt−1)
′(φ(s̃t)− ψ(γt−1, w̃t−1)),

Rt = Rt−1 +
1

t

(∇ψ(γt−1)
′∇ψ(γt−1)− Rt−1

)
,

0 = g(ψ(γt, w̃t), s̃t).

(5.6)

Marcet and Marshall (1994) show, that the approximate
solution defined in Step 4 of Algorithm 5.1.1 for t→∞, denoted
by γp, is a rest point of this process. Furthermore, if the absolute
values of the eigenvalues of Γ(γ) evaluated at γp are less than
one, there is a neighborhood N (γp) such that all γ ∈ N (γp)
converge to this rest point.

5.2 Computation of the Approximate Solution

This section considers the single steps of the PEA Algorithm 5.1.1
in more detail. We start with the choice of the sample size T and
the approximating function ψ in the next subsection.

5.2.1 Choice of T and ψ

Sample Size. We note in Section 5.1.2 that the accuracy of the
approximation increases with T . The underlying intuition is as
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follows. Suppose we would compute the time sequence of ΩT :=
{st}Tt=0 from the true function E . In this case ΩT is a sample
drawn from the ergodic distribution that is the solution of the
system of stochastic difference equations defined in (5.3). As usual
in sampling, the larger ΩT is, the better does it represent the
properties of the underlying distribution. In particular, those parts
of the space U where the solution spends most of its time receive
a high frequency count in ΩT , whereas those parts of U which
are visited very rarely appear hardly in ΩT . As a consequence,
the non-linear least squares estimator invoked in Step 4 of the
PEA will be eager to keep the expectational errors small on those
subsets of U , which we are most interested in. Of course, this
property carries over to any sufficiently good approximation ψ of
E .

Applications of the PEA to solve the stochastic growth model
therefore use large integer values of T . For instance, Duffy and
McNelis (2001) use T = 2, 000, den Haan and Marcet (1990)
choose T = 2, 500, the Fortran programs of Marcet and Loren-

zoni (1999) allow for a maximum of 10,000 data points, and
Christiano and Fisher (2000) even put T = 100, 000. To elim-
inate the influence of the initial value w0 one can disregard the
first 0.5 or 1.0 percent of the data points from the simulated time
series and choose the parameter vector γp,T with respect to the
remaining sample.

Function Approximation. More challenging is the choice of ψ.
Remember that this function is vector-valued, as it maps points
from a subset of Rn(w) to points in a subset of Rk. If we think
of the j-th coordinate of ψ as a map ψj : X ⊂ Rn → R we
can reduce this problem to the simpler one of approximating a
real-valued function. In Section 11.2 we present various ways to
approximate a given function. In our applications of the PEA we
use a complete set of polynomials of degree p in the n(w) vari-
ables (w1t, . . . , wn(w)t) to build ψj . The members of the set are

either products of monomials (wk1
1 w

k2
2 · · ·wn(w)kn) or Chebyshev

polynomials (see Section 11.2.6), where
∑n

i=1(w)ki = p. Mono-
mials are easy to deal with in the PEA for the following reason:
in many applications we do not know the boundaries of X in ad-
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vance. However, the domain of orthogonal families of polynomials,
as for the Chebyshev polynomials, are certain compact intervals of
the real line. When we use bases from members of these families,
we must specify a compact region X before we start the com-
putations. This is not necessary in the case of monomials, since
their domain is the entire real line. The drawback from using
monomials that we will encounter later is the problem of multi-
collinearity. Very often, higher order terms of a variable wi appear
to be indistinguishable from one another on the computer so that
it is impossible to regress the errors φ(st+1,γ)−ψ(γ,wt) on wt.
Hence, even if the theory tells us that we get a more accurate
solution if we increase the degree of the polynomial, we will not
be able to achieve this on the computer with monomials. Since
the orthogonality of Chebyshev polynomials in discrete applica-
tions pertains to the zeros of these polynomials (see (11.56)) only,
their use does not really provide a work around of this problem.
Of course, the PEA is not restricted to a certain class of func-
tions, and you may want to redo our examples using, e.g., neural
networks (see Section 11.2).

5.2.2 Iterative Computation of the Fixed Point

Convergence. There is a last step to be taken in order to imple-
ment the parameterized expectations approach: the actual com-
putation of the parameters of the expectations function ψ(γ, ·).
Probably the most obvious thing to do is to iterate on the map-
ping Γ defined in Step 4 of Algorithm 5.1.1,

γs+1 = Γ(γs), s = 0, 1, . . . , (5.7)

starting with an arbitrary γ0. However, since (5.7) is essentially a
non-linear difference equation, this procedure need not converge,
even if the fixed point exists. den Haan and Marcet (1990) as
well as Marcet and Marshall (1994) propose to iterate on

γs+1 = (1− λ)γs + λΓ(γs) (5.8)
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for some λ ∈ (0, 1] to foster convergence. Indeed, if the related
adaptive learning model is locally stable, there are starting values
γ0 such that for a sufficiently small λ (5.8) will converge.

Non-Linear Least Squares. If we use this iterative procedure
we have to solve

min
ξ

1

T

T−1∑
t=0

‖φ(st+1(γ))−ψ(ξ,wt(γ))‖2

at each step. This breaks down to solving k non-linear least
squares problems. To see this let φj(·) and ψj(·) denote the j-th
component of φ and ψ, respectively, and partition the parameter
vector γ so that γj := [γ1j , . . . , γpj], j = 1, 2, . . . , k. With this
notation the minimization problem can be rewritten as

min
ξ

1

T

T−1∑
t=0

k∑
j=1

[φj(st+1(γ))− ψj(ξj,wt(γ))]2,

≡ min
ξ

k∑
j=1

1

T

T−1∑
t=0

[φj(st+1(γ))− ψj(ξj,wt(γ))]2,

≡
k∑

j=1

min
ξj

1

T

T−1∑
t=0

[φj(st+1(γ))− ψj(ξj ,wt(γ))]2.

In our applications we use the damped Gauss-Newton method
explained in Section 11.6.2 to solve this problem. In the early
stages of the iterations over (5.7) it is not necessary to compute the
minimum with great accuracy. Thus one can make the algorithm
faster by choosing very generous stopping criteria. For instance,
the programs by Marcet and Lorenzoni (1999) bypass the
convergence test (11.86) (see Section 11.4 on this criterion).

5.2.3 Direct Computation of the Fixed Point

In this subsection we consider the PEA as solution to a compli-
cated system of k × p non-linear equations.
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Remember the following notation used so far. ψj(γj ,wt(γ)),
j = 1, 2, . . . , k is the time t forecast of the j-th conditional ex-
pectation given the vector of states wt and the parameter vector
γ = [γ1,γ2, . . . ,γk], where γj = [γ1j , γ2j, . . . , γpj]. Accordingly,
φj(st+1(γ)), is the time t+ 1 value of the expression to the right
of the expectations operator that defines the j-th conditional ex-
pectation.

In this notation, the k × p first-order conditions for the mini-
mization problem in Step 4 of Algorithm 5.1.1 may be written as
follows:

0 =
−2

T

T−1∑
t=0

[φj(st+1(γ))− ψj(ξj,wt(γ))]
∂ψj

∂ξij
(ξj ,wt(γ)),

for all i = 1, 2, . . . , p, and j = 1, 2, . . . , k.

The iterative procedure of the previous subsection solves this
problem for ξ = [ξ1, ξ2, . . . , ξk] given γ and stops if ξ � γ. Here
we replace ξ in the above system with γ to get:

0 =
−2

T

T−1∑
t=0

[φj(st+1(γ))− ψj(γj,wt(γ))]
∂ψj

∂γij
(γj,wt(γ))︸ ︷︷ ︸

=:ϕij(γ)

,

for all i = 1, 2, . . . , p, and j = 1, 2, . . . , k. (5.10)

The zero of this non-linear system of equations in γ is an equiv-
alent characterization of the approximate model solution. Thus,
instead of the iterative procedure outlined above, we can apply a
non-linear equation solver to (5.10).

This sounds nice and easy! But think of the following issues.
Routines that solve non-linear equations, as the modified Newton-
Raphson method with line search, require a starting value. With
an arbitrary γ0, however, it may not be possible to perform the
simulations in Step 3 of Algorithm 5.1.1 at all. For instance, it
may happen that at some t a non-negativity constraint implicit
in the definition of g(·) is violated so that it is impossible to
compute {st}Tt=0. Even if this does not happen at the given γ0

the algorithm may want to try a vector where it is not possible
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to simulate the model for all T . For this reason any procedure
that performs the simulation step must return an error flag that
signals the calling program to stop. Otherwise your program will
crash because of overflows, underflows or other run-time errors
arising from undefined numerical operations. By the same token,
the procedure that computes the rhs of (5.10) must return an
error flag to the non-linear equations solver telling it to stop or
to look for a different γ if it is not possible to evaluate all the
ϕij(γ). Yet, standard software usually assumes that it is possible
to evaluate a given non-linear system everywhere and there is no
way to tell the program to do otherwise. So, unless you write
your own non-linear equations solver (or trust our routines) you
are bound to find very good starting values. It is this issue that
we turn to next.

5.2.4 Starting Points

Good starting values are essential to both the iterative and the
direct approach to locate the PEA solution. The iterations over
(5.8) may not converge if the initial point is outside of the basin
of attraction of the respective learning algorithm, and non-linear
equations solvers easily get stuck if the simulation step fails. There
are several ways to handle this problem.

Homotopy. In mathematics two vector-valued functions f : X →
Y and g : X → Y are said to be homotopic if f can be continu-
ously deformed into g. A function h(x, s) that performs this task,
i.e., that equals f for s = 0 and g for s = 1, is called a homotopy
function. For instance,

h(x, s) := (1− s)f(x) + sg(x) (5.11)

is a homotopy function.
Suppose we want to solve g(x) = 0 and know the solution

x0 of f(x) = 0. The idea behind homotopy methods is to con-
struct a path in X × R that takes us from the known solution
to the solution of the problem of interest. Simple continuation
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methods use the linear homotopy (5.11), form an increasing se-
quence 0 < s1 < s2 < · · · < 1 and solve the related sequence of
problems h(x, si) = 0. If the homotopy path in X × R has peaks
and troughs along the s dimension, simple continuation methods
can fail. More advanced methods construct the homotopy path by
solving a related system of differential equations.7

As regards DGE models the problem is to construct a simple
model whose solution is either known or has been found in pre-
vious work and to move gradually from this model to the model
of interest. This may be simple, as it is in the stochastic growth
model, where an analytic solution exists for log-preferences and
full depreciation of capital (see Example 1.3.2). As you will see
in Section 5.3.1, in this case we can also derive an analytic ex-
pression for the conditional expectations function E (Kt, Zt). We
can then use small steps to move from δ = 1 and η = 1 to a
version of this model where the rate of capital depreciation δ is
in the range of empirical estimates and where the elasticity of the
marginal utility of consumption η is different from one. However,
if we think of a model with capital and real balances of money as
a second asset, it is less obvious from where to start. Moreover,
if the model of interest departs significantly from the simple sto-
chastic growth model it may be very cumbersome to trace out a
sequence of more and more complicated models. For this reason,
we consider search methods that are easy to implement for any
kind of model and that have been found effective in quite different
areas, such as automatic programming, machine learning, game
theory, and numerical optimization.

Genetic Algorithms. In Section 11.6.4 we introduce genetic
algorithms as a tool to minimize a given function. Here, our
problem is to find the zeros of a set of non-linear functions
f 1(x), f 2(x), . . . , fn(x). But the solution to this problem is also a
minimum of

g(x) :=

n∑
i=1

(f i(x))2.

7 See, e.g., Judd (1998), pp. 176ff.



5.3 Applications 259

Though the converse is not true, a solution to this minimization
problem might be a good starting point for a non-linear equations
solver.

Using the Linear Policy Functions. In Section 2.4 we consider
the linear approximation method. Very often it is possible to ob-
tain the solution from this method with little additional effort.
The extra work to be done is to obtain the linearized equations of
the model. One can then use the linear policy functions to trace
out a path for the vector st and solve the non-linear regression
problem

min
γ0

1

T

T−1∑
t=0

[φ(st+1)−ψ(γ0,wt)]
2 .

At this point one can also apply econometric tests to check
whether the chosen degree of ψ is appropriate. For instance, if
the t-ratio of a regressor is smaller than unity, one might exclude
it from the regression.

5.3 Applications

In this section we consider three applications of the PEA. First,
we illustrate its ability to implement constraints on some of
the model’s variables. For this purpose we resolve the stochas-
tic growth model with a non-negativity constraint on investment,
which we have already encountered in Section 4.3.1. Second, we
obtain the PE solution of the benchmark model of Example 1.5.1,
and third, we show how the PEA can be applied to models with
more than one conditional expectations function.

5.3.1 Stochastic Growth with Non-Negative
Investment

The Model. To apply the PEA to the model of Section 4.3.1, we
must first derive the set of difference equations that governs the
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time path of this model. While we are quite aware that you have
already mastered this task (see Problem 4.1), we will repeat the
necessary steps for your convenience. In terms of the Lagrangian
the problem is to maximize

L =

∞∑
s=0

βs−tEt

[C1−η
t+s − 1

1− η + μt+s (Kt+s+1 − (1− δ)Kt+s)

+ Λt+s

(
Zt+sK

α
t+s + (1− δ)Kt+s − Ct+s −Kt+s+1

) ]
.

Differentiating this expression with respect to Ct and Kt+1 and
setting the results equal to zero provides the conditions:

0 = C−η
t − μt − βEt

[
C−η

t+1(1− δ + αZt+1K
α−1
t+1 )− μt+1(1− δ)

]
,

(5.12a)

0 = ZtK
α
t + (1− δ)Kt − Ct −Kt+1, (5.12b)

0 = μt[Kt+1 − (1− δ)Kt], (5.12c)

0 ≤ μt, (5.12d)

0 ≤ Kt+1 − (1− δ)Kt. (5.12e)

Line (5.12c) to (5.12e) are the Kuhn-Tucker conditions associ-
ated with the non-negativity constraint on investment: either the
constraint does not bind, in which case μt = 0 (from (5.12c)) or
gross investment is zero, in which case μt ≥ 0. Equation (5.12a)
is the model’s Euler equation and equation (5.12b) the economy’s
resource restriction.

Implementation. We already know from Example 1.3.2 that
this model has an analytic solution for the policy function if
η = δ = 1, which is given by

Kt+1 = αβZtK
α
t .

Since, in this case,

Ct = (1− αβ)ZtK
α
t ,

the non-negativity constraint never binds, irrespective of the size
of the productivity shock. Therefore, we can evaluate the rhs of
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(5.12a) to find the analytic solution for the conditional expec-
tations function E (Kt, Zt). We ask you to perform this task in
Problem 5.1. Here, we just report the result:

E (Kt, Zt) =
1

(1− αβ)β
K−α

t Z−1
t .

We use this information to approximate E in the general case
η > 0 and δ ∈ [0, 1] by an exponential polynomial in (Kt, Zt).
We use a complete set of base functions, which either consist of
monomials or of Chebyshev polynomials. For instance, the first
degree, complete polynomial with monomial base functions is

ψ(γ, Kt, Zt) := exp
(
γ1 + γ2 lnKt + γ3 lnZt

)
,

while the second degree polynomial is

ψ(γ, Kt, Zt) := exp
(
γ1 + γ2 lnKt + γ3 lnZt

+ γ4(lnKt)
2 + γ5 lnKt lnZt + γ6(lnZt)

2
)
.

In the case of a base of Chebyshev polynomials the terms in lnK
and lnZ in the equations above are replaced by Ti(X(lnK)) and
Tj(X(lnZ)), where X : [a, b] → [−1, 1] defines the function that
maps points from the interval [a, b] to the interval [−1, 1], which
is the domain of the Chebyshev polynomial Ti of degree i (see
Section 11.2.6).

The Kuhn-Tucker conditions in the simulation are implemented
as follows: given (Kt, Zt) we first solve for

Ct = (βψ(γ, Kt, Zt))
−1/η,

and compute

Kt+1 = ZtK
α
t + (1− δ)Kt − Ct.

We then test the non-negativity constraint. If

Kt+1 − (1− δ)Kt < 0,

we set
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C̄t = ZtK
α
t < Ct,

and

Kt+1 = (1− δ)Kt.

The Lagrange multiplier μt is found by solving

μt = C̄−η
t − βψ(γ, Kt, Zt).

This solution is always positive, if Ct > C̄t, i.e., if the constraint
binds. Indeed, setting up the model with a non-negativity con-
straint is computationally easier than without this restriction.
Otherwise we would have to check for Kt+1 < 0 and terminate
the computations with the given vector of parameters γ. This
introduces a discontinuity that must be handled explicitly in the
non-linear equations solver. Nevertheless, it may happen that this
routine tries a vector γ for which it is not possible to evaluate ψ(·),
either because of an over- or an underflow. So the program must
take this into account (see below).

Our Fortran program SGNNI_b.for determines the parameter
vector γ by solving the non-linear equation (5.10). In Problem
5.2 we ask you to find the PE solution via fixed-point iterations.
Our program either accepts an initial γ0 to start computations or
uses a genetic algorithm to find reasonable starting values from
scratch.

Results. Table 5.1 presents accuracy statistics from several simu-
lations. The parameter values are α = 0.27, β = 0.994, δ = 0.011,
η = 2, and  = 0.90. We consider two different values of the
standard deviation of the innovations in the process (5.1c). If σ
equals 0.072, the non-negativity constraint never binds so that
the solution equals the solution of the stochastic growth model
without any constraint. In the case σ = 0.05, the non-negativity
constraint binds occasionally. Our simulations further distinguish
between a small T of 5,000 points, and a large T of 100,000 (or
even 1,000,000) points. As we have pointed out above, we expect
the precision of the solution to increase with T . Finally, we con-
sider different degrees p. Note in this respect that for p = 1 the
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monomial and the Chebyshev base functions are identical (ex-
cept for the different domain). Our measures of accuracy are the
residuals of the Euler equation (5.12a) and the fraction of the DM-
statistic below (above) the 2.5 (97.5) percent critical value of the
χ2(11)-distribution. We compute this statistic from a regression
of the prediction error on a constant, five lags of consumption,
and five lags of the total factor productivity. The Euler equations
are computed over a square that is chosen so that 90 (80) percent
of the realizations of (Kt, Zt) obtained in 1,000 simulations with
as many as 3,000 periods lie in this square.

Consider, first, the choice of T . For both the small and the high
value of σ the DM-statistic indicates that the solution based on
only T = 5, 000 points is less good than the one obtained from a
time series of length T = 100, 000. The Euler equation residuals
are less sensitive to this parameter. The largest reduction occurs
in the case of σ = 0.0072 for p = 2 in the 80% interval. The
maximum Euler equation residual for T = 5, 000 is about 8 times
larger than that for T = 100, 000. In the case of σ = 0.05 for
p = 1 the Euler equation residual computed in both intervals is
almost unchanged when T is increased from 5, 000 to 100, 000.
Note, however, that these results rest on the random draw of Zt

so that you may find somewhat different results if you redo our
experiment.

Consider, second, the degree p of the polynomial. If σ is small,
there is no noteworthy gain in accuracy from increasing p. In some
cases – see line one and two in the first panel and line four and five
in the second panel – accuracy even decreases. The reason is that
additional, higher-order terms in the polynomial contribute more
noise than further information. In the terminology of regression
analysis these additional elements are almost linear combinations
of the already present lower-order terms. This is known as the
problem of multicollinearity. In a linear regression model the solu-
tion will be highly imprecise. Yet, as we have seen in Section 5.2.3,
the non-linear regression step that is involved in the computation
of the fixed point can be reduced to a series of linear regression
problems (the Gauss-Newton algorithm). If we determine the PE
solution from the non-linear system of equations (5.10), we may
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Table 5.1

Base Function Euler Equation Residual DM-Statistic
90% 80% < 3.816 > 21.920

σ = 0.0072, T = 5, 000
Monomial: p = 1 5.779E-5 4.668E-5 0.7 11.1
Monomial: p = 2 1.501E-4 9.630E-5 0.7 26.8
Chebyshev: p = 2 1.501E-4 9.630E-5 0.7 26.8

σ = 0.0072, T = 100, 000
Monomial: p = 1 2.011E-5 1.224E-5 1.4 4.1
Monomial: p = 2 1.981E-5 1.200E-5 1.6 3.5
Chebyshev: p = 2 1.981E-5 1.200E-5 1.6 3.5
Chebyshev: p = 3 2.705E-5 1.668E-5 1.6 3.5

σ = 0.05, T = 5, 000
Monomial: p = 1 1.141E-3 7.133E-4 1.0 9.0
Monomial: p = 2 5.850E-4 3.721E-4 1.0 11.7
Chebyshev: p = 2 5.850E-4 3.721E-4 1.0 11.7

σ = 0.05, T = 100, 000
Monomial: p = 1 9.993E-4 5.673E-4 2.2 5.2
Monomial: p = 2 2.289E-4 1.189E-4 2.0 3.7
Chebyshev: p = 2 2.289E-4 1.189E-4 2.0 3.7

σ = 0.05, T = 1000, 000
Chebyshev: p = 2 2.608E-4 1.040E-4 2.8 3.7
Chebyshev: p = 3 1.941E-4 7.137E-5 2.9 3.6
Notes: T is the length of the time series from which the coefficients are com-
puted, p is the degree of the polynomial. Euler equation residuals are computed
as maximum absolute value of 2002 residuals computed on an equally spaced
grid K ×Z . The size of the interval for K was chosen so that 90 (80) percent of
the realizations of K out of 1,000 simulations with 3,000 points each are within
the respective interval. The interval for Z was likewise determined.

not be able to find a solution in this case. Indeed, we were not
able to solve the model with p = 3 in a base of monomials in rea-
sonable time. If the size of the shocks is larger, higher-order terms
provide additional information. Moving from p = 1 to p = 2 al-
most halves the residual (see lines one and two in panel three).



5.3 Applications 265

The increase in accuracy is even more pronounced for a large T .
However accuracy does not improve noteworthy, if we move from
p = 2 to p = 3 in a base of Chebyshev polynomials.

Also note, third, that for a given degree, where we were able
to compute both the solution with respect to a monomial and
a Chebyshev base, the solutions coincide: While the parameters
differ due to the different domains, both functions predict the
same value of the rhs of the Euler equation (5.12a) for a given
pair (Kt, Zt).

Summarizing the results, one can be confidential to compute
a reasonably accurate solution of the model in either base with a
degree p = 2 polynomial and a sample size of T = 100, 000.

5.3.2 The Benchmark Model

In this subsection we provide the details of the PE solution of the
benchmark model of Example 1.5.1. The time path of this model
is determined from the system of equations

λt = c−η
t (1−Nt)

θ(1−η), (5.13a)

0 = θc1−η
t (1−Nt)

θ(1−η)−1 − (1− α)λtZtN
−α
t kα

t , (5.13b)

akt+1 = ZtN
1−α
t kα

t + (1− δ)kt − ct, (5.13c)

λt = βa−ηEtλt+1(1− δ + αZt+1N
1−α
t+1 k

α−1
t+1 ). (5.13d)

Remember the definitions: ct := Ct/At, kt := Kt/At, and λt =
Aη

t Λt, where Λt is the Lagrange multiplier of the budget con-
straint, which equals the marginal utility of consumption (see
(5.13a)). The second line in (5.13) is the optimality condition with
respect to labor supply, the third line gives the budget constraint,
and the fourth line represents the Euler equation for the capital
stock. We can eliminate consumption from the first two equations
of (5.13). The result is an implicit equation for Nt:

((1− α)/θ)ZtN
−α
t kα

t = λ
−1/η
t (1−Nt)

[θ(1−η)/η]−1. (5.14)

Its solution determines Nt as a function of (kt, Zt, λt). In our pro-
gram Benchmark.for we use the modified Newton-Raphson algo-
rithm 11.5.2 to find this solution.
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The program allows you to either choose a complete polyno-
mial in a base of monomials or a product base polynomial with
Chebyshev polynomials as base functions (see Section 11.2.7 on
the respective definitions) to parameterize the conditional expec-
tation on the rhs of (5.13d). Let λt = βa−ηψ(γ, kt, Zt) denote
this parameterization. Given λt as well as kt and Zt, we can solve
equation (5.14) for Nt. In the next step we determine consump-
tion from equation (5.13a). Finally, the budget constraint (5.13c)
provides the next-period capital stock kt+1.

To find good starting values γ0 for the non-linear equations
solver that determines the PE solution from equation (5.10) we
use the linear policy function computed in Section 2.6.1 to trace
out an initial time path for λt, kt, and Zt. We then use Algorithm
11.6.2 to regress λt on ψ(γ0, Kt, Zt). The program also allows you
to employ a genetic search algorithm to find γ0.

Table 5.2 presents the results of our simulations for the same
set of parameters used in Chapter 2 through Chapter 4 (see Table
1.1). We used a second degree complete polynomial with mono-
mial base functions to parameterize the rhs of the Euler equation
(5.12d). The table displays results obtained from two different PE
solutions and from the linear policy functions.

Consider, first, the accuracy of the solutions. The small sample
size of T = 5000 yields a solution that is less accurate than the
linear solution: its Euler equation residuals are about 10 times
larger. There is, however, a remarkable gain in precision, from
increasing T from 5,000 to one million observations. The maxi-
mum Euler equation residual out of 400 residuals computed over
the square [0.8k∗, 1.2k∗]× [0.95, 1.05] shrinks by a factor of 1/80.
It required about 12 minutes to compute this second solution as
compared to about five seconds for the first one. The reason is
the time consuming computation of the Jacobian matrix if T is
large. Recall from Section 4.3.2 that it takes about six minutes to
compute an equally precise solution from value function iteration
and about two hours to obtain a solution with Euler equation
residuals that are an order of magnitude smaller than those from
the PE solution with a sample size of one million. While the PEA
is a non-linear, global approach to solve DGE models, it is never-
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Table 5.2

Linear Parameterized Expectations
Approximation T = 5, 000 T = 1, 000, 000

Second Moments
Variable sx rxy rx sx rxy rx sx rxy rx

Output 1.44 1.00 0.64 1.45 1.00 0.64 1.44 1.00 0.64
Investment 6.11 1.00 0.64 6.19 1.00 0.64 6.11 1.00 0.64
Consumption 0.56 0.99 0.66 0.55 0.99 0.66 0.56 0.99 0.66
Hours 0.77 1.00 0.64 0.78 1.00 0.64 0.77 1.00 0.64
Real Wage 0.67 0.99 0.65 0.67 0.99 0.65 0.67 0.99 0.65

Euler Equation Residuals

[0.90; 1.10]k 1.835E-4 1.404E-3 3.687E-5
[0.85; 1.15]k 3.478E-4 2.864E-3 5.110E-5
[0.80; 1.20]k 5.670E-4 5.215E-3 6.531E-5

DM-Statistic

<3.816 2.0 0.4 3.1
>21.920 3.4 27.5 3.1

Notes: sx:=standard deviation of variable x, rxy:=cross correlation of variable x with
output, rx:=first order autocorrelation of variable x. All second moments refer to HP-
filtered percentage deviations from a variable’s stationary solution. Euler equation
residuals are computed as maximum absolute value over a grid of 400 equally spaced
points on the square K × [ln 0.95; ln 1.05], where K is defined in the respective row
of the left-most column. The 2.5 and the 97.5 percent critical values of the χ2(11)-
distribution are displayed in the last two lines of the first column. The table entries
refer to the percentage fraction out of 1,000 simulations where the DM-statistic is
below (above) its respective critical value.

theless more precise in those areas of the state space which have
a higher probability of being visited by the sampled time path.
Therefore, the Euler equation residuals increase with the area of
the square over which they are computed.

Consider, second, the time series moments. What we already
know from Chapter 2 through Chapter 4 is confirmed here. Even a
relatively bad solution in terms of the Euler equation residuals and
the DM-statistic provides second moments that are very similar
to those obtained from a more accurate solution.
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5.3.3 Limited Participation Model of Money

In this subsection we develop a monetary model that features
three expectational equations. This allows us to demonstrate the
usefulness of the PEA in models with many state variables. We
begin with a motivation of this model.

Motivation. In the textbook IS-LM model an expansionary
monetary shock lowers the nominal interest rate. Since inflation-
ary expectations do not adjust immediately, the real interest rate
also declines. This spurs investment expenditures, which in turn
raise aggregate spending. Given a sufficiently elastic short-run
supply function output and employment increase. This story is
in line with the empirical evidence provided by vector autore-
gressions.8 Yet, most monetary DGE models do not reproduce
this liquidity effect. Consider, for instance, the model presented
in Section 2.6.3. In this model there is only an anticipated infla-
tion effect on the nominal interest rate: when agents learn about a
temporarily high money growth rate, they expect a rise of future
inflation and demand a higher nominal interest rate.

In this section we present a model of a monetary economy that
is able to account for both the liquidity and the inflationary expec-
tations effect.9 The model includes a rudimentary banking sector.
Households face a cash-in-advance constraint and can lend part of
their financial wealth Mt to the banking sector at the gross nom-
inal interest qt (one plus the nominal interest rate). The firms in
this model pay wages to the household sector before they sell their
output. To finance their wage bill they borrow money from the
banking sector. The government injects money into the economy
via the banking sector. The crucial assumption is that banks re-
ceive the monetary transfer after households have decided about
the volume of their banking deposits. Given the additional money,
banks lower the nominal interest rate to increase their loans to

8 See, e.g, Christiano, Eichenbaum, and Evans (1999).
9 The model is based on a paper by Lawrence Christiano, Martin

Eichenbaum, and Charles Evans (1997). Different from their model,
we also include capital services as a factor of production.
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firms. At the reduced credit costs firms hire more labor and in-
crease production. The fact that households cannot trade on the
market for deposits after the monetary shock has been observed
has given the model its name: limited participation model.

The Banking Sector. At the beginning of period t banks receive
deposits of size Bt from households. Government transfers amount
to Mt+1−Mt, where Mt are beginning-of-period money balances.
Banks, thus, are able to lend Bt + (Mt+1 −Mt) to firms. At the
end of the period they pay interest and principal qtBt to their
creditors and distribute the remaining profits,

DB
t =

qt(Bt +Mt+1 −Mt)

Pt
− qtBt

Pt
= qt

Mt+1 −Mt

Pt
(5.15)

to the household sector. As in Section 2.6.3 Pt denotes the money
price of output.

Producers. The representative producer employs labor Nt and
capital services Kt to produce output according to

Yt = Zt(AtNt)
1−αKα

t , α ∈ (0, 1). (5.16)

As in the benchmark model At is the level of labor-augmenting
technical progress that grows deterministically at the rate a −
1 ≥ 0. Total factor productivity Zt is governed by the stochastic
process

Zt = ZρZ

t−1e
εZ
t , εZt ∼ N(0, σZ). (5.17)

Producers hire workers at the money wage rate Wt and capital
services at the real rental rate rt. Since they have to pay workers
in advance, they borrow WtNt at the nominal rate of interest qt−1
from banks. Hence, their profits are given by

DP
t = Yt − qtWt

Pt
Nt − rtKt. (5.18)

Maximizing (5.18) with respect to Nt and Kt provides the follow-
ing first-order conditions:

qtwt = (1− α)ZtN
−α
t kα

t , wt :=
Wt

AtPt

, kt :=
Kt

At

, (5.19a)

rt = αZtN
1−α
t kα−1

t . (5.19b)

Consequently, profits in the production sector are zero.
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Money Supply. Money supply is governed by the same process
that we used in Section 2.6.3. Thus,

μt :=
Mt+1

Mt
, μt = μ1−ρμ

μρμ

t−1e
εμ
t , εμt ∼ N(0, σμ). (5.20)

Households. The households’ total financial wealth at the be-
ginning of period t is given by Mt = Bt + Xt, where Bt is the
amount deposited at banks and Xt are cash balances kept for the
purchase of consumption goods. Since households receive wages
before they go shopping, their cash-in-advance constraint is

Ct ≤ Xt +WtNt

Pt
. (5.21)

The real income of households consists of wages WtNt/Pt, net
rental income (rt − δ)Kt from capital services (where capital de-
preciates at the rate δ), interest on banking deposits (qt−1)Bt/Pt,
and dividends from banks DB

t . This income is split between con-
sumption Ct and savings St. Savings are used to increase financial
wealth Mt and the stock of physical capital Kt. Accordingly, the
budget constraint is given by:

Kt+1 −Kt +
(Xt+1 −Xt) + (Bt+1 − Bt)

Pt

≤ Wt

Pt
Nt + (rt − δ)Kt + (qt − 1)

Bt

Pt
+DB

t − Ct.

(5.22)

We depart from our usual specification of the household’s pref-
erences over consumption and leisure and follow Christiano,
Eichenbaum, Evans (1997) who use the instantaneous utility
function:

u(Ct, Nt) :=
1

1− η
[
(Ct − θAtN

ν
t )1−η − 1

]
, θ > 0, ν > 1

that we have already encountered in the small open economy
model of Section 3.3.2. As you will see in a moment, this func-
tion implies a labor supply schedule that depends on the real wage
only. In particular, labor supply does not depend on wealth. Tech-
nically, this makes it easy to solve for Nt given the real wage and
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to separate the role of the elasticity of labor supply 1/(ν−1) from
other factors.

The household maximizes the expected stream of discounted
utility

E0

∞∑
t=0

βtu(Ct, Nt)

with respect to C0, N0, K1, X1, and B1 subject to (5.21) and
(5.22). Since the household must decide on the size of its nominal
deposits before the monetary shock is observed, Xt and Bt are
state variables of the model. The Lagrangean for this problem is:

L = E0

∞∑
t=0

βt

{
1

1− η
[
(Ct − θAtN

ν
t )1−η − 1

]
+ Λt

[
Wt

Pt
Nt + (rt − δ)Kt +

(qt − 1)Bt

Pt
+DB

t − Ct

− (Kt+1 −Kt)− (Xt+1 −Xt) + (Bt+1 − Bt)

Pt

]

+ Ξt

[
Xt +WtNt

Pt
− Ct

]}
.

From this expression we can derive the set of first-order condi-
tions that describes the household’s decisions. In the following,
we present these conditions in terms of the stationary variables
yt := Yt/At, ct := Ct/At, kt := Kt/At, wt := Wt/(AtPt), πt :=
Pt/Pt−1, λt := ΛtA

η
t , xt := Xt/(At−1Pt−1), mt := Mt/(At−1Pt−1),

and ξt := ΞtA
η
t . The definitions of xt and mt guarantee that these

variables are pre-determined at the beginning of period t.

λt + ξt = (ct − θNν
t )−η , (5.24a)

Nt =
(wt

θν

) 1
ν−1

, (5.24b)

λt = βa−ηEtλt+1

(
1− δ + αZt+1N

1−α
t+1 k

α−1
t+1

)
, (5.24c)

λt = βa−ηEt

(
λt+1qt+1

πt+1

)
, (5.24d)
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λt = βa−ηEt

(
λt+1 + ξt+1

πt+1

)
, (5.24e)

0 = ξt(xt/(aπt) + wtNt − ct). (5.24f)

Equation (5.24a) shows that the marginal utility of consumption
departs from the shadow price of wealth λt as long as the cash-in-
advance constraint binds, i.e., if ξt > 0. The related Kuhn-Tucker
condition is equation (5.24f). Equation (5.24b) is the labor supply
schedule. The well-known Euler equation for capital is given in
(5.24c). Together with equations (5.24d) and (5.24e) it implies
equal expected rewards on the holdings of physical capital, of
banking deposits, and of cash balances.

In addition to these equations the household’s budget con-
straint is satisfied with the equality sign and the cash-in-advance
constraint holds. Since

wtNt =
Bt +Mt+1 −Mt

AtPt
= mt+1 − xt/(aπt),

we may write the latter in the following way:

ct = mt+1, if ξt > 0, (5.25a)

ct ≤ mt+1, if ξt = 0, (5.25b)

mt+1 =
μtmt

aπt
, (5.25c)

where the third equation is implied from the definition of mt.
In equilibrium, the household’s budget constraint reduces to the
well-known resource restriction:

akt+1 = ZtN
1−α
t kα

t + (1− δ)kt − ct. (5.26)

Stationary Equilibrium. In a stationary equilibrium all shocks
equal their unconditional means, Zt ≡ 1 and μt ≡ μ for all t, and
all (scaled) variables are constant. Equation (5.25c) implies that
the inflation factor π (one plus the rate of inflation) is proportional
to the money growth factor:
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π =
μ

a
. (5.27a)

The Euler equation for capital (5.24c) delivers

1 = βa−η (1− δ + α(y/k))︸ ︷︷ ︸
1−δ+r

⇒ y

k
=
aη − β(1− δ)

αβ
. (5.27b)

Together with (5.24d) this implies the Fisher equation, here writ-
ten in terms of gross rates:

q = π(1− δ + r). (5.27c)

Given this, the stationary version of (5.24e) implies:

ξ = λ(q − 1). (5.27d)

Accordingly, the cash-in-advance constraint binds in equilibrium
if the nominal interest rate is positive: q − 1 > 0. Combining
(5.27a) and (5.27c), we find that this condition is satisfied, if the
growth rate of money is not too small:

μ > βa1−η.

Finally note that equation (5.24b) and equation (5.19a) imply

Nν−1 =
1

q

(
1− α
νθ

y

N

)
. (5.27e)

Since y/N is a function of y/k, it is independent of the money
growth rate. Yet, according to (5.27c) and (5.27a) q is an in-
creasing function of μ. Thus, steady-state working hours depend
inversely on the rate of money growth. As in the model of Section
2.6.3 money is not superneutral.

The PEA Solution. Our model has two exogenous shocks, Zt

and μt, and three variables with given initial conditions, kt, mt,
and xt. However, there are not enough equations to determine
consumption, working hours, the rate of inflation, the nominal
interest rate, and the Lagrange multiplier of the cash-in-advance
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constraint given the former variables. We must define additional
co-state variables. However, there is no easy way to do so, since the
three Euler equations (5.24c) through (5.24e) have the same lhs.
Technically speaking, the system of stochastic difference equations
g(·) is not easily invertible. There are various possible ways to deal
with this situation. The following is the solution that really works.

As in the applications above we parameterize the rhs of the
Euler equation for capital:

λt = βa−ηψ1(γ1, kt, mt, xt, Zt, μt). (5.28a)

Since mt > 0 in any solution where money has a positive value,
we multiply the second Euler equation (5.24d) on both sides by
mt+1 and parameterize the ensuing rhs of this equation:

mt+1λt = βa−ηψ2(γ2, kt, mt, xt, Zt, μt). (5.28b)

Analogously, we multiply the third Euler equation by xt+1 and
put

xt+1λt = βa−ηψ3(γ3, kt, mt, xt, Zt, μt). (5.28c)

We are now able to trace out a time path as follows: Given the
five-tuple (kt, mt, xt, Zt, μt) we use (5.28a) to solve for λt. We use
this solution to infer mt+1 and xt+1 from (5.28b) and (5.28c),
respectively. Given mt andmt+1 equation (5.25c) delivers πt. Since

wtNt =
μtmt − xt

aπt

.

we can solve for wtNt and use this in (5.24b) to solve for Nt. In
the next step we use the first-order condition for labor demand
(5.19a) to solve for qt. Finally we check the Kuhn-Tucker condi-
tions: assume ξt = 0. This implies

c̄t = λ
−1/η
t + θNν

t ,

from (5.24a). If c̄t < mt+1 we accept this solution. Otherwise we
put c̃t = mt+1 and solve for ξt from (5.24a):

ξt = (c̃t − θNν
t )−η − λt.

Since c̄t > c̃t, we also have ξt > 0. In the last step we compute
kt+1 from the resource constraint (5.26).
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Implementation. The Fortran program LP.for implements the
PEA solution. As in the previous applications we use exponen-
tials of simple polynomials for ψi, i = 1, 2, 3. The program allows
the user to find the solution either iteratively or in one step by
solving the related system of non-linear equations. In both cases
the program obtains starting values from the solution of the log-
linearized model. We do this for the following reason. Since we
have five state variables and three expectational equations the
potential number of coefficients in the expectational equations is
large. For instance, a complete second degree polynomial in five
variables has 21 coefficients. Accordingly, the potential of multi-
collinearity among the 21 regressors is high and we do not consider
higher degree polynomials. Given the log-linear solution, we com-
pute time paths for the relevant variables. In a first step we look
at the correlation matrix between the potential regressors and ex-
clude those that are highly correlated with others.10 In a second
step we regress the error terms from the log-linear solution on
the remaining regressors. For this step, we use the Gauss-Newton
method presented in Algorithm 11.6.2. Given these initial values
we either invoke our non-linear equations solver or compute new
time paths and estimates until the estimates converge. In a third
step we reduce the set of regressors further: we exclude all regres-
sors whose t-ratios from the solution of step 2 are smaller than
one in absolute value. As it turns out, we get good results with a
small number of coefficients.

Note also that the number of regressors depends on your as-
sumptions with regard to monetary policy. If the monetary au-
thority is able to control money supply perfectly, i.e., σμ = 0, the
vector μ := [μ1, . . . , μT ]′ is a vector of constants. Neither μ nor
any of its integer powers or cross-products with other variables
can be used as regressor. To see this, consider the case

ψ(kt, μt) := exp(γ1 + γ2 ln(kt) + γ3 ln(μt)).

The Jacobian matrix of ψ with respect to γi is given by:

10 The program allows you to write this matrix to a file without doing any
further computations.
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ψ(k1, μ1) ψ(k1, μ1) ln(k1) ψ(k1, μ1) ln(μ1)
ψ(k2, μ2) ψ(k2, μ2) ln(k2) ψ(k2, μ2) ln(μ2)

...
...

...
ψ(kT , μT ) ψ(kT , μT ) ln(kT ) ψ(kT , μT ) ln(μT )

⎤⎥⎥⎥⎦ .
Thus, if μt = μ for all t, the third column of this matrix is a mul-
tiple ln(μ) of the first and the Jacobian is singular. Accordingly,
the Gauss-Newton step cannot be computed.

Concluding this paragraph, we strongly advice you to go
through steps one to three from above for every parameter set
that you wish to consider.

Table 5.3

Preferences Production Money Supply

β=0.994 a=1.005 α=0.27 μ=1.0167
η=2.0 δ=0.011 ρZ=0.90 ρμ=0.0
N=0.13 σZ=0.0072 σμ=0.0173
ν=5.0

Results. If not mentioned otherwise the following results are
computed for the calibrationCalibration displayed in Table 5.3.
The parameters for the production side and for money supply are
the same as those used in Section 2.6.3 and are, therefore, repro-
duced from Table 2.3. The preference parameters β and η are the
same as in the benchmark model. Furthermore, we choose θ so
that stationary working hours are N = 0.13. The parameter that
determines the labor supply elasticity ν is taken from Heer and
Maußner (2008).
Table 5.4 displays the arguments and estimated coefficients of the
functions that we use to parameterize expectations. They are the
results of the steps described in the previous paragraph.

We will first consider the relative strength between the liquid-
ity and the anticipated inflation effect. If the monetary shock is
not autocorrelated – as our estimates of this process from German
data indicate – there is no anticipated inflation effect. This effect
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Table 5.4

Regres-
sors

σμ = 0.0173 σμ = 0
ψ1 ψ2 ψ3 ψ1 ψ2 ψ3

c 4.1457 2.4675 −8.5449 4.1161 2.3547 −3.7464
(56.45) (18.70) (−23.03) (54.70) (87.23) (−59.33)

k −1.4201 −0.8764 1.2091 −1.2503 −0.6635 0.0492
(−36.28) (−3.68) (6.17) (−32.01) (−13.80) (1.51)

x −0.1440 −4.8323 −0.1033 0.0016 −2.1977
(−3.43) (−22.76) (−2.39) (1.64) (−60.54)

Z −0.4868 −0.1099 −3.6561 −0.4859 −0.1046 −3.7700
(−183.87) (−14.31) (−275.13) (−183.33) (−31.95) (−1692.54)

μ −0.0040 0.0140 −0.1237
(−2.21) (2.06) (−13.68)

k2 0.2333 0.1841 −0.5130 0.1570 0.0880 0.0225
(13.20) (1.71) (−5.80) (8.90) (4.05) (1.53)

x2 −0.0227 −0.7571 −0.0164 −0.3410
(−3.50) (−22.96) (−2.45) (−60.36)

Z2 −0.1063 −5.0438 −0.1023 −5.7785
(−1.74) (−16.58) (−1.66) (−112.73)

μ2 0.0734 3.9122
(1.61) (17.30)

Notes: c refers to the intercept, t-ratios of estimated coefficients at final solution in
parenthesis.

gains importance, if the autocorrelation parameter ρμ increases.
The impulse responsesImpulse response function displayed in Fig-
ure 3.1 show this very clearly. The monetary shock hits the econ-
omy in period t = 3. The solid lines correspond to the case ρμ = 0.
The liquidity effect is obvious from the lower right panel of Figure
5.1. The additional supply of money lowers the nominal interest
rate. The costs of hiring labor decrease, working hours and pro-
duction increase. Part of the extra income is consumed and part is
transferred to future periods via additional capital accumulation.
The positive effect on consumption is very small, and, thus, not
visible in Figure 5.1.

The dotted lines correspond to an autocorrelated money sup-
ply process. In addition to the liquidity effect, there is also an
inflationary expectations effect. As can be seen from Figure 5.1
the latter dominates the former for our choice of parameters. Since
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Figure 5.1: Impulse Responses to a Monetary Shock in the Limited
Participation Model

households expect higher inflation, their costs of holding money
balances increase. They substitute physical capital for financial
wealth so that there is a stronger increase in investment. Since
the cash-in-advance constraint binds, the reduced money holdings
entail lower consumption. On the production side the increased
nominal interest rate reduces working hours and output. This neg-
ative income effect puts additional pressure on consumption.

Table 5.5 presents second moments from two different simu-
lations of the model. The first run considers the case of steady
money growth, i.e., σμ = 0, the second simulation assumes mon-
etary shocks of the size observed in the data.

First, consider columns 2 to 4. They show one obvious dif-
ference between the benchmark model and the present model
(compare Table 5.2). The standard deviation of working hours
in the benchmark model is more than four times larger, and, as a
consequence, output fluctuations are more pronounced. This dif-
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Table 5.5

Variable PEA Solution Loglinear Solution

σμ = 0 σμ = 0.0173 σμ = 0.0173

sx rxy rx sx rxy rx sx rxy rx

Output 0.98 1.00 0.68 0.98 1.00 0.68 0.98 1.00 0.68

Investment 4.47 1.00 0.69 4.47 1.00 0.69 4.45 1.00 0.69

Consumption 0.34 0.98 0.67 0.34 0.98 0.67 0.34 0.98 0.67

Hours 0.17 0.87 0.78 0.18 0.83 0.67 0.18 0.83 0.67

Real Wage 0.69 0.87 0.78 0.74 0.83 0.67 0.73 0.83 0.67

Inflation 0.27−0.43−0.09 1.69−0.02−0.07 1.70−0.02 −0.09

Notes: sx:=standard deviation of HP-filtered simulated series of variable x,
rxy :=cross correlation of variable x with output, rx:=first order autocorrelation
of variable x.

ference is easily traced to the small elasticity of labor supply of
1/(ν − 1) = 0.25. In the benchmark model the Frisch elasticity of
labor supply is determined implicitly, and is about 1.7.11

Given our calibration, the real effects of monetary shocks in the
limited participation model are quite small and negligible. The
standard deviations in column 5 differ from those in column 2
only in two instances: due to the liquidity effect, the standard de-
viation of the real wage is about 7 percent higher, which translates
into a greater variability of hours. Of course, inflation is substan-
tially more volatile if monetary shocks are present. The standard
deviation of this variable is almost equal to σμ.

Finally, consider columns 7 to 9. They present the second mo-
ments obtained from the simulation of the loglinear solution of the

11 The Frisch elasticity measures the relative change of working hours to a
one-percent increase of the real wage, given the marginal utility of wealth
λ. In the steady state of the benchmark model it is given by

dN/N

dw/w
=

1−N
N

(
1− η
η

θ − 1
)−1

.
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model. Both the loglinear and the PEA simulations use the same
random numbers, so that differences between the two solutions
are non-random.12 Compared to columns 4 to 6, no noteworthy
difference is discernible.

12 They are random only in so far as the PEA solution depends itself on a
long sequence of random numbers.
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Problems

5.1 Analytic Solution to the Expectations Function
Consider the stochastic Ramsey Model from Example 1.3.2. The problem
is to solve

max
∞∑

t=0

βt lnCt

subject to Kt+1 = ZtK
α
t − Ct,

K0, Z0 given.

We already know that the policy function g is given by

g(Kt, Zt) = αβZtK
α
t .

Use this information to find the analytic solution for the expectations
function E .

5.2 Fixed-Point Iterations
Consider the stochastic growth model with irreversible investment from
Section 5.3.1. Write a program that determines the PE solution of this
model from fixed-point iterations. For this purpose you can use the rele-
vant parts of our program SGNNI_b.for . Your program should implement
these steps:

i) Given an initial γ0, and a sequence of productivity shocks {Zt}Tt=0,
compute the time path of consumption, the capital stock and the
Lagrange multiplier μt.

ii) Use the damped Gauss-Newton algorithm in GaussNewton.for to es-
timate a new parameter vector γ1 from a non-linear regression of the
error terms C−η

t+1(1− δ)+αZt+1K
α
t+1− (1− δ)μt+1 on ψ(γ1,Kt, Zt).

iii) Iterate on equation (5.8) until convergence. Choose different values
of λ to how this choice affects convergence.

5.3 A Cash-in-Advance Model
A less complicated DGE model of a monetary economy than the limited
participation model of Section 5.3.3 is the model of Cooley and Hansen

(1989). This paper introduces money into the model of Hansen (1985)
via a cash-in-advance constraint. The authors demonstrate that a policy
of constant money growth does not alter the business cycle characteristics
of the original model and that an erratic money supply resembling the
US historical experience alters the behavior of real variables slightly.
Cooley and Hansen (1989) solve their model with a variant of the
linear-quadratic method of Section 2.3. We ask you to employ the PEA
to solve their model and to reproduce their results.
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We use the same symbols for consumption, capital, working hours, money
balances, and so forth as in the model of Section 5.3.3. The representative
household solves the following problem:

max
C0,N0,K1,M1

E0

∞∑
t=0

βt (lnCt − θNt)

subject to

Kt+1 −Kt +
Mt+1 −Mt

Pt
≤ Wt

Pt
Nt + (rt − δ)Kt + Tt − Ct,

Ct ≤ Mt

Pt
+ Tt.

Money supply is determined by

Tt =
Mt+1 −Mt

Pt
, Mt+1 = μtMt.

The policy of a constant money supply implies μt = μ for all t, whereas

μ̂t = (1 − ρμ)μ+ ρμμ̂t−1 + εμt , εμt ∼ N(0, σμ), μ̂t := ln(μt/μ)

describes an erratic money supply.
The representative firm solves

max
Nt,Kt

ZtN
α
t K

1−α
t − Wt

Pt
Nt − rtKt,

where Zt is governed by

lnZt = ρZ lnZt−1 + εZt , εZt ∼ N(0, σZ).

a) Set up the Lagrangean of the household’s problem and derive the
first-order conditions for this problem.

b) Use the first-order conditions of the firm’s problem to substitute for
the wage rate and the rental rate in the household’s optimality con-
ditions and derive the system of stochastic difference equations that
govern the model’s dynamics.

c) Solve for the model’s balanced growth path and show that working
hours are a decreasing function of the steady state growth rate of
money.

d) Consult the Appendix of Den Haan and Marcet (1994) to find out
how they solve this model using the PEA.

e) Cooley and Hansen (1989) calibrate their model as follows: β =
0.99, θ = 2.86, α = 0.64, ρZ = 0.95, σZ = 0.00721, ρμ = 0.48, and
σμ = 0.009. Use a polynomial in Kt, Zt, and μt to parameterize the
conditional expectation appearing in the Euler equation of capital and
solve the model.
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f) Use the solution and simulate the model. As in the original paper use
time series with 115 observations and compute seconds moments as
averages over 50 simulations from the HP-filtered time series.

g) Consider the Cooley and Hansen (1989) model with current period
utility given by

u(Ct, Nt) :=
1

1− ηC
1−η
t (1−Nt)θ(1−η), η �= 1, θ > 0, η >

θ

1 + θ
.

Put η = 2 and choose θ so that working hours in the steady state
equal N = 0.33.
With these preferences it is no longer possible to solve the model along
the lines of Den Haan and Marcet (1994). To solve the model you
must parameterize the conditional expectations not only in the Euler
equation for capital but also in the Euler equation for money balances.
Solve the model and compare your results to those of the original
model.
(Hint: Use Λtmt+1 = ψ2(Kt, Zt,mt, μt) as the second parameterized
equation.)
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Projection Methods

Overview. The parameterized expectations approach (PEA) con-
sidered in the previous chapter solves DGE models by approxi-
mating the agents’ conditional expectations and determines the
best approximation via Monte-Carlo simulations. In this chapter,
we also employ methods from function approximation. Yet, these
methods are not limited to functions that determine the agents’
conditional expectations, nor do they necessarily resort to simu-
lation techniques to find a good approximation. These methods,
known as projection or weighted residual methods, may, thus, be
viewed as generalizations of the PEA along certain dimensions.
1) The functions that we approximate do not need to be the con-
ditional expectations that characterize the first-order conditions
of the agents in our model. Instead, we may approximate the
agent’s policy function, or the value function of the problem at
hand. 2) We use different criteria to determine the goodness of
the fit between the true but unknown function and its polyno-
mial representation. These criteria prevent the problem that we
encountered in the previous chapter, namely, that it may be diffi-
cult to increase precision by using a higher degree polynomial. 3)
Some of these criteria require numerical integration. The Monte-
Carlo simulation is just one way to do this. Other techniques exist
and often are preferable.

This chapter is structured as follows. First, the general idea of
projection methods is presented. Second, we consider the various
steps that constitute this class of methods in more detail. It will
become obvious that we need several numerical tools to implement
a particular method. Among them are numerical integration and
optimization as well as finding the zeros of a set of non-linear
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equations. Third, we apply projection methods to the determin-
istic and the simple stochastic growth model and compare our
results to those of Chapter 2 and Chapter 4. As an additional ap-
plication, we study the equity premium puzzle, i.e. the (arguably)
missing explanation for the observation that the average return
on equities has been so much higher than the one on bonds over
the last century. For this reason, we consider asset pricing within
the stochastic growth model.

6.1 Characterization of Projection Methods

6.1.1 An Example

Projection methods derive approximate solutions to functional
equations.1 The unknown of a functional equation is not a point
in Rn but a function f that maps Rn to Rm. Since an appropri-
ately defined set of functions is itself a vector space, the problem
is to pick an element from a function space. Different from Rn,
however, function spaces have infinite dimensions, and in many
circumstances it is impossible to derive analytic solutions. Pro-
jection methods use a family of polynomials P := {ϕi}∞i=0 and
approximate f by a finite sum of members of this family.

To be concrete, consider the ordinary differential equation2

ẋ(t) + x(t) = 0, x(0) = 1, (6.1)

with solution

1 Early expositions of projection methods are provided by Judd (1992,1998)
and Reddy (1993). McGrattan (1996) also considers so-called finite-
element methods that approximate the solution over non-overlapping sub-
domains of the state-space. In these methods, low-polynomials are fitted
on subdomains rather than high polynomials on the entire state-space. Our
piecewise linear or cubic approximation of the value function in Algorithm
4.2.1 can be interpreted as a finite-element method. In the following, we
will not consider these methods and refer the interested reader to Reddy

(1993) and McGrattan (1996).
2 In the following, we draw on McGrattan (1999).
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x(t) = e−t. (6.2)

Suppose we use the monomials (1, t, t2) to approximate the solu-
tion in the interval [0, 2]:3

x̂(t) = 1 + γ1t+ γ2t
2. (6.3)

How shall we choose the unknown parameters γi, i = 1, 2? In
econometrics, we approximate a given set of points (xi, yi) ∈ R2

by drawing a line so that the sum of squared distances of (xi, yi)
from this line attains a minimum. Something similar to this also
works here. Let us define the residual function

R(γ, t) := γ1 + 2γ2t︸ ︷︷ ︸
dx̂/dt

+ 1 + γ1t+ γ2t
2︸ ︷︷ ︸

x̂(t)

. (6.4)

This function describes the error that results, if we use our guess
of the solution (6.3) instead of the true solution (6.2) in the func-
tional equation (6.1). By analogy, we could choose the parameters
so that in the interval [0, 2] x̂(t) is as close as possible to x(t) in
the sense of

min
γ1,γ2

∫ 2

0

R(γ, t)2dt. (6.5)

The first-order conditions for this problem are given by the fol-
lowing two equations:

0 =

∫ 2

0

R(γ, t)
∂R(γ, t)

∂γ1
dt,

0 =

∫ 2

0

R(γ, t)
∂R(γ, t)

∂γ2
dt.

By using (6.4) and the derivatives of this function with respect to
γ1 and γ2, it is easy to compute the integrals. This delivers the
following linear system of equations in the two unknowns γ1 and
γ2:

3 Note that we set γ0 = 1 to satisfy the boundary condition x(0) = 1.
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−4 = 8
2

3
γ1 + 16γ2,

−6
2

3
= 16γ1 + 33

1

15
γ2.

Figure 6.1 shows that the approximate solution is not too far from
the true function e−t. Of course, we can get a better approximation
if we use a higher degree polynomial.

Using a well known property of the least squares estimator de-
livers another solution concept, the Galerkin method. Remember,
the least squares residuals are orthogonal to the space spanned
by the vectors that represent the observations of the independent
variables. Here, the functions t and t2 play the role of these vec-
tors. Thus, we demand

0 =

∫ 2

0

R(γ, t)tdt,

0 =

∫ 2

0

R(γ, t)t2dt.

(6.6)

Figure 6.1: Polynomial Approximation of e−t
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Computing the integrals on the rhs of (6.6) gives a second set of
linear equations in the unknown parameters γ1 and γ2:

−2 = 4
2

3
γ1 + 9

1

3
γ2,

−2
2

3
= 6

2

3
γ1 + 14

2

5
γ2.

The dotted line in Figure 6.1 represents the Galerkin approximate
solution of the differential equation (6.1).

Finally, we may want that the residual function is equal to zero
at a given set of points. Suppose we choose t1 = 1 and t2 = 2.
This gives the linear system

−1 = 2γ1 + 3γ2,

−1 = 3γ1 + 8γ2.

The solution based on this principle is known as collocation
method. Figure 6.1 reveals that this approximation is about as
close to the true curve as the other solutions.

6.1.2 The General Framework

The three different solutions that we have just considered may
be obtained from the following setting. We want to approximate
an unknown function f : X → Y , where X and Y are subsets
of Rn and Rm, respectively. This function is implicitly defined by
the functional equation F (f) = 0, where F : C1 → C2. C1 and
C2 are given spaces of functions, e.g., the set of all continuously
differentiable functions on [a, b]. Examples of functional equations
are the Bellman equation (1.14) of the deterministic growth model
considered in Chapter 1 and the Euler equation of the stochastic
growth model (1.45c) also presented in Chapter 1. Given a family
of polynomials P := {ϕi}∞i=0, we approximate f by a finite linear
combination of the first p+ 1 members of this family:

f̂(x) =

p∑
i=0

γiϕi(x), x ∈ X ⊂ Rn. (6.7)
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The residual function is obtained by substituting f̂ into the func-
tional equation:

R(γ,x) := F (f̂(γ,x)), γ := (γ0, . . . , γp). (6.8)

Suppose there is a set of test functions {gi(x)}pi=0 and a weighting
function w(x). Together with R they define an inner product given
by∫

X

w(x)R(γ,x)gi(x)dx.

On a function space, this inner product induces a norm (i.e., a
measure of distance) on this space and we choose the vector of
parameters γ so that∫

X

w(x)R(γ,x)gi(x)dx = 0, ∀i = 0, 1, . . . , n. (6.9)

It is easy to see that the three different solutions considered above
are derived from (6.9) for special choices of gi and w.

1. The least squares solution puts gi ≡ ∂R/∂γi and w ≡ 1.
2. The Galerkin solution chooses gi ≡ ϕi and w ≡ 1.
3. The collocation method uses the Dirac delta function as

weighting function,

w(x) =

{
0 if x �= xi,
1 if x = xi,

and puts gi ≡ 1.

In the following, we restrict ourselves to these three definitions of
a solution being close to the true function. Before we consider the
different steps to implement a specific solution in more detail, we
summarize the general procedure that underlies projection meth-
ods in an algorithm.

Algorithm 6.1.1 (Projection Method)

Purpose: Approximate the solution f : X → Y of a functional
equation F (f) = 0.
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Steps:

Step 1: Choose a bounded state-space X ⊂ Rn and a family of
functions ϕi(x) : X → Y , i = 0, 1, . . . .

Step 2: Choose a degree of approximation p and let

f̂(γ,x) =

p∑
i=0

γiϕi(x).

Step 3: Define the residual function:

R(γ,x) := F (f̂(γ,x)).

Step 4: Choose a projection function gi, a weighting function w
and compute the inner product:

Gi :=

∫
X

w(x)R(γ,x)gi(x)dx, i = 0, . . . , n.

Find the value of γ that solves Gi = 0, or, in the case of
least squares projection (gi = ∂R/∂γi and w ≡ 1), that
minimizes∫

X

R(γ,x)2dx.

Step 5: Verify the quality of the candidate solution γ. If necessary,
return to step 2 and increase the degree of approximation
p or even return to step 1 and choose a different family
of basis functions.

6.1.3 Relation to Parameterized Expectations

Lawrence Christiano and Jonas Fisher (2000) point out
that the conventional parameterized expectations approach (PEA)
presented in Chapter 5 is a particular projection method. Consider
again the non-linear regression step 4 of algorithm 5.1.1. In this
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step, we solve the non-linear equation system (5.10), which we
restate for your convenience:

0 =
−2

T

T−1∑
t=0

[φj(st+1(γ))− ψj(γj ,wt(γ))]
∂ψj

∂γij
(γj ,wt(γ)),

for all i = 1, 2, . . . , p, and j = 1, 2, . . . , k.

In this equation, the n(w)-vector of states wt ∈ X ⊂ Rn(w) con-
tains all relevant information to predict the conditional expecta-
tion φ(st+1). The function that approximates φj(·) is given by
ψj(·) and parameterized by γj .

In order to generate the time series for wt and for st+1 in
the stochastic growth model, for example, a random sample of
the technology shock Zt is drawn. If the time horizon T is
getting large, the probability distribution of the state variables
wt ∈ X ⊂ Rn(w) approaches the ergodic distribution, say π(w),
induced by the choice of φ(·) and the distribution of Zt. The PEA
can now readily be identified with a specific projection method.
The residual is given by

Rj(γ,x) = φj (st+1(γ))− ψj(γj ,wt(γ))

and the weight for the i-th component of γ is simply

wi(wt,γ) = π(wt)
∂ψj

∂γij
(γj ,wt(γ)).

In particular, the residual at point wt ∈ X is also weighted by
its probability π(wt) = 1/T . The Monte-Carlo simulation used in
the conventional PEA more likely generates data points near the
steady state for two reasons. First, since the innovations in the
AR(1)-process are drawn from a normal distribution, realizations
far from the mean of 0 are less likely. Second, the economy tends
to return to the steady state after a shock.

This property of the Monte-Carlo simulation, however, also
constitutes a major weakness of the conventional PEA. If we nu-
merically approximate a function, we use nodes that are not con-
centrated in a certain area of the interval over which we want to
approximate this function.4 For example, with Chebyshev regres-

4 See Section 11.2.
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sion a relatively large proportion of the nodes is distributed close
to the limits of the interval [−1, 1]. Therefore, we could get a much
better quality of fit with much less fitting points if we modify the
PEA accordingly. We will show this in Section 6.3.2, where we
solve the stochastic growth model.

6.2 The Building Blocks of Projection Methods

In this subsection we consider the separate steps of Algorithm
6.1.1 in more detail. We begin with the choice of the family of
functions.

6.2.1 Approximating Function

In the applications of Chapter 5 we use the family of monomials
{1, x, x2, ...} to approximate the conditional expectations func-
tion. There, we already encountered the problem that the fitting
step may fail due to the fact that higher degree monomials may
be nearly indistinguishable from each other numerically. We can
circumvent this problem by using a family of orthogonal polyno-
mials, as, e.g., the Chebyshev polynomials described in Section
11.2.6. There are further considerations that make Chebyshev
polynomials a prime candidate for projection methods. Some of
them are mentioned in Section 11.2.6 and others will become ob-
vious in the next paragraphs.

One further issue must be resolved at this step. Polynomials are
single valued functions. So, how are we going to interpret the term
ϕi(x) in equation (6.7)? As we explain in Section 11.2.7, ϕi(x) is
the i–th member of a so called product base, which consists of
products of members of a family of polynomials. If x ∈ X ⊂ Rn,
let (k1, k2, . . . kn) denote the n-tuple of integers from the set I :=
{0, 1, 2, . . . , p}. Then:

ϕi(x) :=

n∏
j=1

ϕkj
(xj).
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Note that there are (1 + p)n different n-tuples that can be built
from the set I. The respective product space is called the n-fold
tensor product base. A smaller set, the complete set of polyno-
mials, derives from the condition

∑n
j=1 kj = p. For instance, if

n = 2, this set consists of (p+ 1)(p+ 2)/2 members, whereas the
tensor product base has (1 + p)2 members.

6.2.2 Residual Function

In many economic applications there are several ways to solve
the model. For instance, in Chapter 5 we approximate the agent’s
conditional expectations function. Yet, we can solve the models
considered there also by computing the agent’s policy function.
In some cases it is not always obvious, which way is best, and
some experimentation with different solution concepts may be
warranted. In other cases a particular solution may suggest it-
self on a priori reasons. In the stochastic growth model with a
binding constraint on investment the agent’s policy function will
have a kink at the point where the constraint becomes binding.
As we demonstrate in Section 11.2.6, it is difficult to approxi-
mate a kinked function with a linear combination of differentiable
functions as the Chebyshev polynomials. Thus, in this case it is
better to solve the model by computing the agent’s conditional
expectations function.

Even if we have decided on the function that we wish to approx-
imate it is not always obvious how to define the residual function
in step 3 of Algorithm 6.1.1. Consider the Euler equation of the
deterministic growth model from (1.12):

0 =
u′(Ct)

u′(Ct+1)
− βf ′(Kt+1),

Kt+1 = f(Kt)− Ct,

where Ct is consumption in period t, Kt the agent’s stock of cap-
ital, u′(·) the marginal utility of consumption, and f ′(·) the mar-
ginal product of capital. Assume we want to solve this model



6.2 The Building Blocks of Projection Methods 295

in terms of the policy function C(Kt). Letting Ĉ(γ, K) denote
the approximate solution, the residual function may be computed
from

R(γ, K) :=
u′[Ĉ(γ, K)]

u′[Ĉ(γ, f(K)− Ĉ(γ, K))]

− βf ′[f(K)− Ĉ(γ, K)].

(6.10)

Notice that by this formulation we do not put more weight on
low asset values K (and, hence, low consumption C) with a cor-
responding high value of marginal utility because we form the
fraction of current and next-period marginal utilities. However, if
we chose the alternative residual function

R(γ, K) := u′(Ĉ(γ, K))

− βu′[Ĉ(γ, f(K)− Ĉ(γ, K))]f ′[f(K)− Ĉ(γ, K)]

small errors in the approximation of the true consumption func-
tion C(K) would result in large residuals at low values of the capi-
tal stock K, while relatively larger deviations of the approximated
function from the true solution for high values of K would result
in a much smaller residual. As we aim to find a good uniform ap-
proximation of the policy function over the complete state-space,
we should be careful with respect to the choice of the residual
function and rather use (6.10).

6.2.3 Projection and Solution

Depending on the choice of the projection function and the weight-
ing function this step may become more or less involved. Note that
for x ∈ X ⊂ Rn the shorthand

∫
X

denotes the n-fold integral:∫
X

w(x)R(γ,x)gi(x)dx

:=

∫ x̄1

x1

∫ x̄2

x2

. . .

∫ x̄n

xn

w(x)R(γ,x)gi(x)dx1dx2 . . . dxn.
(6.11)
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If the dimension of the state-space is small, we can use one of
several methods to compute numeric approximations to these in-
tegrals. For instance, in Section 11.3.2 we consider the Gauss-
Chebyshev quadrature that replaces the integral by a weighted
sum of m function values, computed at the zeros of the m-th
degree Chebyshev polynomial. Suppose x = (x1, x2) so that the
double integral is approximated by a double sum over the pairs
(xi, xj), i, j = 1, 2, . . . , m. If we use m = 100 nodes to com-
pute the integral, this amounts to adding up 10,000 elements. In
general, using Gauss-Chebyshev quadrature to evaluate (6.11),
requires mn − 1 summations. In higher dimensional problems,
the integration step can become a binding constraint. For in-
stance, Heer and Maussner (2004) use the Galerkin method
to solve a multi-country, representative agent model. For eight
countries with idiosyncratic productivity shocks the state-space
of this model has dimension n = 16. Even with only 3 nodes
Gauss-Chebyshev quadrature requires 43,046,721 evaluations of
the integrand. In this paper we employ an integration formula
that uses 2n + 2n + 1 points. On a personal computer with Pen-
tium III, 846 MHz processor it takes 14 days, 16 hours and 32
minutes to find the solution.

If we project the residual against the Dirac delta function, we
circumvent the computation of integrals. Of course, this will save
a lot of computer time if the state-space is large. Instead, the task
is to solve the non-linear equation system

R(γ,xj) = 0, j = 0, 1, . . . , p.

But at which set of points xj should the residual function equal
zero? It is well known from the so called Chebyshev interpolation
theorem5 that the Chebyshev zeros minimize the maximal inter-
polation error. For this reason, one should use the Chebyshev
nodes of the Chebyshev polynomial of order p+1. This particular
projection method is called Chebyshev collocation.

We have seen that the least squares projection derives from
minimizing

∫
X
R(γ,x)2dx. Thus, instead of solving the set of p+1

5 See, e.g., Judd (1998), Theorem 6.7.2, p. 221.
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non-linear equations∫
X

R(γ,x)
∂R(γ,x)

∂γj
dx = 0, ∀j = 0, 1, . . . , p,

we can also employ numerical optimization techniques to find the
minimizer of

∫
X
R(γ,x)2dx. Otherwise we must compute the par-

tial derivatives of the residual function either analytically or nu-
merically. Depending on the structure of the problem, the latter
approach – though not as accurate as the former – may be prefer-
able since it requires less programming. What is required is just
passing the function R(·) to a subroutine that returns the gradient
of a user supplied function.

6.2.4 Accuracy of Solution

A first and simple to perform check of the accuracy of the solution
is to compute the residuals R(γ,x) over a grid of points in X.
To get an idea of how good your solution is, you must compare
it to a second solution. This second solution could use different
projection functions g̃i or a more accurate, but perhaps more time-
consuming integration routine.

A second accuracy check is to simulate the model. From this
simulation the second moments of important economic variables
and the DM-statistic (see Section 12.3) can be computed. Hints
at a bad solution are implausible second moments or signs of cor-
relation of expectational errors with past information.

In the case of Chebyshev polynomials, there is a third, easy to
use criterium. From Theorem 11.2.4 we know that the coefficients
γj drop off rapidly and that γp is small. If your solution does not
display this pattern, you should return to step 2 or even step 1 of
Algorithm 6.1.1.

6.3 Applications

In this section, we present several applications. First, we compute
the policy function of the deterministic growth model that we also
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consider in Sections 1.2, 2.1, 2.5.2, 3.1.2 and 4.1. The state-space
of this model is one-dimensional and consists of the capital stock
Kt only. In the second example, we extend the analysis to a two-
dimensional state-space considering the stochastic growth model
of Section 1.3. Finally, we model asset pricing. Towards this end,
we introduce habit persistence and adjustment costs of capital
into the stochastic growth model. The state-space of this model
consists of the productivity shock, the stock of capital and past
consumption.

6.3.1 The Deterministic Growth Model

The Model. In Section 1.2 we introduce the deterministic growth
model. For your convenience, we restate the farmer’s decision
problem given in (1.8):

max
C0,C1,...

U0 =
∞∑

t=0

βtC
1−η
t − 1

1− η , β ∈ (0, 1) , η > 0,

s.t. (6.12)

Kt+1 + Ct ≤ Kα
t + (1− δ)Kt, α ∈ (0, 1),

0 ≤ Ct,
0 ≤ Kt+1,

⎫⎬⎭ t = 0, 1, . . . ,

K0 given,

where Ct is consumption in period t and Kt the farmer’s stock of
capital. Here, we assume that the current period utility function
u(Ct) has a constant elasticity of marginal utility with respect
to consumption of −η. The production function F (N,Kt) = Kα

t

is of the Cobb-Douglas type and capital depreciates at the rate
δ ∈ (0, 1].

The Euler equation of this problem is given by:[
Ct+1

Ct

]−η

β
(
1− δ + αKα−1

t+1

)− 1 = 0. (6.13)

From this equation we derive the steady state value of the capital
stock:
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K∗ =

[
αβ

1− β(1− δ)
]1/(1−α)

.

Implementation. The state-space X of the problem is one-di-
mensional and consists of the capital stock Kt. In order to perform
the computation, we need to specify an upper and a lower bound
for the state-space. We choose X := [0.5K∗, 1.5K∗]. Depending on
the nature of our problem, we might want to specify a smaller or
larger interval. For example, if we consider the transition dynamics
from an initial capital stock K0, we may choose an interval [K,K]
that contains K0 and K∗, and choose the borders K and K to be
close to these values.

In the first and second step of Algorithm 6.1.1, we choose a
family of functions for the approximation. In particular, we ap-
proximate the consumption function C(K) with the help of a
Chebyshev polynomial of order p,

Ĉ(γ, K) :=

p∑
j=0

γjTj(K̃(K)),

where K̃(K) maps the capital stock K into the interval [−1, 1]
according to equation (11.48).

In step 3, we define the residual function R(γ, K). We argued in
the previous subsection that it is best to use a version of the Euler
equation, where the fraction of current and future marginal utility
appears. For this reason we use equation (6.13) as our starting
point. We compute the residual R(γ, K) in the following steps:

1. Given a parameter vector γ and K0 ∈ [K,K] we use Algo-
rithm 11.2.1 to compute Ĉ0 := Ĉ(γ, K0). At this step we will
terminate the algorithm if the returned value of consumption
is non-positive. This may occur if γ is far from the solution.

2. From Ĉ0 we compute the future stock of capital K1 from the
resource constraint:

K1 = Kα + (1− δ)K − Ĉ0.

Here we must check whether K1 is in [K,K]. If this condition
is not satisfied, we must stop the algorithm: for values of K1
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outside the interval [K,K] the transformed variable K̃(K) is
outside the interval [−1, 1] where the Chebyshev polynomial
is not defined. We know from Section 1.2 that the true solu-
tion converges to K∗. Therefore, the true policy function C(K)
always satisfies

K < Kα + (1− δ)K − C(K),

K > K
α

+ (1− δ)K − C(K).

Of course, a bad approximate solution does not need to satisfy
this requirement. We invite you to discover what strange things
can happen if you ignore this condition in the computation of
a candidate solution. Just out-comment the respective line in
the file Ramsey2e.g.

3. Given K1 we use Algorithm 11.2.1 again to get Ĉ1 := Ĉ(γ, K1).
4. In this final step we compute the residual from

R(γ, K0) := β

[
Ĉ1

Ĉ0

]−η (
1− δ + αKα−1

1

)− 1.

The fourth step of Algorithm 6.1.1 concerns the projection
method. The least squares method requires the minimization of∫ K

K

R(γ, K)2dK

with respect to the parameter vector γ. We use Gauss-Chebyshev
quadrature (see equation (11.76)) and approximate this integral
by the sum

S(γ) :=
π(K −K)

2L

L∑
l=1

R(γ, K(K̃l))
2

√
1− K̃2

l ,

where K̃l are the zeros of the L-th degree Chebyshev polynomial
and K(K̃l) is the transformation of these zeros to the interval
[K,K] given by equation (11.49). The minimization of S(γ) via a
quasi Newton algorithm requires good starting values. With bad
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initial values it is not possible to evaluate S. It turns out that it
is no trivial task to pick admissible points from which Algorithm
11.6.3 converges. In the case where an analytic solution exists we
get starting values from a regression of the analytic solution on
a Chebyshev polynomial. For this purpose we employ Algorithm
11.2.2. In all other cases we use a genetic search routine that
provides an initial point for Algorithm 11.6.3.

For the Galerkin projection method we use again Gauss-
Chebyshev quadrature. With this, we must solve the system of
p+ 1 non-linear equations:

0 =
π(K −K)

2L

L∑
l=1

R(γ, K(K̃l))Ti(K̃l)

√
1− K̃2

l ,

i = 0, 1, . . . , p.

(6.14)

The simplest method in terms of computer code required
to specify the respective system of non-linear equations is the
Chebyshev collocation method. Here, we determine the coeffi-
cients γ0, . . . , γp from the conditions:

R(γ, K(K̃i)) = 0, ∀i = 0, 2, . . . , p, (6.15)

where, again, K̃i is the i-th zero of the Chebyshev polynomial of
order p+ 1.

To solve both the non-linear system (6.14) and (6.15), we
use the modified Newton-Raphson algorithm with line search ex-
plained in Section 11.5. Again, it is difficult to find good initial
values. Our short cut to solve this problem was to regress the ana-
lytic solution on a Chebyshev polynomial using Algorithm 11.2.2
if an analytic solution is available. Otherwise we use the solution
returned by the search algorithm employed to minimize S(γ).

Results. The program Ramsey2e.g computes the different solu-
tions. Table 6.1 displays the results for p = 4. The parameter
values are α = 0.27, β = 0.994, η = 2, and δ = 0.011. The
coefficients differ only slightly. They drop off nicely so that we
are confident of having found a good solution. The last row of
Table 6.1 shows the maximum absolute value of 100 Euler equa-
tion residuals computed on equally spaced points in the interval



302 Chapter 6: Projection Methods

Table 6.1

Coefficient Least Galerkin Collocation Quadratic
Squares

γ0 2.262612 2.262619 2.262620 0.021081
γ1 0.477002 0.477001 0.476935 -0.000243
γ2 -0.032233 -0.032274 -0.032398
γ3 0.004766 0.004764 0.004870
γ4 -0.000873 -0.000843 -0.000792

EER 5.471E-6 5.377E-6 7.558E-6 3.864E-5
Notes: Euler equation residuals (EER) are computed as the maximum
absolute value of 100 equally spaced points in the interval [0.8K∗, 1.2K∗].

[0.8K∗, 1.2K∗]. The residuals are quite small for all three solutions
and about one order of magnitude smaller than the Euler equation
residual obtained from the quadratic policy function computed in
Section 2.5.2. Comparing the different test and weighting func-
tions, the collocation solution is slightly less precise than both
the least squares and the Galerkin solution.

Figure 6.2 nicely shows the difference between a local and a
global method to determine the policy function of a DGE model.
It plots the 100 Euler equation residuals associated with the
Galerkin solution and the quadratic policy function. Near the sta-
tionary solution of the model, there is no remarkable difference.
Yet, to the right of 1.1K∗ and to the left of 0.9K∗ the precision
of the quadratic solution rapidly worsens.

6.3.2 The Stochastic Growth Model with
Non-Negative Investment

In Section 4.3.1 we employ discrete state-space methods to solve
the stochastic growth model with a non-negativity constraint on
investment. The solution of this model via the parameterized ex-
pectations approach is considered in Section 5.3.1. Here we com-
pute a solution with the methods outlined in the first two sections
of this chapter. We assume that you are by now familiar with this
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Figure 6.2: Euler Equation Residuals from the Deterministic Growth
Model

model so that we can turn to the details of our implementation
immediately. For your convenience, we repeat the first-order con-
ditions from (5.12) that characterize the model’s solution:

0 = C−η
t − μt − βEt

[
C−η

t+1(1− δ + αZt+1K
α−1
t+1 )− μt+1(1− δ)

]
,

(6.16a)

0 = ZtK
α
t + (1− δ)Kt − Ct −Kt+1, (6.16b)

0 = μt[Kt+1 − (1− δ)Kt], (6.16c)

0 ≤ μt, (6.16d)

0 ≤ Kt+1 − (1− δ)Kt. (6.16e)

Implementation. We know from the previous discussion of this
model that the consumption function has a kink (see Figure 4.2) at
the points where the non-negativity constraint binds. Since kinked
functions are difficult to approximate, we choose the conditional
expectation on the rhs of (6.16a) as our target. As in Section 5.3.1,
we use the exponential of a polynomial in lnK and lnZ:
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ψ(γ, Z,K) := β exp

(
p1∑
i=0

p2∑
j=0

γijTi(K̃)Tj(Z̃)

)
,

where K̃ and Z̃ denote the transformations of lnK ∈ [lnK, lnK]
and lnZ ∈ [lnZ, lnZ], respectively, to the interval [−1, 1] as given
by (11.48).

The state-space X of this model consists of all pairs (Kt, Zt) ∈
R2, and we must choose a compact (that is, closed and bounded)
subset X of this space to determine the parameters of ψ. There
are two different considerations that guide our decision. First,
we know from previous discussions of the model that the capital
stock remains in a small neighborhood of the stationary capital
stock of the deterministic growth model, if the level of total factor
productivity Zt stays close to its unconditional mean Z = 1. Since
we want a good approximation of the model in this part of its
state-space and not in those parts which the economy never visits,
we will choose X as small as possible. Simulations of the process

lnZt =  lnZt−1 + σεt, εt ∼ N(0, 1) (6.17)

helped to find lower and upper bounds for Z and simulations with
the parameterized expectations solution provided the bounds of
the capital stock. Without previous experience with the model
trial and error must guide your choice of upper and lower bounds
of the capital stock. For instance, the lower (upper) bound can be
set to a small fraction (multiple) of the stationary capital stock.
When a solution has been found, these bounds can be adjusted
accordingly. There is, however, a second issue that we must con-
sider. The domain of Chebyshev polynomials is the compact in-
terval [−1, 1] and we must map X into [−1, 1] × [−1, 1] via the
transformation (11.48). It is, however, dangerous to use the same
compact region chosen to determine the parameters of ψ for this
purpose. In order to compute the residual function R(γ, K, Z), we
must evaluate conditional expectations. As before, we use Gauss-
Hermite integration for this purpose. This algorithm also considers
very extreme productivity levels Z that are beyond the bounds
within which Z stays in simulations of the model. Furthermore,
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with extreme levels of Z savings may be either very high or very
small and may put the capital stock outside the interval which we
have specified. To prevent this, we use a different and much larger
compact set X̃ as domain of the function ψ.

In our program SGNNI_c.for we compute the residual function
from (6.8) in the following steps.

1. Given a pair (Z,K), we solve

C = ψ(γ, Z,K)−1/η

and check the non-negativity constraint. If

K1 := ZKα + (1− δ)K − C ≥ (1− δ)K,
we accept this choice, else we put

C = ZKα,

K1 = (1− δ)K.

If K1 ∈ X̃, we proceed to the next step; otherwise we stop and
try a different vector γ or adjust the bounds of X̃.

2. Let K1(Z,K) denote the solution from the first step and let
Z1 = e� ln Z+σε, ε ∼ N(0, 1) be the productivity level of the
next period. We solve for

C1 = ψ(γ, Z1, K1(Z,K))−1/η.

Again, we must check whether this solution violates the non-
negativity constraint on investment. Thus, if

K2 = Z1K
α
1 + (1− δ)K1 − C1 ≥ (1− δ)K1

we accept and put μ1 = 0, else we set

C1 = Z1K
α
1 ,

μ1 = C−η
1 − ψ(γ, Z1, K1).

Given this, we can compute the expression

g(Z1, Z,K) := C−η
1 (1− δ + αZ1K

α−1
1 )− (1− δ)μ1.
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3. The conditional expectation on the rhs of (6.16a) is then

φ(Z,K) := β

∫ ∞

−∞
g(e�z+σε, Z,K)

e
−ε2

2√
2π
dε.

In our program we compute this integral via Gauss-Hermite
quadrature with four nodes.
As an alternative, one can approximate the AR(1)-process in
equation (6.17) by a Markov chain with m states. Thus, if Zi

is the i-th element of the grid Z = {Z1, Z2, . . . , Zm} and if pij,
i, j = 1, 2, . . . , m denotes the probability of moving from i to
j, the conditional probability on the rhs of (6.16a) is approxi-
mated by

φ(Z,K) := β

m∑
j=1

g(Zj, Zi, K)pij .

In any way, we are now done, and the residual function is de-
fined by

R(γ, Z,K) = φ(Z,K)− ψ(γ, Z,K).

Our program SGNNI_c.for has many options. You can choose
the type of the polynomial (product base versus complete base),
its degree, the projection type (least squares, Galerkin, or colloca-
tion), the bounds on K and Z that determine the set X, and the
way to initialize the parameter vector. Specifically, you can use a
former solution as starting value for a new one or use a genetic
search routine. In addition, the program allows you to apply the
linear policy function for λt found by the program Ramsey3a.g

and estimate an initial parameter vector from the formulas given
in (11.60). Note, however, that the program does not allow you to
use the collocation solution together with a complete polynomial.
A complete polynomial in two independent variables of degree
p has n = (p + 1)(p + 2)/2 different parameters. Yet, there are
m = (p+ 1)2 > n different zeros of the single Chebyshev polyno-
mials. Which combination of n zeros out of m should we use to
determine the parameters? Of course, there is a natural answer:
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the solution that is best in terms of the Euler equation residual.
Yet, even with a low degree of p = 4, this becomes a laborious
task. To find the solution with the smallest Euler equation resid-
ual, we had to compare l = m!/n!(m − n)! = 3, 268, 760 different
solutions.

Results. Table 6.2 presents the results from a few experiments
that we conducted. The parameters of the model are as in our
previous simulations, that is, α = 0.27, β = 0.994, δ = 0.011,
η = 2,  = 0.9. We considered two different values of σ = 0.0072
and σ = 0.05. For the smaller value, the non-negativity constraint
never binds so that the model is identical to the stochastic growth
model. It proved rather tricky to obtain the solutions. In some
cases the linear solution provided a good starting value, in others
our genetic search routine supplied acceptable initial values. The
solutions shown in the first panel of the table were computed from
the final solutions for σ = 0.05.

Table 6.2 supports several conclusions. First, consider the
choice of the type of the polynomial. A complete polynomial with
15 parameters (the case p = 4) achieves about the same degree
of accuracy as a product base polynomial with twenty parame-
ters (the case p1 = 3 and p2 = 4). From our experiments (which
are not all listed in the table) it is save to recommend complete
polynomials instead of product base polynomials. For the least
squares as well as for the Galerkin projection they provide the
same degree of accuracy with fewer parameters than the latter
family of polynomials.

Second, consider the kind of the projection. Least squares and
Galerkin projection deliver about the same degree of accuracy. In
the case of the smaller value of σ = 0.0072, we were not able to
obtain the same degree of accuracy from the collocation solution.
The last two rows of the first panel of Table 6.2 show that neither
a product base polynomial with 12 nor with 16 parameters was
able to reduce the Euler equation residual to about 2.E-8, which
results from both the least squares and the Galerkin solution with
15 parameters. For the larger productivity shock, we obtain Euler
equation residuals of the same size from all three methods with
15 (p = 4) and 12 (p1 = 2 and p2 = 3) parameters, respectively.
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Table 6.2

Projection Degree of Euler Equation Residual DM-Statistic
Polynomial 90% 80% < 3.816 > 21.920

σ = 0.0072

Least Squares p = 2 5.542E-6 4.303E-6 1.7 3.3
p = 3 1.104E-7 1.085E-7 1.8 3.2
p = 4 2.220E-8 2.100E-8 1.8 3.2

Galerkin p = 2 6.196E-6 4.863E-6 1.7 3.4
p = 3 1.165E-7 1.151E-7 1.8 3.2
p = 4 1.950E-8 1.650E-8 1.8 3.2

p1 = 3, p2 = 4 1.817E-8 1.533E-8 1.8 3.2
Collocation p1 = 2, p2 = 3 1.391E-6 1.294E-6 1.6 3.3

p1 = 3, p2 = 3 3.347E-6 3.177E-6 1.8 3.0
σ = 0.05

Least Squares p = 2 5.966E-4 4.676E-4 0.3 14.8
p = 3 2.674E-4 1.540E-4 1.6 4.8
p = 4 2.896E-4 1.906E-4 1.4 5.4

Galerkin p = 2 6.177E-4 4.863E-4 0.3 15.1
p = 3 2.905E-4 1.737E-4 1.5 5.2
p = 4 2.661E-4 1.708E-4 1.5 5.3

p1 = 3, p2 = 4 2.719E-4 1.501E-4 1.8 5.0
Collocation p1 = 2, p2 = 3 2.550E-4 1.254E-4 1.6 5.6

p1 = 3, p2 = 3 2.544E-4 1.340E-4 1.3 5.7
Notes: p is the degree of the complete polynomial, p1 and p2 refer to the dimensions of
the product base polynomial. The Euler equation residuals are computed as maximum
absolute value of 2002 residuals computed on an equally spaced grid K × Z . The
size of the interval for K was chosen so that 90 (80) percent of the realizations of
K out of 1,000 simulations with 3,000 points each are within the respective interval.
The interval for Z was determined likewise.

But note, that the collocation solution with 16 parameters (the
case p1 = 3 and p2 = 3) performs not really better than the one
with 12 parameters.

Third, the Euler equation residuals computed over the 90 and
80 percent interval for the capital stock are about the same size.
Being a global, non-linear method, the projection approach pro-
vides an equally precise solution over the relevant state-space of
the model.
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Fourth, compare the parameterized expectations (PE) solu-
tions displayed in Table 5.1 with the results in Table 6.2. In the
case of the small standard deviation σ = 0.0072, the least squares
and the Galerkin solutions are almost an order of magnitude more
accurate than the PE solution for p = 2. In addition, whereas it
was not possible to obtain a more accurate solution from the PE
approach, it was easy to reduce the Euler equation residuals from
about 5.5E-6 to 2.0E-8 by increasing p from 2 to 4. On the other
hand, for σ = 0.05, the PE solution is about as accurate as the
solutions from the different projection methods. In this case, we
have not been able to increase the precision markedly by using
higher-order polynomials.

6.3.3 The Benchmark Model

Our solution of the benchmark model of Example 1.5.1 draws
on the conclusions from the previous subsection. To facilitate the
comparison with the parameterized expectations solution of Sec-
tion 5.3.2 we approximate the rhs of the Euler equation (5.13d)
by a complete Chebyshev polynomial of degree p = 2 and use
Galerkin projection to determine the parameters of this function.
The residual function R(γ, k, Z) is obtained as follows.

Given λ = ψ(γ, k, Z), we use equation (5.14) to determine
working hours N and consumption c. Then, we compute the
next-period capital stock k1 from the budget constraint (5.13c).
Let Z1 = e� lnZ+σε denote the next-period level of total fac-
tor productivity associated with Z and ε ∼ N(0, 1), so that
λ1 = ψ(γ, k1, Z1). We use (5.14) again to find N1. In this way,
we have determined

g(k, Z, ε) = λ1(1− δ + αe� ln Z+σεN1−α
1 kα−1

1 ),

and the residual function is given by

R(γ, k, Z) = λ− βa−η

∫ ∞

−∞
g(k, Z, ε)

e−
ε2

2√
2π
dε.
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Table 6.3

Linear Projection Methods
Approximation Galerkin Collocation

p = 2 p1 = 1, p2 = 2

Second Moments
Variable sx rxy rx sx rxy rx sx rxy rx

Output 1.44 1.00 0.64 1.44 1.00 0.64 1.43 1.00 0.64
Investment 6.11 1.00 0.64 6.11 1.00 0.64 6.10 1.00 0.64
Consumption 0.56 0.99 0.66 0.56 0.99 0.66 0.56 0.99 0.66
Hours 0.77 1.00 0.64 0.77 1.00 0.64 0.77 1.00 0.64
Real Wage 0.67 0.99 0.65 0.67 0.99 0.65 0.67 0.99 0.65

Euler Equation Residuals
[0.90; 1.10]k 1.835E-4 1.543E-6 4.227E-5
[0.85; 1.15]k 3.478E-4 1.993E-6 4.217E-5
[0.80; 1.20]k 5.670E-4 3.770E-6 5.950E-5

DM-Statistic
<3.816 2.0 2.7 1.5
>21.920 3.4 3.0 5.3
Notes: sx:=standard deviation of variable x, rxy:=cross correlation of variable
x with output, rx:=first order autocorrelation of variable x. All second moments
refer to HP-filtered percentage deviations from a variable’s stationary solution.
Euler equation residuals are computed as maximum absolute value over a grid of
400 equally spaced points on the square K × [ln 0.95; ln 1.05], where K is defined
in the respective row of the left-most column. The 2.5 and the 97.5 percent critical
values of the χ2(11)-distribution are displayed in the last two lines of the first
column. The table entries refer to the percentage fraction out of 1,000 simulations
where the DM-statistic is below (above) its respective critical value.

We compute the integral in this expression as before from the
Gauss-Hermite formula (11.77) with four nodes.

Table 6.3 displays the results computed from our Fortran pro-
gram Benchmark.for . This program has the same options as the
program SGNNI_c.for so that you can experiment with differ-
ent settings. The table shows two different solutions. Both use a
polynomial with 6 parameters. The Euler equation residuals, the
DM-statistic, and the second moments clearly show that the collo-
cation solution with a product base polynomial is worse than the
Galerkin solution with a complete polynomial. Compared with
the parameterized expectations solution in Table 5.2 the Galerkin
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solution is an order of magnitude more precise than the PE solu-
tion. Note, however, that both solutions deliver the same second
moments as the linear solution.

6.3.4 The Equity Premium Puzzle

The Puzzle. One of the most regarded puzzles in the theory
of financial economics is the equity premium puzzle: Why has
the average real return on stocks in the US been six percentage
points higher than the return on US Treasury Bills over the last
century?6 In this chapter, we present a model of asset pricing in
a production economy based on the work of Jermann (1998).

The model is an extension of the stochastic growth model that
you are, by now, most familiar with. In the latter model the ex-
pression

Rt := αZtK
α−1
t − δ

(i.e., the marginal product of capital less the rate of depreciation)
is the net return on one unit of output invested in the capital
stock of a representative firm. We also know from this model that
the household’s lifetime utility does not change, if she trades one
unit of consumption today against

u′(Ct)

βEtu′(Ct+1)
=

Λt

βEtΛt+1

units of consumption tomorrow. Thus, the household is willing to
pay

pt := βEt
Λt+1

Λt

6 An excellent overview of this issue is provided by Kocherlakota (1996).
Jagannathan, McGrattan, and Scherbina (2001) argue that the eq-
uity premium has declined significantly in the last two decades and is likely
to remain at a lower level on average as the transaction costs for trading
stocks have been reduced substantially. For recent views on the puzzle
and the efforts to solve it, see Mehra (2003) and Mehra and Prescott

(2003).
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for a bond that promises one unit of consumption tomorrow for
certain. For this reason we can use

rt :=
1

pt
− 1 ≡ Λt

βEtΛt+1
− 1

as a measure of the risk free rate of return. Note that the time
subscript t in this definition refers to the date on which the return
becomes known. The return materializes in period t+1 when the
bond pays one unit of consumption. The mean equity premium
in the simple stochastic growth model is E(Rt+1 − rt), where, as
usual, E(·) denotes the unconditional mathematical expectation
taken over the probability distribution of (Z,K,C).

In the simple stochastic growth model with less than full de-
preciation there is not much variation in the marginal product of
capital, since investment is only a small portion of the stock of
capital. One way to raise the variability of the stock of capital is
to provide further incentives for investment. For instance, if the
household’s current period utility depends not only on current but
also on past consumption, its desire to smooth consumption in-
creases. This is usually referred to as habit persistence. A second
way to obtain more variation in the return on equity is to allow for
a variable price of shares. In the simple stochastic growth model
the price of capital in terms of consumption goods is constant and
equal to one, because it is possible to consume the stock of capi-
tal. The most common way to allow for a variable price of capital
goods is to introduce adjustment costs.

In the following we extend the simple stochastic growth model
along these two lines. We consider a decentralized economy in-
habited by a continuum of identical households of mass one and
a continuum of identical firms of the same size.

Households. The representative household provides one unit of
labor to firms and earns the competitive real wage wt. As a share-
holder she is entitled to receive dividends dt per unit of stocks St

of the representative firm. The current price of stocks in terms
of the consumption good is vt. Thus, total income is wt + dtSt.
The household buys consumption goods Ct and additional shares
vt(St+1 − St). Her budget constraint, thus, is
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vt(St+1 − St) ≤ wt + dtSt − Ct. (6.18)

The household’s current period utility function is specified in
the following way:

u(Ct, Ct−1) :=
(Ct − bCt−1)

1−η − 1

1− η , b ∈ [0, 1), η > 0. (6.19)

Habit persistence occurs if b > 0, otherwise we get the standard
isoelastic current period utility function. The household maxi-
mizes expected lifetime utility

E0

∞∑
t=0

βt (Ct − bCt−1)
1−η − 1

1− η , β ∈ (0, 1),

subject to (6.18) and the initial number of shares S0. Employing
the techniques presented in Section 1.3, we derive the following
first-order conditions:

Λt = (Ct − bCt−1)
−η − βbEt(Ct+1 − bCt)

−η, (6.20a)

Λt = βEtΛt+1Rt+1, (6.20b)

Rt :=
dt + vt

vt−1
. (6.20c)

The term Rt gives the current period (ex post) gross rate of return
on equities. As usual, Λt is the Lagrange multiplier of the budget
constraint, and Et denotes expectations conditional on informa-
tion available at the beginning of the current period t.

Firms. The representative firm uses labor services Nt and capital
services Kt to produce output according to

Yt = ZtN
1−α
t Kα

t . (6.21)

The level of total factor productivity Zt follows the AR(1)-process
specified in equation (6.17). The firm finances its investment ex-
penditures It by issuing new equities vt(St+1 − St) and out of
retained earnings REt:

It = vt(St+1 − St) +REt. (6.22)
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Investment expenditures increase the firm’s current capital stock
by

Kt+1 −Kt = φ(It/Kt)Kt − δKt, δ ∈ (0, 1]. (6.23)

φ(It/Kt) is an increasing, concave function of its argument. The
case φ(It/Kt) ≡ It/Kt specifies the capital accumulation equation
in the standard model. As in Section 3.3.2 we parameterize this
function by:

φ(It/Kt) :=
a1

1− ζ
(
It
Kt

)1−ζ

+ a2, ζ > 0. (6.24)

The firm’s profits equal revenues Yt less labor costs wtNt:

Πt = Yt − wtNt. (6.25)

The amount REt of these profits are used to finance investment.
The remaining profits are distributed as dividends to the firm’s
shareholders:

dtSt = Πt − REt. (6.26)

To motivate the firm’s objective function, we consider the de-
terministic case first. The value of the firm at the beginning of
time t+ 1 is given by

Vt+1 = vtSt+1.

Using (6.22), (6.26), and (6.25) this may be expressed as

Vt+1 = vtSt+1 = vtSt + It −REt,

= vtSt + It + dtSt −Πt,

=

(
dt + vt

vt−1

)
vt−1St − (Yt − wtNt − It),

or, using the definition of Rt in (6.20c), as

Vt+1 + (Yt − wtNt − It) = RtVt.
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Iterating this equation forward beginning with t = 0 and ending
with t = T yields:

V0 =
VT

R0R1 . . . RT−1
+

T−1∑
t=0

Yt − wtNt − It
R0R2 . . . Rt

.

For the present value of the firm V0 to be finite if T tends to
infinity requires:

lim
T→∞

VT

R0R1 . . . RT−1
= 0.

In effect, this condition rules out speculative bubbles. Thus, we
end up with the following formula for the present value of the
firm:

V0 =

∞∑
t=0

t[Yt − wtNt − It], t :=
1

R0R1 · · ·Rt
. (6.27)

Note that the firm is not able to choose its discount factor. In equi-
librium the household sector requires a return on equities given
by

Rt+1 =
Λt

βΛt+1
, (6.28)

which follows from (6.20b) in the case of no aggregate uncertainty.
As a consequence, the firm’s value depends on the sequence of cash
flows and the sequence of shadow prices Λt but not on the firm’s
dividend policy.7

The firm aims at maximizing its present value (6.27) subject
to (6.23). The respective Lagrangean for this problem is

L =
∞∑

t=0

t

{
ZtN

1−α
t Kα

t − wtNt − It

+ qt
[
φ(It/Kt)Kt + (1− δ)Kt −Kt+1

]}
,

7 This is not generally true. Here it follows because we neglect income and
corporate taxes. See Turnovsky (2000), 292ff.
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where qt is the period t value of the Lagrange multiplier attached
to the constraint (6.23).

The first-order conditions for the optimal choice of Nt, It, and
Kt+1 are:

wt = (1− α)ZtN
−α
t Kα

t , (6.29a)

qt =
1

φ′(It/Kt)
, (6.29b)

qt =
1

Rt+1

{
αZt+1N

1−α
t+1 K

α−1
t+1 − (It+1/Kt+1) (6.29c)

+ qt+1

[
φ(It+1/Kt+1) + 1− δ]}.

In addition, the transversality condition

lim
t→∞

tqtKt+1 = 0 (6.29d)

must hold.
The first condition determines labor input in the usual way

and deserves no further comment, except that it implies

Πt := Yt − wtNt = αZtN
1−α
t Kα

t = αYt. (6.30)

Given qt, the shadow value of an additional unit of new capital
in terms of the firm’s output, the second equation can be solved
for the optimal amount of investment expenditures It. We want
adjustment costs of capital to play no role in the deterministic
stationary state of the model. This has two consequences: q must
equal one and I must equal δK. Using (6.24) and (6.29b) the first
condition requires

a1 = δζ.

Via the second condition this in turn implies:

a2 =
−ζ

1− ζ δ.

It is easy to see that for ζ > 0 condition (6.29b) implies qt → 0⇒
It → 0. Thus, there is always a solution featuring qt, It > 0. Using
equations (6.23) and (6.30) condition (6.29c) may be rewritten as
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qt =
1

Rt+1

{
Yt+1 − wt+1Nt+1 − It+1 + qt+1Kt+2

} 1

Kt+1

.

Iterating on this equation delivers

q0K1 =
T∑

t=1

t(Yt − wtNt − It) + T qTKT+1.

Taking the limit for T →∞, invoking the transversality condition
(6.29d), and comparing the result to the definition of the present
value of the firm in equation (6.27) establishes

q0K1 = V1.

Since the choice of the current period is arbitrary, we have just
shown that Vt+1 = qtKt+1. In words, qt is the ratio of the firm’s
stock market value to the replacement costs of its capital stock.

This result carries over to the stochastic case to which we turn
next. Since we have already seen that the management of the
firm has to use the household’s marginal valuation of wealth Λt,
we define the expected present value of the firm in the following
way:

V0 = E0

∞∑
t=0

βt Λt

Λ−1

(
ZtN

1−α
t Kα

t − wtNt − It
)
.

Proceeding in a way analogous to Section 1.3.2, we can derive
first-order conditions. With regard to optimal labor input and
the optimal amount of investment these conditions are equal to
(6.29a) and (6.29b), respectively. The condition with respect to
Kt+1 is the obvious modification of (6.29c):

qt = βEt
Λt+1

Λt

(
αZt+1(Kt+1/Nt+1)

α−1 − It+1

Kt+1

+ qt+1 [φ(It+1/Kt+1) + 1− δ]
)
.

(6.29c’)
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Market Equilibrium. Since the size of the household sector
is one and since leisure is not an argument of the household’s
utility function, total labor supply always equals unity: Nt ≡ 1.
The household’s budget constraint (6.18) together with defini-
tions (6.22), (6.26), and (6.25) implies the economy’s resource
constraint:

ZtK
α
t = Ct + It. (6.31)

Thus, the model’s dynamics is governed by the stochastic Euler
equations (6.20a) and (6.29c’), the capital accumulation equation
(6.23), the resource constraint (6.31), and the investment function
that derives from condition (6.29b).

Deterministic Stationary State. Remember that we have as-
sumed that adjustment costs of capital play no role in the deter-
ministic stationary state of the model, i.e., q = 1 and φ(I/K) = δ.
Using this, as well as Λt+1 = Λt = Λ and Z = 1 in the Euler equa-
tion (6.29c’) implies:

K =

[
αβ

1− β(1− δ)
]1/1−α

.

Hence, the deterministic stationary stock of capital coincides with
the solution for the same variable in the simple deterministic
growth model. From the resource constraint we get

C = Kα − δK.

Finally, the Euler equation (6.20a) delivers the stationary value
of Λ :

Λ = (1− βb)[(1− b)C]−η.

Implementation. We can solve for all period t variables, if we
know qt and Λt. These variables in turn depend on the predeter-
mined variables Kt and Ct−1 and the level of total factor produc-
tivity Zt. Therefore, the state-space X of our model is a subspace
of R3, given by
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X := [K,K]× [C,C]× [Z,Z],

for suitable lower and upper bounds on Kt, Ct−1, and Zt, respec-
tively. As in the previous applications, we choose the intervals as
small as possible, but pay attention that all variables remain in
the respective interval in the simulations of the model. For the
Chebyshev polynomials we choose larger intervals. In particular,
the interval for the productivity shock must be large enough so
that it encompasses the nodes of the Gauss-Hermite quadrature
formula, which we employ to compute conditional expectations.
Since both qt and λt are non-negative variables, we employ ex-
ponentials of complete polynomials of degree pi, i = 1, 2. The
first polynomial ψ1(γ1, K, C, Z) approximates the rhs of equation
(6.29c’) and, thus, determines the relative price of capital q. The
second polynomial ψ2(γ2, K, C, Z) approximates the conditional
expectation on the rhs of equation (6.20a). The parameters of
these functions are collected in the yet to be determined vectors
γ1 and γ2. Before we consider this step, we explain our computa-
tions of the residual functions R1 and R2.

1. Given a triple (K,C, Z) we compute

q1 = ψ1(γ1, K, C, Z).

Using equation (6.29b) and our parameterization of φ given in
(6.24), we find

I1 = K(a1q1)
1/ζ .

The resource constraint (6.31) delivers

C1 = ZKα − I1,
and from the capital accumulation equation (6.23) we get

K2 = φ(I1/K)K + (1− δ)K.
Finally, we compute Λ1 from

Λ1 = (C1 − bC)−η − βbψ2(γ2, K, C, Z).

Before we proceed, we check if C1 and K2 are in the domain of
our polynomials.
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2. Let Z1 = e� ln Z+σε with ε ∼ N(0, 1) denote the level of total
factor productivity for an arbitrary realization of ε. We repeat
the previous sequence of computations:

q2 = ψ1(γ1, K2, C1, Z1),

I2 = K2(a1q2)
1/ζ ,

C2 = Z1K
α
2 − I2,

Λ2 = (C2 − bC1)
−η − βbψ2(γ2, K2, C1, Z1)

to get

g1(K,C, Z, ε) := β(Λ2/Λ1)
[
αZ1K

α−1
2 − (I2/K2)

+ q2(φ(I2/K2) + 1− δ)],
g2(K,C, Z, ε) := (C2 − bC1)

−η.

3. In the last step, we use these two functions to compute the
residuals from the Euler equations (6.29c’) and (6.20a):

R1(γ, K, C, Z) := q1 −
∫ ∞

−∞
g1(K,C, Z, ε)

e
−ε2

2√
2π
dε,

R2(γ, K, C, Z) := ψ2(γ2, K, C, Z)−
∫ ∞

−∞
g2(K,C, Z, ε)

e
−ε2

2√
2π
dε.

We employ the Gauss-Hermite formula with six points to com-
pute the integrals in these equations.

Our program Equity.for determines the parameter vector from
the Galerkin projection. Thus, it solves the set of equations

0 =

∫ K

K

∫ C

C

∫ Z

Z

Ri(γ, K, C, Z)Tj(K)Tk(C)Tl(Z)dKdCdZ,

i = 1, 2, j, k, l = 0, 1, . . . pi, j + k + l ≤ pi. (6.32)

The program approximates the three-fold integral with the Gauss-
Chebyshev quadrature formula in three dimensions.

Notice that we do not need to solve for the share price vt

appearing in the definition of the return on equities Rt+1 :=
(dt+1 + vt+1)/vt. To see this, consider the proposition
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Rt+1 =
Πt+1 − It+1 + qt+1Kt+1

qtKt+1

=
dt+1 + vt+1

vt

. (6.33)

The first term on the rhs equals the term in round brackets on
the rhs of equation (6.29c’) divided by qt. We have shown above
that the firm’s total value at t + 1 is given by vtSt+1 ≡ Vt+1 =
qtKt+1. This allows us to replace qtKt+1 and qt+1Kt+2 with vtSt+1

and vt+1St+2, respectively. When we eliminate It+1 by the rhs of
equation (6.22), the first term on the rhs of (6.33) transforms
into the second. Thus, we can compute the ex-post return on
equities from the simulated times series for output Yt, investment
It, the stock of capital Kt, and the relative price of capital qt. The
conditional expectation EtΛt+1 that appears in the definition of
the risk free rate rt := Λt/(βEtΛt+1) is computed in a manner
analogous to steps 2) and 3) above.

The program has several options to initialize the parameter
vectors for the non-linear equations solver. The first option, ge-
netic search, is rather time-consuming, if the degrees of the poly-
nomials are high and if the quadrature formula uses many nodes.
For instance, with 20 nodes in each dimension, the program must
evaluate 8,000 times the residual functions Ri in order to compute
the rhs of the system (6.32). One way to speed up this process,
is to determine the initial parameters from the collocation solu-
tion. The second option uses the linear policy functions and the
extension of Algorithm 11.2.2 to three dimensions to determine
initial parameters. The problem with this approach is, that the
linear policy functions may imply negative values for either q or
Λ, because the six-point Gauss-Hermite formula uses rather ex-
treme points for Z. The third option is to use a solution found in a
previous step for a different set of parameters or different degrees
pi. The strategy that finally proved successful was genetic search
for a collocation solution with p1 = p2 = 2 that could be used to
determine the Galerkin solution. Note that even for pi = 2 each
polynomial has 10 parameters. We increased the degrees of both
polynomials stepwise until the results with respect to the equity
premium stabilized. In each step we used the previously found
solution with zeros in the places of the yet unknown coefficients
as starting values.
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Calibration. Though there are prominent studies close to the
model of the previous paragraph, namely Jermann (1998) and
Boldrin, Christiano, and Fisher (2001), from which we could
have taken the parameters, we stick to our usual set of parameters
and borrow only the additional parameter ζ from these studies.
This allows us to compare the results to the stochastic growth
model that we have considered in this and the previous chapters.
Thus, we employ α = 0.27, β = 0.994, η = 2, δ = 0.011,  = 0.90,
σ = 0.0072. From the study of Jermann (1998) we take the value
of the elasticity of investment with respect to q of 0.23. In our
notation, this implies ζ = 1/0.23. We vary the habit persistence
parameter to uncover its influence on the equity premium. We
note, however, that for ζ as small as 0.23, our model does not
imply a significant equity premium, even for b close to one.

Results. Table 6.4 shows that our model is able to generate a
significant equity premium, if the household is sufficiently averse
to changes in consumption. The statistics are averages from 500
simulations with 120 periods each. For the small value of b = 0.1,
we found a good solution with p1 = 3 and p2 = 2 (30 parameters
altogether). Yet, for b = 0.8 and η = 3, we had to use p1 = p2 = 7

Table 6.4

η = 2.0 η = 3.0
b = 0.1 b = 0.5 b = 0.8 b = 0.8

R− 1 0.62 0.71 1.26 1.41
E(R − r) 0.04 0.17 1.05 1.34

(240 parameters altogether) until a further increase in pi did not
change the equity premium noticeably. In this case we find an
equity premium of about 5.5 percent p.a. (1.34 per quarter). The
estimates for the U.S. economy between 1802 and 2000 presented
in Table 1 of Mehra (2003), range between 4.9 and 8.0 percent
p.a., depending on the chosen time period. For our baseline para-
meters it is not possible to obtain a higher annual equity premium
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by increasing η any further. For instance, Jermann (1998) uses
η = 5. In our model this implies a negative risk free rate since the
denominator in rt = Λt/(βEtΛt+1) increases with a more curved
utility function and since the risk free rate in the deterministic
case is small: r = (1/β) − 1 yields an annual risk free rate of
2.4 percent. In a model with economic growth – as considered by
Jermann (1998) – this rate equals r = (1/(βa−η)) − 1. Using
a = 1.005 and η = 2 as in our benchmark model, the annual risk
free rate equals 6.6 percent. In this setting, it is possible to ob-
tain a higher equity premium by raising η from 2 to 5 for a still
positive and sizable risk free rate.

Considering the case of b = 0.1, where the equity premium is
negligible, and remembering what we said about the adjustment
cost parameter ζ , reveals that it is the combination of consumers
that strife for a very smooth time profile of consumption and
costly adjustment of capital that is able to explain the equity
premium.

The ability of the model to predict a sizeable equity premium is
sensitive to the assumption of a fixed supply of labor. If labor sup-
ply is endogenous, agents can smooth consumption over time quite
effectively by adjusting their working hours. The burden placed
on the stock of capital as a vehicle for consumption smoothing
is greatly reduced. The variability of the relative price of capital
declines and diminishes the equity premium. Boldrin, Chris-

tiano, and Fisher (2001) introduce frictions in the adjustment
of labor by considering a two-sector model, where workers cannot
move from one sector to the other within a given period. In this
model, they are able to replicate the average equity premium.
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Problems

6.1 Human Capital Accumulation
Consider the following discrete time version of Lucas’ (1988) model of
growth through human capital accumulation. In this deterministic model
the social planner solves the following problem:

max
∞∑

t=0

βtC
1−η
t − 1
1− η , β ∈ (0, 1), η > 0,

subject to

Kt+1 = (utHt)αK1−α
t + (1− δ)Kt − Ct,

Ht+1 = A(1 − ut)Ht + (1− δ)Ht, A > 0,
K0, H0 given.

Here Ct is consumption in period t, Kt the stock of capital, Ht the stock
of human capital. The size of the working population N is normalized to
1 so that ut is the fraction of human capital adjusted labor HtN devoted
to the production of output. The state variables of this model are physical
capital Kt and human capital Ht. The control variables are consumption
Ct and the fraction of hours spent in the production of output ut.
In the steady state of this model all variables grow at the rate gH =
A(1 − u∗) + (1 − δ), where u∗ is the steady state value of ut. Therefore,
variables that are stationary (and, thus, remain within a compact space)
are, for instance, kt := Kt/Ht, ct := Ct/Ht, and ht+1 := Ht+1/Ht.
Use projection methods to approximate the functions c(kt, ht) and u(kt, ht).
We propose the following values of the model’s parameters: α = 0.27,
β = 0.994, η = 2, δ = 0.011. Choose A so that the steady state growth
rate is 0.005 per quarter. Compute the transitional dynamics of the model
for both an economy with a relative shortage of physical and a relative
shortage of human capital. Is there any difference?

6.2 The Equity Premium and Endogenous Labor Supply
In the model of Section 6.3.4 modify the instantaneous utility function
of the household to include leisure:

u(Ct, Ct−1, 1−Nt) :=
(Ct − bCt−1)(1−η)(1−Nt)θ(1−η) − 1

1− η

and solve this model. Are you still able to produce a sizeable equity
premium?

6.3 Oil Price Shocks
Consider the following model with a variable utilization rate of capital
ut and a second shock that represents exogenous variations in the price
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of imported oil pt (this is adapted from Finn (1995)). The representative
agent solves

maxE0

∞∑
t=0

βt [lnCt + θ ln(1 −Nt)] , β ∈ (0, 1), θ > 0,

subject to

Kt+1 = (ZtNt)α(utKt)1−α + (1− δ(ut))Kt − Ct − ptQt,

δ(ut) :=
uγ

t

γ
,

Qt

Kt
=
uζ

t

ζ
,

lnZt = lnZ + lnZt−1 + εZt , εZt ∼ N(0, σZ),
ln pt = ρp ln pt−1 + εpt , εpt ∼ N(0, σp),
K0 given.

As usual, Ct denotes consumption in period t, Nt are working hours,
Kt is the stock of capital, and Qt it the quantity of oil imported at the
price of pt. A more intense utilization of capital increases the amount of
energy required per unit of capital. Thus, if the price of oil rises, capital
utilization will decrease. Verify this claim as follows.
In this model, labor augmenting technical progress follows a random walk
with drift rate lnZ. Define the following stationary variables ct := Ct/Zt,
kt := Kt/Zt−1, and zt := Zt/Zt−1. The state variables of the model are
kt, zt, and pt. Solve the model for the consumption function (Ct/Zt) =
c(kt, zt, pt). Given this solution, compute the time path of the utilization
rate of capital for a one-time oil price shock of the size of one standard
deviation of εp. Use the following parameter values taken from Finn

(1995): β = 0.9542, θ = 2.1874, α = 0.7, γ = 1.4435, ζ = 1.7260,
ρp = 0.9039, σp = 0.0966, Z = 1.0162, σZ = 0.021.
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Heterogeneous Agent Models





Chapter 7

Computation of Stationary
Distributions

Overview. This chapter introduces you to the modeling and
computation of heterogeneous-agent economies. In this kind of
problem, we have to compute the distribution of the individual
state variable(s). While we focus on the computation of the sta-
tionary equilibrium in this chapter, you will learn how to compute
the dynamics of such an economy in the next chapter.

The representative agent framework has become the standard
tool for modern macroeconomics. It is based on the intertemporal
calculus of the household that maximizes lifetime utility. Further-
more, the household behaves rationally. As a consequence, it is a
natural framework for the welfare analysis of policy actions. How-
ever, it has also been subject to the criticism whether the results
for the economy with a representative household carry over to one
with heterogenous agents. In the real economy, agents are different
with regard to many characteristics including their abilities, their
education, their age, their marital status, their number of chil-
dren, their wealth holdings, to name but a few. As a consequence
it is difficult to define a representative agent. Simple aggregation
may sometimes not be possible or lead to wrong implications. For
example, if the savings of the households are a convex function
of income and, therefore, the savings rate increases with higher
income, the definition of the representative household as the one
with the average income or median income may result in a con-
sideration of a savings rate that is too low.1 In addition, we are
unable to study many important policy and welfare questions that

1 To see this argument, notice that the rich (poor) households with a high
(low) savings rate contribute much more (less) to aggregate savings than
the household with average income.
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analyze the redistribution of income among agents like, for exam-
ple, through the reform of the social security and pensions system
or by the choice of a flat versus a progressive schedule of the in-
come tax.

In the remaining part of the book, agents are no longer homo-
geneous and cannot be represented by a single agent. For obvious
reasons, we will not start to introduce the diversity of agents along
its multiple dimensions at once, but we will first confine ourselves
to the consideration of one source of heterogeneity. In the next
section, therefore, we augment the standard Ramsey model by
the real life feature that some agents are employed, while others
are unemployed.2 For simplicity, we assume that the agent cannot
influence his employment probability, e.g. by searching harder for
a new job or asking for a lower wage. In addition, agents cannot
insure against the idiosyncratic risk of being unemployed. Ac-
cordingly, agents in our economy differ with regard to their em-
ployment status and their employment history. Those agents who
were lucky and have been employed for many years are able to
save more and build up higher wealth than their unlucky contem-
poraries who have been unemployed for longer periods of time.
As a consequence, agents also differ with regard to their wealth.
Besides, all agents are equal. In the second part of this chapter,
we will compute the stationary distribution of the individual state
variables. In the final section, we present two prominent applica-
tions from macroeconomic theory, the puzzle of the low risk-free
interest rate and the distributional effects of a switch from an in-
come tax to a consumption tax. In addition, we give you a short
survey of the modern literature on the theory of income distribu-
tion.

2 Different from the model of Hansen (1985), we also assume that agents
do not pool their income.
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7.1 A Simple Heterogeneous-Agent Model with
Aggregate Certainty

In Chapter 1, we present the deterministic infinite horizon Ram-
sey problem and show that the equilibrium of this economy is
equivalent to the one of a decentralized economy and that the
fundamental theorems of welfare economics hold. In this section,
we consider heterogeneity at the household level, but keep the
simplifying assumption that all firms are equal and, hence, can
act as a representative firm. As a consequence, we most conve-
niently formulate our model in terms of a decentralized economy
and study the behavior of the households and the firm separately.

As a second important characteristic of our model, we only
consider idiosyncratic risk. In our economy, households can be-
come unemployed and cannot insure themselves against this risk.
However, there is no aggregate uncertainty. For example, the tech-
nology is deterministic. As you will find out, the economy will
display a long-run behavior that is easily amenable to computa-
tional analysis. In the stationary equilibrium of the economy, the
distribution of the state variable, the aggregate wage and the ag-
gregate interest rate are all constant, while the employment status
and the wealth level of the individual households vary.3

In our simple model, three sectors can be distinguished: house-
holds, production, and the government. Households maximize
their intertemporal utility subject to their budget constraint. In
order to insure against the risk of unemployment, they build up
precautionary savings during good times. Firms maximize profits.
The government pays unemployment compensation to the unem-
ployed agents that is financed by an income tax. We will describe
the behavior of the three sectors in turn.

Households. The economy consists of many infinitely lived indi-
viduals. In particular, we consider a continuum of agents of total

3 Aggregate uncertainty will be introduced into the heterogeneous-agent ex-
tension of the Ramsey model in Chapter 8.
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mass equal to one.4 Each household consists of one agent and we
will speak of households and agents interchangeably. Households
differ only with regard to their employment status and their asset
holdings. Households maximize their intertemporal utility

E0

∞∑
t=0

βtu (ct) , (7.1)

where β < 1 is the subjective discount factor and expectations
are conditioned on the information set at time 0. At time zero,
the agent knows his beginning-of-period wealth a0 and his em-
ployment status ε0 ∈ {e, u}. If ε = e (ε = u), the agent is em-
ployed (unemployed). The agent’s instantaneous utility function
is twice continuously differentiable, increasing and concave in his
consumption ct and has the following form:

u(ct) =
c1−η
t

1− η , η > 0, (7.2)

where η, again, denotes the coefficient of relative risk aversion.
In the following, lowercase letters denote individual variables and
uppercase letters denote aggregate variables. For example, ct is
individual consumption, while Ct is aggregate consumption in the
economy. We, however, keep the notation that real prices are de-
noted by lower case letters, while nominal prices are denoted by
upper case letters.

Agents are endowed with one indivisible unit of time in each
period. If the agent is employed (ε = e) in period t, he earns gross
wage wt. If the agent is unemployed (ε = u) in period t, he receives
unemployment compensation bt. We will assume that (1− τ)wt >
bt, where τ denotes the income tax rate. The individual-specific
employment state is assumed to follow a first-order Markov chain.
The conditional transition matrix is given by:

π(ε′|ε) = Prob {εt+1 = ε′|εt = ε} =

(
puu pue

peu pee

)
, (7.3)

4 This amounts to assume that the number of individual households is in-
finite and, if we index the household with i ∈ [0, 1], the probability that
i ∈ [i0, i1] is simply i1 − i0.
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where, for example, Prob {εt+1 = e|εt = u} = pue is the proba-
bility that an agent will be employed in period t + 1 given that
the agent is unemployed in period t. Households know the law of
motion of the employment status εt.

In our economy, unemployment is exogenous. We have not
modeled any frictions which might be able to explain this feature.
In this regard, we follow Hansen and İmrohoroğlu (1992) in
order to simplify the exposition and the computation. Of course, it
would be straightforward to introduce endogenous unemployment
into this model. For example, various authors have used search
frictions in the labor market in order to explain unemployment
with the help of either endogenous search effort as in Costain

(1997) or Heer (2003) or endogenous separation from the firms
as in Den Haan, Ramey, and Watson (2000). In addition, we
assume that there are no private insurance markets against un-
employment and unemployed agents only receive unemployment
compensation from the government.5

The household faces the following budget constraint

at+1 =

{
(1 + (1− τ)rt) at + (1− τ)wt − ct if ε = e
(1 + (1− τ)rt) at + bt − ct if ε = u,

(7.4)

where rt denotes the interest rate in period t. Interest income
and wage income are taxed at rate τ . Each agent smoothes his
consumption {ct}∞t=0 by holding the asset a. An agent accumulates
wealth in good times (ε = e) and runs it down in bad times
(ε = u). As a consequence, agents are also heterogeneous with
regard to their assets a. We impose the asset constraint a ≥ amin,
so that households cannot run down their assets below amin ≤ 0.

The first-order condition of the household that is not wealth-
constrained can be solved by introducing the Lagrange multiplier
λ and setting to zero the derivatives of the Lagrangean expression

5 One possible reason why there are no private insurance markets against the
risk of unemployment is moral hazard. Agents may be reluctant to accept
a job if they may receive generous unemployment compensation instead.
Chiu and Karni (1998) show that the presence of private information
about the individual’s work effort helps to explain the failure of the private
sector to provide unemployment insurance.
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L = E0

∞∑
t=0

{
βt [u(ct)+ λt (1εt=ubt + (1 + (1− τ)rt)at

+1εt=e(1− τ)wt − at+1 − ct)]}
with respect to ct and at+1. 1εt=e (1εt=u) denotes an indicator
function that takes the value one if the agent is employed (unem-
ployed) in period t and zero otherwise. The first-order condition
for the employed and unemployed agent in period t is

u′(ct)
β

= Et [u′(ct+1)(1 + (1− τ)rt+1)] . (7.5)

The solution is given by the policy function c(εt, at) that is a
function of the employment status εt and the asset holdings at

in period t. In particular, the policy function is independent of
calendar time t. Together with (7.4), the policy function c(εt, at)
also gives next-period asset holdings at+1 = a′(εt, at).

Production. Firms are owned by the households and maximize
profits with respect to their labor and capital demand. Production
Yt is characterized by constant returns to scale using capital Kt

and labor Nt as inputs:

Yt = N1−α
t Kα

t , α ∈ (0, 1). (7.6)

In a market equilibrium, factors are compensated according to
their marginal products and profits are zero:

rt = α

(
Nt

Kt

)1−α

− δ, (7.7a)

wt = (1− α)

(
Kt

Nt

)α

, (7.7b)

where δ denotes the depreciation rate of capital.

Government. Government expenditures consist of unemploy-
ment compensation Bt which are financed by a tax on income.
The government budget is assumed to balance in every period:

Bt = Tt, (7.8)

where Tt denotes government revenues.
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Stationary Equilibrium. First, we will analyze a stationary
equilibrium. We may want to concentrate on the stationary equi-
librium, for example, if we want to analyze the long-run effects of
a permanent change in the government policy, e.g. a once-and-for-
all change in the unemployment compensation b. In a stationary
equilibrium, the aggregate variables and the factor prices are con-
stant and we will drop the time indices if appropriate, e.g. for the
aggregate capital stock K or the interest rate r and the wage w.
Furthermore, the distribution of assets is constant for both the
employed and unemployed agents, and the numbers of employed
and unemployed agents are constant, too. The individual agents,
of course, are not characterized by constant wealth and employ-
ment status over time. While we focus on a stationary distribution
in this chapter, we will also analyze 1) the transition dynamics for
a given initial distribution of the assets to the stationary distribu-
tion and 2) the movement of the wealth and income distribution
over the business cycle in the next chapter.

For the description of the stationary equilibrium, we need to
describe the heterogeneity in our economy. In this book, we use
a very pragmatic and simple way to define the stationary equilib-
rium. In particular, we only use basic concepts from probability
theory and statistics which all readers should be familiar with,
namely the concept of a distribution function.6 In the stationary
equilibrium, the distribution of assets is constant and we will refer
to it as either the stationary, invariant or constant distribution.
In our particular model, we are aiming to compute the two distri-
bution functions of the assets for the employed and unemployed
agents, F (e, a) and F (u, a), respectively. The corresponding den-
sity functions are denoted by f(e, a) and f(u, a). The individual
state space consists of the sets (ε, a) ∈ X = {e, u} × [amin,∞).

6 A description of more general heterogeneous-agent economies might neces-
sitate the use of more advanced concepts from measure theory. Since the
algorithms and solution methods developed in this chapter do not require
a thorough understanding of measure theory and should already be com-
prehensible with some prior knowledge of basic statistics, we dispense with
an introduction into measure and probability theory. For a more detailed
description of the use of measure theory in recursive dynamic models please
see Stokey and Lucas with Prescott (1989).
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The concept of a stationary equilibrium uses a recursive repre-
sentation of the consumer’s problem. Let V (ε, a) be the value of
the objective function of a household characterized by productiv-
ity ε and wealth a. V (ε, a) for the benchmark government policy
is defined as the solution to the dynamic program:

V (ε, a) = max
c,a′

[u(c) + βE {V (ε′, a′)|ε}] , (7.9)

subject to the budget constraint (7.4), the government policy
{b, τ}, and the stochastic process of the employment status ε as
given by (7.3).7

Definition. A stationary equilibrium for a given government
policy parameter b is a value function V (ε, a), individual policy
rules c(ε, a) and a′(ε, a) for consumption and next-period capi-
tal, a time-invariant density of the state variable x = (ε, a) ∈ X ,
f(e, a) and f(u, a), time-invariant relative prices of labor and cap-
ital {w, r}, and a vector of aggregates K, N , C, T , and B such
that:

1. Factor inputs, consumption, tax revenues, and unemployment
compensation are obtained aggregating over households:

K =
∑

ε∈{e,u}

∫ ∞

amin

a f(ε, a) da, (7.10a)

N =

∫ ∞

amin

f(e, a) da, (7.10b)

C =
∑

ε∈{e,u}

∫ ∞

amin

c(ε, a) f(ε, a) da, (7.10c)

T = τ(wN + rK), (7.10d)

B = (1−N)b. (7.10e)

2. c(ε, a) and a′(ε, a) are optimal decision rules and solve the
household decision problem described in (7.9).

7 The solution obtained by maximizing (7.1) s.t. (7.4) and (7.3) corresponds
to the solution obtained by solving (7.9) s.t. (7.4) and (7.3) under certain
conditions on the boundedness of the value function V (.) (see also Section
1.2.3). This correspondence has been called the Principle of Optimality by
Richard Bellman.
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3. Factor prices (7.7a) and (7.7b) are equal to the factors’ mar-
ginal productivities, respectively.

4. The goods market clears:

N1−αKα + (1− δ)K = C +K ′ = C +K. (7.11)

5. The government budget (7.8) is balanced: T = B.
6. The distribution of the individual state variable (ε, a) is sta-

tionary:

F (ε′, a′) =
∑

ε∈{e,u}
π(ε′|ε) F (ε, a′−1(ε, a′)

)
(7.12)

for all (ε′, a′) ∈ X . Here, a′−1(ε, a′) denotes the inverse of the
function a′(ε, a) with respect to its first argument a.8 Accord-
ingly, the distribution over states (ε, a) ∈ X is unchanging.

Calibration. As we will often use the model as an example in
subsequent sections, we will already assign numerical values to its
parameters in this introductory part. Following İmrohoroğlu

(1989), periods are set equal to six weeks (≈ 1/8 of a year). Pref-
erences and production parameters are calibrated as commonly
in the dynamic general equilibrium models. In particular, we pick
the values α = 0.36 and η = 2.0. Our choice of β = 0.995 implies
a real annual interest rate of approximately 4% before taxes. The
employment probabilities are set such that the average duration
of unemployment is 2 periods (=12 weeks) and average unemploy-
ment is 8%.9 The employment transition matrix is given by:(

puu pue

peu pee

)
=

(
0.5000 0.5000
0.0435 0.9565

)
. (7.13)

8 In particular, we assume that a′(ε, a) is invertible. As it turns out, a′(ε, a)
is invertible in our example economy in this chapter. In Section 7.2, we
will also discuss the changes in the computation of the model that are
necessary if a′(ε, a) is not invertible. This will be the case if the non-
negativity constraint on assets is binding.

9 Notice that unemployed agents stay unemployed with a probability of 0.5.
As a consequence, the average duration of unemployment is simply 1/0.5=2
periods. In Section 12.2, you will learn how to compute the stationary
unemployment rate from the employment transition matrix.
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The non-capital income of the unemployed household b amounts
to 1.199 and is set equal to one fourth of the steady-state gross
wage rate in the corresponding representative agent model,10

where the gross interest rate is equal to the inverse of the dis-
count factor β and, therefore, the capital stock amounts to K =
(α/(1/β−1+δ))1/(1−α)N . In the literature, the ratio of unemploy-
ment compensation to net wage income is also called the replace-
ment ratio which will be approximately equal to 25.6% in our
model. In addition, the income tax rate is determined endoge-
nously in the computation with the help of the balanced budget
rule. Finally, the annual depreciation rate is set equal to 4% im-
plying a six-week depreciation rate of approximately 0.5%.

7.2 The Stationary Equilibrium of a
Heterogeneous-Agent Economy

With only very few exceptions, dynamic heterogeneous-agent
general equilibrium models do not have any analytical solution
or allow for the derivation of analytical results. Algorithms to
solve heterogeneous-agent models with an endogenous distribu-
tion have only recently been introduced into the economic liter-
ature. Notable studies in this area are Aiyagari (1994, 1995),
Den Haan (1997), Huggett (1993), İmrohoroğlu, İmro-

horoğlu, and Joines (1995), Krusell and Smith (1998) or
Rı́os-Rull (1999). We will use Example 7.2.1 as an illustration
for the computation of the stationary equilibrium of such an econ-
omy.

Example 7.2.1
Consider the following stationary distribution:

a) Households are allocated uniformly on the unit interval [0, 1] and
are of measure one. The individual household maximizes

10 In such a model, the ’representative’ household consists of (1 −N) unem-
ployed workers and N employed workers.
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V (ε, a) = max
c,a′

[
c1−η

1− η + βE
{
V (ε′, a′)|ε}] ,

s.t.

a′ =
{

(1 + (1− τ)r) a+ (1− τ)w − c ε = e,
(1 + (1− τ)r) a+ b− c ε = u,

a ≥ amin,

π(ε′|ε) = Prob
{
εt+1 = ε′|εt = ε

}
=
(
puu pue

peu pee

)
.

b) The distribution of (ε, a) is stationary and aggregate capital K,
aggregate consumption C, and aggregate employment N are con-
stant.

c) Factors prices are equal to their respective marginal products:

r = α

(
N

K

)1−α

− δ,

w = (1− α)
(
K

N

)α

.

d) The government budget balances: B = T .
e) The aggregate consistency conditions hold:

K =
∑

ε∈{e,u}

∫ ∞

amin

a f(ε, a) da,

N =
∫ ∞

amin

f(e, a) da,

C =
∑

ε∈{e,u}

∫ ∞

amin

c(ε, a) f(ε, a) da,

T = τ(wN + rK),
B = (1−N)b.

The computation of the solution of Example 7.2.1 consists of
two basic steps, the computation of the policy function and the
computation of the invariant distribution. For this reason, we will
apply several elements of numerical analysis that we introduced
in the first part of this book. In order to solve the individual’s op-
timization problem, we need to know the stationary factor prices
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and the tax rate. For a given triplet {K,N, τ}, we can use the
methods presented in Part I in order to compute the individual
policy functions c(ε, a) and a′(ε, a). The next step is the basic
new element that you have not encountered in the computation
of representative agent economies. We need to compute the distri-
bution of the individual state variables, aggregate the individual
state variables, and impose the aggregate consistency conditions.
The complete solution algorithm for Example 7.2.1 is described
by the following steps:

Algorithm 7.2.1 (Computation of Example 7.2.1)

Purpose: Computation of the stationary equilibrium.

Steps:

Step 1: Compute the stationary employment N .

Step 2: Make initial guesses of the aggregate capital stock K and
the tax rate τ .

Step 3: Compute the wage rate w and the interest rate r.

Step 4: Compute the household’s decision functions.

Step 5: Compute the stationary distribution of assets for the em-
ployed and unemployed agents.

Step 6: Compute the capital stock K and taxes T that solve the
aggregate consistency conditions.

Step 7: Compute the tax rate τ that solves the government budget.

Step 8: Update K and τ and return to step 2 if necessary.

In Step 1, we compute the stationary employment N . In our
simple Example 7.2.1, employment Nt does not depend on the en-
dogenous variables wt, rt, or the distribution of assets at in period
t. Nt only depends on the number of employed in the previous
period Nt−1. Given employment Nt−1 in period t − 1, we know
that next-period employment is simply the sum of the lucky un-
employed agents who find a job and the lucky employed agents
that keep their job

Nt = pue(1−Nt−1) + peeNt−1. (7.15)
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Given any employment level N0 in period 0, we can iterate over
(7.15) for t = 1, 2, . . .. In fact, if we use the probabilities pue = 0.50
and pee = 0.9565 from (7.13) and iterate some ten to twenty times
for any given employment level N0 ∈ (0, 1), the percentage of em-
ployed people in the economy, or equally, the number of employed,
Nt, converges to the so-called stationary employment N = 0.92. In
essence, we are computing the invariant distribution of a simple
2-state Markov-chain. There are, however, more efficient meth-
ods in order to compute the stationary values of a Markov-chain
process and we describe them in more detail in Section 12.2.

In Step 5, we compute the stationary distribution of assets for
the employed and unemployed workers. The wealth distribution
is continuous and, hence, is an infinite-dimensional object that
can only be computed approximately. Therefore, in general, we
apply other methods for its computation than in the case of a
finite-state Markov-chain. Three different kinds of methods are
presented in order to compute the invariant distribution F (ε, a)
of the heterogeneous-agent model. First, we will compute the dis-
tribution function on a discrete number of grid points over the
assets. Second, we will use Monte-Carlo simulations by construct-
ing a sample of households and tracking them over time. And
third, a specific functional form of the distribution function will
be assumed and we will use iterative methods to compute the
approximation.

Discretization of the Distribution Function. We first con-
sider a method which relies upon the discretization of the state
space. Our individual state space consists of two dimensions, the
employment status ε and the wealth level a. However, the first
state variable ε can only take two different values, ε ∈ {e, u}, so
that we only need to discretize the second state variable, the asset
level a. Assume that we choose a grid over the state space with m
points. If the policy function has been computed with the help of
methods that rely upon the discretization of the state space, for
example discrete value function approximation, we want to choose
a finer grid for the computation of the state space following Rı́os-

Rull (1999). Denote the distribution function by F (ε, a) and the
density function by f(ε, a).



342 Chapter 7: Computation of Stationary Distributions

If we discretize the distribution function, the state variable
(ε, a) can only take a discrete number of values 2m. In this case,
we are in essence trying to compute the Markov transition matrix
between these states (ε, a). For the computation of the transi-
tion matrix between employment state ε, we presented several
methods in the previous section and in Section 12.2. These meth-
ods are not all applicable for the computation of the transition
matrix between the states (ε, a). In particular, with current com-
puter technology, we will run into problems using the procedure
equivec1.g to compute the ergodic distribution due to the curse
of dimensionality because the Markov transition matrix has (2m)2

entries. For reasonable values of grid points 2m, we have a stor-
age capacity problem and GAUSS, for example, will be unable to
compute the ergodic matrix.11

In the following, we will present two iterative methods that rely
upon the discretization of the state space in order to compute the
discretized invariant distribution function. Both methods can be
applied over a fine grid with a high number of points m. Algorithm
7.2.2 computes the invariant distribution function based on the
equilibrium condition (7.12), while Algorithm 7.2.3 computes the
invariant density function.

Algorithm 7.2.2 (Computation of the Invariant Distribu-
tion Function F (ε, a))

Purpose: Computation of the stationary equilibrium.

Steps:

Step 1: Place a grid on the asset space A = {a1 = amin, a2, . . . ,
am = amax} such that the grid is finer than the one used
to compute the optimal decision rules.

11 The transition matrix between the 2m states mainly consists of zero entries,
i.e. the matrix is sparse. As a consequence, we may still be able to apply
the procedure equivec1.g; however, we have to change the computer code
applying sparse matrix methods. In essence, we only store the non-zero
entries. Gauss, for example, provides commands that handle sparse matrix
algebra.
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Step 2: Choose an initial piecewise distribution function F0(ε =
e, a) and F0(ε = u, a) over the grid. The vectors have m
rows each.

Step 3: Compute the inverse of the decision rule a′(ε, a).
Step 4: Iterate on

Fi+1(ε
′, a′) =

∑
ε=e,u

π(ε′, ε)Fi

(
a′−1

(ε, a′), ε
)

(7.16)

on grid points (ε′, a′).
Step 5: Iterate until F converges.

The Algorithm 7.2.1 that computes the stationary equilib-
rium of the heterogeneous-agent economy 7.2.1 and the Algo-
rithm 7.2.2 that computes the invariant distribution function are
implemented in the GAUSS program Rch7_disf.g. The individ-
ual policy functions are computed with the help of value func-
tion iteration with linear interpolation as described in Chapter
4. We compute the value function at n = 200 equidistant grid
points aj in the interval [−2; 3, 000]. The interval is found by
some trial and error. Of course, it should contain the steady state
capital stock of the corresponding representative agent economy,
K = (α/(1/β − 1 + δ))1/(1−α)N = 247.6. We would also love to
choose an ergodic set so that once the individual’s capital stock is
inside the set, it stays inside the interval. As it turns out, this in-
terval is rather large and we choose the smaller interval [−2; 3, 000]
instead. In the stationary equilibrium, all employed agents have
strictly positive net savings over the complete interval [−2; 3, 000].
However, the number of agents that will have assets exceeding
1,500 is extremely small. In fact, fewer than 0.01% of the agents
have assets in the range of [1, 500; 3, 000] so that we can be very
confident that our choice of the interval is not too restrictive. The
reason for the low number of very rich people is the law of large
numbers. We simulate the economy over 25,000 periods or more
and sooner or later, the employed agents will loose their job and
start decumulating their wealth again.

After we have computed the individual policy function a′(ε, a)
for given capital stock K, unemployment compensation b, and
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income tax τ , we compute the invariant distribution function ac-
cording to Algorithm 7.2.2. In step 1, we choose an equidistant
grid with m = 3n = 600 points on [−2; 3, 000] for the computation
of the distribution function.12 In step 2, we initialize the distribu-
tion function with the equal distribution so that each agent has
the steady-state capital stock of the corresponding representative
agent economy.

In step 3, we compute the inverse of the policy function a′(ε, a),
a = a′−1(ε, aj), over the chosen grid with j = 1, . . . , m. Since
the unemployed agent with low wealth may want to spend all
his wealth and accumulate debt equal or exceeding −amin, a′

may not be invertible when a′ = amin. For this reason, we de-
fine a′−1(ε, amin) as the maximum a such that a′(ε, a) = amin.13

Furthermore, the computation of a′(ε, a) involves some type of in-
terpolation, as a′(ε, a) is stored for only a finite number of values
n < m. We use linear interpolation for the computation of a′(ε, a)
for aj < a < aj+1.

In step 4, the invariant distribution is computed. F is computed
for every wealth level a′ = aj , j = 1, . . . , m, and ε = e, u. In the
computation, we impose two conditions: 1) If a′−1(ε, aj) < amin,
F (ε, aj) = 0, and 2) if a′−1(ε, aj) ≥ amax, F (ε, aj) = g(ε), where
g(ε) denotes the ergodic distribution of the employment transi-
tion matrix. The first condition states that the number of em-
ployed (unemployed) agents with a current-period wealth below
amin is equal to zero. The second condition states that the num-
ber of the employed (unemployed) agents with a current-period
wealth equal to or below amax is equal to the number of all em-
ployed (unemployed) agents. In addition, as there may be some
round-off errors in the computation of the next-period distribu-
tion Fi+1(ε

′, a′), we normalize the number of all agents equal to
one and multiply Fi+1(e, a

′) and Fi+1(u, a
′) by 0.92/Fi+1(e, amax)

and 0.08/Fi+1(u, amax), respectively. Again, we need to use an
interpolation rule, this time for the computation of Fi(ε, a). In
(7.16), a0 = a′−1(ε, aj), j = 1, . . . , m, does not need to be a grid

12 The grid over the asset space for the value function and the distribution
function do not need to be equally spaced.

13
Huggett (1993) establishes that a′ is strictly non-decreasing in a.
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point. As we have only stored the values of Fi(ε, a0) for grid points
a = aj , j = 1, . . . , m, we need to interpolate the value of Fi at
the point a0. We use linear interpolation for the computation of
Fi(ε, a) for aj < a < aj+1.

Once we have computed the distribution function, we are also
able to compute the aggregate capital stock in step 6 of the Algo-
rithm 7.2.1. Therefore, we assume that the distribution of wealth
a is uniform in any interval [aj−1, aj ]. Thus, with the denotation
Δ = F (ε, aj)− F (ε, aj−1), we have∫ aj

aj−1

af(ε, a) da =

∫ aj

aj−1

a
Δ

aj − aj−1

da =

1

2

a2Δ

aj − aj−1

∣∣∣∣aj

aj−1

=
1

2
(F (ε, aj)− F (ε, aj−1)) (aj + aj−1) .

(7.17)

With the help of this assumption, the aggregate capital can be
computed as follows:

K =
∑

ε∈{e,u}

∫ ∞

amin

a f(ε, a) da

≈
∑

ε

(
m∑

j=2

(F (ε, aj)− F (ε, aj−1))
aj + aj−1

2
+ F (ε, a1)a1

)
.

(7.18)

In this computation, we assume that the distribution of the in-
dividual asset holdings is uniform in the interval [aj−1, aj] for
j = 2, . . . , m. Of course, the accuracy of our computation will
increase with a finer grid and increasing number of grid points m.
If the capital stock K is close to the capital stock in the previous
iteration, we are done. We stop the computation if two successive
values of the capital stock diverge by less than 0.1%.

In the program Rch7_disf.g, we also increase the number of
iterations over the invariant distribution as the algorithm slowly
converges to the invariant aggregate capital stock K. We start
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with an initial number of 500 iterations i over Fi(.) which we in-
crease by 500 in each iteration to 25, 000 iterations in the iteration
q = 50 over the capital stock. In the first iterations over the capital
stock, we do not need a high accuracy in the computation of the
invariant distribution. It saves computational time to increase the
accuracy as we get closer to the solution for the aggregate capital
stock. Similarly, the value function is getting more accurate as the
algorithm converges to the aggregate capital stock. The reason is
that we use a better initialization of the value function in each
iteration, namely the solution of the last iteration.

The divergence between the capital stocks in iteration 50 and
51 is less than 0.1% so that we stop the computation. The compu-
tational time is very long and amounts to 5 hours and 45 minutes
using an Intel Pentium(R) M, 319 MHz machine. For our cali-
bration, the invariant aggregate capital stock is K = 243.7. The
implied values for the wage rate, the interest rate, and the tax
rate are w = 4.770, r = 0.513%, and τ = 1.724%. Notice that
β = 0.99500 ≈ 0.99499 = 1/(1 + r(1− τ)), where the deviation is
due to numerical round-off errors. As in the representative agent
deterministic Ramsey model, the inverse of β is equal to the gross
interest rate (after taxes). In the heterogeneous-agent economies
of Example 7.2.1, this equation does not always need to hold. For
our calibration, the wealth constraint a ≥ amin is found to be non-
binding. Huggett and Ospina (2001) show that the stationary
interest rate is always larger in any equilibrium with idiosyncratic
shocks as long as the consumers are risk averse (η > 0) and if the
liquidity constraint binds for some agents. We will also demon-
strate this result to hold in the application of Section 7.3.1.

At this point, we need to draw your attention to an important
issue. For our Example 7.2.1, it is rather the exception than the
rule that Algorithm 7.2.2 converges. For instance, if you increase
the number of simulations over the distribution from {500; 1, 000;
1, 500; . . . ; 25, 000} to {2, 500; 5, 000; . . . ; 12, 5000} while you iter-
ate over the capital stock q = 1, . . . , 50, the algorithm will not
converge. Similarly, if we choose the uniform distribution over the
interval [−2; 3, 000]:
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F (ε, a) =
a− amin

amax − amin

, a ∈ [amin, amax]

for the initial distribution rather than the equal distribution:

F (ε, a) =

{
1 if a ≥ K
0 else,

where all agents hold the representative-agent economy steady-
state capital stock, the algorithm does not converge either. There-
fore, computing the stationary solution to Example 7.2.1 in-
volves a lot of trial and error. Furthermore, as the computation
time amounts to several hours, the solution might be very time-
consuming.

Why is convergence so hard to achieve with the help of Al-
gorithm 7.2.2? Consider what happens if we are not close to the
stationary solution and, for example, our choice of the stationary
capital stock is too low. As a consequence, the interest rate is too
high and agents save a higher proportion of their income than
in the stationary equilibrium. Consequently, if we choose rather
too many time periods for the simulation of the distribution when
we start the algorithm (and are far away from the true solution),
the distribution of wealth among the employed agents becomes
increasingly concentrated in the upper end of the wealth inter-
val [−2; 3, 000]. As a result, we have a new average capital stock
that is much higher than the stationary capital stock. In the next
iteration over the capital stock, we might, therefore, also choose
a capital stock that is much higher than the stationary capital
stock and an interest rate that is lower than the stationary rate.
As a consequence, agents may now save a much lower proportion
of their wealth than in the stationary equilibrium. For this reason,
as we simulate the distribution over many periods, the distribu-
tion may now become increasingly centered in the lower part of
the interval [−2; 3, 000]. If we are unlucky, the distribution might
alternate between one that is concentrated in the lower part of the
interval for individual wealth and one that is concentrated close
to the upper end of the interval.
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The algorithm, furthermore, fails to converge at all if we do
not fix the unemployment compensation b,14 but, for example,
calibrate it endogenously to amount to 25% of the net wage rate
in each iteration over the capital stock. In this case, you will not
be able to generate convergence even with the choice of the equal
distribution for the initial distribution. Our choice of b = 1.299
serves as an anchor. If we do not fix it, b starts to alternate between
high and low values and, as a consequence, precautionary savings
of the employed agents also switch between low and high values,
respectively. The convergence of the algorithm improves consid-
erably if we could also fix the wage incomeof the agents. In fact,
you will get to know two prominent applications from the litera-
ture in Sections 7.3.1 and 8.4.1, where we will exactly do this. By
this device, we will be able to compute the stationary equilibrium
in the models of Huggett (1993) and İmrohoroğlu (1989)
without any problems and convergence can be achieved for any
initial distribution. In Section 7.3.2, you will encounter another
example where convergence is not a problem. Different from Ex-
ample 7.2.1, we will then introduce endogenous labor supply. In
this case, richer agents supply less labor ceteris paribus and, as a
consequence, the wage income decreases with higher wealth and
so do savings. This mechanism, of course, improves convergence.
In Chapter 8, where we compute the dynamics of the distribution
endogenously, this problem does not occur either. In these models,
as we will argue, an increase in the average capital stock during
the simulation of a time series is then accompanied by a decrease
in the endogenous interest rate and, hence, an endogenous reduc-
tion of the savings rate.

The convergence of the mean of the distribution during the
final iteration over the capital stock is displayed in Figure 7.1.
Notice that the rate of convergence is extremely slow. We also
made this observation in all of our other applications: Convergence
of the distributions’ moments15 only occurs after a substantial

14 We encourage you to recompute Example 7.2.1 with the help of
RCh7_disf.g for the cases discussed.

15 The same result holds for the second and third moments of the distribu-
tions.
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Figure 7.1: Convergence of the Distribution Mean

number of iterations well in excess of several thousands. It is for
this reason that the computation of the stationary equilibrium of
a heterogeneous-agent economy is extremely time-consuming.

Figure 7.1 also suggests that we should increase the number
of iterations over the distribution function further to perhaps
n = 100, 000 or more.16 In order to judge if our results are already
accurate it is instructive to look at Figure 7.2 which displays the
convergence of the aggregate capital stock K. At the first itera-
tion over the capital stock, q = 1, we only use 500 iterations over
the distribution functions and our value functions are highly in-
accurate. For higher values of q > 30, our aggregate capital stock
remains rather constant no matter if we iterate 15,000, 20,000
or 25,000 times over the distribution function (corresponding to
q=30, 40, and 50, respectively). This result indicates that we have
indeed found the stationary solution.

From the stationary distribution function that we computed
with the help of Rch7_disf.g, we can also derive the invariant

16 We encourage the reader to change the program RCh7_disf.g accordingly.
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Figure 7.2: Convergence of K

density function. Assuming that the wealth distribution is uniform
in the interval [aj−1, aj], aj , aj−1 ∈ A, we compute the density such
that f(ε, a) = (F (ε, aj)−F (ε, aj−1))/(aj−aj−1) for a ∈ [aj−1, aj].
The invariant density function of the employed (unemployed)
worker that is computed with the help of Algorithm 7.2.2 is dis-
played by the solid (broken) line in the Figure 7.3. Notice that the
wealth constraint a ≥ amin is non-binding and that the number of
agents with wealth above a = 1, 000 is almost zero. Therefore, our
choice of the wealth interval [amin, amax] = [−2, 3000] is sensible.
Notice further, that, as observed empirically, the distribution is
skewed to the left.

Discretization of the Density Function. Alternatively, we
may approximate the continuous density function f(ε, a) by a
discrete density function, which, for notational convenience, we
also refer to as f(ε, a). Again, we discretize the asset space by
the grid A = {a1 = amin, a2, . . . , am = amax}. We assume that
the agent can only choose a next-period asset a′ from the set A.
Of course, the optimal next-period capital stock a′(ε, a) will be
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Figure 7.3: Invariant Density Function of Wealth

on the grid with a probability of zero. For this reason, we in-
troduce a simple lottery: If the optimal next-period capital stock
happens to lie between aj−1 and aj, aj−1 < a′ < aj , we simply
assume that the next-period capital stock will be aj with prob-
ability (a′ − aj−1)/(aj − aj−1) and aj−1 with the complementary
probability (aj − a′)/(aj − aj−1). With these simplifying assump-
tions, we can compute the invariant discrete density function with
the help of the following algorithm:

Algorithm 7.2.3 (Computation of the Invariant Density
Function f(ε, a))

Purpose: Computation of the stationary equilibrium.

Steps:

Step 1: Place a grid on the asset space A = {a1 = amin, a2, . . . ,
am = amax} such that the grid is finer than the one used
to compute the optimal decision rules.
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Step 2: Set i = 0. Choose initial discrete density functions f0(ε =
e, a) and f0(ε = u, a) over that grid. The two vectors have
m rows each.

Step 3: Set fi+1(ε, a) = 0 for all ε and a. i) For every a ∈ A,
ε ∈ {e, u}, compute the optimal next-period wealth aj−1 ≤
a′ = a′(ε, a) < aj and ii) for all a′ ∈ A and ε′ ∈ {e, u} the
following sums:

fi+1(ε
′, aj−1) =

∑
ε=e,u

∑
a ∈ A

aj−1 ≤ a′(ε, a) < aj

π(ε′|ε) aj − a′
aj − aj−1

fi(ε, a),

fi+1(ε
′, aj) =

∑
ε=e,u

∑
a ∈ A

aj−1 < a′(ε, a) < aj

π(ε′|ε) a
′ − aj−1

aj − aj−1

fi(ε, a).

Step 4: Iterate until f converges.

The Algorithm 7.2.3 is implemented in the GAUSS program
Rch7_denf.g. The invariant discrete density function is computed
with the same policy functions and parameterization that we were
using for the approximation of the invariant distribution function.
In particular, we use the equal distribution as initial distribution
and increase the number of iterations over the density function
from 500 to 25,000 by 500 in each iteration over the capital stock
K. Again, we stop the computation as soon as two successive val-
ues of the capital stock diverge by less than 0.1% and the number
of iterations over the density function is equal to 25,000.

The density function of the employed worker that is computed
with the help of Algorithm 7.2.3 is displayed by the solid line with
dots in Figure 7.4. The two density functions for the wealth of the
employed worker computed with the help of the Algorithms 7.2.2
(solid line with squares) and 7.2.3 almost coincide and cannot be
discerned. The two means K = 243.7 are identical. However, the
computational time is much longer in the case of the discretized
distribution function. The computation with the help of Algo-
rithm 7.2.2 takes 40% longer than the one with Algorithm 7.2.3
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Figure 7.4: Invariant Density Function of Wealth for the Employed
Worker

due to Step 3 where we compute the inverse of the policy func-
tion a′(ε, a). Table 7.1 summarizes the computational time and
the first moment of the distribution for the various methods in-
troduced in this section. In the last row, the number of iterations
over the aggregate capital stock is presented.

Monte-Carlo Simulation. The second method to compute the
invariant distribution is by means of Monte Carlo simulation. In
this method, we choose a large sample of households, typically in
excess of some thousands, and track their behavior over time. The
household is subject to an employment shock which follows the
Markov process (7.13). We simulate this individual employment
shock with the help of a random number generator. As a conse-
quence of these random draws, we may have too many or too few
employed and unemployed agents so that their respective masses
are not equal to those in the stationary distribution. Therefore, we
will have to adjust these numbers at the end of each iteration over
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Table 7.1

Invariant
Distribution

Invariant
Density

Monte
Carlo

Exponential
Function
n=2

Mean 243.7 243.7 243.4 246.6

Runtime 5:45 4:05 15:14 3:52

Iterations 51 51 54 63
Notes: Run time is given in hours:minutes on an Intel Pentium(R) M, 319
MHz computer. Iterations are over the aggregate capital stock K.

the distribution of the individual state variable. The algorithm is
as follows:

Algorithm 7.2.4 (Computation of the Invariant Distribu-
tion Function F (ε, a) by Monte-Carlo Simulation)

Purpose: Computation of the stationary equilibrium.

Steps:

Step 1: Choose a sample size N .
Step 2: Initialize the sample. Each household i = 1, . . . , N is as-

signed an initial wealth level ai
0 and employment status

εi0.
Step 3: Compute the next-period wealth level a′(εi, ai) for all i =

1, . . . , N .
Step 4: Use a random number generator to obtain εi

′
for all i =

1, . . . , N .
Step 5: Compute a set of statistics from this sample. We choose

the mean and the standard deviation of a and ε.
Step 6: Iterate until the distributional statistics converge.

The algorithm is implemented in the program Rch7_mont.g.
As an initial asset level, the agent is assigned the wealth level
a = 247.6, which is equal to the steady-state capital stock in the
corresponding representative-agent model. Similarly, the agent is
employed with the ergodic employment probability g(e) and un-
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employed with the complementary probability. The statistics of
the sample distribution are the mean of the wealth and the stan-
dard deviations of the wealth and the employment status. We
choose N = 10, 000 individuals in order to keep the computa-
tional time to a reasonable amount and in order to demonstrate
the necessity to choose a high number of individuals. Furthermore,
we need to adjust the share of employed and unemployed agents
in each iteration. As we use a random number generator in step
4, the number of employed agents does not need to be equal to
the number of employed agents in the ergodic distribution, Ng(e).
If the number of employed agents in any iteration of the simula-
tion is higher than the ergodic number, we select a random set
of employed agents and change their employment status to ’un-
employed’ until the number of employed agents, again, is equal
to the respective number in the ergodic distribution. If the num-
ber of unemployed agents is higher than the respective number in
the ergodic distribution, we change the employment status of the
unemployed agents in an analogous way.

We stop the computation after 50 iterations over the aggregate
capital stock K. During the last iteration, we simulate the econ-
omy over 25,000 periods. The aggregate capital stock K amounts
to 243.4 and diverges by less than 0.2% between two successive it-
erations. The distribution function that is computed with the help
of Monte Carlo Simulation is displayed by the solid line in Fig-
ure 7.4. Notice that the distribution function has a lower variance
than those computed with the help of Algorithms 7.2.2 and 7.2.3.
It is also less smooth than these two distributions. In our appli-
cation, the computational time becomes exorbitant and exceeds
15 hours. It is for this very reason that we do not recommend the
use of Monte Carlo simulations in many applications.

Function Approximation. In this section, we introduce a third
method to compute the invariant distribution function. In partic-
ular, we approximate the distribution function by a flexible func-
tional form with a finite number of coefficients. In Chapter 6, we
approximated the policy function with a linear combination of
Chebyshev polynomials. Chebyshev polynomials, however, can
take a value below zero. For this reason, it is advisable to use



356 Chapter 7: Computation of Stationary Distributions

another class of functions. We follow den Haan (1997) and use
the class of exponential functions for the nth order approxima-
tion of the wealth holdings of the agents with employment status
ε ∈ {e, u}:
F (ε, a) = 0 a < amin, (7.20a)

F (ε, a) = ρε
0

∫ a

−∞
eρε

1x1+...+ρε
nxn

dx a ≥ amin. (7.20b)

This approximation allows for a positive number of agents at the
borrowing constraint a = amin. Of course, this is a very desirable
feature of the distribution function in the present case and might
be very useful for models with binding constraints and hetero-
geneity.

For the exponential family, the first n moments capture the
same information as the n + 1 coefficients ρi. Suppose that we
have found the first n moments of a distribution. In particular, we
will use the first two moments, the mean με and the variance (σε)2

for the wealth distribution of the employed and the unemployed,
respectively. To find the values ρε = (ρε

0, ρ
ε
1, ρ

ε
2), ε ∈ {e, u} that

correspond to με and (σε)2, we have to solve the following set of
non-linear equations:

g(ε) = ρε
0

∫ amax

−∞
eρε

1a+ρε
2a2

da, (7.21a)

με = ρε
0

∫ amax

−∞
max(a, amin)eρε

1a+ρε
2a2

da, (7.21b)

(σε)2 = ρε
0

∫ amax

−∞
(max(a, amin)− με)2 eρε

1a+ρε
2a2

da, (7.21c)

where g(.), again, denotes the ergodic distribution of ε. The solu-
tion of this non-linear equations problem is not trivial, especially
for a higher-order approximation n. As the problem is highly non-
linear, a good first-order approximation is needed. In fact, some
experimentation with a good starting value for ρε might be nec-
essary. Often, one might want to try to start with a low-order
approximation of the exponential function, e.g. n = 1, and in-
crease n subsequently. In our application, we will use the uniform
distribution as an initial guess for F (.).
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Algorithm 7.2.5 (Approximation of F (ε, a) by an Expo-
nential Function of Order 2)

Purpose: Computation of the stationary equilibrium.

Steps:

Step 1: Choose initial moments με and (σε)2 for the wealth dis-
tribution for ε ∈ {e, u} and compute the corresponding
parameters ρε of the exponential distribution by solving
the non-linear equation problem (7.21a)-(7.21c).

Step 2: Compute the moments of the next-period wealth distribu-
tion for the employed and unemployed agents, respectively,
e.g. for the employed agent (ε = e):

μe′ = π(e|e)ρe
0

∫ amax

−∞
max(a′(a, e), amin)eρe

1a+ρe
2a2

da

+ π(e|u)ρu
0

∫ amax

−∞
max(a′(a, u), amin)e

ρu
1a+ρu

2 a2

da,

(
σe′)2 = π(e|e)ρe

0

∫ amax

−∞
(max(a′(a, e), amin)− μe)

2
eρe

1a+ρe
2a2

da

+ π(e|u)ρu
0

∫ amax

−∞
(max(a′(a, u), amin)− μu)

2
eρu

1a+ρu
2a2

da,

and compute the parameters of the distribution function
ρε, ε ∈ {e, u}, corresponding to the computed next-period
moments μ′ and σ′2.

Step 3: Iterate until the moments με and σε converge.

The GAUSS program RCh7_func.g implements the Algorithm
7.2.5. We parameterize the model and compute the value function
in exactly the same way as in the other methods in this section.
However, we do not use the equal distribution for the initialization
of the distribution function as we would like to start with a con-
tinuous function. Therefore, in the first step of Algorithm 7.2.5,
the function is approximated by the uniform distribution with
ρε

1 = ρε
2 = 0 for ε ∈ {e, u} and ρe

0 = ρu
0 = 1

amax−amin
. We choose

a smaller interval for individual wealth,[amin, amax] = [−2; 1, 000].
The approximation, of course, is likely to be more accurate on a
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smaller interval and our computations in this section indicate that
the number of agents with wealth exceeding 1,000 is practically
zero. In the second step, we need to compute an integral. We will
apply Gauss-Chebyshev quadrature as described in Section 11.3.2
using 20 nodes.

The Algorithm 7.2.5 needs more iterations over the capital
stock in order to converge than the other algorithms and stops
after 63 iterations. Of course, this is a consequence of our ini-
tialization of the distribution function. The computational time
is close to the one for the computation of the density function
and amounts to 3 hours 52 minutes. The average wealth of the
distribution is higher than the one found with the help of the dis-
cretization methods presented in Algorithm 7.2.2 and 7.2.3 and
amounts to K = 246.6. The density function approximated with
the help of the Algorithm 7.2.5 is displayed by the broken line
in Figure 7.4. Obviously, the density function is much more sym-
metric and described by smaller variance than in the case of the
discretization methods and we are skeptical if the approximation
of the density function with the exponential function is accurate.

In conclusion, we like to emphasize that our experience with the
computation of the stationary distribution points to the following
suggestions: Probably the first best try to compute the stationary
distribution is by means of Algorithm 7.2.3 as implemented in the
program Rch7_denf.g. If the functional form of the density func-
tion is similar to the one of a parameterized function, you may also
want to try to approximate the density function using Algorithm
7.2.5. This involves some experience with functional approxima-
tion. Approximation methods, however, may better work locally.
In our example, approximation over the complete state space is
poor. Monte-Carlo simulations have the advantage that they are
easy to implement. For our simple Example 7.2.1 with only one
dimension for the (continuous) state space, discretization methods
are much faster. For state spaces with higher dimension, however,
Monte-Carlo simulation may become an important alternative. In
Algorithms 7.2.2 and 7.2.3, and different from Algorithm 7.2.4,
the computational time increases exponentially with the number
of dimensions.



7.3 Applications 359

7.3 Applications

7.3.1 The Risk-Free Rate in Economies with
Heterogeneous Agents and Incomplete
Insurance

Two different phenomena have been observed in financial markets
during the last hundred years: 1) the low risk-free rate and 2) the
large equity premium. During the last 100 years, the average real
return on US Treasury Bills has been about one percent. The av-
erage real return on US stocks has been six percent higher. The
representative agent model has difficulties to resolve this prob-
lem as we discussed in Section 6.3.4. Mehra and Prescott

(1985) show that the representative agent model can only explain
the large equity premium and the low risk-free rate if the typical
investor is implausibly risk averse. Consequently, the representa-
tive agent model in an Arrow-Debreu economy can be regarded
as largely unsuccessful to explain the two observations from fi-
nancial markets. Kocherlakota (1996) argues that one of the
three assumptions of the representative-agent model needs to be
abandoned in order to explain the two puzzles: 1) the standard
utility function, 2) complete markets, and 3) costless trading. In
this section, we try to explain the first phenomenon by abandon-
ing the assumption of complete markets. We further consider a
heterogeneous-agent economy in order to have both individuals
who supply credit and individuals who demand credit. Following
Huggett (1993), we compute the equilibrium interest rate which
balances credit supply and credit demand and show that the con-
sideration of incomplete asset markets implies a lower risk-free
rate.

The Exchange Economy. Huggett (1993) considers a simple
exchange economy without production. Agents receive an endow-
ment of the only good in the economy. The endowment set E
consists of only two values, E = {eh, el} which we interpret again
as in the previous section as the earnings during employment (eh)
and unemployment (el). The endowment (or employment) process
follows a first-order Markov process with transition probability
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π(e′|e) = Prob(et+1 = e′|et = e) > 0 for e′, e ∈ E . The agent
maximizes expected discounted utility:

E0

[ ∞∑
t=0

βtu(ct)

]
, (7.22)

where β < 1 denotes the discount factor and instantaneous utility
u(.) is a CES function of consumption:

u(c) =
c1−η

1− η . (7.23)

As in previous chapters, 1/η denotes the intertemporal elasticity
of substitution.

Agents may hold a single asset. A credit balance of a units
entitles the agent to a units of consumption goods this period. To
obtain a credit balance of a′ goods next period, the agent has to
pay a′q goods this period. q is the price of the next-period credit
balances and we can interpret r = 1/q − 1 as the interest rate
in the economy. In addition, there is a credit constraint so that
agents cannot run a credit balance below ā < 0. The asset space
is denoted by A. Furthermore, assume that the central credit-
authority who administers the credit balances has no transaction
costs.

The budget constraint of the household is

c+ a′q = a+ e, where a′ ≥ ā. (7.24)

We can also formulate the individual’s problem recursively with
the help of the value function v(.):

v(e, a; q) = max
c,a′

u(c) + β
∑

e′
π(e′|e)v(e′, a′; q′) (7.25)

subject to the budget constraint (7.24).
We consider a stationary equilibrium where the price q of the

next-period credit balance a′ is constant and the distribution of
assets, F (e, a), is invariant. Our definition of the stationary equi-
librium allows for a positive mass of households at the borrowing
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constraint ā, F (e, ā) ≥ 0. For a ≥ ā, the distribution function
F (e, a) is associated with a density function f(e, a). In a station-
ary equilibrium, furthermore, markets clear so that the average
credit balance is equal to zero.

Definition. A stationary equilibrium for the exchange economy
is a vector (c(e, a), a′(e, a), q, F (e, a)) satisfying:

1. c(e, a) and a′(e, a) are optimal decision rules given q.
2. Markets clear:∑

e

(∫ ∞

ā

c(e, a) f(e, a) da + c(e, ā)F (e, ā)

)
(7.26a)

=
∑

e

(∫ ∞

ā

ef(e, a) da + eF (e, ā)

)
,

∑
e

(∫ ∞

ā

a′(e, a) f(e, a) da + a′(e, ā)F (e, ā)

)
= 0.

(7.26b)

3. F (e, a) is a stationary distribution:

F (e′, a′) = π(e′|eh)F (eh, ah) + π(e′|el)F (el, al), (7.27)

for all a′ ∈ A and e′ ∈ {el, eh} and with a′ = a′(eh, ah) =
a′(el, al).

A detailed discussion of the equilibrium concept and the unique-
ness and existence of the solution can be found in Huggett

(1993). The model is also calibrated as in Huggett (1993). The
endowments are set equal to eh = 1.0 and el = 0.1. One model
period corresponds to 8.5 weeks so that 6 periods are equal to
one year. The transition probabilities are calibrated such that the
average duration of the low endowment shock (unemployment) is
two model periods and the standard deviation of annual earnings
is 20%:

π(e′|e) =

(
0.925 0.075
0.500 0.500

)
.

The equilibrium unemployment rate is 13%.
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Huggett sets the discount factor equal to β = 0.99322 im-
plying an annual discount rate of 0.96. In his benchmark case, the
risk aversion coefficient η is set equal to 1.5. For the credit limit
ā, he considers different values, ā ∈ {−2,−4,−6,−8}. A credit
limit of −5.3 corresponds to one year’s average endowment.

Programs. The model is computed with the help of the GAUSS
routine RCh7_hug.g. The algorithm for this problem is analogous
to the Algorithm 7.2.1. First, we make an initial guess of the inter-
est rate r and compute the policy functions. Second, we compute
the stationary equilibrium and the equilibrium average asset hold-
ings. Finally, we update the interest rate and return to the first
step, if necessary.

For the computation of the policy functions, we applied the
techniques developed in Chapter 4. We compute the value func-
tion over a discrete grid A. We choose an equispaced grid over
[ā, amax]. The upper limit of A can only be found by experimen-
tation. We set amax = 4 and find that agents do not hold assets
in excess of amax in the stationary equilibrium of our exchange
economy. We further use 100 evenly spaced grid points on A. The
invariant distribution is computed over a finer grid. In particular,
we use 300 grid points over the same interval.

The value function and optimal policy rules are computed with
value function iteration following the Algorithm 4.2.1. In particu-
lar, we store the value of the value function at grid points and in-
terpolate linearly between grid point. The value function is initial-
ized assuming that each agent consumes his endowment infinitely
and does not change his endowment type. The maximum value of
the rhs of the Bellman equation is found by Golden Section search
as described in Section 11.6.1. The optimal next-period assets of
the employed and unemployed agents are displayed in Figures 7.5
and 7.6, respectively. Notice that only the employed agent has a
higher next-period asset a′ than the current period asset a and
a′(e, a) > a only for a ≤ 1 (a′ crosses the 45 degree line). In other
words, the ergodic set for the asset is approximately [−2, 1] and
the chosen upper limit amax is not binding. Even if the initial
distribution has agents with a > 1, after the transition to the
stationary equilibrium, no agent has a credit balance exceeding
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Figure 7.5: Next-Period Assets a′(eh, a) of the Employed Agent

amax. The change in the asset level a′ − a is illustrated in Figure
7.7.

Once we have computed the decision functions c(.) and a′(.),
we are able to compute the invariant distribution. We apply the
methods of Section 7.2 and iterate over the density function ap-
plying Algorithm 7.2.3. We increase the number of iterations over
the distribution from 5,000 to 25,000 while we iterate over the
interest rate r.

The computation of the stationary equilibrium is almost iden-
tical to the one in the production economy 7.2.1 in the previous
section with only one exception. In Section 7.2, we analyzed a
production economy where the equilibrium interest rate can be
computed from the marginal product of capital. In the present
exchange economy, we can only guess the equilibrium price of
next-period capital q which clears the credit market. We need to
modify our computation as follows: First, make two initial guesses
of the interest rate r = 1/q − 1. We choose the values r1 = 0%
and r2 = 1%, respectively. Next, compute the average asset hold-
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Figure 7.6: Next-Period Assets a′(el, a) of the Unemployed Agent

ing of the economy for the two cases, a1 and a2. We compute the
following guesses for the equilibrium interest rate with the help
of the secant method which is described in more detail in Section
11.5.1. Given two points (as, rs) and (as+1, rs+1) we compute rs+2

from:

rs+2 = rs+1 − rs+1 − rs

as+1 − as
as+1. (7.28)

In order to improve convergence, we use extrapolation and use
the interest rate r = φrs+1 + (1 − φ)rs in the next iteration. We
choose a value φ = 0.5 in our computation.

We stopped the computation as soon as the absolute average
asset level is below 10−5. We need approximately 20 iterations over
the interest rate with a computational time of 1 hour 5 minutes
using an Intel Pentium(R) M, 319 MHz machine. The station-
ary distribution is displayed in Figure 7.8 for the employed agent
(solid line) and unemployed agent (broken line), respectively. The
mean of this distribution is equal to zero.
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Figure 7.7: Change in Assets a′ − a

Figure 7.8: Stationary Distribution Function
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Table 7.2

Credit limit ā Interest rate r price q

-2 -1.27% 1.0129
-4 0.196% 0.9983
-6 0.507% 0.9949
-8 0.627% 0.9938

Results. Table 7.2 presents the results from our computation.17

Clearly, the interest rate is lower for a stricter credit limit. For
a credit limit ā = −2 approximately equal to one half of the
average income, the interest rate is even below zero. With a lower
credit limit, the interest rate increases as agents can borrow more.
For ā = −8, the interest rate is already equal to 0.63% implying
an annual rate of 3.65%, which is much higher than the values
we observe empirically. In the corresponding representative-agent
economy, the risk-free rate is equal to the time preference rate (1−
β)/β = 0.682%. Notice that for a less binding credit constraint,
the interest rate approaches the value of the representative agent
economy. As noted above, the risk-free rate is strictly less than
the time preference rate in a heterogeneous-agent economy with
incomplete insurance markets and binding liquidity constraints.

In conclusion, we find that incomplete insurance (against the
risk of a negative endowment shock) and credit constraints help
to explain that the empirically observed risk-free rate of return is
lower than the one found in standard representative-agent models.
As a consequence, the representative agent model might not be ap-
propriate for the analysis of some problems in finance, but rather
the application of heterogeneous-agent models is warranted.

17 Our results deviate less than 1% from Huggett’s result. Notice that our
interest rates are computed for one period equal to 1/6 of a year, while
the corresponding numbers in Huggett’s table 1 are computed for one year
instead.
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7.3.2 Heterogeneous Productivity and Income
Distribution

Naturally, we are unable to study redistributive problems in the
representative-agent model. The representative-agent model can-
not answer the question how, for example, different fiscal policies
affect the distribution of income and wealth. Furthermore, it does
not provide an answer to the question how the dispersion of in-
come and wealth arises in the first place.

The explanation of the income and the wealth distribution has
been a central objective of the early literature on heterogeneous-
agent models. In this section, we analyze how we can model the
income heterogeneity of the economy. Like in most heterogeneous-
agent models, the source of income heterogeneity like e.g. differ-
ent levels of individual productivity or education is assumed to
be exogenous.18 Agents with different incomes build up different
savings so that the wealth distribution can be computed endoge-
nously and compared to the empirical distribution. We will find
that our simple model is unable to replicate the empirical wealth
distribution successfully and we will discuss possible solutions to
this problem in the next chapters.

This section is organized as follows. First, empirical facts from
the US and the German economy with regard to the distribution
of wealth and income are reviewed.19 Second, we discuss the stan-
dard way of introducing income heterogeneity into heterogeneous-
agent models. Finally, we present a model with income heterogene-
ity and compute the endogenous invariant wealth distribution. We
also analyze the steady-state effects of a fiscal policy reform that
consists of a switch from a flat-rate income tax to a consumption
tax.

Empirical Facts on the Income and Wealth Distribution.
US households hold different levels of wealth and income. To be
precise, we define earnings to be wages and salaries plus a fraction

18 As one of the few exceptions, Heckman, Lochner, and Taber (1998)
model the decision to attend college or not endogenously.

19 This is only a very brief presentation of facts and the interested reader is
encouraged to consult any of the references cited in this section.



368 Chapter 7: Computation of Stationary Distributions

Figure 7.9: Lorenz Curve of US Wealth, Income, and Earnings in 1992

of business income, income as all kinds of revenue before taxes,
and wealth as the net worth of households.20 One striking fea-
ture of the US (and most industrialized and developed countries)
is that wealth is much more unequally distributed than earnings
and income. Using data from the 1992 Survey of Consumer Fi-
nances, Dı́az-Giménez, Quadrini, and Rı́os-Rull (1997) com-
pute Gini coefficients of income, earnings, and wealth equal to
0.57, 0.63, and 0.78, respectively. The Lorenz curves of US earn-
ings, income, and wealth in 1992 are displayed in Figure 7.9.21

The distribution of income in many countries is a little less
concentrated than the one in the US. For example, in Germany,
the Gini coefficient of labor income amounts to 0.317, while the
distribution of wages is even less concentrated with a Gini coef-

20 For a more detailed definition, see Dı́az-Giménez, Quadrini, and Ŕıos-

Rull (1997).
21 The data on the US economy from the 1992 Survey of Consumer Finance

is provided in Dı́az-Giménez, Quadrini, and Ŕıos-Rull (1997).
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ficient equal to 0.275.22 Again, wealth is much more unequally
distributed in Germany than earnings and the wealth distribu-
tion is characterized by a Gini coefficient in the range 0.59-0.89
depending on the assets included in the computation of wealth.23

One crucial aspect for the analysis of redistributive effects of
economic policy is the consideration of mobility. Households move
up and down the different income, earnings, and wealth groups.
Some people fulfil their and the American dream and become rich.
Others have simply bad luck (such as an accident or a divorce)
and become poor. A redistribution of income, therefore, may have
multiple effects. For example, an increase in income taxes may
help to finance a rise in unemployment benefits and redistributes
income from the income-rich to the income-poor. This may in-
crease welfare as utility is a concave function of consumption. On
the other hand, higher income taxes reduce incentives both to
supply labor and to accumulate savings. As a consequence, total
income decreases and welfare is reduced because of the increased
distortions in the economy. Redistribution comes at the expense
of efficiency. If we also consider income mobility, the welfare effect
of such a policy is reduced further. The reason is simple: income-
poor agents may move up the income hierarchy and will also be
harmed by higher taxes and a reduction in the efficiency of the
economy in the future. Therefore, if we consider the redistribu-

22 We computed the empirical Gini coefficient of gross wage income using
the German Socio-Economic Panel (SOEP) data on annual individual la-
bor income. The SOEP is a wide-ranging representative longitudinal study
of private households. It provides information on all household members,
consisting of Germans living in the Old and New German States, Foreign-
ers, and recent Immigrants to Germany. The Panel was started in 1984. In
2002, there were more than 12,000 households, and nearly 24,000 persons
sampled. For the computation, we deleted individuals with implausibly low
or high implied hourly wage rates. We chose 7 DM as the lower limit and
200 DM as the upper limit. The number of deletions is small (about 0.17%
at the top and about 6.5% at the bottom of the distribution).

23
Bomsdorf (1989) analyzes Gini coefficients of the wealth distribution for
different kinds of assets in the periods 1973, 1978, and 1983 for West Ger-
many. Within each asset group, Gini coefficients are remarkably stable. The
distribution of savings, securities, and real estate in 1983 are characterized
by Gini coefficients equal to 0.59, 0.89, and 0.74, respectively.
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tive effects of an economic policy in a heterogeneous-agent model,
mobility is a crucial ingredient.

The US earnings mobility is presented in the following ma-
trix which is taken from Dı́az-Giménez, Quadrini, and Rı́os-

Rull (1997):24

1989 Quintile

1984 Quintile

⎡⎢⎣0.858 0.116 0.014 0.006 0.005
0.186 0.409 0.300 0.071 0.034
0.071 0.120 0.470 0.262 0.076
0.075 0.068 0.175 0.465 0.217
0.058 0.041 0.055 0.183 0.663

⎤⎥⎦ (7.29)

The matrix can be interpreted as follows: The entry in the first
row, second column is equal to 0.116 and signifies that 11.6% of
the households in the lowest earnings quintile in 1984 were in the
second lowest earnings quintile in 1985. Notice that the entries
in the diagonal are the maximums of each row so that there is
a tendency to remain in the same earnings group. These values
range between 40.9% and 85.8% and the low-income group is the
least mobile group in the US. The income mobility is almost the
same in Germany. For the 1980s, Burkhauser, Holtz-Eakin,
and Rhody (1997) find that, even though earnings are more un-
equally distributed in the US than in Germany, the patterns of
the quintile to quintile mobility, surprisingly, are similar in the
two countries.

Modeling Income Heterogeneity. In models of income hetero-
geneity, you have to introduce an exogenous source of such het-
erogeneity. Agents have either different abilities, inherit different
levels of wealth or just happen to be unemployed after experienc-
ing bad luck. In Example 7.2.1, agents face idiosyncratic risk of
unemployment which they cannot insure against. In this section,
we consider income heterogeneity. One can either assume that the
individual’s earnings yi

t are stochastic or that labor productivity
εit is stochastic. In the first case, labor income is an exogenous

24
Dı́az-Giménez, Quadrini, and Ŕıos-Rull (1997) use data from the
1984, 1985, 1989 and 1990 Panel Study of Income Dynamics in order to
compute the transition matrix.
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variable, where in the latter case, agents may still be able to vary
their labor supply so that labor income yi

t = εitwtn
i
t, which is the

product of individual productivity ε, wage wt, and labor time ni
t,

is endogenous.
There have been many empirical studies on the time-series

behavior of earnings and wages. For example, Lillard and
Willis (1978) estimate an AR(1) process for log earnings, while
MaCurdy (1982) considers an ARMA(1,2) equation for log earn-
ings. They find substantial persistence in the shocks to earnings
(the autoregressive coefficients equal 0.406 and 0.974 for annual
data, respectively). More recently, some computable general equi-
librium models with income heterogeneity and exogenous labor
supply have used a regression to the mean process for log-labor
earnings. Examples include Aiyagari (1994), Hubbard, Skin-

ner, and Zeldes (1995), Huggett (1996), or Huggett and
Ventura (2000). In these models, individual earnings yt follow
the process:

ln yt − ln y = ρ
(
ln yt−1 − ln y

)
+ ηt, (7.30)

where ηt ∼ N(0, σ2
η). Atkinson, Bourguignon, and Moris-

son (1992) report that estimates of the regression towards the
mean parameter ρ vary from 0.65 to 0.95 in annual data. In
Huggett and Ventura (2000) who study a life-cycle economy,
the income is also age-dependent and follows the process:

ln yj − ln yj = ρ
(
ln yj−1 − ln yj−1

)
+ ηj , (7.31)

where yj is the income of the j-year-old household and ηj ∼
N(0, ση) and ln y1 ∼ N(ln y1, σ

2
y1

). The parameters ρ, σy1 , and
ση are calibrated in order to reproduce the Gini coefficient of US
earnings of different cohorts and the overall economy on the one
hand and the estimated variance of the persistence of the shocks
to log earnings on the other hand.

Having specified the log earnings process as an AR(1)-process,
we need to discretize the process for computational purpose. The
earnings process can easily be approximated with a finite-state
Markov chain using the method presented in Section 12.2.
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In the following model, labor supply n is endogenous. Accord-
ingly, earnings are endogenous and we cannot specify an exoge-
nous earnings process. Rather, the exogenous variable is produc-
tivity ε or, similarly, the wage per unit labor, wε, as all agents
face the same wage rate w per efficiency unity. Similar to related
studies, e.g. Ventura (1999) or Castañeda, Dı́az-Giménez,
and Rı́os-Rull (1998b), we assume productivity ε to follow a
first-order Markov chain with conditional transition probabilities
given by:

π(ε′|ε) = Prob{εt+1 = ε′|εt = ε}, (7.32)

where ε, ε′ ∈ E = {ε1, . . . , εnε}. Empirical evidence provided by
Shorrocks (1976) suggests that the dynamics of productivity
(and income) may be modeled slightly better by a second-order
Markov chain, but the improvement in accuracy is rather small
and does not justify the considerable increase in the model’s com-
plexity. The productivities ε ∈ E = {ε1, . . . , εnε} are chosen to
replicate the discretized distribution of hourly wage rates which,
in our model, are proportional to productivity. The number of
productivities is set equal to nε = 5. We also consider unemploy-
ment and let ε1 characterize the state of unemployment by setting
ε1 equal to zero. The productivities {ε2, ε3, ε4, ε5} are estimated
from the empirical distribution of hourly wages in Germany in
1995. The productivity εi corresponds to the average hourly wage
rate of earners in the (i− 1)-th quartile. Normalizing the average
of the four nonzero productivities to unity we arrive at

{ε2, ε3, ε4, ε5} = {0.4476, 0.7851, 1.0544, 1.7129}. (7.33)

The transition probability into and out of unemployment,
π(ε′ = 0|ε > 0) and π(ε′ > 0|ε = 0) where ε′ represents next
period’s productivity, are chosen in order to imply an average
unemployment rate of 10.95% and an average duration of unem-
ployment equal to slightly more than one year (we assume that the
average transition takes place in the middle of the year). Periods
correspond to one year. Further, we assume that the probability
to loose one’s job does not depend on the individual productivity.



7.3 Applications 373

During unemployment, the worker’s human capital depreciates
or, equivalently, his productivity decreases. We assume that the
worker can only reach productivity ε2 after unemployment and set
π(ε′ = ε2|ε = 0) = 1 − π(ε′ = 0|ε = 0) and π(ε′ > ε2|ε = 0) = 0.25

The remaining (nε − 1)2 = 16 transition probabilities are cali-
brated such that (i) each row in the Markov transition matrix
sums to one, (ii) the model economy matches the observed quar-
tile transition probabilities of the hourly wage rate from 1995 to
1996 as given by the German Socio-economic panel data.26 Our
transition matrix is given by:

π(ε′|ε) =

⎛⎜⎝ 0.3500 0.6500 0.0000 0.0000 0.0000
0.0800 0.6751 0.1702 0.0364 0.0383
0.0800 0.1651 0.5162 0.2003 0.0384
0.0800 0.0422 0.1995 0.5224 0.1559
0.0800 0.0371 0.0345 0.1606 0.6879

⎞⎟⎠ . (7.34)

You may want to compare the German wage mobility of the em-
ployed agents (the lower 4x4-matrix of (7.34) divided by 1 −
10.95% in order to imply a mass equal to unity for the employed
agents) with the US earnings mobility as described by (7.29).
Notice, however, that (7.34) considers a 1-year transition period
while (7.29) considers a time horizon of 5 years. If you assume
that earnings follow an AR(1)-process, you may derive the 5-year
transition matrix for Germany by multiplying (7.34) 4 times with
itself.27 If you compare these two matrices, you cannot help notic-
ing that German workers are much more mobile than the US
workers. While the diagonal elements in (7.29) are in the range
0.409-0.885, the corresponding elements in the 5-year transition

25 Alternatively, we could have assumed that the worker’s productivity does
not decrease during unemployment. In this case, however, we had to intro-
duce an additional state variable into the model which makes the compu-
tation and calibration even more cumbersome.

26 A different approach is followed by Castañeda, Dı́az-Giménez, and
Ŕıos-Rull (1998b) who calibrate the transition matrix in order to repli-
cate the U.S. earnings and wealth distribution as closely as possible. As a
consequence, the diagonal elements of the transition matrix calibrated by
Castañeda, Dı́az-Giménez, and Ŕıos-Rull (1998b) are far larger than
the empirical counterparts.

27 See also Section 12.2.
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matrix in Germany amount to values between 0.27-0.37. This re-
sult, however, is an artefact of our approximation. As pointed out
above, the earnings process might be better modeled with the help
of an AR(2) process as suggested by Shorrocks (1976).

Modeling the Distributional Effects of Income Tax Re-
forms. In the following, we consider a heterogeneous-agent econ-
omy where agents differ with regard to their productivity and
employment status. Agents are also mobile and, between periods,
the productivity and employment status may change. As a conse-
quence, individual labor income also changes. The model is able
to account for both the observed heterogeneity in wage rates and
the observed labor income mobility in Germany. In addition to
the economy studied in Example 7.2.1, we model the household’s
labor supply decision. As a consequence, the labor income distri-
bution is endogenous. As one major implication of our modeling
framework, we are able to replicate the German labor income
distribution quite closely. The model follows Heer and Trede

(2003).28 Three sectors can be depicted: households, firms, and
the government.

Households. Households are of measure one and infinitely-lived.
Households are heterogeneous with regard to their employment
status, their productivity εj , and their wealth kj, j ∈ [0, 1].29 In-
dividual productivity εj ∈ E = {0, 0.4476, 0.7851, 1.0544, 1.7129}
follows the first-order finite-state Markov chain with conditional
transition probabilities given by (7.32).

28
Heer and Trede (2003) also study the more complicated case of a pro-
gressive income tax. In this case, the policy function for labor supply does
not have a continuous derivative and the computation is a little bit more
complicated. The interested reader is referred to the original article. For the
US economy, we know various other studies which consider the effects of a
flat-rate tax versus a progressive income tax. Ventura (1999) considers a
life-cycle model, Castañeda, Dı́az-Giménez, and Ŕıos-Rull (1998a) use
a model similar to ours, but with a different calibration procedure for the
Markov process (7.32), and Caucutt, İmrohoroğlu, and Kumar (2003)
also model endogenous human capital formation.

29 As we only consider one type of asset, we will refer to k as capital, wealth,
and asset interchangeably.



7.3 Applications 375

Agents are not allowed to borrow, kj ≥ 0. In addition, the
household faces a budget constraint. He receives income from la-
bor nt and capital kt which he spends on consumption ct and
next-period wealth kt+1:

kj
t+1 = (1 + r)kj

t + wtn
j
tε

j
t − (1 + τc)c

j
t − τyyj

t + 1ε=ε1bt, (7.35)

where rt, wt, τc, and τy denote the interest rate, the wage rate,
the consumption tax rate, and the tax rate on income y, respec-
tively. 1ε=ε1 is an indicator function which takes the value one if
the household is unemployed (ε = ε1) and zero otherwise. If the
agent is unemployed, he receives unemployment compensation bt.
Taxable income is composed of interest income and labor income:

yj
t = yj

t (ε
j
t , k

j
t ) = rkj

t + wtn
j
tε

j
t . (7.36)

Household j, which is characterized by productivity εjt and
wealth kj

t in period t, maximizes his intertemporal utility with
regard to consumption cjt and labor supply nj

t :

E0

∞∑
t=0

βtu(cjt , 1− nj
t ), (7.37)

where β < 1 is a discount factor and expectations are conditioned
on the information set of the household at time 0. Instantaneous
utility u(ct, 1 − nt) is assumed to be additively separable in the
utility from consumption and the utility from leisure is given by:

u(ct, 1− nt) =
c1−η
t

1− η + γ0
(1− nt)

1−γ1

1− γ1

. (7.38)

Our choice of the functional form for utility follows Castañeda,
Dı́az-Giménez, and Rı́os-Rull (1998b). Most quantitative
studies of general equilibrium model specify a Cobb-Douglas func-
tional form of utility. In this case, however, the elasticity of indi-
vidual labor supply with regard to wealth is larger than for the
utility function (7.38) and, consequently, the distribution of work-
ing hours varies more (and is less in accordance with empirical
observations) than for our choice of the utility function (7.38).30

30 In Section 3.3.2, you learned about the preferences of Greenwood, Her-

cowitz, and Huffman (1988) where the income effect on labor supply is
zero.
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Notice that this utility function is only applicable to an economy
which is not growing over time. To see this point assume that we
analyze a perfect-foresight economy with exogenous productivity
growth at a rate g > 0 and no uncertainty. In steady state, capital,
wages and consumption grow at rate g > 0, while labor supply is
constant. The first-order condition of the household is given by

γ0
(1− nt)

−γ1

c−η
t

=
(1− τy)εwt

1 + τc
. (7.39)

Consequently, for a steady state growth ct+1/ct = wt+1/wt = 1+g
with constant labor supply nt = n, either g �= 0 and η = 1 or
g = 0.31

Production. Firms are owned by the households and maximize
profits with respect to their labor and capital demand. Production
Yt is characterized by constant returns to scale using capital Kt

and labor Nt as inputs:

Yt = N1−α
t Kα

t . (7.40)

In a market equilibrium, factors are compensated according to
their marginal products and profits are zero:

rt = α

(
Nt

Kt

)1−α

− δ, (7.41)

wt = (1− α)

(
Kt

Nt

)α

, (7.42)

where δ denotes the depreciation rate of capital.

Government. Government expenditures consist of government
consumption Gt and unemployment compensation Bt. In our
benchmark case, government expenditures are financed by an in-
come tax and a consumption tax. We will compare the employ-
ment and distribution effects of two tax systems with equal tax
revenues: (i) a flat-rate income tax structure and (ii) only a con-
sumption tax (τy = 0).

31 See also the Appendix 2.
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The government budget is balanced in every period so that
government expenditures are financed by tax revenues Tt in every
period t:

Gt +Bt = Tt. (7.43)

Stationary Equilibrium. We will define a stationary equilib-
rium for a given government tax policy and a constant distribu-
tion F (e, k) (and associated density f(e, k)) over the individual
state space (e, k) ∈ E × [0,∞).

Definition. A stationary equilibrium for a given set of govern-
ment policy parameters is a value function V (ε, k), individual pol-
icy rules c(ε, k), n(ε, k), and k′(ε, k) for consumption, labor supply,
and next-period capital, respectively, a time-invariant distribution
F (ε, k) of the state variable (ε, k) ∈ E × [0,∞), time-invariant rel-
ative prices of labor and capital {w, r}, and a vector of aggregates
K, N , B, T , and C such that:

1. Factor inputs, consumption, tax revenues, and unemployment
compensation are obtained aggregating over households:

K =
∑
ε∈E

∫ ∞

0

k f(ε, k) dk, (7.44a)

N =
∑
ε∈E

∫ ∞

0

ε n(ε, k) f(ε, k) dk, (7.44b)

C =
∑
ε∈E

∫ ∞

0

c(ε, k) f(ε, k) dk, (7.44c)

T = τy
(
KαN1−α − δK)+ τcC, (7.44d)

B =

∫ ∞

0

b f(ε1, k) dk. (7.44e)

2. c(ε, k), n(ε, k), and k′(ε, k) are optimal decision rules and solve
the household decision problem

V (ε, k) = max
c,n,k′

[u(c, 1− n) + βE {V (ε′, k′)| ε}] , (7.45)

where ε′ and k′ denote next-period productivity and wealth,
subject to the budget constraint (7.35), the tax policy, and
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the stochastic mechanism determining the productivity level
(7.32).

3. Factor prices (7.41) and (7.42) are equal to the factors’ mar-
ginal productivities, respectively.

4. The goods market clears:

F (K,L) + (1− δ)K = C +K ′ +G = C +K +G. (7.46)

5. The government budget (7.43) is balanced: G+B = T .
6. The distribution of the individual state variables is constant:

F (ε′, k′) =
∑
ε∈E

π(ε′|ε) F (ε, k), (7.47)

for all k′ ∈ [0,∞) and ε′ ∈ E and with k′ = k′(ε, k).32

Calibration. The model is calibrated as in Heer and Trede

(2003). The preference parameters are set equal to η = 2, γ0 =
0.13, and γ1 = 10. The latter two parameters are selected in order
to imply an average working time of n̄ = 32% and a coefficient
of variation for hours worked equal to σn/n̄ = 0.367. The empir-
ical value for Germany for the coefficient of variation is equal to
0.385. The discount factor β amounts to 0.96. The productivities
ε ∈ {0, 0.4476, 0.7851, 1.0544, 1.7129} imply a Gini coefficient of
wages equal to 0.254, which compares favorably with the empir-
ical counterpart (0.275). The Markov transition matrix is given
by (7.34). The income tax rate is set equal to 17.4%, while the
consumption tax rate is computed endogenously in order to im-
ply a government consumption share in GDP equal to 19.6%.
The replacement ratio of unemployment compensation b relative
to the gross wage of the lowest wage quartile is equal to 52%,
b = 0.52ε2wn̄2, where n̄2 denotes the average working time of
the lowest productivity workers. The production elasticity α is
set equal to 0.36 and the annual depreciation rate is estimated at
δ = 4%.

32 Our definition of the stationary equilibrium, again, does not use advanced
concepts of measure theory. In particular, our formulation of the character-
istics of the stationary distribution assumes that the number of households
with zero capital is zero. This will be the case for our calibration.
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Computation. The solution algorithm for the benchmark case
with a flat-rate income tax is described by the following steps:

1. Make initial guesses of the aggregate capital stock K, aggregate
employment N , the consumption tax τc, and the value function
V (ε, k).

2. Compute the wage rate w, the interest rate r, and unemploy-
ment compensation b.

3. Compute the household’s decision functions k′(ε, k), c(ε, k), and
n(ε, k).

4. Compute the steady-state distribution of assets.

5. Compute K, N , and taxes T that solve the aggregate consis-
tency conditions.

6. Compute the consumption tax τc that solves the government
budget.

7. Update K, N , and τc, and return to step 2 if necessary.

In step 3, the optimization problem of the household is solved
with value function iteration. For this reason, the value function
is discretized using an equispaced grid K of 1,000 points on the in-
terval [0, kmax]. The upper bound on capital kmax = 12 is found to
never be binding. The value function is initialized assuming that
working agents supply 0.2 units of time as labor and that each
agent consumes his current-period income infinitely. The matrix
that stores the values of the value function has 1, 000× 5 entries.
We also assume that the agent can only choose discrete values
from the interval [0, 1] for his labor supply. We choose an equi-
spaced grid N of 100 points. The algorithm is implemented in the
program RCh7_tax.g.

In order to find the maximum of the rhs of the Bellman equa-
tion (7.45), we need to iterate over the next-period capital stock
k′ ∈ K and the optimal labor supply n′ ∈ N for every k ∈ K and
εi, i = 1, . . . , nε. This amounts to 1, 000·100·1, 000·4+1, 000·1, 000
iterations (the labor supply of the unemployed is equal to 0). In
order to reduce the number of iterations, we can exploit the fact
that the value function is a monotone increasing function of assets
k, that consumption is strictly positive and monotone increasing
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in k, and that the labor supply is a monotone decreasing func-
tion of assets k. Therefore, given an optimal next-period capital
stock k′(ε, ki) and labor supply n(ε, ki), we start the iteration over
the next-period capital stock for the optimal next-period capital
stock k′(ε, ki+1) at k′(ε, ki) with ki+1 > ki. Similarly, we start the
iteration over the labor supply n at n(ε, ki) and decrease the labor
supply at each iteration in order to find n(ε, ki+1) ≤ n(ε, ki). We
also stop the iteration as soon as c ≤ 0. The number of iterations
is reduced substantially by the exploitation of the monotonicity
conditions.

During the first iterations over the aggregate capital stock, we
do not need a high accuracy of the value function and the pol-
icy functions. Therefore, we iterate only 10 times over the value
function and increase the number of iterations to 20 as the al-
gorithm converges to the true solution. By this device, we save
a lot of computational time. The computer program is already
very time-consuming and runs approximately 5 hours. As a much
faster alternative, we may compute the optimal labor supply func-
tions with the help of the first-order condition (7.39) and you
will be asked to perform this computation in the exercises. Using
the time-consuming value function iteration over both the capi-
tal stock and the labor supply, however, might be a good starting
point i) if you would like to compute a rough approximation of the
final solution as an initial guess for more sophisticated methods
or ii) if your policy function is not well-behaved. The latter case
might arise in the presence of a progressive income tax where the
optimal labor supply does not have a continuous first derivative.33

As soon as we have computed the optimal policy function, we
might want to check the accuracy of our computation. For this
reason, we compute the residual function for the two first-order
conditions:

R1(ε, k) ≡ ul (c(ε, k), 1− n(ε, k)) (1 + τc)

uc (c(ε, k), 1− n(ε, k)) (1− τy)wε − 1,

33 Again, the interested reader is referred to either Ventura (1999) or Heer

and Trede (2003) for further reference.
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R2(ε, k) ≡ E

[
β
uc (c(ε′, k′), 1− n(ε′, k′))
uc (c(ε, k), 1− n(ε, k))

(1 + r(1− τy))
]
− 1.

The mean absolute deviations are about 1.07% and 3.71% for
the two residual functions R1 and R2, respectively. The maximum
deviations even amount to 11% and 47% for R1 and R2, respec-
tively. For a closer fit, we either need to increase the number of
grid points or to compute the optimal policy functions at points
off the grid (see the exercises).

The remaining steps of the algorithm are straightforward to
implement using the methods presented in the previous chapters.
For the computation of the invariant distribution, in particular,
we discretize the wealth density and compute it as described in
the Algorithm 7.2.3.

Results. In Table 7.3, the effects of the two different tax policies
on the aggregate capital stock K, the effective labor N , average
working hours n̄, the real interest rate r, the Gini coefficients of
the labor income and the wealth distribution, and the variational
coefficient of working time and effective labor are presented. In the
stationary equilibrium, the unemployment rate is equal to 10.95%.
Aggregate effective labor supply amounts to N = 0.251 with an
average working time approximately equal to n̄ = 0.324. Working
hours vary less than effective labor. The variational coefficient of
working hours (effective labor) is equal to 0.367 (0.691) (see the
last two columns of Table 7.3). The two variational coefficients
are in very good accordance with the empirical estimates 0.385
(0.638) which we computed using data from the German Socio-
Economic Panel during 1995-96. The higher variation of effective
labor relative to working hours reflects the optimizing behavior of
the working agents who work longer if they are more productive
as the substitution effect of a rise in the wage predominates the
income effect. The labor supply elasticity with regard to the wage
rate, ηnw, is moderate, amounting to 0.213 for the average worker.
Again, this compares favorably with the data. Sieg (2000), for
example, estimates that elasticities for male labor supply are small
and in the range between 0.02 and 0.2.
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Table 7.3

Tax K N n̄ r Gini Gini σn/n̄ σεn/N
Policy wεn k

τy 2.70 0.251 0.324 3.88% 0.317 0.406 0.367 0.691

τc 3.24 0.249 0.323 3.01% 0.316 0.410 0.366 0.685

Notes: τy refers to the case of a flat-rate income tax and τc to the case where
the income tax rate is zero and the consumption tax rate τc is increased such
that the government budget balances.

The aggregate capital stock amounts to K = 2.70 which is as-
sociated with a capital-output coefficient equal to K/Y = 4.57.
During 1991-97, the empirical value of K/Y was equal to 5.0
(2.6) in Germany for the total economy (producing sector). The
distribution of wealth, however, is not modeled in a satisfactory
manner. In our model, the concentration of wealth is too low with
a Gini coefficient equal to GINIwealth = 0.406 and compares un-
favorably with empirical estimates of the wealth Gini coefficient
reported above (which are well in excess of 0.6). We will discuss
the reasons why the simple heterogeneous-agent model of this sec-
tion is unable to replicate the empirical wealth distribution in the
next chapters.

In our second tax experiment, we set the income tax rate to
zero and increase the consumption tax rate in order to generate
the same tax revenues as in the benchmark case. The new steady-
state consumption tax amounts to τc = 39.5% (compared to 20.5%
under tax policy (i)). As interest income is not taxed any more,
households increase their savings. Accordingly, the aggregate cap-
ital stock K rises from 2.70 to 3.24. As labor is not taxed either
any more, the incentives to supply labor increases on the one hand.
On the other hand, average wealth of the agents is higher and, for
this reason, labor supply decreases. The net effect is rather small
so that employment approximately remains constant. Associated
with these changes of the input factors is a strong decline of the
interest rate r by 0.8 percentage points. The distribution effect
of the tax reform is rather modest. The Gini coefficient of gross
labor income almost remains constant and wealth is only a little
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more concentrated. Similarly, the coefficients of variation for la-
bor supply and effective labor are hardly affected. In summary,
the most marked effect of a switch to a consumption tax consists
of a pronounced rise of savings.
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Problems

7.1 Function Approximation
Compute the invariant distribution of Example 7.2.1 with the help
of functional approximation as described in Algorithm 7.2.5. However,
choose an exponential function of order n = 3 for the approximation of
the density function.

7.2 The Risk-Free Rate of Return
a) Compute the model with production in Example 7.2.1 with β = 0.96

and for different levels of minimum asset levels, amin ∈ {−2,−4,−8},
and show that the equilibrium interest rate decreases with a more
binding credit constraint.

b) Compute the equilibrium prices in the exchange economy of Huggett

(1993) for a higher coefficient of risk aversion η = 3 and compare your
results with table 2 in Huggett (1993).

7.3 Unemployment Insurance and Moral Hazard
(adapted from Hansen and İmrohoroğlu (1992))

Consider the following extension of Example 7.2.1. The agents’ utility
function is now a function of both consumption and leisure,

u(ct, lt) =

(
c1−σ
t lσt

)1−η

1− η .

All agents are either offered an employment opportunity (ε = e) or not
(ε = u). The Markov transition matrix is again described by (7.3). Agents
that receive an employment offer may either accept the offer and work
full-time, n = 1 − l = 0.3, or reject the offer and receive unemployment
insurance bt with probability q(εt−1). In particular, the probability of
unemployment benefits may be different for a searcher, εt−1 = u, and a
quitter, εt−1 = e, q(e) �= q(u). Agents that turn down employment of-
fers in order to extend unemployment spells may have different chances
to receive unemployment benefits than quitters. Compute the station-
ary equilibrium of the model for the parameters of Example 7.2.1. In
addition, set σ = 0.67. Compute the model for different replacement
ratios bt/(1 − τ)wt ∈ {0.25, 0.5, 0.75} and different probabilities to re-
ceive unemployment benefits g(e) = g(u) = 0.9, g(e) = g(u) = 0.8,
g(e) = 0.9, g(u) = 0.8. How does the optimal unemployment insurance
(as measured by the average value of the households) look like?

7.4 Income Tax Reform
Recompute the model of Section 7.3.2 implementing the following changes:
a) Compute the optimal labor supply with the help of the first-order

condition (7.39) (do not forget to check if the constraint 0 ≤ n ≤ 1
is binding). Therefore, you need to solve a non-linear equation.
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b) Compute the optimal next-period capital k′ where k′ does not need
to be a grid-point. Use linear interpolation to evaluate the value func-
tion between grid-points. Apply the Golden Section Search algorithm
presented in the Section 11.6.1 in order to compute the maximum
right-hand side of the Bellman equation.

7.5 Superneutrality in the Sidrauski Model (follows Heer, 2004)
As it is well-known, money is superneutral in the Sidrauski (1967)
model. A change of the money growth rate does not affect the real vari-
ables of the Ramsey model that is augmented by a monetary sector if
1) money demand is introduced with the help of money-in-the-utility and
2) labor supply is inelastic. Consider the following heterogeneous-agent
extension of the standard Sidrauski model that consists of the three sec-
tors households, firms, and the monetary authority:
Households. The household j ∈ [0, 1] lives infinitely and is character-
ized by her productivity εjt and her wealth aj

t in period t. Wealth aj
t is

composed of capital kj
t and real money mj

t ≡ M j
t /Pt, where M j

t and Pt

denote the nominal money holdings of agent j and the aggregate price
level, respectively. Individual productivity εjt is assumed to follow a first-
order Markov-chain with conditional probabilities given by:

Γ(ε′|ε) = Pr {εt+1 = ε′|εt = ε} ,
where ε, ε′ ∈ E = {ε1, . . . , εn}.
The household faces a budget constraint. She receives income from labor
ljt , capital kj

t , and lump-sum transfers trt which she either consumes at
the amount of cjt or accumulates in the form of capital or money:

kj
t+1 + (1 + πt+1)mt+1 = (1 + r)kj

t +mt + wtε
j
t l

j
t + trt − cjt ,

where πt ≡ Pt−Pt−1
Pt−1

, rt, and wt denote the inflation rate, the real interest
rate, and the wage rate in period t.
The household j maximizes life-time utility:

W =
∞∑

t=0

βtu(cjt ,m
j
t , 1− ljt )

subject to the budget constraint. The functional form of instantaneous
utility u(.) is chosen as follows:

u(c,m, 1− l) = γ ln c+ (1− γ) lnm.

Labor supply is exogenous, l = l̄ = 0.3.
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Production. Firms are also allocated uniformly along the unit interval
and produce output with effective labor N and capital K. Let Ft(k,m, ε)
(with associated density ft(k,m, ε)) denote the period-t distribution of
the household with wealth a = k + m and idiosyncratic productivity ε,
respectively. Effective labor Nt is given by:

Nt =
∑
ε∈E

∫
k

∫
m

l̄ · ε · ft(k,m, ε) dm dk.

Effective labor N is paid the wage w. Capital K is hired at rate r and
depreciates at rate δ. Production Y is characterized by constant returns
to scale and assumed to be Cobb-Douglas:

Yt = N1−α
t Kα

t .

In a factor market equilibrium, factors are rewarded with their marginal
product:

wt = (1− α)N−α
t Kα

t ,

rt = αN1−α
t Kα−1

t − δ.

Monetary Authority. Nominal money grows at the exogenous rate θt:

Mt −Mt−1

Mt−1
= θt.

The seignorage is transferred lump-sum to the households:

trt =
Mt −Mt−1

Pt
.

a) Define a recursive stationary equilibrium which is characterized by a
constant money growth rate θ and constant distribution F (ε, k,m).

b) Show that in the homogeneous-agent case, εj = ε̄, money is super-
neutral in the stationary equilibrium, i.e. the steady-state growth
rate of money θ has no effect on the real variables of the model.

c) Compute the heterogeneous-agent model for the following calibra-
tion: Periods correspond to years. The number of productivities is
set to n = 5 with

E = {0.2327, 0.4476, 0.7851, 1.0544, 1.7129}.

Further, γ = 0.990, β = 0.96, α = 0.36, and δ = 0.04. The transition
matrix is given by:
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π(ε′|ε) =

⎛⎜⎜⎜⎜⎝
0.3500 0.6500 0.0000 0.0000 0.0000
0.0800 0.6751 0.1702 0.0364 0.0383
0.0800 0.1651 0.5162 0.2003 0.0384
0.0800 0.0422 0.1995 0.5224 0.1559
0.0800 0.0371 0.0345 0.1606 0.6879

⎞⎟⎟⎟⎟⎠ .

Show that money is not superneutral (consider θ ∈ {0, 5%, 10%}).
Can you think of any reason for this result?





Chapter 8

Dynamics of the Distribution
Function

Overview. This chapter presents methods in order to compute
the dynamics of an economy that is populated by heterogenous
agents. In the first section, we show that this amounts to compute
the law of motion for the distribution function F (ε, a) of wealth
among agents. In the second section, we concentrate on an econ-
omy without aggregate uncertainty. The initial distribution is not
stationary. For example, this might be the case after a change in
policy, e.g. after a change in the income tax schedule, or during a
demographic transition, as many modern industrialized countries
experience it right now. Given this initial distribution, we com-
pute the transition to the new stationary equilibrium. With the
methods developed in this section we are able to answer questions
as to how the concentration of wealth evolves following a change
in capital taxation or how the income distribution evolves follow-
ing a change in the unemployment compensation system. In the
third section, we consider a model with aggregate risk. There are
many ways to introduce aggregate risk, but we will focus on a
simple case. We distinguish good and bad times which we iden-
tify with the boom and recession during the business cycle. In
good times, employment probabilities increase and productivity
rises. The opposite holds during a recession. As one application,
we study the income and wealth distribution dynamics over the
business cycle in the final section of this chapter. We will need
to find an approximation to the law of motion F ′ = G(F ) and
introduce you to the method developed by Krusell and Smith

(1998).
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8.1 Introduction

In the previous chapter, we have focused on the case of a station-
ary equilibrium where the distribution of wealth is invariant. If we
want to compute the non-stationary state of an economy, we face
severe problems. Consider Example 7.2.1 that we restate for your
convenience. However, we will now also consider the case that the
economy is not in the stationary equilibrium.

In our illustrative example, households maximize their in-
tertemporal utility (7.1)

E0

∞∑
t=0

βtu (ct) ,

subject to the budget constraint (7.4)

at+1 =

{
(1 + (1− τt)rt) at + (1− τt)wt − ct, if εt = e,
(1 + (1− τt)rt) at + bt − ct, if εt = u,

the employment transition probability (7.3)

π(ε′|ε) = Prob {εt+1 = ε′|εt = ε} =

(
puu pue

peu pee

)
,

the aggregate consistency condition (7.10a)

Kt =
∑

εt∈{e,u}

∫ ∞

amin

atft(εt, at) dat, (8.1)

where ft denotes the density function corresponding to the dis-
tribution functions Ft. Notice also that, outside the stationary
equilibrium, the income tax rate τt is no longer time-invariant.

The dynamics of the distribution are described by

Ft+1(εt+1, at+1) =
∑

εt∈{e,u}
π(εt+1|εt)Ft

(
εt, a

−1
t+1(εt, at+1)

) ≡ G(Ft),

(8.2)
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where a−1
t+1(εt, at+1) is the inverse of the optimal policy at+1 =

at+1(εt, at) with regard to current period wealth at. Again, we
assume that at+1(.) is invertible which will be the case in our ex-
ample economy. Given the distribution function Ft, we can com-
pute (8.1) as in (7.18). Furthermore, (8.2) constitutes a functional
equation as it describes a map G on a function space.

The factor prices depend on the aggregate capital stock K and
the aggregate employment N :

wt = w(Kt, Nt), (8.3)

rt = r(Kt, Nt). (8.4)

The household’s first-order condition with respect to its in-
tertemporal consumption allocation depends on consumption in
this and the next period, ct and ct+1:

u′(ct) = βEt [u
′(ct+1) (1 + (1− τt+1)rt+1)] . (8.5)

Consumption in this and the next period for the employed worker,
for example, is given by the budget constraint, ct = (1 + (1 −
τt)rt)at + (1 − τt)wt − at+1 and ct+1 = (1 + (1 − τt+1)rt+1)at+1 +
(1 − τt+1)wt+1 − at+2, respectively. What do we need in order to
compute the solution to (8.5)? The household observes the fol-
lowing current-period aggregate variables: the aggregate capital
stock Kt, aggregate employment Nt, the wage rate wt, the in-
terest rate rt, the tax rate τt, and the distribution of the assets
Ft(εt, at). Her individual state space consists of her employment
status εt and her individual assets at. The solution of (8.5), as we
will argue in the following, consists of a time-invariant function
a′(ε, a, F ) which gives him the optimal next-period capital stock
at+1 = a′(εt, at, Ft) and also the optimal capital stock in two peri-
ods, at+2 = a′(εt+1, at+1, Ft+1). Different from the optimal policy
function in the computation of the stationary state in Chapter
7, we also include the distribution F as an additional argument.1

1 In our specific model, aggregate employment N is constant and we are able
to drop it from the list of arguments. In other models with endogenous
labor supply, N is also an additional argument of the policy functions, as
we will argue below.
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Why? In Chapter 7, the aggregate capital stock Kt = K is con-
stant. Therefore, the interest rate and the wage rate are constant,
too. In the present model, Kt and, hence, rt are not constant. As
the solution of (8.5) clearly depends on rt (via ct and the budget
constraint), Kt needs to be an argument of the policy function
at+1 = a′(.) as well.2 Kt, however, can be computed with the help
of the distribution Ft(εt, at) using (8.1) and (7.18). Now we only
need to explain why we also have to include the distribution of the
individual states, Ft(εt, at), as an additional argument and do not
only use the capital stock Kt instead. Consider again (8.5). The
next-period interest rate rt+1 appears on the rhs of the equation.
Therefore, the households need to predict rt+1. In the stationary
economy, this is not a problem: rt+1 = r. In the representative-
agent economy, this is not a problem either: If the agent chooses
the next-period capital stock at+1, he also knows that all other
agents (with mass one) choose at+1 such that the aggregate cap-
ital stock is given by Kt+1 = at+1. In the heterogeneous-agent
economy, however, the individual household is unable to infer the
value of the next-period aggregate capital stock Kt+1 from her
own decision. She needs to know how all the other (infinitely-
numbered) households in the economy decide and how much they
save. As households with different wealth may also have different
savings rates and incomes, she needs to know the distribution of
the individual states and to sum the next-period assets over all
households in order to compute Kt+1 and, hence, rt+1.

3 As a con-
sequence, the distribution Ft(εt, at) is also an argument of the pol-
icy function. Put differently, if we consider different distributions
Ft(εt, at) that are characterized by the same mean āt = Kt, we
will have different next-period distributions Ft+1(εt+1, at+1) which
only by chance will all have the same mean at+1 = Kt+1. For this

2 Alternatively, we could have used the variable rt rather than Kt as an
argument of a′(.).

3 In order to compute the savings of the other households, she also needs to
know the policy functions a′(εt, at, Ft) of the other agents. As all agents,
however, have the same optimization problem, the policy functions of all
agents are identical. Consequently, as the individual household knows her
own policy function, she also knows the policy functions of the other agents.
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reason, Ft(.) needs to be included as an additional argument of
the policy function.

We are now ready to formulate the recursive problem. We will
omit the time index t from the variables in the definition of the
recursive equilibrium in order to keep the notation as simple as
possible. The household maximizes her value function:

V (ε, a, F ) = max
c,a′

[u(c) + βE {V (ε′, a′, F ′)| ε, F}] , (8.6)

subject to the budget constraint (7.4), the government policy
{b, τ}, the stochastic process of the employment status ε as given
by (7.3), and the distribution dynamics (8.2). Again, the value
function is a function of individual states ε and a, and the distri-
bution F (.). The distribution of assets, F , however, is an infinite-
dimensional object and we cannot track it. Furthermore, finding
the law of motion for the distribution, G(F ), is not trivial as G
is a map from the set of functions (an infinite dimensional space)
into itself.

8.2 Transition Dynamics

In this section, we consider the transition dynamics for given ini-
tial state in the economy with aggregate certainty as described by
the following Example:4

Example 8.2.1
Households are allocated uniformly along the unit interval and are

of measure one. The individual household maximizes

V (ε, a, F ) = max
c,a′

[
c1−η
t

1− η + βE
{
V (ε′, a′, F ′)

∣∣ ε, F}] ,
s.t.

a′ =
{

(1 + (1− τ)r) a+ (1− τ)w − c, if ε = e,
(1 + (1− τ)r) a+ b− c, if ε = u,

4 Please keep in mind that aggregate variables like r, w, or τ vary over time,
even though we omitted the time index.
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a ≥ amin,

π(ε′|ε) = Prob
{
εt+1 = ε′|εt = ε

}
=
(
puu pue

peu pee

)
.

The distribution F of (ε, a) is described by the following dynamics:

F ′(ε′, a′) =
∑

ε∈{e,u}
π(ε′|ε) F (ε, a′−1(ε, a′, F )).

Factor prices are equal to their respective marginal products:

r = α

(
N

K

)1−α

− δ,

w = (1− α)
(
K

N

)α

.

The aggregate consistency conditions hold:

K =
∑

ε∈{e,u}

∫ ∞

amin

a f(ε, a) da,

C =
∑

ε∈{e,u}

∫ ∞

amin

c f(ε, a) da,

T = τ(wN + rK),

B =
∫ ∞

amin

bf(u, a) da,

where f is the density function associated with F . The government
policy is characterized by a constant replacement ratio ζ = b/(1− τ)w
and a balanced budget: T = B.

We will introduce two ways in order to approximate the dynam-
ics of the distribution (8.2). The first way is to use partial infor-
mation and has been applied by den Haan (1997) and Krusell

and Smith (1998). The basic idea is that households do not use
all the information at hand, i.e., the distribution F , but only use
a little bit of information about F , for example the first moment.
By this device, we reduce the infinite-dimensional problem of find-
ing a law of motion for F to a finite-dimensional one. The sec-
ond method is a shooting method which is only applicable to
models with aggregate certainty. In this case, one assumes that
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one reaches the new stationary equilibrium after T periods and
projects a transition path for the prices {w, r}Tt=0 over the next
T periods.5 Given the dynamics of prices and the optimal policy
functions, we can compute the dynamics of the distribution. From
this, we can update the time path for the factor prices until the
algorithm converges. We will present the two approaches in turn.
Both approaches assume that the stationary equilibrium is sta-
ble and that the distribution function converges to the invariant
distribution function.

8.2.1 Partial Information

In this subsection, we assume that agents only use partial infor-
mation in order to predict the law of motion for the state vari-
able(s) or, equivalently, are boundedly rational. Agents perceive
the dynamics of the distribution F ′ = G(F ) in a simplified way.
In particular, they characterize the distribution F by I statistics
m = (m1, . . . , mI). In Chapter 7, we approximated the invariant
distribution function with an exponential function. One might use
the parameters ρi of the approximated exponential distribution
function as statistics mi, for example. In this section, we follow
Krusell and Smith (1998) and use the moments of the distribu-
tion function, instead. In particular, we only consider the simple
case that agents only use the first moment m1, i.e. the aggregate
capital stock K. Krusell and Smith (1998) find that the fore-
cast error due to the omission of higher moments is extremely
small.6 The economic intuition for this result is straightforward.
Higher moments of the wealth distribution only have an effect on

5 If we considered aggregate uncertainty, we would have to project a distri-
bution over the factor prices which would make the problem much more
complicated, again.

6 In Problem 8.1, you will be asked to verify this hypothesis. Young (2005a)
points out that higher moments do not influence nor are they influenced
by the mean in this class of models. Therefore, they do not affect the
forecasting of prices. In addition, he finds that the algorithm is robust to
changes in the demographic structure, preferences, and curvature in the
savings return.



396 Chapter 8: Dynamics of the Distribution Function

aggregate next-period capital stock if agents of different wealth
levels have different propensities to save out of wealth. However,
most agents (except for the very poor ones, who, of course, do not
contribute much to total savings) have approximately the same
savings rate.7 Therefore, the omission of higher moments is justi-
fied for the present case.

Accordingly, we assume that agents perceive the law of motion
for m as follows:

m′ = HI(m). (8.7)

Given the law of motion for m and the initial value of m, each
agent optimizes his intertemporal consumption allocation by solv-
ing the following problem:

V (ε, a,m) = max
c,a′

[u(c) + βE {V (ε′, a′, m′)| ε,m}] , (8.8)

subject to the budget constraint (7.4), the government policy
{b, τ}, the stochastic process of the employment status ε as given
by (7.3), and the distribution dynamics (8.7). Again, the factor
prices are computed as functions of the aggregate capital stock
and employment, w = w(K,N) and r = r(K,N), where the ag-
gregate capital stock is given by the first moment of the distri-
bution K = m1.

8 Similarly, we can compute the income tax rate
τ and the unemployment compensation b from the balanced bud-
get and for given replacement ratio ζ , aggregate capital K and
employment N for every period t:

T = τN1−αKα = B = (1−N)b,

b = ζ(1− τ)w = ζ(1− τ)(1− α)

(
K

N

)−α

.

7 Empirically, high income households save a larger fraction than low income
households in the US. Huggett and Ventura (2000), however, show that
age and relative permanent earnings differences across households together
with the social security system are sufficient to replicate this fact. All these
factors are absent from the model in Example 8.2.1.

8 Again, we drop the time index from the variables in order to keep the
notation simple.
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The remaining problem is to approximate the law of motion
for the moments m of the distribution, m = m1 = K. We will
choose a simple parameterized functional form for HI(m) follow-
ing Krusell and Smith (1998):

lnK ′ = γ0 + γ1 lnK. (8.9)

Given the function HI , we can solve the consumer’s problem and
compute optimal decision functions. For given initial distribution
F0 with mean K0, we can simulate the behavior of the economy
over time, and, in particular, are able to compute the law of mo-
tion for K and compare it to our projection (8.9). If the goodness
of fit is not satisfactory, we might want to try a different functional
form for HI or try a higher order I. As it turns out, one moment,
I = 1, and the functional form (8.9) are quite satisfactory.

The algorithm can be described by the following steps:

Algorithm 8.2.1 (Transition Dynamics with Bounded Ra-
tionality)

Purpose: Computation of the transition dynamics of the distri-
bution function for Example 8.2.1 with given initial distribution
F0 and the dynamics as given by (8.7).

Steps:

Step 1: Choose the initial distribution of assets F0 with mean K0.
Step 2: Choose the order I of moments m.
Step 3: Guess a parameterized functional form for HI and choose

initial parameters of HI .
Step 4: Solve the consumer’s optimization problem and compute

v(ε, a,m).
Step 5: Simulate the dynamics of the distribution.
Step 6: Use the time path for the distribution to estimate the law

of motion for the moments m.
Step 7: Iterate until the parameters of HI converge.
Step 8: Test the goodness of fit for HI . If the fit is satisfactory,

stop, otherwise increase I or choose a different functional
form for HI .
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Calibration. The model of Example 8.2.1 is calibrated as the
model of Example 7.2.1. In particular, the parameter values are
given by α = 0.36, β = 0.995, η = 2, δ = 0.005, ζ = 0.25,9 and
the employment transition matrix:(

puu pue

peu pee

)
=

(
0.500 0.500
0.0435 0.9565

)
.

The minimum wealth amin, again, is set equal to -2.

Computation. The algorithm is implemented in the program
RCh8_part.g. We choose an equispaced grid A = {a1, . . . , an} =
{−2, . . . , 3000} for wealth a with n = 201 nodes. We approximate
the distribution over the same interval, but with ng = 603 points.
For the aggregate capital stock K, we also choose an equispaced
grid K = {K1, . . . , KnK

} = {140, . . . , 340}. The grid for the ag-
gregate capital stock K consists of nK = 6 nodes and its minimum
and maximum values are approximately equal to the stationary
equilibrium value of the capital stock, K = 243.7,±100.

In the first step, we have to initialize the distribution function.
We assume that at time period t = 0, the distribution is uni-
form over an interval approximately equal to [−2, 300]. The grid
points that are closest to these values are -2 and 297.2 implying
an aggregate capital stock K equal to the mean K̄ = 147.6. If we
considered a policy change, e.g. an increase of unemployment ben-
efits, we would have computed the invariant distribution of wealth
prior to the policy change with the help of the methods developed
in the previous chapter and would have used this distribution for
our initialization of F . In the second step, we set the order I equal
to one, i.e. consumers only use the first moment of the wealth dis-
tribution as information about the distribution F . In step 3, we
choose the log-linear law of motion (8.9) for the capital stock and
initialize the parameters γ0 = 0.09 and γ1 = 0.95.

9 Different from Example 7.2.1, we, however, do not need to fix unemploy-
ment benefits b in order to ensure convergence of the algorithm, but can
rather use the replacement ratio ζ instead. This facilitates the calibration
because the replacement ratio ζ is readily observable from empirical data,
contrary to the absolute amount of unemployment benefits b.
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For the solution of the consumer’s optimization problem in step
4, we resort to the methods presented in the first part of this book.
In the computer program Rch8_part.g, we use value function
iteration with linear interpolation. Our objective is to compute
the value function v(ε, a,K) for ε = e, u. As we only consider the
first moment of the distribution F , the value function is only a
function of the employment status ε, the individual wealth a, and
the aggregate capital stock K. Given the coarse grid for K, we
again use linear interpolation to approximate the value function
at points off the grid points. The initial value function for the
employed agent, ve = v(e, a,K), and the unemployed agent, vu =
v(u, a,K), are computed at the grid points (ai, Kj), i = 1, . . . , n
and j = 1, . . . , nK , assuming that agents consume their current
income permanently:

ve
0(ai, Kj) =

∞∑
t=0

βtu ((1− τ)r(Kj)ai + (1− τ)w(Kj))

=
1

1− βu ((1− τ)r(Kj)ai + (1− τ)w(Kj)) ,

vu
0 (ai, Kj) =

1

1− βu ((1− τ)r(Kj)ai + b(Kj)) .

The interest rate and the wage rate, of course, are functions of the
aggregate capital stock Kj (and so are the unemployment benefits
b = ζ(1− τ)w(Kj)).

For a given value function in iteration l, we can compute the
value function of the employed agent, for example, in the next
iteration l + 1 from:

ve
l+1(ai, Kj) = max

a′∈A
u (c) +

β
{
peev

e
l

(
a′, eγ0+γ1 ln Kj

)
+ peuv

u
l

(
a′, eγ0+γ1 ln Kj

)}
with

c = (1 + (1− τ)r(Kj)) ai + (1− τ)w(Kj)− a′.
The value function is computed for every aggregate capital

stock Kj ∈ K and ai ∈ A. The outer loop of the iteration is over
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the capital stock Kj. Given K = Kj, we can compute the factor
prices w and r, unemployment compensation b, income taxes τ ,
and the next-period capital stock K ′. For given w, r, b, τ , and
K ′, we can compute the value function ve(a,Kj) and vu(a,Kj) at
every grid point a = ai. Notice that we do not have to compute
the function ve(a′, K ′) and vu(a′, K ′) on the rhs of the Bellman
equation for a′ ∈ A at each iteration over the individual wealth
ai ∈ A but only once before we start the iteration over a because
we know K ′ in advance. In the program Rch8_part, we store the
value functions ve(a′, K ′) and vu(a′, K ′) for K ′ = K ′(Kj) and
a′ = a1, . . . , an in the vectors ve1 and vu1, respectively, before we
start the iteration over a ∈ A. In order to find the optimum a′, we
only need to use the values from these one-dimensional vectors (or
interpolate linearly between two values am < a′ < am+1 of these
vectors, respectively). The maximization of the rhs of Bellman’s
equation is performed using the Golden Section Search procedure
explained in Section 11.6.1.

Figure 8.1: Value Function of the Employed Worker
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Figure 8.2: Savings of the Workers

The computed value function of the employed consumer is dis-
played in Figure 8.1. Since the value function of the unemployed
worker displays the same behavior we do not show this function.
The value function is a concave increasing function of individual
wealth a. For the low aggregate capital stock K = 140 (solid line),
the interest rate r is large and the wage rate w is low. For low
wealth a, therefore, the value is lower than the value for a larger
aggregate capital stock K = 260 or K = 340 (the solid line with
squares and the broken line). At an intermediate wealth level a,
approximately equal to 200, the value function of the agents is
again higher for a low capital stock K = 140 compared to the
other cases with a high capital stock K because the interest in-
come ra becomes a more important component of total income.

The savings behavior of the households is displayed in Figure
8.2. Savings increase with higher interest rate r or, equally, lower
capital stockK. The savings function a′−a of the employed worker
is presented by the solid line (solid line with squares) for aggregate
capital stocks K = 260 (K = 340). Savings of the unemployed
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workers are smaller than those of the employed workers as they
have lower wage income. The bottom curve in Figure 8.2 displays
the savings function of the unemployed worker if the aggregate
capital stock is equal to K = 260.

In step 5, we compute the dynamics of the distribution func-
tion. Given F0, we can compute Ft from Ft−1 with the help of
the agent’s savings function. The optimal policy functions off grid
points (a,K) are computed with the help of linear interpolation.
The dynamics of the distribution function are displayed in Fig-
ure 8.3 which presents the distribution function of the employed
workers at period t = 1, t = 10, t = 100, and t = 2, 000. After
2,000 iterations, the distribution function is stationary and the
transition is complete. The mean of the distribution is already
constant after 1,000 iterations and amounts to K̄ = 246.9. The
convergence of the distribution’s mean is displayed in Figure 8.4.

If you compare Figures 8.4 and 7.1, you cannot help notic-
ing that convergence of the distribution’s mean (and also of the
higher moments) occurs much faster in Figure 8.4 than in Figure

Figure 8.3: Dynamics of the Distribution Function over Time
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Figure 8.4: Convergence of the Aggregate Capital Stock

7.1, i.e. the distribution function approaches the stationary distri-
bution much faster in the case where we model the transition of
the aggregate capital stock. What is the reason for this observa-
tion? Assume that we start with a distribution that has an initial
mean ā0 below the stationary mean K̄. In the computation of the
stationary equilibrium in Chapter 7, we assumed that Kt = K̄ in
every period, while we use the aggregate capital stock K0 = ā0

in the Algorithm 8.2.1. Accordingly, the interest rate is lower in
the economy with a constant interest rate than in the economy
where we model the transition dynamics. Therefore, agents have
lower savings in each period in the constant price economy and
the mean of the distribution adjusts at a slower pace.

Consequently, step 5 in Algorithm 7.2.1 where we compute the
stationary distribution is much more time-consuming than the
corresponding step 5 in Algorithm 8.2.1. However, it would be
wrong to conclude that Algorithm 8.2.1 is faster than Algorithm
7.2.1. Importantly, using Algorithm 8.2.1, we i) need to iterate
over the law of motion for the aggregate capital stock and ii) have



404 Chapter 8: Dynamics of the Distribution Function

to compute the policy functions for a state space that is character-
ized by a higher dimension. As a consequence, the computational
time may even be much higher in the latter case. In our exam-
ple, computational time amounts to 3 hours 58 minutes using an
Intel Pentium(R) M, 319 MHz computer which is approximately
equal to the run time of the Algorithm 7.2.3 presented in Table
7.1. However, we have to consider that we only use a very coarse
grid over the aggregate capital stock K in the computation of the
value function. Therefore, if we only aim at computing station-
ary equilibria, we would rather apply the methods presented in
Chapter 7.

We can use the time path of the capital stock displayed in
Figure 8.4 to update the coefficients γ0 and γ1 (step 6 and 7).
We use ordinary least squares regression (OLS) to compute the
two coefficients (step 6). However, we only use the first 1,000
values for the capital stock {Kt}Tt=0. Close to the stationary value
of K, we only have observation points (K,K ′) where K and K ′

are almost equal and display little variation. In this regression,
we get a very high R2, almost equal to one, R2 = 1.000. The
computed dynamics (K,K ′) (simulated) and the regression line
(as predicted by the households with the help of (8.9)) are almost
identical. Obviously, the fit is extremely good.10 In step 7, we
update the parameters γ0 and γ1 until they converge. The final
solution for the law of motion for the capital stock is given by

lnK ′ = 0.0425835 + 0.9922636 lnK. (8.10)

This equation implies a stationary capital stock equal to K̄ =

e
γ0

1−γ1 = 245.8, which is a little lower than the one computed from
the simulation (K̄ = 246.9). For γ1 close to one, small errors in the
estimation of γi, i = 0, 1, imply large errors in the computation of
K̄. For γ0 = 0.04262 and γ1 = 0.9922636, the stationary capital
stock is already equal to K̄ = 246.9.

10
Den Haan (2007) discusses the use of R2 as a measure of accuracy. He
points out that an R2 equal to 0.99 may still hide large errors. We will not
pursue his argument in more detail at this point, but refer the interested
reader to his paper.
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In the present model, K is a sufficient predictor for factor prices
and taxes. We can compute the wage rate w, the interest rate r,
the tax rate τ that balances the government budget, and the un-
employment compensation if we only know K. In many economic
applications, however, the distribution of wealth and its mean are
not a sufficient statistic of factor prices. Consider the case of an
elastic labor supply. Households maximize their utility by their
choice of leisure. For example, if we assume instantaneous utility
to be of the form

u(c, 1− n) =

(
c(1− n)θ

)1−η

1− η , (8.11)

where n denotes labor supply and 1−n is leisure (the time endow-
ment of the household is normalized to one). Labor income of the
employed worker is simply the net wage rate times the working
hours, (1− τ)wn, and aggregate labor N in period t is given by

N =

∫ ∞

amin

n(a;K,N) f(e, a) da, (8.12)

where the labor supply of the unemployed is equal to zero. In
this case, individual labor supply depends on individual wealth
a and, consequently, aggregate labor supply N depends on the
distribution of wealth.11 In this case, we also need to estimate a
prediction function for aggregate labor

N ′ = J(N,K), (8.13)

that, for example, might take the log-linear form lnN ′ = ψ0 +
ψ1 lnN +ψ2 lnK. The household maximizes intertemporal utility
subject to the additional constraint (8.13) and the value function
v(ε, a,K,N) has the aggregate labor N as an additional argument.
Alternatively, you may try to specify aggregate employment N ′

as a function of next-period capital K:

N ′ = J̃(K ′). (8.14)

11 Individual labor supply also depends on the wage rate and, hence, on K
and N .
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The latter specification has the advantage that the state space
is smaller; aggregate employment N is not a state variable any
more. Current-period capital K is used to forecast K ′ which, in
turn, is used to forecast N ′. You should choose the specification
that provides a better fit as, for example, measured by the R2.12

Of course, the method developed in this chapter is still applicable
to such more complicated problems and you will be asked to solve
the growth model with endogenous labor supply in Problem 8.1
using (8.13). In Section 10.2.2, we will apply the Krusell-Smith
algorithm to the solution of an OLG model using the forecasting
function (8.14). In particular, we will choose the function form
lnN ′ = ψ0 + ψ1 lnK ′.

8.2.2 Guessing a Finite Time Path for the
Factor Prices

In the previous section, we computed the value function as a func-
tion of the aggregate capital stock. If the model is getting more
complex, e.g. if we consider endogenous labor supply, endogenous
technology or multiple financial assets, the number of arguments
in the value function rises and the computation becomes more
cumbersome. In this section, we introduce another method for
the computation of the transition path that only considers the
individual variables as arguments of the value function (or policy
functions). The only additional variable of both the value function
and the policy functions is time t. The method presented in this
section, however, is only applicable to deterministic economies.

Again, we consider the transition to a stationary equilibrium.
For the computation, we assume that the stationary equilibrium
is reached in finite time, after T periods. Typically, we choose
T large enough, say T = 1, 000 or higher. Furthermore, we can
compute the stationary equilibrium at period t ≥ T with the help
of the methods developed in the previous chapter. We also know
the distribution of wealth in the initial period t = 1 and, therefore,

12
Den Haan (2007) proposes alternative accuracy tests that we do not de-
scribe here.
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the aggregate capital stock and the factor prices in period t = 1
and t = T . In order to compute the policy functions during the
transition, we need to know the time path of the factor prices,
or, equally, the time path of the aggregate capital stock. We start
with an initial guess for the time path of the factor prices, compute
the decision functions, and with the help of the initial distribution
and the computed decision functions, we are able to compute the
implied time path of the factor prices. If the initial guess of the
factor prices is different from the values implied by our simulation,
we update the guess accordingly. The algorithm can be described
by the following steps:13

Algorithm 8.2.2 (Computation of Example 8.2.1)

Purpose: Computation of the transition dynamics by guessing a
finite-time path for the factor prices

Steps:

Step 1: Choose the number of transition periods T .

Step 2: Compute the stationary distribution F̃ of the new sta-
tionary equilibrium. Initialize the first-period distribution
function F 1.

Step 3: Guess a time path for the factor prices r and w, unem-
ployment compensation b, and the income tax rate τ that
balances the budget. The values of these variables in both
periods t = 1 and t = T are implied by the initial and
stationary distribution, respectively.

Step 4: Compute the optimal decision functions using the guess
for the interest rate r, the wage income w, the tax rate τ
and the unemployment compensation b. Iterate backwards
in time, t = T − 1, . . . , 1.

Step 5: Simulate the dynamics of the distribution with the help
of the optimal policy functions and the initial distribution
for the transition from t = 1 to t = T .

13 The algorithm follows Ŕıos-Rull (1999) with some minor modifications.
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Step 6: Compute the time path for the interest rate r, the wage
w,unemployment compensation b, and the income tax rate
τ , and return to step 3, if necessary.

Step 7: Compare the simulated distribution F T with the station-
ary distribution function F̃ . If the goodness of fit is poor,
increase the number of transition periods T .

In step 4, we compute the optimal policy functions by back-
ward iteration. In period T , we know the new stationary distribu-
tion, optimal policy functions, and the factor prices. For periods
t = T − 1, . . . , 1, we may compute the policy functions ct(εt, at)
and at+1(εt, at) for consumption and next-period assets with the
methods developed in Part 1 of this book recursively.14 For ex-
ample, we may compute ct(εt, at) and at+1(εt, at) for given policy
functions ct+1(εt+1, at+1) and at+2(εt+1, at+1) from the Euler equa-
tion (7.5) with the help of projection methods:15

u′(ct(εt, at))

β
=Et [u

′(ct+1(εt+1, at+1))(1 + (1− τt+1)rt+1)] ,

εt = e, u,

(8.15)

where ct(e, at) = (1 + rt(1 − τt))at + (1 − τt)wt − at+1(e, at) and
ct(u, at) = (1+ rt(1−τt))at + bt−at+1(u, at) for the employed and
unemployed worker, respectively. Alternatively, we may compute
the optimal policy functions with value function iteration from
the Bellman equation (7.9):

Vt(εt, at) = max
ct,at+1

[u(ct) + βEt {Vt+1(εt+1, at+1)| εt}] . (8.16)

In period t = T − 1, again, we know the optimal next-period
consumption policy cT and the value function VT which are equal

14 Notice that with the present method, the policy functions are no longer
time-invariant. Optimal consumption ct(.) depends on the period t via the
factor prices wt and rt which are not arguments of the policy function.
Therefore, we have to compute the optimal policy function in every period
t = 1, . . . , T .

15 You will be asked to compute the transition dynamics using projection
methods for the computation of the policy functions in the exercises.
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to the stationary optimal consumption policy and value function,
respectively. Notice that, in order to compute the policy functions
from (8.16), we need to store Vt, t = 1, . . . , T , but the value func-
tion is only a function of individual state variables ε and a. We
iterate backwards in time and compute ct given Vt+1.

As soon as we have computed the optimal consumption policy
for t = 1, . . . , T , with the help of the value function or the Euler
equation, it is straightforward to simulate the behavior of the
economy with the help of the first-period distribution function
and compute the time path for the capital stock {Kt}Tt=1.

Computation. The algorithm is implemented in the program
RCh8_gues.g. The model of Example 8.2.1 is calibrated in ex-
actly the same way as in the previous section and we also choose
the same grid over the asset space A for the value function and
the distribution function as in the programs RCh8_part.g and
RCh7_denf.g. This is very convenient as it allows us to load
the stationary policy function and distribution function as an in-
put into the computation.16 The transition time is set equal to
T = 2, 000 periods. In step 2, the initial distribution is chosen to
be the uniform distribution over the interval of [−2, 297.2] as in
the previous section.

There are various ways to update the time path for {Kt}Tt=0 in
step 6. We may either resort to a parameterized recursive equation
(8.9) as in the previous section and adjust the parameters γ0 and
γ1 as in the program RCh8_part.g . Alternatively, we may use a
tatonnement algorithm guessing an initial sequence {Kt}Tt=0 and
updating it after each iteration i, Ki

t = Ki−1
t +φ

(
Ki−1

t −Ki
t

)
, t =

2, . . . , T − 1. This approach is used in the program RCh8_gues.g.
A third approach is to use any standard non-linear equation solu-
tion method, e.g. Newton’s method to find the sequence {Kt}Tt=0

that implies the same sequence for the simulated model.17 In the
present case, the algorithm converges after 26 iterations over the

16 The function and distribution are computed with the help of the program
RCh7_denf.g as described in Chapter 7.

17 In Section 10.2.2, we will study the transition for an Overlapping Genera-
tions model and use a quasi-Newton method in order to update the factor
price time series.
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Figure 8.5: The Dynamics of the Distribution Function

sequence {Kt}t=2,000
t=0 . The computational time amounts to 7 hours

13 minutes and is longer than the one of Algorithm 8.2.1. Also
keep in mind that, different from Algorithm 8.2.1, Algorithm 8.2.2
is using the new steady-state distribution as an input which re-
quires an additional 4 hours of computation, while Algorithm 8.2.1
might need some time-consuming experimentation with an educa-
tive guess for the law of motion for the moments. The simulated
time path and the projected time path of the capital stock are al-
most identical and the deviation only amounts to 0.1% on average
during the transition.

The dynamics of the distribution over time is displayed in Fig-
ure 8.5. From the initial uniform distribution (solid line), the
distribution slowly converges to the final distribution in period
T = 2, 000. The distribution at the end of the transition for both
Algorithms 8.2.1 and 8.2.2 are compared to the new stationary
distribution of wealth a in Figure 8.6. The three distributions
have almost the same means, which deviate less than 1% from
each other. However, the second moments vary as the right tail of
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Figure 8.6: Goodness of Fit for the Stationary Distribution

the density functions after 2,000 periods is thinner than the one
of the new stationary distribution. A longer transition period may
even improve the fit.

8.3 Aggregate Uncertainty

So far, we have only considered individual risk in this chapter.
Agents faced the idiosyncratic risk of getting unemployed, while
the real interest rate and the factor prices were constant in the sta-
tionary state. Only during transition to the new steady state did
factor prices vary. In this section, we also take a look at aggregate
risk. As in Chapter 1, aggregate risk is introduced by a stochas-
tic technology level Zt in period t. In particular, the productivity
shock follows a Markov process with transition matrix ΓZ(Z ′|Z),
where Z ′ denotes next-period technology level and πZZ′ denotes
the transition probability from state Z to Z ′. This assumption
is not very restrictive. Given empirical evidence, we assumed in
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Chapter 1 that productivity Zt followed an AR(1)-process. As you
also learn in Section 12.2, an AR(1)-process can easily be approx-
imated by a finite Markov-chain.18

With stochastic technology level Zt, aggregate production is
given by:

Yt = ZtN
1−α
t Kα

t . (8.17)

We assume competitive factor and product markets implying the
factor prices:

wt = Zt(1− α)N−α
t Kα

t , (8.18)

rt = ZtαN
1−α
t Kα−1

t − δ. (8.19)

The individual employment probabilities, of course, depend on the
aggregate productivity Zt. In good times (high productivity Zt),
agents have higher employment probabilities than in bad times.
The joint process of the two shocks, Zt and εt, can be written
as a Markov process with transition matrix Γ(Z ′, ε′|Z, ε). We use
pZεZ′ε′ to denote the probability of transition from state (Z, ε)
to state (Z ′, ε′). In the following, we restrict our attention to a
very simple example. The economy only experiences good and bad
times with technology levels Zg and Zb, respectively, where Zg >
Zb. As before, agents are either employed (ε = e) or unemployed
(ε = u). Consequently, the joint processes on (Z, ε) are Markov-
chains with 4 states.

Households are assumed to know the law of motion of both
{εt} and {Zt} and they observe the realization of both stochastic
processes at the beginning of each period. Besides, the model is
identical to the one in Example 8.2.1 and is summarized in the
following:

Example 8.3.1
Households are of measure one. The individual household maxi-

mizes

18 In the exercises, you will be asked to compute the solution for a
heterogenous-agent economy with aggregate uncertainty where the pro-
ductivity shocks follows an AR(1)-process using Tauchen’s method.
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V (ε, a, Z, F ) = max
c,a′

[
c1−η
t

1− η + βE
{
V (ε′, a′, Z ′, F ′)

∣∣ ε, Z, F}] ,
s.t.

a′ =
{

(1 + (1− τ)r) a+ (1− τ)w − c if ε = e,
(1 + (1− τ)r) a+ b− c if ε = u,

a ≥ amin,

Γ(Z ′, ε′|Z, ε) = Prob
{
Zt+1 = Z ′, εt+1 = ε′|Zt = Z, εt = ε

}
=

⎛⎜⎜⎝
pZgeZge pZgeZgu pZgeZbe pZgeZbu

pZguZge pZguZgu pZguZbe pZguZbu

pZbeZge pZbeZgu pZbeZbe pZbeZbu

pZbuZge pZbuZgu pZbuZbe pZbuZbu

⎞⎟⎟⎠ .

The distribution of the individual states (ε, a) for given aggregate state
variables (Z,K) in period t is denoted by F (ε, a;Z,K). The dynam-
ics of the distribution of the individual states are described by the
following equations:

F ′(ε′, a′;Z ′,K ′) =
∑

ε

Γ(Z ′, ε′|Z, ε)F (ε, a;Z,K),

where a = a′−1(e, a′;Z,K) is the inverse of the optimal policy function
a′ = a′(ε, a;Z,K) with respect to individual wealth a and

K ′ =
∑

ε

∫
a
a′ f(ε, a;Z,K) da.

Again, f denotes the density function that is associated with F .
Factors prices are equal to their respective marginal products:

r = αZt

(
N

K

)1−α

− δ,

w = (1− α)Z
(
K

N

)α

.

The aggregate consistency conditions hold:

K =
∑

ε

∫
a
a f(ε, a;Z,K) da,

N =
∫

a
f(e, a;Z,K) da,

C =
∑

ε

∫
a
c(ε, a;Z,K) f(ε, a;Z,K) da,



414 Chapter 8: Dynamics of the Distribution Function

T = τ(wN + rK),

B =
∫

a
bf(u, a;Z,K) da.

The government policy is characterized by a constant replacement
ratio ζ = b/(1 − τ)w and a balanced budget: T = B.

Due to the presence of aggregate uncertainty, there are three
major changes in the computation of the model compared to the
one in Section 8.2: 1) The employment levels fluctuate. 2) When
we approximate the distribution function of wealth by its first
I moments, for example, the value function is a function of the
employment status ε, individual wealth a, the first I moments of
wealth, and, in addition, aggregate technology Z. 3) The distribu-
tion of wealth is not stationary. We will discuss these three points
in turn.

1. Individual employment probabilities depend on both the cur-
rent employment status ε and the current and next-period produc-
tivity, Z and Z ′. Given an employment distribution in period t,
the next-period employment distribution depends on the technol-
ogy level Z ′ because agents have a higher job finding probability
in good times, Z ′ = Zg, than in bad times, Z ′ = Zb. As a conse-
quence, we have an additional state variable in the model, namely
aggregate employment. As the measure of households is normal-
ized to one, aggregate employment is equal to Nt = 1− ut, where
ut is the unemployment rate of the economy in period t. As the
factor prices are functions of both aggregate capital Kt and em-
ployment Nt, the households need to predict the law of motion
for both state variables. Aggregate employment of the next pe-
riod N ′, however, only depends on aggregate employment in the
current period N and the technology level in this and the next-
period, Z and Z ′, because we assume inelastic labor supply. As
a consequence, the agents know that next-period aggregate em-
ployment is either N ′

g if Z ′ = Zg or N ′
b if Z ′ = Zb because they
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know the transition matrix Γ, the current period employment N ,
and the technology level Z.19

We will simplify the analysis further following Krusell and
Smith (1998). In particular, we assume that the unemployment
rate takes only two values ug and ub in good times and in bad
times, respectively, with ug < ub. In order to simplify the dynam-
ics of aggregate employment accordingly, the following restrictions
have to be imposed on the transition matrix Γ:

uZ
pZuZ′u

pZZ′
+ (1− uZ)

pZeZ′u

pZZ′
= uZ′, (8.20)

for Z,Z ′ ∈ {Zg, Zb}. Condition (8.20) implies that unemployment
is ug and ub if Z ′ = Zg and Z ′ = Zb, respectively. Consequently,
we do not need to consider employment as an additional state
variable in the special case (8.20) as the technology level Z ′ is a
sufficient statistic for N ′. Example 8.3.1 has already been formu-
lated accordingly and the state variable is given by {ε, a, Z, F}
rather than {ε, a, Z,N, F}.20

2. In comparison with Example 8.2.1, the households’ value
function has an additional argument, the technology level Z. The
Bellman equation can be formulated as follows:

V (ε, a, Z, F ) = max
c,a′

[u(c) + βE {V (ε′, a′, Z ′, F ′)| ε, Z, F}] .

The additional state variable Z has a finite number of values and
the computation of the value function is analogous to the one
in Section 8.2.1. In particular, the household is assumed to be
boundedly rational and to use only the first I moments m in

19 Furthermore, the law of large numbers holds.
20 To be more precise, if the household knows the distribution F (ε, a), the

argument N is redundant (even if Z ′ is not a sufficient statistic for N ′),
as he can compute aggregate employment N ′ with the help of F ′(ε, a) and
the aggregate consistency condition for N ′. In the numerical computation,
however, we assume that the household is boundedly rational and only uses
the first I moments of the wealth distribution F (.) as information. In this
case, he is unable to compute N from the aggregate consistency conditions
and we have to introduce N as an additional state variable into the value
and policy functions.
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order to predict the law of motion for the distribution F (.) with
m1 = K:

V (ε, a, Z,m) = max
c,a′

[u(c) + βE {V (ε′, a′, Z ′, m′)| ε, Z,m}] .

3. In the economy with aggregate uncertainty, the distribution
of capital is not stationary. The household’s income and savings
depend on the aggregate productivity level and, for this reason,
the distribution of capital changes over time. Similarly, the law of
motion of the aggregate capital stock depends on the productivity
level Z and (8.7) needs to be modified:21

m′ = HI(m,Z). (8.21)

In our economy with Z ∈ {Zg, Zb}, we will again analyze the
simple case where the agents only use the first moment ā = K to
predict the law of motion for the aggregate capital stock in good
and bad times, respectively, according to:

lnK ′ =

{
γ0g + γ1g lnK if Z = Zg,
γ0b + γ1b lnK if Z = Zb.

(8.22)

As the aggregate productivity is a stochastic variable, we can
only simulate the dynamics of the economy. We follow Krusell

and Smith (1998) and use 5,000 agents in order to approxi-
mate the population. We choose an initial distribution of as-
sets a and employment status ε over the 5,000 households in
period t = 1. In particular, we assume that every household
is endowed with the initial asset holdings a1 equal to the aver-
age capital stock of the economy and that the number of unem-
ployed is equal to u1 ∈ {ug, ub}. In the first iteration, the aver-
age capital stock is computed from the stationary Euler equation
1/β − δ = α(N/K)1−α with N = 0.95. We simulate the dynamics
of the economy over 3,000 periods and discard the first 500 pe-
riods. As a consequence, the initialization of the distribution of

21 In an economy, where (8.20) does not hold, employment N is an addi-
tional state variable and enters the function HI(m,Z,N) in (8.21) as an
additional variable.
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(a, ε) in period t = 1 does not have any effect on our results for
the statistics of the distribution in period 501-3,000.22

As in the previous section, we use the dynamics of the capital
stock {Kt}t=3,000

t=501 in order to estimate the law of motion for Kt

in good and bad times, Zt = Zg and Zt = Zb, respectively. For
this reason, we separate the observation points (Kt, Kt+1) into
two samples with either Zt = Zg or Zt = Zb and estimate the
parameters {γ0, γ1} for each subsample separately.

In order to simulate the dynamics of the households’ wealth
distribution, we use the optimal policy functions of the house-
holds. The optimal next-period asset level a′ is a function of
the employment status ε, the current period wealth a, the ag-
gregate productivity level Z, and the aggregate capital stock K,
a′ = a′(ε, a, Z,K). We use value function iteration in order to
compute the decision functions so that the individual asset level
a and the aggregate capital stock K do not need to be a grid
point ai or Kj, respectively. Therefore, we have to use bilinear
interpolation in order to compute the optimal next-period asset
level a′ off grid points in our simulation (compare Section 11.2.3).

Finally, we impose the law of large numbers on our simulation
results. While we track the behavior of 5,000 agents, the fraction
of unemployed agents does not need to be equal to ug in good
times and ub in bad times. We use a random number generator
in order to simulate the motion of the individuals’ employment
status according to their appropriate conditional probabilities. In
each period t, we check if the fraction of unemployed is equal to
either ug or ub. If not, we choose a corresponding sample of agents
randomly and change their employment status accordingly. For
example, if the number of unemployed agents is above ug×5, 000 in
period t with Zt = Zg, we choose an unemployed agent at random

22 This Monte-Carlo simulation is very time-consuming. In Chapter 10, we
will consider a stochastic economy with 75 overlapping generations. If we
simulate such an economy for 1,000 households in each generation, the com-
putational time becomes a binding constraint given the current computer
technology. Therefore, we will approximate the cross-sectional distribution
by a piecewise linear function. Algan, Allais, and den Haan (2008)
suggest the approximation of the distribution by a parameterized function
and discuss various alternative approaches in the literature.
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and switch his employment status to employed and continue this
process until ut = ug.

The complete algorithm can be described by the following
steps:23

Algorithm 8.3.1 (Computation of Example 8.3.1)

Purpose: Computation of the dynamics in the heterogenous-
agent economy with aggregate uncertainty assuming bounded ra-
tionality of the consumers

Steps:

Step 1: Compute aggregate next-period employment N as a func-
tion of current productivity Z: N = N(Z).

Step 2: Choose the order I of moments m.
Step 3: Guess a parameterized functional form for HI in (8.21)

and choose initial parameters of HI .
Step 4: Solve the consumer’s optimization problem and compute

V (ε, a, Z,m).
Step 5: Simulate the dynamics of the distribution function.
Step 6: Use the time path for the distribution to estimate the law

of motion for the moments m.
Step 7: Iterate until the parameters of HI converge.
Step 8: Test the goodness of fit for HI using, for example, R2. If

the fit is satisfactory, stop, otherwise increase I or choose
a different functional form for HI .

Computation. The algorithm is implemented in the program
RCh8_unc.g. The computational time amounts to 7 hours 15
minutes on an Intel Pentium(R) M, 319 MHz computer. The pa-
rameterization is chosen for a model period equal to one year. We
set the technology level equal to Zg = 1.03 in good times and
Zb = 0.97 in bad times. The average duration of a boom or a
recession is 5 years. Booms and recessions are of equal length so
that the transition matrix ΓZ is equal to:

23 The algorithm follows Krusell and Smith (1998) with some modifica-
tions.
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ΓZ =

(
0.8 0.2
0.2 0.8

)
. (8.23)

The following conditional employment probabilities are taken
from Castañeda,Dı́az-Giménez, and Rı́os-Rull (1998b) who
consider the annual employment mobility for the US economy:

Γ(ε′|Z ′ = Zg, Z = Zg, ε) =

(
0.9615 0.0385
0.9581 0.0492

)
,

Γ(ε′|Z ′ = Zb, Z = Zb, ε) =

(
0.9525 0.0475
0.3952 0.6048

)
.

These employment probabilities imply ergodic distributions with
unemployment rates ug = 3.86% and ub = 10.73%, respectively.
The conditional employment probabilities for the transition from
good times to bad times, Z = Zg and Z ′ = Zb are calibrated such
that all unemployed agents stay unemployed and that the unem-
ployment rate is ub in the next period using (8.20). Accordingly,

pZgeZbe =
1− ub

1− ug
PZgZb

.

Similarly, the transition matrix from Z = Zb to Z ′ = Zg is cal-
ibrated so that all employed agents remain employed and the
unemployment rate is equal to ug in the next period, again
making use of (8.20). The asset grids over individual wealth a,
A = {a1 = 0, . . . , ana = 12} and aggregate capital K, K = {K1 =
2.5, . . . , Knk = 5.5}, are chosen to be equispaced with na = 101
and nk = 10 nodes, respectively. The upper and lower bounds of
these two intervals are found to be non-binding. The remaining pa-
rameters are also taken from Castañeda, Dı́az-Giménez, and
Rı́os-Rull (1998b): α = 0.36, β = 0.96, δ = 0.1, and η = 1.5.

The optimal policy functions and the value functions behave
as expected and, for this reason, we do not display them. Savings
a′(ε, a) and consumption c(ε, a) increase with higher individual
wealth a, while net savings a′−a decline. In addition, households
save a higher proportion of their income for higher interest rates
r or, equally, lower aggregate capital K.
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Figure 8.7: Distribution Function in Period T = 3, 000

The mean capital stock in the economy with uncertainty is
equal to K̄ = 4.35. The distribution of individual wealth in pe-
riod T = 3, 000 is graphed in Figure 8.7. In our simulation, the
aggregate capital stock in the last period t = 3, 000 has been
equal to K3,000 = 4.18 and the economy has been in a recession,
Zb = 0.97. Notice, in particular, that the upper grid point of A,
ana = 12, is not binding and the maximum wealth of the house-
holds is approximately equal to a = 7.5.

The law of motion for capital (8.22) is estimated at:

lnK ′ =

{
0.178 + 0.886 lnK if Z = Zg,
0.135 + 0.900 lnK if Z = Zb.

(8.25)

Using (8.25), the mean prediction error of the capital stock
amounts to 3.2%. The dynamics of the capital stock in our sim-
ulation are displayed in Figure 8.8. The standard deviation of
capital24 is equal to σK = 0.195. Our simple model falls short of

24 The log of the time series of the aggregate capital stock Kt, output yt, and
aggregate consumption ct have been HP-filtered with μ = 100.



8.4 Applications 421

Figure 8.8: Time Path of the Aggregate Capital Stock Kt

replicating important business cycle characteristics. For example,
the standard deviation of output (σy = 0.458%) is much smaller
than the one of consumption (σc = 2.97%). In the next section,
you will get to know two more elaborate models of the business
cycle dynamics.

8.4 Applications

In this section, we will look at two prominent applications of
computational methods for heterogenous-agent economies with
uncertainty that consider business cycles dynamics. One of the
first papers in the area of computable general equilibrium models
of heterogenous-agent economies is the article by Ayşe İmro-

horoğlu (1989) published in the Journal of Political Economy.
Her pioneering work, even though the model is only partial equi-
librium, can be considered as the very first milestone in the lit-
erature on computable heterogeneous-agent economies that our
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second part of this book is concerned with.25 We will recompute
her benchmark equilibrium. She shows that the costs of business
cycles depend on the assumption whether agents can borrow or
not. Her equilibrium is partial in the sense that the factor prices
are exogenous. As a consequence, agents do not need to project
the cyclical behavior of the interest rate and the labor income.
They only need to consider the probability of being employed in
the next period. Therefore, the computation is straightforward ap-
plying the methods presented in Chapter 7.26 In the second appli-
cation, we consider the business cycle dynamics of the income dis-
tribution. Our model follows Castañeda, Dı́az-Giménez, and
Rı́os-Rull (1998b) closely and we need to apply the methods
developed in the previous section.

8.4.1 Costs of Business Cycles with Liquidity
Constraints and Indivisibilities

The model. The model in İmrohoroğlu (1989) is similar to
the economy described in Example 8.2.1. There are many infi-
nitely lived households of mass one who differ with regard to the
assets at and their employment status εt. Households maximize
their intertemporal utility

E0

∞∑
t=0

βtu (ct) , (8.26)

where β < 1 is the subjective discount factor and expectations
are conditioned on the information set at time 0. At time zero,

25 Moreover, Ayşe İmrohoroğlu was already publishing other important con-
tributions in the field of computable heterogeneous-agent economies at this
very early time, where the computer technology started to allow for such
computations. Among others, she also made an important contribution to
the study of the welfare costs of inflation that was published in the Journal
of Economic Dynamics and Control in 1992.

26 We, however, included this model in the present section because it also
studies the effects of business cycle fluctuations.
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the agent knows his beginning-of-period wealth a0 and his employ-
ment status ε0 ∈ {e, u}. The agent’s instantaneous utility function
is a CES function of his consumption:

u(ct) =
c1−η
t

1− η , η > 0, (8.27)

where η, again, denotes the coefficient of relative risk aversion.
If ε = e (ε = u), the agent is employed (unemployed). If the

agent is employed he produces y(e) = 1 units of income. If he is
unemployed, he engages in home production and produces y(u) =
θ units of consumption goods, where 0 < θ < 1. Furthermore, the
agents cannot insure against unemployment.

İmrohoroğlu (1989) considers two different economies: In
the first economy, agents cannot borrow, a ≥ 0. They can in-
sure against fluctuations in their income by storing the asset. The
budget constraint is given by:

at+1 = at − ct + y(εt). (8.28)

In the second economy, the agents can borrow at rate rb. Agents
can save assets by either lending at rate rl = 0 or storing them.
There is an intermediation sector between borrowing and lending
households. The borrowing rate rb exceeds the lending rate rb > rl.
The intermediation costs, which are equal to the difference of the
borrowing rate and the lending rate times the borrowed assets,
are private costs and reduce total consumption.

In the case without business cycle fluctuations, the individual-
specific employment state is assumed to follow a first-order Markov
chain. The conditional transition matrix is given by:

π(ε′|ε) = Prob {εt+1 = ε′|εt = ε} =

(
puu pue

peu pee

)
, (8.29)

where, for example, Prob {εt+1 = e|εt = u} = pue is the probabil-
ity that an agent will be employed in period t+ 1 given that the
agent is unemployed in period t.

In the case with business cycle fluctuations, the economy
experiences good and bad times. In good times, employment
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is higher and both employed and unemployed agents have a
higher probability to find a job. We can distinguish four states
s ∈ {s1, s2, s3, s4}: s = s1) the agent is employed in good times,
s = s2) the agent is unemployed in good times, s = s3) the agent
is employed in bad times, s = s4) the agent is unemployed in
bad times. The transition between the four states is described
by a first-order Markov chain with conditional transition matrix
π(s′|s). The economies with and without business cycles have the
same average unemployment rate.

Calibration. The model is calibrated for a model period of
6 weeks or approximately 1/8 of a year. The discount factor
β = 0.995 implies an annual subjective time discount rate of
approximately 4%. The relative coefficient of risk aversion η is
set equal to 1.5. The annual borrowing rate is set equal to 8%
corresponding to a rate of rb = 1% in the model period.

The conditional transition matrices π(ε′|ε) and π(s′|s) are cal-
ibrated so that average unemployment is 8%, unemployment in
good times and bad times is 4% and 12%, respectively. In the
economy with business cycles, the average duration of unemploy-
ment is 1.66 and 2.33 periods (10 and 14 weeks) in good and bad
times, respectively. Furthermore, the probability that good or bad
times continue for another period is set equal to 0.9375 so that the
average duration of good and bad times is equal to 24 months im-
plying an average duration of the business cycle equal to 4 years.
The transition matrices are then given by:

π(ε′|ε) =

(
0.5000 0.5000
0.9565 0.0435

)
, (8.30)

and

π(s′|s) =

⎛⎜⎜⎝
0.9141 0.0234 0.0587 0.0038
0.5625 0.3750 0.0269 0.0356
0.0608 0.0016 0.8813 0.0563
0.0375 0.0250 0.4031 0.5344

⎞⎟⎟⎠ . (8.31)

The Markov process described by matrix (8.31) implies average
unemployment rates of 4.28% and 11.78% during good and bad
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times, respectively. Finally, the households’ home production is
equal to θ = 0.25.

Computation. In the following, we describe the computation
of the economy with business cycle fluctuations. The computa-
tion of the model is more simple than the one for the economy
considered in Section 7.1. In Example 8.2.1 with the endogenous
interest rate r, we had to pick an initial value of the interest rate,
compute the decision functions and the invariant distribution and
update the interest rate subsequently until it converged. In the
present economy, the interest rate is given. We first compute the
decision functions by value function iteration. The value function
of the individual is a function of his assets a and the state s:

V (a, s) = max
c,a′

[u(c) + βE {V (a′, s′)| s}] (8.32)

= max
c,a′

[
u(c) + β

∑
s′
π(s′|s)V (a′, s′)

]
.

From Chapter 4, we know how to solve this simple dynamic
programming problem. In the program RCh83_imo.g, we use
value function iteration with linear interpolation between grid
points. The maximum of the rhs of the Bellman equation (8.32)
is computed with Golden Section Search. We use na = 301 grid
points for the asset space so that we have to store a matrix with
na × 4 = 1204 entries. The grid is chosen to be equispaced on
the interval [0, 8] and [−8, 8] for the economy with only a storage
technology and the economy with intermediation, respectively.

Consumption is an increasing function of income and is also
higher in good times as agents have a higher expected next-
period income (compare Figure 8.9). The optimal next-period as-
set a′(a, s) is a monotone increasing function of assets a. Figure
8.10 displays the net savings a′ − a which are always negative
for the unemployed agent and become negative for the employed
agents at a wealth level approximately equal to 4 so that the er-
godic set is contained in the interval [0, 8].

Next, we compute the invariant density function f(a, s). The
associated invariant distribution can be interpreted as the frac-
tion of time that a particular individual spends in the different
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Figure 8.9: Consumption c(a, s) in the Storage Economy

states (a, s). For an economy with business cycle fluctuations, the
invariant distribution is the limit of the predictive probability dis-
tribution of an individual in n periods where n goes to infinity. We
compute the invariant density function as described in Chapter 7
and approximate it by a discrete-valued function.27 We use a finer
grid over the asset space for the computation of the distribution
than for the computation of the policy function. In particular, we
compute the density function at nag = 903 equispaced points over
the interval [0, 8] and [−8, 8], respectively. The invariant density
function f(a, s) can be computed from the following dynamics:

f ′(a′, s′) =
∑

a′=a′(a,s)

∑
s′
π(s′|s)f(a, s). (8.33)

As the optimal next-period asset level a′ may not be a grid
point, we simply assume that it will be on the lower or higher

27 For notational convenience, we will also use the same function name f(.)
for the approximation.
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Figure 8.10: Net Savings a′ − a in the Storage Economy

neighboring point with a probability that corresponds to the dis-
tance from the higher or lower neighboring point, respectively
(see Step 3 in Algorithm 7.2.3). The invariant density function
f(a, s) is displayed in Figure 8.11. The ergodic set is approxi-
mately [0, 3.8] and the density is zero for a > 3.8.28

On average, assets are stored at the amount of ā = 2.35 in
this economy. As the average employment rate is 8%, average
income (which is equal to average consumption) is equal to ȳ =
0.92 + 0.08× 0.25 = 0.94.

The consumption and savings behavior in the economy with
intermediation is different from the one in the economy with a

28 Different from our density function, the density function computed by İm-

rohoroğlu (1989) (Fig. 1 in her article) displays two spikes in the range
1.5-2.0 of individual wealth and maximum values of approximately 0.05
in good times. This, however, is an artefact of her computational meth-
ods. She only computes the policy functions at grid points and does not
interpolate between grid points. As a consequence, our results differ to a
slight degree and our policy functions and distribution functions are much
smoother.
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Figure 8.11: Invariant Density Function g(a, s) in the Storage
Economy

storage technology only. In particular, the consumption behavior
changes around a = 0 as the interest rate on assets changes from
the low lending rate rl = 0% to the high borrowing rate rb = 8%
(see Figures 8.12 and 8.13). That is the reason why we have used
value function iteration. If we had used a computational method
like projection methods that does not rely on the discretization of
the individual asset grid, we may have had problems in capturing
this non-monotonicity of the first derivative of a′(a, ε) at a = 0.

The distribution of individual wealth in the economy with in-
termediation is graphed in Figure 8.14. The average of assets bor-
rowed amounts to 0.510 and is not equal to the amount of assets
saved (=0.287), because we only study a partial equilibrium. In
a general equilibrium, the interest rate rb and rl would adjust
in order to clear the capital market. The average income ȳ is
equal to the one in the economy with a storage technology only
and amounts to 0.940. As, however, intermediation costs are pri-
vate costs, average consumption is smaller than average income,
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Figure 8.12: Consumption c(a, s) in an Economy with Intermediation

c̄ = 0.935 < 0.940 = ȳ. The difference between average income
and average consumption is simply the borrowing rate times the
assets borrowed.

As one central problem of her work, İmrohoroğlu (1989)
computes the welfare gain from eliminating business cycle fluctu-
ations. For this reason, she computes average utility in the econ-
omy with and without business cycle fluctuations, either using
(8.30) or (8.31) for the state transition matrix of the economy.
For the benchmark calibration, the elimination of business cycles
is equivalent to a utility gain corresponding to 0.3% of consump-
tion in the economy with a storage technology. If the relative
risk aversion η is increased to 6.2, the welfare gain rises to 1.5%
of consumption.29 An intermediation technology significantly re-

29 Notice that this is a huge welfare effect. Lucas (1987) estimates the costs
of business cycles to be very small and only equivalent to 0.1% of total US
consumption. Different from the present model, agents can insure against
the idiosyncratic risk in his model.



430 Chapter 8: Dynamics of the Distribution Function

Figure 8.13: Net Savings a′ − a in an Economy with Intermediation

duces the business cycle costs. For η = 1.5, the fluctuations only
cause a utility loss equivalent to 0.05% of consumption.

The computation of the welfare effects from business cycle fluc-
tuations in İmrohoroğlu (1989) is only sensible if the average
asset holdings for the economies with and without business cycles
do not change significantly. This is the case in İmrohoroğlu

(1989). Heer (2001a) considers an economy with endogenous
prices where asset holdings are different in the economies with
and without business cycles. Agents may hold much higher as-
sets for precautionary reasons in a fluctuating economy. As a
consequence, average asset holdings may change and, in a gen-
eral equilibrium, average consumption may also change signifi-
cantly. In his model, welfare changes that result from business
cycle fluctuations are even more pronounced than in the present
model. Similarly, Storesletten, Telmer, and Yaron (2001)
and Young (2005b) also derive much higher welfare costs of in-
flation. Storesletten, Telmer, and Yaron (2001) consider
households with finite lifetime. In their model, the volatility of la-
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Figure 8.14: Invariant Density Function g(a, s) with Intermediation
Technology

bor income shocks depends on the business cycle. Young (2005b)
introduces an endogenous borrowing limit into the standard busi-
ness cycle model so that repayment of the debt is ensured.

8.4.2 Business Cycle Dynamics of the Income
Distribution

Castañeda, Dı́az-Giménez, and Rı́os-Rull (1998b) explore
the business cycle dynamics of the income distribution both em-
pirically and in a theoretical computable general equilibrium
model. They find that, in the US, the income share earned by
the lowest quintile is more procyclical and more volatile than
the other income shares. In particular, the income shares earned
by the 60%-95% group are even countercyclical, while the share
earned by the top 5% is still acyclical.

To address these issues, they construct a heterogenous-agent
economy with aggregate uncertainty based on the stochastic neo-
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classical growth model. The aggregate uncertainty is modeled as
in Example 8.3.1 and follows a Markov process. Again, unemploy-
ment is higher during bad times and contributes to the explana-
tion of the business cycle dynamics of the lowest income share.
Contrary to the model by İmrohoroğlu (1989) presented in
the previous section, the aggregate capital stock and the interest
rate are endogenous variables of the model. As one of their major
results, cyclical unemployment helps to reconcile the model’s be-
havior with the data on the dynamics of the income distribution.

In the following, we will present a slightly modified version
of the model by Castañeda, Dı́az-Giménez, and Rı́os-Rull

(1998b). In particular, we will introduce income mobility in their
model and consider its effect on the cyclical behavior of the income
shares of each income quintile. First, we describe the model. Sec-
ond, we present the calibration and the computational method.
We conclude with the presentations of our results.30

The Model. There are many infinitely lived households of mass
one who differ with regard to the assets at, their employment
status εt, and their efficiency type i ∈ {1, . . . , 5}. The mass of
type i household is equal to μi = 20% for i = 1, . . . , 5.

Households maximize their intertemporal utility31

E0

∞∑
t=0

βtu (ct) , (8.34)

where β < 1 is the subjective discount factor and expectations are
conditioned on the information set at time 0. At time zero, the
agent knows his beginning-of-period wealth a0, his employment
status ε0 ∈ {e, u} and his efficiency type i. The agent’s instanta-
neous utility function is a CES function of his consumption:

u(ct) =
c1−η
t

1− η , η > 0, (8.35)

30 In Chapter 10, we will consider an Overlapping Generations model with
elastic labor supply and further improve the modeling of the business cycle
dynamics of the income distribution.

31 For the sake of notational simplicity, we refrain from indexing individual
variables like consumption, wealth, the employment status, and the effi-
ciency index with a subscript j ∈ [0, 1].
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where η, again, denotes the coefficient of relative risk aversion.

The model is characterized by both idiosyncratic and aggre-
gate risk. At the individual level, the household may either be
employed (ε = e) or unemployed (ε = u). Aggregate risk is intro-
duced by a stochastic technology level Zt in period t. In particular,
the productivity shock follows a Markov process with transition
matrix ΓZ(Z ′|Z), where Z ′ denotes next-period technology level
and πZZ′ denotes the transition probability from state Z to Z ′.
The individual employment probabilities, of course, depend on the
aggregate productivity Zt. In good times (high productivity Zt),
agents have higher employment probabilities than in bad times.
The joint process of the two shocks, Zt and εt, can be written
as a Markov process with transition matrix Γi(Z

′, ε′|Z, ε) and de-
pends on the efficiency type of the agent. We use πi(Z

′, ε′|Z, ε)
to denote the probability of transition from state (Z, ε) to state
(Z ′, ε′) for an individual with efficiency type i. In the following,
we restrict our attention to the simple case presented in Example
8.3.1. The economy only experiences good and bad times with
technology levels Zg and Zb, respectively, Zg > Zb. Consequently,
the joint processes on (Z, ε) are Markov-chains with 4 states for
each efficiency type i = 1, . . . , 5.

We study a simple extension of the model by Castañeda,
Dı́az-Giménez, and Rı́os-Rull (1998b). In particular, different
from their model, we assume that agents may change their effi-
ciency type i. Given the empirical evidence on income mobility,
however, we examine the effect of this assumption on the cycli-
cal behavior of the income distribution.32 We assume that the
efficiency type i follows a Markov-chain π(i′|i) that is indepen-
dent of the aggregate productivity. Furthermore, the employment
probability next period does only depend on the efficiency type
of this period. In other words, πi(Z

′, ε′|Z, ε) is not a function of
next-period type i′. The probability of an employed type i agent
in the good state Z = Zg to be employed next period as a type

32 In addition, the assumption of income mobility may change the wealth
inequality in the model as we will argue below. Still, wealth heterogeneity
is too small in both our model and the model by Castañeda, Dı́az-

Giménez, and Ŕıos-Rull (1998b).
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i′ agent in the bad state, for example, is given by the product
π(i′|i) πi(e, Zb|e, Zg).

Households are assumed to know the law of motion of both
πi(Z

′, ε′|Z, ε) and π(i′|i) and they observe the realization of both
stochastic processes at the beginning of each period. In good
times, agents work h(Zg) hours, and, in bad times, agents work
h(Zb) hours. Let ζi denote the efficiency factor of a type i agent. If
employed, the agent receives the labor income h(Z)ζiw; otherwise,
he produces home production w̄.

Let Ni(Z) denote the number of employed households of type
i for current productivity Z. We will calibrate these values below
so that Ni(Z) is constant for Z ∈ {Zg, Zb} and does not depend
on the history of the productivity level Z, {Zτ}τ=t

τ=−∞. The as-
sumption that employment only depends on current productivity
greatly simplifies the computation. Agents do not have to form ex-
pectations about the dynamics of the aggregate employment level
but only need to consider aggregate productivity and the distribu-
tion of wealth. The aggregate labor input measured in efficiency
units is given by N(Z) =

∑
i ζih(Z)Ni(Z). For the technology

level Zt, aggregate production is given by:

Yt = ZtN
1−α
t Kα

t . (8.36)

We assume competitive factor and product markets implying the
factor prices:

wt = Zt(1− α)N−α
t Kα

t , (8.37)

rt = ZtαN
1−α
t Kα−1

t − δ, (8.38)

where δ denotes the rate of depreciation. Notice that the agents
only need to forecast the aggregate capital stock K ′ (and, there-
fore, the dynamics of the distribution of capital) and the aggregate
technology level Z ′ in order to form a prediction of the next-period
factor prices w′ and r′, respectively, as we assume N ′ to be a func-
tion of Z ′ only.

In the following, we describe the household decision problem in
a recursive form. Let F denote the distribution of the individual
state variables {i, ε, a}. For each household, the state variable con-
sists of her efficiency type i, her employment status ε, her individ-
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ual asset level a, the aggregate technology level Z, the aggregate
capital stock K (which is implied by the distribution F (.)), and
the distribution of efficiency types, employment, and individual
wealth, F (i, ε, a).

The recursive problem can be formulated as follows:

V (i, ε, a;Z, F ) = max
c,a′

[u(c) + βE {V (i′, ε′, a′;Z ′, F ′)| i, ε, Z, F}]
(8.39)

subject to the budget constraint:

a′ =

{
(1 + r) a+ wζih(Z)− c if ε = e,
(1 + r) a+ w̄ − c if ε = u,

(8.40)

and subject to (8.37) and (8.38), the stochastic process of the em-
ployment status ε and the aggregate technology Z, πi(Z

′, ε′|Z, ε),
the agent’s efficiency mobility as given by π(i′|i), and the distri-
bution dynamics F ′ = G(F, Z, Z ′), where G describes the law of
motion for the distribution F .

The definition of the equilibrium is analogous to the one in
Example 8.3.1 and we will omit it for this reason. The inter-
ested reader is referred to Section 3.5.2 of Castañeda, Dı́az-

Giménez, and Rı́os-Rull (1998b).

Calibration. The parameters, if not mentioned otherwise, are
taken from the study of Castañeda, Dı́az-Giménez, and Rı́os-

Rull (1998b).33 Model periods correspond to 1/8 of a year (≈
6 weeks). The coefficient of relative risk aversion is set equal to
η = 1.5 and the discount factor is set equal to 0.961/8 implying an
annual discount rate of 4%.

The authors assume that agents are immobile implying π(i′|i) =
1 if i′ = i and zero otherwise. Budŕıa Rodŕıguez, Dı́az-

Giménez, Quadrini, and Rı́os-Rull (2002) provide an esti-
mate of the US earnings transition matrix between the different
earnings quintile from 1984 to 1989:34

33 We would like to thank Victor Rı́os-Rull for providing us with the calibra-
tion data on the transition matrices.

34 See table 24 in their appendix.
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P =

⎛⎜⎜⎜⎜⎝
0.58 0.28 0.09 0.03 0.02
0.22 0.44 0.22 0.08 0.03
0.10 0.15 0.43 0.23 0.09
0.06 0.09 0.18 0.46 0.21
0.06 0.02 0.06 0.21 0.65

⎞⎟⎟⎟⎟⎠ . (8.41)

We still have to transform this 5-year transition matrix into a
1/8-year transition matrix. Using the definition of the root of a
matrix in equation (11.26), we can compute P 1/40 which we set
equal to π(i′|i):35

π(i′|i) =

⎛⎜⎜⎜⎜⎝
0.983 0.015 0.001 0.000 0.000
0.011 0.974 0.013 0.001 0.000
0.003 0.007 0.974 0.013 0.002
0.001 0.004 0.010 0.976 0.010
0.002 0.000 0.001 0.010 0.987

⎞⎟⎟⎟⎟⎠ . (8.42)

The 6 weekly earnings mobility is rather small as the entries on
the diagonal of (8.42) are close to unity.36 Therefore, we would
expect little influence from the neglect of the income mobility on
the results.

We use five types of households with efficiency ζ i ∈ {0.509,
0.787, 1.000, 1.290, 2.081}. The efficiency factors are chosen to be
the relative earnings of the different income groups. The variation
of hours worked of these 5 income groups between good and bad
times are treated as if they were variations in employment rates.
With the help of the coefficient of variation of average hours, the
employment rates are calibrated as in Table 8.1.37

35 The computation is performed by the procedure matroot in the program
Rch83cas1.g. Furthermore, we set all negative entries of the matrix root
equal to zero and normalize the sum of each row equal to one in the routine
matroot. The error is rather small for our case (you may check this by
computing π(i′|i) ·π(i′|i) · . . . and compare it to the matrix P from (8.41)).

36 In order to obtain (8.42) from (8.41), we have assumed that earnings follow
an AR(1)-process. As we argued in Chapter 7, the behavior of earnings
is much better described by an AR(2)-process. Due to the lack of high-
frequency data on the earnings mobility, however, we do not have another
choice.

37 Please see the original article for a detailed description of the calibration
procedure.
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Table 8.1

i N(Zg) N(Zb)

1 0.8612 0.8232
2 0.9246 0.8854
3 0.9376 0.9024
4 0.9399 0.9081
5 0.9375 0.9125

Given the employment of type i households in good and bad
times, Ni(Zg) and Ni(Zb), respectively, and the average duration
of unemployment in good times (10 weeks) and in bad times (14
weeks), we are able to compute the matrices πi(ε

′, Z ′|ε, Z) with
Z = Z ′. For this reason, we have to solve a system of 4 equations
(including non-linear equations) which is carried out in the routine
transp in the program RCh83cas1.g. Two equations are given by
the conditions that agents are either employed or unemployed in
the next period. Taking πi(ε

′, Zg|ε, Zg) as an example, we impose
the following two conditions on the transition matrix:

πi(e, Zg|e, Zg) + πi(u, Zg|e, Zg) = π(Zg|Zg),

πi(e, Zg|u, Zg) + πi(u, Zg|u, Zg) = π(Zg|Zg).

Furthermore, the average duration of unemployment is 10 weeks
or 10/6 periods in good times implying πi(u, Zg|u, Zg) = 4/10 ×
π(Zg|Zg). The fourth condition is given by the equilibrium em-
ployment in good times, Ni(Zg). We impose as our fourth non-
linear equation that the ergodic distribution of the employed
agents is equal to Ni(Zg). The matrix π1(ε

′, Zg|ε, Zg), for example,
is given by:

π1(ε
′, Zg|ε, Zg) = π1(ε

′|ε) · π(Zg|Zg)

=

(
0.9033 0.09067
0.6000 0.40000

)
· π(Zg|Zg).

As you can easily check, the ergodic distribution of π1(ε
′|ε) is equal

to (0.8612, 0.1388)′, the average duration of unemployment is 10
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weeks, and the sum of each row is equal to one. Similarly, we are
able to compute πi(ε

′, Zb|ε, Zb) for all i = 1, . . . , 5.

It remains to compute the transition matrix π(ε′, Zb|ε, Zg) be-
tween good and bad times on the one hand and the transition ma-
trix π(ε′, Zg|ε, Zb) between bad and good times on the other hand.
First, we assume that all unemployed agents remain unemployed
if the economy transits from good to bad times, πi(u, Zb|u, Zg) =
π(Zb|Zg) and πi(e, Zb|u, Zg) = 0 for all i = 1, . . . , 5. Second, we
assume that employments Ni(Zg) andNi(Zb) are constant, respec-
tively. For this reason, Ni(Zg)πi(e, Zb|e, Zg) = Ni(Zb)π(Zb|Zg)
must hold. Together with the condition that πi(e, Zb|e, Zg) +
πi(u, Zb|e, Zg) = π(Zb|Zg), we have four conditions that help us
to determine the matrix πi(ε

′, Zb|ε, Zg). For the computation of
the matrix πi(ε

′, Zb|ε, Zg), we assume that all employed agents
remain employed if the economy transits from the bad to the
good state. Furthermore, we assume Ni(Zg) to be constant so
that we also impose the restriction that (1 − Ni(Zg))π(Zg|Zb) =
πi(u, Zg|u, Zb)(1−Ni(Zb)). Together with the two conditions that
the sum of each row must be unity we can determine the matrix
πi(ε

′, Zg|ε, Zb) for all i = 1, . . . , 5.

The transition matrix between good and bad states is set equal
to:

π(Z ′|Z) =

(
0.9722 0.0278
0.0278 0.9722

)
,

implying equal length of booms and recession averaging 4.5 years.
Furthermore, employment is constant both in good times and bad
times, respectively, and the factor Zh(Z)1−α is set equal to 1 and
0.9130 for Z = Zg and Z = Zb, respectively. We assume that
average working hours amount to h(Zg) = 32% and h(Zb) = 30%
of the available time during good and bad times, respectively.38

The production elasticity of capital is set equal to α = 0.375 and
the depreciation rate is equal to 1 − 0.91/8.

38 Together with the income mobility transition matrix, these are the only pa-
rameters that differ from the calibration of Castañeda, Dı́az-Giménez,
and Ŕıos-Rull (1998b).
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Finally, the household production w̄ is set equal to 25% of av-
erage earnings in the economy. In particular, the earnings during
unemployment w̄ are constant over the business cycle.

Computation. The solution is computed with the help of pro-
gram RCh83cas1.g using the methods described in Section 7.2.
In particular, we apply Algorithm 8.3.1 with the following steps
1-8:

Step 1: In the first step, we choose computational parameters
and compute the aggregate employment levels in good and bad
times,

N(Zg) =
∑

i

μiζih(Zg)Ni(Zg),

N(Zb) =
∑

i

μiζih(Zb)Ni(Zb).

The agents form very simple expectations about the next-period
employment. Employment next period only depends on produc-
tivity in the next period: N ′ = N ′(Z ′). The policy functions are
computed on the interval A×K = [amin, amax]× [Kmin, Kmax] =
[0, 800] × [80, 400]. The interval limits are found with some trial
and error and do not bind. The policy and value functions are
computed on an equispaced grid of the state space using na = 50
and nk = 5 grid points on the intervals A and K, respectively.

As an initial guess for the interest rate, we use the steady state
capital stock for the corresponding representative agent model as
implied by 1/β = 1 + r − δ. For the computation of the distri-
bution function f(.), we, again, need to discretize the continuous
variables of the individual state space. We use na = 100 equi-
spaced points over the individual asset space A. Furthermore, we
have ni = 5 types of agents, nz = 2 states of the productivity,
and ne = 2 states of employment.

Step 2: Agents need to predict next-period factor prices w′ and
r′. Factor prices are functions of both aggregate capital K ′ and
aggregate employment N ′ as well as the exogenous technology
level Z ′. In order to predict the capital stock K ′, agents need to
know the dynamics of the distribution. They only use partial in-
formation about the distribution, namely its first m moments. We
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choose m = 1. Agents only consider the aggregate capital stock
as a statistic for the distribution. As argued above, this assump-
tion is warranted if agents of different wealth have approximately
equal savings rates. Therefore, the value function of the agents,
V (i, ε, a, Z,K), and the consumption function, c(i, ε, a, Z,K), are
functions of the individual efficiency type i, the employment sta-
tus ε, the asset holdings a, the aggregate productivity Z, and the
aggregate capital stock K.

The value function and the policy functions are both five-di-
mensional objects. This may impose some computational prob-
lems. For example, in older versions of Gauss, only two-dimen-
sional objects can be stored. There are two ways to solve this
problem. First, in our model, there is only a small number of effi-
ciency types i = 1, . . . , 5, two states of technology, Z ∈ {Zg, Zb},
and two employment status, ε ∈ {e, u}. Consequently, we can
store the two-dimensional value matrices V (a,K; i, ε, Z) for the
5 × 2 × 2 = 20 different values of i, ε, and Z, separately. That’s
how we proceed. If the number of states is getting larger, of course,
this procedure becomes cumbersome. In the latter case, you may
want to store the value function in one matrix, reserving the first
na rows for i = 1, Z = Zg, ε = e, the next na rows for i = 2,
Z = Zg, ε = e, and so forth. In the second case, of course, it is
very convenient for the computation to write a subroutine that
returns you the value function V (a,K; i, ε, Z) for a state vector
(i, ε, Z).

For the initialization of the consumption function for each
(i, ε, Z), we assume that the agents consume their respective in-
come. We further initialize the distribution of assets assuming that
every agent holds equal wealth. The initial state of the economy
is chosen by random choice. With probability 0.5, Z = Zg. Oth-
erwise, the bad state Z = Zb prevails. As we dispense of the first
100 simulated time periods, the initial choice of the distribution
and the productivity does not matter.

Step 3: We impose again a very simple law of motion for the
capital stock. As in (8.22), we assume that the aggregate capital
stock follows a log-linear law of motion in good and bad times,
respectively:
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lnK ′ =

{
γ0g + γ1g lnK if Z = Zg,
γ0b + γ1b lnK if Z = Zb.

(8.44)

We initialize the parameters as follows: γ0g = γ0b = 0.09 and
γ1g = γ1b = 0.95.

Step 4: In this step, we compute the optimal next-period as-
set level a′(i, ε, a, Z,K) by value function iteration. Between grid
points, we interpolate linearly. The maximization of the right-
hand side of the Bellman equation is performed using the Golden
Section Search Algorithm 11.6.1. We need to find the optimum
for 50 × 5 × 5 × 2 × 2 = 5, 000 grid points. The computation
is much faster i) if we compute and store the next-period value
V (i′, ε′, a′, Z ′, K ′) for all nk values K ′(K) where K ′ is computed
from the dynamics (8.44), before we start iterating over i, ε, a and
Z. ii) We make use of both the monotonicity of next-period asset
level a′(a, .) and the value function V (a, .) with respect to a and
the concavity of the value function V (a, .) with respect to a′. In
particular, we stop searching over the next-period asset grid a′ if
the rhs of the Bellman equation decreases and we do not search
for the optimal next-period asset level for values of a′(ai) below
a′(ai−1) for ai > ai−1.

Step 5: In order to simulate the dynamics of the wealth distri-
bution, we choose a sample of nh = 5, 000 households. We divide
the households in 10 subsamples (i, ε), i = 1, . . . , 5, ε ∈ {e, u}.
We know that the relative numbers of these subsamples are equal
to Ni(Z) and 1 − Ni(Z), respectively, for Z = Zg and Z = Zb.
We initialize the distribution so that each agent has equal wealth
in period 1. In particular, the average wealth in period 1 is equal
to the aggregate capital stock in the economy.39 The assets of
the next period are computed with the help of the optimal deci-
sion rule a′(a,K; i, ε, Z) for each household. The aggregate capital
stock of the economy is equal to average wealth in the economy.
We further use a random number generator in order to find i) the
productivity level of next period Z ′ using the transition matrix

39 In the very first simulation, we use the aggregate capital stock as an ini-
tial guess that is computed from the steady-state of the corresponding
representative-agent model.
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π(Z ′|Z), ii) the employment status of the next period ε′ using the
transition matrix πi(ε

′, Z ′|ε, Z) and iii) the efficiency type of the
individual using the income mobility matrix π(i′|i).

In the period t, we have a sample of 5,000 households with
wealth holdings at and a distribution with mean Kt. The produc-
tivity level is equal to Zt. The number of the employed households
of type i, for example, may not be equal to Ni(Zt). For this reason,
we choose a random number of agents and switch their employ-
ment status accordingly. We also may have to switch the produc-
tivity type i. For this reason, we start looking at the households
with efficiency i = 1 and ε = e. If their number is smaller than
N1(Zt) we switch the missing number of the households with i = 2
and ε = e to i = 1 and ε = e at random. Otherwise, we switch the
surplus number of households with type i = 1 to type i = 2. We
continue this process for i = 1, . . . , 5, ε = e, u. By this procedure,
agents of type i = 1 may not be switched to agents of type i = 4,
for example. We judge this to be a reasonable imposition of the
law of large numbers.40

Step 6: We divide the simulated time series of the aggregate
capital stock {Kt}t=2,000

t=101 into two subsamples, with Zt = Zg or
Zt = Zb, respectively. For the two subsamples, we estimate the
coefficients γ0 and γ1 of the equation (8.22) with the help of an
OLS-regression.

Step 7: We continue this iteration until the estimated OLS
regressors of the loglinear law of motion for the capital stock con-
verge. As it turns out (step 8), the fit of the regression is very
accurate with an R2 close to one.

Results. The economy with efficiency mobility behaves very
similarly to the one without efficiency mobility. For this reason,
we concentrate on displaying the results for the former economy
if not mentioned otherwise. The law of motion (8.44) is given by:

40 These problems arising from the fact that the law of large numbers does
not hold in our Monte-Carlo simulation do not show up in the methods
that we present in Chapter 10. In this chapter, we will approximate the dis-
tribution function over the individual states by a piecewise linear function
and simulate its dynamics.
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lnK ′ =

{
0.0754 + 0.986 lnK if Z = Zg,
0.0620 + 0.988 lnK if Z = Zb.

(8.45)

The stationary average aggregate capital stock amounts to K =
219.41

The distribution of earnings among the employed agents, w
h(Z) ζi, is more or less exogenous in our model and is proportional
to the efficiency type ζi. Of course, the wage w is endogenous in
our model. As home production is assumed to be constant over the
business cycle, while the earnings of the employed agents increases
during booms and decreases during recessions, the distribution of
earnings is not constant over the business cycle. During booms,
Z = Zg, earnings are more concentrated and characterized by a
Gini coefficient equal to 0.305. During a recession, the Gini coef-
ficient of earnings drops to 0.291. The Gini coefficient of income
(earnings plus interest income) is more volatile than the Gini co-
efficient of earnings because the concentration of wealth and the
interest rate are procyclical. Consequently, the concentration of
interest income and total income increases during booms. The
Gini coefficients of income varies between 0.285 and 0.325 over
the cycle. The Lorenz curve of income is displayed in Figure 8.15.
The income shares are computed as averages over 2,000 periods.
Notice that we are able to replicate the empirical distribution
of income very closely.42 The income distribution implied by the
model is almost identical to the one in the US during 1946-84.

Table 8.2 reports the cyclical behavior of income shares for the
US and for the model economy with varying efficiency types. The
empirical correlations of US output and income shares are taken
from Table 2 in Castañeda, Dı́az-Giménez, and Rı́os-Rull

(1998b). The sample period, again, is 1948-86. The yearly output
data is logged and detrended using a Hodrick-Prescott filter with

41 For example, aggregate capital amounts to K = 229 in the economy with-
out income mobility, and the law of motion for the capital stocks are given
by lnK ′ = 0.0755 + 0.986 lnK and lnK ′ = 0.0622 + 0.988 lnK in good
and bad times, respectively.

42 The empirical values for the US income and wealth distribution during
1948-86 are provided in Table 1 and 6 of Castañeda, Dı́az-Giménez,
and Ŕıos-Rull (1998b), respectively.
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Figure 8.15: Lorenz Curve of Income

a smoothing parameter μ = 100. The income share of the lower
quintiles (0-60%) is procyclical, the income share of the fourth
quintile and next 15% (60-95%) is anticyclical, while the top 5%
of the income are acyclical.

In the third column of Table 8.2, we report the statistics com-
puted from our simulation over 2,000 periods for the economy
with time-varying efficiency types. The cyclical behavior of in-
come shares in the economy without mobility is found to be al-
most identical to the one in the economy with mobility. Again,
output is logged and detrended using the Hodrick-Prescott filter
with μ = 100 in order to compare it to the empirical numbers.
Therefore, we need to compute annual averages of output and in-
come and earnings shares for 2,000/8=250 years. The simulated
correlation of income is only in good accordance with the empir-
ical observations for the first and second income quintiles as well
as for the 80-95% income percentile class. As one possible expla-
nation for the rather poor modeling of the other percentiles, we
do not allow for endogenous labor supply (which may result in
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Table 8.2

Correlation
output and income

Income
Quintile US model

lowest quintile (0-20%) 0.53 0.79
second quintile (20-40%) 0.49 0.79
third quintile (40-60%) 0.31 -0.74
fourth quintile (60-80%) -0.29 -0.80
next 15% (80-95%) -0.64 -0.80
top 5% (95-100%) 0.00 -0.78

more procyclical behavior of the 3rd and 4th income quintiles)
and we are not very successful in replicating the wealth distri-
bution (which may result in more procyclical interest and profit
income for the top 5% of the income distribution).

The most pronounced effect of income mobility on the distri-
bution of the individual variables earnings, income, and wealth
is on the concentration of wealth. There are two opposing effects
of income mobility on wealth heterogeneity: In the economy with
time-varying efficiency type, wealth-rich and income-rich agents
of type i = 2, 3, 4, 5 accumulate higher savings for precaution-
ary reasons in case that they move down the income ladder. This
effect, of course, increases wealth concentration in our economy
and we would expect the Gini coefficient of wealth to be higher in
the economy with efficiency mobility for this reason. On the other
hand, agents of type i = 5, for example, might have had efficiency
type i = 4 or even lower in previous periods so that they have
accumulated less wealth than agents who have had the efficiency
type i = 5 forever. For this reason, wealth heterogeneity is less in
an economy with time-varying efficiency types. As it turns out, the
former effect dominates and wealth heterogeneity is lower in the
case of no mobility. In both economies, the endogenous wealth
concentration is much lower than observed empirically and the
Gini coefficient of wealth a only amounts to 0.347 (0.298) in the



446 Chapter 8: Dynamics of the Distribution Function

Figure 8.16: Lorenz Curve of Wealth

economy with varying efficiency types (no efficiency mobility).
Figure 8.16 displays the Lorenz curve of our model economy with
time-varying efficiency types and the US wealth distribution. In
the next chapter, you will find out how we can improve the mod-
eling of the wealth distribution.

8.5 Epilogue

In this chapter, we introduced you to the algorithm developed by
and Smith (1998). As you have learned, this algorithm is very
time-consuming. In order to be implementable on a computer,
you have to restrict the number of discrete points for the aggre-
gate technology shock (or other shocks present in the model). In
the applications of this chapter, we looked at only two distinct
states of the technology shock, which we interpreted as boom
and recession, respectively. In the following, we briefly discuss
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two alternative algorithms that are also applicable to models with
continuously-valued variables for the aggregate technology.

Reiter (2006) proposes a method that is related to one of the
solution methods presented in Chapter 10, where we study the
dynamics in Overlapping Generations Models. He computes the
stationary distribution and the policy functions for the individ-
uals at discrete points (between grid points he uses cubic spline
interpolation). The policy functions are computed with the help of
projection methods that you learned about in Chapter 6. For the
computation of the dynamics for the aggregate variables he ap-
plies linear perturbation methods to the equilibrium conditions of
the model. As the number of grid points for the individual capital
stock may be quite large (1,000 points or more), the computation
may become very time-consuming. As an alternative, he proposes
to use a parametric approximation to the steady-state distribu-
tion in which case one may also apply higher-order perturbation
methods.

In a similar vein, Preston and Roca (2007) also apply per-
turbation methods to the solution of heterogenous-agent models
with both idiosyncratic and aggregate shocks. The basic prob-
lem, of course, is the choice of the steady state at which you
approximate the solution. Reiter (2006) chooses the stationary
non-stochastic steady state (by setting the aggregate technology
shock to zero). With this choice, he faces the problem of approxi-
mating the behavior of an infinity of different households (distin-
guished by their individual wealth). Preston and Roca, instead,
overcome this problem by choosing a degenerate distribution of
wealth where all individuals have equal wealth and productiv-
ity (equal to the non-stochastic steady state in the corresponding
representative-agent model). In this case, the standard deviation
of both individual wealth and productivity is zero. In their par-
ticular model, they use quadratic perturbation methods around
this steady. The decision rules are functions of the variance of
the technology shock, the variance of the distribution of the indi-
vidual capital stock, and the covariance of the individual capital
stock and individual productivity. In future work, it will be inter-
esting to see how sensitive the algorithm of Preston and Roca
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(2007) is relative to the one of Reiter (2006) and Krusell and
Smith (1998) with respect to the variance of the aggregate shock
and the presence of non-linearities such as a liquidity or credit
constraint. If, for example, the variance becomes large, the per-
turbation by Preston and Roca (2007) is far from the assumed
steady state of zero variance and the approximation may be even
less accurate. The method of Preston and Roca (2007), how-
ever, may have the advantage to be more readily applicable to
models with more than one individual state variable.
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Problems

8.1 Example 8.2.1
a) Assume that agents use the first two moments to forecast future

factor prices in Example 8.2.1. Show that the consideration of an
additional moment does not result in much higher accuracy in the
prediction of the factor prices as compared to the case of one moment.

b) Assume that the initial distribution of the economy described in Ex-
ample 8.2.1 is given by the stationary distribution and consider a
policy that increases the replacement ratio of unemployment insur-
ance to 40%. Compute the transition dynamics and assume that the
income tax rate always adjusts in order to balance the budget. How
does the wealth distribution change? Compute the Gini coefficients
of the income and wealth distribution during the transition and in
the new stationary state.

c) Compute the stationary state and the transition dynamics for the
growth model 8.2.1 with leisure. Use the utility function (8.11) with
σ = 0.5. Use the prediction function lnN ′ = ψ0 + ψ1 lnN for aggre-
gate employment N .

d) Implement the algorithm 8.2.2 using projection methods for the com-
putation of the policy functions.

8.2 Aggregate Uncertainty
a) Assume that agents use the first two moments to forecast future

factor prices in Example 8.3.1. Show that the consideration of an
additional moment does not result in much higher accuracy in the
prediction of the factor prices as compared to the case of one moment.

b) Assume that, in Example 8.3.1, technology z follows the first-order
autoregressive process zt = ρzt−1 + ηt with ρ = 0.9 and ηt ∼
N(0, 0.01). Compute a 5-state Markov-chain approximation of the
AR(1)-process using Tauchen’s method. Compute the model of Ex-
ample 8.3.1. How do results change if you use 9 states instead of 5
states for the Markov-chain approximation?

c) Assume that the unemployment rate is not constant during booms or
recessions. Assume that leisure is an argument of the utility function.
How does the program Rch83cas1.g need to be adjusted?

8.3 Costs of Business Cycles
a) Compute the gain in average utility from eliminating the business

cycle fluctuations in the model of İmrohoroğlu (1989) presented
in Section 8.3.1.

b) Assume that there is perfect insurance in the economy described in
Section 8.3.1. Each agent receives the average income of the econ-
omy. By how much is the utility gain from the elimination of cyclical
fluctuations reduced?
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8.4 Dynamics of the Income Distribution
Compute the model of Section 8.4.2 with the same calibration except
that π(ε′, zg|ε, zb) = π(ε′, zb|ε, zb) and π(ε′, zb|ε, zg) = π(ε′, zg|ε, zg). No-
tice that for this calibration, next-period aggregate employment N is
not only a function of next-period aggregate productivity z′, but also of
current-period productivity and employment, N ′ = N ′(N, z, z′). Recom-
pute the mean Gini coefficients of income and earnings and the correlation
of income and earnings with output.



Chapter 9

Deterministic Overlapping
Generations Models

Overview. In this chapter, we introduce an additional source of
heterogeneity. Agents do not only differ with regard to their indi-
vidual productivity or their wealth, but also with regard to their
age. First, you will learn how to compute a simple overlapping
generations model (OLG model) where each generation can be
represented by a homogeneous household. Subsequently, we study
the dynamics displayed by the typical Auerbach-Kotlikoff model.
We will pay particular attention to the updating of the transition
path for the aggregate variables.

The previous two chapters concentrated on the computation
of models based on the Ramsey model. In this chapter, we will
analyze overlapping generations models. The central difference be-
tween the OLG model and the Ramsey model is that there is a
continuous turnover of the population. The lifetime is finite and
in every period, a new generation is born and the oldest genera-
tion dies. In such models, many cohorts coexist at any time. In
the pioneering work on OLG models by Samuelson (1958) and
Diamond (1965), the number of coexisting cohorts only amounts
to two, the young and working generation on the one hand and
the old and retired generation on the other hand. In these early
studies of simple OLG models, Samuelson (1958) and Diamond

(1965) focused on the analysis of theoretical problems, i.e. if there
is a role for money and what are the effects of national debt, re-
spectively.

The OLG model is a natural framework to analyze life-cycle
problems such as the provision of public pensions, endogenous fer-
tility, or the accumulation of human capital and wealth. In order
to study the quantitative effects of economic policy, subsequent
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work has been directed towards the study of large scale numerical
OLG models. Typically, cohorts are identified with the members
of the population of the same age. One seminal work in this area is
the study of dynamic fiscal policy by Auerbach and Kotlikoff

(1987).1 In their work, the first cohort is identified with the 20-
year-old cohort, who enters the labor market. Fifty-five different
generations are distinguished so that at age 75, all agents die. In
their 55-period overlapping generations model of a representative
household, they show, among others, that a 60% benefit level of
unfunded social security decreases welfare by approximately 5-6%
of total wealth (depending on the financing of the social security
expenditures).

In recent years, there has been a wide range of economic prob-
lems studied with the help of OLG models. In addition to the
early work by Auerbach and Kotlikoff, subsequent authors have
introduced various new elements in the study of overlapping gen-
erations, like, for example, stochastic survival probabilities, be-
quests, or individual income mobility, to name but a few. In this
vein, Huggett and Ventura (2000) look at the determinants
of savings and use a calibrated life-cycle model to investigate why
high income households save as a group a much higher fraction
of income than do low income households as documented by US
cross-section data. Relatedly, Huggett (1996) shows that the
life-cycle model is able to reproduce the US wealth Gini coeffi-
cient and a significant fraction of the wealth inequality within age
groups. Heer (2001b) studies the role of bequests in the expla-
nation of observed wealth inequality.

The US tax system and the US social security system have
also attracted substantial attention: İmrohoroğlu (1998) ana-
lyzes the effects of capital income taxation, İmrohoroğlu, İm-

rohoroğlu, and Joines (1998) evaluate the benefits of tax fa-
vored retirement accounts, and Ventura (1999) considers the
effects of a flat-rate versus a progressive income tax. The effects
of social security and unemployment compensation are studied by

1 Other early studies of life-cycle economies include Summers (1981), Auer-

bach, Kotlikoff, and Skinner (1983), Evans (1983), or Hubbard and
Judd (1987).
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İmrohoroğlu, İmrohoroğlu, and Joines (1995), Hubbard,
Skinner, and Zeldes (1995), and Heer (2003), among others.
İmrohoroğlu, İmrohoroğlu, and Joines (1995), for example,
examine the effects of a change in the public pensions on economic
welfare in a 60-period OLG model with liquidity constraints and
income uncertainty. In their model, welfare may even increase
following the introduction of unfunded social security. The OLG
framework is also the natural framework in order to study ques-
tions related to the demographic transition. As the population is
aging, the pension system gets under pressure. De Nardi, Im-

rohoroğlu, and Sargent (1999) look at different policy plans
in order to cope with the transition. Heckman, Lochner, and
Taber (1998) explain the rising wage inequality since the 1960s
with the enlarged cohorts of the Baby Boom. As one of the very
few studies, Heckman, Lochner, and Taber (1998) endogenize
the schooling choice of the young cohort.

The OLG model framework has also been successfully applied
to the study of business cycle fluctuations or the pricing of assets
and equities.2 Business cycles will be the focus of attention in the
next chapter. The list of recent applications is only selective and
by no means exhaustive.

This chapter is organized as follows. In the first section, you will
be introduced to the basic life-cycle model with age-dependent co-
horts and we will compute the steady state. In the second section,
the transition between two steady states is examined. In the fol-
lowing, we will focus on OLG models with perfect foresight both
for the individual and the aggregate economy. OLG models with
uncertainty will be considered in the next chapter.

9.1 The Steady State

In this section, we solve an overlapping generations model with-
out uncertainty. All agents of one cohort are identical and their

2 Please see Ŕıos-Rull (1996), Storesletten, Telmer, and Yaron

(2007), and Brooks (2002), among others.
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behavior is analyzed by means of the behavior of a representative
agent.

9.1.1 An Illustrative Example

We will use a 60-period overlapping generations model as an il-
lustration. The periods correspond to years. The model is a much
simplified version of the economy studied by Auerbach and
Kotlikoff (1987).3 Three sectors can be depicted: households,
production, and the government.

Households. Every year, a generation of equal measure is born.
The total measure of all generations is normalized to one. Their
first period of life is period 1. A superscript s of a variable denotes
the age of the generation, a subscript t denotes time. For example,
cst is the consumption of the s-year old generation at time t.

Households live T + TR = 40 + 20 years. Consequently, the
measure of each generation is 1/60. During their first T = 40
years, agents supply labor ns

t at age s in period t enjoying leisure
lst = 1 − ns

t . After T years, retirement is mandatory (ns
t = 0 for

s > T ). Agents maximize lifetime utility at age 1 in period t:

T+T R∑
s=1

βs−1u(cst+s−1, l
s
t+s−1), (9.1)

where β denotes the discount factor. Notice that, different from
the discount factor β in the Ramsey model, β does not necessarily
need to be below one in an OLG model to guarantee that lifetime
utility is finite.4

Instantaneous utility is a function of both consumption and
leisure:

u(c, l) =
((c+ ψ)lγ)1−η − 1

1− η . (9.2)

3 For example, we do not consider different types of agents among one cohort
and model the tax and pension system in a very stylized way.

4 For restrictions on the size of β in economies with infinitely-lived agents,
see Deaton (1991).
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The small constant ψ = 0.001 is added in order to ensure that
utility is finite even for zero consumption in the case of no income.
This choice will turn out to be very convenient in the subsequent
computations as we will be able to use a grid over the individual
capital stock with a lower bound equal to zero.

Agents are born without wealth, k1
t = 0, and do not leave

bequests, k61
t = 0. Since capital k is the only asset held by in-

dividuals, the terms capital and wealth will henceforth be used
interchangeably. Agents receive income from capital ks

t and labor
ns

t . The real budget constraint of the working agent is given by

ks+1
t+1 = (1 + rt)k

s
t + (1− τt)wtn

s
t − cst , s = 1, . . . , T, (9.3)

where rt and wt denote the interest rate and the wage rate in
period t, respectively. Wage income in period t is taxed at rate
τt. We can also interpret τtwtn

s
t as the worker’s social security

contributions.
The first-order conditions of the working household are given

by:

ul(c
s
t , l

s
t )

uc(c
s
t , l

s
t )

= γ
cst + ψ

lst
= (1− τt)wt, (9.4)

1

β
=

uc(c
s+1
t+1 , l

s+1
t+1 )

uc(cst , l
s
t )

[1 + rt+1] (9.5)

=

(
cs+1
t+1 + ψ

)−η (
ls+1
t+1

)γ(1−η)

(cst + ψ)−η (lst )
γ(1−η)

[1 + rt+1] .

During retirement, agents receive public pensions b irrespec-
tive of their employment history and the budget constraint of the
retired worker is given by

ks+1
t+1 = (1 + rt)k

s
t + b− cst , s = T + 1, . . . , T + TR. (9.6)

The first-order condition of the retired worker is given by (9.5)
with lst = 1.

Production. The production sector is identical to the one used in
previous chapters. Firms are of measure one and produce output
Yt in period t with labor Nt and capital Kt. Labor Nt is paid the



456 Chapter 9: Deterministic Overlapping Generations Models

wage wt. Capital Kt is hired at rate rt and depreciates at rate δ.
Production Yt is characterized by constant returns to scale and
assumed to be Cobb-Douglas:

Yt = N1−α
t Kα

t . (9.7)

In a factor market equilibrium, factors are rewarded with their
marginal product:

wt = (1− α)Kα
t N

−α
t , (9.8)

rt = αKα−1
t N1−α

t − δ. (9.9)

Government. The government uses the revenues from taxing
labor in order to finance its expenditures on social security:

τtwtNt =
TR

T + TR
b. (9.10)

Following a change in the provision of public pensions b or in gross
labor income wtNt, the labor income tax rate τt adjusts in order
to keep the government budget balanced.

Equilibrium. The concept of equilibrium applied in this section
uses a recursive representation of the consumer’s problem fol-
lowing Stokey and Lucas with Prescott (1989). This spec-
ification turns out to be very amenable to one of the two so-
lution methods described in this section. For this reason, let
V s(ks

t , Kt, Nt) be the value of the objective function of the s-year
old agent with wealth ks

t . Kt and Nt denote the aggregate capital
stock and employment. V s(kt, Kt, Nt) is defined as the solution to
the dynamic program:

V s(ks
t , Kt, Nt) =

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

max
ks+1

t+1 ,cs
t ,lst

[
u (cst , l

s
t ) + βV s+1(ks+1

t+1 , Kt+1, Nt+1)
]
,

s = 1, . . . , T

max
ks+1

t+1 ,cs
t

[
u (cst , 1) + βV s+1(ks+1

t+1 , Kt+1, Nt+1)
]
,

s = T + 1, . . . , T + TR−1,

(9.11)
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subject to (9.3) and (9.6), respectively, and

V T+T R

(kT+T R

t , KT+T R

t , NT+T R

t ) = u(cT+T R

t , 1). (9.12)

The value function V s(.), in particular, depends on the aggre-
gate state variables Kt and Nt that determine the wage rate wt

and the interest rate rt in period t via (9.8) and (9.9), and, in
addition, τt with the help of the balanced budget (9.10). We did
not include τt as an argument of the value function as it is implied
by the values of Kt and Nt. Furthermore, V s(.) depends on the
age s of the household, but not on calendar time t.

An equilibrium for a given government policy b and initial dis-

tribution of capital {ks
0}T+T R

s=1 is a collection of value functions
V s(ks

t , Kt, Nt), individual policy rules cs(ks
t , Kt, Nt), n

s(ks
t , Kt, Nt),

and ks+1(ks
t , Kt, Nt), relative prices of labor and capital {wt, rt},

such that:

1. Individual and aggregate behavior are consistent:

Nt =
T∑

s=1

ns
t

T + TR
, (9.13)

Kt =

T+T R∑
s=1

ks
t

T + TR
. (9.14)

The aggregate labor supply Nt is equal to the sum of the labor
supplies of each cohort, weighted by its mass 1/(T + TR) =
1/60. Similarly, the aggregate capital supply is equal to the
sum of the capital supplies of all cohorts.

2. Relative prices {wt, rt} solve the firm’s optimization problem
by satisfying (9.8) and (9.9).

3. Given relative prices {wt, rt} and the government policy b,
the individual policy rules cs(.), ns

t (.), and ks
t+1(.) solve the

consumer’s dynamic program (9.11)-(9.12).
4. The goods market clears:

N1−α
t Kα

t =
T+T R∑
s=1

cst
T + TR

+Kt+1 − (1− δ)Kt. (9.15)

5. The government budget (9.10) is balanced.
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Calibration. Our model just serves as an illustration. Therefore,
we calibrate our model with the functional forms and parameters
as commonly applied in DGE life-cycle models. Our benchmark
case is characterized by the following calibration: η = 2, β = 0.99,
α = 0.3, δ = 0.1, replacement ratio ζ = b

(1−τ)wn̄
= 0.3 (where

n̄ denotes the average labor supply in the economy), T = 40,
TR = 20. γ is chosen in order to imply a steady state labor supply
of the working agents approximately equal to n̄ = 35% of available
time and amounts to γ = 2.0. The small constant ψ is set equal
to 0.001.

9.1.2 Computation of the Steady State

In this section, we compute the steady state that is characterized
by a constant distribution of the capital stock over the genera-

tions, {ks
t}60s=1 =

{
ks

t+1

}60

s=1
=
{
k̄s
}60

s=1
. In the steady-state econ-

omy, the aggregate capital stock and aggregate employment are
constant, Kt = K and Nt = N , respectively. As a consequence,
prices w and r are constant, too, and so are taxes τ . Therefore,
in the steady state, the computation of the equilibrium is sim-
plified, as for given aggregate capital stock K and employment
N , the value function and the individual policy function are only
functions of the age s and individual wealth ks. For notational
convenience, we drop the time index t in this section and will
only reintroduce it in the next section.

The general solution algorithm is described by the following
steps:

Algorithm 9.1.1 (Computation of the Stationary Equilib-
rium of the OLG Model in Section 9.1)

Purpose: Computation of the stationary equilibrium.

Steps:

Step 1: Make initial guesses of the steady state values of the ag-
gregate capital stock K and employment N .
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Step 2: Compute the values w, r, and τ , which solve the firm’s
Euler equations and the government budget.

Step 3: Compute the optimal path for consumption, savings, and
employment for the new-born generation by backward in-
duction given the initial capital stock k1 = 0.

Step 4: Compute the aggregate capital stock K and employment
N .

Step 5: Update K and N and return to step 2 until convergence.

In step 3, the household’s optimization problem needs to be
solved. Our aim is to compute the steady-state distribution of

capital
{
k̄s
}60

s=1
. There are basically two different numerical tech-

niques in order to solve this problem in an economy with per-
fect foresight. Assume that we would like to compute the op-
timal next-period capital stock ks+1(ks, K,N), current consump-
tion cs(ks, K,N), and current labor supply ns(ks, K,N). Then, we
may either compute the policy functions only for ks = k̄s or we
may compute the policy function over an interval [kmin, kmax]. In
the first case, we have simultaneously computed the distribution
of individual capital. This method, however, is only applicable to
OLG models without idiosyncratic risk, as we will argue below.

In the second case, we compute the time path of savings,
employment, and consumption using the optimal decision func-
tions and the initial condition k1 = 0 = k̄1. With the help of
k2(k1, K,N), we can compute k̄2 = k2(k̄1, K,N) and similarly ks,
s = 3, . . . , 60. If we consider OLG models with heterogeneity and
idiosyncratic risk, this will be the only workable procedure. There-
fore, it is important to sort out if idiosyncratic risk and income
mobility are important for the economic problem that you study.
In Section 8.4.2, we found that idiosyncratic income risk does not
help to improve the modeling of the income distribution business
cycle dynamics in the infinite-life model with heterogenous agents.
Huggett, Ventura, and Yaron (2007) analyze an overlapping
generations model with heterogeneity in initial abilities, wealth,
and human capital and also consider idiosyncratic shocks to hu-
man capital which they estimate from US data. They find that
initial endowments of human capital and wealth are more impor-
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tant for the explanation of inequality than idiosyncratic shocks
over the lifetime. Next, we describe the two methods for the com-
putation of the steady state in turn.

Direct Computation of the Steady State Distribution. In
order to illustrate the direct computation of the steady-state dis-
tribution, consider the first-order conditions of the working house-
hold with regard to labor supply and next-period capital stock,
(9.4) and (9.5), respectively. Inserting the working households
budget (9.3) in these two equations, we derive the following two
steady-state equations for s = 1, . . . , T − 1:

(1− τ)w = γ
(1 + r)ks + (1− τ)wns − ks+1 + ψ

1− ns
, (9.16)

1

β
=

((1 + r)ks+1 + (1− τ)wns+1 − ks+2 + ψ)
−η

((1 + r)ks + (1− τ)wns − ks+1 + ψ)−η

× (1− ns+1)
γ(1−η)

(1− ns)γ(1−η)
[1 + r] .

(9.17)

Similarly, (9.16) also holds for s = T , while (9.17) needs to be
adjusted:

1

β
=

(
(1 + r)kT+1 + b− kT+2 + ψ

)−η

((1 + r)kT + (1− τ)wnT − kT+1 + ψ)−η

× 1

(1− nT )γ(1−η)
[1 + r] .

(9.18)

For the retired agent, the labor supply is zero, ns = 0, and the
Euler equation is given by:

1

β
=

((1 + r)ks+1 + b− ks+2 + ψ)
−η

((1 + r)ks + b− ks+1 + ψ)−η [1 + r] (9.19)

for s = T + 1, . . . , T + TR − 1 = 41, . . . , 59. Remember that the
optimal capital stock after death is also set equal to zero, k61 ≡ 0.
The equations (9.16)-(9.19) for s = 1, . . . , 59 constitute a system
of 59+40=99 equations in the 59+40=99 unknowns {ks}60s=2 and
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{ns}40s=1. Therefore, we have the same type of problem that we
already encountered in Section 3.1.1 where we solve the finite-
horizon Ramsey. We, again, need to compute a non-linear equa-
tions system in n unknowns, in our case with n = 99. However, as
you may have learned by now, the computation of such large-scale
non-linear problems may become cumbersome. Therefore, we bet-
ter make further use of the recursive structure of the problem.

In the program RCh91d.g, we compute the solution of this
problem. We know that agents are born without wealth at age
1, k1 = 0 and do not leave bequests. Therefore, k61 = 0. Let us
start by providing an initial guess of the wealth in the last pe-
riod of life, k60. With the help of this initial guess and the retired
worker’s first-order condition (9.19) at age s = 59, we are able
to compute k59. In this case, we only have to solve a non-linear
equation problem with one unknown. Having computed ks+1 and
ks+2 for the retired agent, we simply iterate backwards and com-
pute ks for s = 59, 58, . . . , 41. From (9.16) for s = 40 and (9.18),
we are able to compute n40 and k40. We continue to compute ks

and ns with the help of the values ns+1, ks+1, and ks+2 found in
the previous two iterations and with the help of equations (9.16)
and (9.17) until we have computed k1 and n1. If k1 = 0, we are
finished. Otherwise, we need to update our guess for k60 and re-
compute the distribution of individual capital and labor supply,
{ks}60s=1 and {ns}40s=1. Notice, in particular, that we need to iterate
backwards. We cannot start with a guess of k2 given k1 = 0 and
iterate forwards in the presence of endogenous labor supply. With
exogenous labor supply, we would also be able to find the optimal
capital distribution with forward iteration (why?).

Finally, we need to mention how we update successive values
for k60. In RCh91d.g, we apply the Secant Method that we present
in Section 11.5.5 Successive values of k60 are found by:

k60
i+2 = k60

i+1 −
k60

i+1 − k60
i

k1
i+1 − k1

i

k1
i+1,

5 Alternatively, you can also apply Newton’s method. You will be asked to
perform this in Problem 9.1.
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Figure 9.1: Age-Wealth Profile

where the subscript i denotes the number of the iteration. As the
first two guesses for k60, we choose the values k60

1 = 0.15 and
k60

2 = 0.2. After 5 iterations, we find the absolute value of k1
5 to

be below 10−8.

The solution for
{
k̄s
}60

s=1
is displayed in Figure 9.1. Typically

for the life-cycle model, savings ks increase until retirement at age
s = T and decline monotonically thereafter. The aggregate capi-
tal stock amounts to K = 0.937. Optimal labor supply is graphed
in Figure 9.2. The labor supply declines with increasing age s be-
cause older agents hold higher stocks of capital. As a consequence,
marginal utility of income declines for older age. Average working
time amounts to 0.354 so that aggregate employment is equal to
N = 0.236. The steady state values of pensions, the interest rate,
and taxes are given by b = 0.0977, r = 1.42%, and τ = 13.0%,
respectively.

This direct method of computing the policy functions at single
values of the state space only is very fast and accurate. It is also
applicable to more complex models with many types of agents
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Figure 9.2: Age-Labor Supply Profile

and/or assets. In Problem 9.3 we ask you to solve an OLG model
with 5 different types of agents in each generation and with a
portfolio choice on capital and money. The basic challenge is to
come up with a good initial guess. Therefore you are asked to
compute the solution for the model without money and just one
representative agent in each generation and find the solution step
by step using homotopy methods.

The direct computation should be applied whenever possible.
However, this will not always be feasible as in models with idio-
syncratic uncertainty. In order to understand this point, assume
that we introduce an autocorrelated shock to productivity so that
next-period income is stochastic and depends on the current pe-
riod income. For the sake of the argument, let us assume that we
have n = 5 different levels of individual income in each period and
that the transition between these states is described by a Markov
chain. In this case, of course, agents build up different levels of
wealth during their working life depending on their income his-
tory. How many different types would we have to distinguish at
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age 41? At age 1, all have equal (zero) wealth. At age 2, we have 5
types of agents who differ with regard to their period 1 income and
hence with regard to their savings (and wealth in period 2). At
age 3, we have 5× 5 = 25 different types of agents. If we continue
like this, we have to distinguish 540 different agents at age 41 who
all hold different levels of wealth. During retirement, the number
of different agents does not increase because all agents receive
equal retirement benefits. Therefore, if we compute the optimal
savings path recursively with the direct method, we would have
to apply Algorithm 9.1.1 9.09× 1027 times!6 In such an economy,
of course, the only feasible alternative solution method consists of
computing the policy functions over an interval of the state space.
This method is described next.

Computation of the Policy Functions. In order to compute

the age-wealth profile of the steady state,
{
k̄s
}60

s=1
, we may also

compute the optimal policy function ks+1(ks, K,N) for each co-
hort s over an interval ks ∈ [ks

min, k
s
max]. As we do not know the

age-wealth profile in advance, we will start to compute the pol-
icy functions for each age over the same interval [ks

min, k
s
max] =

[kmin, kmax]. In later iterations, we may adapt the state space for
each cohort s.7 Having computed the policy functions, it is easy

to find the solution
{
k̄s
}60

s=1
. We simply start with k1 = k̄1 and

compute k2(k1) = k2(0) = k̄2. Similarly, we compute k̄s+1 with
the help of ks+1(k̄s, K̄, N̄) for s = 2, . . . , T + TR − 1.

There are various methods in order to compute the policy
functions. We will discuss value function iteration and projection
methods that you have already encountered in the Chapter 4 and
Chapter 6 for the solution of the Ramsey problem. We discuss
these methods in turn and start with value function iteration in
an economy with finite lifetime.

Value Function Iteration. A straightforward method of ap-
proximating the value function V s(ks), s = 1, . . . , T+TR, involves

6 540 = 9.0949470× 1027.
7 The adaption of the age-specific asset grid may not be a feasible strategy

in the case of heterogeneous agents among the same cohort, a problem that
you will encounter in Section 9.2.
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tabulating it for a finite number nk of points on the state space
starting in the last period of life, T + TR, and iterating back-
wards in time to the period s = 1. The maximization occurs over
the interval [kmin, kmax], which, in particular, must contain the
steady state, a point, which is only determined as the outcome of
our computation. In the last period T + TR, the value function
V T+T R

(kT+T R
) is given by (9.12) with cT+T R

= (1 + r)kT+T R
+ b.

For a given table of values for V s+1(ks+1) on the grid [kmin, kmax],
the approximate retired agent’s maximum at age s on the right-
hand side of (9.11)-(9.12) can be found by choosing the largest
value for V s+1(ks+1) given ks, which we store as ks+1(ks). Together
with the two neighboring points on the asset grid, we bracket the
maximum and apply a Golden Section Search to find the maxi-
mum of the Bellman equation (9.11). To get values of the value
function V s+1(.) off gridpoints, we interpolate linearly or cubically.

At this point, we need to emphasize a crucial difference be-
tween finite-horizon and infinite-horizon problems. Differently
from value function iteration in infinite-horizon models, we know
the value of the agent in the last period of his life, V 60 = u(c60, l60)
with c60 = (1 + r)k60 + b and l60 = 1.0. As a consequence, we do
not have the problem to provide an initial guess for the value
function. This feature also holds for the other solution methods
of finite-horizon problems, e.g. the projection method presented
below. Given the value V 60(ks, K,N) for ks ∈ [kmin, kmax], we can
find the value function of the different cohorts, V s(.), s = 59, . . . , 1
with only one iteration. As a consequence, the computation of the
policy functions is much faster in most applications with finite
horizons than in infinite-horizon problems. Notice, however, that
the need for storage capacity increases as the number of policy
functions is multiplied by the number of different age cohorts.

The dynamic programming problem of the working agent
(9.11) involves the maximization over an additional control, the
labor supply ns. A standard procedure to solve this kind of prob-
lem consists of choosing the largest value over a grid on the labor
supply [nmin, nmax]. As a consequence, the optimal next period
capital stock together with the optimal labor supply decision is
found by iterating over a two-dimensional grid. For reasonable
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required accuracy, we often find this procedure to already imply
prohibitive storage capacity and computing speed in order to be
a useful method on personal computers. Instead, we only iterate
over a one-dimensional grid of the capital stock and solve the
household’s Euler equation (9.4) and budget constraint (9.3) for
given current and next period capital stock (ks, ks+1). For our
choice of the functional form for utility u(.), we can solve these
two equations even directly for cs and ns for given ks and ks+1.
Notice that this procedure does not restrict the controls cs and ns

to lie on any grid.
The solution is computed with the help of value function it-

eration in the program RCh91v.g. Concerning our computation
details, wealth is bounded below by kmin = 0, while maximum
wealth is set equal to kmax = 5.0, which is found to never be bind-
ing.8 Furthermore, we choose an equispaced grid over the capital
stock [kmin, kmax] of nk = 50 points. The required storage capacity
associated with this algorithm is equal to (2 × T + TR)nk = 500
numbers. The user can choose between linear and cubic spline in-
terpolation. The age-wealth profile computed with value function
iteration is almost identical to the one displayed in Figure 9.1.
Our results are summarized in Table 9.1.

The aggregate capital stock and aggregate employment amount
to K = 0.948 (0.942) and N = 0.237 (0.236) for the linear (cu-
bic spline) interpolation. Notice that in the case of cubic spline
interpolation between grid points, the aggregate capital stock di-
verges less from the aggregate capital stock found with the direct
method described above. This difference is a good measure of ac-
curacy as the latter solution can be expected to coincide with the
true solution (in the case of direct computation of the steady-state
distribution, the accuracy of the non-linear equation solution and
the divergence of k̄1 from zero are both less than 10−8). In addi-
tion, cubic spline interpolation is faster than linear interpolation,
even though only to a small extent. While value function itera-
tion with linear interpolation takes 12 minutes and 22 seconds,

8 In our model, we abstract from any inequality constraints such as c ≥ 0
or k ≥ 0 because these constraints do not bind (except in period 1 with
k̄1 ≡ 0.0).
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Table 9.1

Method K N Run Time

Direct computation 0.937 0.236 00:04

Value function iteration

— linear interpolation 0.948 0.237 12:22

— cubic spline 0.942 0.236 11:37

Projection method 0.941 0.237 00:10

Notes: Run time is given in minutes:seconds on an Intel Pentium(R)
M, 319 MHz computer.

cubic spline interpolation only takes 11 minutes and 37 seconds.
In good accordance with our findings for the solution of the sto-
chastic Ramsey model with value function iteration in Chapter
4, we also find that the cubic spline interpolation, even though it
requires more function evaluations, is faster in the computation
of the OLG model than linear interpolation because the Golden
Section Search converges much faster.

Projection Methods. Alternatively, we compute the steady

state solution
{
k̄s
}60

s=1
with the help of projection methods that

we introduced in Chapter 6. For this reason, we approximate the
consumption function cs(ks, K,N), s = 1, . . . , 60, and the labor
supply ns(ks, K,N), s = 1, . . . , 40, with Chebyshev polynomials
of order nc and nn over the interval [kmin, kmax], respectively:

cs(ks, K,N) =
1

2
acs0 +

nc∑
j=1

acsjTj(z(k
s)),

ns(ks, K,N) =
1

2
ans

0 +

nn∑
j=1

ans
jTj(z(k

s)),

where z(ks) = (2ks−kmin−kmax)/(kmax−kmin) is the linear trans-
formation that maps ks ∈ [kmin, kmax] into the interval [−1, 1].9

9 See also Section 11.2.6 on Chebyshev Polynomials where we describe the
transformation in more detail.
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We choose orthogonal collocation to compute the coefficients acsj
and ans

j from equations (9.4) and (9.5). In the case of the retired
worker, for example, we solve the system of nc +1 nonlinear equa-
tions at the values z that are the nc + 1 (transformed) zeros of
the Chebyshev polynomial Tnc . In order to solve the nonlinear-
equations problem, we use a quasi-Newton method. The initial
guess for the coefficients acs and ans are the coefficients acs+1 and
ans+1 for s < T + TR. For s = T + TR, we are able to compute
the exact values of cT+T R

at 2nc Chebyshev interpolation nodes
because we know that the household consumes all his income and
his wealth in the last period. Therefore, we can approximate the
function in period t + TR by least squares with the help of Al-
gorithm 11.2.2. For s = T , we need to provide an initial guess of
the coefficients for labor supply, an40. We use an inelastic labor
supply function, n40(ks) = 0.3 in order to initialize the coefficients
again making use of Algorithm 11.2.2.

The program RCh91p.g computes the steady-state solution
with the help of projection methods. Concerning our computa-
tional details, we chose a degree of approximation nc equal to
3. By this choice, nc3 and nc3/nc2 are less than 10−6 and 10−3,
respectively, and we can be confident that our approximation is
acceptable. Similarly, we choose nn = 3. We also choose the same
interval over the state space, [kmin, kmax] = [0, 5], as in the case of
the value function iteration. The computed Chebyshev coefficients
drop off nicely because the decision functions of the household can
be described by polynomial functions of small degree quite accu-
rately. Besides, all parameter values are exactly the same as in
the case of value function iteration.

The results from the solution of the steady state distribution
with the help of the projection method almost coincide with those
from the value function iteration with cubic spline interpolation
(see Table 9.1). In the former, the aggregate capital stock amounts
to K = 0.941 and employment is equal to N = 0.237. The op-
timal policy functions for consumption differs by less than 0.1%
over the range [kmin, kmax] = [0, 5] between these two methods.
Importantly, however, the algorithm based on projection methods
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is 60 times faster than the one based on value function iteration
and only takes 10 seconds.

At this point, let us reconsider the results in Table 9.1 and
mention one word of caution. In accordance with the results pre-
sented in Table 9.1, we recommend to use direct computation
whenever possible. In Chapter 10, we introduce both individual
and aggregate uncertainty. In these cases, direct computation is
not feasible and one might conjecture that the projection method
is preferable to value function iteration with cubic splines due
to the much shorter computational time. However, in many cases,
the introduction of uncertainty requires the consideration of much
larger intervals for the state space intervals over which we have to
approximate the policy function. In these cases, we often find that
the quality of the projection method deteriorates10 or it might be
extremely difficult to come up with a good initial guess. In fact,
the search for a good initial guess might be more time-consuming
than the use of value function iteration methods or the initial
guess might be found with the help of value function iteration.
For this reason, we cannot give a general recommendation which
method is preferable and the researcher may have to try different
methods and find the most accurate and fastest one with trial and
error.

9.2 The Transition Path

In their seminal work, Auerbach and Kotlikoff (1987) have
laid the groundwork for the modern analysis of dynamic fiscal
policy. Typically, they analyze the question how a particular pol-
icy affects the welfare of different generations. For example, how
does a change in the pension replacement ratio, i.e. the ratio of
pensions to net wage income, affect the lifetime utility of present
and future cohorts of the population. In their analysis, they as-
sume that the economy is in a steady state in period 0 that, for
example, is characterized by a replacement ratio of 30%. At the

10 For example, using projection methods we may be unable to preserve the
shape (e.g. the concavity) of the policy function.
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beginning of period 1, the government announces an unexpected
change of pension policy, for example a decrease of the replace-
ment ratio to 20% that becomes effective in period t. Agents have
perfect foresight and already adjust their behavior in time period
1 and all subsequent periods. After a certain number of transition
periods, the economy converges to the new steady state. The num-
ber of transition periods are taken as approximately 2-3 times the
number of generations. Auerbach and Kotlikoff (1987), for
example, assume in their 55-overlapping generations model that
the economy has reached the new steady state after 150 periods.

In the following, we will study the computation of the tran-
sition path in a model with perfect foresight. First, we present
a simple stylized 6-period model, which we have chosen for il-
lustrative purpose. Subsequently, we describe our basic algorithm
for its solution. The main insights also carry over to larger-scale
models. If we consider a 6-period model, the transition is com-
plete after some 20 periods and we have to predict the time path
of the aggregate variables in our model. In the 6-period model,
these aggregate variables will be the aggregate capital stock and
employment. Therefore, we will have to predict 40 values. For a
most simple initial guess and a simple updating scheme of the
transition path, the iteration over the time path of the aggregate
variables will converge. However, this does not need to be the case
in more complex models where we have to predict time paths con-
sisting of some hundred or even thousand variables. In the next
section, you will get to know such a much more complex 75-period
OLG model of the demographic transition. In this case, we need
to apply much more sophisticated updating schemes of the tran-
sition path.11 In the second part of this section, we, therefore,
will introduce you to three different ways to update the transition
path: linear, Newton’s and Broyden’s methods.

11 In our own work, we have found examples where simple Newton-Raphson
methods or linear updating schemes do not converge, for example in the
model of Heer and Irmen (2008).
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9.2.1 A Stylized 6-Period Model

In the spirit of Auerbach and Kotlikoff (1987), we will com-
pute the transition dynamics associated with a long-run once-
and-for-all change of fiscal policy in the following. In particular,
we look at an unexpected change of the replacement ratio from
30% to 20% which is announced and becomes effective in period 1.
While Auerbach and Kotlikoff (1987) consider a 55-period
model in their original work, we distinguish only 6 generations
in our model. The periods in our model can be interpreted as
decades. Of course, the main idea of the solution method is unaf-
fected by this innocent assumption.

During the first 4 decades, the agents are working, while during
the last two decades of their life, they are retired. Besides, the
model is exactly the same as the one described in Section 9.1.
For your convenience, we have summarized the description of the
economy in Example 9.2.1. As we consider decades rather than
years, we also need to adjust the calibration of the discount factor
β and the depreciation rate δ. The new values are also summarized
in Example 9.2.1.

Example 9.2.1
6-Period Overlapping Generations Model. Households live 6 pe-
riods. Each generation is of measure 1/6. The first 4 periods, they are
working, the last two periods, they are retired and receive pensions.
Households maximize lifetime utility at age 1 in period t:

6∑
s=1

βs−1u(cst+s−1, l
s
t+s−1).

Instantaneous utility is a function of both consumption and leisure:

u(c, l) =
((c+ ψ)lγ)1−η − 1

1− η
The working agent of age s faces the following budget constraint in
period t:

ks+1
t+1 = (1 + rt)ks

t + (1− τt)wtn
s
t − cst , s = 1, . . . , 4.
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The budget constraint of the retired worker is given by

ks+1
t+1 = (1 + rt)ks

t + bt − cst , s = 5, 6

with k1
t = k7

t ≡ 0 and l5t = l6t = 1. Total time endowment is normalized
to one and allocated to work and leisure, 1 = nt + lt.
Production Yt is characterized by constant returns to scale and as-
sumed to be Cobb-Douglas:

Yt = N1−α
t Kα

t .

In a factor market equilibrium, factors are rewarded with their mar-
ginal product:

wt = (1− α)N−α
t Kα

t ,

rt = αN1−α
t Kα−1

t − δ.
Furthermore, the government budget is balanced in every period t:

τtwtNt =
2
6
bt.

In equilibrium, individual and aggregate behavior are consistent:

Nt =
4∑

s=1

ns
t

6
,

Kt =
6∑

s=1

ks
t

6
,

and the goods market clears:

Kα
t N

1−α
t =

6∑
s=1

cst
6

+Kt+1 + (1− δ)Kt.

In period 0, the economy is in the steady state associated with the
parameter values β = 0.90, η = 2.0, γ = 2.0, α = 0.3, δ = 0.40, and
a replacement ratio of pensions relative to net wage earnings equal
to ζ = bt

(1−τ)wtn̄t
= 30%, where n̄t is the average labor supply in

the economy. The small constant ψ is set equal to 0.001. In period
t = 1, the government announces a change of the replacement ratio to
ζ = 20%, that becomes instantaneously effective in period 1.
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9.2.2 Computation of the Transition Path

The Auerbach-Kotlikoff problem in Example 9.2.1 is solved in six
basic steps that are described in the following Algorithm 9.2.1:

Algorithm 9.2.1 (Computation of the Transition Dynam-
ics for the Perfect Foresight 6-Period OLG Model of Ex-
ample 9.2.1)

Purpose: Computation of the transition dynamics.

Steps:

Step 1: Choose the number of transition periods tc.
Step 2: Compute the initial and final steady state solution for the

periods t = 0 and t = tc + 1, respectively.
Step 3: Provide an initial guess for the time path of the aggregate

variables {K0
t , N

0
t }tct=1.

Step 4: Compute the transition path.
Step 5: If the new value {K1

t , N
1
t }tct=1 is close to the starting value,

stop. Otherwise update the initial guess and return to Step
4.

Step 6: If the aggregate variables in period tc are not close to those
in the new steady state, increase tc and return to step
3 using the transition path from the last iteration in the
formulation of an initial guess.

In step 1, we need to assume that the transition only lasts
a finite number of periods in order to compute the transition.
Typically, if T + TR denotes the number of generations, re-
searchers pick a number of transition periods approximately equal
to 3 × (T + TR), which is usually found to be sufficient in order
to guarantee convergence to the new steady state. We will choose
tc = 20 model periods corresponding to 200 years. As it will turn
out, this number of periods is sufficiently high and the transition
will be complete. The computation is implemented in the program
RCh92AK6.g.

In step 2, we compute the old and the new steady state us-
ing the methods described in Section 9.2.1 above. In particular,
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Figure 9.3: Age-Capital Profile in the New and in the Old Steady
State

for this simple problem we are able to use direct computation.
The age-wealth profile and the age-labor supply profile for the
two steady states are displayed in the Figures 9.3 and 9.4, re-
spectively. Notice that savings increase in the new steady state as
the government reduces pensions and the agents accumulate pri-
vate savings for old age. Since the government reduces pensions,
it is also able to cut wage taxes in order to keep the government
budget balanced. Taxes τ are reduced from 13.04% to 9.09%. Con-
sequently, the labor supply is higher in the new steady state than
in the old steady state. The aggregate capital stock and employ-
ment amount to 0.0665 (0.0589) and 0.233 (0.228) in the new (old)
steady state with replacement ratio of 20% (30%), respectively.

In step 3, we provide a guess for the dynamics of the capital
stock and employment, {Kt, Nt}tct=1. We know that K0 = 0.0589
(N0 = 0.228) and Ktc+1 = 0.0665 (Ntc+1 = 0.233). As an initial
guess, we simply interpolate linearly between these values. Given
the time path of the aggregate state variables, we can compute
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Figure 9.4: Age-Labor Supply Profile in the New and in the Old
Steady State

wages, the interest rates, pensions, and the tax rate from the first-
order conditions of the firm and the balanced budget constraint.

Computation of the Transition Path for Given Factor
Prices, Taxes, and Pensions. In step 4, we need to compute
the transition between the old and the new steady state. For this
reason, the two steady states need to be saddlepoint stable, an
issue that we turn to in Section 10.2 and which you are asked to
show in Problem 10.3 in Chapter 10. Given the sequence of factor
prices, taxes, and pensions, we can compute the capital stock and
labor supply of the s-year old household in period t, s = 1, . . . , 6,
starting in the last period of the transition tc and going backward
in time. As in the case for the computation of the steady state,
we use the first-order conditions of the households to compute the
capital stock and the labor supply of the household born in period
t = 20, 19, . . . , 0,−1,−2,−3,−4:

γ
cst+s−1 + ψ

1− ns
t+s−1

= (1− τt+s−1)wt+s−1, s = 1, . . . , 4 (9.20a)
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1

β
=

(cs+1
t+s + ψ)−η(1− ns+1

t+s )γ(1−η)

(cst+s−1 + ψ)−η(1− ns
t+s−1)

γ(1−η)
, s = 1, . . . , 5

(9.20b)

with n5
t = n6

t = 0. Furthermore, we substitute consumption
from the budget constraint, cst = (1− τt+s−1)wt+s−1n

s
t+s−1 + (1 +

rt+s−1)k
s
t+s−1−ks+1

t+s and use k1
t = k7

t = 0 so that (9.20) is a system
of 9 non-linear equations in the 9 unknowns {k2

t , k
3
t+1, k

4
t+2, k

5
t+3,

k6
t+4, n

1
t , n

2
t+1, n

3
t+2, n

4
t+3}. In the program RCh92AK6.g, this non-

linear equations problem is solved in the procedure rftr. The se-
quences of the factor prices, pensions, and income tax rates have
to be specified as global variables. We can use this routine in all
periods of the transition and also in the steady state. For exam-
ple, during our first iteration over the aggregate capital stock and
labor supply, we use the time sequences

{K0
20, K

0
21, . . . , K

0
25} = {0.661, 0.665, . . . , 0.665},

{N0
20, N

0
21, . . . , N

0
25} = {0.2330, 0.2332, . . . , 0.2332},

where the values for the periods t = 21, . . . , 25 are equal to the
new steady state values. From these sequences we compute the
factor prices {w0

t , r
0
t }25t=20, the tax rate {τ 0

t }25t=20, and the pen-
sions {b0t}25t=20. We store them as global variables and compute the
policy of the household born in period t = 20, {k1

20, k
2
21, . . . , k

6
25,

n1
20, . . . , n

4
23}. We continue in the same way for the agents born in

t = 19, . . . , 1.

For the agents that are born prior to period 1, t = 0, . . . ,−4, we
need to modify our computation. As an example, let us consider
the computation of the policy functions for the household born in
period t = 0. We assumed that the change in policy is unexpected.
Therefore, the agent does not know in period t = 0 that the pol-
icy change will be affected in period t = 1 and, hence, that the
factor prices, tax rates, and pensions will be different from the old
steady-state value starting in period t = 1. Therefore, we cannot
simply use the vectors {K0

0 , K
0
1 , . . . , K

0
5} and {N0

0 , N
0
1 , . . . , N

0
5}

and the corresponding factor prices, tax rates, and pensions to-
gether with the non-linear equations system (9.20) in order to
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Figure 9.5: Capital-Age and Labor-Age Profile in the Old Steady
State and for the Household Born in Period t = −2

compute the optimal allocation. In period 0, the household be-
haves exactly as the household in the old steady state. Accord-
ingly, his savings and his labor supply in the first period of his
life are also equal to those of the 1-year old household in the old
steady state, k2 = 0.0372 and n1 = 0.393. Therefore, we modify
the procedure rftr in the program RCh92AK6.g and substitute
the two first-order conditions (9.20a) and (9.20b) for s = 1 by the
condition that k2 and n1 are equal to the old steady-state values.
We proceed in the same way for t = −1, . . . ,−4.

In Figure 9.5, we illustrate the capital-age and labor age-profile
for the household born in period t = −2 by the solid line. At age
s = 4 in period t = 1, he learns about the change in policy. He ad-
just his labor supply and savings in this period. Consequently, n4

and k5 are different from the old steady values that are depicted
by the broken line. k4 is still determined by the household’s be-
havior in period 0.
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We stop our computation for the household that is born in
period t = −4 because the households born in periods t =
−5,−6, . . . do not have any effect on the aggregate capital stock
and employment during the transition as they are not alive in
period 1.

It is straightforward to compute the aggregate capital stock
and employment in each period t = 1, . . . , 20 from the savings
and labor supply of the households that are alive in period t:

Kt =
6∑

s=1

ks
t , Nt =

4∑
s=1

ns
t .

Of course, we update the aggregate capital stock and employment
for t, t+1, . . . , t+5 directly after the computation of the optimal
savings and labor supply of the household born in period t so that
we do not have to store the optimal policies for all generations.

The computation with the direct method is fast and accurate.
The computation for the savings and labor supply of each gener-
ation takes only fractions of a second and the accuracy is equal to
the one of the non-linear equations solver (10−10). As we already
mentioned in Section 9.1, the direct computation of the first-order
conditions with non-linear equations methods may not be feasible
in more complex models. In the application of the next section,
for example, we will not be able to use it, but have to resort to the
more time-consuming value function iteration method instead.

Updating Schemes. In step 5, we need to update the time
path for the aggregate variables {Kt, Nt}tc=20

t=1 . We will consider
three methods: 1. simple linear updating, 2. the Newton Raph-
son method and 3. Broyden’s method. 1. With linear updating,
we simply compute the new capital stock Kt and employment Nt

as a weighted average of the old and the new value in iteration
i over the transition path, Ki+1

t = φKi
t + (1 − φ)Ki∗

t , where Ki
t

denotes the value of the capital stock used in the last iteration
and Ki∗

t is the value that is found in iteration i by averaging the
individual capital stocks of the households alive in period t. In
the program RCh92AK6.g, we choose φ = 0.8. Convergence of the



9.2 The Transition Path 479

Figure 9.6: Transition from the Old to the New Steady State

time paths for the capital stock and employment {Kt, Nt}20t=0 oc-
curs after 14 iterations. The computation takes 0.34 seconds on
an Intel Pentium(R) M, 319 MHz computer.

The computed dynamics of the capital stock are displayed in
Figure 9.6. Obviously, the economy has converged from the old to
the new steady state aggregate capital stock, from K̄ = 0.0589 to
K = 0.0665. In period 0, the economy is in old steady state. All
agents have chosen their next-period capital stock ks

1, s = 1, . . . , 6,
assuming that there is no change in the fiscal policy. Consequently,
the capital stock of an s-year old generation in period 1, ks

1, is also
equal to the capital stock of the s-year old generation in period 0,
ks

0. Accordingly, the aggregate capital stock is equal in these two
periods, K̄ = K0 = K1. Only in period 2 does the capital stock
Kt start to change. In period 20, the last period of the transition,
the capital stock K20 is equal to 0.0665 and only diverges from
the new steady state K = 0.0665 by 0.010%.

2. In step 5, we are looking for the solution of the non-linear
equation
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g(Ki
1, K

i
2, . . . , K

i
20, N

i
1, N

i
2, . . . , N

i
20) =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

Ki∗
1 −Ki

1

Ki∗
2 −Ki

2
...

Ki∗
20 −Ki

20

N i∗
1 −N i

1

N i∗
2 −N i

2
...

N i∗
20 −N i

20

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
= 0.

In order to apply the Newton Raphson algorithm, we have to
compute the Jacobian matrix which is a 20 × 20 matrix for
our Example 9.2.1. Let xi denote our stacked column vector
(Ki

1, K
i
2, . . . , K

i
20, N

i
1, N

i
2, . . . , N

i
20)

′ and J(xi) the Jacobian matrix
that results from the differentiation of the above equation g(xi). In
the next step, we update the time path for the aggregate variables
according to (11.90), xi+1 = xi − J(xi)−1g(xi). In the program
RCh92AK6, the solution for the aggregate variables is found after
two iterations. The run time amounts to 3.45 seconds as the com-
putation of the Jacobian matrix is relatively time-consuming. Our
results are summarized in Table 9.2.

Table 9.2

Method Run Time Iterations

Linear Update 0:34 14

Newton 3:45 2

Broyden

— Jacobian matrix 1:91 2

— Steady state derivatives 0:13 3

Notes: Run time is given in seconds:hundreth of seconds on an Intel
Pentium(R) M, 319 MHz computer. In the Broyden updating step,
a first initialization of the Jacobian matrix is either provided by the
Jacobian of the non-linear system describing the transition path or by
using the derivatives of the non-linear equations that are describing
the final steady state for an approximation of the Jacobian.
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3. In many applications that are based upon the OLG frame-
work, the number of generations and transition periods is much
higher than in Example 9.2.1 and we may have to solve a system
g(x) in several hundred variables. You will get to know such an
application in the next section where the dimension of the Jaco-
bian matrix amounts to 900×900. In these cases, the computation
time for the Jacobian matrix becomes prohibitive, especially if we
need to iterate many times in step 5, and not only twice as in
the present Example 9.2.1. In these cases, we advocate the Broy-
den algorithm that is described in more detail in Section 11.5.2.
This algorithm is identical to the Newton Raphson algorithm ex-
cept that you do not compute the Jacobian matrix in each step
but rather use an approximation for the update. In the program
RCh92AK6 , you may choose between two different ways to initial-
ize the Jacobian matrix in the first iteration. In the first case, you
compute the actual Jacobian matrix. In the second case, we use
an initialization that has been suggested by Ludwig (2007). In
particular, we assume that i) the choice of Ki

t (N i
t ) only has an ef-

fect on the capital stock Ki∗
t (employment N i∗

t ) in the same period
and ii) the effect is identical to the one in the final steady state.
Therefore, we set all elements off the diagonal in the Jacobian
matrix equal to zero and initialize the elements on the diagonal
with the partial derivative of the variable in the respective non-
linear equation that is describing the final steady state. The two
conditions for the final steady state in period 21 are given by:

h(K21, N21) =

[
h1(K21, N21)
h2(K21, N21)

]
=

[
K∗

21 −K21

N∗
21 −N21

]
= 0.

According to this equation, the capital stock K21 and employment
N21 and associated factor prices w21 and r21 imply individual sav-
ings and labor supply that add up to K∗

21 and N∗
21. Therefore, we

have to compute the partial derivatives ∂h1(K21, N21)/∂K21 and
∂h2(K21, N21)/∂N21.

12

12 In addition, you may also initialize the elements of the Jacobian matrix
that describe the contemporaneous effects of Ki

t (N i
t ) on N i∗

t (Ki∗
t ) using

the cross derivatives ∂h1(K21, N21)/∂N21 and ∂h2(K21, N21)/∂K21.
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In Table 9.2, you notice that the Broyden algorithm is much
faster than the Newton algorithm, especially if we use the steady
state derivatives in order to form an initial guess of the Jaco-
bian matrix. In this case, the gain in speed is considerable as we
only have to find the derivatives of a two-dimensional non-linear
equations system that is describing the steady state rather than
the 40-dimensional non-linear equations system that is describing
the transition. Convergence with the Broyden algorithm is slower
than with the Newton algorithm, but the slower convergence is
usually outweighed by the gain in speed in the computation of the
Jacobian matrix.

As another alternative, many studies consider a variant of the
Gauss-Seidel algorithm. In Section 11.5.2, we introduce you to
the details of the Gauss-Seidel algorithm, and you are asked to
apply this algorithm to the solution of the model in this section
in Problem 9.6. In our experience, the Broyden algorithm seems
to dominate the other updating schemes in more complex models
in terms of convergence and robustness. This is also confirmed by
findings of Ludgwig (2007) who advocates a hybrid algorithm
for the solution of complex OLG models with more complicate
non-linear transitional dynamics that combines the Gauss-Seidel
and Broyden’s method.

9.3 Application: The Demographic Transition

In the following, we will consider the transition dynamics in a
more sophisticated model. As an example, we analyze the de-
mographic transition in an economy with 75 overlapping genera-
tions. In this model, we need to find the time path for a three-
dimensional vector consisting of the capital stock K, employment
L, and government transfers tr over a time horizon of 300 peri-
ods. In essence, we have to solve a non-linear equations system of
900 variables. As one possible approach to this problem, we will
propose Broyden’s method that you got to know in the previous
section and that is also described in more detail in Section 11.5.2.
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Let us turn to the description of the model first, before we study
the computation.

9.3.1 The Model

We analyze the effects of a (very simplified) demographic transi-
tion on savings and factor prices in a model with overlapping gen-
erations and heterogeneous agents. There are three sectors in the
economy: households, firms, and the government. Workers build
up savings for old age. Firms maximize profits. The government
collects taxes and social security contributions and runs a bal-
anced budget.

Demographics and Timing. A period, t, corresponds to one
year. At each t, a new generation of households is born. Newborns
have a real life age of 21 denoted by s = 1. All generations retire
at age 66 (s = R = 46) and live up to a maximum age of 95
(s = J = 75). At t, all agents of age s survive until age s+1 with
probability φs where φ0 = 1 and φJ = 0.13

Let Nt(s) denote the number of agents of age s at t. We assume
that population grows at the exogenous rate gN = 1.1% until the
year 2000 corresponding to t = 0. Afterwards, the population
growth rate unexpectedly drops to 0% and remains equal to zero
permanently. At t = 0, we assume that the economy is in a steady
state.

Households. Each household comprises one representative worker.
Households maximize intertemporal utility at the beginning of
age 1 in period t:

max
J∑

s=1

βs−1
(
Πs

j=1φt+j−1,j−1

)
u(ct+s−1(s), lt+s−1(s)), (9.21)

13 For simplicity, we assume that survival probabilites for the s-aged agent
are constant over time. Obviously, survival probabilities will continue to
increase for some time in most countries.
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where instantaneous utility u(c, l) is a function of consumption c
and labor supply l:14

u(c, l) =
(cγ(1− l)1−γ)

1−η

1− η , η > 0, γ ∈ (0, 1); (9.22)

here, β > 0 denotes the discount factor.

Households are heterogeneous with regard to their age, s, their
individual labor efficiency, e(s, j), and their wealth, ω. We stip-
ulate that an agent’s efficiency e(s, j) = ȳsεj depends on its age,
s ∈ S ≡ {1, 2, ..., 75}, and its efficiency type, εj ∈ E ≡ {ε1, ε2}.
We choose the age-efficiency profile, {ȳs}, in accordance with the
US wage profile. The permanent efficiency types ε1 and ε2 are
meant to capture differences in education and ability. We use Γ
to denote the unique invariant distribution of ej ∈ E .

The net wage income in period t of an s-year old household with
efficiency type j is given by (1− τw − τb)wt e(s, j) lt(s), where wt

denotes the wage rate per efficiency unit in period t. The wage
income is taxed at rate τw. Furthermore, the worker has to pay
contributions to the pension system at rate τb. A retired worker re-
ceives pensions b(s, j) that depend on his efficiency type j. Clearly,
b(s, j) = 0 for s < R.

Households are born without assets at the beginning of age
s = 1, hence ωt(1) = 0. Parents do not leave bequests to their
children and all accidental bequests are confiscated by the gov-
ernment. This element of the model that is absent from the models
of the previous chapters in this book is necessary in the presence
of stochastic survival probabilities. We could have introduced be-
quests and a parent-child link into the model, which, however,
greatly complicates the computation (see Heer, 2001b). As an
alternative, we could have assumed the presence of perfect an-
nuity markets as in Krueger and Ludwig (2006), for example.
In this case, the end-of-period assets of the dying households are
shared equally by the surviving members of the same cohort.

14 Different from previous sections, we use l rather than n for the denotation
of the labor supply as we use the denotation N and L for the population
size and the aggregate labor supply, respectively.
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The household earns interest rt on his wealth ωt ∈ R. Capital
income is taxed at rate τr. In addition, households receive lump-
sum transfers trt from the government. As a result, the budget
constraint at t of an s-year old household with productivity type
j and wealth ωt is:

bt(s, j) + (1− τw − τb)wte(s, j)lt(s) + [1 + (1− τr)rt]ωt(s)

+trt = ct(s) + ωt+1(s+ 1).

Firms. At each t, firms produce output, Yt, according to the fol-
lowing constant-returns-to-scale production function:

Yt = AtL
1−α
t Kα

t . (9.23)

Productivity At grows at the exogenous rate gA.15 Profit maxi-
mization gives rise to the first-order conditions:

∂Yt

∂Kt

= rt + δ = αkα−1
t , (9.24)

∂Yt

∂Lt

= wt = (1− α)kα
t , (9.25)

where kt ≡ Kt/AtLt denotes the capital per effective labor in
period t. Again, w, r, and δ denote the wage rate, the interest
rate, and the depreciation rate, respectively.

Government. The government collects income taxes Tt in order
to finance its expenditures on government consumption Gt and
transfers Trt. In addition, it confiscates all accidental bequests
Beqt. The government budget is balanced in every period t:

Gt + Trt = Tt +Beqt. (9.26)

In view of the tax rates τw and τr, the government’s tax rev-
enues are:

Tt = τwwtLt + τrrtΩt, (9.27)

where Ωt is aggregate wealth at t.
Government spending is a constant fraction of output:

Gt = ḡYt.

15
Heer and Irmen (2008) consider a model of the demographic transition
with endogenous growth.
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Social Security. The social security system is a pay-as-you-go
system. The social security authority collects contributions from
the workers in order to finance its pension payments to the retired
agents. Pensions are a constant fraction of net labor income of the
productivity type j:

bt(s, j) =

{
0 s < R
ζ(1− τw − τb)wtεj s ≥ R.

(9.28)

In equilibrium, the social security budget is balanced and will
be defined below. The replacement ratio of net pensions, ζ =

bt

(1−τw−τb)wt
, is assumed to be constant. In this case, the contribu-

tion rate τb has to adjust in order to balance the social security
budget.16 In order to simplify notation, we do not index τb by time
t.

Stationary Equilibrium. In the stationary equilibrium, indi-
vidual behavior is consistent with the aggregate behavior of the
economy, firms maximize profits, households maximize intertem-
poral utility, and factor and goods’ markets are in equilibrium.
To express the equilibrium in terms of stationary variables only,
we have to divide aggregate quantities by AtLt and individual
variables and prices by At. Therefore, we define the following sta-
tionary aggregate variables:

kt ≡ Kt

AtLt
, B̃eqt ≡ Beqt

AtLt
, T̃t =

Tt

AtLt
,

G̃t =
Gt

AtLt
, C̃t =

Ct

AtLt
, Ỹt =

Yt

AtLt
,

and stationary individual variables:

c̃t ≡ ct
At
, w̃t ≡ wt

At
, b̃t ≡ bt

At
, ω̃t ≡ ωt

At
, t̃rt ≡ trt

At
.

Let Ft(ω̃, s, j) denote the distribution of individual wealth ω̃, age
s, and the efficiency type j in the period t.

16 In Problem 9.5 you are also asked to compute the case that i) the social
security contribution rate τb is constant, while ζ adjusts, and ii) that the
government increases the retirement age by 5 years for those agents born
after 2020.
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A stationary equilibrium for a government policy {τr, τw, τb,
ḡ, ζ, tr} and initial distribution F0(ω̃, s, j) in period 0 corresponds
to a price system, an allocation, and a sequence of aggregate pro-
ductivity indicators {At} that satisfy the following conditions:

1. Population grows at the rate gN,t = Nt+1

Nt
− 1.

2. Capital market equilibrium: aggregate wealth is equal to ag-
gregate capital:

Ωt = Kt.

3. Households maximize the intertemporal utility (9.21) subject
to the budget constraint:

b̃t(s, j) + (1− τw − τb)w̃te(s, j)lt(ω̃, s, j)+

+ [1 + (1− τr)rt] ω̃t(s, j) + t̃rt

= c̃t(s, j) + ω̃t+1(s+ 1, j)(1 + gA).

This gives rise to the two first-order conditions:

1− γ
γ

c̃t(s, j)

1− lt(s, j) = (1− τw − τb)w̃te(s, j) (9.29)

and

c̃t(s, j)
γ(1−η)−1(1− lt(s, j))(1−γ)(1−η) = β(1 + gA)γ(1−η)−1φt,s

× [1 + (1− τr)rt+1] c̃t+1(s+ 1, j)γ(1−η)−1

× (1− lt+1(s+ 1, j))(1−γ)(1−η).

(9.30)

Individual labor supply lt(ω̃, s, j), consumption ct(ω̃, s, j), and
optimal next period assets ω̃′

t(ω̃, s, j) of period t are functions
of the individual state variables ω̃, j, and s, and also depend
on the period t.

4. Firms maximize profits satisfying (9.24) and (9.25).
5. The aggregate variables labor supply Lt, bequests Beqt, con-

sumption Ct, and taxes Tt are equal to the sum of the individ-
ual variables.
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6. The government budget is balanced.

ḡkα
t + t̃rt

Nt

Lt
= T̃t + B̃eqt.

7. The budget of the social security system is balanced.
8. The goods market clears.
9. The distribution Ft evolves according to

Ft+1(ω̃
′, s+ 1, j) =

∑
ω̃′=ω̃′

t(ω̃,s,j)

φtFt(ω̃, s, j), s = 1, . . . , 74,

and for the newborns

Ft+1(0, 1, j) = Nt+1(1)× Γ(εj).

The model is calibrated following Heer and Irmen (2008).
Parameters are chosen such that η = 2.0, β = 0.99, {ε1, ε2} =
{0.57, 1.43}, G/Y = 19.5%, τw = 24.8%, τr = 42.9%, and
ζ = 15%. γ is set equal to 0.32 to imply an average labor sup-
ply approximately equal to 0.3. In addition, we use the survival
probabilities for the year 2000 as estimated by the United Na-

tions (2002). The survival probabilities decrease with age and
are presented in Figure 9.7.17

The mean efficiency index ȳs of the s-year-old worker is taken
from Hansen (1993), and interpolated to in-between years. As
a consequence, the model is able to replicate the cross-section
age distribution of earnings of the US economy. Following İmro-

horoğlu, İmrohoroğlu, and Joines (1995), we normalize the
average efficiency index to one. The mean efficiency of the s-year
old agents ȳs is displayed as the solid line in Figure 9.8. Notice that
the age-productivity profile is hump-shaped and earnings peak at
age 50.

For comparison purpose, we also graph the age-productivity
profile for the German economy (broken line). The productivity
of age s is computed with the help of the average hourly wages of

17 We would like to thank Alexander Ludwig and Dirk Krueger for the pro-
vision of the data.
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Figure 9.7: Survival Probabilities in the US in the Year 2000

the s-year old during the years 1990-97 following the method of
Hansen (1993). Average productivity is normalized to one. We
further interpolated the productivity-age profile with a polyno-
mial function of order 3. We use data from the Cross National
Data Files for West Germany during 1990-97 which are extracted
from the GSOEP.18 As it is obvious from inspection of Figure
9.8, the productivity-age profiles of the US and Germany almost
coincide.

9.3.2 Computation

In the following paragraphs, we will describe the computation of
the transition dynamics. We choose a time horizon of 300 years

18 We only consider agents who were working 1,500 hours per year or more
and who earned a wage in excess of one Euro. The number of observations
for each generation ranges between 154 (for the 20-year old) and 765 (for
the 29-year old). We would like to thank Mark Trede for providing us with
the data.
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Figure 9.8: Age-Productivity Profile

which we may interpret as the years 2000-2300 corresponding to
the periods t = 0, . . . , 300. We start with an initial guess of the
time path for the aggregate variables {K,L, tr}300t=1 and iterate as
long as it converges. The allocation in the period t = 0 is given
and corresponds to the initial steady state.

The computation of the transition is very time-consuming. In
each iteration, we have to compute the optimal allocation for all
individual generations that are born in the years 1926, 1927, . . . ,
2299, 2300 separately since each generation faces a different fac-
tor price sequence and hence chooses a different allocation. We
also have to consider the generations born prior to 2000 because
they are still alive in the year 2000 and their savings and labor
supply contribute to the aggregate capital stock and employment,
respectively. Therefore, we have to go back in time until the year
1926 when the oldest generation that is still alive in 2000 was
born. The solution of the perfect foresight model with Broyden’s
method is described by the following steps:
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Algorithm 9.3.1 (Computation of the Transition Dynam-
ics for the Perfect Foresight OLG Model in Section 9.3
with a Broyden Algorithm)

Purpose: Computation of the transition dynamics.

Steps:

Step 1: Compute the initial and final steady state solution for the
periods t = 0 and t = 301, respectively.

Step 2: Compute the demographics.

Step 3: Provide an initial guess for the time path of the aggregate
variables {K̃0

t , L
0
t , t̃r

0
t }300t=1.

Step 4: Compute the transition.

Step 5: If the new value {K̃1
t , L

1
t , t̃r

1
t }300t=1 is close to the starting

value, stop. Otherwise update the initial guess with the
help of Broyden’s method and return to Step 4.

The algorithm is implemented in program RCh93.g. In Step 1,
we compute the initial and the final steady state (with gN = 1.1%
and gN = 0%, respectively) with the help of direct computation.
Therefore, we start with a simple model. We first consider an
OLG model with inelastic labor supply, lst ≡ 0.3. In this case,
also aggregate employment Lt is exogenous and we can compute
the social contribution rate τb from the social security budget.
The steady state is computed in the routine getk in the program.
Importantly, the non-linear equations system consists of two equa-
tions. The two unknowns are the aggregate capital stock K̃ and
government transfers t̃r in the steady state. The two equations
reflect the conditions that the sum of the individual assets equals
the aggregate capital stock and that the government budget is
balanced.

The computation of the individual allocations {ks(ε)}75s=1 for
given K̃, N , τb, and transfers t̃r is very fast as it amounts to
the solution of a linear equations system. In order to see this
consider the intertemporal first-order condition for the one-year
old agent and notice that the terms involving the labor supply
l(1) = l(2) = 0.3 drop out of the equation:
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c̃(1)γ(1−η)−1 = β(1+gA)γ(1−η)−1φ1 [1 + (1− τr)rt+1] c̃(2)γ(1−η)−1,

which can be reduced into a linear equation in c(1) and c(2):

c(1) = κc(2),

with κ = (1 + gA) (βφ1 [1 + (1− τr)rt+1])
1/(γ(1−η)−1). Once we re-

place c(1) and c(2) with the help of the budget constraint, we
have found a linear (!) equation in k(2) and k(3) (k(1) = 0 is
known). Similarly, we can find another 73 linear equations involv-
ing k(3), . . . , k(75) by starting from the first-order conditions for
the agents aged s = 2, . . . , 74. The solution of a linear equations
system can be computed very fast via the LU-decomposition de-
scribed in Section 11.1.8. It takes only fractions of a second to
solve our problem. We store the capital-age profile as an initial
guess for the direct computation of the steady state. Next, we
compute the steady state with elastic labor supply. The non-linear
equations system in the aggregate variables K̃, L, and t̃r is solved
in the routine getvaluess. As an additional equation, we include
the condition that the sum of the individual labor supplies in effi-
ciency units is equal to aggregate labor supply L. Given the vector
{K̃, L, t̃r}, we can compute w, r, and τb and solve the individual
optimization problem calling the routine Sys1. This amounts to
the computation of a problem in 240 non-linear equations that
consists of the first-order conditions of the households. For the
working and retired agents, we have to solve the Euler equations
(9.30) for s = 1, . . . , 75 and j = 1, 2. The optimal labor supply
is computed from (9.29) for s = 1, . . . , 45, j = 1, 2. As our ini-
tial guess for the labor supply for all agents, we use lt(s) ≡ 0.3.
The initial guess for the optimal capital stock is taken from the
solution of the model with inelastic labor supply.

Notice that we define the aggregate variables, factor prices,
transfers, and social security contributions over the 75-period life-
time of the household as a global variable in our program. In the
case of the steady state, these sequences are constant, of course.
When we call the routine Sys1, it computes the allocation of the
household for any sequence of these variables. In particular, we
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are also able to use it for the computation of the household prob-
lem during the transition where the aggregate variables are not
vectors of constants.

At this point, let us mention one generalization. So far, we have
assumed that we are in a steady state at the beginning of the tran-
sition. Of course, this does not need to be the case. For example,
consider the case of the German economy that was experiencing a
structural break in the year 1989 in the form of the reunification
with a former socialist part of the country. As a consequence, it
may be a little far-fetched to assume that Germany has reached a
steady state meanwhile. Similarly, if we want to study the ques-
tion of demographic transition in the US, the assumption of a
steady state today would probably be too simplifying as fertility
and mortality rates have not been stationary in the US over the
recent decades.

How can we compute the initial steady state in this case? As
you will find out shortly, in order to compute the transition, we
need to know the allocation of all agents who are alive at the
beginning of the transition. Accordingly, we need to know the
sequence of the factor prices, tax rates, and social security contri-
bution rates that are important for their allocation decision. Since
our oldest agents are aged 75, we need to know the time series for
the last 75 periods. If we are in a steady state, this does not pose
a problem since all aggregate variables are constant. If we are out
of the steady state, the issue is more problematic. One typical
approach to the solution of this problem is used by Krueger

and Ludwig (2007), among others. They study the demographic
transition in the US (among other countries) starting in the year
2000. They assume that the economy was in a steady state in
1950 and start the computation of the transition in this year im-
posing the demographic development of the US population during
1950-2000 exogenously. Even if the US were not in a steady state
in 1950, the allocation in the year 2000 is hardly affected by this
initialization because most of the households whose decisions de-
pend on the behavior of the economy prior to 1950 do not live
any more.
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Figure 9.9: Stationary Age Distribution in the Initial Steady State

In Step 2, we first initialize the number of the transition pe-
riods. In our case, we assume that the transition takes 300 pe-
riods. As mentioned above, you should choose a number that is
at least three times higher than the maximum age of the house-
holds. As we will find out, 300 periods is already quite short in
our case. Next we compute the mass of the population and in-
dividual generations during the transition with the help of the
population growth rates and the survival probabilites. In Figure
9.9, we display the stationary distribution of the generations that
is associated with these survival probabilities. The total mass of
the population is normalized to one in the initial steady state.

In the year 2001 corresponding to period t = 1, the population
growth rate is assumed to fall from 1.1% to 0% permanently. As
a consequence, the demographics change. We assume that the 1-
year old household (corresponding to the 20-year old) consists of
one person and also has one child. Consequently, the demographic
structure of the economy is still changing for some time until the
one-year old generation has approached its new population share
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Figure 9.10: Population Size During the Transition

in the final steady-state. The transition of the population size is
displayed in Figure 9.10. The new mass of the population in the
final steady state is equal to 1.38.

At first sight, it seems puzzling that the mass of the population
is still growing even though the population growth rate drops to
zero. In order to understand the basic mechanism that is at work
here consider a model with two generations. Let Bt denote the
mass of the total population, which consists of the mass of the
agents born in period t−1 (the old ones), Nt−1, and those born in
period t (the young ones), Nt. Consequently, Bt = Nt+Nt−1. Until
period t = 0, the population grows at rate gN , Nt = (1 + gN)Nt−1

implying

B0 = N0 +N−1 = N0 +
N0

1 + gn
=

2 + gN

1 + gN
N0.

If we normalize B0 to one, N0 = (1 + gN)/(2 + gN). In period
t = 1, the population growth rate drops to zero and

B1 = N0 +N1 = N0 +N0 = 2
1 + gN

2 + gN

> 1.
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Figure 9.11: Decline of the Labor Force Share During the Transition

Since we have 75 overlapping generations in our model, the transi-
tion is more time-consuming, of course. In the computation of the
solution, we have do keep in mind that the mass of the total pop-
ulation is growing during the transition. Often we have to divide
the aggregate sums of the individual variables by this number.

The main effect of the demographic transition results from the
decline in the labor force share. As fewer young workers are born,
the share of the retired agents rises and the burden of the pensions
increases. The development of the labor force share is graphed in
Figure 9.11. In our economy, we observe a considerable drop of the
labor share from 78% to 71%. In addition, we also have to notice
that the composition of the labor force changes. In particular, the
share of older agents in the labor force increases and, therefore,
average productivity of the worker rises as well.

In Step 3, we provide an initial guess for the time path of the
aggregate variables {K̃0

t , L
0
t , t̃r

0
t }300t=1. We assume a linear law of

motion for K, L, and tr, starting from the initial steady state
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value in period t = 1 and reaching the new steady state in period
t = 301.19

Given this sequence for the endogenous variables, we call the
procedure getvaluetrans in the program RCh93.g in Step 4.
With the help of the aggregate variables, we can compute all fac-
tor prices, transfers, and the social security contribution rate that
are necessary for the computation of the individual optimization
problem. We start the computation of the individual policy func-
tions in the last period of the transition, t = 300, and iterate
backwards. In each period, we compute the optimal policy func-
tions for the households born in period t. Therefore, we assign the
factor prices to global variables and call the routine sys1. In each
period t = 1, . . . , 300, we have to aggregate the capital stock and
labor supply of the generations currently alive. Therefore, when
we consider a generation born in period t, we use its allocation
{kt+s−1(s), lt+s−1(s)}s=75

s=1 and add the individual capital stock and
labor supply to the aggregate capital stock K̃t+s−1 and employ-
ment Lt+s−1 for s = 1, . . . , 75. Of course, we have to multiply the
individual variables by the measure of the generation with pro-
ductivity j that we computed in Step 2. As we iterate over the
periods t, we do not have to store the allocation of the generation
born in period t. We only use the allocation of the generation born
in t as an initial guess for the one born in t− 1 that we compute
in the next iteration.

Given the aggregate consistency conditions and the govern-
ment budget constraint, we can compute the new time sequence
{K̃i∗

t , L
i∗
t , t̃r

i∗
t }t=300

t=1 . In Step 5, we update our prior guess {K̃i
t ,

Li
t, t̃r

i
t}t=300

t=1 . This amounts to the solution of the 900 equations
K̃i∗

t −K̃i
t = 0, Li∗

t −Li
t = 0, and t̃ri∗

t − t̃ri
t = 0, t = 1, . . . , 300. Stan-

dard Newton-Raphson methods will break down as we are trying
to compute the Jacobian matrix with a dimension of 900 × 900
in each step. A workable solution to this problem is Broyden’s
algorithm as described in Section 11.5.2. In order to economize

19 If we had assumed the existence of perfect annuity markets rather than
postulating that accidental bequests are confiscated by the government,
we would have needed only the two endogenous variables {K,L} since
these variables would have already implied the government transfers.
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on computational time we use (11.94) for the update of the in-
verse matrix of the Jacobian matrix. The only remaining problem
is to find an initial value of the Jacobian matrix. As described
in the previous section, we use the Jacobian matrix in the final
steady state as an approximation for the Jacobian matrix in all
periods.20 It is straightforward to compute the derivative of our
function getvaluess with respect to the final steady state val-
ues K̃301, L301, and t̃r301. Given the Jacobian matrix in the final
steady state, we compute the Kronecker product of this matrix
and an identity matrix of dimension 300× 300. In essence, we are
assuming that the aggregate variables in period t, {K̃t, Lt, t̃rt},
do not have an impact on the behavior in the other periods and
that the economy behaves alike in every period. In our problem,
we find out that this approximation of the Jacobian matrix J per-
forms in a very satisfactory way and its computation is very fast,
amounting to a matter of seconds.

In order to improve convergence in our program RCh93.g, we
also imply a line search over the values xi = {K̃i

t , L
i
t, t̃r

i
t}t=300

t=1 .
Assume we have computed the next step size

dx = −J(xi)−1 f(xi),

with the help of the value returned by the routine getvaluetrans.
We then apply Algorithm 11.5.3 from Chapter 11 in order to find
an increase λ dx that improves our fit, 0 < λ ≤ 1. In case we
do not find a decrease of the function value, we reinitialize our
Jacobian matrix with our first initialization and return to step 4.
In our computation, however, this step is not necessary.

We stop the computation as soon as we have found a solution,
where the sum of the squared deviations of two successive values
xi is less than 0.001. In this case, the maximum percentage dif-
ference between two individual values of K̃i

t and Li
t with the new

values K̃i∗
t and Li∗

t is approximately equal to 0.8% and 0.01%,
respectively. With Broyden’s method, we need 4 iterations. The
computation is very time-consuming and amounts to 8 hours 21

20 In particular, we are also using the final steady-state values of the cross
derivatives ∂(K̃i∗

t − K̃i
t)/∂L

i
t, ∂(K̃i∗

t − K̃i
t)/∂t̃r

i
t, . . . for the initialization.
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Figure 9.12: Transition Dynamics of Aggregate Variables and Factor
Prices

minutes on an Intel Pentium(R) M, 319 MHz machine. The re-
sulting time paths of the aggregate variables and factor prices is
graphed in Figure 9.12. As you can see by simple inspection, we
may even have considered a longer transition period of 400 peri-
ods or even more as we do not observe a smooth approximation
of the final steady state, but rather some curvature.

9.3.3 Results

The declining labor force share decreases total employment in our
economy. As a consequence, the capital intensity increases and
wages go up, while the interest rate declines. The transition of
the factor prices is illustrated in Figure 9.12.

How does the decline of the population growth rate affect the
savings behavior of the households? In the left column of Figure
9.13, we depict the savings behavior of the low-productivity and
the high productivity agents in the initial and final steady state,
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Figure 9.13: Steady State Behavior in the Economy with Constant
(solid line) and Growing (broken line) Population

respectively. Obviously, savings of the high-productivity workers
are higher than those of the low-productivity workers because
their labor income is higher as well. Both agents dissave during
their first years.21

If you compare the savings behavior in the economy with the
growing population (gN = 1.1%, broken line) with the one in
the constant-population economy (gN = 0, solid line), you find
out that households have higher average savings per capita in
the case of a growing population. As the main explanation, social
contributions are lower in the growing population so that workers
receive a higher net income and can save more.

In the right column of Figure 9.13, we present the labor sup-
ply of the low and the high-productivity workers in the econ-
omy with a constant and a growing population, respectively.
High-productivity workers have a higher labor supply than low-

21 In Section 10.2.2, we also consider the case where we impose a credit con-
straint ω ≥ 0 in a model with heterogeneous agents.
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productivity workers because they have higher wage rates per
working hour. In our model, the substitution effect is stronger
than the income effect. When we compare the constant-population
with the growing-population economy, we find that in the former,
older agents work longer, while in the latter, the younger agents
are supplying more labor. This observation is explained by the
higher wealth of the older workers in the growing economy. In
addition, workers substitute labor intertemporally so that house-
holds supply more labor in young years in the growing economy
which is characterized by higher interest rates (compare Figure
9.12). However, the quantitative effects are small.
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Problems

9.1 Recompute the illustrative example in Section 9.1.1 using direct com-
putation with the help of the program RCh91d. However, instead of the
Secant method use Newton’s method instead. Therefore, write a routine
that computes the capital stock k1 for given k60. Solve the non-linear
equation k1(k60) = 0.

9.2 Earnings-Related Pensions
Consider the steady state of the model in Section 9.1 with a constant
wage and interest rate. Pension payments b are assumed to be lump-sum
irrespective of the individual’s earnings history and contributions to social
security. As a more realistic description of pension payments in modern
industrial countries, let pension payments depend on average life-time
earnings. In addition, the government provides minimum social security
bmin in old age. More formally, for an individual with earnings history
{nsw}Ts=1, annual pension payments are calculated by the formula

b = ε

T∑
s=1

nsw

T
+ bmin, 0 ≤ ε < 1.

As a consequence, the individual state variables of the value function of
the retired agent are given by individual wealth k and annual pension
payments b, while the individual state variables of the young agent are
given by his wealth k and his accumulated earnings.
Furthermore, the working agent maximizes his labor supply taking the
intertemporal effect on his entitlement to pension payments into account.
Accordingly, his first-order condition with respect to labor supply in the
steady state is given by

ul(cs, ls)
uc(cs, ls)

= (1− τ)w + βT+1−s ∂V
T+1(kT , b,K,N)

∂b
ε
w

T
,

where the second additive term on the right-hand side of the equation
reflects the increase of old-age utility from an increase in labor supply
through its effect on pensions.
Compute the stationary equilibrium and show that an initial increase of
ε from 0 to 0.1 increases employment and the welfare as measured by the
value of the newborn generation V 1(0, 0,K,N).

9.3 Money-Age Distribution.
In this problem, you will compute the money-age distribution and com-
pare the model’s cross-section correlation of money with income and
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wealth to its empirical counterparts. The model follows Heer, Mauss-

ner, and McNelis (2007).

Consider an economy with overlapping generations. The total measure
of all households is equal to one. Households live a maximum of T = 60
years and face a stochastic survival probability φs from age s to s+1. The
first 40 years, they are working supplying one unit of labor inelastically,
and the remaining years, they retire. Households differ with regard to age
s and their productivity type j = 1, . . . , 5. Each productivity class j is of
equal measure. Households hold two assets, real money mt = Mt/Pt and
capital kt. The household h maximizes life-time utility:[

T∑
s=1

βs−1
(
Πs

j=1φs

)
u(chs,mhs),

]
(9.31)

where β and c denote the discount factor and real consumption, respec-
tively. A role for money is introduced by assuming money in the utility:

u(c,m) =

(
cγm1−γ

)1−σ

1− σ . (9.32)

Individual productivity e(s, j) = ȳsεj depends on its age, s ∈ {1, 2, ..., 75}
and its efficiency type, εj ∈ {0.5, 0.75, 1, 1.25, 1.5}. The s-year old agent
receives income from capital khs and labor e(s, j)w in each period s of
his life. After retirement agents do not work, e(s, j) = 0 for s ≥ 41. The
budget constraint of the s-year old household h is given by:22

(1 − τr)rkhs +(1− τw − η)we(s, zh) + b(ēhs) + tr + khs +mhs

= chs + khs+1 +mhs+1(1 + π)− Seign,
where Seign and π = Pt/Pt−1 denote seignorage and the inflation factor
between two successive periods t − 1 and t, respectively. Note that in
the stationary equilibrium π is a constant and equals the money growth
factor. Real interest income is taxed at the rate τr. In addition, the house-
holds receive transfers tr from the government.
Social security benefits b(s, j) depend on the agent’s age s as well as on
his productivity type j as follows:

b(s, j) =
{

0 for s < 41
ζ(1 − τw)wεj for s ≥ 41.

The net replacement ratio ζ amounts to 30%.
Output is produced with effective labor N and capital K. Effective labor
N is paid the wage w. Production Y is characterized by constant returns
to scale and assumed to be Cobb-Douglas:

22 At the end of the final period, khT+1 = Mh
hT+1,t ≡ 0.
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Y = N1−αKα,

with α = 0.35. In a factor market equilibrium, factors are rewarded with
their marginal product:

w = (1− α)N−αKα,

r = αN1−αKα−1 − δ.
Capital depreciates at the rate δ = 0.08.
The government consists of the fiscal and monetary authority. Nominal
money grows at the exogenous rate μ:

Mt+1 −Mt

Mt
= μ. (9.33)

Seignorage Seign = Mt+1 −Mt is transferred lump-sum.
The government uses the revenues from taxing income and aggregate ac-
cidental bequests Beq in order to finance its expenditures on government
consumption G, government transfers tr, and transfers to the one-year
old households m̃. We assume that the first-period money balances m̃ are
financed by the government:

G+ tr + m̃ = τrrk + τwN +Beq.

Transfers tr are distributed lump-sum to all households. Furthermore,
the government provides social security benefits Pens that are financed
by taxes on labor income:

Pens = θwN.

In a stationary equilibrium, aggregate variables are equal to the sum of
the individual variables, households maximize intertemporal utility, firms
maximize profits, the factor and goods markets clear, and the government
and social security budget are balanced.
In order to compute the model use the efficiency-age profile {ys}60s=1

and the survival probabilities {φs}60s=1 that you find in the programs
RCh93.g (ef1.fmt and sp2.fmt). The remaining parameters are calibrated
as follows: The money endowment of the newborn generation is equal
to 20% of the average money holdings in the economy. Furthermore, we
set β = 1.01, σ = 2.0, μ = 0.04, {τr, τw}={0.429, 0.248}, G/Y = 0.19.
Calibrate γ so that the velocity of money PY/M is equal to 6.0.

a) Compute the steady state. Use direct computation. First compute
the model without money and productivity heterogeneity. Then in-
troduce different productivity types before you also consider money.
Graph the wealth-age and money-age profile.
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b) Compute the Gini coefficients of the wage, income, and capital distri-
bution. Do they match the empirical numbers that you encountered
in Chapter 7?

c) Compute the cross-section correlation of money with total income
and capital. Compare to the empirical values that amount to 0.22
and 0.25 during 1994-2001 (see Heer, Maussner, and McNelis,
2007). Can you think of any reasons why the correlations are higher
in our model? How should we improve upon the modeling of the
money demand in OLG models?

9.4 Recompute Example 9.2.1.
a) Use value function iteration with cubic spline interpolation in order

to compute the policy functions of the households.
b) Assume instead that households know the change in policy in period t

6 periods in advance. Compare the transition dynamics with the case
where the change in policy is unexpected.

9.5 Recompute the model in Section 9.3 for the following two cases:
a) Assume that the government keeps the social security contribution

rate τb constant and that the replacement ratio (pensions) adjusts in
order to keep the government budget balanced.

b) The change in the population growth rate in period t = 0 is expected.
c) The government announces in period t = 20 that it increases the

retirement age from R = 65 to R = 70 for all those agents that are
born after t = 20. Again distinguish between the two cases that i)
the replacement rate and ii) the contribution rate remain constant
during the transition.

How do you need to adjust the program RCh93.g? What are the effects
on the transition paths of the factor prices?

9.6 Gauss-Seidel Algorithm. In their original work, Auerbach and Kot-

likoff (1987) compute the transition with the help of the Gauss-Seidel
Algorithm. In this problem, we ask you to compute the model in Sec-
tion 9.3 with the help of the Gauss-Seidel algorithm. Assume that the
economy has reached the final steady state in period t = 200.
a) Compute the initial and the final steady states.
b) As an initial guess for the transition, specify a linear law of motion

for {K0
t , L

0
t , tr

0
t }t=199

t=0 .
c) Compute {K1

199, L
1
199,tr

1
199} given that all other aggregate variables

are equal to the initial values {K0
t , L

0
t , tr

0
t }t=198

t=0 . Therefore, you have
to write a routine that computes the savings and labor supply of all
households that are alive in period t = 199 given the factor prices
and transfers over their lifetime, respectively. As an input, you need
to provide your initial value of {K1

199, L
1
199, tr

1
199}.
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d) Compute {K1
198, L

1
198, tr

1
198} given {K0

t , L
0
t , tr

0
t }t=197

t=0 and {K1
199, L

1
199,

tr1199} in the same way as above.
e) Continue to compute {K1

t , L
1
t , tr

1
t }, t = 197, . . . , 1 and return to step

c) until convergence.
Compare the computational time with our Broyden algorithm.
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Stochastic Overlapping
Generations Models

Overview. In this chapter, we introduce both idiosyncratic and
aggregate uncertainty into the OLG model. The methods that we
will apply for the computation of these models are already familiar
to you from previous chapters and will only be modified in order
to allow for the more complex age structure of OLG models. In
particular, we will apply the log-linearization from Chapter 2, the
algorithm for the computation of the stationary distribution from
Chapter 7, and the Algorithm by Krusell and Smith (1998)
from Chapter 8 for the solution of the non-stochastic steady state
and the business cycle dynamics of the OLG model.

In the following, we will first introduce individual stochastic
productivity in the standard OLG model, and, then, aggregate
stochastic productivity. In the first section, agents have differ-
ent productivity types. Different from the traditional Auerbach-
Kotlikoff models, agents are subject to idiosyncratic shocks and
may change their productivity types randomly. As a consequence,
the direct computation of policies and transition paths is no longer
feasible. As an interesting application, we are trying to explain the
empirically observed wealth heterogeneity. In the second section,
we introduce aggregate uncertainty and study the business cycle
dynamics of the OLG model.

10.1 Individual Uncertainty

One of the main aims of the heterogeneous-agent literature in
the 1990s has been the explanation of the high concentration of
wealth. In the US economy, the distribution of wealth is char-
acterized by a Gini coefficient equal to 0.78 according to esti-
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mates by Dı́az-Giménez, Quadrini, and Rı́os-Rull (1997) and
Burd́ıa Rodŕıguez, Dı́az-Giménez, Quadrini, and Rı́os-

Rull (2002). One main explanatory factor, of course, is the un-
equal distribution of earnings. However, when we added hetero-
geneous productivity into the Ramsey model in Section 7.3.2, the
model failed to replicate the observed wealth concentration. In
the present chapter, we add another important determinant of
the wealth distribution in addition to heterogeneous individual
productivity: life-cycle savings. Agents accumulate wealth in or-
der to finance consumption in old age. For this reason, we will
consider an overlapping generation model in the following.1

Our OLG model for the study of the wealth distribution is
characterized by the following features:

1. life-cycle savings,
2. uncertain lifetime,
3. uncertain earnings,
4. lump-sum pensions,

and follows Huggett (1996) closely.
Uncertain earnings also generate additional wealth heterogene-

ity as income-rich agents increase their precautionary savings in
order to ensure against the bad luck of a fall in individual earn-
ings. As a consequence, the discount factor β−1 is higher than
the real interest rate 1 + r. Therefore, if the lifetime is certain,
consumption increases over lifetime, even into the final years of
life. Empirically, however, the consumption-age profile is hump-
shaped in the US. For this reason, we also introduce stochastic
survival in order to improve the model’s quality.2 If agents have
lower surviving probabilities in old age, consumption is hump-
shaped again because future periods of life are discounted at a
higher rate.

1 As an alternative way to model life-cycle savings, Castañeda, Dı́az-

Giménez, and Ŕıos-Rull (2003) consider the standard Ramsey model
with heterogeneous productivity. In addition, they assume that agents re-
tire and die with a certain probability, respectively. In the former case,
agents receive pensions which are lower than labor income.

2 Uncertain lifetime has already been introduced in the model of the demo-
graphic transition in Section 9.3.1.
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In our model, three sectors can be depicted: households, pro-
duction, and the government. Households maximize discounted
lifetime utility. They inherit no wealth and leave no bequests.
Firms maximize profits. Output is produced with the help of labor
and capital. The government provides unfunded public pensions
which are financed by a tax on wage income.

Households. Every year, a generation of equal measure is born.
The total measure of all generations is normalized to one. As we
only study steady state behavior, we concentrate on the study
of the behavior of an individual born at the beginning of period
1. Her first period of life is period 1. A subscript t of a variable
denotes the age of the generation, the measure of generation t is
denoted by μt.

Households live a maximum of T + TR years. Lifetime is sto-
chastic and agents face a probability st of surviving up to age
t conditional on surviving up to age t − 1. During their first T
years, agents supply labor h̄ inelastically. After T years, retire-
ment is mandatory. Agents maximize lifetime utility:

E1

⎡⎣T+T R∑
t=1

βt−1
(
Πt

j=1sj

)
u(ct)

⎤⎦ , (10.1)

where β and ct denote the discount factor and consumption at
age t, respectively. The instantaneous utility function u(c) is the
CRRA (constant relative-risk aversion) function:3

u(c) =
c1−η − 1

1− η , (10.2)

where η denotes the coefficient of relative risk aversion.
Heterogeneous labor earnings are introduced in a similar way

as in Section 9.3.1. The worker’s labor productivity e(z, t) is
also stochastic such that the idiosyncratic labor productivity z
is subject to a shock. The shock z follows a Markov process
and takes only a finite number nz of possible values in the set

3 Different from equation (9.2) , we do not include a small constant ψ in the
utility function because we do not consider the case of a zero income.
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Z = {z1 = z, . . . , znz = z} with zi < zi+1 for i = 1, . . . , nz − 1.
Again, the shocks z are independent across agents and the law of
large numbers holds (there is an infinite number of agents) so that
there is no aggregate uncertainty. The labor productivity process
is calibrated in detail below.

Agents are born without wealth, k1 = 0, and do not leave
altruistic bequests to their children. All accidental bequests are
confiscated by the state and used for public consumption. Agents
receive income from capital kt and labor nt and face a borrowing
limit k ≥ k. The budget constraint of the working agent is given
by

kt+1 = (1 + r)kt + (1− τ)wh̄e(z, t)− ct, t = 1, . . . , T, (10.3)

where r and w denote the interest rate and the wage rate per
efficiency unit of labor, respectively. Wage income is taxed at rate
τ .

During retirement, agents receive public pensions b irrespective
of their employment history. The budget constraint of the retired
agent is given by

kt+1 = (1 + r)kt + b− ct, t = T + 1, . . . , T + TR. (10.4)

Production. Firms are of measure one and produce output with
effective labor N and capital K. Effective labor N is paid the
wage w. Capital K is hired at rate r and depreciates at rate δ.
Production Y is characterized by constant returns to scale and
assumed to be Cobb-Douglas:

Y = N1−αKα. (10.5)

In a factor market equilibrium, factors are rewarded with their
marginal product:

w = (1− α)N−αKα, (10.6)

r = αN1−αKα−1 − δ. (10.7)

Government. The government uses the revenues from taxing
labor in order to finance its expenditures on social security:
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τwN =

T+T R∑
t=T+1

μtb. (10.8)

Following a change in the provision of public pensions b, the la-
bor income tax rate τ adjusts in order to keep the government
budget balanced. Government consumption G is exogenous and
is financed by accidental bequests.

Stationary Equilibrium. The applied concept of equilibrium
uses a recursive representation of the consumer’s problem follow-
ing Stokey and Lucas with Prescott (1989). Let Vt(kt, zt) be
the value of the objective function of the t-year old agent with
wealth kt and idiosyncratic productivity level zt. Vt(kt, zt) is de-
fined as the solution to the dynamic program:

Vt(kt, zt) = max
kt+1,ct

{u (ct) + βst+1E [Vt+1(kt+1, zt+1)|zt]} , (10.9)

subject to (10.3) or (10.4) and k ≥ k. Optimal decision rules for
consumption ct(k, z) and next-period capital stock kt+1(k, z) at
age t are functions of wealth k and the idiosyncratic productivity
shock z.

We further need to describe the distribution of wealth and pro-
ductivity in our economy. Remember that μt is the mass of the
t-year old agents and that the total mass of all generations is equal
to one. Furthermore, let Ft(k, z) denote the probability distribu-
tion of the individual states (k, z) ∈ X across age t agents. In our
model, the individual capital stock k is also bounded from above
as the agents cannot save more than they earn over their finite life-
times. Let k̄ denote the upper bound. Accordingly, the state space
X = (k, k̄)×Z is bounded, too. The t-year old agents with a cap-
ital stock and productivity equal or below k and z, respectively,
will make up a proportion of μtFt(k, z) of all agents in the econ-
omy. The distribution Ft(k, z) has the property that Ft(k̄, z̄) ≡ 1.0
for all t. Furthermore, the initial distribution F1(k, z) is given by
the exogenous initial distribution of labor endowment e(z, 1), as
all agents are born with zero assets. The distribution of individual
states across agents is given by the following recursive equation
for all (kt+1, zt+1) ∈ X and t = 1, . . . , T + TR − 1:
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Ft+1(kt+1, zt+1) =
∑
zt∈Z

π (zt+1|zt) · Ft

(
(kt+1)

−1 (kt+1, zt), zt

)
,

(10.10)

where π(zt+1|zt) denotes the exogenously given transition prob-
ability from productivity state zt to zt+1 and (kt+1)

−1 (kt+1, zt)
denotes the inverse of the function for the optimal next-period
capital stock kt+1(kt, zt) with respect to its first argument kt.

4

Obviously, our concept of a stationary distribution corresponds
closely to the one introduced in Chapter 7 for the infinite-horizon
Ramsey model.

We will consider a stationary equilibrium where factor prices
and aggregate capital and labor are constant and the distribution
of wealth is stationary. The following properties characterize the
stationary equilibrium:

1. Individual and aggregate behavior are consistent. The aggre-
gate variables effective labor N , capital K, and consumption
C are equal to the sum of the individual variables.

2. Relative prices {w, r} solve the firm’s optimization problem
by satisfying (10.6) and (10.7).

3. Given relative prices {w, r} and the government policy b, the
individual policy rules ct(.) and kt+1(.) solve the consumer’s
dynamic program (10.9).

4. The government budget (10.8) is balanced.
5. Government consumption G equals accidental bequests.
6. The goods market clears:

KαN1−α = C +G+ δK. (10.11)

7. The distributions Ft, t = 1, . . . , T+TR−1, are consistent with
individual behavior and follow (10.10).

Calibration Periods correspond to years. Agents are born at
real lifetime age 20 which corresponds to t = 1. They work T = 40
years corresponding to a real lifetime age of 59. They live a maxi-
mum life of 60 years (TR = 20) so that agents do not become older

4 Please see also footnote 8 in Chapter 7.
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Table 10.1

Preferences Production

β = 1.011 α = 0.36
η = 1.5 δ = 0.06

h̄ = 0.30

than real lifetime age 79. We use the same survival probabilities
that are presented in Figure 9.7. ψ60 is set equal to zero.

The model parameters are presented in Table 10.1. If not men-
tioned otherwise, the model parameters are taken from Huggett

(1996). The discount rate β is set equal to 1.011. We use the es-
timate by Hurd (1989) that accounts for mortality risk. Notice
again that, different from infinite-lifetime models like the ones
in previous chapters, the discount factor β does not need to be
smaller than one in finite-lifetime models. The credit limit is set
at k = 0. Huggett uses a coefficient of relative risk aversion equal
to η = 1.5. The capital share of output α and the depreciation
rate of capital δ are set equal to 0.36 and 0.06, respectively.

The labor endowment process is given by e(z, t) = ezt+ȳt, where
ȳt is the mean log-normal income of the t-year old. The mean ef-
ficiency index ȳt of the t-year-old worker is taken from Hansen

(1993), and is presented in Figure 9.8. The idiosyncratic produc-
tivity shock zt follows a Markov process. The Markov process is
given by:

zt = ρzt−1 + εt, (10.12)

where εt ∼ N(0, σε). Huggett uses ρ = 0.96 and σε = 0.045.
Furthermore, we follow Huggett (1996) and choose a log-normal
distribution of earnings for the 20-year old with σy1 = 0.38 and
mean y1. As the log endowment of the initial generation of agents
is normally distributed, the log efficiency of subsequent agents
will continue to be normally distributed. This is a useful property
of the earnings process, which has often been described as log-
normal in the literature. We discretize the state space Z using
nz = 9 values. The states z are equally spaced and range from
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Figure 10.1: Lorenz Curve of US and Model Earnings

−2σy1 to 2σy1 . The probability of having productivity shock z1 in
the first period of life is computed by integrating the area under
the normal distribution. The transition probabilities are computed
using the Algorithm 12.2.1. As a consequence, the efficiency index
e(z, t) follows a finite Markov-chain. Furthermore, we set the shift
length equal to h̄ = 0.3.

The earnings process is exogenous in our model. The Lorenz
curve for the earnings in our model and for the US are displayed in
Figure 10.1. The inequality of earnings for the model economy and
for the US are similar. In our model, the lowest quintile of earners
has a higher labor income share than observed empirically, while
the top quintile earns a higher income share than those in the US.5

Hence, we have two countervailing effects on the Gini coefficient.
In our model, the Gini coefficient of labor income is equal to
0.413 and matches empirical values as reported in Chapter 7 quite
closely.

5 The source of the US data is described in Chapter 8.
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Finally, the government provides pensions b. The replacement
ratio of pensions relative to average net wages is set equal to 30%.

Computation. The solution algorithm follows Algorithm 9.1.1
closely and consists of the following steps:

Step 1: Parameterize the model and compute aggregate employ-
ment N .

Step 2: Make initial guesses of the steady state values of the ag-
gregate capital stock K and the social security contribu-
tion rate τ .

Step 3: Compute the values w, r, and b, which solve the firm’s
Euler equation and the government budget.

Step 4: Compute the household’s decision functions by backward
induction.

Step 5: Compute the optimal path for consumption and savings
for the new-born generation by forward induction given
the initial capital stock k1 = 0.

Step 6: Compute the aggregate capital stock K.
Step 7: Update K and return to step 3 until convergence.

The algorithm is implemented in the program Rch101.g. In
step 4, a finite-time dynamic programming problem is to be
solved. Again, we solve this problem with value function iteration
with linear interpolation between grid points. We choose an equi-
spaced grid with k = 0, k̄ = 40, and nk = 601. Associated with
every optimal next period capital stock kt+1(kt, zt) is an optimal
consumption policy ct(kt, zt) = (1+r)kt+b−kt+1(kt, zt) for the re-
tired agent and ct(kt, zt) = (1+r)kt+(1−τ)wh̄e(z, t)−kt+1(kt, zt)
for the working agent, respectively.

In step 5, we compute the endogenous wealth distribution
in every generation over an equispaced grid of the asset space
[k, k̄] × Z with 2nk · nz points. We start with the newborn gen-
eration at t = 1 with zero wealth. Furthermore, we know the
distribution of the idiosyncratic productivity at age 1. Given the
distribution of the capital stock and the productivity at age t,
we can compute the distribution at age t+ 1 from (10.10) by us-
ing the optimal decision functions of the agents, kt+1(kt, zt), and
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the transition probabilities for the idiosyncratic productivities.
We continue to compute the distribution for t = 2, . . . , 60. Notice
that, for given factor prices and policy functions, we can compute
the endogenous stationary distribution in the OLG model with
one iteration only. In the Ramsey model, on the other hand, we
do not know the distribution of the wealth among agents in the
stationary equilibrium or in any period prior to it.

Finally, in step 7, we use extrapolation to stabilize the se-
quence, i.e. let Ki and K∗ denote the starting value in the i-th
iteration and the computed endogenous value of the capital stock,
respectively, then Ki+1 = φKi +(1−φ)K∗. We set φ equal to 0.8.

Results. Figure 10.2 displays the average wealth over the life-
time. As you know by now, the hump-shape of the profile is typical
for the life-cycle model. Agents build up savings during working
life, and assets start to fall after retirement. Therefore, wealth
heterogeneity is higher in the OLG model than in the standard
Ramsey model as agents have different savings at different ages.
Furthermore, we have many agents who are liquidity constrained
and only have zero wealth, especially the young agents with low
productivity. In the Ramsey model of Chapter 8, all agents hold
strictly positive wealth and, for this reason, wealth heterogeneity
is much lower.

Average wealth in the economy amounts to K = 3.94. For our
choice of the earnings process, aggregate effective employment is
equal to N = 0.386 so that the interest rate equals r = 2.15%.
The equilibrium social security contribution rate amounts to τ =
9.75%. The wealth distribution of the model economy and the
US economy are displayed in Figure 10.3. The model economy is
characterized by a much more equal wealth distribution than the
US economy. The Gini coefficient of the wealth distribution in our
model is equal to 0.587 and is below the one for the US economy
(that is approximately equal to 0.78). However, wealth is much
more concentrated than earnings on the one hand, and, on the
other hand, the model generates more wealth heterogeneity than
the Ramsey model with heterogeneous productivity presented in
Section 7.3.2.



10.1 Individual Uncertainty 517

Figure 10.2: Age-Wealth Profile

There are numerous reasons why the endogenous wealth het-
erogeneity of our model is smaller than observed empirically:

1. Pensions are not related to the earnings history of the recipi-
ent. If the earnings-rich agents get higher pensions, one might
suppose that wealth heterogeneity would also be higher. How-
ever, as earnings-poor agents also know that they will only
receive small pensions, they will also save more for precau-
tionary reasons.6

2. We neglect any asset-based means tests of social security.
Hubbard, Skinner, and Zeldes (1995) show that, in the
presence of social insurance programs with means tests, low-
income households are likely to hold virtually no wealth across
lifetime. Unemployment and asset-based social insurance would
imply a much higher proportion of agents with zero or near-
zero wealth.

6 In our own research, we only encountered applications where the introduc-
tion of earnings-related benefits decreased wealth heterogeneity (as mea-
sured by the Gini coefficient).
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Figure 10.3: Lorenz Curve of US and Model Wealth

3. Furthermore, agents are not unemployed. Heer (2003) studies
a life-cycle economy with endogenous search unemployment.
Working agents may loose their job at an exogenous rate;
higher search effort increases the job finding probability, but
searching for a job also causes a disutility for the agent. Heer

(2003) shows that the replacement rate of unemployment in-
surance has only a very small effect on wealth heterogene-
ity. Even though income is distributed from the income-rich
agents to the income-poor workers with the help of unemploy-
ment insurance, higher unemployment insurance also increases
endogenous unemployment so that the number of unemploy-
ment recipients increases. As a consequence, the wealth Gini
coefficient changes by less than one percentage point if the
replacement ratio of unemployment insurance increases from
0% to 50% or even to 100%; for a replacement ratio exceeding
70%, wealth heterogeneity even starts to increase again.

4. We neglect bequests. For example, Kessler and Masson

(1989), considering France, find that only 36% of the house-
holds receive any inheritances and those who do are about 2.4
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times richer than the representative household. Heer (2001b)
considers an OLG model where parents leave altruistic and
accidental bequests to their children. He, however, finds, that
bequests are able to explain only a small fraction of observed
wealth heterogeneity. The main reasons are that i) also poor
agents may receive bequests and ii) agents who expect a high
inheritance in the future also spend more on consumption. Im-
portantly, however, Heer (2001b) only considers intergenera-
tional transfers of physical wealth, but not transfers of human
wealth. Rich parents may have rich children because they may
invest in their college education, for example. Loury (1981)
analyzes parental human capital investment in their offspring.
The allocation of training and hence the earnings of the chil-
dren depend on the distribution of earnings among the par-
ents. Becker and Tomes (1979) present a model framework
comprising both human and non-human capital transfers from
parents to children. The introduction of human capital trans-
fers in an OLG model in order to explain the observed wealth
heterogeneity is a promising question for future research.

5. In our model, agents are not allowed to borrow against antici-
pated bequests implying a credit limit k ≥ 0. For lower binding
constraints, k < 0, wealth heterogeneity increases as demon-
strated by Huggett (1996). In particular, the proportion of
agents holding zero and negative assets increases.

Accounting for these features in our model is likely to result in
an increase of wealth inequality for agents characterized by low
to high asset holdings, however, we are sceptical as to whether it
proves successful in reproducing the observed wealth concentra-
tion among the very rich. As one of the very few exceptions to
these modeling choices (known to us),7 Quadrini (2000) presents
a promising approach in order to explain the high concentration

7
Quadrini and Ŕıos-Rull (1997) present a review of studies of wealth
heterogeneity in computable general equilibrium models with uninsurable
idiosyncratic exogenous shocks to earnings, including business ownership,
higher rates of return on high asset levels, and changes in health and mar-
ital status, among others. A more recent survey of facts and models is
provided by Cagetti and de Nardi (2006).
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of wealth among the very rich agents. He introduces entrepreneur-
ship into a dynamic general equilibrium model.

10.2 Aggregate Uncertainty

In this section, we introduce aggregate uncertainty in the standard
OLG model. As one prominent application consider the effects of
aging and the public pension system on the equity premium.8 A
higher share of older agents is likely to increase the returns from
stocks relative to that from bonds. Old agents prefer to hold a
large part of their wealth in the form of safe assets like bonds
because their (rather safe) non-financial wealth in the form of
discounted pensions is rather small. Younger agents may prefer
to invest predominantly in risky assets like stocks as their total
wealth mainly consists of discounted lifetime labor income that
is characterized by relatively little risk.9 Aging may now increase
the demand of bonds relative to stocks and, thus, raise the equity
premium. If, however, public pension systems are changed from
pay-as-you-go to fully funded, total savings may increase and, if
the pension funds invest the additional savings primarily in the
stock market, the equity premium may fall. Brooks (2002) ex-
plores the impact of the Baby Boom on stock and bond returns
quantitatively in a model with 4 overlapping generations and pre-
dicts a sharp rise in the equity premium when the Baby Boomers
retire. As an important step to answering this question in a more
realistic setting, Storesletten, Telmer, and Yaron (2007)
consider an OLG model with annual periods and analyze the ef-
fects of idiosyncratic risk and life-cycle aspects for asset pricing.

Obviously, in models with aggregate uncertainty, we cannot
study the transition dynamics any more as the time path is sto-
chastic. In order to see this point assume that the US is in a
steady state today (period t = 0) and that there is a sudden un-
expected and permanent decline in the fertility rate. If aggregate

8 Please see also Section 6.3.4 of this book on the equity premium puzzle.
9 There are numerous other variables than age that influence the portfolio

decision of the households as, for example, housing.
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technology were a deterministic variable we could compute the
transition path just like in Section 9.2. In this case, agents would
have to predict the time path for the factor prices. We would
know that after some 200-300 periods the economy is close to the
new steady state and that we may stop the computation. If tech-
nology is stochastic, however, agents can only form expectations
about the time path of factor prices and the number of possible
time paths becomes infinite. Assume that technology can only
take two different values. Even in this case, we had to compute
some 2n different transition paths with n denoting the number of
periods. Given our experience it is save to assume that in a model
with annual periods, n should be in the range 200-300. The com-
putational costs become unbearable.10 Therefore, we will confine
the analysis of OLG models with aggregate uncertainty to the
study of the dynamics around the steady state.

In the following, we will describe two methods for the com-
putation of the dynamics close to the steady-state that you have
already encountered in previous chapters of the book. First, we
will consider models without idiosyncratic uncertainty. In these
models, we can compute the steady state by solving directly for
the individual state variables with the help of non-linear equa-
tion solvers. The method has been described in Section 9.1. Even
though the state space may be quite large including some hundred
variables it is often possible to compute the log-linearization. In
the next subsection, we will use this method to study the business
cycle dynamics of an OLG model with 60 generations. Second, we
consider an OLG model with both idiosyncratic and aggregate
uncertainty in Subsection 10.2.2. As the most practical approach
to the solution of such a problem, we advocate the algorithm of
Krusell and Smith (1998). We will use the latter method in
order to compute the business cycle dynamics of the income dis-
tribution. We will compare our results with those from the model
with infinitely-lived households of Section 8.4.2.

10 As one possible solution to this problem, one can use Monte-Carlo sim-
ulation techniques to compute multiple possible transition paths and the
associated distribution for the factor prices during the transition. We will
not pursue this method here.
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10.2.1 Log-Linearization

There are only few studies that apply linear approximation meth-
ods to large-scale economies OLG models. As one exception,
Rı́os-Rull (1996) also considers the dynamics in a stochastic life-
cycle model.11 In our own work (Heer and Maußner, 2007), we
consider the redistributive effects of inflation following an unan-
ticipated monetary expansion. In the following, we will illustrate
the numerical and analytical methods with the help of a 60-period
OLG model that is described in Example 10.2.1. The model is a
simple extension of Example 9.2.1. In particular, we rather con-
sider 60 than 6 different generations and add a technology shock
εt to production. The (logarithmic) aggregate technology level fol-
lows the AR(1)-process:

lnZt = ρ lnZt−1 + εt, (10.13)

where εt is i.i.d., εt ∼ N(0, σ2). Production, therefore, is given by

Yt = ZtN
1−α
t Kα

t .

The household forms rational expectations about future income
and future prices and maximizes expected lifetime utility. Besides,
the model is identical to the one described in Example 9.2.1.

Example 10.2.1
60-period Overlapping Generations Model with Aggregate
Uncertainty.
Households live 60 periods. Each generation is of measure 1/60. The
first 40 periods, they are working, the last 20 periods, they are retired
and receive pensions. Households maximize expected lifetime utility
at age 1 in period t:

Et

60∑
s=1

βs−1u(cst+s−1, l
s
t+s−1), l = 1− n.

11 Different from our algorithm in this section, he concentrates on the analysis
of a pareto-optimal economy and studies the problem of a central planner.
In particular, he uses the LQ-Approximation presented in Section 2.3 in
order to compute the solution of this model. Our approach also allows for
the computation of the dynamics in a stochastic decentralized economy.
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Instantaneous utility is a function of both consumption and leisure:

u(c, l) =
(clγ)1−η − 1

1− η .

The working agent of age s faces the following budget constraint
in period t:

ks+1
t+1 = (1 + rt)ks

t + (1− τt)wtn
s
t − cst , s = 1, . . . , 40.

The budget constraint of the retired worker is given by

ks+1
t+1 = (1 + rt)ks

t + b− cst , s = 41, . . . , 60,

with k61
t ≡ 0 and l51t = l52t = . . . = l60t ≡ 1.0. Pensions b are constant.

Production Yt is characterized by constant returns to scale and
assumed to be Cobb-Douglas:

Yt = ZtN
1−α
t Kα

t ,

where lnZt follows the AR(1)-process:

lnZt = ρ lnZt−1 + εt,

and εt is i.i.d., εt ∼ N(0, σ2).
In a factor market equilibrium, factors are rewarded with their

marginal product:

wt = (1− α)ZtN
−α
t Kα

t ,

rt = αZtN
1−α
t Kα−1

t − δ.
Furthermore, the government budget is balanced in every period t:

τtwtNt =
20
60
b.

In equilibrium, individual and aggregate behavior are consistent:

Nt =
40∑

s=1

ns
t

60
,

Kt =
60∑

s=1

ks
t

60
,
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and the goods market clears:

ZtN
1−α
t Kα

t =
60∑

s=1

cst
60

+Kt+1 − (1− δ)Kt.

The parameter values are chosen as follows: β = 0.99, η = 2.0, γ = 2.0,
α = 0.3, δ = 0.04, and a non-stochastic replacement ratio of pensions
relative to net wage earnings equal to ζ = b

(1−τ)wn̄ = 30%, where n̄
is the average labor supply in the non-stochastic steady state of the
economy. The parameters of the AR(1) for the technology are set equal
to ρ = 0.814 and σ = 0.0142. These parameters correspond to annual
frequencies by a quarterly AR(1)-process for the Solow residual with
parameter 0.95 and 0.00763, which are the parameters in Prescott

(1986).12

For the economy described in Example 10.2.1, we can compute
the non-stochastic steady state with the help of the methods de-
scribed in Section 9.1. The non-stochastic steady state is charac-
terized by a constant technology level, Zt = Z = 1. Furthermore,
all individual and aggregate variables are constant, too, and are
denoted by a variable without time index. For example, ks and K
denote the non-stochastic steady state capital stock of the individ-
ual at age s and the non-stochastic steady state aggregate capital
stock, respectively. For our calibration, we compute the follow-
ing economy-wide values: K = 1.856, N = 0.2293, b = 0.1175,
τ = 13.04, w = 1.311, r = 2.938%.

Log-Linearization. In Section 9.2, we analyzed the transition
dynamics in OLG models. We refrained from showing that the
economy displays saddlepoint stability, even though our analysis
requires determinancy and stability. In the following, we will show
that, indeed, the model in Example 10.2.1 is stable. Therefore, we
first need to log-linearize the equations characterizing the econ-
omy around the non-stochastic steady state applying the methods
of Chapter 2. These equations, in particular, consist of the first-
order conditions of the households and the firm, the budget con-
straint of the households, and the government budget constraint.

12 The correspondence between the quarterly and annual parameters of the
AR(1) process is shown in the Appendix 5 of this chapter.
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The first-order conditions of the households for s =, 1 . . . , 60 in
period t are analogous to the equations (9.4) and (9.5) for labor
supply and next-period capital stock, respectively:

ul(c
s
t , l

s
t ) = γ (cst )

1−η (1− ns
t )

γ(1−η)−1 = λs
t(1− τt)wt, (10.14)

λs
t = (cst)

−η (lst )
γ(1−η) , (10.15)

1

β
= Et

{
λs+1

t+1

λs
t

[1 + rt+1]

}
. (10.16)

Log-linearization of (10.14)-(10.16) around the non-stochastic
steady state results in:

(1− η)ĉst + (1− γ(1− η)) ns

1− ns
n̂s

t = λ̂s
t −

τ

1− τ τ̂t + ŵt,

s = 1, . . . , 40, (10.17)

λ̂s
t = −ηĉst − γ(1− η)

ns

1− ns
n̂s

t , s = 1, . . . , 40, (10.18)

λ̂s
t = −ηĉst , s = 41, . . . , 60, (10.19)

λ̂s
t = Etλ̂

s+1
t+1 +

r

1 + r
Etr̂t+1, s = 1, . . . , 59. (10.20)

Furthermore, we need to log-linearize the working household’s
budget constraint (9.3) around the steady state for the one-year
old with k1 ≡ 0:

k2k̂2
t+1 = −τwn1τ̂t+(1−τ)wn1ŵt+(1−τ)wn1n̂1

t−c1ĉ1t , (10.21)

and for s = 2, . . . , 40:

ks+1k̂s+1
t+1 =(1 + r)ksk̂s

t + rksr̂t − τwnsτ̂t + (1− τ)wnsŵt

+ (1− τ)wnsn̂s
t − csĉst . (10.22)

Log-linearization of the retired agent’s budget constraint (9.6)
around the non-stochastic steady state results in:

ks+1k̂s+1
t+1 = (1 + r)ksk̂s

t + rksr̂t − csĉst , s = 41, . . . , 59.

Finally, consumption at age s = 60 is given by:

c60ĉ60t = (1 + r)k60k̂60
t + rk60r̂t. (10.23)
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Therefore, we have 60 controls cst , s = 1, . . . , 60, 40 controls ns
t ,

s = 1, . . . , 40, 60 costates λs
t , s = 1, . . . , 60, and 59 predetermined

variables ks
t , s = 2, . . . , 60. We also have 60 + 40 + 60 + 59 = 219

equations. We have three further endogenous variables wt, rt, and
τt. The wage rate is given by the marginal product of labor:

wt = (1− α)ZtK
α
t N

−α
t = (1− α)Zt

(
60∑

s=2

ks
t

60

)α( 40∑
s=1

ns
t

60

)−α

.

Log-linearization results in:

ŵt = Ẑt + α
60∑

s=2

ks

K

1

60
k̂s

t − α
40∑

s=1

ns

N

1

60
n̂s

t . (10.24)

Similarly, we derive the percentage deviation of the interest rate,
r̂t, from its non-stochastic steady state r = αN1−αKα−1:

r̂t = Ẑt − (1− α)
60∑

s=2

ks

K

1

60
k̂s

t + (1− α)
40∑

s=1

ns

N

1

60
n̂s

t . (10.25)

The government budget τwN = (1/3) × b is the remaining
equation that we need to approximate locally around the non-
stochastic steady state:

τ̂t = −ŵt −
40∑

s=1

ns

N

1

60
n̂s

t . (10.26)

Equations (10.24)-(10.26) constitute three further equations in
the three endogenous variables wt, rt, and τt. Finally, we have the
law of motion for the exogenous state variable Zt:

Ẑt−1 = ρẐt+1 + εt. (10.27)

Local Stability of the Non-Stochastic Steady State. Our
log-linearization of the 60-period Auerbach-Kotlikoff model in Ex-
ample 10.2.1 is described by equations (10.17)-(10.27). In order
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to conduct a local stability analysis, it is convenient to express
our system of stochastic difference equations in the form (2.47) of
Chapter 2:

Cuut = Cxλ

[
xt

λt

]
+ Czzt, (10.28a)

DxλEt

[
xt+1,
λt+1

]
+ Fxλ

[
xt

λt

]
= DuEtut+1 + Fuut (10.28b)

+DzEtzt+1 + Fzzt.

Therefore, we define:

ut =
[
ĉ1t , ĉ

2
t , . . . , ĉ

60
t , n̂

1
t , n̂

2
t , . . . , n̂

40
t , r̂t, ŵt, τ̂t

]′
,

xt =
[
k̂2

t , k̂
3
t , . . . , k̂

60
t

]′
,

λt =
[
λ̂1

t , λ̂
2
t , . . . , λ̂

59
t

]′
,

zt = Ẑt.

Notice that λ60
t is not a costate variable because it is implied

by (10.23) and (10.15), and, for this reason, rather constitutes a
control variable than a costate. If we included λ60 in ut, the matrix
Dxλ−DuC

−1
u Cxλ would not be invertible! Thus, we substitute λ̂60

t+1

in (10.20) by −ηĉ60t+1.
In the contemporary equations system (10.28a), the first 40

equations represent the first-order condition of the households
with respect to labor, (10.17), the next 59 equations represent
the equality of the costate variable λs

t , s = 1, . . . , 59, and the
marginal utility of consumption at age s, (10.18), the next equa-
tion is given by the consumption in period 60, (10.23), and the
last three equations are the equations (10.24), (10.25) and (10.26)
for the wage rate, the interest rate, and the government budget,
respectively. For the matrix Cu, we get the following convenient
partition:

Cu =

⎡⎣ A11 A12 A13

A21 A22 A23

A31 A32 A33

⎤⎦ ,
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with the 40× 60 submatrix A11 and the 40× 40 submatrix A12:

A11 =

⎡⎢⎢⎢⎣
(1− η) 0 . . . 0

0 (1− η) . . . 0
...

...
. . .

...
0 0 . . . (1− η)

⎤⎥⎥⎥⎦ ,

A12 =

⎡⎢⎢⎢⎣
Δ1 0 0 . . . 0
0 Δ2 0 . . . 0
...

...
...

. . .
...

0 0 0 . . . Δ40

⎤⎥⎥⎥⎦ ,Δs :=
(
1− γ(1− η)) ns

1− ns
,

and the 40× 3 submatrix A13:

A13 =

⎡⎢⎣0 −1 τ
1−τ

...
...

...
0 −1 τ

1−τ

⎤⎥⎦ .
The 60×60 matrix A21 and the 60×40 matrix A22 together with
the 60× 3 matrix A23 represent (10.18) and (10.23):

A21 =

⎡⎢⎢⎢⎢⎢⎣
−η 0 . . . 0
0 −η . . . 0
...

...
. . .

...
0 0 . . . −η
0 0 . . . c60

⎤⎥⎥⎥⎥⎥⎦ ,

A22 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

Δ1 0 0 . . . 0
0 Δ2 0 . . . 0
...

...
...

. . .
...

0 0 0 . . . Δ40

0 0 0 . . . 0
...

...
...

. . .
...

0 0 0 . . . 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
,Δs = −γ(1 − η) ns

1− ns
,

A23 =

⎡⎢⎢⎢⎣
0 0 0
0 0 0
...

...
...

−rk60 0 0

⎤⎥⎥⎥⎦ .
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The last three rows are given by the 3 × 60 matrix A31 = 0,
the 3× 40 matrix A32 and the 3× 3 matrix A33:

A32 =

⎡⎣ αn1

N
1
60

αn2

N
1
60

. . . αn40

N
1
60

−(1 − α)n1

N
1
60
−(1− α)n2

N
1
60

. . . −(1− α)n40

N
1
60

n1

N
1
60

n2

N
1
60

. . . n40

N
1
60

⎤⎦ ,

A33 =

⎡⎣0 1 0
1 0 0
0 1 1

⎤⎦ .
The matrix Cxλ is represented by:

�
�����������������

0 0 . . . 0 1 0 . . . 0
0 0 . . . 0 0 1 . . . 0

...
0 0 . . . 0 1 0 . . . 0
0 0 . . . 0 0 1 . . . 0

...
0 0 . . . (1 + r)k60 0 0 . . . 0

αk2

K
1
60

αk3

K
1
60

. . . α k60

K
1
60

0 0 . . . 0

−(1 − α) k2

K
1
60

−(1 − α) k3

K
1
60

. . . −(1 − α) k60

K
1
60

0 0 . . . 0
0 0 . . . 0 0 0 . . . 0

�
�����������������

,

and, finally, the remaining matrix Cz from (10.28a) is equal to:

Cz = [0, 0, . . . , 0, 0, . . . , 0, 1, 1, 0]T .

The dynamic equation system (10.28b) is characterized by the
matrices Dxλ, Dxλ, Du, Fu, Dz, and Fz. The first 59 rows of these
matrices represent the first-order conditions of the household with
respect to ks+1

t+1 , s = 1, . . . , 59, as described by (10.20). In the 59th

equation, we have replaced λ̂60
t+1 by the percentage deviation of

the marginal utility of consumption of the 60-year old, −ηĉ60t+1

as explained above. The remaining 59 equations are the budget
constraints of the household at age s = 1, . . . , 59:



530 Chapter 10: Stochastic Overlapping Generations Models

Dxλ =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 . . . 0 0 . . . 0 0 −1 . . . 0
...

0 0 . . . 0 0 . . . 0 0 0 . . . 0
k2 0 . . . 0 0 . . . 0 0 0 . . . 0
0 k3 . . . 0 0 . . . 0 0 0 . . . 0

...
0 0 . . . 0 k42 . . . 0 0 0 . . . 0

...

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
,

Fxλ =

�
��������������

0 0 . . . 0 0 . . . 0 1 0 . . . 0
...

0 0 . . . 0 0 . . . 0 0 0 . . . 1
0 0 . . . 0 0 . . . 0 0 0 . . . 0

−(1 + r)k2 0 . . . 0 0 . . . 0 0 0 . . . 0
...

0 0 . . . −(1 + r)k41 0 . . . 0 0 0 . . . 0
...

�
��������������

,

Du =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 . . . 0 0 0 . . . 0 r
1+r

0 0
...

0 0 . . . −η 0 0 . . . 0 r
1+r

0 0

0 0 . . . 0 0 0 . . . 0 0 0 0
0 0 . . . 0 0 0 . . . 0 0 0 0

...
0 0 . . . 0 0 0 . . . 0 0 0 0

...

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
,

and Dz = Fz = 0. For expositional reasons, we decompose the
matrix Fu into convenient submatrices:

Fu =

[
B11 B12 B13

B21 B22 B23

]
,

with the 59× 60 submatrix B11 = 0, 59× 40 submatrix B12 = 0,
and 59 × 3 submatrix B13 = 0. The submatrix B21 of dimension
59× 60 is given by:
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B21 =

⎡⎢⎢⎢⎣
−c1 0 . . . 0 0
0 −c2 . . . 0 0
...

...
...

...
...

0 0 . . . −c59 0

⎤⎥⎥⎥⎦ .
The submatrix B22 of dimension 59×40 describes the coefficients
of the terms n̂t:

B22 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

(1− τ)wn1 0 . . . 0
0 (1− τ)wn2 . . . 0

...
0 0 . . . (1− τ)wn40

0 0 . . . 0
...

0 0 . . . 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
.

Finally, the 59 × 3 submatrix B23 is as follows:

B23 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 (1− τ)wn1 −τwn1

rk2 (1− τ)wn2 −τwn2

rk3 (1− τ)wn3 −τwn3

...
rk40 (1− τ)wn40 −τwn40

rk41 0 0
...

rk59 0 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
.

This system of equations can be solved with the methods in-
troduced in Chapter 2. In particular, we can reduce the system
to the equation systems (2.51):

Et

[
xt+1

λt+1

]
= W

[
xt

λt

]
+Rzt,

W =
(
Dxλ −DuC

−1
u Cxλ

)−1 (
Fxλ − FuC

−1
u Cxλ

)
,

R =
(
Dxλ −DuC

−1
u Cxλ

)−1

× [(Dz +DuC
−1
u Cz

)
Π +

(
Fz − FuC

−1
u Cz

)]
.
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In our problem, the matrix Dxλ −DuC
−1
u Cxλ is invertible and

we can compute the matrix W . The economy displays local sad-
dlepoint stability around the non-stochastic steady state if and
only if the number of eigenvalues of W inside the unit circle is
equal to the number of predetermined variables. As it turns out,
the matrix W of the dynamic system (10.28a)-(10.28b) has 59
eigenvalues with absolute value less than one which is exactly the
number of predetermined variables ks

t , s = 2, . . . , 59.13 Therefore,
our economy is locally stable.14

Business Cycle Dynamics. How do the business cycle dy-
namics of the OLG model compare with those of the standard
Ramsey model? For this reason, we look at the impulse response
functions of our OLG model and also compute artificial time series
for output Yt, investment It = Kt+1− (1− δ)Kt, consumption Ct,
working hours Nt, and the real wage wt. The impulse responses
and statistics are computed with the help of program RCh1021.g,
which only takes seconds for the computation. The impulse re-
sponses of the technology level Z and the endogenous variables
Y , I, K, C, and N are presented in Figure 10.4. Notice that we
used years rather than quarters as time periods which is usually
not the case in business cycle studies that are based on the sto-
chastic Ramsey model. The impulse responses are similar to those
in the RBC model. Interestingly, however, employment even un-
dershoots its long-run steady state value along the adjustment
path after 4 years.

Analogous to our procedure in Section 2.4, we use the linear
policy function for x, xt+1 = Lx

xxt+L
x
zzt, and the GAUSS random

number generator rndn to simulate time series data. The logs of
the results are passed to the HP-Filter (with λ = 100 for annual
data) in order to get percentage deviations from the stationary
solution. Table 10.2 presents the second moments from the filtered
series for the OLG model. Be careful with comparing the results
obtained from the annual periods of the OLG model with those

13 In the exercises, you are asked to show that Example 9.2.1 also displays
local stability.

14 See Laitner (1990) for a detailed analysis of local stability and determi-
nancy in Auerbach-Kotlikoff models.



10.2 Aggregate Uncertainty 533

Figure 10.4: Impulse Responses in the OLG Model

presented in Table 1.2 from quarterly periods for the stochastic
Ramsey model.

The cyclical behavior of the US economy during 1956-87 is
presented in parentheses in Table 10.2.15 The table shows that
all variables in our model are not volatile enough. Furthermore,
consumption in our model varies as much as output, while this
is obviously not the case for the US economy. The correlations of
investment, hours, and consumption with output in our model,
however, are in good accordance with the US data.

10.2.2 The Algorithm of Krusell and Smith in
Overlapping Generations Models

The Algorithm proposed by Krusell and Smith (1998) that
you learned about in Section 8.3 can also be applied to economies

15 The data is taken from Table 4 in Ŕıos-Rull (1996).
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Table 10.2

Variable sx rxy rx

Output 0.454 1.00 0.78
(2.23) (1.00)

Investment 1.60 0.55 0.36
(8.66) (0.82)

Consumption 0.455 0.80 0.78
(1.69) (0.86)

Hours 0.456 0.47 0.78
(1.88) (0.94)

Real Wage 1.04 −0.07 0.40

Notes: sx:=standard deviation of HP-filtered simulated series
of variable x, rxy:=cross correlation of variable x with output,
rx:=first order autocorrelation of variable x. Numbers in paren-
thesis give the empirical magnitudes computed from US yearly
data between 1956 and 1987.

with finite lifetime with some minor modifications. The individ-
ual state space is simply characterized by an additional dimension
which is age. Therefore, the simulation step becomes more time-
consuming. Besides, we have not encountered any other limita-
tions in the application of the Krusell-Smith algorithm to finite-
lifetime economies in our experience. In particular, the goodness of
fit for the law of motion for a particular functional form is almost
identical to the one in infinite-lifetime models. Given the current
computer technology, however, the algorithm is still very time-
consuming. Below we will present a simple example that takes us
some 20 hours to compute with an Intel Pentium(R) M, 319 MHz
machine, even though technology as the only stochastic aggregate
variable is assumed to take only two different values. Therefore,
adding more stochastic aggregate variables may serious impede
computational time.

In the following, we will apply the Krusell-Smith algorithm to
an overlapping generations business cycle model.16 The analysis in

16 The exposition follows Heer (2007).
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this section is very closely related to that of the infinite-lifetime
model in Section 8.4.2. Hereinafter, we study the business cy-
cle dynamics of the income distribution in an OLG model with
aggregate uncertainty. For this reason, let us briefly review our
results from Chapter 8. In Table 8.2, we presented the empiri-
cal correlation between output and income shares as estimated
by Castañeda,Dı́az-Giménez, and Rı́os-Rull (1998b). The
US income distribution is highly, but not perfectly procyclical for
the low income quintiles, countercyclical for the top 60-95%, and
acyclical for the top 5%. In their model, cyclical fluctuations result
from the stochastic technology level. During a boom, the number
of unemployed workers decreases. As a consequence, the relative
income share of the lower income quintiles rises at the expense
of the higher income quintiles. However, the income shares are
almost perfectly correlated with output, either positively or neg-
atively. Therefore, we also fail to replicate the income dynamics
of the very income-rich which is acyclical.

In the following, we present a simple business cycle model with
overlapping generations and elastic labor supply in order to im-
prove the modeling of the cyclical income distribution dynamics.
We consider households with different productivity types. In ad-
dition, individual productivity is also age-dependent and subject
to an idiosyncratic shock so that we are able to match both the
observed income and wealth heterogeneity. The latter feature, of
course, is also important for the study of the factor income dis-
tribution dynamics because we also aim for the replication of the
cyclical movements of the capital income. Aggregate uncertainty
is introduced in the form of a shock on aggregate production tech-
nology.

In our model, the almost perfect correlation of the lower income
quintiles with output is reduced as the high-productivity agents
have a more elastic labor supply than their low-productivity con-
temporanies.17 In addition, the share of the top 5% of the income
earners is almost acyclical as i) many of the income-rich agents are

17
Heer and Maußner (2007) show that this does not need to be the case
in the presence of progressive income taxation.
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wealth-rich retired agents and ii) the wealth-rich workers also have
a less elastic labor supply than the wealth-poor workers. During an
economic expansion, both wages and pensions increase. Pensions
are tied to the current wage rate. However, workers increase their
labor supply, which is not possible for retired workers. Therefore,
the income share of workers increases and is procyclical.

An OLG Model of the Income Distribution Business Cy-
cle Dynamics. In the model, three different sectors are de-
picted: households, firms, and the government. Households differ
with regard to their individual productivity and are also subject
to idiosyncratic productivity risk. They maximize discounted life-
time utility with regard to their intertemporal consumption, capi-
tal, and labor supply. Firms are competitive and maximize profits.
The government provides pensions which it finances with a tax on
wage income.

Households. Households live 70 periods. Periods are equal to
one year. Households are born at age 1 (corresponding to real
lifetime age 20). Each generation is of measure 1/70. The first
45 periods, they work, the last 25 periods, they are retired and
receive pensions. Households maximize expected lifetime utility
at age 1 in period t:

Et

70∑
s=1

βs−1u(cst+s−1, l
s
t+s−1), (10.29)

where s denotes age. Instantaneous utility is a function of both
consumption c and leisure l:

u(c, l) =
(cγl1−γ)

1−η − 1

1− η .

The total time endowment is equal to one and allocated between
leisure l and work n, n+ l = 1.

The worker’s labor productivity e(s, ε, z) = εzeȳs depends on
the agent’s permanent efficiency type ε ∈ E = {ε1, ε2}, his idio-
syncratic stochastic productivity z ∈ Z = {z1, z2}, and his age
s ∈ S. This modeling of labor productivity has often been applied



10.2 Aggregate Uncertainty 537

in DGE analysis for the following reasons: i) Differences in the per-
manent efficiency type ε help to generate the wage heterogeneity
that is observed empirically. In our case, two different efficiency
types are enough to achieve this aim. ii) Workers will build up
precautionary savings if they face idiosyncratic productivity risk
z. Therefore, the wealth distribution becomes more heterogenous
in better accordance with reality. iii) The age-dependent compo-
nent ȳs helps to explain differences in the age-income distribution
that is important to explain the movement of the cross-section
factor shares.

In each period t, an equal measure of 1-year old workers of
productivity types e(1, εi, zj), i = 1, 2, j = 1, 2, is born. During
working age, s = 1, . . . , 44, the process for idiosyncratic produc-
tivity zs is a Markov chain:

π(z′|z) = Prob {zs+1 = z′|zs = z} =

(
πz

11 πz
12

πz
21 πz

22

)
. (10.30)

Depending on his efficiency type ε, the agent receives pensions
bt(ε) = εb̄t in old age that are financed by a social security tax
τw,t on the young workers’ wage income.

Let k, w, and r denote the individual capital stock, the wage
rate, and the interest rate, respectively. The working agent of age
s faces the following budget constraint in period t:

ks+1
t+1 = (1 + rt)k

s
t + (1− τw,t)wte(s, ε, z)n

s
t − cst , s = 1, . . . , 45.

(10.31)

The budget constraint of the retired worker is given by

ks+1
t+1 = (1 + rt)k

s
t + bt(ε)− cst , s = 46, . . . , 70. (10.32)

Agents are born without capital at age 1, k1
t ≡ 0, and do not

work in old age, lst = 1 for s ≥ 46. In addition, we impose a
borrowing constraint with ks

t ≥ 0.

Firms. Firms are competitive and produce output using capital
K and laborN . Production Y is characterized by constant returns
to scale and assumed to be Cobb-Douglas:
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Yt = AtN
1−α
t Kα

t .

The aggregate technology level At ∈ {A1, A2} follows a 2-state
Markov process:

π(A′|A) = Prob {At+1 = A′|At = A} =

(
πA

11 πA
12

πA
21 πA

22

)
. (10.33)

In a factor market equilibrium, factors are rewarded with their
marginal product:

wt = (1− α)AtN
−α
t Kα

t , (10.34)

rt = αAtN
1−α
t Kα−1

t − δ. (10.35)

Capital K depreciates at rate δ.

Government. The government provides pensions to the retired
agents. Pensions are proportional to the current-period wage rate
with the replacement ratio being denoted by ζ . In addition, we
distinguish between the two cases: pensions are either lump-sum
or depend on the permanent efficiency type ε:

bt =

{
ζwtn̄ lump-sum,
ζεwtn̄ efficiency-dependent.

n̄ denotes the average labor supply in the economy in the non-
stochastic steady state (with A ≡ 1). Therefore, pensions of the
retired agents do not increase if the contemporary workers increase
their labor supply.

Stationary Equilibrium. In the stationary equilibrium, indi-
vidual behavior is consistent with the aggregate behavior of the
economy, households maximize intertemporal utility, firms max-
imize profits, and factor and goods’ markets are in equilibrium.
Let Ft(k, s, ε, z) denote the distribution of individual wealth k,
age s, the efficiency type ε, and idiosyncratic productivity z in
the period t.

A stationary equilibrium for a government policy {ζ} and ini-
tial distribution F0(k, s, ε, z) in period 0 corresponds to a price
system, an allocation, and a sequence of aggregate productivity
indicators {At} that satisfy the following conditions:
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1. Households maximize the intertemporal utility (10.29) subject
to the budget constraint (10.31) or (10.32), and the dynamics
of the idiosyncratic productivity level z, (10.30). This gives
rise to the following first-order conditions:

1− γ
γ

cst
1− ns

t

= (1− τw,t)wte(s, ε, z),

(1− ns
t )

(1−γ)(1−η)

(cst )
1−γ(1−η)

= βEt

(
1− ns+1

t+1

)(1−γ)(1−η)(
cs+1
t+1

)1−γ(1−η)
[1 + rt+1] .

Individual labor supply nt(k, s, ε, z), consumption ct(k, s, ε, z),
and optimal next period capital stock k′t(k, s, ε, z) in period t
are functions of the individual state variables {k, s, ε, z} and
also depend on the period t.

2. Firms maximize profits satisfying (10.34) and (10.35).
3. The aggregate variables employment Nt, capital Kt, consump-

tion Ct, and pensions Bt are equal to the sum of the individual
variables.

4. The government budget is balanced:

Bt = τw,twtNt.

In particular, the contribution rate τw,t adjusts in each period.
5. The goods’ market clears:

Ct +Kt+1 − (1− δ)Kt = Yt.

6. The cross-sectional distribution Ft evolves as

Ft+1(k
′, s+ 1, ε, z′) =

∑
z

π(z′|z)
∑

k=(k′
t)

−1(k′,ε,s,z)

Ft(k, s, ε, z),

where (k′t)
−1(.) denotes the inverse of the policy function

k′t(.).
18 For the newborns with efficiency type ε ∈ {ε1, ε2} and

idiosyncratic productivity z in {z1, z2} in period t + 1, the
distribution is given by:

Ft+1(0, 1, ε, z) =
1

4× 70
.

18 In the model, k′(.) is a strictly monotone increasing function of k.
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Calibration. We choose the parameter values β = 0.99, η = 2.0,
γ = 0.28, α = 0.35, δ = 0.08 that are standard in the business
cycle literature and have been applied repeatedly in this book. The
Markov process (10.33) of aggregate technology level is calibrated
so that the average duration of one cycle is equal to 6 years:

π(A′|A) =

(
2/3 1/3
1/3 2/3

)
. (10.36)

Aggregate technology is chosen so that the mean Ā is equal to
one and the annual standard deviation of output is approximately
equal to 2% implying {A1, A2} = {0.98, 1.02}.

The calibration of the individual productivity e(s, ε, z) is cho-
sen in accordance with Krueger and Ludwig (2007). In particu-
lar, we pick {ε1, ε2} = {0.57, 1.43} so that the average productivity
is one and the implied variance of labor income for the new en-
trants at age s = 1 is equal to the value reported by Storeslet-

ten, Telmer, and Yaron (2007). The annual persistence of the
idiosyncratic component z is chosen to be 0.98. In addition, idio-
syncratic productivity has a conditional variance of 8%, implying
{z1, z2} = {0.727, 1.273}, and

π(z′|z) =

(
0.98 0.02
0.02 0.98

)
. (10.37)

The age-efficiency ȳs profile is taken from Hansen (1993).19 The
calibration implies an average labor supply approximately equal
to n̄ = 0.3 and a Gini coefficient of income (wealth) equal to
0.42 (0.58) in good accordance with empirical observations, even
though the values are lower than those of most recent studies
on the empirical wealth and income distribution. As pointed out
before, Budŕıa Rodŕıguez, Dı́az-Giménez, Quadrini, and
Rı́os-Rull (2002) find a value of 0.55 (0.80) for the income Gini
(wealth Gini) for the US economy.

The replacement ratio of average pensions relative to net wage
earnings is equal to ζ = b̄t

(1−τw,t)wtn̄
= 30%, with n̄ = 0.3.

19 See Section 9.3.2.
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Computation. In order to compute the OLG model with ag-
gregate uncertainty, we use the algorithm of Krusell and Smith

(1998). The GAUSS program Rch1022.g implements the algo-
rithm that is described by the following steps:

Algorithm 10.2.1 (Krusell-Smith Algorithm for OLG Mod-
els)

Purpose: Computation of the OLG model with individual and
aggregate uncertainty

Steps:

Step 1: Compute the non-stochastic steady state with A ≡ 1. Store
the policy functions and the steady-state distribution of
{k, s, ε, z}.

Step 2: Choose an initial parameterized functional form for the
law of motion for the aggregate next-period capital stock
K ′ = g(K,A) and employment N ′ = h(K ′, A′).

Step 3: Solve the consumer’s optimization problem as a function
of the individual and aggregate state variables, {k, s, ε, z;
K,A}.

Step 4: Simulate the dynamics of the distribution function.
Step 5: Use the time path for the distribution to estimate the law

of motion for K ′ and N ′.
Step 6: Iterate until the parameters converge.
Step 7: Test the goodness of fit for the functional form using,

for example, R2. If the fit is satisfactory, stop, otherwise
choose a different functional form for g(.) and/or h(.).

In the first step, the non-stochastic steady state allocation is
computed with standard methods. In particular, we discretize the
individual state space using a grid over the individual asset space k
of 50 points and interpolate linearly between points to evaluate the
policy functions off grid points. The policy functions k′(k, s, ε, z)
and n(k, s, ε, z) are computed from the first-order conditions of
the household starting in the last period of life, s = 70. In the
last period of his life, the retired agent consumes all his income.



542 Chapter 10: Stochastic Overlapping Generations Models

Therefore, k′(k, 70, ε, z) = 0 for all grid points {k, 70, ε, z}. In the
next iteration, we consider the household of age s = 69. Special
care has to be taken with regard to possible corner solutions k′ =
0. For the grid point {k, s, ε, z}, we evaluate the residual function
for k′ = 0:

rf(k, s, ε, z) = (cst)
γ(1−η)−1 − βEt

(
cs+1
t+1

)γ(1−η)−1
[1 + rt+1] ,

with cs+1 = c(k′, s + 1, ε, z). Remember that we have stored the
policy function cs+1 during the previous iteration. If the resid-
ual function is larger or equal zero, then the optimal next-period
capital stock is equal to zero, k′(k, s, ε, z) = 0. Otherwise, an in-
terior solution with k′ > 0 exists that solves the above equation
and we can apply our non-linear equations solver FixvMN1. The
computation is carried out in the routine rfold of the program
Rch1022.g.

For the working agent, we also have to take care of the corner
solution n = 0. In order to facilitate the computation, we eliminate
the labor supply n from the budget constraint with the help of
the first-order condition for the labor supply implying:

cst = γ [(1− τw,t)e(s, ε, z)wt + (1 + rt)k − k′] , (10.38)

ns
t = 1− 1− γ

γ

cst
(1− τw,t)e(s, ε, z)wt

. (10.39)

Just like in the case of the retired agent, we compute the resid-
ual function from the Euler equation of the working agent:

rf(k, s, ε, z) =
(1− ns

t )
(1−γ)(1−η)

(cst )
1−γ(1−η)

− βEt

(
1− ns+1

t+1

)(1−γ)(1−η)(
cs+1
t+1

)1−γ(1−η)
[1 + rt+1] .

The optimal next-period policy functions cs+1 and ns+1 have been
stored in previous iterations. For the 45-year old worker, the next
period labor supply is zero as he will retire. In order to find the
optimal policy functions, we first evaluate the residual function for
k′ = 0 to find out whether we have a corner solution or not. If ns

t
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as computed from (10.39) is below zero, we recompute the residual
function setting ns

t ≡ 0. While the first computation is done in the
procedure rfyoung, the second one is carried out in the procedure
rfyoung1 in the program Rch1022.g. If the residual is below zero,
k′ = 0 is the optimal solution, otherwise, we solve the non-linear
equation for k′. Again, we have to check if the optimal solution
from rfyoung implies n ≥ 0. Otherwise, we have to compute k′

with the help of the routine rfyoung1.
In order to solve the non-linear equations problem, it is helpful

to find a good starting value. In fact, we try different initial values
and take the one that implies the lowest absolute value for the
residual function. Possible candidate solutions include the optimal
next-period capital stock k′ for the agent i) that is one year older,
but otherwise equal with regard to {k, ε, z} or ii) that has a capital
stock which is the adjacent grid point. We also try iii) k′ = 0 or
iv) k′ = k. As a consequence, we do not encounter the problem
that our computation breaks down because we have to evaluate
the utility function for c < 0.

In step 1, we iterate over the aggregate capital stock and em-
ployment to find the non-stochastic steady-state. The optimal pol-
icy functions for the steady state are stored in order to use them
as an initial guess for the policy functions in step 3. Similarly,
we save the non-stochastic steady state distribution and use it as
initial distribution for the simulation of the stochastic economy
in step 4.

In the second step, we postulate the following laws of motion
for the next-period capital stock and employment:

K ′ = exp[θ0 + θ1 ln(K) + θ21A′=A1 + θ31A′=A1 ln(K)],

N ′ = exp[κ0 + κ1 ln(K ′) + κ21A′=A1 + κ31A′=A1 ln(K ′)].

Notice in particular that next-period employment is a function
of next-period capital stock K ′ and next-period aggregate produc-
tivity A′ only. Therefore, employment N is not an aggregate state
variable. As an initialization, we set θ2 = θ3 = κ1 = κ2 = κ3 = 0.
We choose θ1 = 0.9 and compute θ0 and κ0 so that K ′ = K and
N ′ = N correspond to their non-stochastic steady state values,
respectively.
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As our solution, we find the following laws of motion:

K ′ = e0.0610+0.0126 ln(K)+0.9076 1A′=A1
−0.0043 1A′=A1

ln(K),

N ′ = e−1.265+0.0179 ln(K ′)−0.1751 1A′=A1
+0.0064 1A′=A1

ln(K ′).

In step 3, we compute the individual policy functions as func-
tions of the individual and aggregate state variables for given law
of motion for K ′ and N ′. For this reason, we choose a rather loose
grid for the aggregate capital stock K as the curvature of the
policy function with respect to this argument is rather low. We
find that 7 points are sufficient. Furthermore, we choose 80% and
120% of the non-stochastic steady state aggregate capital stock
as the lower and upper boundary for this interval. In our simu-
lations, the aggregate capital stock always remains within these
boundaries.

Starting with the non-stochastic steady state distribution as
our initial distribution F0(k, s, ε, z), we compute the dynamics
of the economy using the Algorithm 7.2.3. We use a pseudo-
random number generator in order to simulate the technology
level {At} over 200 periods repeatedly. Given the distribution
in period t, Ft(k, s, ε, z), we can compute the next-period dis-
tribution, Ft+1(k, s, ε, z), with the help of the policy functions
k′(k, s, ε, z;K,A) and n(k, s, ε, z;K,A). In addition, we can com-
pute aggregate production and the income shares of the different
quintiles.

Let us emphasize one point at this place. Many studies on OLG
models with aggregate uncertainty consider a sample of 1,000
households for each generation or so and simulate their behav-
ior. We find that this method has several disadvantages. First, it
is very time consuming. We instead advocate to store the actual
distribution at the grid points {k, s, ε, z} as in Algorithm 7.2.3.
This procedure requires less storage capacity. Importantly, the
computation of the next-period distribution is much faster than
the simulation of some 1,000 households in each generation. Sec-
ond, if we simulate the behavior of the household sample for each
generation, we will have to use a random number generator in
order to switch the agents type from z to z′. As we are only us-
ing some 1,000 agents, the law of large numbers does not need to
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hold and the percentage of the agents with z′ = z1 and z′ = z2 is
not equal to 50%, respectively. Therefore, during our simulation,
we always have to adjust the number of agents with productivity
z′ = z1 (z′ = z2) to one half in each generation which involves
some arbitrariness as we have to select some households whose
productivity is changed ad hoc.20

Finally, in step 6, we update the parameters by estimating the
law of motions for the simulated time series with the help of OLS.
We stop the algorithm as soon as the maximum change of the
θi and κj is below 0.001. In our last iteration, the R2 in the two
regressions of the law of motion exceeds 0.999, respectively. There-
fore, we can be confident that our postulated laws of motion g(.)
and h(.) are satisfactory. The computation of Rch1022.g takes
some 20 hours on an Intel Pentium(R) M, 319 MHz machine.

Business Cycle Dynamics of the Income Distribution.
Figure 10.5 describes the behavior of our economy in the non-
stochastic steady state. In the top row, we graph the average
wealth and labor supply of each generation, while the average total
income of each generation and the efficiency-age profiles e(s, ε, z)
for the four productivity types {εi, zj} for i = 1, 2, j = 1, 2, are
displayed in the bottom row. Agents accumulate savings until re-
tirement age s = 45 (corresponding to real lifetime age 64 in the
Figure 10.5) and dissave thereafter. Total income (wage and inter-
est income before taxes plus pensions) peaks at real lifetime age
50. Our average-age profiles accord very well with empirical ob-
servations in Budŕıa Rodŕıguez, Dı́az-Giménez, Quadrini,
and Rı́os-Rull (2002). Based on the 1998 data from the Sur-
vey of Consumer Finances they find that US household income,
earnings, and wealth peak around ages 51-55, 51-55, and 61-65,
respectively.

In order to compute the correlation of the income distribution
with output, we simulate the dynamics of our economy repeat-
edly over 200 periods. One of these simulations is illustrated in
Figure 10.6. In the lower picture, we graph the dynamics of out-

20 Please compare Section 8.3.
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Figure 10.5: Non-Stochastic Steady State Age-Profiles

put.21 If the technology level jumps from A1 to A2 or vice versa,
this is also instantaneously reflected in the movement of the pro-
duction level. In the upper picture, we graph the behavior of the
Gini coefficient of total income. Obviously, total income is highly
procyclical. The correlation coefficient of the total income Gini
coefficient with output amounts to 0.87. As a simple explana-
tion, the high-productivity workers increase their labor supply by
a higher percentage than the low-productivity workers when the
wage rates increases during an economic expansion.

Table 10.3 shows in detail the behavior of the income quin-
tiles. In the first entry row, we display the empirical correlations
of output with the 1st, 2nd, 3rd, and 4th income quintiles, and
the 80-95% and 95-100% income groups for the US economy, re-
spectively.22 In the second row, you find the values as resulting

21 Logarithmic output has been detrended using the Hodrick-Prescott filter
with smoothing parameter λ = 100.

22 The estimates are reproduced from Table 4 in Castañeda, Dı́az-

Giménez, and Ŕıos-Rull (1998b).
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Figure 10.6: Time Series Simulation

from the simulation of the most preferred model of Castañeda,
Dı́az-Giménez, and Rı́os-Rull (1998b). The last two lines dis-
play the values obtained from simulating our economy for the
two cases that pensions are either proportional to the individual
efficiency ε or lump-sum. Obviously, the model with lump-sum
pensions is our preferred model (last row). In this case, the in-
come share of the first and fourth income quintile and the top 5%
group match the empirical correlations almost perfectly, while the
correlations of the 2nd and 3rd income quintiles with output are
negative and of opposite sign compared to the empirical ones.

In our model, the dynamics of the income distribution are
mainly driven by the intertemporal substitution of labor. During
an economic expansion, wages increase and labor (replacement)
income is redistributed 1) from low-productivity to high produc-
tivity workers, 2) old wealth-rich to young wealth-poor workers,
as the latter groups increase their labor supply to a larger ex-
tent than the former, respectively. In addition, 3) income of the
working agents increases relative to the one of retired agents. In
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Table 10.3

0-20% 20-40% 40-60% 60-80% 80-95% 95-100%

US 0.53 0.49 0.31 -0.29 -0.64 0.00

Castañeda
et al. (1998) 0.95 0.92 0.73 -0.56 -0.90 -0.84

our model
i) bt(ε) = εb̄t -0.15 -0.07 -0.08 -0.01 0.31 0.03
ii) bt(ε) = b̄t 0.40 -0.47 -0.11 -0.24 0.60 0.04

Notes: Entries in rows 1 and 2 are reproduced from Table 4 in Castañeda et
al. (1998b). Annual logarithmic output has been detrended using the Hodrick-Prescott
filter with smoothing parameter λ = 100.

our economy with overlapping generations, the highest income
quintile consists of the workers aged 50-60 with high productiv-
ity as these agents have the highest wage income and relatively
high interest income. Since these agents also hold relatively high
wealth, they do not increase their labor supply as much as the
younger high-productivity workers. As a consequence, the total
income share of the top 5% income earners is almost acyclical.

The lowest income quintile in our economy consists of the very
old retired workers (aged 80 and above in real lifetime) and the
young workers with low productivity ε1 and z1 (aged 20-30 in
real lifetime). Since the pension income falls relative to the wage
income during an economic expansion, the correlation of output
with the income share of the first quintile is not close to unity
as in Castañeda, Dı́az-Giménez, and Rı́os-Rull (1998b).
Therefore, the introduction of overlapping generations, pensions,
and elastic labor may help to improve the modeling of the income
distribution business cycles dynamics.
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Appendix 5: Parameters of the AR(1)-Process with Annual
Periods

In this Appendix, we derive the parameters (ρ, σ) that we were using
for the AR(1)-process with annual periods in Section 10.2.1. In par-
ticular, we choose (ρ, σ) so that they correspond to the parameters of
the AR(1) with quarterly periods, (ρq, σq) = (0.95, 0.00763).

Let zq
t denote the logarithm of the technology level in the model

with quarterly periods that follows the AR(1)-process:

zq
t+1 = ρqzq

t + εqt+1,

where εqt ∼ N
(
0, (σq)2

)
. Similarly,

zq
t+2 = ρqzq

t+1 + εqt+2,

zq
t+3 = ρqzq

t+2 + εqt+3,

zq
t+4 = ρqzq

t+3 + εqt+4.

Let za
T denote the logarithm of the technology level in the correspond-

ing model with annual periods that follows the AR(1)-process:

zq
T+1 = ρzq

T + εT+1,

where εT ∼ N
(
0, σ2

)
.

If we identify the technology level zq at the beginning of the quar-
ters t, t+4, t+8 with the annual technology level za at the beginning
of the periods T , T + 1, T + 2, we find:

za
T+1 = zq

t+4 = ρqzq
t+3 + εqt+4,

= ρq
(
ρqzq

t+2 + εqt+3

)
+ εqt+4,

= (ρq)2 zq
t+2 + ρqεqt+3 + εqt+4,

= (ρq)3 zq
t+1 + (ρq)2 εqt+2 + ρqεqt+3 + εqt+4,

= (ρq)4 zq
t + (ρq)3 εqt+1 + (ρq)2 εqt+2 + ρqεqt+3 + εqt+4,

= (ρq)4 za
T + (ρq)3 εqt+1 + (ρq)2 εqt+2 + ρqεqt+3 + εqt+4.

Accordingly, we can make the following identifications:

ρ = (ρq)4

εT = (ρq)3 εqt+1 + (ρq)2 εqt+2 + ρqεqt+3 + εqt+4.
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Therefore,

var(ε) = σ2

= var
(
εq(1 + ρq + (ρq)2 + (ρq)3)

)
=
(
1 + (ρq)2 + (ρq)4 + (ρq)6)

)
(σq)2 .

For (ρq, σq) = (0.95, 0.00763), we get ρ = 0.814 and σ = 0.0142.
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Problems

10.1 Concentration of Wealth
Consider the model described in Section 10.1.
a) Recompute the model for a less stricter borrowing constraint where

the agent can borrow up to the average wage in the economy, (1 −
τ)wh̄N/

∑T
t=1 μt. How does this affect the Gini coefficient of wealth?

b) Compute the effect of higher public pensions on the wealth hetero-
geneity. For this reason, increase the replacement ratio to 50%.

c) Compute the model assuming that all accidental bequests are trans-
ferred lump-sum to the households in equal amounts. How does this
affect the concentration of wealth as measured by the Gini coeffi-
cient?

d) Compute the model assuming that labor supply is endogenous. Use
the utility function and calibration presented in Example 10.2.1.

10.2 Business Cycle Dynamics of Aggregate Variables
Consider the model described in Section 10.2.1. Recompute the model
for quarterly frequencies. Be careful to recalibrate β and δ. What are the
effects on business cycle statistics for the aggregate variables?

10.3 Stability
Show that the economy described in Example 9.2.1 is saddlepoint stable.

10.4 Business Cycle Dynamics of the Income Distribution
Consider the model described in Section 10.2.2. Recompute the model
for quarterly frequencies. Be careful to recalibrate β and δ. What are the
effects on business cycle statistics for the income shares?

10.5 Redistributive Effects of Cyclical Government Spending
Introduce exogenous government spending Gt into the model in Section
10.2.2. Assume that government spending follows the AR(1)-process

lnGt = ρ lnGt−1 + (1 − ρ) lnG+ εt,

with ε ∼ N(0, σ2), ρ = 0.7, and σ = 0.007. Assume further that govern-
ment expenditures are financed with a proportional tax on factor income
and that the government budget balances in each period.
a) Reformulate the model.
b) Compute the non-stochastic steady state assuming that government

expenditures amount to 19% of total production. What are the values
for the non-stochastic steady state tax rates?

c) Discretize the AR(1)-process for government consumption choosing
three values. Let the middle point correspond to the one in the non-
stochastic steady state. Use the Markov-chain Approximation algo-
rithm from Section 12.2.
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d) Compute the business cycle dynamics for the model. The state space
consists of {k, s, ε, z;A,K,G}. Households predict the next-period
income tax rate using a law of motion equivalent to the one for N ′.

e) How do cyclical government spending affect the income distribution?
Simulate a time series where the government expenditure are in-
creased above the steady state level for one period and fall back to
the steady state level thereafter. Plot the impulse response functions
of the total income Gini index.



Part III

Tools





Chapter 11

Numerical Methods

11.1 A Quick Refresher in Linear Algebra

In this section we provide some elementary and some more ad-
vanced, but very useful concepts and techniques from linear al-
gebra. Most of the elementary material gathered here is found
in any undergraduate textbook on linear algebra as, e.g., Lang

(1987). For the more advanced subjects Bronson (1989) as well
as Golub and Van Loan (1996) are good references. In addi-
tion, many texts on econometrics review matrix algebra, as, e.g.,
Greene (2003), Appendix A, or Judge et al. (1982), Appendix
A.

11.1.1 Complex Numbers

A complex number c is an object of the form c = α+iβ, where the
symbol i designates the imaginary unit, whose square is defined
to equal minus unity, i.e., i2 = −1 or i =

√−1. The set of all
those numbers is denoted by the symbol C.

In the definition of c the real number α is called the real part,
and the real number β is called the imaginary part of the complex
number c. If we measure α on the abscissa and β on the ordinate
c is a point in the plane, sometimes called the Gaussian plane.
Instead of representing c by the pair (α, β), we may also use polar
coordinates. If θ is the angle (measured in radians) between the
horizontal axis and the vector from the origin to the point (α, β),
then c = r(cos θ + i sin β) as shown in Figure 11.1. According
to Pythagoras’ theorem, the length of the vector is equal to r =
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Imaginary
axis

Real axis

iβ

θ

r

(r cos θ, r i sin θ)

α

Figure 11.1: Gaussian Plane

√
α2 + β2. r is called the modulus (or simply absolute value |c|)

of the complex number c.
The complex conjugate of c, is denoted by c̄ and given by c̄ =

α− iβ.
Addition and multiplication of complex numbers c1 = α1 + iβ1

and c2 = α2 + iβ2 are defined by the following formulas:

c1 + c2 = α1 + α2 + i(β1 + β2),

c1c2 = (α1 + iβ1)(α2 + iβ2)

= (α1α2)− (β1β2) + i(α1β2 + α2β1).

In polar coordinates, the product c1c2 is given by1

c1c2 = r1r2[cos(θ1 + θ2) + i sin(θ1 + θ2)].

1 This follows from the trigonometric formulas

cos(θ1 + θ2) = cos(θ1) cos(θ2)− sin(θ1) sin(θ2),
sin(θ1 + θ2) = sin(θ1) cos(θ2) + cos(θ1) sin(θ2).

See, e.g., Sydsæter, Strøm, and Berck (1999), p. 15.
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Thus the vector representing c1 is stretched by r2 and rotated
counterclockwise by θ2 radians. If c1 = c2 this implies c2 =
r2[(cos(2θ) + i sin(2θ)] or, more generally:

ct = rt[cos(tθ) + i sin(tθ)]. (11.1)

Since sin(x) and cos(x) are in [−1, 1] for all x ∈ R, this implies

lim
t→∞

ct = (0, i0) ≡ 0 for r ∈ (0, 1). (11.2)

Thus, if the modulus of a complex number is smaller than one, its
tth power converges to the origin of the Gaussian plane, if t→∞.
Sometimes we say that a complex number is inside (on or outside)
the unit circle. The unit circle is the circle around the origin of the
Gaussian plane with radius equal to one. Thus, complex numbers
inside (on or outside) this circle have modulus less (equal to or
greater) than unity.

11.1.2 Vectors

A real (complex) vector of dimension n is a n-tuple of numbers
xi ∈ R (xi ∈ C) i = 1, 2, . . . n, denoted by

x =

⎡⎢⎢⎢⎣
x1

x2
...
xn

⎤⎥⎥⎥⎦ .
The space of all n-tuples is Rn (Cn). Vector addition and scalar
multiplication are defined by

y = a+ bx =

⎡⎢⎢⎢⎣
a + bx1

a + bx2
...

a + bxn

⎤⎥⎥⎥⎦ .
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11.1.3 Norms

Norms are measures of distance. Since the distance of x from the
zero vector is the length of x, norms are also measures of vector
length. More formally, a norm on Rn (and similarly on Cn) is a
real valued function ‖x‖ that obeys:

‖x‖ ≥ 0 for all x ∈ Rn, and ‖x‖ = 0 if and only if x = 0 ∈ Rn,

‖ax‖ = |a| · ‖x‖ for all x ∈ Rn and a ∈ R,

‖x + y‖ ≤ ‖x‖+ ‖y‖ for all x,y ∈ Rn. (11.3)

The most common examples of norms on Rn are

1. the �∞ or sup norm: ‖x‖∞ := max
1≤i≤n

|xi|, where |xi| denotes the

absolute value of xi.
2. the �2 or Euclidean norm: ‖x‖2 := (

∑n
i=1 x

2
i )

1/2
.

11.1.4 Linear Independence

A set of n vectors xi, i = 1, 2, . . . n is linearly independent if and
only if the solution to

0 = a1x1 + a2x2 + · · ·+ anxn

is a1 = a2 = · · · = an = 0. A set B := {v1,v2, . . . ,vn} of n linearly
independent vectors is a basis B for Rn, since any element x ∈ Rn

can be represented by a linear combination of the elements of B,
i.e.,

x =

n∑
i=1

aivi ∀x ∈ Rn.

11.1.5 Matrices

A real (complex) matrix A with typical element aij ∈ R (aij ∈ C)
is the following n-by-m array of real numbers:
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A = (aij) :=

⎡⎢⎢⎢⎣
a11 a12 . . . a1m

a21 a22 . . . a2m
...

...
. . .

...
an1 an2 . . . anm

⎤⎥⎥⎥⎦ .
If n = m, A is called a square matrix. Other special matrices
encountered in the main text are:⎡⎢⎣a11 0 . . . 0

0 a22 . . . 0
...

...
. . .

...
0 0 . . . ann

⎤⎥⎦
diagonal matrix

,

⎡⎢⎣a11 a12 . . . a1n

0 a22 . . . a2n

...
...

. . .
...

0 0 . . . ann

⎤⎥⎦
upper triangular matrix

,

⎡⎢⎣1 0 . . . 0
0 1 . . . 0
...

...
. . .

...
0 0 . . . 1

⎤⎥⎦
identity matrix

.

If we consider the matrix A = (aij) as the row vector

[a11, a21, . . . an1︸ ︷︷ ︸
column 1

, a12, . . . , an2︸ ︷︷ ︸
column 2

, . . . , a1n . . . , ann︸ ︷︷ ︸
column n

],

we may apply the definition of any vector norm to this ”long”
vector to find the corresponding matrix norm. For instance, the
�2 norm of A is

‖A‖ =

(
n∑

j=1

n∑
i=1

a2
ij

)1/2

.

Matrix addition and scalar multiplication are defined compo-
nentwise:

C = A+ dB =

⎡⎢⎢⎢⎣
a11 + db11 a12 + db12 . . . a1m + db1m

a21 + db21 a22 + db22 . . . a2m + db2m
...

...
. . .

...
an1 + dbn1 an2 + dbn2 . . . anm + dbnm

⎤⎥⎥⎥⎦
(11.4)

for A,B,C ∈ Rn×m and d ∈ R. Thus, matrix addition obeys the
following rules:

A+B = B + A, (11.5a)

A+ (B + C) = (A +B) + C. (11.5b)
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The product of two matrices A ∈ Rn×m and B ∈ Rm×n, is the
n× n matrix C = (cij), defined by

cij =
m∑

k=1

aikbkj . (11.6)

The Kronecker product ⊗ of two matrixes A and B is the
following expression:

A⊗ B =

⎡⎢⎢⎢⎣
a11B a12B . . . a1mB
a21B a22B . . . a2mB

...
...

. . .
...

an1B sn2B . . . anmB

⎤⎥⎥⎥⎦ . (11.7)

For suitable matrices A, B, C, and D matrix multiplication
satisfies the following rules

AB �= BA, (11.8a)

A(B + C) = AB + AC, (11.8b)

A(BC) = (AB)C, (11.8c)

A(B + C)D = ABD + ACD. (11.8d)

The vec operator transforms a n by m matrix A into an nm
by 1 vector by stacking the columns:

vec(A) =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

a11

a21
...
an1

a12

a22
...
an2
...
a1m

a2m
...

anm

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(11.9)
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The following rules apply for the vec operator:

vec(A+B) = vec(A) + vec(B), (11.10a)

vec(AB) = (I ⊗ A) vec(B) (11.10b)

= (B′ ⊗ I) vec(A),

vec(ABC) = (C ′ ⊗A) vec(B) (11.10c)

= (I ⊗ AB) vec(C)

= (C ′B ⊗ I) vec(A).

The trace of a square matrix A is the sum of the elements of its
main diagonal, i.e.,

trA =

n∑
i=1

aii. (11.11)

The determinant of a 2× 2 matrix A, denoted by either |A| or
det(A), is defined by

|A| = a11a22 − a12a21. (11.12)

There is a recursive formula to compute the determinant of an
arbitrary square matrix of dimension n. Using an arbitrary row
(say i) or column (say j), the formula is:

|A| =
n∑

j=1

aij(−1)i+j|Aij | =
n∑

i=1

aij(−1)i+j|Aij |, (11.13)

where Aij is the matrix obtained from A by deleting the i-th row
and j-th column. This expansion gives the determinant of A in
terms of a sum of determinants of n − 1 matrices. These can be
reduced further to determinants of n − 2 matrices and so forth
until the summands are 2 × 2 matrices, computed from equation
(11.12).

The rank of an arbitrary n×mmatrix A is the maximal number
of linearly independent rows of A. This also equals the maximal
number of linearly independent columns of A.

The transpose of A, denoted by A′ or AT , is the m× n matrix
obtained by interchanging the rows and columns of A:
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A′ = (a′ij) = (aji) =

⎡⎢⎢⎢⎣
a11 a21 . . . an1

a12 a22 . . . an2
...

...
. . .

...
a1m a2m . . . anm

⎤⎥⎥⎥⎦ .
In the case of a complex matrix, we use the prime ′ or the su-
perscript T to denote conjugate complex transposition. Thus, A′

is the matrix whose element in the ij-th position is the complex
conjugate of aji.

The inverse of a square matrix A, denoted A−1 = (aij) (note
that we use superscripts to indicate the typical element of an
inverse matrix) solves the problem AA−1 = I. If it exists, the
inverse is unique and given by

aij =
aij(−1)i+j|Aji|

|A| . (11.14)

If |A| = 0, the inverse does not exist. It is an implication of the
expansion formula (11.13) that matrices with a row (or column)
of zeros or with linearly dependent rows (or columns) have no
inverse. In general, an invertible (non-invertible) matrix is named
non-singular (singular).

The inverse of a partitioned matrix A is related to the blocks
of A via:

A :=

[
A11 A12

A21 A22

]
, A−1 =

[
A11 A12

A21 A22

]
,

A11 =
(
A11 −A12A

−1
22 A12

)−1
, (11.15a)

A12 = −A11A12A
−1
22 , (11.15b)

A21 = −A−1
22 A21A

11, (11.15c)

A22 = A−1
22 + A−1

22 A12A
11A12A

−1
22 . (11.15d)

A square matrix A is symmetric, if it equals its transpose:
A = A′. The transpose operator obeys the following rules:

(A′)′ = A, (11.16a)

(A+B)′ = A′ +B′, (11.16b)

(AB)′ = B′A′, (11.16c)

(A−1)′ = (A′)−1. (11.16d)
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11.1.6 Linear and Quadratic Forms

Let a = (a1, a2, . . . , an)′ and x = (x1, x2, . . . , xn)′ denote two n-
dimensional column vectors. The dot product

z = a′x =
n∑

i=1

aixi (11.17)

with given a is called a linear form. The column vector of partial
derivatives of z with respect to xi, i = 1, 2, . . . , n, denoted by ∇z,
is obviously given by:

∇z :=
∂a′x
∂x

= a = (a′)′. (11.18)

Since z = z′ = x′a we also have

∂x′a
∂x

= a. (11.19)

A direct application of these findings are the following two rules:

∂u′Bx

∂x
= (u′B)′ = B′u, (11.20a)

∂u′Bx

∂u
= Bx, (11.20b)

where u ∈ Rm, B ∈ Rm×n, and x ∈ Rn.
Let A = (aij) denote a n × n square matrix and x =

(x1, x2, . . . , xn)′ a n-dimensional column vector. The expression

q = x′Ax, q ∈ R, (11.21)

is a quadratic form. If q ≥ 0 (q ≤ 0) for each non-zero vector
x, the matrix A is said to be positive (negative) semi-definite. If
q > 0 (q < 0), A is positive (negative) definit. Let B ∈ Rn×m,
x ∈ Rn, and v = Bx. Since

v′v =

m∑
i=1

v2
i = x′B′Bx ≥ 0 ∀x,
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the square matrix A := B′B is obviously positive definite. Using
the rule for matrix multiplication given in (11.6), equation (11.21)
can be written in several ways:

q =

n∑
i=1

n∑
j=1

aijxixj ,

=
n∑

i=1

aiix
2
i +

n∑
i=1

n∑
j=1
j �=i

aijxixj ,

=

n∑
i=1

aiix
2
i +

n∑
i=1

n∑
j=1+i

(aij + aji)xixj .

Setting ãij = ãji ≡ (aij + aji)/2, it is obvious that we can assume
without loss of generality that the matrix A is symmetric. Using
this assumption, it is easy to show that the column vector of first
partial derivatives of q with respect to xi, i = 1, 2, . . . , n, is given
by

∇q :=
∂x′Ax

∂x
= (A+ A′)x = 2Ax. (11.22)

11.1.7 Eigenvalues and Eigenvectors

Let A ∈ Rn×n. A right eigenvector of A is a vector v that solves

Av = λv ⇔ (A− λI)v = 0. (11.23)

Similarly, the solution of v′A = λv′ is named a left eigenvector
of A. The system of n linear equations (11.23) has non-trivial
solutions v �= 0, if the determinant |A− λI| vanishes. The condi-
tion |A − λI| = 0 results in a polynomial of degree n in λ. It is
well known from the Fundamental Theorem of Algebra (see, e.g.,
Hirsch and Smale (1974), pp. 328ff.) that this polynomial has
n roots, which may be real, complex, or multiples of each other.
These roots are the eigenvalues of the matrix A. Solving equation
(11.23) for a given λi gives the associated eigenvector vi. Thus,
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eigenvectors are vectors that either stretch or shrink when multi-
plied by A. If vi solves (11.23) and c is an arbitrary scalar, then
cvi also solves (11.23). Therefore, eigenvectors are unique up to a
scalar multiple and, thus, may be normalized to have unit length.

There are two important relations between the elements of A
and its eigenvalues:

n∑
i=1

λi =

n∑
i=1

aii, (11.24a)

n∏
i=1

λi = |A|. (11.24b)

In words: the sum of the eigenvalues of A equals the trace of A,
and the determinant of A equals the product of the n eigenvalues.

Note that equation (11.23) is a special case of

(A− λI)mvm = 0

for m = 1. If there are non-trivial solutions vm for m ≥ 2 but
not for m − 1, the vector vm is called a generalized right eigen-
vector of rank m for the square matrix A. The space spanned by
the (generalized) eigenvectors of A is called the eigenspace of A.
The eigenspace can be partitioned in three subspaces formed by
generalized eigenvectors that belong to the eigenvalues with

1. modulus less than one (stable eigenspace, Es),

2. modulus equal to one (center eigenspace, Ec),

3. modulus greater than one (unstable eigenspace, Eu).

11.1.8 Matrix Factorization

Matrix factorizations play an important role in the solution of
systems of linear difference equations. They are also used to solve
systems of linear equations. Here, we touch on the Jordan, the
Schur, the LU, and the Cholesky factorization.
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Jordan Factorization. Consider the case of n distinct real
eigenvalues and associated eigenvectors v1,v2, . . . ,vn of a square
matrix A. The matrix

P = [v1,v2, . . . ,vn]

transforms A into a diagonal matrix Λ with the eigenvalues
λ1, λ2, . . . , λn on its main diagonal:

Λ = P−1AP.

In the general case of real and complex eigenvalues, possibly with
multiplicity m > 1, it may not be possible to diagonalize A.
Yet there exists a matrix M (in general a complex matrix) of
a set of linearly independent generalized eigenvectors (which is
not unique) that puts A in Jordan canonical form:

A = MJM−1, J =

⎡⎢⎢⎢⎣
J1 0 . . . 0
0 J2 . . . 0
...

...
. . .

...
0 0 . . . JK

⎤⎥⎥⎥⎦ , (11.25)

where the Jordan blocks Jk ∈ Cm×m, k = 1, 2, . . . , K are given by

Jk =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

λk 1 0 0 . . . 0
0 λk 1 0 . . . 0
0 0 λk 1 . . . 0
...

...
...

...
. . .

...
0 0 0 0 . . . 1
0 0 0 0 . . . λk

⎤⎥⎥⎥⎥⎥⎥⎥⎦
,

and λk refers to an eigenvalue of A with multiplicity m ≥ 1. Note,
that if λk is a unique eigenvalue (i.e., has multiplicity r = 1) than
Jk = λk. The Jordan blocks are determined uniquely. They can
be ordered in J according to the absolute value of the eigenvalues
of A.

There is also a real Jordan factorization of A, where each com-
plex root λj = αj + iβj in Jk is represented by a matrix
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αj −βj

βj αj

]
,

and the ones on the upper right diagonal are replaced by two-
dimensional identity matrix I2.

Consider a matrix A ∈ Rn×n whose n eigenvalues λi are all
real and non-negative (that is, A is positive semidefinite). Let
Λ1/2 = (

√
λi) be the diagonal matrix with the square roots of the

eigenvalues along the main diagonal. Then

A1/2 = PΛ1/2P−1,

because

A1/2A1/2 = PΛ1/2P−1PΛ1/2P−1 = PΛP−1 = A.

It is easy to show by induction that for any r = 1, 2, . . .

A1/r = PΛ1/rP−1, Λ1/r = (λ
1/r
i ). (11.26)

We use this definition of the root of a matrix in Section 8.4.2 to
compute a 1/8 year transition matrix out of a 5 year transition
matrix.

Schur Factorization. The Schur factorization of a square ma-
trix A is given by

A = TST−1. (11.27)

The complex matrix S is upper triangular with the eigenvalues of
A on the main diagonal. It is possible to choose T such that the
eigenvalues appear in any desired order along the diagonal of S.
The transformation matrix T has the following properties:

1. its complex conjugate transpose T ′ equals the inverse of T ,

2. therefore: TT ′ = TT−1 = I, i.e., T is an unitary matrix,

3. all eigenvalues of T have absolute value equal to 1.
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LU and Cholesky Factorization. Consider a system of linear
equations

a11x1 + a12x2 + · · ·+ a1nxn = b1,

a21x1 + a22x2 + · · ·+ a2nxn = b2,

... =
...,

an1x1 + an2x2 + · · ·+ annxn = bn

⎫⎪⎪⎪⎪⎬⎪⎪⎪⎪⎭ ⇔ Ax = b. (11.28)

We assume that the square matrix A has full rank, i.e., there are
no linearly dependent rows or columns in A. In this case it is
possible to factorize A as follows

A = LU, (11.29)

L =

⎡⎢⎢⎢⎢⎢⎣
1 0 0 . . . 0
l21 1 0 . . . 0
l31 l32 1 . . . 0
...

...
...

. . .
...

ln1 ln2 ln3 . . . 1

⎤⎥⎥⎥⎥⎥⎦ , U =

⎡⎢⎢⎢⎢⎢⎣
u11 u12 u13 . . . u1n

0 u22 u23 . . . u2n

0 0 u33 . . . u3n
...

...
...

. . .
...

0 0 0 . . . unn

⎤⎥⎥⎥⎥⎥⎦ .

If A is symmetric and positive definite, its Cholesky factor is the
lower triangular matrix L that solves

LL′ = A. (11.30)

Both the LU and the Cholesky factorization can be used to solve
the linear system (11.28). Let x̃ := Ux. Then it is easy to solve
the system

Lx̃ = x

by forward substitution:

x̃1 = b1,

x̃2 = b2 − l21x̃1,

x̃3 = b3 − l31x̃1 − l32x̃2,

... =
...
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Given the solution for x̃, one gets the desired solution for x via
backward substitution from Ux = x̃:

xn =
x̃n

unn
,

xn−1 =
1

un−1 n−1
(x̃n−1 − un−1nxn) ,

xn−2 =
1

un−2 n−2
(x̃n−2 − un−2n−1xn−1 − un−2 nxn) ,

... =
...

The solution of a system of linear equations via its LU or Cholesky
factorization is the strategy that underlies linear equations solvers.
For instance, the LAPACK routine dgesv.for uses this procedure
as well as the IMSL subprogram DLSARG. In Gauss the command
x = b/A solves (11.28) via the LU factorization. Yet another fac-
torization used to solve linear systems is the QR factorization

A = QR, QQT = I, R =

⎡⎢⎢⎢⎢⎢⎣
r11 r12 r13 . . . r1n

0 r22 r23 . . . r2n

0 0 r33 . . . r3n
...

...
. . .

...
...

0 0 0 . . . rnn

⎤⎥⎥⎥⎥⎥⎦ (11.31)

which provides Rx = QTb =: x̃. The solution can then be found
via backward substitution. It is beyond the scope of this text to
deal with algorithms that compute any of the above mentioned
factorizations.2 In Gauss the command {S,T}=Schtoc(Schur(A))

can be used to get the matrices S and T from the matrix A. In
Fortran the subroutine ZGEES from LAPACK can be used for the
same purpose.3 Whereas ZGEES has an option to order the eigen-
values on the main diagonal of S, the Schtoc command returns
S with unordered eigenvalues. However, Givens rotations may be
used to order the eigenvalues in S.

2 A good reference on this subject is Golub and van Loan (1996).
3 The LAPACK Fortran 77 routines can be downloaded from
www.netlib.com/lapack for free. They are also included in the CXML
library being shipped with Compaq’s Digital Fortran compiler.
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11.1.9 Givens Rotation

Consider the symmetric matrix G ∈ Cn×n defined by

G :=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 . . . 0 0 . . . 0
0 1 . . . 0 0 . . . 0
...

...
. . .

...
...

. . .

0 0 . . . b c . . . 0
0 0 . . . −c̄ b̄ . . . 0
...

...
...

...
...

. . .

0 0 0 0 0 . . . 1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
← row i

← row i+1

↑
column i,

↑
i+1

and the upper triangular matrix S ∈ Cn×n. Choose the complex
numbers b and c as follows:

b =
sii+1

r
, c =

si+1i+1 − sii

r
, r :=

√
s2

ii+1 + (si+1i+1 − sii)2.

In this case G is also an unitary matrix, GG′ = I, so that

A = T (GG′)S(GG′)T = (TG)(G′SG)(G′T ′).

As an exercise you may want to verify that pre-multiplying S with
G′ and post-multiplying S withG interchanges sii and si+1i+1. The
new transformation matrix putting A into the newly ordered ma-
trix G′SG is given by TG. Via a number of such pairwise Givens
rotations the eigenvalues on the main diagonal of S can be brought
into any desired order.

11.2 Function Approximation

There are numerous instances where we need to approximate func-
tions of one or several variables. In some cases we need a local ap-
proximation around a given point x0. For instance, in Chapter 2,
the linear-quadratic approximation method requires a quadratic
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approximation of the return function at the stationary equilib-
rium. In other cases we must approximate functions over a given
interval. Think of the value function in Chapter 1, or the policy
function in Chapter 4.

Usually, local approximations rest on Taylor’s theorem, which
we review in Section 11.2.1. The simplest case of function ap-
proximation over a given interval is linear interpolation, which
we discuss in Section 11.2.3. In Section 11.2.4, cubic spline in-
terpolation is presented which also preserves the smoothness of a
function. Linear and cubic spline interpolation are special cases
of polynomial approximation dealt with in Section 11.2.5. Among
the various families of polynomials, orthogonal polynomials have
very desirable properties. From this class, we consider Chebyshev
polynomials in Section 11.2.6. Finally, we briefly touch on neural
networks.

11.2.1 Taylor’s Theorem

Consider a function f of a single variable x ∈ U , where U is an
open subset of R. Taylor’s theorem states the following:4

Theorem 11.2.1 Let f : [a, b]→ R be a n+1 times continuously
differentiable function on (a, b), let x̄ be a point in (a, b). Then

f(x̄+ h) = f(x̄) + f (1)(x̄)h+ f (2)(x̄)
h2

2
+ · · ·+ f (n)(x̄)

hn

n!

+ f (n+1)(ξ)
hn+1

(n+ 1)!
, ξ ∈ (x̄, x̄+ h).

In this statement f (i) is the i–th derivative of f evaluated at the
point x̄. The derivative that appears in the rightmost term of
this formula is evaluated at some unknown point between x̄ and

4 Statements of this theorem appear in any calculus textbook and in most
mathematics for economists texts. Judd (1998), p. 23, states the theorem
for the singe variable case; p. 239 of the same book presents the formula
for the n-variable case.
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x̄+ h. When we neglect this term, the formula approximates the
function f at x̄ and the approximation error is of order n + 1.
By this we mean that the error is proportional to hn+1 where the
constant of proportionality is given by C = fn+1(ξ)/(n+ 1)!.

There is also a version of this theorem for the n-variable case.
To present it, we need a fair amount of additional notation. Let
a := [a1, a2, . . . , an], define

|a| :=
n∑

i=1

ai, ∀ai = 0, 1, . . . ,

a! := a1!a2! . . . an!,

xa := xa1
1 x

a2
2 . . . xan

n ,

Dif(x) :=
∂f(x)

∂xi
,

Dai
i := DiDi . . .Di︸ ︷︷ ︸

ai times

,

Daf(x) := Da1
1 D

a2
2 . . . Dan

n .

Then, the following holds:

Theorem 11.2.2 Let U ⊂ Rn be an open subset, x ∈ U , h ∈ Rn

so that x + th ∈ U for all t ∈ [0.1]. Assume that f : U → R

is (k + 1)-times continuously differentiable. Then, there is a λ ∈
[0, 1], so that

f(x + h) =
∑
|a|≤k

Daf(x)

a!
ha +

∑
|a|=k+1

Daf(x + λh)

a!
ha.

Note that D0
i ≡ 1 and that summation is over all n-tuples

[a1, a2, . . . , an], which sum to 0, 1, 2, . . . , k (or k + 1).
An immediate corollary of this theorem is the quadratic ap-

proximation of f at x: assume that k = 2. Let

∇f(x) := [D1f(x), D2f(x), . . . , Dnf(x)]′

denote the column vector of first partial derivatives and let
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H(x) :=

⎡⎢⎢⎢⎣
D1D1f(x) D1D2f(x) . . . D1Dnf(x)
D2D1f(x) D2D2f(x) . . . D2Dnf(x)

...
...

. . .
...

DnD1f(x) DnD2f(x) . . . DnDnf(x)

⎤⎥⎥⎥⎦
be the Hesse matrix of second partial derivatives (which is sym-
metric if f is two times continuously differentiable). Then

f(x + h) ≈ f(x) + [∇f(x)]′h +
1

2
h′H(x)h, (11.32)

where the approximation error φ(h), with φ(0) = 0, has the prop-
erty

lim
h→0
h�=0

φ(h)

‖h‖2 = 0.

Similarly, the linear approximation is given by:

f(x + h) ≈ f(x) + [∇f(x)]′h, (11.33)

where the error φ(h) now obeys

lim
h→0
h�=0

φ(h)

‖h‖ = 0.

Consider a map f : X → Y that maps points x of the open
subset X ⊂ Rn into points y of the open subset Y ⊂ Rm:

y = f(x)⇔

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
y1 = f 1(x1, x2, . . . , xn),

y2 = f 2(x1, x2, . . . , xn),

... =
...

ym = fm(x1, x2, . . . , xn).

(11.34)

If we apply Taylor’s theorem to each component of f , we get the
linear approximation of the non-linear map f at a point x̄ ∈ X:

y � f(x̄) + J(x̄)(x− x̄). (11.35)
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The matrix

J(x̄)) :=

⎡⎢⎢⎢⎣
f 1

1 (x̄) f 1
2 (x̄) . . . f 1

n(x̄)
f 2

1 (x̄) f 2
2 (x̄) . . . f 2

n(x̄)
... . . .

. . .
...

fm
1 (x̄) fm

2 (x̄) . . . fm
n (x̄)

⎤⎥⎥⎥⎦
f i

j(x̄) :=
∂f i(x̄1, x̄2, . . . , x̄n)

∂xj

(11.36)

is called the Jacobian matrix of f at the point x̄.

11.2.2 Implicit Function Theorem

In this book many if not all systems of non-linear equations that
we have encountered are not given in explicit form y = f(x), as
considered in the previous paragraph. Rather the relation between
y ∈ Rm and x ∈ Rn is implicitly defined via

g(x,y) = 0m×1, (11.37)

where g : U → V , U is a subset of Rn × Rm and V a subset
of Rm. The implicit function theorem5 allows us to compute the
derivative of y = f(x) at a solution (x̄, ȳ) of (11.37).

Theorem 11.2.3 (Implicit Function Theorem) Let U be an
open subset in a product U1 × U2, U1 ⊂ Rn, U2 ⊂ Rm and let
g : U → V ⊂ Rm be a p-times continuously differentiable map. Let
(x̄, ȳ) ∈ U with x̄ ∈ U1 and ȳ ∈ U2. Let g(x̄, ȳ) = 0m×1. Assume
that Dy(g(x̄, ȳ)) : U2 → V is invertible. Then there exists an open
ball B, centered at x̄ ∈ U1 and a continuous map f : B → U1 → U2

such that ȳ = g(x̄) and g(x, f(y)) = 0m×1 for all x ∈ B. If B is a
sufficiently small ball, then f is uniquely determined, and p-times
continuously differentiable.

The expression Dy denotes the m×m matrix of partial derivatives
of g with respect to the variables y1, y2, . . . , ym evaluated at (x̄, ȳ):

5 See, e.g., Lang (1983), p. 529, Theorem 5.4.
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Dy(g(x̄, ȳ)) =

⎡⎢⎢⎢⎢⎣
∂g1(x̄,ȳ)

∂y1

∂g1(x̄,ȳ)
∂y2

. . . ∂g1(x̄,ȳ)
∂ym

∂g2(x̄,ȳ)
∂y1

∂g2(x̄,ȳ)
∂y2

. . . ∂g2(x̄,ȳ)
∂ym

...
...

. . .
...

∂gm(x̄,ȳ)
∂y1

∂gm(x̄,ȳ)
∂y2

. . . ∂gm(x̄,ȳ)
∂ym

⎤⎥⎥⎥⎥⎦ .
If this matrix is invertible (as required by Theorem 11.2.3), we
obtain the Jacobian of f at x̄ by differentiating g(x, f(x)) with
respect to x:

J(x̄) := fx(x̄) = −D−1
y (x̄, x̄)Dx(x̄, x̄), (11.38)

where Dx(·) is analogously defined as Dy(·).

11.2.3 Linear Interpolation

Linear interpolation is simple and shape preserving. This property
is important, if we use interpolation to approximate the value
function, which is known to be concave and increasing.6

Consider Figure 11.2 that depicts the graph of a given function
f . Suppose we want to approximate f(x) at a given point x with
the property x1 < x < x2. Linear interpolation uses the point

f̂(x) := f(x1) +
f(x2)− f(x1)

x2 − x1
(x− x1). (11.39)

Thus, f is approximated by the line through (x1, f(x1)) and
(x2, f(x2)).

In many applications (such as value function iteration with in-
terpolation between grid-points) the function f is known only at a
given number of points x1, x2, . . . . In this case it is helpful to have
a procedure that finds the neighboring points xi < x < xi+1 and
returns f̂(x). Our Gauss procedure LIP in the file Function.src

(and the Fortran subroutine LIP in the file Function.for) does

6 There are so-called shape-preserving methods which, however, have
been produced for mainly one-dimensional problems. Costantini and
Fontanella (1990) consider shape-preserving bivariate interpolation.
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f(x)

x1 x2x

f(x)

f(x2)

f̂(x)

f(x1)

Figure 11.2: Linear Interpolation

this. It takes the vector of grid-points x = [x1, x2, . . . , xn] and the
corresponding vector y = [f(x1), f(x2), . . . , f(xn)] as well as the
point x as input, locates x in the grid, and returns f̂(x) given by
(11.39).

The extension to the two-dimensional case is straightforward.
Assume that we want to approximate a function f(x1, x2) ∈ R at
a point (x1, x2) where x1 ∈ [x10, x1n] and x2 ∈ [x20, x2m]. Further-
more, the function values are stored for all grid-points (x1i, x2j),
yij = f(x1i, x2j), with i = 0, 1, . . . , n, j = 0, . . . , m. First, we
need to find the four neighboring points (x1i, x2j), (x1i+1, x2j),
(x1i, x2j+1), and (x1i+1, x2j+1) such that x1i ≤ x1 < x1i+1 and
x2i ≤ x2 < x2i+1. Define

t =
x1 − x1i

x1i+1 − x1i
, u =

x2 − x2i

x2i+1 − x2i
.

The approximation with the help of bilinear interpolation is given
by:

f̂(x1, x2) = (1−t)(1−u)yij+t(1−u)yi+1,j+tuyi+1,j+1+(1−t)uyi,j+1.

Obviously, the function value and the approximation value coin-
cide at the grid-points f̂(x1i, x2j) = yij, f̂(x1,i+1, x2j) = yi+1,j,
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f̂(x1i, x2,j+1) = yi,j+1, and f̂(x1,i+1, x2,j+1) = yi+1,j+1. Our Gauss
procedure Bilinear performs the bilinear interpolation requiring
the grid [x10, x1n] and [x20, x1m] together with the matrix of the
function values (yij) as inputs. Our routine for bilinear interpola-
tion is BLIP in Function.src and Function.for, respectively.

11.2.4 Cubic Splines

In the previous section, you learned about piecewise linear approx-
imation of a function. Often we are interested in preserving the
smoothness of a function. For example, we know that the value
function is a smooth function in the Ramsey problem considered
in Chapter 4. With piecewise linear or even polynomial approxi-
mation, the function may not be differentiable at the grid-points,
even though this may be required for the solution of the economic
problem. In the following, we will consider one of the simplest
types of approximation with the help of a differentiable piecewise
polynomial function that is called cubic spline interpolation.

Assume that we approximate the function f(x) by a function
s(x) over the grid x = [x0, x1, . . . , xn], xi ∈ R with corresponding
functions values y = [y0, y1, . . . , yn] with yi = f(xi) ∈ R. On each
subinterval [xi−1, xi], i = 1, . . . , n, we will approximate f(x) with
a cubic function s(x) = ai + bix + cix

2 + dix
3. On the computer,

you will have to store a list of n + 1 grid-points xi and the 4n
coefficients ai, bi, ci, di. We impose the following conditions:

1) The approximation is exact at the grid-points, yi = s(xi):

yi = ai + bixi + cix
2
i + dix

3
i , i = 1, . . . , n,

yi = ai+1 + bi+1xi + ci+1x
2
i + di+1x

3
i , i = 0, . . . , n− 1.

2) The first and the second derivatives agree on the nodes:

bi + 2cixi + 3dix
2
i = bi+1 + 2ci+1xi + 3dix

2
i , i = 1, . . . , n− 1,

2ci + 6dixi = 2ci+1 + 6di+1xi, i = 1, . . . , n− 1.
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These conditions amount to 4n− 2 linear equations in the 4n
unknowns ai, bi, ci, di leaving us two conditions short of fixing the
coefficients. In most applications, we do not know the derivatives
at the endpoints of the interval, x0 and xn. Two possible solutions
to fix this problem is to either set them to zero, s′(x0) = s′(xn) =
0, which is called the natural spline or to use the slope of the
secant lines over [x0, x1] and [xn−1, xn], respectively:

s′(x0) =
y1 − y0

x1 − x0
= b1 + 2c1x0 + 3d1x

2
0,

s′(xn) =
yn − yn−1

xn − xn−1
= bn + 2cnxn + 3dnx

2
n.

The latter is also called the Secant Hermite spline. Cubic splines
are very easy to program and very fast to compute since the re-
sulting set of equations is not only linear in the coefficients ai, bi,
ci, and di, but also tridiagonal. We implemented the cubic spline
interpolation following Press, Teukolksy, Vetterling, and
Flannery(1992), Section 3.3. First, you have to call the routine
cspline once providing the data points (xi, yi) and getting the
coefficients (ai, bi, ci, di) as output. Calling this routine, you also
have the option between the natural and secant Hermite spline.
After this call, you can use splint any time you would like to
approximate the function at a point x ∈ [x0, xn]. Both routines
are in Function.src and Function.for, respectively.

11.2.5 Families of Polynomials

Bases for Function Spaces. The formula given in (11.39) is a
special case of the more general formula

f(x) =
n∑

i=0

αiϕi(x),

with n = 1, ϕi(x) := xi, α0 = [x2f(x1)− x1f(x2)]/(x2 − x1), and
α1 = [f(x2) − f(x1)]/(x2 − x1). To understand the idea behind
this formula, remember that a vector x ∈ Rn can be represented
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as a linear combination of n linearly independent vectors B :=
{v1,v2, . . .vn} of Rn. The collection of vectors B is said to build
a base of the vector space Rn. If the members of B are mutually
orthogonal (i.e., v′

ivj = 0 for i �= j) and normal (i.e., v′
ivi = 1)

the base is called an orthonormal base.
Now, consider the set of all continuous functions that map the

interval [a, b] to the real line. Like Rn, this set, denoted by C[a, b],
is a vector space. The monomials xi, i = 0, 1, . . . build a base B,
for this space, i.e., every member of C[a, b] can be represented by

∞∑
i=0

αix
i.

For this reason it is common to use a linear combination of the
first p members of this base to approximate a continuous function
f(x) ∈ C[a, b]:

f(x) � α0 + α1x+ α2x
2 + · · ·+ αpx

p.

Yet, this may not always be a good choice. For instance, if
we use a regression of y = f(x) on (1, x, x2, ..., xp) to determine
α := (α0, α1, . . . , αp)

′, as we actually do in the parameterized
expectations approach considered in Chapter 3, we may face the
problem of multicollinearity (i.e., nearly linear dependence among
the xi), since for large i, xi and xi+1 may be difficult to distinguish.
Bases that consists of polynomials that are – in an appropriate
sense – orthogonal circumvent this problem.

Orthogonal Polynomials. To motivate the notion of orthogo-
nality in a function space, consider the following problem. Assume
we want to approximate f(x) ∈ C[a, b] by

f̂(x) :=

n∑
i=1

αiϕi(x),

where P := (ϕ0(x), ϕ1(x), . . . ) is some family of polynomials. Sup-
pose further that there is a weight function w(x) on [a, b]. A weight
function is a function that has a finite integral
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∫ b

a

w(x)dx <∞

and that is positive almost everywhere on [a, b].7 Our goal is to
choose the parameters αi, i = 0, 1, . . . n such that the weighted
sum of squared errors R(α, x) := f(x)− f̂(α, x) over all x ∈ [a, b]
attains a minimum:8

min
α

∫ b

a

w(x)

[
f(x)−

n∑
i=0

αiϕi(x)

]2

dx. (11.40)

The first order conditions for this problem are

0 = 2

∫ b

a

w(x)

[
f(x)−

n∑
j=0

αjϕj(x)

]
ϕi(x)dx, i = 0, 1, . . . , n,

which may be rewritten as∫ b

a

w(x)f(x)ϕi(x)dx =
n∑

j=0

αj

∫ b

a

w(x)ϕj(x)ϕi(x)dx,

i = 0, 1, . . . , n.

(11.41)

If the integral on the rhs of (11.41) vanishes for i �= j and equals
a constant ζj for i = j, it will be easy to compute αi from

αi =
1

ζi

∫ b

a

w(x)f(x)ϕi(x)dx.

This motivates the following definition of orthogonal polynomials:
A set of functions P is called orthogonal with respect to the weight
function w(x) if and only if:∫ b

a

w(x)ϕi(x)ϕj(x)dx =

{
0 if i �= j,
ζi if i = j.

(11.42)

If in addition ζi = 1 ∀i, the set of functions is said to be ortho-
normal. Among the families of orthonormal polynomials are the
Chebyshev polynomials used extensively in Chapter 4.

7 Intuitively, the qualifier ’almost everywhere’ allows w(x) to be non-positive
on a very small set of points. This set must be so small that its size –
technically, its measure – equals zero.

8 This is called a continuous least squares approximation of f(x).
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11.2.6 Chebyshev Polynomials

Definition. The domain of Chebyshev polynomials is the interval
[−1, 1], and the i-th member of this family is defined by

Ti(x) = cos(i arccos x). (11.43)

The weight function for which
∫ 1

−1
w(x)Ti(x)Tj(x)dx = 0 for i �= j

is given by

w(x) :=
1√

1− x2
. (11.44)

In particular, the following holds:∫ 1

−1

Ti(x)Tj(x)√
1− x2

dx =

⎧⎨⎩
0 if i �= j,
π
2

if i = j ≥ 1,
π if i = j = 0.

(11.45)

Thus, if we use

ĝ(α, x) :=
1

2
α0 +

n∑
i=1

αiTi(x) (11.46)

to approximate g(x) ∈ C[−1, 1] the coefficients of the continuous
least squares approximation are given by

αi =
2

π

∫ 1

−1

g(x)Ti(x)√
1− x2

dx. (11.47)

Notice that in (11.46), α0 is multiplied by the factor 1/2 so that
(11.47) also holds for i = 0 where the integral (11.45) for i = j = 0
is equal to ζ0 = π.

Most often, of course, we are interested in approximating a
function f on the interval [a, b] where a and b do not necessarily
coincide with the values −1 and 1, respectively. Suppose that we
have a function f(z), f : [a, b]→ R and want to compute a polyno-
mial approximation over [a, b] that corresponds to the Chebyshev
approximation over x ∈ [−1, 1] with weighting function (11.44).
This can simply be done by defining the transformation



582 Chapter 11: Numerical Methods

X(z) =
2z

b− a −
a + b

b− a, z ∈ [a, b] (11.48)

and the reverse transformation

Z(x) =
(x+ 1)(b− a)

2
+ a, x ∈ [−1, 1]. (11.49)

With these transformations, we can define the function g(x) =
f(Z(x)) on the interval [−1, 1] with approximation

f̂(z;α) =
n∑

i=0

αiTi (X(z)) . (11.50)

The coefficients of the continuous least squares approximation are
then given by

αj =
2

π

∫ b

a

f(z)Tj(X(z))√
1− (X(z))2

dz. (11.51)

Properties. Chebyshev polynomials (11.43) have many other
properties which make them a prime candidate in numerical appli-
cations. Importantly, we can compute a Chebyshev polynomial of
order i+1, if we know the values of the Chebyshev polynomials of
order i and i−1.9 This property of the Chebyshev polynomial fam-
ily helps economizing on computational time. In particular, the
Chebyshev polynomials satisfy the following recursive scheme:

Ti+1(x) = 2xTi(x)− Ti−1(x). (11.52)

The recurrence relation (11.52) can be shown by introducing the
substitution θ = arccos x. With this substitution, (11.43) can be
rewritten as

Ti(θ(x)) = Ti(θ) = cos (iθ) . (11.53)

Furthermore, applying the trigonometric identities

9 There exist different families which satisfy such a recursive scheme, e.g. the
Legendre or Hermite polynomials.
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Ti+1(θ) = cos((i+ 1)θ) = cos(iθ) cos θ − sin(iθ) sin θ,

Ti−1(θ) = cos((i− 1)θ) = cos(iθ) cos θ + sin(iθ) sin θ,

we get

Ti+1(θ) = 2 cos(iθ) cos θ − Ti−1(θ),

or

Ti+1 = 2xTi(x)− Ti−1(x). (11.54)

The first four Chebyshev polynomials are

T0(x) = cos(0 · arccos x) = 1,

T1(x) = cos(1 · arccos x) = x,

T2(x) = 2xT1(x)− T0(x) = 2x2 − 1,

T3(x) = 2xT2(x)− T1(x) = 4x3 − 3x.

Notice that the Chebyshev polynomial Ti(x) is a polynomial of
degree i with leading coefficient 2i−1. The Chebyshev polynomials
T1, T2, and T3 are displayed in Figure 11.3.

The recursive formula (11.52) yields an efficient way to evaluate
the polynomial at given point x, which we present in the following
algorithm:

Algorithm 11.2.1 (Chebyshev Evaluation)

Purpose: Evaluate a n-th degree Chebyshev polynomial at x

Steps:

Step 1: Initialize: use the n + 1-vector y to store the values of
Ti(x) for i = 0, 1, . . . , n. Put y[1] = 1 and y[2] = x.

Step 2: For i = 2, 3, . . . , n− 1 compute:

yi+1 = 2xyi − yi−1.

Step 3: Return
∑n

i=0 aiyi.

In our files Function.src and Function.for, respectively, you
will find the procedure ChebEval1 that implements this algorithm.
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Figure 11.3: Chebyshev Polynomials T1, T2 and T3

Zeros. Consider the sequence of points

x̄k := cos

(
2k − 1

2n
π

)
, k = 1, 2, . . . , n. (11.55)

Using the substitution θk = arccos(xk) we get nθk = π(2k −
1)/2. Since the cosine function cuts the abscissa at π/2, (3/2)π,
(5/2)π, . . . , the points x̄k are the zeros of the n-th degree Cheby-
shev polynomial. Now, for i, j < n, Chebyshev polynomials satisfy
a discrete version of the orthogonality relation:

m∑
k=1

Ti(x̄k)Tj(x̄k) =

⎧⎨⎩
0 i �= j,
m/2 i = j �= 0,
m i = j = 0.

(11.56)

Computation of the Chebyshev Coefficients. There are
three possible ways. First, we may compute the integral on the rhs
of equation (11.51) using the techniques presented in 11.3.2. Sec-
ond, we may choose the n-dimensional vector α such that f and
f̂ coincide at n points. Third, we can determine the coefficients
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from a regression of f(xi) on xi, i = 1, 2, . . . , m, using m > n
points. Since the second approach is a special case of the third for
m = n, we consider the latter.

It can be shown that the maximal interpolation error attains a
minimum, if the n interpolation nodes coincide with the n zeros of
the n-th degree Chebyshev polynomial Tn(x).10 Using the m > n
zeros of Tm(x) in a regression produces an even smoother approxi-
mation. The coefficients in this regression can be determined ana-
lytically as follows: Assume we want to approximate f(x) ∈ C[a, b]
by a n-th degree Chebyshev polynomial. Let x̄ = [x̄1, x̄2, . . . , x̄m]
denote the m zeros of Tm(x). The corresponding points in the
interval [a, b] are z̄k := Z(x̄k) (see (11.49)), so that ȳk = f(z̄k).
We choose α = [α0, α1, . . . , αn−1] to minimize the sum of squared
prediction errors at the nodes z̄k:

min
α

m∑
k=1

[
ȳk −

n−1∑
j=0

αjTj(X(z̄k))

]2

.

The respective first order conditions are:

m∑
k=1

T0ȳk =

n−1∑
j=0

αj

m∑
k=1

T0Tj(x̄k) = mα0,

m∑
k=1

ȳkT1(x̄k) =

n−1∑
j=0

αj

m∑
k=1

T1(x̄k)Tj(x̄k) = (m/2)α1,

... =
..., (11.57)

m∑
k=1

ȳkTn−1(x̄k) =

n−1∑
j=0

αj

m∑
k=1

Tn−1(x̄k)Tj(x̄k) = (m/2)αn−1,

where the respective rhs follow from (11.56). This provides Algo-
rithm 11.2.2, which we implement in the program ChebCoef (see
the files Function.src and Function.for, respectively).

10 For a formal proof of this minimax property of Chebyshev zeros see any
introductory textbook on numerical analysis such as Burden and Faires

(2001).
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Algorithm 11.2.2 (Chebyshev Regression)

Purpose: Approximate f(z) ∈ C[a, b] with
∑n−1

j=0 αjTj(x).

Steps:

Step 1: Choose the degree n − 1 of the approximating Cheby-
shev polynomial. Compute m ≥ n Chebyshev interpola-
tion nodes x̄k from (11.55) and adjust the nodes to the
interval [a, b] using (11.49).

Step 2: For k = 1, 2, . . . , m, compute ȳk = f(z̄k).
Step 3: Compute the Chebyshev coefficients: α0 = (1/m)

∑m
k=1 ȳk.

For i = 1, 2, . . . , n− 1 the coefficients are given by:

αi =
2

m

m∑
k=1

ȳkTi(x̄k).

Examples. In order to demonstrate the performance of the com-
putation of Chebyshev coefficients we compute the Chebyshev
approximation of f(x) = ex and of

g(x) =

{
0 if x < 1,
(x− 1) if x ≥ 1.

The latter type of function might often be encountered in eco-
nomic problems with constraints. In Chapter 3, gross investment
is assumed to be nonnegative. As another example, assume that
agents supply labor elastically, instead. If the wage is below un-
employment compensation, they do not work and labor supply is
equal to zero. For a wage exceeding unemployment compensation,
they supply labor and, if the income effect is less than the sub-
stitution effect, labor supply increases with the wage rate. The
optimal labor supply may look similar to the function g(x).

Figure 11.4 depicts ex and its second degree Chebyshev poly-
nomial approximation. If we use the 3 zeros of T3 as interpolation
nodes, the maximum absolute error between ex and its approxi-
mation in the interval [0, 1] is 0.0099. With 10 data points it drops
to 0.0093. However, if we use the fifth degree approximation with
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Figure 11.4: Chebyshev Approximation of ex

10 data points the error drops below (1.17)×10−6. In this case, the
graph of ex and the graph of its approximation virtually coincide
in Figure 11.4.

Table 11.1 shows that the value of the Chebyshev coefficients
drop off rapidly. This result is not surprising. In fact, one can
show the following theorem:11

Theorem 11.2.4 If f ∈ Ck[−1, 1] has a Chebyshev representa-
tion f(x) =

∑∞
i=1 αiTi(x), then there is a constant c such that

|αi| ≤ c

ik
, i ≥ 1. (11.58)

This theorem also gives a hint for the choice of the degree n of
the approximating polynomial. If the αi are falling rapidly and if
αn is small, then we can be more confident to ignore higher-order
polynomial terms. Notice further that the values of the first 4 co-
efficients do not change if we increase the degree of the Chebyshev

11 See Judd (1998), Theorem 6.4.2.
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Table 11.1

Coefficient n = 2, m = 10 n = 5, m = 10

α0 1.753 1.753
α1 0.850 0.850
α2 0.105 0.105
α3 0.0087
α4 0.0005
α5 0.000027

polynomial from n = 2 to n = 5. Of course, this is obvious from
(11.57) if we keep m constant.

As we have just learned, smooth functions can be approximated
quite accurately by Chebyshev polynomials. However, Chebyshev
approximation is less apt for the approximation of functions dis-
playing a kink, like the function g(x) = max(0, x − 1), or step
functions. The function g(x) is not differentiable at x = 1. The
approximation by Chebyshev interpolation (i.e., m = n + 1) and
Chebyshev regression are displayed in Figure 11.5. Notice that
with regression, we are better able to approximate the kink at
x = 1 than with interpolation. As the degree of the Chebyshev
polynomial increases, the approximation is getting closer.

11.2.7 Multidimensional Approximation

Choice of Bases. Even in the simple stochastic growth model
the domain of the policy function is already a subset of R2. So
how can we generalize the polynomial approximation to the n-
dimensional case? One approach is to use the n-fold tensor prod-
uct base. Let xi denote the i-th element of x = (x1, x2, . . . , xn)
and use ϕk(xi) for the k-th member of a family of polynomials.
For instance ϕk(xi) ≡ xk

i . The set

T :=

{
n∏

i=1

ϕki
(xi)|ki = 0, 1, . . . p

}
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Figure 11.5: Chebyshev Approximation of max{0, x− 1}

is the n-fold tensor product base. The linear combination of the
(1 + p)n elements of T can be used to approximate f(x). For
instance, in the stochastic growth model x = (K,Z), and for
p = 2 and ϕk(xi) = xk

i the set T is given by

{K0Z0, K0Z1, K0Z2, K1Z0, K1Z1, K1Z2, K2Z0, K2Z1, K2Z2}
≡ {1, Z, Z2, K,KZ,KZ2, K2, K2Z,K2Z2}.

This set grows exponentially with the dimension n of x. A smaller
set that delivers as good an approximation (in terms of asymptotic
convergence) as the tensor product base is the complete set of
polynomials of degree p in n variables, denoted Pn

p . This set is
derived by considering the p-th order approximation of f(x). As
we know from Theorem 11.2.2, this approximation involves the
following products:

Pn
p =

{
(xk1

1 x
k2
2 · · ·xkn

n )

∣∣∣∣ n∑
i=1

ki = j, ki ≥ 0, j = 0, 1, 2, . . . , p

}
Thus, for x = (K,Z) and p = 2, the set is
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P2
2 ={K0Z0︸ ︷︷ ︸

j=0

, K1Z0, K0Z1︸ ︷︷ ︸
j=1

, K2Z0, K1Z1, K0Z2︸ ︷︷ ︸
j=2

},

= {1, K, Z,K2, KZ, Z2}.

More generally, we can build a complete set of polynomials of
total degree p in n variables from any family of polynomials by
replacing xki

i with ϕki
(xi) in the definition of Pn

p .

Chebyshev Approximation in Two Dimensions. The pa-
rameters of a Chebyshev approximation in a multidimensional
framework also derive from the minimization of an appropri-
ate sum of squares. We illustrate this approach for the two-
dimensional case. Higher dimensions are handled analogously. Let
f(z1, z2) be a function on [a, b] × [c, d] that we would like to ap-
proximate by a two-dimensional Chebyshev polynomial12

n1∑
j1=0

n2∑
j2=0

αj1j2Tj1(X(z1))Tj2(X(z2)). (11.59)

We need m1 ≥ n1 +1 and m2 ≥ n2 +1 points and choose them as
the zeros of the m1-dimensional and m2-dimensional Chebyshev
polynomial, adjusted to the interval [a, b] and [c, d], respectively.
Let

ȳk1k2 := f(Z(x̄1k1), Z(x̄2k2)),

and consider the least squares criterion

min

m1∑
k1=1

m2∑
k2=1

[
ȳk1k2 −

n1∑
j1=0

n2∑
j2=0

αj1j2Tj1(x̄1k1)Tj2(x̄2k2)

]2

.

The first order condition with respect to αj1j2 yields:

12 Remember, X(z) is the linear transformation of points in [a, b] or [c, d] to
[−1, 1] defined in (11.48).
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m1∑
k1=1

m2∑
k2=1

ȳk1k2Tj1(x̄1k1)Tj2(x̄2k2)

=

m1∑
k1=1

m2∑
k2=1

n1∑
i1=0

n2∑
i2=0

αi1i2Ti1(x̄1k1)Ti2(x̄2k2)Tj1(x̄1k1)Tj2(x̄2k2)

=

n1∑
i1=0

n2∑
i2=0

αi1i2

m1∑
k1=1

Ti1(x̄1k1)Tj1(x̄1k1)︸ ︷︷ ︸
= 0 if j1 �= i1
= m1/2 if j1 = i1 �= 0
= m1 if j1 = i1 = 0

m2∑
k2=1

Ti2(x̄2k2)Tj2(x̄2k2)︸ ︷︷ ︸
= 0 if j2 �= i2
= m2/2 if j2 = i2 �= 0
= m2 if j2 = i2 = 0

.

Therefore, we get the following estimator:

α00 =
1

m1m2

m1∑
k1=1

m2∑
k2=1

ȳk1k2 ,

α0j2 =
1

m1

2

m2

m1∑
k1=1

m2∑
k2=1

ȳk1k2Tj2(x̄2k2),

αj10 =
2

m1

1

m2

m1∑
k1=1

m2∑
k2=1

ȳk1k2Tj1(x̄1k1),

αj1j2 =
2

m1

2

m2

m1∑
k1=1

m2∑
k2=1

ȳk1k2Tj1(x̄1k1)Tj2(x̄2k2).

(11.60)

11.2.8 Neural Networks

Instead of linear combinations of polynomials neural networks use
non-linear approximation schemes. A single-layer neural network
is a function of the form

Φ(a,x) := h

(
n∑

i=1

aig(xi)

)
,

where h and g are scalar functions. In the left panel of Figure
11.6 the first row of nodes represents the function g processing the
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inputs xi. The result is aggregated via summation, as indicated by
the arrows to the single node which represents the function h that
delivers the final output y. In the single hidden-layer feedforward
network displayed in the right panel of Figure 11.6 the function g
delivers its output to a second row of nodes. There, this input is
processed by another function G, say, before it is aggregated and
passed on to the function h.

Formally, the single hidden-layer feedforward network is given
by:

Φ(a,b,x) := h

(
m∑

j=1

bjG

[
n∑

i=1

aijg(xi)

])
.

The function G is called the hidden-layer activation function. A
common choice for G is the sigmoid function

G(x) =
1

1 + e−x
.

x1x1 x2x2 . . .. . . xnxn

yy

. . .

. . . . . .

Single Layer Hidden-Layer Feedforward

Figure 11.6: Neural Networks
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Neural networks are efficient functional forms for approximating
multidimensional functions. Often they require less parameters for
a given accuracy than polynomial approximations.13

In the case of the stochastic growth model, which we consider
inter alia in Section 5.1, Duffy and McNelis (2001) approxi-
mate the conditional expectation that appears in the Euler equa-
tion (5.1b) by the following single hidden-layer feedforward neural
network with six parameters:

Φ(γ, K, Z) = γ1 +
γ2

1 + e−γ3K−γ4Z
+

1

1 + e−γ5K−γ6Z
.

11.3 Numerical Differentiation and Integration

11.3.1 Differentiation

Many of our algorithms require derivatives. Think of the Newton-
Raphson algorithm or the linear quadratic approximation method.
In the simplest case of a real valued function of one variable,
y = f(x), the obvious choice is the analytical derivative f ′(x).
Yet, if f ′(x) is given by a complicated formula, mistakes easily
sneak into the computer code. It may even be impossible to derive
an explicit expression for the derivative at all. Think of the sum of
squares in the case of the parameterized expectations approach.
If the Jacobian matrix of a vector valued function or the Hesse
matrix of a function of many independent variables are required,
analytical derivatives – if available at all – require many lines of
computer code; something which is failure-prone. Therefore, we
use numerical derivatives in almost all of our computer programs.

This section provides some background on numerical differenti-
ation and presents two algorithms that approximate the Jacobian
matrix of a vector valued function and the Hesse matrix of a real
valued function, respectively. The related program code can be
used in place of built-in routines, as, e.g., Gradp and Hessp in

13 See Sargent (1993), p. 58f and the literature cited there.
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Gauss or DFDJAC and DFDHES from the IMSL library of Fortan
subroutines.

First Difference Formulas. The basis of numerical derivative
formulas is Taylor’s Theorem. Consider Theorem 11.2.1 for the
case n = 1. We get

f(x̄+ h) = f(x̄) + f (1)(x̄)h+ f (2)(ξ)
h2

2
. (11.61)

Thus, we may approximate the first derivative by the formula14

DFDf(x̄, h) :=
f(x̄+ h)− f(x̄)

h
. (11.62)

This is known as the forward difference formula. The approxima-
tion error is proportional to h, since from (11.61):∣∣DFDf(x̄, h)− f (1)(x̄)

∣∣ = ∣∣f (2)(ξ)/2
∣∣h.

Thus, the error is of first order. The backward difference formula
derives from Taylor’s theorem for −h in place of h. Its error is
also of first order. Now consider Taylor’s theorem for n = 2, h,
and −h:

f(x̄+ h) = f(x̄) + f (1)(x̄)h+ f (2)(x̄)
h2

2
+ f (3)(ξ1)

h3

6
, (11.63a)

f(x̄− h) = f(x̄)− f (1)(x̄)h+ f (2)(x̄)
h2

2
− f (3)(ξ2)

h3

6
, (11.63b)

and subtract the second line from the first. The quadratic term
disappears and from

f(x̄+ h)− f(x̄− h) = 2f (1)(x̄)h +
(
f (3)(ξ1) + f (3)(ξ2)

) h3

6

we find the approximation

DCDf(x̄, h) :=
f(x̄+ h)− f(x̄− h)

2h
(11.64)

14 As in Section 11.2.1, we use the symbol Di to denote the i-th derivative of
f . Subscripts denote the kind of approximation.
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known as central difference formula. Letting C denote the maxi-
mum of (f (3)(ξ1)+f

(3)(ξ2))/6 in [x̄, x̄+h], we see that the approx-
imation error is proportional to Ch2 and, thus, of second order.
When we add equation (11.63a) to equation (11.63b) the first
derivative terms cancel and we get the central difference formula
for the second derivative:

D2
CDf(x̄, h) :=

f(x̄+ h) + f(x̄− h)− 2f(x̄)

h2
, (11.65)

whose approximation error is bound by Ch and, thus, of first
order.

Choice of h. From the previous discussion it might seem to be
a good idea to choose h as small as possible. But remember the
finite precision of computer arithmetic. Suppose your PC is able
to represent, say, the first 10 digits to the right of the decimal
point of any floating point number correctly. If h is too small, the
first and second term in the numerator of equation (11.62) may
differ only in the eleventh digit and the computed derivative is
highly unreliable.

Suppose the error in computing f(x̄) and f(x̄+ h) is ē and eh,
respectively. At least, ē and eh equal the machine epsilon ε, i.e.,
the smallest positive number for which the statement 1 + ε > 1 is
true on your machine. However, if f(x) is the result of complicated
and involved computations, the actual error may be much larger.
We want to find an upper bound on the total error E(δ, h) that
results when we use f̃(x̄) := f(x̄)+ ē and f̃(x̄, h) := f(x̄+h)+ eh

to compute DFDf(x̄, h), where ē, eh ≤ δ for some δ ≥ ε.

E(δ, h) :=

∣∣∣∣∣f ′(x̄)− f̃(x̄)− f̃(x̄+ h)

h

∣∣∣∣∣
≤ |f ′(x̄)−DFDf(x̄, h)|︸ ︷︷ ︸

≤Ch

+
|ē− eh|

h︸ ︷︷ ︸
≤2δ/h

,

≤ Ch+
2δ

h
, C := max

ξ∈[x̄,x̄+h]

f 2(ξ)

2
.
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Setting the derivative of this upper bound with respect to h to
zero and solving for h gives the step size that provides the smallest
upper bound:

h∗ =

√
2δ

C
. (11.66)

If we perform the same exercise with respect to the central
difference formulas (11.64) and (11.65) we find that the optimal
choice of h is

h∗∗ =
3

√
2δ

C
, C := max

ξ1,ξ2∈[x̄,x̄+h]

f (3)(ξ1) + f (3)(ξ2)

6
. (11.67)

Computation of the Jacobian. It is easy to apply the above
results to a vector valued function f : Rn → Rm. Let f i(x),x =
[x1, x2, . . . , xn] denote the i-th component function of f . Using
the central difference formula (11.64) we may approximate the
element f i

j of the Jacobian matrix at the point x̄ by

f i
j :=

∂f i(x̄)

∂xj
� f(x̄+ ejh)− f(x̄− ejh)

2h
, (11.68)

where ej is the unit (row) vector with one in the j–th position
and zeros elsewhere.

If the xi differ considerably in size, we set h proportional to xj

using

hj = h∗∗ max{|xj|, 1}. (11.69)

Our program CDJac (see the file Differentiation.scr for the
Gauss version and the file Differentiation.for for the Fortran
version) uses equation (11.68) together with this choice of hj (and
h∗∗ = 3

√
ε as default) to compute the Jacobian of a user supplied

routine that evaluates f i(x̄), i = 1, 2, . . . , m at x̄.
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Computation of the Hesse Matrix. Suppose we want to com-
pute the elements of the Hesse matrix of f : Rn → R given by

H(x̄) :=

⎡⎢⎢⎢⎣
h11 h12 . . . h1n

h21 h22 . . . h2n
...

...
. . .

...
hn1 hn2 . . . hnn

⎤⎥⎥⎥⎦ , hij :=
∂2f(x̄)

∂xi∂xj
.

There are two possibilities. Note, that the Hesse matrix equals
the Jacobian matrix of the gradient of f . Thus, if an analytic
expression for the gradient of f is easy to program, one can use this
as an input to a procedure that approximates the Jacobian. This
gives a better approximation than the use of difference formulas
for second partial derivatives.15 If this is not an option, one can
apply the central difference formula for the second derivative of a
function in one variable to compute the diagonal elements of H .16

This gives:

hii � f(x̄+ eihi) + f(x̄− eihi)− 2f(x̄)

h2
i

. (11.70)

There are several choices for the off-diagonal elements of H . From
a third order expansion of f at x̄, we can get the following equa-
tions:17

f(x̄+ hi + hj) = f(x̄) + fi(x̄)hi + fj(x̄)hj + (1/2)hiih
2
i

+ (1/2)hjjh
2
j + hijhihj + C1,

f(x̄+ hi − hj) = f(x̄) + fi(x̄)hi − fj(x̄)hj + (1/2)hiih
2
i

+ (1/2)hjjh
2
j − hijhihj + C2,

f(x̄− hi + hj) = f(x̄)− fi(x̄)hi + fj(x̄)hj + (1/2)hiih
2
i

+ (1/2)hjjh
2
j − hijhihj + C3,

f(x̄− hi − hj) = f(x̄)− fi(x̄)hi − fj(x̄)hj + (1/2)hiih
2
i

+ (1/2)hjjh
2
j + hijhihj + C4,

15 The error of the central difference formula for the first derivative is of
second order, whereas the error from the central difference formula for the
second derivative is of first order.

16 In the following we use hi proportional to max{|xi|, 1} as in (11.69).
17 See, e.g., Judd (1998), p. 239, for Taylor’s formula in the case of many

independent variables.



598 Chapter 11: Numerical Methods

where Ck, k = 1, 2, 3, 4 are sums of the mixed third partial deriv-
atives of f and of third order.18 If we add the first and the last
equation and subtract the second and third equation from this
sum, we find the following four-point formula:

hij � 1

4hihj

[
f(x̄+ eihi + ejhj)− f(x̄− eihi + ejhj)

− f(x̄+ eihi − ejhj) + f(x̄− eihi − ejhj)
]
,

(11.71)

whose approximation error is bound by Ch := h
∑

k |Ck|. Our pro-
cedure CDHesse (see the file Differentiation.src for the Gauss
version and Differentiation.for for the Fortran version) uses
(11.70) and (11.71). This agrees with the suggestion of Hansen

and Prescott (1995) for the quadratic approximation of the
current period return function.

11.3.2 Numerical Integration

Newton-Cotes Formulas. Basically, there are two different ap-
proaches to compute an integral

∫ b

a
f(x)dx numerically.19 The first

idea is to approximate the function f(x) by piecewise polynomials
and integrate the polynomials over subdomains of [a, b]. For ex-
ample, the Trapezoid rule evaluates the function f(x) at the end
points x = a and x = b and uses the linear Lagrange polynomial

P1(x) =
x− b
a− bf(a) +

x− a
b− a f(b) (11.72)

18 For instance,

C1 := (1/6)(fiiih
3
i + fjjjh

3
j + fiijh

2
ihj + fjjihih

2
j),

where the third partial derivatives are evaluated at some point between
x̄ and x̄ + eihi + ejhj (see Theorem 11.2.2). Since one can always choose
hi = ah, hj = bh for some h, all terms on the rhs of the previous equation
are of third order.

19 In fact, there is a third approach that we do not pursue here. It considers
the related problem to solve an ordinary differential equation.



11.3 Numerical Differentiation and Integration 599

to approximate f(x). Integration of P1 over [a, b] results in the
formula∫ b

a

f(x)dx ≈ b− a
2

[f(a) + f(b)] . (11.73)

If we use higher-order polynomials or a higher number of subdo-
mains, more generally, we derive a Newton-Cotes formula for the
approximation of the integral which evaluates the integral at a
number of points:∫ b

a

f(x)dx ≈
n∑

i=1

aif(xi). (11.74)

Gaussian Formulas. In Newton-Cotes formulas, the coefficients
ai are chosen so that the local approximation is correct and the
nodes xi are chosen arbitrarily; usually, the xi are equidistant.
The second approach, which we will pursue in all quadrature ap-
plications of this book, is to choose both the weights ai and the
nodes xi optimally in order to provide a good approximation of∫ b

a
f(x)dx. It is obvious that we increase the degrees of freedom at

our disposal if we choose both the nodes xi and the weights ai si-
multaneously rather than just the weights ai in order to get a good
approximation. Essentially, the resulting Gaussian quadrature for-
mulas have twice the order than the Newton-Cotes formulas for
the same number of function evaluations.20

The following theorem highlights the importance of orthogonal
families of polynomials for numerical integration:21

Theorem 11.3.1 Suppose that {ϕi(x)}∞i=0 is an orthonormal fam-
ily of polynomials with respect to the weight function w(x) on [a, b]
with ϕi(x) = qix

i + qi−1x
i−1 + . . .+ q0. Let x̄i, i = 1, . . . , n, be the

n zeros of ϕn. Then a < x̄1 < · · · < x̄n < b, and if f ∈ C(2n)[a, b],
then

20 Notice, however, that higher order does not always translate into higher
accuracy.

21 See also Judd (1998), Theorem 7.2.1.
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∫ b

a

w(x)f(x)dx =

n∑
i=1

ωif(xi) +
f 2n(ζ)

q2
n(2n)!

, (11.75)

for some ζ ∈ [a, b], where

ωi = − qn+1/qn
ϕ′

n(x̄i)ϕn+1(x̄i)
> 0.

Accordingly, we can evaluate the integral of a polynomial of
degree 2n − 1 exactly by applying formula (11.75). Usually, one
does not have to compute the nodes and weights, since they are
kept in tables. It is a nice property of the Chebyshev polynomials
that their weights ωi are constant. The Gauss-Chebyshev quadra-
ture formula for a function f(x) on the interval [−1, 1] is defined
by:∫ 1

−1

f(x)√
1− x2

dx =
π

n

n∑
i=1

f(xi) +
π

22n−1

f (2n)(ζ)

(2n)!

for some ζ ∈ [−1, 1], where the quadrature nodes xi are the zeros
of the Chebyshev polynomial Tn(x) as presented in (11.55).

For integrals of the form
∫ b

a
f(z)dz, we use (11.49) to adjust

[−1, 1] to [a, b]. Since the linear transformation (11.49) implies

dz =
b− a

2
dx,

we can derive the following approximation:∫ b

a

f(z)dz =

∫ 1

−1

f(Z(x))
b− a

2

√
1− x2

√
1− x2

dx (11.76)

≈ π(b− a)
2n

n∑
i=1

f

(
(xi + 1)(b− a)

2
+ a

)√
1− x2

i ,

where the xi, again, are the Chebyshev zeros from (11.55).
Very often we have to compute (conditional) expectations. In

these instances it is natural to refer to the Hermite polynomials,
since their weight function is given by w(x) := e−x2

. Suppose z is
distributed normally with mean μ and variance σ2. Then,
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E(f(z)) := (2πσ2)−1/2

∫ ∞

−∞
f(z)e[−(z−μ)2/2σ2]dz.

Since

x =
z − μ√

2σ

has a standard normal distribution (i.e., E(x) = 0 and var(x) =
1), we get

E(f(z)) = π−1/2

∫ ∞

−∞
f
(√

2σx+ μ
)
e−x2

dx,

where we used

dz =
√

2σdx.

This integral can be approximated by the Gauss-Hermite quadra-
ture formula

E(f(z)) � π−1/2
n∑

i=1

ωif
(√

2σxi + μ
)
. (11.77)

For n = 2, . . . , 5 the integration nodes xi and weights ωi are given
in Table 11.2.

Multidimensional Integration. Even the stochastic growth
model has a state space of dimension two. When we use least
squares or Galerkin projection to solve this model or models whose
state space has an even higher dimension, we must compute mul-
tiple integrals. The most natural way to do this, is to use prod-
uct rules. For instance, if we want to compute the integral of
f(z1, . . . , zn) over the n-dimensional rectangle [a1, b1] × [a2, b2] ×
. . . [an, bn] the Gauss-Chebyshev quadrature (11.76) implies∫ b1

a1

. . .

∫ bn

an

f(z1, . . . , zn)dz1 . . . dzn

�π
n(b1 − a1) . . . (bn − an)

(2m)n

m∑
i1=1

· · ·
m∑

in=1

f(Z(x̄1), . . . , Z(x̄n))

×
√

1− x̄2
i1
. . .
√

1− x̄2
in
. (11.78)
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Table 11.2

n xi ωi

2 −0.7071067811 0.8862269254
0.7071067811 0.8862269254

3 −1.224744871 0.2954089751
0.0000000000 1.18163590
1.224744871 0.2954089751

4 −1.650680123 0.08131283544
−0.5246476232 0.8049140900

1.650680123 0.8049140900
0.5246476232 0.08131283544

5 −2.02018287 0.01995324205
−0.9585724646 0.3936193231

0.0000000000 0.9453087204
0.9585724646 0.3936193231
2.02018287 0.01995324205

Source: Judd (1998), Table 7.4

In this formula Z(xi) denotes the linear transformation given in
equation (11.49), and x̄i is the i-th zero of the Chebyshev poly-
nomial of degree m. The problem with product rules is the curse
of dimensionality. It requires mn function evaluations to compute
the approximate integral. If f itself is time consuming to evaluate,
computational time becomes a binding constraint, even for n as
small as 4. Monomial formulas are derived from the problem to
exactly integrate a weighted product of monomials over a subset
D of Rn. A large number of specific formulas derive from this ap-
proach. A good source for those formulas is Strout (1971). A
formula that is particularly helpful to compute the expectation
E(f(x)) if x ∈ Rn has a multivariate standard normal distribu-
tion, is the following:

(2π)−n/2

∫
Rn

f(x)e−
�n

i=1 x2
i dx � 1

2n

n∑
i=1

f(±
√
n/2ei), (11.79)

where ei = (0, . . . , 0, 1, 0, . . .0) denotes the i-th unit vector. To
apply this rule to the general case of a random normal vector
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z with mean μ and covariance matrix Σ, we use the change of
variable technique.22 The linear transformation

x =
Σ−1/2

√
2

(z− μ)

implies that E(f(z)) can be expressed as an integral function of
x:

E(f(z)) = (2π)−n/2|Σ|−1/2

∫
Rn

f(z)e
−1
2

(z−μ)′Σ−1(z−μ)dz

= π−n/2

∫
Rn

f
(√

2Σ1/2x + μ
)
e−
�n

i=1 x2
i dx.

This integral can be approximated by formula (11.79). In the files
Integration.src and Integration.for we provide several pro-
cedures for numerical integration.

11.4 Stopping Criteria for Iterative Algorithms

Most, if not all of our algorithms are iterative. Think of the value
function iterations presented in Chapter 1 or the fixed point it-
erations used in Chapter 3. For those algorithms we must know
when to stop them.

Stopping criteria can be based on two questions:23

1. Have we solved the problem?
2. Have we ground to a halt?

Consider the problem to find the root of the system of non-linear
equations f(x) = 0. To answer the first question we must decide
when f(x) is close to zero. To answer the second question we must
decide when two successive points xs+1 and xs are close together
so that we can reasonably assume the sequence is near its limit
point.

22 See, e.g., Theorem 7.5.3 in Judd (1998).
23 See Dennis and Schnabel (1983), p. 159.
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To tackle both problems we need measures of distance, or, more
generally, vector norms as defined in equation (11.1). Given a
vector norm, we will be speaking of a vector sequence (xs)∞s=1

converging to a point x∗, if lims→∞ ‖xs−x∗‖ = 0. A key property
of a convergent series is the rate at which it converges to its limit.
We say that xs converges at rate q to x∗, if there exists a constant
c ∈ [0, 1) and an integer s̄ such that

‖xs+1 − x∗‖ ≤ c‖xs − x∗‖q for all s ≥ s̄. (11.80)

If q in (11.80) equals 1 (2), we say that the vector series con-
verges linearly (quadratically). If there is a sequence (cs)

∞
s=1 that

converges to zero,

‖xs+1 − x∗‖ ≤ cs‖xs − x∗‖,
then we say the sequence (xs)

∞
s=1 converges superlinearly.

With these definitions at hand we may accept xc as a solution
of f(x) = 0 if

‖f(xc)‖∞ < ε, ε ∈ R. (11.81)

Care must be taken with respect to the scaling of f . For example,
if f j ∈ [10−5, 10−4] ∀j and ε = 10−3, any x will cause us to stop. If
the f j differ greatly in magnitude, applying (11.81) may be overly
restrictive. Therefore, before applying (11.81) the xi should be
scaled so that the f j have about the same magnitude at points
not near the root.

An answer to the second question can be based on the rule

|xs
i − xs+1

i |
1 + |xs

i |
≤ ε ∀ i = 1, 2, . . . , n, ε ∈ R++. (11.82)

It tests whether the change in the i–th coordinate of x is small
relative to the magnitude of xs

i . To circumvent the possibility of
xi � 0, 1 + |xs

i | instead of |xs
i | is used in the denominator. How-

ever, if ∀i xi is much smaller than unity this criterium indicates
convergence too early. Therefore, if the typical value of xi, typ xi,
say, is known, Dennis and Schnabel (1983), p. 160 recommend
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|xs
i − xs+1

i |
max{|xs

i |, |typ xi|} ≤ ε ∀i = 1, 2, . . . , n, ε ∈ R++. (11.83)

In some cases, like, e.g., in iterations over the value function,
it is known that

‖xs+1 − x∗‖ ≤ c‖xs − x∗‖, 0 ≤ c < 1 for all s ≥ 1.

Thus the properties of norms given in (11.3) imply

‖xs − x∗‖ ≤ ‖x
s − xs+1‖
1− c .

Using

‖xs − xs+1‖ ≤ ε(1− c), ε ∈ R++ (11.84)

as stopping rule secures that the error ‖xs−x∗‖ in accepting xs+1

as solution is always bounded from above by ε.
In Section 11.5.2 we present a globally convergent extension of

the Newton-Raphson algorithm 11.5.2. It is based on finding the
minimizer x∗ ∈ Rn of a real valued function f(x). Therefore, in
addition to the stopping criteria discussed so far, we need crite-
ria that tell us, when we are close to the minimum of f(x). A
necessary condition for any minimum is

fi(x
∗) = 0, i = 1, 2, . . . , n,

where fi(x
∗) denotes the partial derivative of f with respect to

its i-th argument evaluated at x∗. Let

∇f := [f1, f2, . . . , fn]
′

denote the column vector of partial derivatives (the gradient of
f). Then, a natural choice seems to stop, if at the k-th step

‖∇f(xk)‖ ≤ ε

for a small positive number ε. However, this criterium is sensitive
with respect to the scale of f . To see this, suppose f(x) are the
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costs of producing the quantities xi, i = 1, 2, . . . , n in US $. Now, if
instead we measure costs in thousands of dollars, so that f̃ = Sff
with Sf = 10−3 the algorithm would already stop if Sf‖∇f(xs)‖ ≤
ε. To circumvent this problem, we could use

‖∇f(xk)‖
max{|typ f |, |f |} ≤ ε, (11.85)

which is independent of the scale of f . Here, again, we use
max{|typ f |, |f |} instead of 1+ |f | in the denominator to allow for
the typical value of f , typ f , to be much smaller than 1. However,
(11.85) is not independent of the scale of xi, i = 1, 2, . . . , n. For
instance, let f(x) := (Sxx)

2, where Sx is a scaling factor for x and
assume |typf | ≡ 1 < (Sxx

k)2. In this case the lhs of (11.85) yields

2

|Sxxk| .

Here, again, the algorithm stops the sooner the larger is the scale
– tons instead of kilos – for x. An obvious measure that is free
of both the scale of f and of xi is the partial elasticity of f with
respect to xi:

fi(x
k)xi

f(xk)
.

To account for either xk
i � 0 or f(xk) � 0, Dennis and Schn-

abel (1983), p. 160 recommend the following stopping criterium:∣∣∣∣fi(x
k) max{|xi|, typ xi}

max{|f(xk)|, typ f}
∣∣∣∣ < ε, ∀i = 1, 2, . . . , n. (11.86)

11.5 Non-Linear Equations

There are many problems where we must solve non-linear equa-
tions. For instance, in Section 4.3.2 we must solve the household’s
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first order condition for working hours (4.15) in oder to compute
the utility associated with a given savings decision k′. Or, think of
the deterministic extended path algorithm presented in Chapter
3 that boils down to solve a large system of non-linear equations.
In the next subsection we describe two well-known methods that
locate the zero of a function of a single variable. Subsection 11.5.2
considers systems of non-linear equations.

11.5.1 Single Equations

Bisection. Suppose we want to solve the equation f(x) = 0 for
x ∈ [a, b]. If f is continuous and if f(a) and f(b) are of opposite
sign, the intermediate value theorem tells us that there is a x∗ ∈
[a, b] for which f(x∗) = 0. The bisection method constructs a series
of shrinking intervals Ij, j = 1, 2, . . . that bracket the solution
to any desired degree. Figure 11.7 illustrates this approach. The
first interval is given by I1 = [a, p1] with p1 = a + (b − a)/2.
Since f changes its sign in I1, that is f(a)f(p1) < 0, we know
that x∗ ∈ I1. In the next step we consider the smaller interval
I2 = [a, p2] with p2 = a + (p1 − a)/2. At the boundaries of I2, f

x

f(x)

ba

f(b)

f(a)

x∗ p1p2

I2

I1

I3

f(p1)

Figure 11.7: Bisection Method
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has the same sign, f(a)f(p2) > 0. Thus, the zero must be to the
right of p2. For this reason we now adjust the lower bound and
choose I3 = [p2, p2 + (p1 − p2)/2]. Continuing in this way gets us
closer and closer to x∗.

The bisection method, which we summarize in Algorithm
11.5.1, is a derivative free method, and thus, can be applied to
problems where f is not differentiable. Our Gauss program Fixp2

implements this algorithm.

Algorithm 11.5.1 (Bisection)

Purpose: Approximate the solution x∗ of f(x) = 0 in I = [a, b].

Steps:

Step 1: Initialize: Choose a tolerance ε1 and a parameter conver-
gence criterium ε2 and a maximum number of iterations
n and set i = 1.

Step 2: Compute fa = f(a).
Step 3: Compute p = a+ (b− a)/2.
Step 4: Compute fp = f(p).

Step 5: Check for convergence: If |fp| < ε1 or (b − a)/2 < ε2 or
i = n stop.

Step 6: Adjust the boundaries: If fa × fp > 0, replace a with p
and fa with fp, else replace b with p. Increase i by one
and return to Step 3.

Newton-Raphson Method. Newton’s method or, as it is also
known, the Newton-Raphson method, uses the linear approxima-
tion of f to locate the zero x∗. Since it converges quadratically, it
is much faster than the bisection method.

In Figure 11.8 the domain of the function f(x) is the set of non-
negative real numbers R+. Consider the point x0. We approximate
f linearly around x0. This gives g0(x) := f(x0) + f ′(x0)(x− x0),
where f ′(x0) is the slope of f at x0. The root of g0(x) is given by

0 = f(x0) + f ′(x0)(x
′
1 − x0) ⇒ x′1 = x0 − f(x0)

f ′(x0)
.
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y

x

f(x)

x0x′
1 x1 x∗

g0(x) := f(x0) + f ′(x0)(x− x0)

g1(x) := f(x1) + f ′(x1)(x− x1)

Figure 11.8: Modified Newton-Raphson Method

Yet, x′1 < 0 where f(x) is not defined. Hence, we choose a point
x1 between x′1 and x0. Approximating f at x1 and solving for the
root of g1(x) = f(x1) + f ′(x1)(x− x1) takes us close to x∗.

The method where one iterates over

xs+1 = xs − f(xs)

f ′(xs)
(11.87)

until f(xs+1) ≈ 0 is called the Newton-Raphson method. The
modified Newton-Raphson method takes care of regions where f
is not defined and backtracks from xs+1 along the direction f ′(xs)
to a point x′s+1 at which f can be evaluated.

There are problems where it is impossible or very costly (in
terms of computational time) to compute the derivative of f . For
instance, in Section 7.3.1 we compute the stationary distribution
of an exchange economy with credit constraints. In this problem,
there is no analytical expression for the function that relates the
economy’s interest rate to average asset holdings. In these situ-
ations we use the slope of the secant that connects two points
(xs, f(xs)) and (xs+1, f(xs+1)) in place of f ′(xs) in (11.87) (see
Figure 11.9). This provides the secant method:
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f(x)

x

f(xs+1)

xs+1xs+2 xs

f(xs)

x∗

Figure 11.9: Secant Method

xs+2 = xs+1 − xs+1 − xs

f(xs+1)− f(xs)
f(xs). (11.88)

It can be shown that both the iterative scheme (11.87) and
(11.88) converge to the solution x∗ under suitable conditions.24

Furthermore, they are easily generalized to the multi-variable
framework.

11.5.2 Multiple Equations

Assume we want to solve the system of n equations in the un-
knowns x = [x1, x2, . . . , xn]:

0 = f 1(x1, x2, . . . , xn),

0 = f 2(x1, x2, . . . , xn),

... =
...

0 = fn(x1, x2, . . . , xn),

⎫⎪⎪⎪⎪⎬⎪⎪⎪⎪⎭⇐⇒ 0 = f(x). (11.89)

24 See, e.g., Dennis and Schnabel (1983), Theorem 2.4.3 and Theorem
2.6.3.
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As in the single equation case there are simple, derivative free
methods, as well as extensions of the Newton-Raphson and secant
method.

Gauss-Seidel Method. This method starts with a point xs =
[xs

1, x
s
2, . . . , x

s
n], and obtains a new point xs+1 by solving

0 = f 1(xs+1
1 , xs

2, . . . , x
s
n),

0 = f 2(xs+1
1 , xs+1

2 , . . . , xs
n),

... =
...,

0 = fn(xs+1
1 , xs+1

2 , . . . , xs+1
n ).

This process is continued until two successive solutions xs+1 and
xs are close together, as defined by either condition (11.82) or
(11.83). Thus, the problem of solving n equations simultane-
ously is reduced to solving n single equations in one variable
xs+1

i . Depending on the nature of the functions f i these solutions
may be either obtained analytically – if it is possible to write
xs+1

i = hi(xs
−i), where xs

−i is the vector xs without its ith element
– or by any of the methods considered in the previous subsection.

Figure 11.10 illustrates that the sequence of points constructed
in this way may well diverge from the true solution (x∗1, x

∗
2). A set

of sufficient conditions for the convergence of the Gauss-Seidel it-
erations is derived by Carnahan, Luther, and Wilkes (1969),
p.308. Assume there is a neighborhood N (x∗) of x∗ defined by
|xi − x∗i | < ε, ε > 0, for all i = 1, 2, . . . , n and a positive number
K < 1 so that the partial derivatives of f i satisfy

∑
j �=i

∣∣∣∣∂f i

∂xj

(x)

∣∣∣∣ + ∣∣∣∣1− ∂f i

∂xi

(x)

∣∣∣∣ < K, ∀i = 1, 2, . . . , n

for all x ∈ N (x∗). Then, the Gauss-Seidel iterations converge to
x∗ for each xs ∈ N (x∗).25

25 This condition derives from condition (5.37) in Carnahan, Luther, and
Wilkes (1969), p.308, if we define the functions F i(x) as F i(x) = xi −
f i(x).
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x2

x1

f1(x1, x2) = 0

f2(x1, x2) = 0

x∗
1

x∗
2
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(x1
1, x

0
2)
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1
2)(x2

1, x
1
2)

(x2
1, x

2
2)

Figure 11.10: Gauss-Seidel Iterations

The Newton-Raphson Method. The Newton-Raphson method
considered in Subsection 11.5.1 is based on a linear approxima-
tion of f(x). In the multi-variable case the linear approximation
of f(x) at a point xs is

g(x) := f(xs) + J(xs)w, w := (x− xs),

with the Jacobian matrix J defined in (11.36). The zero of g(xs+1)
is

xs+1 = xs − J(xs)−1f(xs). (11.90)

To establish the convergence of the sequence of iterates (11.90)
we need a few more definitions. Let ‖ · ‖ denote a given vector or
matrix norm, depending on the respective context.26 We define an
open ball with center xs and radius r, N (xs, r), as the collection
of all x ∈ Rn whose distance to xs is less than r:

N (xs, r) := {x ∈ Rn : ‖x− xs‖ < r}.
26 See Section 11.1 on the definition of vector and matrix norms.
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The Jacobian matrix J(x) is a map of points in Rn to points in
Rn×n. It is said to be Lipschitz on N (xs) with constant γ if for
x1,x2 ∈ N (xs) the following condition holds

‖J(x1)− J(x2)‖ ≤ γ‖x1 − x2‖.
This is a stronger condition than the continuity of J . It can be
shown that a sufficient condition for J to be Lipschitz is that J is
continuously differentiable, i.e., that it belongs to the class of C1

functions.27 In the one-dimensional case f(x) = 0 this requires the
function f to be twice continuously differentiable. The following
theorem, taken from Dennis and Schnabel (1983), p. 90, states
that the sequence of points x0,x1, . . . converges quadratically to
x∗, if x0 is sufficiently close to x∗.

Theorem 11.5.1 Let f : Rn → Rn be continuously differentiable
in an open convex set D ⊂ Rn. Assume that there exists x∗ ∈
Rn and r, β > 0, such that N (x∗, r) ⊂ D, f(x∗) = 0, J(x∗)−1

exists with ‖J(x∗)−1‖ ≤ β, and J is Lipschitz with constant γ on
N (x∗, r). Then there exists ε > 0 such that for all x0 ∈ N (x∗, ε)
the sequence x1,x2, . . . generated by

xs+1 = xs − J(xs)−1f(xs), s = 0, 1, . . . ,

is well defined, converges to x∗, and obeys

‖xs+1 − x∗‖ ≤ βγ‖xs − x∗‖2, s = 0, 1, . . . .

If the initial guess x0 is not as close to the final solution as required
by this theorem, the algorithm may hit points for which f is not
defined (as the point x′1 in Figure 11.7). To circumvent this case,
we specify upper and lower bounds [x, x̄] such that f is well defined
for all x ∈ [x, x̄].

Putting all pieces together, provides Algorithm 11.5.2. We im-
plemented the single equation version of this algorithm in the
Gauss procedure Fixp1 in the file NLEQ.src. For the multi-
equation version we provide two implementations. The procedure

27 A prove of this statement can be found in Hirsch and Smale (1974), p.
163f.
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FixvMN1 can be used, if you have no a priori knowledge about
the domain of f (as is the case, for instance, in the parameterized
expectations approach presented in Chapter 5). In this case, the
procedure returning f(x) must return a Gauss missing value code
if it is not possible to evaluate f at x + w. The procedure than
backtracks from x+w towards x. If you know the boundaries (as
in the application of the deterministic extended path approach of
Chapter 3) you can use FixvMN2. Both implementations allow you
to either use the Gauss command gradp to compute the Jacobian
matrix or our routine CDJac (see Section 11.3.1). Both versions of
the program compute xs+1 in equation (11.90) from the solution
of the linear system

J(xs)ws+1 = −f(xs), ws+1 = xs+1 − xs,

via the LU factorization of the Jacobian matrix. Fortran versions
of both procedures are available in the source file MNR.for.

Algorithm 11.5.2 (Modified Newton-Raphson)

Purpose: Approximate the solution x∗ of (11.89).

Steps:

Step 1: Initialize: choose x0 ∈ [x, x̄].

Step 2: Compute J(x0) the Jacobian matrix of f at x0 and solve
J(x0)w = −f(x0). If x1 = x0 + w /∈ [x, x̄] choose λ ∈
(0, 1) such that x2 = x0 + λw ∈ [x, x̄] and set x1 = x2.

Step 3: Check for convergence: if ‖f(x1)‖∞ < ε and/or |x1
i −

x0
i |/(1 + |x0

i |) ≤ ε ∀i for a given tolerance ε ∈ R++ stop,
else set x0 = x1 and return to step 2.

Broyden’s Secant Update. In systems with many variables
the computation of the Jacobian matrix slows down the algo-
rithm considerably and may even prohibit the use of the modified
Newton-Raphson method. For instance, the problem presented in
Section 9.3.2 involves 900 variables and each function evaluation
requires several minutes. As a consequence, the computation of



11.5 Non-Linear Equations 615

the Jacobian in Step 2 of Algorithm 11.5.2 with the help of nu-
merical differentiation is a matter of days rather than hours or
minutes. In general, for a system of n equations in n unknowns,
Newton’s method requires at least 2n2 + n scalar functional eval-
uations in each step.28

Broyden’s method overcomes this problem. Instead of comput-
ing the Jacobian matrix at each step of the iterations, it updates
the most recent estimate of this matrix using only n function eval-
uations. The method is an extension of the secant-method given
in (11.88) to the multivariate case.

Let As := J(xs) denote the estimate of the Jacobian matrix
at step s of the iterations, ws+1 = xs+1 − xs the step from the
point xs to xs+1, and ys+1 := f(xs+1) − f(xs). The extension of
the secant formula f ′(xs) � (f(xs+1)− f(xs))/(xs+1 − xs) to the
n-variable case implies

As+1ws+1 = ys+1. (11.91)

Yet, this equation determines just n of the n2 unknown elements
of As+1. As shown by Dennis and Schnabel (1983), p. 170f, the
additional condition

As+1z = Asz with
(
xs+1 − xs

)T
z = 0 (11.92)

minimizes the difference between two successive linear approxi-
mations of f(x) at xs and xs+1 subject to condition (11.91). The
two conditions (11.91) and (11.92) uniquely determine As+1 via
the update formula

As+1 = As

[
ys+1 − Asws+1

]
(ws+1)T

(ws+1)T (ws+1)
. (11.93)

In some applications, even the initial computation of the Jacobian
J(x0) may be too time-consuming. In these cases, the identity
matrix is often used as an initial guess for A0.

29

28 2n2 evaluations to obtain the approximate Jacobian matrix with the help of
the central difference formula (11.68) and n evaluations to compute f i(x),
i = 1, 2, . . . , n.

29 One has to be careful, though, with the initialization of the Jacobian A0

as the sequence As does not need to converge to the true matrix J(x∗).
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There are two ways to accelerate the iterations further. 1) Sup-
pose we use the QR factorization (11.31) of As to solve the linear
system Asws+1 = −f(xs). In this case it is possible to update
QR instead of As. Since the QR factorization of an n× n matrix
requires (4/3)n3 floating point operations (flops), whereas its QR
update requires at a maximum 26n2 flops,30 this can save consid-
erable time in systems with many unknowns n. 2) There is also
an update formula for the inverse of As, denoted by (As)−1, that
derives from the Sherman-Morrison formula:31

(As+1)−1 = (As)−1

+

[
ws+1 − (As)−1ys+1

]
(ws+1)T (As)−1

(ws+1)T (As)−1ys+1
.

(11.94)

Dennis and Schnabel (1983), Theorem 8.2.2 show that Broy-
den’s algorithm converges superlinearly (see Section 11.4 on the
different rates of convergence). However, the lower rate of con-
vergence vis-à-vis the Newton-Raphson algorithm is usually out-
weighed by the faster computation of the secant update of the ap-
proximate Jacobian matrix. The secant method with an update
of the QR factorization is implemented in the Fortran program
hybrd1, which is part of a freely available collection of routines
named MINPACK that can be used to solve unconstrained opti-
mization problems and to find the roots of a system of non-linear
equations. A slightly adjusted version of hybrd1 is included in
our Fortran programs where the solution of non-linear equations
is part of the algorithm.

If the initial guess x0 is bad, it may happen that the Newton-
Raphson iterations with or without Broyden’s secant approxima-
tion of the Jacobian matrix fail to converge to the solution x∗. We
next discuss two approaches that facilitate convergence: the line
search and the trust region approach.

In the computation of the demographic transition problem in Section 9.3,
we allow for the re-specification of the Jacobian, if the algorithm fails to
converge and use an alternative initialization.

30 See Golub and Van Loan (1996), p. 225 and 608.
31 See, for example, Dennis and Schnabel (1983), p. 188.
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Line Search. This strategy forces the algorithm to converge to
the solution from any starting point in the domain of the vector
valued function f . It is based on two observations:

1. The solution to f(x) = 0 is also a minimizer of

g(x) := (1/2)f(x)T f(x) = (1/2)

n∑
i=1

(f i(x1, . . . , xn))2.

2. The Newton-Raphson step at xs,

w = −J(xs)−1f(xs),

is a descent direction for g.

To see the latter, note that the linear approximation (see equation
(11.33)) of g at xs is given by

ĝ(xs+1) � g(xs) + [∇g(xs)]T (xs+1 − xs)︸ ︷︷ ︸
w

,

where ∇g denotes the gradient of g, i.e., the column vector of first
partial derivatives of g, which equals:

∇g(xs) = J(xs)T f(xs). (11.95)

Therefore

g(xs+1)− g(xs) � [∇g(xs)]Tw = f(xs)TJ(xs)(−J(xs)−1f(xs))

= −f(xs)T f(xs) ≤ 0.

The idea is, thus, to move in the Newton-Raphson direction, and
check, whether going all the way actually reduces g. If not, we
move back towards xs until we get a sufficient reduction in g. The
details of this procedure are from Dennis and Schnabel (1983),
who show that this algorithm converges to a minimum of g except
in rare cases (see their Theorem 6.3.3 on p. 121). Let

h(λ) := g(xs + λw)
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denote the restriction of g to the line through xs in the direction
w. We look for a step of size λ ∈ (0, 1] that reduces g(xs) at least
by λα∇g(xs)w for a small α ∈ (0, 1/2), i.e.,

g(xs + λw) ≤ g(xs) + λα[∇g(xs)]T w. (11.96)

Dennis and Schnabel (1983) recommend α = 10−4. At first we
try the full Newton-Raphson step, and hence, put λ1 = 1. If λ1

fails to satisfy (11.96), we approximate h by a parabola,

y := aλ2 + bλ + c

and choose λ2 as the minimizer of this function. This delivers:

λ2 = − b

2a
.

We get a and b from:

h(0) = g(xs) =: c,

h(1) = g(xs + w) =: a + b+ c,

h′(0) = ∇g(xs)w =: b.

⎫⎪⎬⎪⎭⇒
⎧⎪⎨⎪⎩
a = h(1)− h(0)− h′(0),

b = h′(0),

c = h(0).

Therefore:

λ2 = − b

2a
=

−h′(0)

2(h(1)− h(0)− h′(0)
. (11.97)

Note that λ2 < (1/2) if g(xs + w) > g(xs) and λ2 = 1/[2(1− α)].
Since too small or too large steps can prevent the algorithm from
converging to the minimum of g, we require λ2 ∈ [0.1, 0.5].32

If the quadratic approximation was not good, λ2 may still vi-
olate (11.96). In this case we approximate h by a cubic function:

y := aλ3 + bλ2 + cλ+ d.

The parameters of this approximation must solve the following
system of equations

32 See Dennis and Schnabel (1983) for examples.
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aλ3
1 + bλ2

1 + cλ1 + d = h(λ1) = g(xs + λ1w),

aλ3
2 + bλ2

2 + cλ2 + d = h(λ2) = g(xs + λ2w),

c = h′(0) = ∇g(xs)w,

d = h(0) = g(xs),

(11.98)

and the minimizer of y is the solution to

λ3 =
−b +

√
b2 − 3ac

3a
. (11.99)

If α < (1/4) this solution is always real.33 Here, again we avoid
too large or too small steps by restricting λ3 to

λ3 ∈ [0.1λ2, 0.5λ2].

If λ3 still violates (11.96) we approximate h at the points xs, xs +
λ2w, and xs + λ3w, solve (11.98) and (11.99) for λ4 and continue
this procedure until λk satisfies (11.96). To prevent the line search
to get trapped in an endless loop, we check at each step whether
λk is larger than some minimal value λmin. We choose λmin so
that λ < λmin implies convergence according to the parameter
convergence criterium ε. For example, consider the convergence
criterium (11.83), define

Δi :=
|xs

i − xs+1
i |

max{|xs
i |, |typ xi|} ,

and Δ = arg max{Δ1,Δ2, . . . ,Δn}. Then λmin = ε/Δ. If the line
search is used in a pure minimization routine, where (11.86) is
used to stop the algorithm, λ < λmin should never occur. If it
nevertheless does, this usually indicates that the ε used in (11.83)
is to large relative to the ε used in (11.86). If λ < λmin occurs
in a non-linear equation solver, the calling program should verify
whether the minimum of g as defined above, is also a zero of f .

Algorithm 11.5.3 summarizes the line search. Both, our non-
linear equations solver and our minimization routine use versions
of this algorithm. See MNRStep in the file MNR.for or in NLEQ.src

33 See Dennis and Schnabel (1983), p. 129.
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(for the Gauss version) and QNStep in Optimization.for or
Optimization.src, respectively.

Algorithm 11.5.3 (Line Search)

Purpose: Find a step size that achieves a sufficient decrease in
the value of a function to be minimized.

Steps:

Step 1: Initialize: Choose α = 10−4, compute λmin, put λk = 1,
and k = 1.

Step 2: If λk satisfies (11.96) stop and return λk, else increase k
by 1 and proceed to the next step.

Step 3: If k = 2 solve (11.97) for λ2, yet restrict the solution to
the interval λ2 ∈ [0.1, 0.5].
If k > 2 solve (11.98) and (11.99) using the two most
recent values of λ, say λk−1 and λk−2, and restrict the
solution to the interval λk ∈ [0.1λk−1, 0.5λk−1].
In any case put λ = λk. If λ > λmin return to step 2,
else stop and let the calling program know that no further
decrease of g can be achieved within the given parameter
tolerance ε.

Trust Region. This approach specifies an open ball N (xs, δ)
of radius δ at xs (the trust region) in which it assumes that the
linear approximation of f is sufficiently good. Then it computes a
direction w that minimizes

ĝ(x) := 0.5
[
f(xs) + J(xs)w

]T
[f(xs) + J(xs)w

]
subject to ‖w‖2 ≤ δ.

Figure 11.11 illustrates the approximate solution to this prob-
lem.34 If the Newton-Raphson step wNR from xs to xNR1 remains
in N it is taken. If the Newton-Raphson step forces the algorithm
to leave N (the point xNR2 in Figure 11.11), the steepest decent
direction is considered. This direction is given by the gradient of

34 See Dennis and Schnabel (1983), p. 130ff.
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x2

x1

xs

δ

xNR1

xNR2

xSD1

xSD2

xSD3

xDL

N (xs, δ)

Figure 11.11: Dogleg Step

g (see (11.95)). The algorithm first tries to minimize ĝ along this
direction. If the point

xSD1 = xs − μ∇g(xs), μ =
‖∇g(xs)‖22

[∇g(xs)]T [J(xs)]TJ(xs)∇g(xs)

is outside N , the algorithm moves to the point

xSD2 = xs − δ

‖∇g(xs)‖2g(x
s)

on the boundary of N . Otherwise the point

xDL = xs + wDL,

wDL = wSD + λ[wNR −wSD],

wNR = −J(xs)f(xs),

wSD = −μ∇g(xs),

is selected. This point is on the intersection of the convex combi-
nation between the steepest decent point xSD3 and the Newton-
Raphson point xNR2 with the boundary of N . The step from xs
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to this point is called the dogleg step, and the parameter λ is the
positive root of the quadratic equation

0 = λs + λ
2

α

[
wNR −wSD

]T
wSD +

[wSD]T wSD − δ2

α
,

α :=
[
wNR −wSD

]T [
wNR −wSD

]
.

The initial radius of the trust region is usually set to a multiple,
1, 10, or 100, say, of ‖x0‖2. This radius is shortened, if it is not
possible to reduce g sufficiently. Dennis and Schnabel (1983),
p. 143ff. recommend the line search algorithm to compute λ ∈
(0.1, 0.5) so that δs+1 = λδs. The implementation of the trust
region approach in the Fortran program hybrd1 just puts δs+1 =
0.5δs, if the actual reduction of the function value Δa := g(xs)−
g(xs+1) is less than 10% of the predicted reduction Δp := g(xs)−
ĝ(xs+1). If Δa ∈ (0.1, 0.5)Δp, the trust radius is not changed. It
is set to δs+1 = max{δs, 2‖xs+1 − xs‖} if Δa ∈ (0.5, 0.9)Δp. If
the actual reduction amounts to Δa ∈ (0.9, 1.1)Δp the program
doubles the radius.

11.6 Numerical Optimization

There are some algorithms where we must find the minimizer of a
given function.35 Think of the non-linear least squares problem en-
countered in the parameterized expectations approach of Chapter
4 or think of the maximization step as part of Algorithm 4.2.1.
In other algorithms we are free to choose whether to solve the
system of first order conditions that characterizes the optimal so-
lution or to employ numerical optimization tools. Sometimes one
line of attack may work while the other performs poorly. Here we
describe three well known tools from numerical optimization. The
golden section search is a simple means of locating the maximizer
of a single valued function in a given interval [a, b]. The Gauss-
Newton approach is tailored to non-linear least squares problems,

35 Since the maximizer of −f(x) is identical to the minimizer of f(x), we can
restrict ourselves to minimization problems.
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while the BFGS quasi-Newton method is suitable to a wide class
of unconstrained maximization problems. Finally, we consider sto-
chastic algorithms.

11.6.1 Golden Section Search

This method locates the maximum of a single peaked function
f(x) in the interval I = [A,D]. The idea is to shrink the interval
around the true maximizer x∗ in successive steps until the mid-
point of the remaining interval is a good approximation to x∗ (see
Figure 11.12).

Assume we have two more function evaluations at points B
and C, respectively. It is obvious from Figure 11.12 that for
f(B) > f(C) the maximum lies in the shorter interval [A,C].
In the opposite case f(B) < f(C) the maximizer is located in
[B,D]. The question is, how should we choose B and C?

f(x)

x

A B C D

A1
C1 D1

x∗

A2 B2 D2

B1

C2

Figure 11.12: Golden Section Search
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There are two reasonable principles that will guide our choice.
First, note that we do not know in advance whether we end up
with [A,C] or [B,D]. Our aim is to reduce the interval as much
as possible. The unfavorable case is to end up with the larger of
the two intervals. We exclude this possibility by choosing B and
C so that both intervals are of the same size:

AC = BD ⇒ AB = CD. (11.100)

Consider what happens, if [A1, D1] = [A,C] is the new interval.
Since we know f(B), we need only one more function evaluation
to find the next smaller interval. The second principle that we
employ is that [A1, D1] is a scaled down replication of [A,D], i.e.,
the points B1 and C1 divide [A1, D1] the same way as did B and
C with [A,D]:

p :=
AC

AD
=
A1C1

A1D1

⇒ AC

AD
=
AB

AC
, (11.101a)

AB

AC
=
A1B1

A1C1

. (11.101b)

Symmetrically, if it turns out that the new interval is [A2, D2] =
[B,D], we demand:

p =
AB

AC
=
B2D2

A2D2

, (11.102a)

CD

BD
=
C2D2

B2D2

. (11.102b)

Equation (11.100) and (11.101a) (as well as (11.100) and
(11.102a)) imply the condition

1− p
p

= p.

Solving this quadratic equation in p delivers:
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p =

√
5− 1

2
≈ 0.618. (11.103)

This is the fraction by which we are able to shrink the interval
in successive iterations. It divides each interval into the so called
golden sections. Thus, in the first step we choose points B and C
according to

B = A+ (1− p)AD,
C = A+ pAD.

In the next step we choose [A1, D1] = [A,C] if f(B) > f(C)
and [A2, D2] = [B,D] otherwise. In the first case, we put A1 = A,
C1 = B, and D1 = C. Condition (11.101b) gives

B1 = pC1 + (1− p)A1.

In the second case we put A2 = B, B2 = C, and D2 = D. The
new point C2 is given by (11.102b):

C2 = pB2 + (1− p)D2.

Summarizing, we can construct the following iterative scheme
to bracket x∗:

Algorithm 11.6.1 (Golden Section Search)

Purpose: Find the maximizer of a single peaked function f(x) in
the interval [x, x].

Steps:

Step 1: Initialize: Set A = x, D = x and compute

B = pA+ (1− p)D,
C = (1− p)A+ pD,

p = +(
√

5− 1)/2,

and store f(B) in fB and f(C) in fC.
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Step 2: If fB > fC replace D by C, C by B, and fC by fB.
Find the new B from B = pC + (1− p)A and store f(B)
in fB.
Otherwise: replace A by B, B by C, and fB by fC. Find
the new C from C = pB + (1 − p)D and store f(C) in
fC.

Step 3: Check for convergence: if |D − A| < εmax{1, |B| + |C|}
stop and return B, else repeat the previous step.

Our procedure GSS implements this algorithm. Its inputs are
the pointer to the procedure that returns f(x) and the boundaries
of the interval in which the maximum lies.

11.6.2 Gauss-Newton Method

Algorithms that solve non-linear least squares problems are adapt-
ed from procedures that solve the more general problem of finding
the minimizer of a real valued function. The solution that we
propose is known as the damped Gauss-Newton method.36 To
introduce this algorithm we return to the more common notion of
seeking to minimize

S(γ) :=
1

T

T∑
i=1

(yi− f(γ,xi))
2, xi = (xi1, xi2, . . . , xin). (11.104)

with respect to the parameter vector γ = (γ1, γ2, . . . , γp)
′.

The minimizer γ∗ must solve the set of first order conditions

∂S

∂γj
=
−2

T

T∑
i=1

(yi − f(γ∗,xi))
∂f

∂γj
(γ∗,xi) = 0,

j = 1, 2, . . . , p.

(11.105)

Instead of solving this system of p non-linear equations in γ the
simple Gauss-Newton method operates on a linearized minimiza-
tion problem. Suppose we have an initial guess γs and consider

36 See Dennis and Schnabel (1983), Chapter 10.
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the linear approximation of f at this vector:37

f(γ,xi) � f(γs,xi) + [∇f(γs,xi)]
′(γ − γs),

where ∇f(·) is the column vector of the first partial derivatives
of f with respect to γj, j = 1, 2, . . . , p evaluated at the given γs.
Put

ȳi := yi − f(γs, xi),

x̄i := ∇f(γs,xi),

γ̄ = γ − γs.

The solution to the linear least squares problem

min
γ̄

T∑
i=1

[ȳi − x̄iγ̄]2

is provided by the well known formula

γ̄ = (X̄ ′X̄)−1X̄ ′ȳ,

X̄ := [x̄1, x̄2, . . . , x̄T ], ȳ = [ȳ1, ȳ2, . . . , ȳT ]′.

The simple Gauss-Newton method chooses

γs+1 = γs + (X̄ ′X̄)−1X̄ ′ȳ︸ ︷︷ ︸
=:dγ

as the next value of γ. Along dγ the sum of squares S is decreas-
ing. To see this, note that

∇S(γ) :=
−2

T
X̄ ′ȳ

is the (column) vector of partial derivatives of S evaluated at γ.
Therefore,

[∇S(γs)]
′dγ =

−2

T
ȳ′X̄︸︷︷︸
=:z′

(X̄ ′X̄)−1︸ ︷︷ ︸
=:A

X̄ ′ȳ︸︷︷︸
=:z

< 0.

37 See equation (11.33).
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This follows from the fact that the matrix X̄ ′X̄ and thus its inverse
A is positive definite.38

If γs+1 is not the minimizer of S, f is linearized at the new
value of γs+1 and the related linear least squares problem is solved
again to deliver γs+2. These steps are repeated until convergence.

If the initial value of γ is not near the (local) minimizer, this
method may fail to converge, much like the Newton-Raphson
method considered in Algorithm 11.5.2. The damped Gauss-
Newton method uses the line search from Algorithm 11.5.3 to
force the iterations downhill towards a local minimum. Indeed,
since the sum of squares (11.104) is bounded from below and
since the gradient of a polynomial is continuously differentiable
and thus Lipschitz, these iterations satisfy the conditions of Theo-
rem 6.3.3 from Dennis and Schnabel (1983). As a consequence,
using the damped Gauss-Newton method will take us to a local
minimum of S(γ). We use the stopping rule (11.86) (see 11.4) to
terminate the algorithm.39

Taking all pieces together, the damped Gauss-Newton algo-
rithm proceeds as follows:

Algorithm 11.6.2 (Damped Gauss-Newton)

Purpose: Find the mimizier of the non-linear least squares prob-
lem (11.104)

Steps:

Step 1: Initialize: Choose a vector γ0 and stopping criteria ε1 ∈
R++ and ε2 ∈ R++, ε1 >> ε2. Put s = 0.

Step 2: Linearize f(γ,xi) at γs and put

38 See Section 11.1.6 on definite quadratic forms.
39 Indeed, since Theorem 6.3.3. from Dennis and Schnabel (1983) estab-

lishes convergence of

∇S(γs)′(γs+1 − γs)
‖γs+1 − γs‖2

but not of γs, it makes sense, to try criterion (11.86) at first. Our line
search procedure will warn us, if it is not possible to decrease S further,
even if (11.86) is not met.
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ȳi = yi − f(γs,xi), ȳ = [ȳ1, ȳ2, . . . , ȳT ]′,

x̄i = [∇f(γs,xi)]
′, X̄ = [x̄1, x̄2, . . . , x̄T ].

Step 3: Compute γs+1: Solve the linear system

X̄ ′X̄γ̄ = X̄ ′ȳ

for γ̄. Use Algorithm 11.5.3 with ε2 to find the step length
d and put

γs+1 = γs + dγ̄.

Step 4: Check for convergence: Use criterion (11.86) with ε1 to
see whether the algorithm is close to the minimizer. If so,
stop. If not, and if the line search was successful, increase
s by one and return to Step 2. Otherwise stop and report
convergence to a nonoptimal point.

We provide an implementation of this algorithm in Fortran.
Look for the file GaussNewton.for. The procedure allows the user
to either supply his own routine for the computation of the gra-
dient of f or to use built-in forward difference methods (or our
routines described in Section 11.3.1) to approximate the gradi-
ent. Note that the matrix X̄ is the Jacobian matrix of the vector
valued function⎡⎢⎢⎢⎣

z1
z2
...
zT

⎤⎥⎥⎥⎦ =

⎡⎢⎢⎢⎣
f(γ,x1)
f(γ,x2)

...
f(γ,xT )

⎤⎥⎥⎥⎦ .
Thus, if you write a subroutine that returns the vector z =
[z1, z2, . . . , zT ]′ and pass this routine to another routine that ap-
proximates the Jacobian matrix of a vector valued function, as,
e.g., the gradp routine in Gauss, the output of this routine is X̄.
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11.6.3 Quasi-Newton

In this section we introduce the so called BFGS method to lo-
cate the minimizer of a function of several variables. This method
derives from Newton’s method, which we describe next.

Newton’s Method. Suppose you want to minimize y = f(x) on
an open subset U of Rn. Newton’s method solves this problem by
considering the quadratic approximation (see equation (11.32))

f̂(x0 + h) = f(x0) + [∇f(x0)]
′h +

1

2
h′H(x0)h.

In this formula ∇f(x0) is the column vector of first partial deriv-
atives of f with respect to xi, i = 1, 2, . . . , n, and H is the Hesse
matrix of second partial derivatives. Minimizing f̂ with respect to
the vector h requires the following first order conditions to hold:40

∇f(x0) +H(x0)h = 0.

Solving for x1 = x0 + h provides the following iterative formula:

x1 = x0 −H(x0)
−1∇f(x0). (11.106)

It is well known that iterations based on this formula converge
quadratically to the minimizer x∗ of f(x), if the initial point x0

is sufficiently close to the solution x∗.41 Note, that the second
order conditions for a local minimum require the Hesse matrix to
be positive semidefinite in a neighborhood of x∗.42 Furthermore,
using∇f(x0) = −H(x0)h in the quadratic approximation formula
gives

f̂(x1)− f(x0) = −(1/2)h′H(x0)h.

Thus, if the Hessian is positive definite (see Section 11.1 on defi-
nite matrices), the Newton direction is always a decent direction.

40 See Section 11.1.6 on the differentiation of linear and quadratic forms.
41 This follows from Theorem 11.5.1, since the iterative scheme (11.106) de-

rives from the Newton-Raphson method applied to the system of first order
conditions ∇f(x) = 0.

42 See, e.g., Sundaram (1996), Theorem 4.3.



11.6 Numerical Optimization 631

The computation of the Hesse matrix is time consuming. Fur-
thermore, there is nothing that ensures this matrix to be positive
definite far away from the solution. So called quasi-Newton meth-
ods tackle these problems by providing secant approximations to
the Hesse matrix. In addition, they implement line search meth-
ods that direct the algorithm downhill and, thus, help to ensure
almost global convergence. The secant method that has proven
to be most successful was discovered independently by Broyden,
Fletcher, Goldfarb, and Shanno in 1970. It is known as the BFGS
update formula.

BFGS Secant Update. The BFGS quasi-Newton method re-
places the Hessian in (11.106) by a positive definite matrix Hk

that is updated at each iteration step k. The identity matrix In
can be used to initialize the sequence of matrices. Consider the
following definitions:

xk+1 − xk = −H−1
k ∇f(xk), (11.107a)

wk := xk+1 − xk, (11.107b)

zk := ∇f(xk+1)−∇f(xk), (11.107c)

Hk+1 := Hk +
zkz

′
k

z′kwk

− Hkwkw
′
kH

′
k

w′
kHkwk

, (11.107d)

where the last line defines the BFGS update formula for the secant
approximation of the Hesse matrix.

The following theorem provides the foundation of the BFGS
method:43

Theorem 11.6.1 Let f : Rn → R be twice continuously differen-
tiable in an open convex set D ⊂ Rn, and let H(x) be Lipschitz.
Assume there exists x∗ ∈ D such that ∇f(x∗) = 0 and H(x∗) is
nonsingular and positive definite. Then there exist positive con-
stants ε, δ such that if ‖x0 − x∗‖2 ≤ ε and ‖H0 − H(x∗)‖ ≤ δ,
then the positive definite secant update (11.107) is well defined,
{xk}∞k=1 remains in D and converges superlinearly to x∗.

43 See Theorems 9.1.2 and 9.3.1 of Dennis and Schnabel (1983).
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Instead of updating the approximate Hessian Hk one can also
start with a positive definite approximation of the inverse of Hk,
say Ak := H−1

k . The next iterate of xk is then given by

xk+1 = xk − Ak∇f(xk).

This involves only vector addition and matrix multiplication,
whereas (11.106) requires the solution of a system of linear equa-
tions. The BFGS update formula for Ak is given by (see Press

et Al. (2001), p. 420):

Ak+1 = Ak +
wkw

′
k

w′
kzk
− (Akzk)(Azk)

′

z′kAkzk
+ (zkAkzk)uku

′
k,

uk :=
wk

w′
kzk
− Akzk

z′kAkzk
.

(11.108)

Yet another approach is to use the fact that a positive definite
matrix Hk has a Cholesky factorization LkL

′
k = Hk, where Lk is

a lower triangular matrix. Using this factorization, it is easy to
solve the linear system (LkL

′
k)(x1 − x0) = −∇f(x0) by forward

and backward substitution (see Section 11.1.8). Thus, instead of
updating Hk, one may want to update Lk. Goldfarb (1976)
provides the details of this approach, which underlies the Gauss
routine QNewton.

The BFGS iterations may be combined with the line search al-
gorithm 11.5.3 to enhance global convergence. Indeed, if the Hesse
matrix of f(x) (not its approximation!) is positive definite for all
x ∈ Rn a Theorem due to Powell (see Dennis and Schnabel

(1983), Theorem 9.51 on p. 211) establishes global convergence.44

Taking all pieces together provides Algorithm 11.6.3, which
is available in the Gauss command QNewton and in the ISML
subroutine DUMINF. Our versions of the BFGS method are the

44 Note, this does not imply that a computer coded algorithm does in-
deed converge. Finite precision arithmetic accounts for differences between
the theoretical gradient, the theoretical value of f and the approximate
Hessian.
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Fortran subroutines QuasiNewton (secant update of Hk) in the
file QN.FOR) and the Gauss program QuasiNewton (secant update
of Ak) in the file Optimization.src.

Algorithm 11.6.3 (BFGS Quasi-Newton)

Purpose: Minimize f(x) in U ⊂ Rn.

Steps:

Step 1: Initialize: Choose x0, stopping criteria ε1 ∈ R++ and ε2 ∈
R++, ε1 >> ε2, and either A0 = In or H0 = In. Put
k = 0.

Step 2: Compute the gradient ∇f(xk) and solve for wk either
from

Hswk = −∇f(xs)

or from

wk = −Ak∇f(xk).

Step 3: Use Algorithm 11.5.3 with ε2 to find the step length s, and
put

xk+1 = xk + swk.

Step 4: Check for convergence: Use criterion (11.86) with ε1 to
see whether the algorithm is close to the minimizer. If so,
stop. If not, and if the line search was successful, pro-
ceed to Step 5. Otherwise stop and report convergence to
a nonoptimal point.

Step 5: Use either (11.107d) or (11.108) to get Ak+1 or Hk+1,
respectively. Increase k by one and return to Step 2.

11.6.4 Genetic Algorithms

The Gauss-Newton as well as the BFGS quasi-Newton method
start from a given initial guess and move uphill along the sur-
face of the objective function until they approach a maximizer.
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Thus, they may not be able to find the global maximizer. Genetic
algorithms, instead, search the set of possible solutions globally.

Terminology. Genetic algorithms (GAs) use operators inspired
by natural genetic variation and natural selection to evolve a set
of candidate solutions to a given problem. The terminology used
to describe GAs is from biology. The set of candidate solutions is
called a population, its members are referred to as chromosomes,
and each iteration step results in a new generation of candidate
solutions. In binary-coded GAs chromosomes are represented by
bit strings of a given length l. Each bit is either on (1) or off (0).
In real-coded GAs a chromosome is a point in an m-dimensional
subspace of Rm. A chromosomes fitness is its ability to solve the
problem at hand. In most problems the fitness is determined by
a real valued objective function that assigns higher numbers to
better solutions.

Basic Structure. The evolution of a population of chromosomes
consists of four stages:

1. selection of parents,
2. creation of offspring (crossover),
3. mutation of offspring,
4. and the final selection of those members of the family that

survive to the next generation.

The encoding of the problem (binary or floating point) and the
operators used to perform selection, crossover, and mutation con-
stitute a specific GA. The many different choices that one can
make along these dimensions give rise to a variety of specific algo-
rithms that are simple to describe and program. Yet, at the same
time, this variety is a major obstacle to any general theory that is
able to explain why and how these algorithms work.45 Intuitively,
and very generally, one can think of GAs as contractive mappings
operating on metric spaces whose elements are populations.46 A
mapping f is contractive if the distance between f(x) and f(y)

45
Mitchell (1996) as well as Michalewicz (1999) review the theoretical
foundations of genetic algorithms.

46 See, Michalewicz (1999), p.68ff.



11.6 Numerical Optimization 635

is less than the distance between x and y. Under a contractive
mapping an arbitrary initial population will converge to a pop-
ulation where each chromosome achieves the same (maximum)
fitness value that is the global solution to the problem at hand.
The problem with this statement is that it gives no hint as to
how fast this convergence will take place, and whether specific
operators accelerate or slow down convergence. Therefore, many
insights in the usefulness of specific GAs come from simulation
studies.

In the following we restrict ourselves to real-coded GAs. This
is motivated by the kind of problems to which we apply GAs. The
methods presented in Chapter 5 and Chapter 6 rest on the approx-
imation of unknown functions by linear combinations of members
of a family of polynomials. The problem is to find the parameters
γi that constitute this approximation. Usually, we have no idea
about the domain of γi. Therefore, it is difficult to decide about
the length l of the binary strings, which determines the precision
of the solution. Furthermore, using floating point numbers avoids
the time consuming translation to and from the binary alphabet.
Yet another advantage of real-coded GAs is their capacity for the
local fine tuning of the solutions.47

Choice of Initial Population. The initial population of a real-
coded GA is chosen at random. If there are no a priori restrictions
on the candidate solutions one can use a random number genera-
tor to perform this task. In our applications we use draws from the
standard normal distribution. When we pass a randomly chosen
chromosome to the routine that evaluates the candidate’s fitness
it may happen that the chromosome violates the model’s restric-
tions. For instance, in the parameterized expectations approach,
a time path may become infeasible. In this case, the program re-
turns a negative number and our initialization routine discards
the respective chromosome. Alternatively, one may want to as-
sign a very small fitness number to those chromosomes. After all,

47 Advantages and disadvantages of real-coded GAs vis-à-vis binary-coded
GAs are discussed by Herrera, Lozano, and Verdegay (1998). In their
experiments most real-coded GAs are better than binary-coded GAs in
minimizing a given function.
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bad genes can mutate or generate reasonable good solutions in
the crossover process.

Selection of Parents. There are many different ways to choose
parents from the old generation to produce offspring for the new
generation. The most obvious and simplest approach is sampling
with replacement, where two integers from the set 1, 2, . . . , n that
index the n chromosomes of the population are drawn at random.
More in the spirit of natural selection, where fitter individuals
usually have a better chance to reproduce, is the concept of fitness-
proportionate selection. Here, each chromosome i = 1, 2, . . . , n
has a chance to reproduce according to its relative fitness p(i) =
f(i)/

∑
i f(i), where f(i) denotes the fitness of chromosome i. The

following code implements this selection principle:

Algorithm 11.6.4 (Fitness-Proportionate Selection)

Purpose: Choose a chromosome from the old generation for re-
production

Steps:

Step 1: For i = 1, 2, . . . , n compute p(i) = f(i)/
∑

i f(i).
Step 2: Use a random number generator that delivers random

numbers uniformly distributed in [0, 1] and draw y ∈ [0, 1].
Step 3: For i = 1, 2, . . . , n compute q(i) =

∑i
j=1 p(j). If q(i) ≥ y

select i and stop.

In small populations the actual number of times an individual is
selected as parent can be far from its expected value p(i). The con-
cept of stochastic universal sampling avoids this possibility and
gives each chromosome a chance to be selected as parent that is
between the floor and the ceiling of p(i)n.48 Rather than choosing
one parent after the other stochastic universal sampling selects n
parents at a time. Each member of the old generation is assigned
a slice on a roulette wheel, the size of the slice being proportion-
ate to the chromosomes fitness f(i). There are n equally spaced

48 The floor of x is the largest integer i1 with the property i1 ≤ x and the
ceiling is the smallest integer i2 with the property x ≤ i2.
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pointers and the wheel is spun ones. For instance, in Figure 11.13
the chromosome i = 1 with relative fitness p(1) is not selected,
whereas chromosome 4 is selected twice. Stochastic universal sam-
pling can be implemented as follows49

Algorithm 11.6.5 (Stochastic Universal Sampling)

Purpose: Choose n parents from the old generation for reproduc-
tion.

Steps:

Step 1: For i = 1, 2, . . . , n compute the relative fitness r(i) =
f(i)/(

∑
i f(i)/n) so that

∑
i r(i) = n.

Step 2: Use a random number generator that delivers random
numbers uniformly distributed in [0, 1] and draw y ∈ [0, 1].

Step 3: Put i = 1.
Step 4: Compute q(i) =

∑i
j=1 r(j).

Step 5: If q(i) > y select i and increase y by 1.
Step 6: Repeat Step 5 until q(i) ≤ y.
Step 7: Terminate if i = n, otherwise increase i by 1 and return

to Step 4.

The major problem with both fitness proportionate and sto-
chastic universal sampling is ”premature convergence”. Early in
the search process the fitness variance in the population is high,
and under both selection schemes the small number of very fit
chromosomes reproduces quickly. After a few generations they
and their descendants build a fairly homogenous population that
limits further exploration of the search space. A selection scheme
that deals with this problem is sigma scaling. Let σ denote the
standard deviation of fitness and f̄ =

∑n
i=1 f(i)/n the average fit-

ness. Under sigma scaling chromosome i is assigned a probability
of reproduction according to

p(i) :=

{
1 + f(i)−f̄

2σ
if σ(t) �= 0,

1 if σ(t) = 0.

49 See Mitchell (1996), p. 167.
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p(1) p(2)

p(3)p(4)

Figure 11.13: Stochastic Universal Sampling

An addition to many selection methods is ”elitism”: the best chro-
mosome in the old generation replaces the worst chromosome in
the new generation irrespective of whether it was selected for re-
production.50

Crossover. In nature the chromosomes of most species are ar-
rayed in pairs. During sexual reproduction these pairs split and
the child’s chromosomes are the combination of the chromosomes
of its two parents. Crossover operators mimic this process. Fol-
lowing Herrera, Lozano, and Verdegay (1998), p. 288ff, we
describe some of these operator for real-coded GAs, where P1 =
(p1

1, p
2
1, . . . , p

m
1 ) and P2 = (p1

2, p
2
2, . . . , p

m
2 ) denote the chromosomes

50 See Mitchell (1996) for further selection schemes.
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of two parents, and C1 = (c11, c
2
1, . . . , c

m
1 ) and C2 = (c12, c

2
2, . . . , c

m
2 )

are their children.

1. Simple crossover: A position i = 1, 2, . . . , n − 1 is randomly
chosen. The two children are:

C1 = (p1
1, p

2
1, . . . , p

i
1, p

i+1
2 , . . . , pm

2 ),

C2 = (p1
2, p

2
2, . . . , p

i
2, p

i+1
1 , . . . , pm

1 ).

2. Shuffle crossover: For each position i = 1, 2, . . . , n draw a
random number λ ∈ [0, 1]. If λ < 0.5 put

ci1 = pi
1,

ci2 = pi
2,

else put

ci1 = pi
2,

ci2 = pi
1.

3. Linear crossover: Three offspring are built according to

ci1 =
1

2
pi

1 +
1

2
pi

2,

ci2 =
2

3
pi

1 −
1

2
pi

2,

ci3 = −1

2
pi

1 +
3

2
pi

2,

and two most promising are retained for the next generation.
4. Arithmetical crossover: A scalar λ ∈ [0, 1] is randomly cho-

sen (or given as constant) and the chromosomes of child 1 and
child 2 are build from

ci1 = λpi
1 + (1− λ)pi

2,

ci2 = (1− λ)pi
1 + λpi

2.

5. BLX-α crossover: One child is generated, where for each
i = 1, 2, . . . , m the number ci is randomly (uniformly) chosen
from the interval

[pmin − αΔ, pmax + αΔ],

pmax := max{pi
1, p

i
2}, pmin := min{pi

1, p
i
2}, Δ := pmax − pmin.

Herrera, Lozano, and Verdegay (1998) report good re-
sults for α = 0.5.
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Mutation. In nature, mutations, i.e., sudden changes of the ge-
netic code, result either from copying mistakes during sexual re-
production or are triggered in the living organism by external
forces as, e.g., by radiation. In binary-coded GAs the mutation
operator randomly selects a position in a bit string and changes
the respective bit from 0 to 1 or vice versa. Mutation operators
designed for real-codes GAs also randomly select an element of a
chromosome and either add or subtract another randomly selected
number. Non-uniform operators decrease this number from gen-
eration to generation towards zero and, thus, allow for the local
fine-tuning of the candidate solutions. The experiments of Her-

rera, Lozano, and Verdegay (1998) show that non-uniform
mutation is very appropriate for real-coded GAs. In our algorithm
we use the following operator suggested by Michalewicz (1999),
p. 128. Let ci denote the i-th element in a child chromosome se-
lected for mutation and c′i the mutated element. The operator
selects

c′i =

{
ci + Δ(t) if a random binary digit is 0
ci −Δ(t) if a random binary digit is 1

Δ(t) := y(1− r(1−(t/T )b)),

(11.109)

where y is the range of ci and r ∈ [0, 1] is a random number. t is
the current generation and T the maximal number of iterations.
Since we do not know the range of the parameters of the expecta-
tions function in advance, we draw y from a standard normal dis-
tribution. The parameter b defines the degree of non-uniformity.
Michalewicz (1999) suggests b = 2 and Herrera, Lozano,
and Verdegay (1998) use b = 5.

Final Selection. Whether a final selection among children and
parents is undertaken depends upon the choice of selection method
of parents. If parents are chosen at random with replacement from
generation P(t) one needs a final fitness tournament between par-
ents and children to exert selection pressure. In this case the initial
heterogeneity in the population decreases quickly and reasonable
good solutions emerge within a few generations. However, this
tight selection pressure may hinder the algorithm to sample the
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solution space more broadly so that only local optima are found.
Therefore, there is a trade-off between tight selection and short
run-time on the one hand and more precise solutions and a longer
run-time on the other hand.

Implementation. This sketch of the building blocks of GAs,
which is by no means exhaustive, demonstrates that the researcher
has many degrees of freedom in developing his own implemen-
tation. Therefore, it is a good idea to build on GAs that have
performed good in previous work.

Duffy and McNelis (2002) used a genetic algorithm to find
the parameters of the approximate expectations function.51 They
choose four parents at random (with replacement) from the old
generation. With a probability of 0.95 the best two of the four will
have two children. With equal probability of selection crossover
is either arithmetical, single point, or shuffle. The probability of
mutations in generation T , π(t), is given by

π(t) = μ1 + μ2/t, (11.110)

where μ1 = 0.15 and μ2 = 0.33. Mutations are non-uniform as
given in (11.109) with b = 2, and there is a final fitness tournament
between parents and children. The two members of the family with
the best fitness pass to the new generation. In addition, the best
member of the old generation replaces the worst member of the
new generation (elitism).

The Fortran 95 subroutine Search1.for implements this GA.
The user can supply the following parameters in the file GSP1.txt:

51 In the notation used in Section 3.1.2, their solution is the minimizer of

1
T

T∑
t=1

[φ(γ,ut+1)− ψ(γ,xt)]2,

which does not correspond to the definition of the PEA solution found in
the theoretical work of Marcet and Marshall (1992), (1994), which we
use in Section 3.1.2.
Another application of a GA to the stochastic growth model is the paper of
Gomme (1997), who solves for the policy function. His procedure replaces
the worst half of solutions with the best half, plus some noise.
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• npop: the size of the population,

• ngen: the number of iterations (generations),

• probc: the probability of crossover,

• mu1: the first parameter in (11.110),

• mu2: the second parameter in (11.110),

• mu3: the parameter b in (11.109).

In the Fortran 95 subroutine Search2.for we provide a more
flexible implementation of a GA to solve for the parameters of the
expectations function. The user can choose between two selection
methods: stochastic universal sampling and the method used in
Search1.for. We do not provide an option for sigma scaling,
since, from our experiments, we learned that a sufficiently high
probability of mutation prohibits population heterogeneity from
shrinking too fast. In addition to arithmetical, single point, and
shuffle crossover we allow for BLS-α and linear crossover. This is
motivated by the good results obtained for these two operators in
the experiments of Herrera, Lozano, and Verdegay (1998).
The user can decide either to use a single operator throughout
or to apply all of the operators with equal chance of selection.
The program uses the same mutation operator as Search1.for.
If stochastic universal sampling is used, there is no final fitness
tournament. The two children always survive, except they provide
invalid solutions (i.e., if it is not possible to compute the sequence
{ut+1(γ)}Tt=0. If this happens, they are replaced by their parents.

The basic structure of both implementation is summarized in
the following algorithm.

Algorithm 11.6.6 (Genetic Algorithm)

Purpose: Find the minimum of a user defined objective function.

Steps:

Step 1: Initialize: Set t = 1. Choose at random an initial popula-
tion of candidate solutions P(t) of size n.

Step 2: Find a new set of solutions P(t + 1): Until the size of
P(t+ 1) is n, repeat these steps:
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Step 2.1: Select two parents from the old population P(t−
1).

Step 2.2: Produce two offspring (crossover).
Step 2.3: Perform random mutation of the new offspring.
Step 2.4: Depending upon the selection method in Step

2.1, either evaluate the fitness of parents and
offspring and retain the two fittest or pass the
two children to the next generation.

Step 3: If t=ngen terminate, otherwise return to Step 2.





Chapter 12

Various Other Tools

12.1 Difference Equations

Dynamic models are either formulated in terms of difference or
differential equations. Here we review a few basic definitions and
facts about difference equations.

12.1.1 Linear Difference Equations

Consider a function x that maps t ∈ R into x(t) ∈ R. In
practice, we do not observe economic variables x at every in-
stant of time t. Most economic data are compiled at a yearly,
quarterly, or monthly frequency. To account for that fact, we
consider the function x only at equally spaced points in time:
x(t), x(t + h), x(t + 2h), . . . , and usually normalize h ≡ 1. It is
then common to write xt instead of x(t).

The first difference of xt, Δxt, is defined as

Δxt := xt − xt−1,

and further differences are computed according to

Δ2xt := Δxt −Δxt−1 = xt − 2xt−1 + xt−2,

Δ3xt := Δ2xt −Δ2xt−1 = xt − 3xt−1 + 3xt−2 − xt−3,

...

Δnxt := Δn−1xt −Δn−1xt−1.

A difference equation of order n relates the function x to its n
differences. The simplest of these equations is
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Δxt = xt − xt−1 = axt−1, a ∈ R. (12.1)

In this equation xt−1 and its first difference Δxt are linearly re-
lated (only addition and scalar multiplication are involved). Fur-
thermore, the coefficient at xt−1 does not depend on t. Therefore,
equation (12.1) is a called a first order linear difference equation
with constant coefficient. The unknown in this equation is the
function x. For this reason equation (12.1) is a functional equa-
tion.

Assume we know the time t = 0 value x0. We can then de-
termine all future (or past) values of xt by iterating forwards (or
backwards) on (12.1):

x1 = λx0, λ := 1 + a,

x2 = λx1 = λ2x0,

x3 = λx2 = λ3x0,

...,

xt = λxt−1 = λtx0.

In most applications we are interested in the limiting behavior of
x as t → ∞. The previous derivations show that x approaches
zero for every initial x0 ∈ R if and only if |λ| < 1. This behavior
is called asymptotic stability. Note, that this result also applies to
complex numbers a, x0 ∈ C (see equation (11.2)).

Now, consider the generalization of (12.1) to n variables x :=
[x1, x2, . . . , xn]′ ∈ Rn:

xt = Axt−1. (12.2)

What are the properties of the n by n matrix A that ensure
that xt is asymptotically stable? To answer this question we use
the Jordan factorization of A = MJM−1 (see equation (11.25))
to transform (12.2) into a simpler system. First, we define new
variables yt = M−1xt. Second, we multiply (12.2) from the left
by M−1 to get
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M−1xt︸ ︷︷ ︸
=yt

= M−1A xt−1︸︷︷︸
Myt−1

,

yt = M−1AM︸ ︷︷ ︸
=J

yt−1,

yt = Jyt−1. (12.3)

Since J is a block-diagonal matrix, the new system is decoupled
into K independent blocks:

ykt = Jkykt−1,

where the size of the vector ykt equals the multiplicity m of the kth
eigenvalue of A. For instance, if A has n distinct real or complex
eigenvalues λi, equation (12.3) simplifies to

yt =

⎡⎢⎢⎢⎣
λ1 0 0 . . . 0
0 λ2 0 . . . 0
...

...
...

. . .
...

0 0 0 0 λn

⎤⎥⎥⎥⎦yt−1 ⇔ yit = λiyit−1, i = 1, 2, . . . , n.

It is, thus, obvious that the transformed system is asymptotically
stable if the absolute value of all eigenvalues is less than unity.
But if yt converges towards the zero vector so does the vector
xt = Myt. Though less obvious, it can be shown that this also
holds in the general case where A may have multiple eigenvalues.1

Thus, we have the following theorem:

Theorem 12.1.1 The linear system of difference equations (12.2)
is asymptotically stable,

lim
t→∞

xt = 0n×1,

if and only if every eigenvalue of A is less than unity in modulus.

Now suppose that only n1 < n eigenvalues have modulus less than
unity while the remaining n2 = n − n1 eigenvalues exceed unity.

1 See Murata (1977), p. 85.
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Since we may choose M so that the stable eigenvalues appear in
the first blocks of J , we can partition J into

J =

[
Pn1×n1 0n1×n2

0n2×n1 Qn2×n2

]
and yt into yt = [y1t,y2t]

′, y1t = [y1t, y2t, . . . , yn1t]
′ and y2t =

[yn2t, yn2+1t, . . . , ynt]
′, so that (12.3) is given by

y1t = Py1t−1,

y2t = Qy2t−1.

Since all the eigenvalues of P are inside the unit circle the vector
y1t approaches the zero vector as t→∞. The vector y2t, however,
is farther and farther displaced from the origin as t → ∞, since
all the eigenvalues of Q are outside the unit circle. If we are free
to choose the initial y0, we put y20 = 0n1×1, and, thus, can ensure
that y0 and hence x0 = My0 converges to the zero vector as
t → ∞. By choosing y0 = [y10, . . . , yn10, 0, . . . 0] we restrict the
system to the stable eigenspace of the matrix A.2

12.1.2 Non-Linear Difference Equations

Let f i : Rn → R, i = 1, 2, . . . , n denote arbitrary differentiable
functions. A system of n non–linear first–order difference equa-
tions is defined by the following set of equations:⎡⎢⎢⎢⎣

x1t

x2t
...
xnt

⎤⎥⎥⎥⎦ =

⎡⎢⎢⎢⎣
f 1(x1 t−1, x2 t−1, . . . , xn t−1)
f 2(x1 t−1, x2 t−1, . . . , xn t−1)

...
fn(x1 t−1, x2 t−1, . . . , xn t−1)

⎤⎥⎥⎥⎦ . (12.4)

In a more compact notation this can be written as

xt = f(xt−1).

2 Remember, from Section 11.1.7, this is the set spanned by the generalized
eigenvectors of A with modulus less than one.
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Assume there is a point x∗ that satisfies

x∗ = f(x∗).

Such a point is called a fixed point, a rest point or, in more eco-
nomic terms, a stationary equilibrium. What can be said about
the asymptotic behavior of xt under the map f? Is there a relation
between the linear system (12.2) and the non-linear system? To
deal with these questions consider the linear approximation of f
at x∗ (see equations (11.35) and (11.36) for details):

f(x + h) � f(x∗) + J(x∗)h, h = x− x∗,

where J(x∗) is the Jacobian matrix of f . Since x∗ = f(x∗), the lin-
ear approximation of the system of non-linear difference equations
(12.4) at x∗ is given by

x̄t = J(x∗)x̄t−1, x̄t := xt − x∗. (12.5)

The relation between the non-linear system and the linearized
system is the subject of the following theorem:3

Theorem 12.1.2 (Hartman-Grobman) Let f : Rn → Rn be
a C1 diffeomorphism with a hyperbolic fixed point x∗. Then there
exists a homeomorphism h defined on some neighborhood U of x∗

such that h(f(x)) = J(x∗)h(x) for all x ∈ U .

A map f is a homeomorphism if

1. it is a continuous one-to-one map of some subset U ⊂ Rn onto
the set Y ⊂ Rn, i.e., f(x1) = f(x2)⇒ x1 = x2 and f(U) = Y ,

2. whose inverse f−1 is also continuous.

If both f and f−1 have continuous first derivatives, the homeomor-
phism f is a C1 diffeomorphism. Finally, x̄ is a hyperbolic fixed
point of f , if the Jacobian matrix J(x̄) has no eigenvalues on the
unit circle.

3 See, e.g., Guckenheimer and Holmes (1983), p. 18, Theorem 1. 4 1 for
a statement and Palis and de Melo (1982), p. 60ff for a proof.
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xt

xt+1

f

yt+1

h

yt

h

J(x̄)

U ⊂ X
h(U) ⊂ Y

Figure 12.1: Topological Conjugacy Between f and J(x̄)

Figure 12.1 illustrates Theorem 12.1.2. The image of the point
xt under the non-linear map f is given by xt+1. If we map xt+1 into
the set h(U) ⊂ Y we get yt+1. Yet, we arrive at the same result,
if we first map xt into Y via the non-linear change of coordinates
h and then apply the linear operator J(x̄) to yt. Two maps that
share this property are called topological conjugates. This allows
us to infer the dynamics of xt near x̄ from the dynamics of the
linear system (12.5) near the origin. Since we already know that
the linear system is asymptotically stable if all the eigenvalues of
J(x̄) are inside the unit circle, we can conclude from Theorem
12.1.2 that under this condition all x0 sufficiently close to x̄ will
tend to x̄ as t → ∞. A fixed point with this property is called
locally asymptotically stable.

We can also extend our results with respect to the case where
the matrix A in (12.2) has n1 eigenvalues inside and n2 = n −
n1 eigenvalues outside the unit circle to the non-linear system of
difference equations (12.4). For that purpose we define two sets.
The local stable manifold of x̄ is the set of all x ∈ U that tend to
x̄ as t→∞:
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W s
loc(x̄) :=

{
x ∈ U : lim

t→∞
f t(x)→ x̄ and f t(x) ∈ U ∀t ≥ 0

}
.

Here f t(·) is recursively defined via f t = f(f t−1(·)). The local un-
stable manifold is the set of all x ∈ U that tend to x̄ as we move
backwards in time:

W u
loc(x̄) :=

{
x ∈ U : lim

t→−∞
f t(x)→ x̄ and f t(x) ∈ U ∀t ≤ 0

}
.

Together with Theorem 12.1.2 the next theorem shows that if we
restrict the initial point x0 to lie in the stable eigenspace of J(x̄)
then for x̄0 sufficiently close to x̄ the dynamics of the linear system
mimics the dynamics of the non-linear system on the local stable
manifold W s

loc(x̄):4

Theorem 12.1.3 (Stable Manifold Theorem) Let f : Rn →
Rn be a C1 diffeomorphism with a hyperbolic fixed point x∗. Then
there are local stable and unstable manifolds W s

loc, W
u
loc, tangent to

the eigenspaces Es
x̄, E

u
x̄ of J(x̄) and of corresponding dimensions.

Figure 12.2 illustrates this theorem. Note, that any time path that
is neither in the local stable nor in the local unstable manifold also
diverges from x̄ as t→∞, as the path represented by the broken
line.

12.2 Markov Processes

Markov processes are an indispensable ingredient of stochastic
DGE models. They preserve the recursive structure that these
models inherit from their deterministic relatives. In this section
we review a few results about these processes that we have used
repeatedly in the development of solution methods and in appli-
cations.

4 See, e.g., Guckenheimer and Holmes (1983), p. 18, Theorem 1.4.2 for
a statement of this theorem and Palis and de Melo (1982), p. 75ff for
a proof. Grandmont (1988) provides more detailed theorems that relate
the solution of the non-linear system (12.4) to the solution of the linear
system (12.2).



652 Chapter 12: Various Other Tools
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W u
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W s
loc(x̄)
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Figure 12.2: Local Stable and Unstable Manifold

Stochastic Processes. A stochastic process is a time sequence
of random variables {Zt}∞t=0. If the members Zt of this sequence
have a countable number of realizations Zt ∈ {z1, z2, . . . , zn}
the process is discrete valued as opposed to a continuous val-
ued process whose realizations are taken from an interval of the
real line Zt ∈ [a, b] ⊆ R. This interval is known as the support
of the process. We say that the elements of a stochastic process
are identically and independently distributed (iid for short), if
the probability distribution is the same for each member of the
process Zt and independent of the realizations of other members
of the process Zt+s, s �= 0. In this case the probability of the event
[Z1 = z1, Z2 = z2, . . . ZT = zT ] is given by

Prob[Z1 = z1, Z2 = z2, . . . ZT = zT ]

= Prob(Z1 = z1)× Prob(Z2 = z2)× · · · × Prob(ZT = zT ).

A stochastic process has the Markov property, if the probability
distribution of Zt+1 only depends upon the realization of Zt.
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The AR(1) Process. An example of a Markov process is the
first-order autoregressive processs (AR(1) for short)

Zt = (1− )Z̄ + Zt−1 + εt,  ∈ [0, 1), εt ∼ N(0, σ2). (12.6)

The random variable εt, the so called innovations of the AR(1)-
process, are iid draws from a normal distribution with mean 0
and variance σ2. Given Zt, next period’s shock Zt+1 is normally
distributed with mean E(Zt+1|Zt) = (1− )Z̄ + Zt and variance
var(Zt+1|Zt) = σ2. Since higher order autoregressive processes
can be reduced to first-order vector autoregressive processes the
first-order process plays a prominent role in the development of
stochastic Ramsey models. As an example, consider the second-
order autoregressive process

Zt = 1Zt−1 + 2Zt−2 + εt. (12.7)

Defining Xt = Zt−1 equation (12.7) can be written as

Zt+1 = 1Zt + 2Xt + εt,

Xt+1 = Zt,

which is a first-order vector autoregressive process in (Zt, Xt)
′

with innovations (εt, 0)′.

Markov Chains. Markov chains are discrete valued Markov
processes. They are characterized by three objects:

1. The column vector z = [z1, z2, . . . , zn]′ summarizes the n dif-
ferent realizations of Zt.

2. The probability distribution of the initial date t = 0 is repre-
sented by the vector π0 = [π01, π02, . . . , π0n]′, where π0i denotes
the probability of the event Z0 = zi.

3. The dynamics of the process is represented by a transition ma-
trix P = (pij), where pij denotes the probability of the event
Zt+1 = zj|Zt = zi, i.e., the probability that next period’s state
is zj given that this period’s state is zi. Therefore, pij ≥ 0 and∑m

j=1 pij = 1.
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Thus, given Zt = zi the conditional expectation of Zt+1 is
E(Zt+1|Zt = zi) = Piz, where Pi denotes the i–th row of P and
the conditional variance is var(Zt+1|Zt = zi) =

∑
j Pij(zj − Piz)2.

The probability distribution of Zt evolves according to

π′
t+1 = π′

tP. (12.8)

Computation of the Ergodic Distribution. The limit of
(12.8) for t → ∞ is the time invariant, stationary, or ergodic
distribution of the Markov chain (z, P,π0). It is defined by

π′ = π′P ⇔ (I − P ′)π = 0. (12.9)

Does this limit exist? And if it exists, is it independent of the
initial distribution π0? The answer to both questions is yes, if
either all pij > 0 or, if for some integer k ≥ 1 all elements of the
matrix

P k := P × P · · · × P︸ ︷︷ ︸
k−elements

are positive, i.e., pk
ij > 0 for all (i, j). This latter condition states

that it is possible to reach each state j in at least k steps from
state i.5 Obviously, this is a weaker condition than pij > 0 for all
(i, j). As an example, consider the transition matrix

P =

(
0.0 1.0
0.9 0.1

)
,

for which

P 2 = P × P =

(
0.9 0.1
0.09 0.91

)
.

We need to compute the invariant distribution in many applica-
tions. For instance, in Section 7.2 we must solve for the stationary
distribution of employment in oder to find the stationary distri-
bution of assets. The states of the respective Markov chain are

5 See, e.g., Ljungqvist and Sargent (2004), Theorem 1 and Theorem 2.
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z1 = e and z2 = u, where e (u) denotes (un)employment, and π01

(π02 = 1− π01) is the probability that a randomly selected agent
from the unit interval is employed in period t = 0. The transition
matrix P is given by

P =

(
puu pue

peu pee

)
=

(
0.5000 0.5000
0.0435 0.9565

)
,

where puu (pue) denotes the probability that an unemployed agent
stays unemployed (becomes employed).

One obvious way to find the stationary distribution is to iterate
over equation (12.8) until convergence. When we start with an ar-
bitrary fraction of unemployed and employed agents of (0.5, 0.5),
say, and iterate over (12.8) we get the sequence in Table 12.1,
which converges quickly to (0.08, 0.92), the stationary probabili-
ties of being (un)employed.

Table 12.1

Iteration No. πu πe

0 0.500000 0.500000
1 0.271750 0.728250
2 0.167554 0.832446
3 0.119988 0.880012
4 0.098275 0.901725
5 0.088362 0.911638
10 0.080202 0.919798
20 0.080037 0.919963

Another procedure to compute the stationary distribution of
a Markov chain is by means of Monte Carlo simulations. For the
two-state chain of the previous example this is easily done: as-
sume an initial state of employment z0i, for example z02 = e. Use
a uniform random number generator with the support [0, 1]. If the
random number is less than 0.9565, z12 = e, otherwise the agent
is unemployed in period 1, z11 = u. In the next period, the agent
is either employed or unemployed. If employed, the agent remains
employed if the random number of this period is less than 0.9565
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and becomes unemployed otherwise. If unemployed, the agent re-
mains unemployed if the random number of this period is less
than 0.5 and becomes employed otherwise. Continue this process
for T periods and count the number of times the agent is either
employed or unemployed. The relative frequencies will converge
slowly to the ergodic distribution according to the Law of Large
Numbers. In our computation, we get the simulation results dis-
played in Table 12.2. Notice that this procedure converges very

Table 12.2

Iteration No. πu πe

10 0.10 0.90
100 0.12 0.88
1000 0.063 0.937
10000 0.0815 0.9185
100000 0.0809 0.9191
500000 0.0799 0.9201

slowly. Furthermore, if the Markov chain has more than n = 2
states this becomes a very cumbersome procedure. For this rea-
son, we will usually employ a third, more direct way to compute
the ergodic distribution. Observe that the definition of the in-
variant distribution (12.9) implies that π is an eigenvector to the
eigenvalue of one of the matrix −P ′, where π has been normal-
ized so that

∑n
i=1 πi = 1. Solving the eigenvalue problem for the

matrix given above gives π1 = 0.0800 and π2 = 0.920. An equiv-
alent procedure uses the fact that the matrix I − P ′ has rank
n−1 (given that P ′ has rank n) and that the πi must sum to one.
Therefore, the vector π must solve the following system of linear
equations:

π′

⎡⎢⎢⎢⎢⎢⎣
p11 − 1 p12 . . . p1,n−1 1
p21 p22 − 1 . . . p2,n−1 1
...

...
...

...
...

pn−1,1 pn−1,2 . . . pn−1,n−1 − 1 1
pn1 pn2 . . . pn,n−1 1

⎤⎥⎥⎥⎥⎥⎦ = (0, . . . , 0, 1).

We provide the procedure equivec1.g to perform this task.
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Markov Chain Approximations of AR(1) Processes. In
Section 1.3.3 we extend the value function iteration method from
Section 1.2.3 to solve the stochastic Ramsey model when the pro-
ductivity shock is a finite state Markov chain. Empirically, how-
ever, the shift parameter of the production function resembles an
AR(1)-process. Fortunately, Tauchen (1986) develops a method
for choosing values for the realizations and the transition matrix
so that the resulting Markov chain closely mimics the underlying
continuous valued autoregressive process.

Consider the process

Zt+1 = Zt + εt, εt ∼ N(0, σ2
ε ).

The unconditional mean and variance of this process are 0 and
σ2

Z = σ2
ε/(1 − 2).6 Tauchen (1986) proposes to choose a grid

Z = [z1, z2, . . . , zm] of equidistant points z1 < z2, . . . , < zm,
whose upper end point is a multiple, say λ, of the standard de-
viation of the autoregressive process, zm = λσZ and whose lower
end point is z1 = −zm. For a given realization zi ∈ Z the variable
z := zi+ε is normally distributed with mean zi and variance σ2

ε .
Let dz denote half of the distance between two consecutive grid
points. The probability that z is in the interval [zj − dz, zj + dz]
is given by

prob(zj − dz ≤ z ≤ zj + dz) = π(zj + dz)− π(zj − dz)
where π(·) denotes the cumulative distribution function of the
normal distribution with mean zi and variance σ2. Equivalently,
the variable v := (z − zi)/σε has a standard normal distribu-
tion. Thus, the probability to switch from state zi to state zj for
j = 2, 3, ..., m− 1, say pij, is given by the area under the proba-
bility density function of the standard normal distribution in the
interval[

zj − zi − dz
σε

,
zj − zi + dz

σε

]
.

The probability to arrive at state z1 is the area under the proba-
bility density in the interval [−∞, z1 + dz]. Since

∑
j pij = 1, the

6 See, e.g., Hamilton (1994), p. 53.
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probability to go from any state i to the upper bound zm is simply
pim = 1−∑m−1

j=1 pij .
We summarize this method in the following steps:

Algorithm 12.2.1 (Markov Chain Approximation)

Purpose: Finite state Markov chain approximation of first order
autoregressive process

Steps:

Step 1: Compute the discrete approximation of the realizations:
Let  and σε denote the autoregressive parameter and
the standard deviation of innovations, respectively. Se-
lect the size of the grid by choosing λ ∈ R++ so that
z1 = −λσε/

√
1− 2. Choose the number of grid points

m. Put step = −2z1/(m− 1) and for i = 1, 2, ..., m com-
pute zi = z1 + (i− 1)step.

Step 2: Compute the transition matrix P = (pij): Let π(·) denote
the cumulative distribution function of the standard nor-
mal distribution. For i = 1, 2, . . . , m put

pi1 = π
(

z1−�zi

σε
+ step

2σε

)
,

pij = π
(

zj−�zi

σε
+ step

2σε

)
− π

(
zj−�zi

σε
− step

2σε

)
,

j = 2, 3, . . . , m− 1,

pim = 1−∑m−1
j=1 pij .

Tauchen (1986) reports the results of Monte Carlo experi-
ments that show that choosing m = 9 and λ = 3 gives an adequate
representation of the underlying AR(1)-process. Our Gauss pro-
cedure MarkovAR in the file ToolBox.src implements the above
algorithm. It takes , σε, λ, and m as input and returns the vector
z = [z1, z2, ..., zm]′ and the transition matrix P .

12.3 DM-Statistic

In this section we consider the DM-statistic proposed by Den

Haan and Marcet (1994). It is measure of the accuracy of an
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approximate solution of a stochastic DGE model, based on the
residuals of the model’s Euler equations.

Single Equation. For the sake of concreteness let us return to
the stochastic growth model in Example 1.3.2. The ex-post fore-
cast error obtained from the Euler equation (3.1b),

C−η
t = βEt

[
C−η

t+1(1− δ + αZt+1K
α−1
t+1 )

]
,

is defined by

yt := β
[
C−η

t+1(1− δ + αZt+1K
α−1
t+1 )

]− C−η
t .

Any deviation of yt from zero is due to forecast errors. Since the
household’s expectations are rational, the forecast errors are un-
correlated with any variable whose realization is known to the
household prior to period t + 1. Put differently, it should not be
possible to predict yt from past information on, say, consumption
C and the productivity shock Z.

Let us state this proposition in more formal terms. Consider
the linear regression model

yt =

n∑
i=1

aixti + εt, t = 1, 2, . . . , T. (12.10)

The xit are the n variables that we use to test our proposition. For
instance, this list may include consumption and the productivity
shock at various lags. The error term εt captures all deviations
of yt from zero that the household cannot predict from the infor-
mation conveyed by the row vector xt := [xt1, xt2, . . . , xtn]′. When
we say yt is unpredictable, we posit a = [a1, a2, . . . , an]′ = 0.
A bad solution, however, should violate this condition. Using
the usual econometric notation, y := [y1, y2, . . . , yT ]′ and X =
[x1,x2, . . . ,xT ], the normal equations of the least squares estima-
tor of a, denoted by â, may be written as

X ′Xâ = X ′y.

Thus, E(â) = a = 0, is equivalent to
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E(X ′y) = 0.

The sample analog of E(X ′y) is

q :=

⎡⎢⎢⎢⎢⎢⎢⎣

1
T

∑T
t=1 ytxt1

1
T

∑T
t=1 ytxt2

...
1
T

∑T
t=1 ytxtn

⎤⎥⎥⎥⎥⎥⎥⎦ . (12.11)

Of course, given any time series of yt and xt computed from a
solution of the model, the vector q is never precisely equal to the
zero vector, as is the estimate â. den Haan and Marcet (1994)
propose a Wald-type statistic to test, whether any deviations of
(12.11) from zero are only due to sampling variability. Specifically,
they propose the statistic

DM(n) := Tq′ [v̂ar(q)]−1 q,

where v̂ar(q) is a consistent estimate of the variance of q. This
variance is given by:

var(q) := E[(q− E(q))(q−E(q))′] = E[qq′],

= E[X ′yy′X] = E[X ′(Xa + ε)(ε′ + a′X ′)X],

= E[(X ′Xa +X ′ε)(ε′X + a′X ′X)] = E[X ′εε′X].

It is well known from White (1980) that a consistent estimator
of E(X ′εε′X) is given by

v̂ar(q) =
1

T
X ′Σ̂X, Σ̂ =

⎡⎢⎢⎢⎣
ε̂21 0 0 . . . 0
0 ε̂22 0 . . . 0
...

...
...

. . .
...

0 0 0 . . . ε̂2T

⎤⎥⎥⎥⎦ , (12.12)

where ε̂t = yt −Xâ is the estimated error for observation t. This
estimate is based on the assumption that the errors in the re-
gression (12.10) are not autocorrelated. This assumption can be
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violated, if the conditional expectation on the rhs of the Euler
equation includes variables dated t + 2 and later. Consistent co-
variance estimators for this case can be found in the literature on
the generalized method of moments estimator.7 Note, however,
that non of our applications belongs to this class of problems.
The asymptotic distribution of the DM statistic is χ2 with n de-
grees of freedom.8 Replacing v̂ar(q) by the estimator (12.12) the
DM-statistic can be rewritten as

DM(n) = y′X

[∑
t

xtx
′
tε̂

2
t

]−1

X ′y. (12.13)

Any approximate solution never exactly satisfies the condition
E(X ′y) = 0. Hence, if the researcher uses a very large sample size
T the statistic will discover this and reject the null. Therefore, the
DM-test is the more stringent, the larger T is.

To reduce the type I error (rejection of the null when it is true)
Den Haan and Marcet (1994) propose the following procedure:
For a given sequence of shocks compute the approximate solution
for a large T ; use this solution, draw a new sequence of shocks
for a sample size T2 much smaller than T , compute the respective
time path of the model’s variables and calculate the DM-statistic
for these observations. Repeat this very often9 and compute the
percentage of the DM-statistic that is below the lower or above
the upper 2.5 percent critical values of the χ2(m) distribution,
respectively. If these fractions differ markedly from the theoretical
5 percent, this indicates an inaccurate solution.

Multiple Equations. The DM-statistic is also applicable to
models with more than one Euler equation. The simplest thing
to do, of course, is to compute this statistic for every single equa-
tion. However, this neglects the fact that the respective equations
are interrelated and it does not provide an answer to the question

7 See, e.g., Newey and West (1987). .
8 See Den Haan and Marcet (1994).
9 In their examples, Den Haan and Marcet (1994) compute 500 realiza-

tions of DM with a sample size of T2=3,000 and T = 29, 000.
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whether the approximate solution in general is sufficiently accu-
rate. Fortunately it is not difficult to generalize the presentation
from the previous paragraph to the case of m Euler equations.

Let yj := [yj1, yj2, . . . , yjT ] denote the residual computed from
the model’s j-th Euler equation, j = 1, 2, . . . , m. Then we wish to
test, whether the nm column vector

q :=

⎡⎢⎢⎢⎣
X ′y1/T
X ′y2/T

...
X ′ym/T

⎤⎥⎥⎥⎦ (12.14)

is close to the zero vector. Note that we use the same set of ex-
planatory variables X in each of the m regressions. The variance
of q is given by

var(q) = E

⎡⎢⎣X
′y1y

′
1X . . . X ′y1y

′
mX

...
. . .

...
X ′ymy′

1X . . . X ′ymy′
mX

⎤⎥⎦ ,
= E

⎡⎢⎣X
′ε1ε′1X . . . X ′ε1ε

′
mX

...
. . .

...
X ′εmε

′
1X . . . X ′εmε

′
mX

⎤⎥⎦ ,
where εj = [ε1j , ε2j, . . . , εTj ]

′ is the vector of errors in the j-th
regression of yj on the vector aj and X. A consistent estimate of
this matrix in the case of heteroscedastic but serially uncorrelated
errors is given by

v̂ar(q) :=
1

T

T∑
t=1

⎡⎢⎢⎢⎣
ε̂21t ε̂1tε̂2t . . . ε̂1tε̂mt

ε̂2tε̂1t ε̂22t . . . ε̂2tε̂mt
...

...
. . .

...
ε̂mtε̂1t ε̂mtε̂2t . . . ε̂2mt

⎤⎥⎥⎥⎦⊗ x′
txt, (12.16)

where ⊗ denotes the Kronecker product. The statistic

DM(nm) = Tq′ [v̂ar(q)]−1 q

with q and v̂ar(q) as defined in (12.14) and (12.16), respectively,
is asymptotically distributed as a χ2(nm) random variable.
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12.4 The HP-Filter

In this section we consider the Hodrick-Prescott or for short the
HP-filter that has been used in numerous studies to derive the
cyclical component of a time series. This filter is proposed in a
discussion paper by Robert Hodrick and Edward Prescott

that circulated in the nineteen eighties and which was recently
published.10

Let (yt)
T
t=1 denote the log of a time series that may be con-

sidered as realization of a non-stationary stochastic process. The
growth component (gt)

T
t=1 of this series as defined by the HP-Filter

is the solution to the following minimization problem:

min
(gt)T

t=1

T∑
t=1

(yt − gt) + λ
T−1∑
t=2

[(gt+1 − gt)− (gt − gt−1)]
2. (12.17)

The parameter λ must be chosen by the researcher. Its role can be
easily seen by considering the two terms to the right of the mini-
mization operator. If λ were equal to zero, the obvious solution to
(12.17) is yt = gt, i.e., the growth component were set equal to the
original series. As λ gets large and larger it becomes important to
keep the second term as small as possible. Since this term equals
the growth rate of the original series between two successive pe-
riods, the ultimate solution for limλ → ∞ is a constant growth
rate g. Thus, by choosing the size of the weight λ the filter returns
anything between the original time series and a linear time trend.

The first order conditions of the minimization problem imply
the following system of linear equations:

Ag = y, (12.18)

where g = [g1, g2, . . . , gT ]′, y = [y1, y2, . . . , yT ]′, and A is the tridi-
agonal matrix

10 See Hodrick and Prescott (1980) and (1997), respectively.
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⎡⎢⎢⎢⎢⎢⎢⎢⎣

1 + λ −2λ λ 0 0 . . . 0 0 0
−2λ 1 + 5λ −4λ λ 0 . . . 0 0 0
λ −4λ 1 + 6λ −4λ λ . . . 0 0 0
0 λ −4λ 1 + 6λ −4λ . . . 0 0 0
0 0 λ −4λ 1 + 6λ . . . 0 0 0
...

...
...

...
...

. . .
...

...
...

0 0 0 0 0 . . . 1 + 6λ −4λ λ
0 0 0 0 0 . . . −4λ 1 + 5λ −2λ
0 0 0 0 0 . . . λ −2λ 1 + λ

⎤⎥⎥⎥⎥⎥⎥⎥⎦
.

Note, that A can be factored in11

A = I + λK ′K,

K =

⎡⎢⎢⎢⎢⎢⎣
1 −2 1 0 0 . . . 0 0 0
0 1 −2 0 0 . . . 0 0 0
0 0 1 −2 1 . . . 0 0 0
...

...
...

...
...

. . .
...

...
...

0 0 0 0 0 . . . 1 −2 1

⎤⎥⎥⎥⎥⎥⎦ ,

which shows that A is positive definite.12 Linear algebra routines
that use sparse matrix methods13 can be used to solve the system
(12.18). These methods require considerably less workspace than
methods that operate on the matrix A. For instance, the Fortran
subroutine DLSLQS available in the IMSL library requires only the
main and the two upper codiagonals of A, i.e., a 3 × T -matrix,
whereas general linear system solvers require the full T×T matrix
A. Our implementation of the HP-Filter in the Gauss procedure
HPFilter in the file Toolbox.src uses the command bandsolpd

to solve (12.18).

11 See Brandner and Neusser (1990), p. 5.
12 A matrix A is called positive definite, if for each vector x �= 0

x′Ax > 0.

The matrix I + λK ′K clearly satisfies this requirement, since

x′[I + λK ′K]x =
T∑

i=1

x2
i + λ

T∑
i=1

z2
i , z := Kx.

13 A sparse matrix is a matrix that has most of its entries set to zero. This can
be used to reduce the size of the memory in which the matrix is stored on a
computer and to develop fast algorithms that operate with these matrices.
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The cyclical component of y,

c = y − g = [I − A−1]y,

remains unchanged if a linear time trend

a :=

⎡⎢⎢⎢⎣
a1 + a2

a1 + 2a2
...

a1 + Ta2

⎤⎥⎥⎥⎦
is added to the time series (yt)

T
t=1. To see this, note that14

c = [I − A−1][y + a] = [I − A−1]y + [I − A−1]a︸ ︷︷ ︸
=0

.

The usual choice of the filter weight is λ = 1600 for quarterly
data. It rests on the observation that with this choice the filter
”removes all cycles longer than 32 quarters leaving shorter cycles
unchanged” (Brandner and Neusser (1990), p. 7). For yearly
data Ravn and Uhlig (2001) propose λ = 6.5 whereas Baxter

and King (1999) advocate for λ = 10.

14 This statement can be proven by noting that

[I −A−1]a = 0⇔ A−1[A− I]a = 0⇔ [A− I]a = 0,

and considering the product on the rightmost side of this statement.
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drini, and José-Victor Ŕıos-Rull. 2002. Updated Facts on the
U.S. Distributions of Earnings, Income, and Wealth. Federal
Reserve Bank of Minneapolis Quarterly Review. Vol. 26. pp.
2-35.

Burden, Richard L. and J. Douglas Faires. 2001. Numerical
Analysis, Seventh Edition. Pacific Grove: Brooks/Cole

Burkhauser, Richard V., Douglas Holtz-Eakin and Stephen E.
Rhody. 1997. Labor Earnings Mobility and Inequality in the
United States and Germany during the Growth Years of the
1980s. International Economic Review. Vol. 38. pp. 775-94.

Burnside, Craig. 1999. Real Business Cycle Models: Linear Ap-
proximation and GMM Estimation. Mimeo. Revision 7, May
1.

Calvo, Guillermo A. 1983. Staggered Prices in a Utility-Maximiz-
ing Framework. Journal of Monetary Economics. Vol. 12. pp.
383-398.

Canova, Fabio. 2007. Methods for Applied Macroeconomic Re-
search. Princeton, NJ: Princeton University Press.

Carnahan, Brice, H. A. Luther, and James O. Wilkes. 1969. Ap-
plied Numerical Methods. New York: John Wiley & Sons.

Cass, David. 1965. Optimum Growth in an Aggregative Model of
Capital Accumulation. Review of Economic Studies. Vol. 32.
pp. 233-240.



670 References
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Kumar. 2003. Growth and welfare analysis of tax progressivity
in a heterogeneous-agent model. Review of Economic Dynam-
ics. Vol. 6. pp. 546-77.

Chari, Varadaraian V., Patrick J. Kehoe and Ellen R. McGrattan.
2000. Sticky Price Models of the Business Cycle: Can the Con-
tract Multiplier Solve the Persistence Problem? Econometrica.
Vol. 68. pp. 1151-1179.

Cho, Jang-Ok and Thomas F. Cooley. 1995. The Business Cycle
with Nominal Contracts. Economic Theory. Vol. 6. pp. 13-33.

Chow, Gregory C. 1997. Dynamic Economics. Optimization by
the Lagrange Method. New York, Oxford: Oxford University
Press.

Christiano, Lawrence J., Martin Eichenbaum, and Charles L.
Evans. 1997. Sticky Price and Limited Participation Models
of Money: A Comparison. European Economic Review. Vol.
41. pp. 1201-1249.

Christiano, Lawrence J., Martin Eichenbaum, and Charles L.
Evans. 1999. Monetary Policy Shocks: What Have We Learned
and to What End? In John B. Taylor and Michael Woodford
(Eds.). Handbook of Macroeconomics. Vol. 1A. Amsterdam:
Elsevier. pp. 65-148.

Christiano, Lawrence J. and Richard M. Todd. 1996. Time to
Plan and Aggregate Fluctuations. Federal Reserve Bank of
Minneapolis Quarterly Review. Vol. 20. pp. 14-27.

Christiano, Lawrence J. and Jonas D.M. Fisher. 2000. Algorithms
for Solving Dynamic Models with Occasionally Binding Con-



References 671

straints. Journal of Economic Dynamics and Control. Vol. 24.
pp. 1179-1232.

Cochrane, John H. 1998. What do the VARs Mean? Measuring
the Output Effects of Monetary Policy. Journal of Monetary
Economics. Vol. 41. pp. 277-300.

Cogley, Timothy and James M. Nason. 1995. Output Dynam-
ics in Real-Business-Cycle Models. American Economic Re-
view. Vol. 85. pp. 492-511.

Constantini, Paolo and Fabio Fontanella. 1990. Shape-preserving
Bivariate Interpolation. SIAM Journal of Numerical Analysis.
Vol. 27. pp. 488-506.

Cooley, Thomas F., Gary D. Hansen. 1989. The Inflation Tax in
a Real Business Cycle Model. American Economic Review. 79.
pp. 733-748.

Cooley, Thomas F. and Gary D. Hansen. 1995. Money and the
Business Cycle. In Thomas F. Cooley (Ed.). Frontiers of
Business Cycle Research. Princeton, NJ: Princeton University
Press. pp. 175-216.

Cooley, Thomas F. and Gary D. Hansen. 1998. The Role of Mon-
etary Shocks in Equilibrium Business Cycle Theory: Three
Examples. European Economic Review. Vol. 42. pp. 605-617.

Cooley, Thomas F. and Edward C. Prescott. 1995. Economic
Growth and Business Cycles. In Thomas F. Cooley (Ed.).
Frontiers of Business Cycle Research. Princeton, NJ: Prince-
ton University Press. pp. 1-38.

Correia, Isabel, Joao Neves, and Sergio Rebelo. 1995. Business
Cycles in a Small Open Economy. European Economic Re-
view. Vol. 39. pp. 1089-1113.

Deaton, Angus. 1991. Saving and liquidity constraints. Economet-
rica. Vol. 59. pp. 1221-48.

Debreu, Gerard. 1954. Valuation Equilibrium and Pareto Opti-
mum. Proceedings of the National Academy of Science. Vol.
40. pp. 588-592.

DeJong, David N. with Chetan Dave. 2007. Structural Macroeco-
nomics. Princeton, NJ: Princeton University Press



672 References

De Nardi, Mariachristina, Selahattin İmrohoroğlu and Thomas J.
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Rull. 1997. Dimensions of Inequality: Facts on the US Distrib-
utions of Earnings, Income, and Wealth. Federal Reserve Bank
of Minneapolis Quarterly Review. Vol. 21. pp. 3-21.

Diebold, Francis X. and Robert S. Mariano. 1995 . Comparing
Predictive Accuracy. Journal of Business and Economic Sta-
tistics. Vol. 13. pp. 253-263.

Dotsey, Michael, and Peter Ireland. 1996. The welfare costs of
inflation in general equilibrium. Journal of Monetary Eco-
nomics. Vol. 37. pp. 29-47.

Duffy, John and Paul D. McNelis. 2001. Approximating and sim-
ulating the stochastic growth model: Parameterized expecta-
tions, neural networks, and the genetic algorithm. Journal of
Economic Dynamics and Control. Vol. 25. pp. 1273-1303.



References 673

Eichenbaum, Martin and Jonas D. M. Fisher. 2004. Evaluating
the Calvo Model of Sticky Prices. NBER Working Paper No.
W10617.

Erosa, Andrés, and Gustavo Ventura. 2002. On inflation as a re-
gressive consumption tax. Journal of Monetary Economics.
Vol. 49. pp. 761-95.

Evans, George W. and Seppo Honkapohja. 2001. Learning and
Expectations in Macroeconomics. Princeton, Oxford: Pinceton
University Press.

Evans, Owen J. 1983. Tax Policy, the Interest Elasticity of Saving,
and Capital Accumulation: Numerical Analysis of Theoretical
Models. American Economic Review. Vol. 83. pp. 398-410.

Fair, Ray C. and John B. Taylor. 1983. Solution and Maximum
Likelihood Estimation of Dynamic Nonlinear Rational Expec-
tations Models. Econometrica. Vol. 51. pp. 1169-1185.

Farmer, Roger E. A. 1993. The Macroeconomics of Self-Fulfilling
Prophecies. Cambridge, MA, London: MIT Press.

Favero, Carlo A. 2001. Applied Macroeconometrics. Oxford: Ox-
ford University Press.

Finn, Mary G. 1995. Variance Properties of Solow’s Productivity
Residual and their Cyclical Implications. Journal of Economic
Dynamics and Control. Vol. 19. pp. 1249-1281.

Gagnon, Joseph E. 1990. Solving the Stochastic Growth Model
by Deterministic Extended Path. Journal of Business & Eco-
nomic Statistics. Vol. 8. pp. 35-36.
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Constant elasticity of substitution

(CES) utility, see Utility
function

Constraint
asset constraint, 333, 360
binding constraint, 8, 243
budget constraint, 43, 144, 265,

270, 272, 318, 331, 336
credit constraint, 333, 360
liquidity constraint, 422–430,

453, 516
non-negativity constraint, 7,

12, 256
resource constraint, 5, 44, 91,

318, 319
Consumption

consumption function, 295, 299
feed-back rule, 131
marginal utility of, 294, 295
policy, 409, 467, 511
time path of, 43, 104, 459

Continuation methods, see Homo-
topy

Contraction mapping theorem, 210–
211

Control variable, see Variable
Convergence

distribution function, 348
linear, 214, 215, 604
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quadratic, 214, 604
rate of, 604
superlinear, 604

Credit constraint, see Constraint
Cubic spline interpolation, see In-

terpolation, cubic splines

Demographic transition, 483–501
Den Haan-Marcet statistic, see DM-

statistic
Density function, 30, 335, 336, 341,

350–353, 657
invariant, 351, 425

Depreciation, see Capital
Derivative

numerical, 593–598
Deterministic growth model, 4–25,

77, 116, 176, 208, 298
Difference equations, 527, 645, 645–

651
asymptotic stability, 646, 647,

650
fixed point, 649
linear, 645–648
non-linear, 82, 648–651
stochastic, 89, 102, 106

Dimensionality
curse of, 207, 243, 342, 602

Dirac delta function, see Weight
function

Discount factor, 9, 40, 51, 95, 147,
149, 315

Discretization
density function, 350–353
distribution function, 341–350

Distribution
approximation of, 341–350, 354–

358
ergodic, 344, 355, 356, 419
invariant, 341, 342, 344, 354
money-age, 502
stationary, 335, 389, 459–464

Dividend, 144, 156, 270, 312

DM-statistic, 63–64, 135, 137–138,
189, 237, 263, 267, 297,
310, 658–662

Dynamic programming, see Pro-
gramming

Earnings
distribution of, 367–374, 443,

488, 508, 519
inequality, 367–374, 514
mobility, 367–374, 436
retained earnings, 313

Economic growth, see Growth
Economy, decentralized, 40–44, 331
Eigenspace, 565, 648, 651

center, 565
stable, 80, 565
unstable, 565

Eigenvalue, 113, 184, 252, 564, 566,
567

Eigenvector, 564, 566, 656
generalized, 565

Employment
distribution, 414
history, 330, 455, 510
mobility, 419
probability, 330, 337, 433
stationary, 340
status, 330, 333, 391, 393, 417
transition matrix, 337, 344, 398
transition probability, 390

Equilibrium
competitive, 41, 331
decentralized, 40, 331, 454, 472,

523
general, 41
partial, 428
rational expectations equilib-

rium, 249
stationary, 18, 49, 331, 335–

341, 377, 458–460, 502,
511–512

utility maximizing, 44, 131
Equity

premium, 311–323, 359
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premium puzzle, 286, 311–323
return on equity, 51, 315
risk free rate of return, 321

Ergodic set, 343, 425
Error bounds, 237, 594, 595, 598,

605
Euclidean norm, 558
Euler equation, 3, 11–13, 289, 294,

318, 320, 459–461, 659
logarithmic preferences, 91
residual, 62–63, 117, 123, 124,

135–137, 237
stochastic, 26, 28–30, 87, 318

Euler’s theorem, 42
Exchange economy, 359–362
Expectations

conditional, 27, 30, 85, 245,
246, 285, 292–294, 303,
313, 321, 422

Exponential function, class of, 355–
358

Financial intermediary, see Bank-
ing sector

Finite difference method, 594–596
Firm, 41–42, 313–317

monopolistically competitive,
144, 154

stock market value, 314, 315,
317

total value, 321
Forward iteration, 646
Frictions, nominal, 144, 152, 156
Function

density, see Density function
homogenous of degree one, 35,

38, 41
homogenous of degree zero, 38
indicator function, 334
objective function, 84
policy function, 85–86, 91, 98,

111, 334, 343
production function, see Pro-

duction function

residual function, 287, 289, 290,
305, 306, 319

return function, 87, 91
sigmoid function, 592
space, 286, 391, 579
utility function, see Utility func-

tion
value, see Value function
weight, see Weight function

Functional equation, 12, 14, 30, 62,
286, 291, 646

Galerkin method, 288, 289, 290,
301

Gauss-Chebyshev quadrature, 296,
300, 301, 358, 600, 601

Gauss-Hermite quadrature, 306, 601
Gauss-Newton algorithm, 275, 276,

626–629
damped, 628

Gauss-Seidel method, 482, 505, 611
Gaussian formulas, see Numerical

integration
Gaussian plane, 555, 557
Genetic algorithm, 258, 633–643

binary-coded, 634
choice of initial population, 635
chromosome, 634
chromosomes fitness, 634
creation of offspring, 634
crossover, 638
final selection, 640
fitness variance, 637
fitness-proportionate selection,

636
mutation, 640
population, 634
premature convergence, 637
real-coded, 634
sampling with replacement, 636
sigma scaling, 637
stochastic universal sampling,

636
Genetic search, see Genetic algo-

rithm
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German Socio-Economic Panel GSOEP,
369, 373, 381

Gini coefficient, 507
of earnings, 368, 443
of income, 368, 381, 443, 540,

546
of labor income, 514
of wages, 368
of wealth, 368, 381, 382, 445,

452, 516, 518, 540
West Germany, 369

Givens rotation, 113, 569–570
Golden section search, 362, 425,

623–626
Government

budget, 334, 377, 405, 456, 472,
474, 511, 523, 526

policy, 335, 377, 393, 457, 470
revenues, 334, 376, 510
spending and business cycles,

170, 171
Growth

balanced growth path, 35, 37
deterministic, 39
difference stationary, 35–37
economic growth, 34
trend stationary, 35–37

Habit persistence, 155, 298, 312,
313

Hansen-Prescott algorithm, 89–95
Hesse matrix, 96, 115, 119, 122,

130, 573, 593, 597, 630–
632

numerical approximation, 597
secant approximation of, 631

Hodrick-Prescott filter (HP-filter),
55, 135, 532, 663–665

Homotopy, 180, 257–258
Household, 42–44, 144–145, 270–

272, 312–313
production(home production),

423, 434, 439

Howard’s improvement algorithm,
see Policy function itera-
tion

Implicit function theorem, 77, 81,
90, 99, 100, 574

Impulse response function, 52, 53,
55, 153–155, 196, 277, 532

Income
tax, 330
capital income, 338, 452, 455,

510
concentration of interest, 443
current, 399
cyclical behavior of income shares,

432, 444
dispersion of, 367
distribution of, 330, 369, 389,

422, 431–446, 518
effect, 278, 381
heterogeneity of, 367, 370
mobility, 369, 432, 433, 445,

452
tax, 332, 374, 389, 396, 452

Indicator function, 375
Inflation

anticipated, 268, 276
current inflation rate, 144
expected, 144
inflationary expectations effect,

268, 277
Initial guess, 177, 211, 225, 262,

300, 301, 307, 321, 615,
633

Insurance, incomplete, 359–362
Integration, see Gauss-Chebyshev

quadrature, see Gauss-Hermite
quadrature

Intermediate value theorem, 607
Interpolation, 227

bilinear, 229, 234, 417, 576–
577

Chebyshev, 296, 583
cubic splines, 216, 231, 237,

447, 466, 505, 577–578
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linear, 216, 343, 399, 466, 515,
575–576

multidimensional, 588
Investment, 5, 50, 139, 313

expenditures, 313, 314

Jacobian matrix, 78, 80, 82, 102,
130, 266, 480–482, 497,
498, 574, 593, 597, 612–
616, 629, 649

forward difference, 96
numerical approximation, 596

Jordan factorization, see Matrix
factorization

Kronecker product, 560, 662
Krusell-Smith algorithm, 395–397,

533
Kuhn-Tucker

first-order conditions, 7, 12,
260, 261, 272, 274

Theorem, 6

Labor
effective, 34, 57, 381, 510
efficiency level of, 36
labor input, 316, 317
marginal product of, 33, 38,

526
market, 42
productivity of, 33, 370, 509

Labor demand, 57, 274, 376
Labor supply, 33–34, 42, 318, 323,

454, 457, 467, 502, 509,
511, 524

elasticity, 381
endogenous, 37, 372, 406
exogenous, 33
feed-back rule, 131
schedule, 58
time path of, 43

Lagrangean function, 12, 28, 37,
43, 45, 139, 271, 315

Lagrangean multiplier, 7, 88, 89,
107, 313, 316

Law of large numbers, 343
Law of motion

productivity shocks, 132
stochastic linear, 84

Learning dynamics, 249–252
Least squares

method, 290, 291, 300, 468
nonlinear, 251, 255
recursive, 250

Leibniz rule, 241
Leisure, 33–34, 38, 318, 375, 405,

454
Lending rate, 423
Life-cycle model, see Overlapping

generations model, 452
Life-cycle savings, 508
Line search, 617–622
Linear algebra, 555–570
Linear interpolation, see Interpo-

lation, linear
Linear-quadratic (LQ) model, 84–

89
Linearization methods, see Approx-

imation methods, linear
Liquidity effect, 268, 277, 279
Lorenz curve, 514, 517

of earnings, 368, 514
of income, 368, 443
of wealth, 368, 446, 516

LU factorization, see Matrix fac-
torization

Machine epsilon, 595
Manifold

stable, 650
unstable, 651

Markov chain, 222, 234, 306, 463,
653–658

2-state, 341
finite state, 341, 514, 657
first order, 332, 372
Markov chain approximation

of AR(1) process, 657
second order, 372

Markov process, 509, 652–658
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Markov property, 247, 652
Matrix

addition, 557, 559
complex, 558
conjugate complex transposi-

tion, 562
determinant, 561, 564
diagonal, 559
Givens rotation, 569
identity, 89, 559
inverse, 562
invertible, 562
main diagonal, 108, 561
negative definite, 86
negative semidefinite, 84, 563
non-invertible, 562
non-singular, 562
partitioned, 108
positive definite, 564, 630, 664
positive semidefinite, 564
rank, 561
scalar multiplication, 557, 559
semidefinite, 84, 563, 630
singular, 562
square, 85, 559
symmetric, 84, 562, 568
trace, 561
transition matrix, 30, 653
transpose, 561
unitary, 567
upper triangular, 559

Matrix factorization
Cholesky factorization, 568, 569
Jordan factorization, 565, 566,

646
LU factorization, 568, 569, 614
QR factorization, 569, 616
Schur factorization, 79, 102,

108, 567, 569
Mean

conditional, 657
long-run, 37
unconditional, 657

Method of undetermined coefficients,
24, 66, 73

Modified policy iteration, 215, 218,
219, 226, 229, 231

Monetary aggregate, 151
Monetary growth rule, 145, 270
Monetary policy, 145, 153, 173, 268,

275
Money

cash balances, 270, 272
cash-in-advance, 143, 268, 270,

278
elasticity of demand for real

money balances, 152
in the utility function, 143,

385
liquidity effect, 268, 277, 279
neutrality of, 143, 145, 153
outside money, 143
real money balances, 143, 144
Sidrauski model, 385
superneutral, 273
superneutrality, 385
supply, 145, 151
transaction costs, 143, 144, 151,

154
velocity of, 150, 153

Money balances, see Money
Monomial formulas, 253, 254, 287,

293, 579, 602
Monopolistic competition, 144, 154
Monte-Carlo simulation, 285, 292,

353–355
Multicollinearity, 275, 579

National accounts, 49, 56
Natural spline, 578
Neoclassical growth model, see Ram-

sey model
Neural network, 591–593

hidden-layer activation func-
tion, 592

hidden-layer feedforward, 592
single hidden-layer feedforward,

592
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single-layer, 591
Neutrality of money, see Money
Newton’s method, 630–631
Newton-Raphson method, 608–614

globally convergent extension,
617–622

modified, 301, 609, 613–616
Non-linear equations solver, 256,

257, 262, 275
Norm, 214, 558

Euclidean, 558
sup, 558

Normal good, 34, 58
Numerical differentiation, 593–598

central differences, 595, 597
first difference formulas, 594–

595
forward differences, 594, 629
numerical derivative, 593–598

Numerical integration, 598–603
Gaussian formulas, 599–601
linear Lagrange polynomial, 598
multidimensional, 601–603
Newton-Cotes formulas, 598–

599
Trapezoid rule, 598

Numerical optimization, 622–643

OLG, see Overlapping generations
model

Open economy model, 189–199
Optimal policy functions, see Pol-

icy functions
Optimization, see Numerical opti-

mization
Orthogonal polynomials, see Poly-

nomials
Overlapping generations model

aggregate uncertainty, 520–548
business cycle dynamics, 536–

548
demographic transition, 482–

501
deterministic, 451–501
individual uncertainty, 507–520

steady state, 453–469
stochastic, 507–548
transition dynamics, 469–482

Partial information, 395–406, 439
Pensions, 455

earnings-related, 502
lump-sum pensions, 508
replacement ratio, 469, 515,

524
Perfect foresight models, see Over-

lapping generations model
Perturbation methods

linear, 77–83, 98–114, 131
quadratic, 114–131

Phase diagram, 16–21
Phillips curve

New Keynesian, 131, 143–157
traditional, 144

Policy function, 14, 20, 31, 209,
285, 294, 295, 297, 334,
343

time invariant, 14
Policy function iteration, 213–215
Polynomials, 578–591

n-fold tensor product base, 588
Chebyshev polynomials, 355,

467, 581–588, 590
complete set of, 589
Hermite polynomials, 600
Legendre polynomials, 582
linear Lagrange polynomials,

598
orthogonal, 579–580
orthonormal, 579
tensor product base, 589

Predetermined variable, see Vari-
able

Prediction error, 247, 420
Price

Calvo-pricing, 144
price index, aggregate, 146
price setting, 145, 155, 156

Principle of optimality, 14, 336
Probability, 26
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conditional, 306
density function, 657
distribution, 27, 32, 312, 426,

511
ergodic distribution, 292

Production economy, 311, 363
Production function, 41, 298

aggregate, 41, 412
Cobb-Douglas, 91, 456, 510,

523
constant returns to scale, 334,

456, 510, 523
marginal product, 334, 394
neoclassical, 36
properties, 5

Productivity level, aggregate, 416
Profits, 41, 146, 147, 149, 269, 314
Programming

dynamic, 3, 13, 425
non-linear, 4
stochastic dynamic, 30

Projection function, 291, 295, 297,
467

Projection methods, 285–297, 300
algorithm, 291
approximating function, 293
finite-element methods, 286
in OLG models, 467
residual function, 294, 295
weighted residual methods, 285

QR factorization, see Matrix fac-
torization

Quadratic form, 84, 563
Quadratic objective function, 84
Quasi-Newton method, 300, 630–

633
BFGS, 468, 631–633
Newton direction, 630
Newton’s method, see New-

ton’s method

Ramsey model
finite-horizon deterministic, 4–

6, 176–179

infinite-horizon deterministic,
10–11, 77–82, 91–95, 115–
117, 179–181, 208–209, 286,
289, 294, 297–302

infinite-horizon stochastic, 26–
28, 44–46, 99–106, 117–
124, 131–138, 181–184, 228–
232, 235–237, 244–247, 286,
289, 292, 298, 311, 312

with non-negative investment,
232–235, 259, 302–309

Random number generator, 353,
417, 441

Rate of interest
nominal, 152, 268, 269
risk-free, 330, 359–366
risk-free rate puzzle, 330

Rational expectations, 28, 64, 175,
183, 184, 189, 232, 243

Rationality, bounded, 250, 397, 418
Recursive methods, XI, 209, 221,

227, 235
Representative agent, 42, 49, 131,

247, 296
Residual function, see Function
Restrictions, see Constraints
Returns to scale, constant, 35, 36,

456, 510, 523
Riccati equation, 86
Rigidities, nominal, 143, 152, 154,

155
Risk aversion, 509

relative risk aversion, coeffi-
cient of, 423, 509, 513

Risk, idiosyncratic, 330, 370, 411,
429

Saddle path, 16–21, 77, 179
Savings, 34

behavior, 401
function, 402
precautionary, 331
rate, 348, 396
share of, 35
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Schur factorization, see Matrix fac-
torization

Secant Hermite Spline, 578
Secant method, 364, 461, 609
Seignorage, 386, 503
Shock, 33–34

anticipated, 153
monetary shock, 143, 155, 268,

276, 278
productivity shock, 298, 522,

657
technology shock, 292
unanticipated, 152

Shooting method, 394
Simulation method, see Monte-Carlo

simulation
Social planner, 84
Social security, 510, 517

contributions, 455, 502, 515
system, 396

Solow residual, 524
Sparse matrix methods, 342, 664
Spline, see Interpolation, cubic spline
State space, 295

discretization of, 341, 358, 465,
513

individual, 335, 377, 391, 439
State variable, see Variable
Stationary solution, see Steady state
Steady state, 18–21, 376, 411, 458,

460, 470, 524, 526
Stochastic growth model, see Ram-

sey model
Stochastic process

autoregressive, see autoregres-
sive process, see autore-
gressive process

continuous valued, 652
covariance stationary, 36
difference stationary, 36
discrete valued, 652
non-stationary, 663
trend stationary, 36
white noise, 37

Stopping criteria, 603–606
Substitution

effect, 34
inter-temporal, 34
intra-temporal, 33
marginal rate of, 8, 9, 245

Superneutrality of money, see Money

Tax
consumption tax, 330, 367, 378
income tax, 330, 382, 452
income tax rate, 332, 382, 396,

407
income tax reform, 374–381
labor income tax rate, 455,

475
revenues, 334, 376, 456, 510
system, 452

Taylor series, 571, 589
expansion, 96, 597
second order approximation,

92
Taylor’s theorem, 75, 571–574
Technical progress, 34–35

disembodied, 34
embodied, 34
labor augmenting, 35

Time series
artificial, 135
cyclical component of, 55, 665
second moments, 55, 91, 135

Time to Build Model, 138–143
Topological conjugates, 650
Total factor productivity, 318
Transformation matrix, 94, 567
Transition matrix, 332, 373, 398,

411, 463, 512, 653
conditional, 423

Transversality condition, 13, 17, 18,
20, 30, 103, 316, 317

Trend
linear, 36, 663
path, 35

Uncertainty, 26, 507
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aggregate, 331, 520–533
individual, 507–520

Undetermined coefficients, see Method
of undetermined coefficients

Unemployment
compensation, 331, 335, 375,

396, 517
cyclical, 144, 432
duration of, 337, 372
replacement ratio, 338, 378,

518
risk, 331

Unit circle, 83, 87, 107, 108, 111,
113, 184, 196, 532, 557,
648, 649

Unit root, 194, 195
Utility function, 298

constant elasticity of substi-
tution (CES), 423

current period utility function,
313

elasticity of marginal utility,
50, 258, 298

expected lifetime utility, 26,
313

instantaneous, 405, 423
isoelastic current period util-

ity function, 313
lifetime utility, 8, 26, 311
marginal utility, 8
one-period, 10, 26
recursive, 9
time additive separable (TAS),

9

Value function, 14, 30, 85, 285,
336, 343, 401, 457, 464

Value function iteration, 209, 213,
217, 379, 380, 464, 466,
515

and concavity, 211–213, 441
and monotonicity, 211–213, 441

Variable

control, 86, 89, 93, 95, 97, 98,
124, 164–166, 184, 186,
195, 243, 324, 527

costate, 89, 91, 107, 124, 184,
527

predetermined, 84, 318, 526,
532

state variable, 85, 87, 95, 107,
243, 245, 271, 274, 275,
292

state variable, distribution of,
434

state variable, non-stochastic,
84

state variable, with given ini-
tial condition, 107

state variable, without given
initial condition, 107

stochastic, 27
Variance, conditional, 654
Variational coefficient

effective labor, 381, 383
labor supply, 383
working hours, 381

vec operator, 560–561
Vector, 557–558

addition, 557
basis, 558
control vector, 84, 85
gradient, 96, 251, 605, 628
norm, 558
scalar multiplication, 557
space, 286, 564
state vector, 84

Wage income, 333, 348, 402, 407,
455, 469, 524

Wald statistic, 660
Wealth

average, 441
concentration of, 369, 382, 445,

507
distribution, 341, 347, 356, 381,

395, 417, 441, 452, 507,
511, 515, 516



704 Subject Index

heterogeneity, 445, 507, 518
level, 331, 341, 370, 396, 425,

463
Weight function, 579, 581, 600

Dirac delta function, 290, 296
Weighted residual methods, see Pro-

jection methods
Weighting function, 290, 291, 295,

302
Welfare

analysis, 329
effects, 430


