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Preface

Given the huge number of responses and comments to the first
edition of our book, we felt obliged to come up with the second
edition within such a short period of time. Stochastic Dynamic
General Equilibrium modeling is certainly among the most rapidly
changing fields in economics and we try to cover the most recent
developments.

In this edition, we reorganize and extend the presentation of
solution methods in the former Chapters 1 through 4 and add ma-
jor new material. Different from the first edition Chapter 1 serves
as introduction, but does not present any solution techniques. It
covers deterministic and stochastic representative agent models,
elaborates on their calibration and evaluation, and ends with a
characterization of the solution methods presented in Chapters
2 through 6. Chapter 2 now includes a section on the second-
order approximation of policy functions, the extended determin-
istic path algorithm in Chapter 3 is applied to an open economy
model with a unit root, and we consider various techniques to
speed up value function iteration in Chapter 4. In the second part
of the book on heterogenous agent economies we split the for-
mer Chapter 7 on overlapping generations (OLG) models. The
solution of OLG models with perfect foresight is now covered in
Chapter 9, where we also consider different ways to compute the
transitional dynamics of these models. A new application deals
with a model of the demographic transition. OLG models with
aggregate and individual uncertainty are solved in Chapter 10.

Computer Code. As one of our main ambition, we keep the es-
sential feature of this book to make all our programs that we used
for the computations available on our website www.wiwi.uni-
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augsburg.de/vwl/maussner/. Therefore, the reader does not
need to download any program code from other websites in or-
der to replicate any of our findings, for example, on the statis-
tics and characteristics of business cycle models or the dynamics
of the distribution function in heterogeneous-agent economies. In
the email correspondence with our readers this very feature of our
book has often been pointed out as a crucial one by the graduate
students in order to get started with his or her own research. If
you are endowed with the programs for all the basic models of the
business cycle, growth, and the distribution that we cover in this
book, it is easy to start modifying them and work on your own
projects.

Numerical methods are introduced one after the other and
every new method is illustrated with the help of an example. This
book and its accompanying web page is particularly designed for
those students with little or no prior computing experience. We
start from the scratch and deliberately concentrate on models that
are formulated in discrete time so that we are able to bypass the
technical complexities that arise when stochastic elements are in-
troduced into continuous time optimizing models. The computer
code is available either in Gauss or Fortran or both. The for-
mer computer language is almost identical to Matlab and can be
translated without any effort. This way, the reader of this book
can easily learn advanced programming techniques and, starting
from very simple problems, she or he learns to apply them to
more complex models, for example, a stochastic growth model
with heterogeneous households.

Dynamic General Equilibrium Models. Dynamic General
Equilibrium (DGE) models have become the workhorses of mod-
ern macroeconomics. Whatever textbook on advanced macroeco-
nomics you consider you will find three kinds of models: the Solow
model, the Ramsey model, and the overlapping generations model.
The elementary versions of all three models can be studied with
paper and pencil methods. But as soon as the researcher starts
asking important questions of economic policy, these methods
break down.
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There are three questions researcher are most interested in.
The first concerns transitional dynamics. For example, in growth
theory, we are interested in the question of how countries converge
to their long-run equilibrium, or, in public finance, we want to
understand the behavior of the economy after an enduring tax
cut. The second kind of problem concerns economic fluctuations
that are caused by supply and demand shocks. Notably stochastic
versions of the Ramsey model have been applied successfully to
the study of business cycle dynamics. In these models demand
and supply shocks trigger intra- and intertemporal substitution
between leisure, consumption, and asset holdings and generate
patterns in time series that mimic those found in macroeconomic
data. The third issue, which has only received limited attention in
the recent textbook literature, concerns models with heterogenous
agents. Important applications of heterogeneous-agent economies
can be found in the theory of income distribution, in the theory of
asset pricing or in the field of public finance, to name but a few.
To address any of these economic problems that are formulated
as a DGE model, the researcher needs to apply computational
methods.

Scope. The book is aimed at graduate students or advanced un-
dergraduates. It may be used for both class-room and self study.
It contains a great deal of new research both in the field of com-
putational economics and in the field of macroeconomic theory.
In essence, this book makes the following contributions:

1. The book tells the student in a simple way starting from a
very basic level how to compute dynamic general equilibrium
models. The emphasis is not on formal proofs, but rather on ap-
plications with codes and algorithms. Students should be able
to start to program their own applications right away. Only
some prior knowledge of statistics, linear algebra, and analysis
is necessary. The relevant material from numerical analysis is
gathered in a separate chapter for those readers who are unfa-
miliar with these techniques.

2. We also emphasize some problems of the practitioner that have
only received limited if any attention at all in the recent text-
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book literature. For example, we make an extensive effort to
discuss the problem of finding a good initial value for the policy
function in complex models so that the algorithm converges to
the true solution. Likewise, we discuss the problem of modeling
the dynamics of the distribution of the individual state variable
in heterogeneous-agent economies in detail. Like econometrics,
for example, numerical analysis is also as much an art as a
science, and a young researcher in this field may often wonder
why his or her particular computer program does not converge
to an equilibrium value or fails to produce a sound solution. In
other word, experience is important for the solution of numer-
ical problems and our aim is to share as many as possible of
our practical knowledge.

3. Our applications also reflect many recent research from the field
of business cycle theory. For example, we compute the standard
RBC model, monetary business cycle models, or the business
cycle dynamics of the asset market. For this reason, the book is
also valuable to both the student and the researcher of business
cycles.

4. For this reason, the book is also interesting for researchers both
in the field of (income and wealth) distribution theory and in
the field of public finance.

The presentation in our book is self-contained and the reading
of it is possible without the consultation of other material. The
field of computational economics, however, is vast and we do not
pretend to survey it. Fortunately, there are several other recent
good textbooks that are complementary to ours. KENNETH JUDD
(1998) is giving a comprehensive survey of computational eco-
nomics and remains the standard reference, while MIRANDA and
FACKLER (2002) have written a book that, like ours, is more di-
rected towards the illustration of examples and algorithms, while
their focus, however, is more on continuous time models. MARI-
MON and ScOTT (1999) have edited a textbook that also illus-
trates methods in order to compute the stochastic growth model
that we have not covered in this book, for example the finite-
element method. In our book, we also do not cover the process
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of calibration and estimation methods of stochastic DGE models
with the help of econometric techniques such as maximum likeli-
hood and method of moments. The textbooks of CANOVA (2007)
and DEJONG with DAVE (2007) are excellent references for the
study of these empirical methods. The textbook by LJUNGQVIST
and SARGENT (2004) on recursive macroeconomic theory and the
monograph by STOKEY and LucAs with PRESCOTT (1989) on
recursive methods may serve as a helpful reference for the eco-
nomic theory and mathematical background applied in this book.
McCandless (2008) provides a detailed presentation of various
monetary and open economy models and their log-linearization
together with the Matlab code, while Gali (2008) gives a concise
introduction to the New Keynesian framework with an emphasis
on monetary theory.

Organization. The book consists of three parts. Part I stud-
ies methods in order to compute representative-agent economies,
Part II looks at heterogeneous-agent economies, while we collected
numerical and other mathematical tools in part III. In the first
Chapter, we introduce the benchmark model which is the sto-
chastic Ramsey model and give an overview of possible solution
methods. We compare different methods in the following five chap-
ters with a focus on accuracy, speed and ease of implementation.
After the study of the Part I, the reader should be able to choose
among the different methods the one that suits the computation
of his particular business cycle model best. The second part of
the book is devoted to the application of numerical methods to
the computation of heterogeneous-agent economies. In particular,
we consider the heterogeneous-agent extension of the stochastic
growth model on the one hand and the overlapping generations
model on the other hand. A detailed description of numerical tools
from the field of non-linear equations, approximation theory, dif-
ferential and integration theory or numerical optimization is del-
egated to Chapter 11 that, together with Chapter 12 on other
mathematical tools, constitutes Part III of the book.

We appreciate that this book cannot easily be covered in one
semester, but one can conveniently choose parts of it as the ba-
sis of a one-semester course. For example, a course on computa-
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tional methods in business cycle theory may choose the Chapters
1 through 5 or 6 where we covered the methods that we judge to
be most useful for the computation of representative-agent busi-
ness cycle and growth models. Chapter 1 introduces the stochastic
growth model and gives an overview of the basic techniques for
its computation. Chapter 2 reviews local approximation meth-
ods which have been predominantly applied in the analysis of
business cycle models. Different from the first edition, we now
also look at second-order perturbation methods. Chapters 3 and
4 cover the extended deterministic path approach and discrete
state space methods. Chapters 5 and 6 present the parameter-
ized expectations approach and projection methods, respectively.
While a standard course on business cycles should minimally cover
Chapter 1 with the benchmark model and a description of the ba-
sic statistics and calibration exercise as well as the first part of
Chapter 2 that covers the computation of the linearized model,
the instructor of a more specialized course should cover Chap-
ters 1 and 2 and may pick any one of the remaining chapters. A
reading list for a course on monetary economics may also include
Chapters 1 and 2 of our book as it enables the student to compute
the monetary business cycle model presented in Chapter 2 and,
in addition, introduces him to the New Keynesian Phillips curve.

Graduate students with prior knowledge of numerical analysis
may use Chapters 7 through 10 for an introduction to the compu-
tation of heterogeneous-agent economies and the theory of income
distribution. Chapter 7 extends the stochastic growth model to
a heterogeneous-agent economy and introduces different ways to
compute the stationary distribution of wealth. Chapter 8 consid-
ers the dynamics of the income and wealth distribution. In Chap-
ters 9 and 10, we look at overlapping generations models. Chap-
ter 9 considers deterministic models. We compute the station-
ary equilibrium and transition dynamics in the perfect-foresight
Auerbach-Kotlikoff model. Chapter 10 introduces individual and
aggregate uncertainty in this model. We compute the stationary
distribution of wealth in a model with idiosyncratic shocks to in-
dividual productivity and the business cycle dynamics in a model
with shocks to total factor productivity. Therefore, a one-semester
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course in computational public finance that is aimed at the com-
putation of Auerbach-Kotlikoff models can be based on Chapters
1-3, 9 and 10.
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Chapter 1

Basic Models

Overview. This chapter introduces you to the framework of dy-
namic general equilibrium models. Our presentation serves two
aims: first, we prepare the ground for the algorithms presented in
subsequent chapters that use one out of two possible characteriza-
tions of a model’s solution. Second, we develop standard tools in
model building and model evaluation used throughout the book.

The most basic DGE model is the so called Ramsey model,
where a single consumer-producer chooses an utility maximiz-
ing consumption profile. We begin with the deterministic, finite-
horizon version of this model. The set of first-order conditions
for this problem is a system of non-linear equations that can be
solved with adequate software. Then, we consider the infinite-
horizon version of this model. We characterize its solution along
two lines: the Euler equations provide a set of difference equa-
tions that determine the optimal time path of consumption; dy-
namic programming delivers a policy function that relates the
agent’s choice of current consumption to his stock of capital. Both
characterizations readily extend to the stochastic version of the
infinite-horizon Ramsey model that we introduce in Section 1.3.
In Section 1.4 we add productivity growth and labor supply to
this model. We use this benchmark model in Section 1.5 to il-
lustrate the problems of parameter choice and model evaluation.
Section 1.6 concludes this chapter with a synopsis of the numer-
ical solution techniques presented in Chapters 2 through 6 and
introduces measures to evaluate the goodness of the approximate
solutions.

Readers who already have experience with the stochastic growth
model with endogenous labor supply (our benchmark model) may
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consider to skip the first four sections and to start with Section
1.5 to become familiar with our notation and to get an idea of the
methods presented in subsequent chapters.

1.1 The Deterministic Finite-Horizon Ramsey
Model and Non-Linear Programming

1.1.1 The Ramsey Problem

In 1928 Frank Ramsey, a young mathematician, posed the prob-
lem "How much of its income should a nation save?”! and devel-
oped a dynamic model to answer this question. Though greatly
praised by Keynes,? it took almost forty years and further pa-
pers by DAVID Cass (1965), TJIALLING KOOPMANS (1965), and
WILLIAM BrROCK and LEONARD MIRMAN (1972) before Ram-
sey’s formulation stimulated macroeconomic theory. Today, vari-
ants of his dynamic optimization problem are the cornerstones of
most models of economic fluctuations and growth.

At the heart of the Ramsey problem there is an economic agent
producing output from labor and capital who must decide how to
split production between consumption and capital accumulation.
In Ramsey’s original formulation, this agent was a fictitious plan-
ning authority. Yet, we may also think of a yeoman growing corn
or of a household, who receives wage income and dividends and
buys stocks.

In the following we use the farmer example to develop a few
basic concepts. Time ¢ is divided into intervals of unit length and
extends from the current period ¢ = 0 to the farmers planning

L RAMSEY (1928), p. 543.
2 KEYNES (1930) wrote:

. one of the most remarkable contributions to mathematical eco-
nomics ever made, both in respect of the intrinsic importance and
difficulty of its subject, the power and elegance of the technical meth-
ods employed, and the clear purity of illumination with which the
writer’s mind is felt by the reader to play about its subject.
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horizon t = T'. K; and N; denote the amounts of seed and labor
available in period ¢, respectively. They produce the amount Y; of
corn according to

Yy = F(Ng, Ky). (1.1)

The production function F has the usual properties:

1. there is no free lunch: 0 = F'(0,0),

2. F'is strictly increasing in both of its arguments,

3. concave (i.e. we rule out increasing returns to scale),
4. and twice continuously differentiable.

At each period the farmer must decide how much corn to produce,
to consume and to put aside for future production. The amount
of next period’s seed is the farmer’s future stock of capital K.
His choice of consumption C} and investment K;,; is bounded by
current production:

Ci+ K1 <Y

The farmer does not value leisure but works a given number of
hours N each period and seeks to maximize the utility function

U(Cy,Ch,....Cr).

In the farmer example capital depreciates fully, since seed used for
growing corn is not available for future production. When we think
of capital in terms of machines, factories, or, even more generally,
human knowledge, this is an overly restrictive assumption. More
generally, the resource constraint is given by

i+ (1-060)K, > Cy + Ky,

where § € [0, 1] is the rate of capital depreciation. In the follow-
ing, notation will become a bit simpler if we define the production
function to include any capital left after depreciation and drop the
constant NV:

FK) == F(N,K,) + (1 - §)K,. (1.2)
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Since production without seed is impossible, we assume f(0) = 0,
while the other properties of F' carry over to f.

We are now in the position to state the finite-horizon deter-
ministic Ramsey problem formally as follows:

max  U(Cy,...,Cr)

(Co,..,CT)

S.t.

K+ G < f(Ky), (1.3)
O S Ct, t:(), 77“’,
0 S Kt+17

Ky given.

There is no uncertainty in this problem: the farmer knows in ad-
vance how much corn he will get when he plans to work N hours
and has K; pounds of seed. Furthermore, he is also sure as to how
he will value a given sequence of consumption {C;}]_,. Therefore,
we label this problem deterministic. Since we assume T < oo, this
is a finite-horizon problem.

1.1.2 The Kuhn-Tucker Theorem

Problem (1.3) is a standard non-linear programming problem:
choose an n-dimensional vector x € R" that maximizes the real-
valued function f(x) in a convex set Z determined by [ constraints
of the form h’(x) > 0,7 =1,...,l. The famous Kuhn-Tucker the-
orem provides a set of necessary and sufficient conditions for a
solution to exist:?

Theorem 1.1.1 (Kuhn-Tucker) Let f be a concave C func-
tion mapping U into R, where U C R™ s open and convex. For
i=1,...,01, let h* : U — R be concave C' functions. Suppose
there is some x € U such that

RY(x) >0, i=1,...,1L

3 See, for instance, SUNDARAM, 1996, Theorem 7.16, p. 187f.
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Then x* maximizes [ over 9 = {x € Ulhi(x) > 0,i=1,...,1} if
and only if there is X* € R! such that the Kuhn-Tucker first-order
conditions hold:

Of(x*) =\, Ohi(x") .

) Nt ) =1,...

a‘r] +Z 1 an 07 .] ) 7”7
=1

>0, i=1,...,1,

MR (x¥) = 0, i=1,...,1

It is easy to see that problem (1.3) fits this theorem if the utility
function U and the production function f are strictly concave,
strictly increasing, and twice continuously differentiable. Applying
Theorem 1.1.1 to problem (1.3) provides the following first-order
conditions:*

0= 8U(O°a’d"CT) ~ N+, t=0,...,T, (1.4a)
0=—-N+ M1 f (Kiy1) +wipr, t=0,...,T —1, (1.4Db)
0=—Ar+wriq, (1.4¢)
0=X(f(K) —C,— Kip1), t=0,....T, (1.4d)
0= 1, t=0,...,T, (1.4¢)
0= w1 Kipa, t=0,...,T, (1.4f)

where )\; is the Lagrangean multiplier attached to the resource
constraint of period t,

f(K;) = Gy — Kipq >0,

and where p; and w;yq are the multipliers related to the non-
negativity constraints on C; and K, 1, respectively. The multipli-
ers value the severeness of the respective constraint. A constraint

4 As usual, a prime denotes the first (two primes the second) derivative of a
function f(x) of one variable z. Condition (1.4c) derives from the budget
constraint of period T, f(Kr) — Cr — K41 > 0, which has the multiplier
Ar, and the non-negativity constraint on Kpi1, which has the multiplier
Wr+41-
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that does not bind has a multiplier of zero. For example, if C; > 0
then (1.4e) implies p; = 0. If we want to rule out corner solutions,
i.e., solutions where one or more of the non-negativity constraints
bind, we need to impose an additional assumption. In the present
context this assumption has a very intuitive meaning: the farmer
hates to starve to death in any period. Formally, this translates
into the statement

oU(Cy, ..., Cr)
oC,

—o0if Cy - 0forallt=0,...,T.

This is sufficient to imply C; > 0 for all ¢t = 1,....7, yu; = 0
(from (1.4e)), and the Lagrangean multipliers A\; equal the mar-
ginal utility of consumption in period ¢ and, thus, are also strictly
positive:

AU (Co, ..., C))
ac,

- )\t'

Condition (1.4d), thus, implies that the resource constraints al-
ways bind. Furthermore, since we have assumed f(0) = 0, positive
consumption also requires positive amounts of seed K; > 0 from
period t = 0 through period T'. However, the farmer will consume
his entire crop in the last period of his life, since any seed left
reduces his lifetime utility. More formally, this result is implied
by equations (1.4f) and (1.4c), which yield Ay K71 = 0. Taking
all pieces together, we arrive at the following characterization of
an optimal solution:

Ky = f(K) — Cy, (1.5a)

ou(Cy,...Cr)joC,
oU(Cy,...Cr)]0Cr, F(Ki)- (1.5b)

The lhs of equation (1.5b) is the marginal rate of substitution
between consumption in two adjacent periods. It gives the rate
at which the farmer is willing to forego consumption in ¢ for con-
sumption one period ahead. The rhs provides the compensation
for an additional unit of savings: the increase in future output.
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1.2 The Deterministic Infinite-Horizon Ramsey
Model and Dynamic Programming

In equation (1.5b) the marginal rate of substitution between two
adjacent periods depends on the entire time profile of consump-
tion. For this reason, we must solve the system of 27" — 1 non-
linear, simultaneous equations (1.5) at once to obtain the time
profile of consumption. Though probably difficult in practice this
is, in principle, a viable strategy as long as T is finite. However,
if we consider an economy with indefinite final period, that is, if
T approaches infinity, this is no longer feasible. We cannot solve
for infinitely many variables at once. To circumvent this prob-
lem, we restrict the class of intertemporal optimization problems
to problems that have a recursive structure. Recursive problems
pose themselves every period in the same, unchanged way. Their
solution is not a time profile of optimal decisions determined at
an arbitrary initial period ¢ = 0 but consists in decision rules that
determine the agent’s behavior at each future point in time. The
time additive separable (TAS) utility function, which we introduce
in the next subsection, allows for a recursive formulation of the
Ramsey problem. For this problem we derive first-order conditions
via the Kuhn-Tucker method in Subsection 1.2.2. There is, how-
ever, an alternative approach available: dynamic programming,
which we consider in Subsection 1.2.3. Subsection 1.2.4 provides
a characterization of the dynamics of the infinite-horizon Ramsey
model. We close this section with a brief digression that considers
the few models that admit an analytic solution of the Ramsey
problem.

1.2.1 Recursive Utility

The TAS utility function is defined recursively from
Ut == U(Ct) -+ ﬁUH—ly ﬁ c (O, 1) (16)

In this definition 3 is a discount factor and 3~ — 1 is known as
the pure rate of time preference. The function u : [0,00) — R
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is called the one-period, current-period, or felicity function. We
assume that u is strictly increasing, strictly concave and twice
continuously differentiable.

The solution to the finite-horizon Ramsey model depends upon
the chosen terminal date T'. Yet, in as far as we want to portray
the behavior of the economy with Ramsey type models there is
no natural final date T'. As a consequence, most models extend
the planning horizon into the indefinite future by letting 7" — oo.
Iterating on (1.6) we arrive at the following definition of the utility
function

Uy =Y Bu(Crs). (1.7)

If we want to rank consumption streams according to this crite-
rion function, we must ensure that the sum on the rhs is bounded
from above, i.e., U, < oo for every admissible sequence of points
Cy, Ciiq,Ciyo, . ... This will hold, if the growth factor of one-
period utility u, ¢, = u(Cirss1)/u(Chss), is smaller than 1/3
for all s = 0,1,2,.... Consider the Ramsey problem (1.3) with
infinite time horizon:

max Uy = Zﬁtu(Ct)
=0

Co,C1 ...
s.t.
K +C < f(KY), (1.8)
O S Ct, t:(),l,...,
0 S Kt+17
Ky given.

In this model we do not need to assume that the one-period util-
ity function u is bounded. Since w is continuous, it is sufficient
to assume that the economy’s resources are finite. In a dynamic
context this requires that there is an upper bound on capital ac-
cumulation, i.e., there is K such that for each K > K output is
smaller than needed to maintain K:

Elf_( so that VKt > K = Kt+1 < Kt‘ (19)
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For instance, let f(K) = K%, a € (0,1). Then:
K<K*=K=1""=1

Given condition (1.9), any admissible sequence of capital stocks is
bounded by K™ := max{K, K,} and consumption in any period
cannot exceed f(K™*). Figure 1.1 makes that obvious: consider
any point to the left of K such as K; and assume that consumption
equals zero in all periods. Then, the sequence of capital stocks
originating in K, approaches K. Similarly, the sequence starting
in K, approaches K from the right.

A

45°

\ 4

K1 K K>
Figure 1.1: Boundedness of the Capital Stock

1.2.2 Euler Equations

There are two approaches to characterize the solution to the Ram-
sey problem (1.8). The first is an extension of the Kuhn-Tucker
method® and the second is dynamic programming.® According

® See, e.g., CHOW (1997), Chapter 2 and ROMER (1991).
6 Here, the standard reference is Chapter 4 of STOKEY and LUCAS with
PRrREscOTT (1989).
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to the first approach necessary conditions may be derived from
maximizing the following Lagrangean function with respect to

O(),Ol,...,Kl,KQ,...I

L =308 [u(C) + A (fUK) = € = Kopa)

+ 1 Cy + w1 Kiga |

Note that in this expression the Lagrangean multipliers \;, py,
and w1 refer to period t values. Period t = 0 values are given by
BN, B, and F'wyyq. The first-order conditions for maximizing
£ are given by:

u(Cr) = A — pue, (1.10a)
At = B f /(K1) + wiga, (1.10b)
0= NM(f(K) = Cp — K1), (1.10c)
0= 1,C,, (1.10d)
0=wi 1K1 (1.10e)

We continue to assume that the farmer hates starving to death,

lim v/ (C) = 1.11
lim u'(C') = oo, (1.11)
so that the non-negativity constraints never bind. Since u is
strictly increasing in its argument, the resource constraint always
binds. Therefore, we can reduce the first-order conditions to a
second order difference equation in the capital stock:

u'(f(K;) — Kiga)
' (f (K1) — Kig2)

This equation is often referred to as the Euler equation, since
the mathematician Leonhard Euler (1707-1783) first derived it
from a continuous time dynamic optimization problem. To find
the unique optimal time path of capital from the solution to this
functional equation we need two additional conditions. The period
t = 0 stock of capital K provides the first condition. The second

— Bf (K1) = 0. (1.12)
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condition is the so called transversality condition, which is the
limit of the terminal condition Ay K71 = 0 from the finite-horizon
Ramsey problem (1.3). It requires

tllm ﬁtAth_i_l == O, (113)

that is, the present value of the terminal capital stock must ap-
proach zero. In the Ramsey model (1.8), condition (1.13), is a
necessary condition,” as well as conditions (1.10).

1.2.3 Dynamic Programming

We now turn to a recursive formulation of the Ramsey problem.
For this purpose we assume that we already know the solution
(denoted by a star) {K;, K;,...} = {K/}2, so that we are able
to compute the life-time utility from

v(Ko) = u(f(Ko) = K7) + Y Bu(f(K}) = Kiy).

Obviously, the maximum value of life-time utility v(K) depends
upon K, directly — via the first term on the rhs of the previ-
ous equation — and indirectly via the effect of Ky on the opti-
mal sequence {K; }7°,. Before we further develop this approach,
we will adopt the notation that is common in dynamic program-
ming. Since K is an arbitrary initial stock of capital, we drop the
time subscript and use K to designate this variable. Furthermore,
we use a prime for all next-period variables. We are then able to
define the function v recursively via:

v(K):= max u(f(K)— K') + pu(K"). (1.14)

0<K'<f(K)

The first term to the right of the max operator is the utility of
consumption C' = f(K) — K’ as a function of the next-period
capital stock K’. The second term is the discounted optimal value

7 See KAMIHIGASHI (2002).
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of life-time utility, if the sequence of optimal capital stocks starts
in the next period with K’. Suppose we know the function v so
that we can solve the optimization problem on the rhs of equation
(1.14). Obviously, its solution K’ depends upon the given value of
K so that we may write K’ = h(K). The function A is the agent’s
decision rule or policy function. Note that the problem does not
change with the passage of time: when the next period has arrived,
the agent’s initial stock of capital is K = K’ and he has to make
the same decision with respect to the capital stock of period t = 2,
which we denote by K”. In this way he can determine the entire
sequence { K[},

Yet, we may also view equation (1.14) as an implicit defini-
tion of the real-valued function v and the associated function h.
From this perspective, it is a functional equation,® named Bell-
man equation after its discoverer the US mathematician Richard
Bellman (1920-1984). His principle of optimality states that the
solution of problem (1.8) is equivalent to the solution of the Bell-
man equation (1.14). STOKEY and LUCAS with PRESCOTT(1989),
pp. 67-77, establish the conditions for this equivalence to hold. In
this context of dynamic programming v is referred to as the value
function and h as the policy function, decision rule, or feed-back
rule. Both functions are time invariant. The mathematical theory
of dynamic programming deals with the existence, the properties,
and the construction of v and h. Given that both u(C') and f(K)
are strictly increasing, strictly concave and twice continuously dif-
ferentiable functions of their respective arguments C' and K, and
that there exists a maximum sustainable capital stock K as de-
fined in (1.9), one can prove the following results:?

1. The function v exists, is differentiable, strictly increasing, and
strictly concave.

2. The policy function g is increasing and differentiable.

3. The function v is the limit of the following sequence of steps
s=0,1,...:

8 As explained in Section 12.1, a functional equation is an equation whose
unknown is a function and not a point in R™.

9 See, e.g., HARRIS (1987), pp. 34-45 or STOKEY and LUCAS with PRESCOTT
(1989), pp. 103-105.
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v E) = max - u(f(K) — K+ Bo(K),

with 00 = 0.
We illustrate these findings in Example 1.2.1

Example 1.2.1
Let the one-period utility function u and the production function f
be given by

u(C) :=1InC,
fIK):=K* «aec(0,1),
respectively. In Appendix 1 we use iterations over the value function

to demonstrate that the policy function K11 = h(K) that solves the
Ramsey problem (1.8) is given by

Kip1 = afKy.
Furthermore, the value function is linear in In K and given by

v(K)=a+bnK,

af «

1 = .
1—ap nafi, b 1—af

0= ﬁ (1 — af) +

The dynamic programming approach also provides the first-order
conditions (1.12). It requires two steps to arrive at this result.
First, consider the first-order condition for the maximization prob-
lem on the rhs of equation (1.14):

W/(f(K) - K') = Bu/(K"). (1.15)

Comparing this with condition (1.10a) (assuming p; = 0) reveals

that the Lagrange multiplier \; = fv'( K1) is a shadow price for
newly produced capital (or investment expenditures): it equals
the current value of the increase in life-time utility obtained from
an additional unit of capital. Second, let K’ = h(K) denote the
solution of this implicit equation in K’. This allows us to write
the Bellman equation (1.14) as an identity,
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v(K) = u(f(K) = h(K)) + Bu(h(K)),

so that we can differentiate with respect to K on both sides. This
yields

VI(K) = u'(C) (f'(K) = h(K)) + v’ (KW (K),

where C' = f(K) — h(K). Using the first-order condition (1.15)
provides

V(K) =d'(C)f(K). (1.16)

Since K is an arbitrarily given stock of capital, this equation re-
lates the derivative of the value function v/(-) to the derivative
of the one-period utility function u'(-) and the derivative of the
(net) production function f’(-) for any value of K. Thus, letting
C" = f(K')— K" denote next period’s consumption, we may write

V(K = ' (C) f1(K).
Replacing ¢'(K') in (1.15) by the rhs of this equation yields
ul(f(Kl) _ K/l)
u'(f(K) = K')
This equation must hold for any three consecutive stocks of capital
(K, K', K") that establish the optimal sequence {K;}{°, that
solves the Ramsey problem (1.8). Thus, it is identical to the Euler

equation (1.12), except that we used primes instead of the time
indices.

1=p

f'(K").

1.2.4 The Saddle Path

To gain insights into the dynamics of the Ramsey model (1.8) we
use the phase diagram technique to characterize the solution of the
Euler equation (1.12). Substituting the resource constraint C; =
f(K}) — Ky into (1.12) yields a first-order, non-linear system of
difference equations that governs the optimal time path of capital
accumulation:
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Ky = f(K:) — Gy, (1.17a)
_ u,(CtJrl) /
1= ﬂmf (Ki41)- (1.17b)

Together with the initial capital stock K and the transversality
condition (1.13) these equations determine a unique solution. We
use Figure 1.2 to construct it.'°

The thick line in this figure represents the graph of the func-
tion Cy = f(K;) that divides the plane into two regions. All points
(K¢, Cy) on and below this graph meet the non-negativity con-
straint on the future capital stock, K;;; > 0. No time path that
starts in this region can leave it via the abscissa, since for all pairs
(K, Cy) > 0 the solution to equations (1.17) in Cj,q is positive
due to assumption (1.11). We divide the area below the graph of
Cy = f(K;) into four parts, labeled A; through A,.

Consider first the locus of all pairs (K, C;) along which con-
sumption does not change, i.e., C; = C;,1. According to equation
(1.17b) this happens when the capital stock reaches K*, given by

1 / *
51 (K7).
Since to the right (left) of K* the marginal product of capital
is smaller (larger) than 1/, consumption decreases (increases)
within that region. The vertical arrows in Figure 1.2 designate
that behavior.

Consider second the locus of all pairs (K, C;) along which the
capital stock does not change. Assuming K; = K;,; in equation
(1.17a) implies:

Ct - f(Kt) - Kt-

The graph of this function equals the vertical distance between the
function f(K}) and the 45—degree line in Figure 1.1. Thus, it starts

10 The time paths shown in this figure are obtained from a numerical simula-
tion. Since they represent the solution of a system of difference equations
and not of a system of differential equations they are connected line seg-
ments rather than smooth curves.
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Ci

Cy =Cipa

Cy = f(Kt) =4 Kt+1 =0

K1 =K & Cy = f(K:) — Ky

Figure 1.2: Phase Diagram of the Infinite-Horizon Ramsey Model

at the origin, attains a maximum at K,,, defined by 1 = f'(K,,),
and cuts the K-axis at K. Points above (below) that locus have a
higher (smaller) consumption and, thus, the capital stock declines
(increases) in that region, as shown by the horizontal arrows.

The optimal path of capital accumulation is given by the line
segment labeled SS, the so called saddle path. Points on that
locus converge towards the stationary equilibrium at (K*, C*).
All other time paths either violate the non-negativity constraint
on K. in finite time or the transversality condition (1.13). To
derive this assertion, we study the behavior of the dynamic system
(1.17) in the four different regions. Consider a time path starting
in region A;. According to the arrows, it either

moves towards the graph of C; = f(K;),
enters the region Ay,
converges towards the stationary solution (K*, C*),

converges towards K,

AN

or enters the region As,.
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It can be shown (by a straightforward but somewhat tedious ar-
gument) that paths that move towards the graph of C; = f(K3)
hit that line in finite time, and thus, constitute no feasible paths.
Likewise, all paths that originate in the region A4 violate the non-
negativity constraint on K, in finite time since they can only
move towards the border of the feasible region as designated by
the arrows. Time paths that originate in Az either

1. enter the region Ay,
2. converge towards the stationary solution,
3. or enter the region A,.

Consider a path starting in As. We already know that it cannot
cross the abscissa. In addition, it cannot move into A;. To see
this, consider a point Py := (K, Cp) on the border — so that
Co = f(Ky) — Ko — and a point P, := (K1,Cy), K1 < Ky to the
left of Py (see Figure 1.3). The length of the horizontal arrow that
points from P to the right is given by

Ay = (f(Ky) = Cy) — Ky = f(Ky) — f(Ko) + Ko — Ky,

Cy
A

oY

Az

Figure 1.3: No Path Leaves the Region A,
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which is less than the horizontal distance between P, and P,
Ay = Ky — Ky, since f(K;) — f(Ky) < 0. Therefore, each path
in As must converge to K. Consider what happens along this
path. Since As lies to the right of K* the marginal product of
capital along that path decreases from 1/3 at K* to f/(K) < 1/3.
Therefore, there exists a point (Ky, Cp) on that path so that the
growth factor of the marginal utility of consumption implied by
(1.17b) exceeds ¢ > 1/4:

and there is a lower bound on «'(C}) given by
u'(Cy) > ' (C).
This implies

}g& B’ (Cy) Kiq > (Be)'u/ (Co) Ky = o0,

since limy .o Ky = K and lim; .o (B¢)t = oo. Thus, we have
shown that a path converging to K violates the transversality
condition. A similar argument applies to all paths that approach
K from the right.

Summarizing, the only paths left are those that start on the
line S\S and that converge to the stationary solution at the point
(K*,C*). From the point of view of dynamic programming, this
line is the graph of the policy function for consumption implied by
the decision rule for the next-period capital stock via the resource
constraint: Cy = ¢g(K}) = f(K¢) — h(K;). It relates the capital
stock at each date t to the optimal choice of consumption at this
date. Given the initial capital stock K, the optimal strategy is
to choose Cy = g(Kp) and then to iterate either over the Euler
equations (1.17) or, equivalently, over the policy functions h and
qg.

The problem that we have to deal with is how to derive the
function h. Unfortunately, the Ramsey model (1.8) admits an an-
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alytical solution of the policy function only in a few special cases,
which we consider in the next subsection.!

1.2.5 Models with Analytic Solution

Logarithmic Utility and Log-Linear Technology. In Exam-
ple 1.2.1 we assume a logarithmic utility function u(C}) = InC}
and a net production function of the Cobb-Douglas type f(K;) =
Kp. If capital depreciates fully, that is, if 6 = 1, this function
also describes the gross output of the economy. In Appendix 1 we
show that the policy function of the next-period capital stock is
given by

Ky = h(Ky) := afK}. (1.18)

A multi-sector version of this model was used in one of the seminal
articles on real business cycles by LONG and PLOSSER (1983) to
demonstrate that a very standard economic model without money
and other trading frictions is capable to explain many features of
the business cycle. RADNER (1966) is able to dispense with the
assumption of 100% depreciation. He, instead, assumes that each
vintage of capital investment is a separate factor of production
in a log-linear technology. The disadvantage of his model is that
output is zero if gross investment in any prior period is zero.

Figure 1.4 displays the time path of the stock of capital implied
by the solution of Example 1.2.1. We used a = 0.27 and = 0.994
and set the initial capital stock K equal to one tenth of the
stationary capital stock K* = (aB)/(1=%). It takes only a few
periods for Ky to be close to K*.

Logarithmic Utility and Log-Linear Adjustment Costs.
A second class of models with logarithmic utility and log-linear
production function for gross output is provided in an article by
HERCOWITZ and SAMPSON (1991). Instead of full depreciation

1 We do not pretend that the following list completely exhausts the class of
models with exact solution for the policy function.
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Figure 1.4: Convergence of the Stock of Capital in the Infinite-Horizon
Ramsey Model

the authors assume adjustment costs of capital that give rise to the
following transition function for the stock of next-period capital:

Ky = K7°I2, (1.19)

where gross investment [, equals output Y; = K}* minus consump-
tion:

[t:Y;—Ct.

We ask you in Problem 1.2 to show that the policy functions for
the next-period capital stock and for consumption are given by

Kt+1 - kOKtaa
o= (1-1") K7,

where the constant ky is a unique function of the model’s para-
meters «, 3, and 9.
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Iso-Elastic Utility and CES-Technology. BENHABIB and
RUSTICHINI (1994) provide a class of models where the utility
function is not restricted to the logarithmic case but is given by
the iso-elastic function

cl—1

u(Cy) = T

n >0,

which approaches In C; for n — 1. There are two vintages of cap-
ital, i(1; and Ky, respectively, that produce output according to
the constant elasticity of substitution function

1
Y, = [aKllt_e +(1-— a)KQIt_E} 1=,
The two vintages are related to each other via the equation
K2t+1 - 5K1t7

that is, capital lasts for two periods and new vintages depreciate

at the rate 6 € (0,1). The economy’s resource constraint is given
by

Y, =C + Kiqa.

Assuming 1 = ¢, the solution of this model is a constant savings
rate s determined from
1
1—s=[Ba+p*(1—a)' ],
so that the policy function for Ki,,4 is given by

Ky 1 = sY;.

ANTONY and MAUSSNER (2007) argue that this model can be
extended and interpreted as a model with adjustment costs of
capital that give raise to the transition equation

1

K = [aKtlie +(1- @)Itlie} =,

with generalizes equation (1.19) to the case € # 1. The production
function in their model is
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Y, = [BN'" + (1 — b) K} ™= .

N is the given amount of labor used in the production. The savings
rate that solves this model is determined from

oo

L—s=|> (1—=ba(l—a)'p N

Jj=1

The Linear Quadratic Model. In Section 2.2 we consider a
special class of models known as linear quadratic models or opti-
mal linear regulator problems. The Ramsey model that we sketch
here is an example of this class. We assume a quadratic current
period utility function

u(Cy) == u Cy — %C’f, Uy, Uy > 0
and a linear (net) production function
f(Kt) = AKt, A > 0.

With these functions the system of difference equations (1.17)
may be written as:

Kt+1 = AKt — Ct7 (120&)

o U1 1 1
Crri =+ (1 BA> + 546 (1.20D)

We use the method of undetermined coefficients explained in Ap-

pendix 1 to find the policy function. We guess this function for
consumption ¢ is linear:

Ot =+ CgKt.

Substituting this function into (1.20b) provides:
U 1 1
1+ Ky = u—l (1 - —) + (a1 + e Ky),
2

1
c1 + CQ(AKt —C1 — CQKt) = % (1 — —) + —(Cl + CQKt).
2
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The last equation holds for arbitrary values of K; if the constant
terms on both sides sum to zero:

1 1
0:c1<1—c2—B—A)—Z—;(1—B—A), (1.21a)

and if the coefficients of the variable K; sum to zero, too. This
condition provides the solution for cs:

1

CQ:A_B—A’

(1.21b)
which can be used to infer ¢; from equation (1.21a). Inserting the
solution for ¢, in equation (1.20a) delivers the policy function for
capital:

1
Kt+1 = h(Kt) = ﬁ—AKt — C1.
If 1/6 > A, the stock of capital approaches the stationary solution
K=
1 L
BA

from any given initial value Ky, and consumption converges to
*
C = Ul/UQ,

so that the transversality condition (1.13) holds.

1.3 The Stochastic Ramsey Model

1.3.1 Stochastic Output

In the Ramsey problem (1.8) everything is under the farmer’s
control. Yet, this is an overly optimistic picture of farming. Less
rain during the summer causes harvest failure, whereas the right
balance between rainfall and sunshine boosts crop growth. The
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amount of rainfall is outside the control of the farmer and, usu-
ally, he is unable to predict it accurately. The ensuing uncertainty
turns the crop and, hence, consumption into stochastic variables.
As a consequence, we must restate the farmer’s decision problem
in the framework of expected utility maximization. We illustrate
the points that are involved in this task in Example 1.3.1. Since
an in-depth treatment of the analytical framework that underlies
stochastic control is beyond the scope of this book we refer the
interested reader to STOKEY and LUcAs with PRESCOTT (1989).

Example 1.3.1
Assume the farmer’s planing horizon is 1" = 1. His one-period utility
function u(Cy) is strictly increasing in consumption C;. Output in pe-
riod t = 0 is given by f(Kp) and in period ¢t = 1 by Z; f(K1), where
7y = Z with probability 7 and Z; = Z > Z with probability 1 — 7.
f(Ky) is strictly increasing in the capital stock K;. K is given. Since
the farmer does not plan beyond ¢t = 1, we already know that he will
choose C1 = Z; f(K1). Given his investment decision in the current pe-
riod K7 his future consumption is a random variable with realizations
C1(2) = Zf (K1) and C1(Z) = Zf(K1). Hence, the farmer’s expected
life-time utility is

Ep [u(Co) + Su(Ch)] == u(f(Ko) — K1)

+ 8 [mu(Zf (K1) + (1 = mu(Z f(K1))]
where Ey denotes expectations as of period = 0. The farmer chooses
K to maximize this expression. Differentiating with respect to K and
setting to zero the resulting expression yields the following first-order
condition:

W/ (Co) = B [ (ZFK)ZF (K + ! (ZF(KD))Zf (Ky)(1 = )]

=:Eo[u/ (C1)Z1 f' (K1)

This equation is the stochastic analog to the respective Euler equation
in the deterministic case. It states that the utility loss from increased
savings in the current period, u/'(Cp), must be compensated by the
discounted expected future utility increase.

We will consider the following stochastic infinite-horizon Ramsey
model, which is also known as the stochastic growth model:
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E, fu(C,
g |3 00(C)
s.t. (1.22)
Kt+1 + Ct S th(Kt) + (]. - 6)Kt,
O S Oty t:O,l’...,
O S Kt+17
K(), Z() given.

Note that from here on f(K) = F(N, K) for fixed N denotes gross
value added and we consider depreciation explicitly. We need to
do so, since using our specification of the production function
from (1.2), Z,f(K;) would imply stochastic depreciation other-
wise. Problem (1.22) differs from the deterministic model in two
respects: first, output at each period ¢ depends not only on the
amount of capital K; but also on the realization of a stochas-
tic variable Z; capturing weather conditions. We assume that the
farmer knows the amount of rainfall Z; at harvest time, when he
must decide about consumption. Second, and as a consequence of
this assumption, in the current period ¢ = 0 the farmer chooses
only current consumption Cj. In the deterministic case, he gets no
new information when the future unfolds. Therefore, he can safely
determine consumption from the present to the very distant fu-
ture. In technical terms, his decision problem is open-loop control,
as opposed to close-loop control in the stochastic case. Here, as in
Example 1.3.1, future consumption is a stochastic variable from
the perspective of the current period. Thus, the farmer does bet-
ter if he postpones the decision on period ¢ consumption until this
period t. As a consequence of the uncertainty with respect to con-
sumption, the farmer aims at maximizing the expected value of
his life-time utility. More specifically, the notation Ey[-] denotes
expectations with respect to the probability distribution of the
sequence of random variables {C;}$2, conditional on information
available at ¢ = 0. The fact that we use the mathematical expec-
tations operator means that agents use the true — or objective as
opposed to subjective — probability distribution of the variables
they have to forecast. Since the seminal article of MuTH (1961)
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economists use the term 'rational expectations’ to designate this
hypothesis on expectations formation.

The solution of the deterministic, infinite-horizon Ramsey mod-
el in terms of a time-invariant policy function rests on the recur-
sive structure of the problem that in turn is implied by the time-
additive utility function. To preserve this structure in the context
of a stochastic model requires us to restrict the class of probability
distributions to stochastic processes that have the Markov prop-
erty. If you are unfamiliar with Markov processes we recommend
to consult Section 12.2, where we sketch the necessary definitions
and tools. We proceed to derive the first-order conditions that
governs the model’s evolution over time. As in the previous sec-
tion we obtain these conditions via two tracks: the Kuhn-Tucker
approach and stochastic dynamic programming.

1.3.2 Stochastic Fuler Equations

First order conditions for the stochastic Ramsey model (1.22) can
be derived in a manner analogous to the deterministic case. Con-
sider the following Lagrangean function:

Z = Eo{ Z I [U(Ct) + 1:Cy + w1 K
t=0

PN (Zf () + (1 — 8K, — Cy — Ktﬂ)} }

Since the expectations operator is a linear operator we can dif-
ferentiate the expression in curly brackets with respect to Cy and
K (see Example 1.3.1). This delivers

0% p

aC, Eo{u'(Co) = Ao+ po} =0,

0L /

o1 = Bo{=2o+wi + BM(1 =0+ Zuf (K1)} = 0,
1

O = )\o(Zof(Ko) + (1 - (S)KO - CO - Kl),
0 = uoCo,
0= WIKI-
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Since, as in Example 1.3.1, C, K7, and hence the multipliers A,
1o, and wy are non-stochastic, we can replace the first condition
with

U,(Co) = No — Mo
and the second with
)\0 = BEO)\I{l -0 -+ Zlf/(Kl)} + wi.

Now, consider the problem from ¢t = 1 onwards, when Z; is known
and K given. The Lagrangean for this problem is

Z = El{ Z gt [U(Ct) + Gy + w1 Ky
=1

YN (Zf ) + (1= 8K, — Cy — Kt+1)] }

Proceeding as before, we find

u/(cl) = A — K,
M = BEN{l =6+ Zof'(Ka)} + wa.
Continuing in this way, we find, since K; must be optimal at ¢,

that the plan for choosing Cy, C,... and K;, Ks,... must solve
the system:

u'(Cy) = N — g, (1.23a)
A = BE N1 [1 =0+ Zoir f1{(Ki1)] + wigt, (1.23b)
0=MZf(K})+(1—-0)K; — C, — Ky11), (1.23¢)
0= mC,, (1.23d)
0= w1 Kip1. (1.23¢)

Thus, an interior solution with strictly positive consumption and
capital at all dates ¢ (i.e., Vt : uy = wiyr = 0) must satisfy the
stochastic analog to the Euler equation (1.12)

U (Zir [ (K1) + (1 = 0) Ky — Kigo)
W(Zef(Ke) 4+ (1= 0) Ky — Kipa) (1.24)
X (1 =0+ Zia f' (K1)

1 :BEt
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In addition to the stochastic Euler equation (1.24) there is also the
stochastic analog of the transversality condition (1.13), namely

tllm ﬁtEtAth_i_l =0 (125)

that provides a boundary condition for the solution to (1.24).
KAMIHIGASHI (2005) shows that condition (1.25) is a necessary
optimality condition in the following cases:

1. the utility function u(Cy) is bounded,

2. the utility function is logarithmic u(C}) = In C},

3. the utility function is of the form u(Cy) = C} /(1 —1n), n €
[0,00)\{1} and life-time utility at the optimum is finite.

1.3.3 Stochastic Dynamic Programming

As in the deterministic Ramsey model there is a dynamic pro-
gramming approach to characterize solutions of the stochastic
Ramsey model (1.22). The value function v(K, Z) is now defined
as the solution to the following stochastic functional equation:
K, 7) = Zf(K 1-0)K - K’
WK Z) = e o wZHE) 4+ (1=0) )

+BE (K, Z')|Z],

where expectations are conditional on the given realization of Z
and where a prime denotes next period values. In the case of a
Markov chain with realizations [z1, 2, . .., z,] and transition ma-
trix P = (p;;) the expression E [v(K', Z")|Z] is given by

EW(K', Z)z] = piv(K', 2)
j=1

and in the case of the continuous valued Markov process with
conditional probability density function m(z, Z’) over the interval
[a, b] it is

b
E(K, 2)|2] = / oK', Z'Yr (2, 2)dZ.
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It requires some sophisticated mathematics to prove the existence
and to find the properties of the value function and the associ-
ated policy function K’ = h(K, Z). We refer the interested reader
to STOKEY and Lucas with PREscOTT (1989), Chapter 9 and
proceed under the assumption that both the value and the policy
function exist and are sufficiently differentiable with respect to K.
Under this assumption it is easy to use the steps taken on page
15 to show that the dynamic programming approach also delivers
the stochastic Euler equation (1.24). We leave this as an exercise
to the reader (see Problem 1.4).

Example 1.3.2 extends Example 1.2.1 to the stochastic case.
As in this example, there is an analytic solution for the policy
function h.

Example 1.3.2
Let the one-period utility function u and the production function f
be given by

u(C) :==1InC,
f(K): =K% «a€(0,1),
respectively.

In Example 1.2.1 we find that K’ is directly proportional to K¢.
So let us try

Kt+1 = h(Kt, Zt) = AZtha

as policy function with the unknown parameter A. If this function
solves the problem, it must satisfy the stochastic Euler equation (1.24).
To prove this assertion, we replace K1 in equation (1.24) by the rhs
of the previous equation. This gives

(1— A)ZK? af
(1= A)Zi 1 [AZ K2 A

If we put A = af the function h(Z;, K;) = afZ, K} indeed satisfies
the Euler equation, and thus is the policy function we look for.

1= /BEt OéZt+1 [AZtha]ail =

The solution of the deterministic Ramsey model is a time path
for the capital stock. In the stochastic case K’ = h(K, Z) is a ran-
dom variable, since Z is random. The policy function induces a



32 Chapter 1: Basic Models

time-invariant probability distribution over the space of admissi-
ble capital stocks. This distribution is the counterpart to the sta-
tionary capital stock K* in the deterministic Ramsey model (1.8).
We illustrate this point with the aid of Example 1.3.2 for a = 0.27
and 3 = 0.994. We assume that Z; has a uniform distribution over
the interval [0.95,1.05] and employ a random number generator
to obtain independent draws from this distribution. Starting with
K* = (af)/1=% we then iterate over K,,; = afZ,K* to ob-
tain a path with one million observations on K;. We divide the
interval between the smallest and the highest value of K attained
along this path into 100 non-overlapping intervals and count the
number of capital stocks that lie in each interval. Figure 1.5 dis-
plays the result of this exercise. Since it rests on a sample from
the distribution of K it provides an approximate picture of the
density function of the capital stock implied by the model of Ex-
ample 1.3.2. Note that despite the fact that each small subinterval
S C [0.95,1.05] of length [ has the same probability of /0.1, the

1.2 1.4

Frequency in Percent
0.4 0.6 0.8 1.0

0.2

0.0

0.154 0.158 0.162 0.166 0.170 0.174
Capital Stock

Figure 1.5: Stationary Distribution of the Capital Stock in the
Stochastic Infinite-Horizon Ramsey Model
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distribution of the capital stock is not uniform. To understand
this note that for each fixed Z € [0.95, 1.05] the capital stock ap-
proaches K(Z) = (a32)"(=%). Since the mean of the uniform
distribution over [0.95,1.05] is Z = 1, neither very small nor very
high values of K have a high chance to be realized.

1.4 Labor Supply, Growth, and the
Decentralized Economy

1.4.1 Substitution of Leisure

So far we have taken labor supply as exogenous. Yet, it is well
known that there are considerable employment fluctuations over
the business cycles. In the context of our farming example, varia-
tions in labor input may arise from shocks to labor productivity, if
the farmer values both consumption and leisure. To allow for that
case we include leisure in the one-period utility function. Leisure
L is the farmer’s time endowment, which we normalize to 1, minus
his working hours N. Thus we may state the one-period utility
function now as

u(C,1— N). (1.27)

In the following subsection we will ask what kinds of restrictions
we must place on u besides the usual assumptions with respect to
concavity and monotonicity when we deal with a growing econ-
omy. Before we proceed, we consider briefly what we can expect in
general from including leisure into the one-period utility function.

Assume that the farmer observes an increase in today’s mar-
ginal product of labor that he considers short-lived. How will he
react? In the current period the shock increases the farmer’s op-
portunity set, since at any given level of labor input his harvest
will be higher than before the shock. At the same time the shock
changes the relative price of leisure: the farmer loses more output
for each additional unit of leisure he desires. The overall effect of
the shock on the intra-temporal substitution between labor and
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consumption depends upon the relative size of the associated in-
come and substitution effect. If leisure and consumption are nor-
mal goods, the farmer wants both more consumption and more
leisure (income effect). Yet, since leisure is more costly than be-
fore the shock, he also wants to substitute consumption against
leisure (substitution effect).

In the intertemporal setting we are considering here, there is an
additional, inter-temporal substitution effect. The shock raises the
current reward for an additional hour of work vis-a-vis the future
return. Consequently, the farmer will want to work more now and
less in the future. He can achieve this goal by increasing today’s
savings and spending the proceeds in subsequent periods. Thus,
investment serves as vehicle to the intertemporal substitution of
consumption and leisure.

1.4.2 Growth and Restrictions on Technology
and Preferences

Labor Augmenting Technical Progress. When we refer to
economic growth we think of increases in output at given levels of
input brought about by increases in technological knowledge. This
kind of technological progress is called disembodied as opposed to
embodied progress that operates via improvements in the quality
of the factors of production. Disembodied technological progress
simply shifts the production function outward. Equivalently, we
may think of it as if it redoubled the available physical units of
labor and capital. For instance, if N is the amount of physical or
raw labor and A its efficiency level, effective labor is AN. Using
this concept, output is given by

Y = ZiF (AN, BiKy),

where the efficiency factors A; and B; as well as the productivity
shock Z; are exogenously given time series or stochastic processes.
We continue to assume that the production function F' has posi-
tive but diminishing marginal products, that both factors of pro-
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duction are essential, and that F' exhibits constant returns to
scale. Formally:!?

1. F; >0and F;; <0 fori=1,2,
2. F(AN.0) =0 and F(0,BN) =0,
3. \Y = F(AMN, ABK)

In Section 1.2.4 we have seen that the solution to the deter-
ministic, infinite-horizon Ramsey model approaches a stationary
equilibrium. There is an appropriate concept of stationarity in
models of growth, the so-called balanced growth path. Referring
to SoLOwW (1988), p. 4, we define a balanced growth path by two
requirements:

1. output per working hour grows at a constant rate,
2. and the share of net savings in output is constant.

The motivation for this definition has two different sources. Firstly,
from the empirical perspective, the balanced growth path repli-
cates the broad facts about growth of advanced industrial econ-
omies.' Secondly, from the theoretical perspective, the balanced
growth path allows to define variables relative to their trend path
that are stationary like the unscaled variables in no-growth mod-
els. Therefore, the techniques used to study stationary economies
remain valid.

In Appendix 2 we show that for a balanced growth path to
exist technical progress must be of the labor augmenting type, i.e.,
B; = 1Vt. As a consequence, we specify the production function
as

}/;5 — ZtF(AtNt, Kt) (128)

Trend versus Difference Stationary Growth. The specifica-
tion (1.28) leaves two possible modeling choices for the process
governing the evolution of the efficiency factor of raw labor. If we

12 Here, and in the following, for any function F(x1, ..., z,) the expression F;
denotes the first partial derivative of F' with respect to x;, and F;; denotes
the derivative of F;(x1,...,z,) with respect to z;.

13 See, SoLow (1988), p. 3ff.
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consider growth a deterministic process, the efficiency factor A,
grows at a given and constant growth factor a > 1:

At+1 = CLAt. (129)

Variations around the long-run path are induced by the stochas-
tic process {Z;}2,. For this variations to be temporary and not
permanent, the process that governs Z; must be covariance sta-
tionary. This requires

1. that the unconditional mean E(Z;) = Z is independent of time,

2. and that the covariance between Z; and Zy, s, cov(Z, Z.s) =
E|(Zy — Z)(Ziys — Z)], depends upon the time lag s but not
on time ¢ itself.

To find the long-run behavior of output assume that Z; is equal
to its unconditional mean Z = 1. Since F' has constant returns to
scale we may write

Yy = AP (Ny, Ki [ Ay).

Note that according to our utility function (1.27) labor supply N,
is bounded above by 1. Since A; grows at the constant rate a — 1,
output will grow at the same constant rate, if both labor input and
the quantity K;/A; are constant. Therefore, capital must grow at
the same rate as output.

The assumption of deterministic growth has obvious empirical
implications: output is a trend stationary stochastic process, i.e.,
when we subtract a linear trend from log-output, the resulting
time series is a covariance stationary stochastic process.

In an influential paper NELSON and PLOSSER (1982) ques-
tion this implication. They provide evidence that major macro-
economic aggregates are better modeled as difference stationary
stochastic processes. A stochastic process {x; };cz is difference sta-
tionary if the process { (211 — @) hez is a covariance stationary
stochastic process. In the context of our neoclassical production
function we get this result, if we set Z; = 1 and let a difference sta-
tionary Markov process govern the evolution of the efficiency level
of labor. For instance, we may assume A; to follow the process
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Apyy = A ¢~ N(0,0%),a > 0. (1.30)

Under this process the growth factor of the efficiency level of labor,
Ay1/A; fluctuates around its long-run mean of e® and the first
difference of log-output, InY;; — InY;, is covariance stationary.
To see this, use

Yy = AP (Ny, K/ Ay)

and set F(-) equal to its long-run value F' := F(N, K/A). Using
(1.30), we get

InY, .1 —InY,=lnA; —InA;, =a+¢,

which is a white noise process.

Restrictions on Preferences. The restriction to labor aug-
menting technical progress is not sufficient to guarantee the exis-
tence of a balanced growth path when labor supply is endogenous.
To see this, we restrict attention to the deterministic case and put
Z =11in (1.28). Using the one-period utility function (1.27), the
farmer’s maximization problem is

max Z Bu(Cy, 1 — Ny)
=0

{Ct,Ne}2,
s.t. (1.31)
K +C < F(AN, K+ (1—90)K;,
<
(1) g %’ZO, t=0,1,...,
0 < Ky,
Ky given.

Since we are interested in a long-run solution with positive con-
sumption and leisure, we will ignore the non-negativity restric-
tions and the upper bound on labor in setting up the respective
Lagrangean:

XZENﬂM@y4w+mwmwﬂm
t=0

+(1— 0K, —C, — Kt+1)].
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Differentiating this expression with respect to Cy, N;, and K4
provides the following set of first-order conditions:

0= ul(Ct, 1-— Nt) — At, (132&)
0= —UQ(Ot, 1— Nt) -+ AtFl(AtNt7 Kt)At7 (132b)
0= _At + /BAtJrl(l —0 + FQ(At+1Nt+1, KtJrl)). (132(3)

Conditions (1.32a) and (1.32b) imply that the marginal rate of
substitution between consumption and leisure, wus/uq, equals the
marginal product of labor:

U/Q(Ct, 1-— Nt)

——= = A Fi1 (AN, K. 1.
w(Crl—N,) FL (AN, Ky) (1.33)
Conditions (1.32a) and (1.32c) yield

ul(Ct, 1-— Nt)
Ul(CtH, 1- Nt+1)

- ﬂ(l - (5 + F2(At+1Nt+1’ KtJrl)). (134)

Consider the rhs of this equation. Since F'is homogenous of degree
one, F, is homogenous of degree zero, i.e.,

F2(At+1Nt+1: Kt+1) = FQ(NtJrl: Kt+1/At+1)-

We have already seen that on a balanced growth path both N; 4
and K;,1/A;;1 are constants. Thus, in the long run, the rhs of
equation (1.34) is constant and the lhs must be, too. Now consider
the resource constraint

Kt+1 = }/; - Ot + (1 - 6)Kt

If capital and output grow at the common rate a— 1, consumption
must grow at the same rate, since otherwise the growth factor of
capital gx,

. Ky . Y; C;

- L
I =T K, Kt+( )

is not constant. If consumption grows at the rate a — 1 the mar-
ginal utility of consumption must fall at a constant rate. As we
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show in Appendix 2 this restricts the one-period utility function
u to the class of constant-elasticity functions with respect to con-
sumption. Further restrictions derive from condition (1.33). Since
the marginal product of labor increases in the long run at the
rate a — 1 there must be exactly off-setting income and substi-
tution effects with respect to the static labor supply decision. As
we demonstrate in Appendix 2 we must restrict the one-period
utility function (1.27) to

Cly(1 — N)ifn # 1,
U(O’l_N):{lnC+vEl—N;ifzi1. (1.35)
The function v must be chosen so that u(C,1 — N) is concave.
Remember, that a function is concave, if and only if u; < 0 and
(ui1tgy — udy) > 0, and that it is strictly concave, if uy;; < 0
and (uyjug — u?y) > 0.1, For example, in the parameterization
of u that we use in Example 1.5.1 below, the restriction of n to
n > 60/(1+ 0) implies that u is strictly concave.

Transformation to Stationary Variables. Given the restric-
tions on technology and preferences it is always possible to choose
new variables that are constant in the long run. As an example,
consider the deterministic Ramsey model (1.31). Assume 7 # 1
in (1.35) and deterministic growth of the efficiency level of labor
according to (1.29). The static labor supply condition (1.33) can
then be written as

V(1-N) Gy
(I —=n)v(l — N,) Ay

= F1(Ny, Ky JAy) (1.36)

and the intertemporal condition (1.34) is:

CiM(l =N, (ad)"Cr(1 — Ny)
Crio(l = Nivt) AL CHv(l = New)
a’(Cy/Ar) "v(1 — Ny) (1.37)
 (Crpa/Ap1)70(1 — Niga)
= B(1 =6 + Fo(Nip1, Kis1 /A1)

14 See, e.g., TAKAYAMA (1985), Theorem 1.E.13.
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Since F' is homogenous of degree one, we can transform the re-
source constraint to
Kipn
A /a
Equations (1.36) through (1.38) constitute a dynamic system in
the new variables Ny, ¢; := Cy/A;, and k; = K;/A;. Their station-

ary values IV, ¢ and k are found as solution to the system of three
equations

_ (=nu(d - N)
C = ’U’(l—N) Fl(N7k)7
1=p6a"(1—0+ Fy(N,k)),

0=F(N,k)—(1—=656—a)k—c

F(N, K JA) + (1= 0)(Ky/A) — (Ci/A).  (138)

Note, that we can derive the efficiency conditions (1.36) through
(1.38) from solving the problem

o0

max 3tel=my(1 — N,

{ct,Ne}52, ;B t ( t)

s.t.
Ct S F(Nt, kt) + (1 - (5)l€t — a/ktJrl’
ko given,

with discount factor 3 := Ba'™" in the stationary decision vari-
ables [ Ot/At and kt-ﬁ-l = Kt+1/At+1'

1.4.3 The Decentralized Economy

So far we have considered a single agent for ease of exposition.
For each of the Ramsey models considered above, it is, however,
straightforward to develop a model of a decentralized economy
whose equilibrium allocation coincides with the equilibrium allo-
cation of the respective Ramsey model. Since the latter is a utility
maximizing allocation, the decentralized equilibrium is optimal in
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the sense of Pareto efficiency. In the static theory of general equi-
librium with a finite-dimensional commodity space the correspon-
dence between a competitive equilibrium and a Pareto efficient al-
location of resources is stated in the Two Fundamental Theorems
of Welfare Economics.!® The infinite-horizon Ramsey model has
infinitely many commodities. Nevertheless, as shown by DEBREU
(1954), it is possible to extend the correspondence between com-
petitive equilibrium and Pareto efficiency to infinite-dimensional
commodity spaces.

We illustrate the relation between efficiency and intertemporal
equilibrium by means of a simple example.

Firms. The production side of the economy consists of a large
number of identical firms ¢ = 1,2,...,n. Each firm uses labor
N; and capital K; to produce a single output Y;. The production
function ZF(AN;, K;) has the usual properties, in particular, it
is homogenous of degree one (see page 35). Each firm hires labor
and capital services on the respective markets. Let w and r denote
the rental rates of labor and capital, respectively, in units of the
final good. Since there is no link between successive periods, max-
imization of the firm’s present value is equivalent to maximizing
one-period profits

The first-order conditions imply

r = ZFQ(ANZ, Kz) = ZFQ(A, KZ/NZ),

due to the homogeneity of degree zero of F;. Since all firms face
the same factor prices, they choose the same capital-labor ratio
k := K;/N; from the solution to the above equations. Therefore,
output per unit of labor y; = Y;/N; = ZF (A, K;/N;) is the same
for all firms: y; = y = ZF (A, k). These results imply the existence
of an aggregate production function

15 For a statement, see, e.g., MAS-COLELL, WHINSTON and GREEN (1995)
pp. 545ff or STARR (1997), pp. 144ff.
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Y =) Y;=> Ny=Ny=NZF(A k)= ZF(AN,K),

where N = Y . N; and K = ), K;. In terms of this function,
equilibrium on the markets for labor and capital services is given
by

w = ZAF,(AN, K),

1.39
r = ZFy(AN, K), (139)

and the profits of all firms are zero:'

= ZF(AN;, K;) ~ZAF\N; — ZI,K; = 0.

%
J

~~
—ZF(AN;,K;)

Households. Our example economy is populated by a continuum
of households of mass 1, i.e., each individual household is assigned
a unique real number h from the interval [0,1]. All households
have the same one-period utility function and the same time ¢ = 0
capital stock. When they face a given path of output and factor
prices they choose identical sequences of consumption and labor
supply. Let z(h) denote an arbitrary decision variable of household
h € [0, 1] and put

z(h) = zVh € [0,1].

Since

1 1
f:/ x(h)dh:/ zdh
0 0

aggregate and individual variables are identical. As a consequence,
we can consider a representative member from [0, 1] without ex-
plicit reference to his index h.

This representative household supplies labor services N; with
efficiency factor A; and capital services K; at the given real wage

16 This is just Euler’s theorem. For a general statement of this theorem, see,
e.g., SYDSETER, STROM and BERCK (1999), p.28.
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w; and rental rate of capital r;, respectively. He saves in terms of
capital which depreciates at the rate § € (0, 1]. Thus, his budget
constraint reads:!”

Kt+1 — Kt S tht + (Tt - 6)Kt — Ot‘ (140)

The household seeks time paths of consumption and labor supply
that maximize its life-time utility

> Bu(C 1= Ny, Be(0,1), (1.41)
t=0

subject to (1.40) and the given initial stock of capital Kj. From
the Lagrangean of this problem,

g = Z Bt [U(Ct, 1 — Nt) + At(tht + (1 — 6 + frt)Kt
t=0

Gy~ K]
we derive the following first-order conditions:
ur(C, 1 — Ny) = Ay, (1.42a)
ug(Cy, 1 — Ny) = Ay, (1.42b)
Ay = BN (1 =6+ 7ri4q). (1.42¢)

Using the factor market equilibrium conditions (1.39) to substi-
tute for w; and r;,; and applying the Euler theorem to F,

Yy = ZF(ANy, Ki) = ZAF (AcNg, K Ny + ZF (AN, Ko Ky

equations (1.42) reduce to

UQ(Ct,l—Nt)

W22 2 T g A R (AN, K), 1.43a

Ul(Ct,l—Nt) t 1( e t) ( )
ul(Ct,l—Nt)

= 0(1 =6+ ZF5(At41Ney1, K1),

(1.43b)
Kt+1 = ZF(AtNt, Kt) + (1 — 6)Kt — Ct' (143C)

Ul(CtH, 11— Nt+1)

17 Here we use the fact that firms’ profits are zero. In general, we must include
the profits that firms distribute to their shareholders.
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This system is identical to the first-order conditions that we de-
rived for the Ramsey model (1.31) in equations (1.33) and (1.34)
with the resource constraint being equal to (1.43c). Thus, the
equilibrium time path of the decentralized economy is optimal
in the sense that it maximizes the utility of all households given
the resource constraint of the economy. On the other hand, a
benevolent planer who solved the Ramsey problem (1.31) could
implement this solution in terms of a competitive equilibrium. He
simply has to choose time paths of wages and rental rates equal
to the equilibrium sequences of the respective marginal products.

1.5 Model Calibration and Evaluation

The task of numerical DGE analysis is to obtain an approximate
solution of the model at hand and to use this solution to study
the model’s properties. Before this can be done, specific values
must be assigned to the model’s parameters. In this section we
illustrate both the calibration and the evaluation step with the
aid of an example that we introduce in the next subsection.

1.5.1 The Benchmark Model

Example 1.5.1 presents our benchmark model. More or less similar
models appear amongst others in the papers by HANSEN (1985),
by KING, PLOSSER, and REBELO (1988a), and by PLOSSER
(1989). It is a stripped down version of the celebrated model of
KYDLAND and PRESCOTT (1982), who were awarded the Nobel
Price in economics 2004 for their contribution to the theory of
business cycles and economic policy. The model provides an inte-
grated framework for studying economic fluctuations in a growing
economy. Since it depicts an economy without money it belongs
to the class of real business cycle models. The economy is inhab-
ited by a representative consumer-producer who derives utility
from consumption C; and leisure 1 — N; and uses labor N, and
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capital services K; to produce output Y;. Labor augmenting tech-
nical progress at the deterministic rate a > 1 accounts for out-
put growth. Stationary shocks to total factor productivity Z; in-
duce deviations from the balanced growth path of output. Similar
models have been used to demonstrate that elementary economic
principles may account for a substantial part of observed economic
fluctuations. In the following chapters we will apply various meth-
ods to solve this model. It thus serves as a point of reference to
compare the performance of different algorithms.

Example 1.5.1
Consider the following stochastic Ramsey model. The representative
agent solves:

0 1-n 1—N 0(1—n)
max Fq ZﬁtCt ( 1 0
=0 -

CO7NO

s.t.
K1+ C < Zy(AN)'TK2 + (1 - 0)Ky, a € (0,1),
At+1 = CLAt, a>1,
InZiy1 = olnZi+eq1, 0 (0,1), ¢ ~ N(0,02), Vt,
0 < G
0 < Ky,
Ky, Zy given.

First-Order Conditions. From the Lagrangean

> 1=n(1 — N,)?0-n)
2=EB{ > p [q ”(11 _Jzt) !
t=0

+ A (Zi(AN) K + (1= 6)K; — Cy — Koy } }

we derive the following first-order conditions:
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0=C; "1 — NP — A,

0=0C"(1 = N1 _A(1 — ) Z,A(AN,) K2,
0=Ki1 — (1+6)K, +Cp — Z(AN,) K?,

0=2A;— BEA 1 (1 =0+ aZp1 (A Ny ) K7

In terms of stationary variables A, := AJA;, ¢, := Cy/A;, and
ki := K/ A, this system is:

0=rc,"(1—N,)0=m )\, (1.45a)
0=0c, (1= NI — (1 — @)\ Z,N; k2, (1.45b)
0=akey — (1—0)k +co — Z; N} Ok?, (1.45¢)
0=XN—Ba "EX (1 -6+ aZi Nk - (1.45d)

Stationary Solution. From these equations we can obtain the
balanced growth path of the deterministic counterpart of the
model. For that purpose we assume that the productivity shock is
equal to its unconditional mean Z = 1 for all periods. This allows
us to drop the expectation operator E; from equation (1.45d).
Since N; and all scaled variables are constant in the long-run, we
find the stationary solution if we neglect the time indices of all
variables. This delivers:!

N _l—olefaka_l—ozy

1-N 4 c 0 (1.462)
1=8a""1-0+aN"k) (1.46b)
= Ba”"(1 =6+ aly/k)),
y N7k ¢
A = — —1). 1.4
’ - - +(a+6—1) (1.46¢)

1.5.2 Calibration

Definitions. In this book we use the term calibration for the
process by which researchers choose the parameters of their DGE
models from various sources. The most common ways are:

18 Equation (1.46a) derives from equation (1.45b) after substitution for A
from equation (1.45a).
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1. the use of time series averages of the levels or ratios of economic
variables,

2. the estimation of single equations,

3. reference to econometric studies based on either macroeco-
nomic or microeconomic data,

4. gauging the parameters so that the model replicates certain
empirical facts as second moments of the data or impulse re-
sponses from structural vector autoregressions.

Very good descriptions of this process are given by COOLEY and
PreEscoTT (1995) and by GOMME and RUPERT (2007). Other
authors, for instance CANOVA (2007), p. 249 and DEJONG with
DAVE (2007), p. 248ff., use the term calibration in the sense of an
empirical methodology that involves the following steps:

1. select an economic question,

2. decide about a DGE model to address this question,

3. choose the functional forms and the parameters of this model,
4. solve the model and evaluate its quality,

5. propose an answer.

In this sense, calibration is an empirical research program dis-
tinct from classical econometrics. An econometric model is a fully
specified probabilistic description of the process that may have
generated the data to be analyzed. The econometric toolkit is
employed to estimated this model, to draw inferences about its
validity, to provide forecasts and to evaluate certain economic
policy measures.

The distinction between calibration and classical econometrics
is most easily demonstrated with the aid of Example 1.3.2. The
policy function for the next-period capital stock is

Kt+1 = C(ﬂZtha (147)

From this equation we can derive an econometric, single-equation
model once we specify the stochastic properties of the productivity
shock Z;. Since, empirically, the stock of capital is a time series
with clear upward trend, we could assume that In Z; is a difference
stationary stochastic process with positiv drift a, that is
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InZ;y1 —InZ;, = a+ ¢,

where ¢, is a serially uncorrelated process with mean E(e;) = 0
and variance F(e?) = 2. Then, equation (1.47) implies

K —InKy=a+a(lnK; —InKy ) + .

This is a first-order autoregressive process in the variable x; :=
In K; — In K;_;. The method of ordinary least squares provides
consistent estimates of the parameters a, o, and o?. It should
come as no surprise that the data will usually reject this model.
For instance, using quarterly data for the German capital stock
we get an estimate of a of about 0.89 and of a = 0.00058. Yet,
if capital is rewarded its marginal product, « should be equal
to the capital share of income which is about 0.27 (see below).
Furthermore, a should be equal to the quarterly growth rate of
output, which — between 1974 and 1989 — was about ten times
larger than our estimate from this equation. In addition, standard
test for homoscedastic and autocorrelation free error terms reject
both assumptions, which is an additional sign of a misspecified
model. The view that DGE models are too simple to provide a
framework for econometric research does not mean that they are
useless. In the words of EDWARD PREscOTT (1986), p. 10:

The models constructed within this theoretical framework are

necessarily highly abstract. Consequently, they are necessarily

false, and statistical hypothesis testing will reject them. This

does not imply, however, that nothing can be learned from such
quantitative theoretical exercises.

We have already demonstrated how we can use the model of Ex-
ample 1.3.2 for 'quantitative theoretical exercises’ in Section 1.2.5
where we constructed the distribution of the capital stock implied
by the model. For this exercise we set o = 0.27 and g = 0.994.
We will explain in a moment on which considerations this choice
rests. At this point it should suffice to recognize that these values
are not derived from the estimated policy function for capital but
rely on time series averages.

Calibration — in the sense of empirically grounded theoretical
exercises — is the main use of DGE models. However, there is also
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a substantial body of more recent work, that employs econometric
techniques — such as moment and Likelihood based methods — to
estimate DGE models. Since our focus is on numerical solutions,
we refer the interested reader to the books by DE JONG with
DAVE (2007) and CANOVA (2007) that cover the application of
econometric techniques to the estimation of DGE models.

Parameter Choice for the Benchmark Model. We start
with the assumption that the real economic data were produced
by the model of Example 1.3.2. To account for the representative
agent nature of the model it is common to scale the data by the
size of the population if appropriate. Since the model from Exam-
ple 1.5.1 displays fluctuations around a stationary state, a valid
procedure to select the model’s key parameters is to use long-run
time series averages.

We use seasonally adjusted quarterly economic data for the
West German economy over the period 1975.i through 1989.iv.1?
We limit our attention to this time period for two reasons. Firstly,
between 1960.i and 1975.i the West German average propensity to
consume, ¢/y, has a clear upward trend. Had the German economy
been on a balanced growth path this relation had been constant.
Yet, the calibration step requires the steady state assumption to
be approximately true. Secondly, the German unification in the
fall of 1990 is certainly a structural break that violates the steady
state assumption for the period after 1989.

In the stationary equilibrium of our model, output per house-
hold grows at the rate of labor augmenting technical progress a—1.
Thus, we can infer a from fitting a linear time trend to gross do-
mestic product at factor prices per capita. This gives a = 1.005,
implying a quarterly growth rate of 0.5 percent. The second pa-
rameter of the production technology, «, equals the average wage
share in gross domestic product at factor prices. The national
accounts present no data on the wage income of self-employed
persons. Yet, from the viewpoint of economic theory, this group
of households also receives wage income as well as capital income.

19 Usually, the U.S. economy is taken for this purpose. But since this economy
has been the focus of numerous real business cycle models we think it is
interesting to use an economy that differs in a number of aspects.
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To account for that fact we assume that the self-employed earn
wages equal to the average wage of employees. Therefore, we get a
higher wage share of 1 — a = 0.73 than the commonly used num-
ber of 0.64. The third parameter that describes the economy’s
production technology is the rate of depreciation d. We compute
this rate as the average ratio of quarterly real depreciation to the
quarterly capital stock.?’ As compared to the number of 0.025
commonly used for the U.S. economy?! our figure of § = 0.011
is much smaller. With these parameters at hand we can infer the
productivity shock Z; from the production function using the time
series on the gross domestic product at factor prices Y;, on hours
H,; and on the stock of capital K;:

Y,

Z, = .
" ((1.005) H, )-8 K027

Since our specification of the Markov process for Z; implies
InZ;, =o0lnZ;_1 + €,

where In Z; ~ (Z; — Z)/Z, we fit an AR(1)-process to the percent-
age deviation of Z; from its mean. This delivers our estimates of
0= 0.90 and of ¢ = 0.0072.

It is not possible to determine all of the parameters that de-
scribe the preferences of the representative household from aggre-
gate time series alone. The critical parameter in this respect is
the elasticity of the marginal utility of consumption —n. Micro-
economic studies provide evidence that this elasticity varies both
with observable demographic characteristics and with the level of
wealth. BROWNING, HANSEN, and HECKMAN (1999) argue that
if constancy of this parameter across the population is imposed
there is no strong evidence against 7 being slightly above one. We
use 17 = 2 which implies that the household desires a smoother

20 For this purpose we construct a quarterly series of the capital stock from
yearly data on the stock of capital and quarterly data on investment and
depreciation using the perpetual inventory method. The details of this
approach can be found in the Gauss program GetParl.g.

21 See, e.g., KING, PLOSSER, and REBELO (1988a), p. 214 and PLOSSER
(1989), p. 75.
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consumption profile than in the case of n = 1, i.e., the case of
logarithmic preferences, which has been used in many studies.
The reason for this choice is that a larger n reduces the variabil-
ity of output, working hours, and investment, and, thus, provides
a better match between the model and the respective German
macroeconomic variables.

Once the choice of 77 is made there are several possibilities to
select the value of the discount factor 3. The first alternative uses
the observed average (quarterly) capital-output ratio k/y to solve
for 3 from equation (1.46b). In our case this violates the restriction
B < 1. KING, PLOSSER, and REBELO (1988a), p. 207, equate the
average rate of return on equity to a(y/k) — d in (1.46b) and
solve for Ba™". Other studies, e.g., LUCKE (1998), p. 102, take
the ex post real interest rate on short term bonds as estimators
of a(y/k) — ¢ in equation (1.46b). The average yearly return on
the West German stock index DAX was about 8.5 percent, on the
FAZ index 11.5 percent, and the ex post real interest rate on three
month money market bonds about 2.7 percent. Given a and 7, we
use 5 = 0.994, which implies a yearly return of slightly above 6.5
percent. The final choice concerns the preference parameter 6. We
use condition (1.46a) and choose € so that N = 0.13, which is the
average quarterly fraction of 1440 (=16 x 90) hours spend on work
by the typical German employee. Note that many other studies
put N = 1/3 arguing that individuals devote about 8 hours a day
to market activities.?? However, we consider the typical individual
to be an average over the total population, including children and
retired persons. Therefore, we find a much smaller fraction of a
sixteen hours day engaged in income earning activities. Table 1.1
summarizes our choice of parameters.

1.5.3 Model Evaluation

We have already noted above that while formal econometric tests
of DGE models are available, they are not the typical way to

22 Qee, e.g., HANSEN (1985), p. 319f.
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Table 1.1

Preferences Production

£=0.994 a=1.006  «a=0.27
n=2.0 0=0.011 0=0.90
N=0.13 0=0.0072

evaluate these models.? Instead, it is common to compute impulse
responses and second moments from these models and to compare
these with the respective empirical counterparts.

Impulse Responses. Impulse responses are the deviations of the
model’s variables from their stationary solution that occur after
a one-time shock that hits the economy. Figure 1.6 displays the
response of several variables, measured in percentage deviations
from their stationary values. They are computed from the Gauss
program Benchmark_LL.g.

The time path of productivity is displayed in the upper left
panel. It is given by

In Zt+1 = QlIl Zt + €tt1-

In period t = 1 the economy is in its stationary equilibrium. In
period t = 2 total factor productivity increases. We set ¢, equal to
one standard deviation for ¢t = 1 and to zero thereafter. Since In Z;
is highly autocorrelated (0 = 0.9), Z; remains above Z = 1 for
many periods. The above average productivity raises the real wage
and the representative household substitutes leisure for consump-
tion so that working hours increase (see the upper right panel of
Figure 1.6). Both, the increased productivity and the additional
supply of labor boost output. Investment expenditures show by
far the strongest reaction. To see this, note that the ordinate of all
four panels of Figure 1.6 has the same scale. To understand the re-
action of investment note first that the household wants to spread

23 Estimation of DGE models is explained, among others, in the books by
CANOVA (2007), DE JoNG with DAVE (2007) and LUCKE (1998).
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Figure 1.6: Impulse Responses in the Benchmark Model

the extra income earned in period ¢ = 1 in order to smooth con-
sumption. Second, the household anticipates higher real interest
rates in the future since the productivity increase also raises the
future marginal product of capital providing an additional incen-
tive to invest. Since investment expenditures are a small part of
the existing capital stock (I /K = ¢ in the steady state), we only
observe a modest, hump-shaped increase of capital in panel four.
However, the above average supply of capital explains why real
wages remain high even after the productivity shock has almost
faded.

Figure 1.7 displays impulse responses from a vector autoregres-
sive (VAR) model estimated from the same quarterly data that
we used to calibrate the parameters of our benchmark model. To
maximize the degrees of freedom, we used the sample period from
1960.i through 1989.iv for which consistent data are available.
The variables of the model are (in this order) real gross domestic
product at factor prices per capita y, real private consumption per
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Figure 1.7: Impulse Responses from an Estimated VAR

capita ¢, real investment expenditures per capita ¢, and working
hours per capita n. The VAR was estimated with two lags as indi-
cated by the Schwarz information criterion. We used HP-filtered
variables to remove the apparent trend in the data. Identification
of the productivity shock was achieved by placing y at the top
and by using the Cholesky factorization of the covariance matrix
of the estimated residuals to obtain orthogonal shocks. 95-percent
confidence bounds (the broken lines in Figure 1.7) were obtained
from a bootstrap procedure.?*

Similar to our theoretical model investment expenditures dis-
play the largest amplitude. According to our model the relation

24 Readers that are unfamiliar with structural vector autoregressive mod-
els may want to consult, for instance, AMISANO and GIANNINI (1997),
CANOVA (2007), Chapter 4, FAVERO (2001), Chapter 6 or HAMILTON
(1994), Chapters 10 and 11. The Gauss program SVar.g and the data
set used for this estimation can be downloaded from the web side of this
book.
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between the maximum increase of investment and the maximum
increase of output is about five. In the estimated impulse re-
sponses of Figure 1.7, however, this relation is just about two.
There is another striking difference between the model and the
data. In the model, the maximum increase of all variables occurs
in the period of the shock. In the data, the maximum increase of
output, investment, and working hours takes place in the period
after the shock hit the economy. The failure of the benchmark
model to replicate this hump-shaped pattern has been a concern
among researchers since it was pointed out first by COGLEY and
NASON (1995).

Second Moments. A second typical tool to evaluate small scale
DGE models is to compare the second moments of the time series
obtained from simulations of the model to those of the respec-
tive macroeconomic aggregates. Most of these aggregates have an
upward trend that must be removed to render the time series sta-
tionary. Most applications subject the logs of these aggregates to
the Hodrick-Prescott or — for short — HP-filter that we describe in
more detail in Section 12.4. The cyclical component of a time se-
ries that the filter returns is then the percentage deviation of the
original series from its HP-trend component. The solution of our
model consists of time paths of stationary variables x; := X;/A;,
where X; denotes the level of the respective variable. Therefore,
given our specification of the evolution of labor augmenting tech-
nical progress,

A1 =aAy & A= Ayd,
we can recover the time paths of the logs of the levels from
InX;=Inz; +InA; =Inx; +In Ay + at.

To get comparable results, we must apply the HP-filter to In X,.
Yet, we can bypass the computation of In X, since, as we demon-
strate in 12.4, the cyclical component of In z; is equal to the cycli-
cal component of In X;.

Table 1.2 displays the results from solving and simulating the
model from Example 1.5.1 using the most widely employed log-
linear solution method that we describe in Chapter 2. The second
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moments from the model are averages over 500 simulations. The
length of the simulated time series is equal to the number of quar-
terly observations from 1975.i through 1989.iv. At the beginning
of the first quarter our model economy is on its balanced growth
path. In this and in the following 59 quarters it is hit by produc-
tivity shocks that drive the business cycle.

Consider the match between the data and the model’s time
series. The numbers in Table 1.2 reveal well known results. The
model is able to reproduce the fact that investment is more volatile
than output and consumption, but it exaggerates this stylized fact
of the business cycle. Consumption is too smooth as compared
to its empirical counterpart. The autocorrelations, however, are
quite in line with the data. The cross correlations between output
and the other variables are almost perfect in the model, quite in
contrast to the cross-correlations found in the data.

The quite obvious mismatch between the data and the artifi-
cial time series can be traced to two different sources. First, we
have not attempted to construct aggregates from the national in-
come and product accounts (NIPA) that are consistent with the

Table 1.2
Variable Sz Tzy T
Output 1.44 1.00 0.64
(1.14) (1.00) (0.80)
Investment 6.11 1.00 0.64
(2.59) (0.75) (0.79)
Consumption 0.56 0.99 0.66
(1.18) (0.79) (0.84)
Hours 0.77 1.00 0.64
(0.78) (0.40) (0.31)
Real Wage 0.67 0.99 0.65
(1.17) (0.41) (0.91)

Notes: Empirical values from HP-filtered German data in
parenthesis. sz:=standard deviation of HP-filtered simulated
series of variable x, rzy:=cross correlation of variable x with
output, rz:=first order autocorrelation of variable x.
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definition of output, capital, and labor in our model. Second, the
benchmark model may be too simple to give an adequate account
of the empirical facts.

CooLEY and PrREscOTT (1995) and GOMME and RUPERT
(2007) present nice accounts of consistent measurement. Let us
just consider two examples. The first one relates to consumption,
the second to the capital stock.

In our model consumption is the flow of non-durables, whereas
the German NIPA only report the sum of the quarterly expendi-
tures on consumer durables and non-durables. From the viewpoint
of our model, consumer durables are capital goods, and their pur-
chases represent investment expenditures. Since the model pre-
dicts the latter to be more volatile than consumption, it should
come as no surprise that the consumer aggregate taken from
the NIPA is more volatile than the consumption series from our
model. As a second example take the capital stock. Since our
model gives no explicit account of the government sector our
measure of the capital stock includes the public stock of capi-
tal. Yet, the NIPA provide no data on depreciation for the public
infrastructure. As a consequence, our measure of the rate of cap-
ital depreciation is biased downwards. Yet, with lower user costs
of capital, the household’s incentive for intertemporal substitution
increases and investment becomes more volatile. For instance, if
we increase ¢ from 0.011 to 0.025, the ratio between the standard
deviations of investment and output declines from about 4.3 to
3.5, which is much closer to the empirical ratio of 2.3.

To understand in what respects our benchmark model may be
too simple, consider the household’s first-order conditions with re-
spect to consumption and labor supply given in equation (1.45a),
which may also be written as:

wy = (1 — ) ZN; kY,

we = 0N = N
The first line posits that the real wage per efficiency unit of la-
bor w; equals the marginal product of effective labor N;. For a
given capital stock k; this relation defines a downward sloping la-
bor demand schedule (see Figure 1.8). The second line defines an
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Figure 1.8: Productivity Shock in the Benchmark Business Cycle
Model

upward sloping labor supply schedule for a fixed multiplier \;.?°
A productivity shock raising Z from Z; to Z5 shifts the labor de-
mand schedule outward. Equilibrium in the labor market requires
higher wages, and, as a result, the representative household sup-
plies more hours. Thus, the immediate impact of the shock is to
raise the real wage, hours, and output. Since current consump-
tion is a normal good, it increases as a consequence of the higher
current income. Investment increases for several reasons: Firstly,
future consumption as well as future leisure are normal goods.
Thus, the household wants to spend part of his higher current
income on future consumption and future leisure. He builds up
his stock of capital over the next periods so that future produc-
tion is potentially higher. Secondly, since the productivity shock
is highly autocorrelated, the household expects above normal re-
turns to capital. Thus, all variables in the model move closely

25 Note, that we restricted n to > 6/(1 + 6) so that the one-period utility
function is strictly concave.
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together with income which, in turn, is driven by a single shock.
In reality, however, there may be additional shocks. For instance,
think of a preference shock that shifts the labor supply curve to
the left. That shock increases the real wage and reduces employ-
ment and output. As a consequence, the tight positive correlation
between output, hours, and the real wage loosens.

In subsequent chapters you will see how these and other exten-
sions help to bring artificial and empirical data closer together.
Before we close this chapter we present an overview of the so-
lution techniques to be introduced in the following chapters and
relate them to the different characterizations of a model’s solution
presented in the preceding sections.

1.6 Numerical Solution Methods

We have seen in Sections 1.2.4 and 1.3.3 that only very special
DGE models admit an exact solution. Thus, usually we must re-
sort to numerical methods that provide approximate solutions.
What are the general ideas behind these solutions and how are
we able to determine how close they are to the true but unknown
solution? The next two subsections deal with these issues.

1.6.1 Characterization

We characterize solutions along two dimensions (see Table 1.3).
First, we distinguish between techniques that provide approxi-
mate solutions to the model’s Euler equations and methods that
deliver approximations to the model’s policy functions. Second,
we discern local from global methods. Local methods use informa-
tion about the true model at a certain point in the model’s state
space. One such point, for instance, is the stationary equilibrium.
Global methods incorporate information from the model’s entire
state space.

There is a long tradition in mathematics to characterize the so-
lution of a system of non-linear difference equations locally by the
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Table 1.3

Local methods Global methods
2
=
g
=
2, Log-linear approximation Extended path
M | = Chapter 2 — Chapter 3
g
=
m
g Value function iteration
é LQ-approximation, - Chapter. 4, .
= . . Parameterized expectations —
i, | Second order approximation
Z | = Chapter 2 Chapter 5,
= P Projection methods
o — Chapter 6

dynamics of a linear system, since linear systems admit an exact
solution. The methods presented in Chapter 2 rest on this tradi-
tion. They linearize (or log-linearize) the model’s Euler equations
and solve the ensuing linear system using well-known techniques
from linear algebra. This delivers linear approximations to the
model’s policy functions.

Closely related to this approach is the LQ-approximation. The
linear-quadratic (LQ) model features a quadratic one-period util-
ity function and a linear transition function that relates the cur-
rent state of the system to the state of the system in the next
period. The LQ-approximation incorporates all non-linear restric-
tions of the model in the one-period utility function and obtains a
quadratic Taylor-series expansion of this function at the model’s
stationary equilibrium. It then solves for the linear policy func-
tions of this approximate model.

It is well known from calculus that any sufficiently differen-
tiable function can be approximated arbitrarily well by a Taylor
series expansion around a given point in its domain. Second-order
(or even higher-order) approximations of the model’s policy func-
tions rest on this result. They infer the magnitudes of the (partial)
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derivatives in this expansion from the model’s properties at the
stationary solution.

The extended path method, which we consider in Chapter 3,
replaces the system of difference equations formed by the model’s
Euler equations by a large but finite-dimensional non-linear sys-
tem of equations. In the stochastic case a related deterministic
system of equations is solved repeatedly to trace out the time
path of the model under a given sequence of shocks.

In Chapter 4 we consider methods that approximate the state
space of the model by a denumerable grid of points. On this grid
it is relatively easy to compute the value and the associated policy
function via elementary mathematical operations.

The methods considered in Chapter 5 and Chapter 6 resort
to functional analysis. The parameterized expectations approach
recognizes that agent’s conditional expectations are time invariant
functions of the model’s state variables and approximates these
functions by polynomial functions or neural networks. The para-
meters of the approximating function are determined using infor-
mation from the entire state space of the model. Projection meth-
ods approximate the policy functions predominantly by families
of orthogonal polynomials. They also use global information.

1.6.2 Accuracy of Solutions

How shall we compare the solutions obtained from different meth-
ods and decide which one to use? In this subsection we consider
three different criteria.

Second Moments. In as much as we are interested in the kind
of model evaluation considered in Section 1.5 the second moments
of time series obtained from simulating the model provide a first
benchmark. For this reason, each of the following chapters pro-
vides the results from the solution of the benchmark model of
Example 1.5.1. Our simulations use the same sequence of shocks
so that differences in the results can be traced to differences in
the solution procedure. As in HEER and MAUSSNER (2008), we
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will find that there are no noteworthy differences in second mo-

ments that favor the more advanced global methods over the local
26

ones.

Euler Equation Residuals. There are, however, considerable
differences with respect to a measure of accuracy known as Euler
equation residuals. To develop this measure we will introduce a
more general framework.

Suppose we want to approximate a function h : X — Y that
maps the subset X of R" into the subset Y of R. The function h
is implicitly defined by the functional equation

G(h) = 0.

The operator G : C; — C5 maps the elements of the function
space C; to the function space 5. Examples of functional equa-
tions are the Bellman equation (1.14) of the deterministic growth
model and the Euler equation of the stochastic growth model
(1.24). The unknown function of the former is the value function
v(K), the policy function h(K, Z) is the unknown of the latter.
Suppose we have found an approximation h. Then, for each x € X
we can compute the residual

R(x) := G(h(x)).

Since h approximates h, R(x) will in general not be equal to zero,
and we can use the maximum absolute value of R over all x € X
as a measure of the goodness of our approximation.

For instance, let iL(K ) denote an approximate solution of the
policy function of the next-period capital stock in the determinis-
tic growth model. Then, we can compute the residual of the Euler
equation (1.12) from

Bu'(f (A(K)) —ﬁ(ﬁ(K)))
u(f(K) = MK))

26 A related but independent study with similar results is ARUOBA,
FERNANDEZ-VILLAVERDE, and RUBIO-RAMIREZ (2006).

RK)=1— f/(h(E)).
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A more interpretable definition of the Euler equation residual is
due to CHRISTIANO and FISHER (2000). In the context of equa-
tion (1.12) it is given by

R(K) = g -1,
C = f(K) - h(K), (1.48)

Thus, R(K) is the rate by which consumption C' had to be raised
above consumption given by the policy function h in order to
deliver an Euler equation residual equal to zero.

In HEER and MAUSSNER (2008) we find for the benchmark
model that both the extended path and the projection method
provide very accurate results. The second-order approximation of
the policy functions also delivers good results and outperforms
the solutions obtained from value function iteration and the pa-
rameterized expectations approach. The least accurate solutions
are linear approximations of the policy functions.

DM-Statistic. Euler equation residuals can be computed for
both deterministic and stochastic DGE models. The measure pro-
posed by DEN HAAN and MARCET (1994) is related to stochastic
models only. They propose to compute the residuals e; from the
model’s Euler equations along a simulated time path. For instance,
if h(Ky, Z;) is the approximate policy function of the next-period
capital stock in the stochastic Ramsey model in equation (1.22),
e; is given by

er = u'(Cy) — fu'(Crya)(1 =0+ Zt+1f/(il(Kt7 Zt)));

Ct - th(Kt> + (1 - 5)Kt - iL(Kt, Zt)a

Ot+1 - Zt+1f(h(Kt, Zt)) + (1 - (5)h(Kt, Zt)
- h(ZtJrla h(Kta Zt))

The variable e; is an ex-post forecast error of

BE (Cra)(1 =6 + Ziyr f /(K1)
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With rational expectations this forecast error should be uncorre-
lated with past observation. This assertion can be tested by re-
gressing e; on lagged variables. The estimated coefficients should
be statistically insignificant. We provide the details of this test
in Section 12.3. The test statistic, the so called DM-statistic,”
is asymptotically distributed as a y2-variable. If this test rejects
the null of independence, this may stem from an inaccurate so-
lution that gives raise to systematic ex-post forecast errors. DEN
HAAN and MARCET (1994) propose to run a large number of
simulations of the model and to record the simulations where the
DM-statistic is either smaller than the 2.5-percent critical value or
larger than the 97.5-percent critical value. From a good solution
we expect that about 5 percent of the simulations fall into these
two regions.

2T There is another statistic labeled DM-statistic that should not be confused
with the statistic considered here. The statistic developed by DIEBOLD and
MARIANO (1995) is used to evaluate the predictive accuracy of different
econometric forecasts.
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Appendix 1: Solution to Example 1.2.1

We derive the solution to Example 1.2.1 using iterations over the value
function. Thus, letting v° = 0 we solve

vl = H}(ax In(K* — K')

yielding K/ = 0 and v!' = aln K. In the next step we seek K’ that
solves

v? = max In(K* — K') + faln K.

From the first order condition

Lo

Ka _ K/ = K/
we get
y__aB .
K= 1+0zﬂK ’
v? = a(l+aB)In K + Ay,
Ay = In(1/(1+ af)) + afln(aB/(1 + ap)).

The value function in step s = 3 is given by

v? = max In(K* — K') + pa(l + afB) In K' + A,

yielding

f_ 0B+ (B)? L.
YT e e
v =a(l+4 af + (af)?)In K + Ay,

Ay =In [1+aﬂ:—(aﬂ)2} + (aﬂ+(aﬂ)2)ln[

af + (af)?
1+ af+ (af)

2} + BAL

Continuing in this fashion we find the policy function in step s given
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with limit s — oo equal to
K' = aBK®*.

Obviously, from the first two steps, the value function is a linear func-
tion of In K. To infer the parameters of v := limy_,, v®, we use the
method of undetermined coefficients.

This method postulates a functional form for the solution with un-
known parameters, which are also called the undetermined coefficients.
The parameterized function is inserted into the equations that are
describing our model and solved for the unknown coefficients. Thus,
assume v = a + bln K with a and b as yet undetermined coefficients.
Solving

max In(K*— K') + 3(a+bln K')

2
yields
b
K= 1fﬂbKa'
Therefore
v=a(l+pb)In K + fa+In [#} + (bln [ pb } .
N 14 8b 1+ 30

b

a

Equating the constant on the rhs of this equation to a and the slope
parameter to b, we get:

b=a(l+8b) = b= 1—aaﬂ’
_ b
a—ﬁa—l—ln [rﬁb:l —i—ﬁbln [r/@b}’
éa:ﬁ [ln(l—aﬂ)#—lfiﬁlnaﬂ]
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Appendix 2: Restrictions on Technology and Preferences

Here we derive formally the restrictions that we must place on technol-
ogy and preferences to ensure the existence of a balanced growth path.
We draw heavily on the Appendix to KING, PLOSSER, and REBELO
(1988) and, like SoLow (1988), p. 35f., define a balanced growth path
as an equilibrium that features (see page 35)

1. a constant rate of output growth,
2. and a constant share of savings in output.

Technology. The constant share of savings S; in output implies that
output and capital must grow at the same rate: using the economy’s
resource constraint, we find:?®

St

—
Ky Vi -CGiH(1-0)Ky S Y,
K= = =>—+(1-9).
K K Y: Ky

So, if S;/Y; is constant, so must be Y;/K;, and, hence, output and
capital must grow at the same rate.

Now, consider the general case of labor and capital augmenting
technical progress:

Y; = F(A;Ny, BiKy), A; = Aga®, By = Bob'.

Since F' is linear homogenous, the growth factor of output, gy, can be
factored as follows

- Vi1 B K F(X4a,1)

th — Bth F(Xt’ 1) — bgKgF, (A21a)
a
X; == (Ao/Bo)(a/b) (N, ] Ky) = gx = bj—i (A.2.1b)

Since gy = gk we get from (A.2.1a)
1 =bgr.

There are two cases to consider:
1) b= gr = 1

28 In the following the symbol gx denotes the growth factor of the variable
X.
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2) and gp =1/b,b > 1.

In the first case technical progress is purely labor augmenting and
for gr = 1 we must have gx = 1, implying gx = agny. Now, in our
representative agent framework with a constant population size, N
is bounded between zero and one. Thus, a constant rate of capital
and output growth requires gy = 1 (otherwise N — 1 or N — 0).
Therefore, output and capital grow at the rate of labor augmenting
technical progress a — 1. For the share of savings to remain constant,
consumption must also grow at this rate.
Now consider the second case. For
F(Xt+17 ]')

gr = m = constant < 1

X; must grow at the constant rate

agN gn=1 a
9x = 77— gx = —.
bgx bgx
Let
X = Xoct, c= L,
by

and define f(X;) := F(Xy,1) so that the condition reads

f(XOCt'H)
f(Xoc)

Since this must hold for arbitrary given initial conditions X, differ-
entiation with respect to Xy implies

= constant.

_ 1 / Xit1
0= X2 {f(Xt)f (Xt41) X,
0= {f/(Xt—i—l)Xt—f—l f/(Xt)Xt} F(Xig1) dXo

fXen)  f(Xo (X Xo

For the term in curly brackets to be zero, the elasticity of f with
respect to X; must be a constant, say a:

Xy

— f(Xt+1)f/(Xt)Y0} dXo,

f'( X)Xy _
f(Xt)
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Yet, the only functional form with constant elasticity is
F(X) = zX°

with Z an arbitrary constant of integration. Thus, output must be
given by a Cobb-Douglas function

Y = F(AN,BK) = BK(f(AN/BK)) = BKZ(AN/BK)*
= Z(AN)*(BK)'~«.

Yet, if F'is Cobb-Douglas, technical progress can always be written as
purely labor-augmenting, since

Yy = Z(ANy)“(BeKy)' ™ = Z(AN,) K™%, Ay = AtBt(lfa)/a.

Preferences. Consider equation (1.34) which determines the farmer’s
savings decision. We reproduce it here for convenience:
Ul(Ct, 1- Nt)
u1(Cry1,1 — Negr)

= ﬁ(l -0+ FQ(At+1Nt+1, Kt+1)). (A22)

On a balanced growth path with constant supply of labor the right
hand side of this equation is a constant, since A; and K; grow at the
same rate and Fo(AN, K) = Fy(N,K/A). On that path the resource
constraint is given by

Cy = F(AN, Ky) + (1 — 5)Kt — K
— A [F(N, K/A) + (1 - 8)(K/A) - a(K/A)].

Since the term in brackets is constant, consumption grows at the rate
a — 1, and we may write:

Ct = Coat.
On the balanced growth path equation (A.2.2), thus, may be written
as:

ul(Coat, 1-— N)

ur(Coat ™, T—N) — A = constant.

This must hold irrespective of the arbitrary constant Cy. Differentiat-
ing with respect to Cj yields:
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A

dCO{Ull(Ctul_N) t_ull(CtJrlul_N)Ct 1} —0
Co | wi(Cr, 1 —N) u(Cryq,1 —N) F

The term in curly brackets is zero, if the elasticity of the marginal
utility of consumption (u11/u1)C, is a constant, say —n. Integrating

dul(C,l—N) _ @
ul(C,l —N) - C
on both sides gives
Inui(-) =-—nnC+1Invi (1 = N), = ui(-) =C "1 (1 - N)

where vy is an arbitrary function of leisure 1 — N. Integrating once
more with respect to C' yields

C1=1p, (1—N) o
u(C,l—N)—{ 1—n +op(l = N)ifp # 1,

' (A.2.3)
vi(1=N)InC+v2(1 —N)ifn=1.

Restrictions on the functions v; and vy derive from the static condition
on labor supply in equation (1.33). Remember, this condition is

UQ(Ct,l—Nt)
=0 "V AR (AN K,
Ul(Ct,l—Nt) t 1( tivi t)

in general, and

UQ(C,l — N)

TN © AR K/A)

along the balanced growth path. Write this as
Infus(C,1 — N)] =Infui1(C,1 — N)] +1In A+ In[Fy (N, K/A)],
and differentiate with respect to C' and A. The result is
UQl()CE _ ull()cg dA

u()  C  w() C A’
T N’
-n

where £ denotes the elasticity of the marginal utility of leisure with
respect to consumption. Since dC/C = dA/A in the long-run, this
condition restricts & to

E=1—n.
Using (A.2.3) this implies that
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e v2(1 — N) is a constant in the case of n # 1,
e v1(1 — N) is a constant in the case of n = 1.

Setting the respective constants equal to zero and 1, respectively, yields
the functional forms of the one-period utility function given in (1.35).
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Problems

1.1

1.2

1.3

Finite-Horizon Ramsey Model. Prove that the finite horizon Ramsey

model stated in (1.3) meets the assumptions of the Kuhn-Tucker theorem
1.1.1.

Infinite-Horizon Ramsey Model with Adjustment Costs. Con-
sider the following Ramsey model: A fictitious planer maximizes

> B'Cy, Be(0,1),

t=0
subject to
K= K012, 6€(0,1),
I, =K—-C;, «a€(0,1),
Ky given.

The symbols have the usual meaning: C; is consumption, K; is the stock

of capital, and I; is investment.

a) State the Lagrangian of this problem and derive the first-order condi-
tions of this problem. (Hint: Substitute for I; in the transition equation
for capital from the definition of I;.)

b) Suppose the policy function for capital is given by

Ky = koK™,

Use this equation to derive the policy functions for investment and
consumption.
¢) Assume that the policy function for consumption can be written as

c
Ct = C()Ktl.

If this guess is true, how are ¢y, c1, kg and k; related to the model’s
parameters «, (3, and §7

d) Substitute the policy functions into the Euler equation for capital.
Show that the assumptions made thus far hold, if ky meets the con-
dition

ky!? (kg™ = B(1 = 8)) = a5,
e) Prove that there is a unique ko that solves this equation.

A Vintage Model of Capital Accumulation. In Section 1.2.5 we
consider the problem
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N G =1
maXZB ﬁ, 66(0,1), 7’]>07
t=0

subject to
K2t+1 - 6K1t7 S (Oa 1)7

=

Y, = {aKll;" +(1- a)K;t_"} . ac(0,1),

Yy =Cy + K41,
Ky and Kog given.

a) Use dynamic programming to derive the first-order conditions for this
problem. (Hint: Use v(K7, K2) as value function, note that K} = 0K,
and substitute for K| the economy’s resource constraint.)

b) Prove that Ky;41 = sY;, where s is determined from

1
n

1—s=[Ba+p*(1—a)s" ",
solves this problem.

Dynamic Programming and the Stochastic Ramsey Model. The
stochastic Euler equations of the Ramsey model (1.22) are given in (1.24).
Use stochastic dynamic programming as considered in Section 1.3.3 to
derive these conditions.

Analytic Solution of the Benchmark Model. Consider the bench-
mark model of Example 1.5.1. Assume 7 = 1 so that the current period
utility function is given by

w(Cey N¢) :=InCy + 01In(1 — Ny).

Furthermore, suppose § = 1, that is, full depreciation. Use the method
of undetermined coefficients (see Appendix 1) to verify that

ki1 = AZ N}k,

with A to be determined, is the policy function for the next-period capital
stock. Show that working hours N; are constant in this model.

A Model With Flexible Working Hours and Analytic Solution
In Section 1.2.5 we considered a model with adjustment costs. We extend
this model to a stochastic model with endogenous labor supply. Assume
the current period utility function

0
Ny) =1 — —— N}t :
’U,(Ct, t) I’I(Ct T+ o ¢ ), 9,w>0
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The transition equation for the capital stock is
Ky =K°I0, 6€(0,1).
The production function is
Y, = Z;N} oK.
Determine the coefficients of the following guesses for the policy functions
for consumption C; working hours N, and the next-period capital stock

KtJrl:

Ct = (31Zt62Ktc3,
N, = ni ZM2 K™,

k: k:

Kiy1 = ki ZF2PKFs.



Chapter 2

Perturbation Methods

Overview. In the previous chapter we have seen that the solu-
tion of a DGE model with a representative agent is given by a
set of policy functions that relate the agent’s choice variables to
the state variables that characterize the agent’s economic envi-
ronment. In this chapter we explore methods that use local in-
formation to obtain either a linear or a quadratic approximation
of the agent’s policy function. To see what this means, remember
from elementary calculus that a straight line that is tangent to
a function y = f(x) at 2* locally approximates f: according to
Taylor’s theorem (see Section 11.2.1) we may write

f@ +h) = f(z7) + f'(a")h +6(h),

[\

linear function in A

where the error ¢(h) has the property

h—0

h£0
Thus, close to z*, f equals a slightly perturbed linear function.
To set up the linear function, we only need to know (i) the value
of f at * and (ii) the value of its first derivative f’ at the same
point.

Probably less well known is the following result. If z; = f(z;_1)
is a non-linear difference equation and z; = f'(2*)%;_1, Ty = v, —
x* its linear approximation at z* defined by z* = f(z*), then
the solution of the linear model provides a local approximation
of the solution of the non-linear equation.! Perturbation methods

1 See Section 12.1 on difference equations, if you are unfamiliar with this
subject.
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rest on these observations. As we will see, they are not limited to
linear approximations. If f is n-times continuously differentiable,
we may use a polynomial in h of degree up to n — 1 to build a
local model of f.

In this chapter we mainly consider linear approximations. They
are the most frequently used solutions in applied research and are
easy to apply. As you will see in later chapters they also provide
a first guess for more advanced, non-local methods.

The next section considers deterministic models. In this con-
text it is relatively easy to demonstrate by means of an example
(the Ramsey model of Section 1.2) that we can get linear approx-
imations to the policy functions by either solving the linearized
system of Euler equations or by applying the implicit function
theorem to the steady state conditions of the model. We use this
result to provide a procedure that computes the solution of an ar-
bitrary deterministic model with n variables from the linearized
system of FEuler equations.

Before we turn to the solution of stochastic DGE models in
Sections 2.3 and 2.4, we consider a model where the linear policy
functions provide an exact solution. This is the linear-quadratic
(LQ) model outlined in Section 2.2. Two different approximation
methods derive from the LQ problem. The first approach, consid-
ered in Section 2.3, approximates a given model so that its return
function is quadratic and the law of motion is linear and solves
the approximate model by value function iterations. The second
approach, taken up in Section 2.4, relies on a linear approximation
of the model’s Euler equations and solves the ensuing system of
linear stochastic difference equations.

We close the methodological part of this chapter in Section
2.5 with the quadratic approximation of the policy functions of
an arbitrary stochastic DGE model. The bottom line of Sections
2.3 through 2.5 are three programs: SolveLA and SolveLQA com-
pute linear approximations to deterministic as well as stochastic
DGE models. The difference between the two programs is the
way you must set up your model. SolveLA is a general purpose
routine, while SolveLQA is limited to models whose solution can
be obtained by solving a central planing problem. Yet, in some
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kinds of problems it is much easier to cast your model into the
framework of SolveLQA. The third program, SolveQA, computes
quadratic approximations of the policy functions of an arbitrary
DGE model. Various applications illustrate the use of these pro-
grams in Section 2.6.

2.1 Linear Solutions for Deterministic Models

This Section applies two tools. The implicit function theorem,
sketched in Section 11.2.2, allows us to compute the derivatives
of a system of policy functions that is implicitly determined by a
system of non-linear Euler equations. The close relation between
the local solution of a system of non-linear, first-order difference
equations and the solution of the related linearized system, out-
lined in Section 12.1, provides a second route to compute linear
approximations of a model’s policy functions. If you are unfamiliar
with any of these tools, you might consider reading the respective
sections before proceeding.

We use the deterministic growth model from Section 1.2 to
illustrate both techniques before we turn to the general approach.
We begin with the solution of the system of non-linear difference
equations that governs the model’s dynamics.

Approximate Computation of the Saddle Path. Consider
equations (1.17) that characterize the solution of the Ramsey
problem (1.8) from Section 1.2:

Kt+1 - f(Kt) +Cy =: gl(Kta Cy, Kt—f—lu Ot+1): 0,
(2.1a)

U,(Ct) - ﬁul(Ct-i-l)f,(Kt—l—l) = 92(Kt7 Ct, K, Ot+1): 0.
(2.1b)

Equation (2.1a) is the farmer’s resource constraint.? It states that
seed available for the next period Ky, equals production f(K})

2 Remember, that in the notation of Section 1.2 f(K) := (1-6)K+F(N, K),
where N are the farmer’s exogenously given working hours.
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minus consumption C;. The first-order condition with respect to
the next-period stock of capital K,y is equation (2.1b). These
two equations implicitly specify a non-linear system of difference
equations x,17 = ¥(x;) in the vector x; := [K}, Ci]”:

g(xt, ¥(x¢)) = 021, g = [g9", 97"
The stationary solution defined by

1= Bf(K"), (2.22)
K* = f(K*) - C* (2.2b)

is a fixed point of ¥. We obtain the linear approximation of ¥ at
x* = [K*, C*]' via equation (11.38):

)_(t+1 = J(X*))_(t, }_(t =Xt — X*. (23)

with the Jacobian matrix J determined by

bo bood) Byl x) I loglecrx®) Bl xt)

*Y t4+1 t4+1 0K oC,

JO) = | appiiany a2eim | |aflewn o |- (24)
8Kt+1 8Ct+1 0Ky 0C}

The derivatives of g at the fixed point are easily obtained from
(2.1a) and (2.1b) (we suppress the arguments of the functions and
write f instead of f/(K*) and so forth):

—1 1
N 1 0 — 1 = -1
J(x*) = — |:—ﬁulf” _uu} |: 0 u//:| - |:_5’f” 1+ ﬁu’f”} )

u u

2=

In computing the matrix on the rhs of this equation we used the
definition of the inverse matrix given in (11.14). The eigenvalues
A1 and Ap of J satisfy (see (11.24)):

det J = = Mg,

1

6
1

tI‘J:1+B+ :)\1+)\2.

N J/
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45°

A1 A=1 A2
Figure 2.1: Eigenvalues of W

Therefore, they solve equation

d(AN) ::/\+1/Tﬁ:A.

The solutions are the points of intersection between the horizontal
line through A and the hyperbola ¢()) (see Figure 2.1). The graph
of ¢ obtains a minimum at A\, = 1/v/8 > 1, where ¢'(Apin) =
1—(1/8)A %2 = 0.2 Since ¢(1) = 1+ (1/8) < A, there must be
one intersection to the right of A = 1 and one to the left, proving
that J has one real eigenvalue \; < 1 and another real eigenvalue
)\2 > 1.
Let J = TST~! with

_ A s
=[5 %]
denote the Schur factorization of J (see (11.27) in Section 11.1.8).
In the new variables (where T—! = (tV))

3 In Figure 2.1 Apin is so close to A = 1 that we do not show it.
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R yie| tll t12 Kt — K*
yi=1T""X < Lﬂt} = Lm 2| | o, — o (2.5)
the system of equations (2.3) is given by

Vir1 = Syi.

The second line of this matrix equation is

Yarr1 = A2l

Since A\ > 1, the variable yy; will diverge unless we set yo9 = 0.
This restricts the system to the stable eigenspace. Using 1o, = 0
in (2.5) implies

0 =t 3y, + 1727y, (2.6a)
y'' = (" — (2 1)y (2.6b)

The first line is the linearized policy function for consumption:

t21

C,—C* = -"_[K, - K*]. (2.72)

|
The second line of (2.6) implies via y1.41 = Ajy1; the linearized
policy function for savings:

Ky — K* =\ [K, — K*]. (2.7b)

We illustrate these computations in the program Ramsey2a.g,
where we use u(C) = [C*" —1]/(1 —n) and F(N,K) = K.
In this program we show that it is not necessary to compute the
Jacobian matrix analytically as we have done here. You may also
write a procedure that receives the vector [K;, Cy, K1, Ciiq]” as
input and that returns the rhs of equations (2.1). This procedure
can be passed to a routine that numerically evaluates the partial
derivatives at the point (K*, C*, K*, C*). From the output of this
procedure you can extract the matrices that appear on the rhs of
equation (2.4).

Figure 2.2 compares the time path of the capital stock under
the analytic solution K;.; = afK;* (which requires n = 0 = 1)
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Figure 2.2: Approximate Time Path of the Capital Stock in the
Deterministic Growth Model

with the path obtained from the approximate linear solution. The
parameters are set equal to a = 0.27 and 8 = 0.994, respectively.
The initial capital stock equals one-tenth of the stationary capital
stock. As we would have expected, far from the fixed point, the
linear approximation is not that good. Yet, after about five iter-
ations it is visually indistinguishable from the analytic solution.

Approximate Policy Functions. We now apply the implicit
function theorem directly to find the linear approximation of the
policy function for optimal savings. Let K11 = h(K;) denote this
function. Since K* = h(K™), its linear approximation at K* is
given by

Ky = MEKy) ~ K* + B (K*) (K, — K7). (2.8)
Substituting equation (2.1a) for C; = f(K;) —h(K}) into equation
(2.1b) delivers:

g(Ky) = [(f(K) = h(E))]

— Bu [(f (A(K)) = h(h(K)] [/ (h(KL)-
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We know that g(K*) = 0. Theorem 11.2.3 allows us to compute
R'(K*) from ¢'(K*) = 0. Differentiating with respect to K; and
evaluating the resulting expression at K* provides the following
quadratic equation in h'(K*) (we suppress the arguments of all
functions):

() = (1 +(1/8) + (Bu'f") [u") W + (1/8) = 0 (2.9)

S

=:A

Let h} and A denote the solutions. Since (by Viete’s rule)
Ry + hly = A and hjhl, = 1/, the solutions of equation (2.9)
equal the eigenvalues of the Jacobian matrix A; and Ay ob-
tained in the previous paragraph. The solution is, thus, given
by h'(K*) = A\; and the approximate policy function coincides
with equation (2.7a). Note that we actually do not need to com-
pute the approximate policy function for consumption: given the
approximate savings function (2.7a) we obtain the solution for
consumption directly from the resource constraint (2.1a).

Observe further that this way to compute A/(K*) is less read-
ily implemented on a computer. In order to set up (2.9) we need
software that is able to do symbolic differentiation. Our general
procedure for non-linear, deterministic DGE models therefore re-
lies on the approach considered in the previous paragraph.

The General Method. It is straightforward to generalize the
method outlined above to compute the linear approximate solu-
tion of a non-linear system of difference equations implied by a
deterministic DGE model. Suppose the map

g(Xt,Xt+1> - 0n><17 Xt S Rn

implicitly describes the model’s dynamics. Assume, further, that
ny of the elements in x; have given initial conditions (as the capital
stock in the deterministic growth model) and that ny = n—n, are
jump variables (as consumption), whose initial conditions must
be chosen in order to satisfy the model’s transversality condi-
tions. Let x* denote the fixed point. Since the analytic compu-
tation of the Jacobian matrix is usually very cumbersome and
failure prone, it is advisable to write a procedure that returns
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the rhs of g(x¢,x;+1). This procedure serves as input to a pro-
gram that performs numeric differentiation. Given the matrices
A =gy, (x*,x") and B := gy, (x*,x*), the Jacobian matrix of
the linearized system (2.3) is given by J = A~!B. This matrix
must have n; eigenvalues inside and ny eigenvalues outside the
unit circle.

Let y; := T~ 'x, with J = T'ST~! denote the new variables in
which the system is decoupled

Yit1| _ St Sia| |yue
Yot+1 Onyxny S22 |[Yor|
Since all the eigenvalues on the main diagonal of S5 are outside

the unitUnit circle circle, we must set yo; = 0,,,%1 to secure con-
vergence. Thus, the second block of the matrix equation

Yuir | _ R X1t
Onyx1| |17 T% X
implies the policy function for the jump variables:
X = —(T#) 'T?'xy,. (2.10a)

Using this result to substitute for Xo; in the first block of equations
yields:

Vi = (Tll . T12(T22>71T21) Xlt-

Observe that the inverse of the matrix in parenthesis is 777 (apply
the formula for the inverse of a partitioned matrix (11.15a) to the
matrix 71). Thus,

yierr = (T11) " Rier1 = Sty = SuTy X
so that the policy function for X, is given by
ilt-}—l - TllSlllel)_(lt. (210b)

You will see in Section 2.4 that our procedure SolveLA that com-
putes the linear approximate solution of stochastic DGE models
provides the policy functions (2.10) as a special case.
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2.2 The Stochastic Linear Quadratic Model

This section presents the stochastic linear quadratic model and
derives some of its important properties. Since its main purpose
is to provide a framework for both linear quadratic and linear
approximation methods, we postpone detailed algorithms for the
computation of the policy function until Section 2.3 and Section
2.4, respectively.

Description. Consider an economy governed by the following
stochastic linear law of motion:

Xt+1 = AXt + But + €. (211)

The n-dimensional column vector x; holds those variables that
are predetermined at period t. A fictitious social planner sets the
values of the variables stacked in in the m-dimensional column
vector u;. We refer to x as the state vector and to u as the control
vector. A € R™™ and B € R™ " are matrices. Due to the presence
of shocks, the planner cannot control this economy perfectly. The
n vector of shocks € has a multivariate normal distribution with
E(€) = 0 and covariance matrix* E(e€’) = 2. The planner must
choose u; before he can realize the size of the shocks.
Given xq the planner’s objective is to maximize

Ey» B [x@Qx: +ujRu, + 2u;Sx,], B € (0,1), (2.12)

t=0

subject to (2.11). The current period objective function

/
9(xt, ) = [X:ta uﬂ {g %] Bj (2.13)
is quadratic and concave in (x},u;). This requires that both the
symmetric n X n matrix () and the symmetric m x m matrix R
are negative semidefinite.
Note that this specification encompasses non-stochastic state
variables and first-order (vector) autoregressive processes.

4 Remember that a prime denotes transposition, i.e., € is a row vector and
€ a column vector.



2.2 The Stochastic Linear Quadratic Model 85

Derivation of the Policy Function. The Bellman equation for
the stochastic LQ problem is given by

v(x) :=max X'@x+2u'Sx+ u'Ru
u

(2.14)
+ OFE [v(Ax + Bu + €],

where we used (2.11) to replace next-period state variables in
FEv(-) and where we dropped the time indices for convenience, be-
cause all variables refer to the same date t. Expectations are taken
conditional on the information contained in the current state x.
We guess that the value function is given by v(x) := x'Px + d,
P being a n dimensional symmetric, negative semidefinite square

matrix and d € R an unknown constant.® Thus, we may write
(2.14) as follows:®

xX'Px+d=
max x'@Qx + 2u'Sx + u'Ru (2.15)
+BE[((Ax+ Bu+¢€)P(Ax+ Bu+¢€) +d)].

Evaluating the conditional expectations on the rhs of (2.15) yields:

xX'Px+d=

max X Qx+ 2uSx+ u'Ru
+ Bx'A'PAx + 23x’A'PBu + 3u'B’PBu
+ Btr(PY) + Ad.

(2.16)

In the next step we differentiate the rhs of (2.16) with respect to
the control vector u, set the result equal to the zero vector, and
solve for u. This provides the solution for the policy function:

® Note, since x}Px; is a quadratic form, it is not restrictive to assume that
P is symmetric. Furthermore, since the value function of a well defined
dynamic programming problem is strictly concave, P must be negative
semidefinite.

6 If you are unfamiliar with matrix algebra, you may find it helpful to consult
Section 11.1. We present the details of the derivation of the policy function
in Appendix 3.
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u=—(R+3B'PB) S+ 3BPAX. (2.17)

(. ~

F
To find the solution for the matrix P and the constant d, we
eliminate u from the Bellman equation (2.16) and compare the
quadratic forms and the constant terms on both sides. It turns

out that P must satisfy the following implicit equation, known as
algebraic matrix Riccati equation:

P=Q+pBAPA

—(S+ BB'PA) [R+ 3B'PB|™" (S+ 3B'PA), (2.18)

and that d is given by:

_ B
-1 3

The solution of (2.18) can be obtained by iterating on the matrix
Riccati difference equation

d

tr(P).

Ps+1 - Q + ﬁA/PsA
— (S + BB'P,A) [R+ 3B'P,B]"" (S + BB'P,A)

starting with some initial negative definite matrix F,.” Other
methods to solve (2.18) rely on matrix factorizations. Since we
will use iterations over the value function later on, we will not
explore these methods any further. Once the solution for P has
been computed, the dynamics of the model is governed by

Xtt1 = Axt + But + €1 = (A — FB)Xt + €.

Certainty Equivalence. The solution of the stochastic LQ prob-
lem has a remarkable feature. Since the covariance matrix of the
shocks ¥ appears neither in equation (2.17) nor in equation (2.18),
the optimal control is independent of the stochastic properties of
the model summarized by Y. Had we considered a deterministic

7 For example Py = —0.011,,.
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linear quadratic problem by assuming €; = 0Vt, we would have
found the same feedback rule (2.17). You may want to verify this
claim by solving Problem 2.1. This property of the stochastic LQ
problem is called certainty equivalence principle. It is important
to note that if we use the LQ approximation to solve an arbitrary
economic model we enforce the certainty equivalence principle on
this solution. This may hide important properties of the model.
For instance, consider two economies A and B which are identical
in all respects except for the size of their productivity shocks. If
economy’s A shock has a much larger standard deviation than
economy B’s shock, it is hard to believe that the agents in both
economies use the same feed-back rules.

Derivation of the Euler Equations. As we have seen in Chap-
ter 1 an alternative way to derive the dynamic path of an opti-
mizing model is to consider the model’s Euler equations. It will
be helpful for the approach taken in Section 2.4 to separate the
state variables into two categories. Variables that have a given
initial condition but are otherwise determined endogenously are
stacked in the n dimensional vector x. Purely exogenous shocks
are summarized in the [ dimensional vector z. As in the previous
subsection u is the m dimensional vector of controls. The planner’s
current period return function is the following quadratic form:

o~ / !
g(xta Uy, Zt) Ca XtA:m:Xt + utAuuut + ZtAzzZt

2.19
+ 2w A Xy + 2uj A7y + 2%, AL 7. (2.19)

A;j.i,j € {x,u,z} are given matrices. The transition law of the
endogenous state variables is

Xt+1 = Bxxt + Buut + Bzzt, (220)

where B, € R™" B, € R™™ and B, € R™*! are given matrices.
The shocks follow a first-order vector autoregressive process

Zi1 = HZt + €111, € ~ N(O, Z) (221)

The eigenvalues of II € R/ lie inside the unit circle. The planner
maximizes
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EOZBtg(Xta u;, z;) (2.22)
t=0

subject to (2.20) and (2.21).
Let A¢ denote the n vector of Lagrange multipliers. The La-
grangian of this LQ problem is

g = EO Z ﬁt |:g(Xt, U, Zt) + 2A2(BxXt + Buut + Bzzt — Xt+1):| .
t=0

Differentiating this expression with respect to u; and x;,; provides
the following set of first-order conditions:
0= Auuut + Auacxt + Auzzt + BLAty
At = BE; [ApeXpy1 + Agsiir + Auey + Bid] .

The first of these equations may be rewritten as:

Xy

Ouut - O:v)\ |:At

} + C.zy, (2.23a)

whereas the second equation and the transition law (2.20) can be
summarized in the following matrix difference equation:

DB, | X5 + Fyy |3 = DuEpug,y + Fou, (2.23D)

A1 A
+ DzEtZt—H + Fzzt'

The matrices in these equations relate to those of the original

problem as follows:

Cu::Auuy O:v)\::_ [Auacy B;] ;
Oz::_Auzu
I -BAZE:E BB;IU o -Onxn _In
D;v)\‘_ L In 0n><n ’ F:v)\ n __B:E 0n><n ’
«-—— -_ﬁA;x R -OnXm
Du.— i OnXm 9 Fu_ Bu Y

Dz:: -_ﬁA:vz:| ’ Fz:: -Onxl:| ’
L On><l
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where [,, and 0,,«,, denote the n dimensional identity matrix and
the n x m zero matrix, respectively.

Equations (2.23) describe a system of stochastic linear differ-
ence equations in two parts. The first part (2.23a) determines the
control variables as linear functions of the model’s state variables,
X, exogenous shocks z;, and the vector of Lagrange multipliers
A;, often referred to as the vector of costate variables. The sec-
ond part (2.23b) determines the dynamics of the vector of state
and costate variables. In Section 2.4 equations (2.23) will serve
as framework to study the approximate dynamics of non-linear
models. Before we explore this subject and discuss the solution
of (2.23), we consider the computation of the policy function via
value function iterations in the next section.

2.3 LQ Approximation

This section provides the details of an algorithm proposed by
HANSEN and PRESCOTT (1995). Their approach rests on a lin-
ear quadratic approximation of a given model and they device
a simple to program iterative procedure to compute the policy
function of the approximate model. In Section 2.3.2, we use the
deterministic Ramsey model from Example 1.2.1 to illustrate the
various steps. Section 2.3.3 outlines the general approach and its
implementation in the Gauss program SolveLQA.

2.3.1 A Warning

Before we begin, we must warn you. As has been pointed out
by JupD (1998), pp. 506-508 and, more recently, by BENIGNO
and WOODFORD (2007), the method provides a correct linear
approximation to the policy function only when the constraints
are linear. A different policy function arises from maximizing a
quadratic approximation of the objective function subject to lin-
earized constraints. To see this, consider a simple static problem.



90 Chapter 2: Perturbation Methods

Maximize U(xq, z2) subject to xo = f(x1,€), where € is a parame-
ter of the problem. Let x1 = h(e) denote the policy function that
solves this problem and assume that a solution at ¢ = 0 exists.
This solution solves

g(e=0) := Uy [h(e), f(h(e), €)]
+ Uz [h(e), f(h(e), )] fr(h(e), €) = 0.

The implicit function theorem 11.2.3 allows us to compute 2'(0)
from ¢’(0) = 0. This provides®
U+ Unfifa+Uafio

U+ 2Unaf1 + U f7 + Usfir
The quadratic approximation of U at x} = h(0) and a3 = f(z7,0)
is obtained from applying equation (11.32) to U at (z7, z5):

1(0) =

(2.24)

1 Un Ul |7
Q _ * ok = - s - 11 12 1
U* =Ul(ay, 23) + UrTy + UsZy + 5 [Ty, o] [Um Uﬂ] {52] .

Maximizing this expression with respect to z; := x; — 2] subject
to the linearized constraint

Ty = xg — Xy = 171 + fae
provides (since Uy + Uy fi = 0)
B Uia fo + Usa f1 fo .

Uiy + 2Uia f1 + U f?
This solution differs from (2.24) with respect to the rightmost
terms in the numerator and the denominator in the solution for
R'(0), Usfia and Us,fiy, respectively. Both terms vanish, if the
constraint is linear.

BENIGNO and WOODFORD (2007) propose to use the quadratic

approximation of the constraint to replace the linear terms in U<.
Indeed, if we replace zo by

To = f1T1 + foe + % [fh 6] {;; ﬁj [Xel]

in the expression for U? and optimize this new function, we obtain
the same linear policy function as given in equation (2.24).

T = (2.25)

8 We used Uia = Us1, which holds, if U is twice continuously differentiable.
See, e.g., Theorem 1.1 on p. 372 in LANG (1997).
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2.3.2 An Illustrative Example

The Model. We know from Section 2.2 that the policy function
of the LQ problem is independent of the second moments (and, a
fortiori, of any higher moments) of the shocks. Therefore, nothing
is lost but much is gained in notational simplicity, if we use the
deterministic Ramsey model from example 1.2.1 to illustrate the
approach of HANSEN and PRESCOTT (1995). In this example the
farmer solves

max B'nCy, pe(0,1),

AT ; t 0.

S.t.Kt+1+CtS Kta,OéE(O,]_),t:O,]_,...,
Ky given.

C; denotes consumption at time ¢, and K; is the stock of capital.
The dynamics of this model is determined by two equations:

C
1= ﬁc Lok, (2.26a)
t+1
Kt+1 — Kg - Ct‘ (226b)

The first equation is a special case of the Euler equation (1.12)
in the case of logarithmic preferences and a Cobb-Douglas pro-
duction function. The second equation is the economy’s resource
constraint.

Approximation Step. We want to approximate this model by
a linear quadratic problem. Towards this end we must look for a
linear law of motion and put all remaining nonlinear relations into
the current period return function In C'y. We achieve this by using
investment expenditures I; = K — C} instead of consumption
as a control variable. Remember, this model assumes 100 percent
depreciation (i.e., 0 = 1), so that the linear transition law is:

Kt+1 - -[t‘ (227)

Let g(Ky, I;) := In(K{ — I;) denote the current period utility
function. We approximate this function by a quadratic function
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in (K, I) at the point of the stationary solution of the model. This
solution derives from equations (2.26) and (2.27) for K;yy = K; =
K and Ot+1 = Ct =C. ThU.S,

K = (ap)/=e), (2.28a)
I=K. (2.28Db)

A second order Taylor series approximation of g yields:

g(K,I) ~g(K,I)+ gx (K — K) + g/(I — 1)
+ (1/2)g9xx (K — K)* + (1/2)gr (1 — I)? (2.29)
+ (1/2)(9k71 + 915) (K — K)(I = 1).

For latter purposes, we want to write the rhs of this equation
by using matrix notation.? To take care of the constant and the
linear terms we define the vector (1, K, I)” and the 3 x 3 matrix
() = (¢i;) and equate the rhs of (2.29) to the product

1
[, K, 1]Q | K
I

Comparing terms on both sides of the resulting expression and
using the symmetry of the second order mixed partial derivatives
(9x1 = g1 yields the elements of Q:

q1=9 — 9 K — 911 + (1/2)gxxc K* + g1 KT + (1/2) g1,
Q12=qn = (1/2)(9x — gxx K — gx11),

qi3=q31 = (1/2)(91 — 9111 — gx1K),

923=0q32 = (1/2)gk1,

QQ2:(1/2)9KK:

C]33=(1/2)9H-

In the next step we use ) and the even larger vector w =
[1,K,I,1, K] (where K’ denotes the next-period stock of capi-
tal) to write the rhs of the Bellman equation, g(K,I) + Sv(K’),
in matrix notation. This gives:

9 To prevent confusion, we depart from our usual notation temporarily and
let the superscript T denote the transpose operator. As usual in dynamic
programming, the prime ’ denotes next-period variables.
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1
K 0 0
nl @ 032 0. |V11 Yo
1, K,I,1,K'] beg ﬁvng { , V= L)Sl USJ . (2.30)
Rsx5 K’

We initialize VY with a negative definite matrix, e.g., V? =
—0.00115, where I, denotes the two-dimensional identity matrix.
Our aim is to eliminate all future variables (here it is just K') us-
ing the linear law of motion. Then, we perform the maximization
step that allows us to eliminate the controls (here it is just I).
After that step we have a new guess for the value function, say
V1. We use this guess as input in a new round of iterations until
V0 and V! are sufficiently close together.

Reduction Step. We begin to eliminate K’ and the constant
from (2.30) so that the resulting quadratic form is reduced to a
function of the current state K and the current control I. Note
that K’ = I can be written as dot product:

K'=10,0,1,0]

Y

1
K
1
1

and observe that

1
[ L 1|K
_{0010} I

1

NHNNH

Thus, we may express (2.30) equivalently as:

1
1
K
LK I, K Res | 1| = [1,K,1, 1) Ravs II( ,
1
1

K/
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where
T
I I
Raxa {0 01 0] B [0 01 0]
N——
Ssx4

So what was the trick? In words: use the rightmost variable in
wl =[1,K,I,1, K'| and write it as linear function of the remain-
ing variables. This gives a row vector with 4 elements. Append
this vector to the identity matrix of dimension 4 to get the trans-
formation matrix Ss.4. The matrix of the Bellman equation with
K’ eliminated is R4><4 = SgX4R5><5S5><4.

In the same way we can eliminate the second constant. The
constant in terms of the remaining variables [1, K, I] is determined
by the dot product:

1
1=1[1,0,0] | K
I

Thus, the matrix Sy«3 is now

_| s
S4><3 - ll OO:| )

and the rhs of the Bellman equation in terms of [1, K I] is

1
Q(Ka ]) +5U(I) = [17K7 ]]R3x3 K|, Rixs = SZX3R4><4S4><3~
I

Maximization Step. In this last step we eliminate I from the
rhs of the Bellman equation to find

1, K]Rao {H .

The matrix Ry will be our new guess of the value function. After
the last reduction step, the quadratic form is:
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i1 Ti2 T3 1
1, K, 1] |11 722 7To3| | K
31 T32 T33 I
=11+ (112 +7191) K + (113 +131) ] + (193 +132) K1
+ T22K2 + 7“33]2.
Setting the derivative of this expression with respect to I equal
to zero and solving for [ gives:

T3 + 731 To3 1+ T3 713 723
[:— —_ B :————B’
2133 2133 T3z T'33
———

i1 12
where the last equality follows from the symmetry of R. Thus, we
can use

S:{ 2 }
—11 — 19

to reduce R3y.3 to the new guess of the value function:
Vl - STR3><3S.

We stop iterations, if the maximal element in [V — V] is smaller
than €(1 — /) for some small positive € (see (11.84) in Section 11.4
on this choice).

2.3.3 The General Method

Notation. Consider the following framework: There is a n vector
of state variables x, a m vector of control variables u, a current
period return function ¢g(x,u), and a discount factor 5 € (0,1).
As you will see in a moment, it will be helpful to put x; = 1. All
non-linear relations of the model are part of the specification of
g, and the remaining linear relations define the following law of
motion:

x' = Ax + Bu. (2.31)

Furthermore, there is a point [x**, u**]T. Usually, this will be the
stationary solution of the deterministic counterpart of the model
under consideration.
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Approximation Step. Let Q € R [ = n + m, denote the
matrix of the linear quadratic approximation of the current period
return function ¢(-), and define the n + m column vector y =

[xT,uT]T. From a Taylor series expansion of g at y*, we get:
n+m n+m n+m
y'Qy =g(y)+ > gilvi— Z > giiwi—u) Wi =),
i=1 i=1 j=1

where g; and g;; are first and second partial derivatives of g at y*,
respectively.!® Comparing terms on both sides of this expression
delivers the elements of @ = (g;;):

q=g(y") + Z?ﬂm 9y +3 " Z;’*{” iUy},
qu = Qilz%gi — % = 1 gzyyja =2,3,...,n+m,

Qij = jS:%gij, 1,]=2,3,....,n+m.

Except in very rare cases, where g; and g;; are given by sim-
ple analytic expressions, one will use numeric differentiation (see
Section 11.3.1). For instance, to use our program SolveLQA, the
user must supply a procedure gproc that returns the value of
g at an arbitrary point [x?,u’]”. Note that you must pass
(1,29, ..., Tp,uy,...,u,)T to that procedure, even if the 1 is not
used in gproc. This ensures that any procedure that computes
the gradient of g returns a vector with [ elements and that any
procedure that returns the Hesse matrix returns a [ x [ matrix.
Given this procedure, our Gauss programs CDJac and CDHesse
compute the gradient vector Vg = [0, 62,93, ..., Gntm) and the
Hesse matrix H := (h;) = (gi;), 1,7 = 1,2,...,n+m from which
SolveLQA builds ) using the above formulas. All of this is done
without any further intervention of the user. If higher accuracy
in the computation of the Hesse matrix is desired, the user can
supply a routine MyGrad that returns the gradient vector of ¢g. He
must then set the flag _MyGrad=1 to let the program know that
an analytic gradient is available. SolveLQA will then use MyGrad
to compute the Hesse matrix by using the forward difference Ja-
cobian programmed in CDJac.

10 Note, since 21 = 1, we have gy =0 and ¢g1; = g1 =0 fori=1,2,...,1.
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Reduction Steps. Let R® denote the matrix that represents the
quadratic form on the rhs of the Bellman equation at reduction
step s, where

Rl — Qn—i—mx(n—l—m) O(n+m)><n
Onx(ner) ﬁvr?xn

In addition, let ¢! denote the n + 1 — s-th row of the matrix
Os = |:A B Onx(n—s)} .

Then, for s =1,2,...,n iterate on

Rs-‘,—l _ |:[2n+771ns:|T Rs |:12n+%ns:| )
CS CS

Maximization Steps. After the last reduction step the matrix R
is reduced to a square matrix of size n+m. There are m maximiza-
tion steps to be taken until R is reduced further to a square matrix
of size n, which is our new guess of the value function. At step
s =1,2,...,m the optimal choice of the control variable u,, 1
as a linear function of the variables [z1,...,&,, U1, ..., Up_s] 1S
given by the row vector

Tk T2k Tk—1,k
—[——,——,...,— ,k=n+m—s.

Tkk Tkk Tkk

Therefore, we iterate on

T
RSt = {["3325} R* {["3”;5} ,s=1,2,...,m.

If R is reduced to size n, we have found a new guess of the value
function V! = R™*! and we compare its elements to those of V9.
If they are close together,

mas o, — v} < e(1 - ),

we stop iterations. Otherwise we replace V? with V1 and restart.



98 Chapter 2: Perturbation Methods

Computation of the Policy Function. It is a good idea to
store the vectors ds in a m x (n + m — 1) matrix D. After
convergence, we can use D = (d;;) to derive the policy matrix
F e R™" = (f;;) that defines the controls as functions of the
states. This works as follows: The policy vector d,, (i.e., the last
row of D) holds the coefficients that determine the first control
variable u; as function of the n state variables:

n

up = deixi = f1i = dmi-
i=1

The second control is given by

n
Uy = E App—1,iTi + A1 pr 181
i=1

= for = dm_1i + dm1 1 fri-

Therefore, we may compute the coefficients of F' recursively from:

-1
fii = dpmy1—ji + E Dyt 1— -tk i
=1
j=1...om,1=1,...,n.

As a final check of the solution, we can use
|u* — Fx*|.

i.e. the discrepancy between the stationary solution of the con-
trols from the original model and those computed using the linear
policy function.

2.4 Linear Approximation

In this section we return to the system of stochastic difference
equations (2.23). Remember, this system is one way to charac-
terize the solution of the linear quadratic problem. However, we
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are by no means restricted to this interpretation. More generally,
we may consider this system as an approximation of an arbitrary
non-linear model. In the next subsection we explain this approxi-
mation by means of the stochastic growth model. Our discussion
closely parallels the presentation in Section 2.1. First, we demon-
strate that both, the solution to a linearized system of stochastic
difference equations and the application of the implicit function
theorem provide the same set of equations for the coefficients of
the policy function. Second, we obtain these coefficients from the
solution of a linear system of stochastic difference equations. Sec-
tion 2.4.2 presents the solution method for the general case of
equations (2.23) and explains the use of our program SolveLA
that implements this method.

2.4.1 An Illustrative Example

There are two equations that determine the time path of the sto-
chastic Ramsey model from Section 1.3 with strictly positive con-
sumption. They are obtained from equations (1.23):

0=Ki1 —(1—=90)K — Z,f(Ky) + Cy, (2.32a)

0=u'(Cy) — BEA (Ciy1)(1 — 0 4+ Zi1 f1(Kiy1)). (2.32b)
We assume that the productivity shock Z; follows the process

InZ;,=olnZ,_1+o0e¢, €~ N(0,1). (2.32¢)

Since n 7, ~ Z,,Z, = Z;, — Z*,Z* = 1 this equation may be
approximated by
Zy = 02,1 + o€ (2.32d)

Note, that for 0 = 0 and Z* = 1 this model reduces to the deter-
ministic growth model with the stationary equilibrium determined
from

C* = f(K*) - 0K, (2.33a)
1= B(1—8+ f(K)). (2.33b)

More generally, equations (2.32) may be written as Eig(X¢, Xt11) =
02><17 Xt = [Kta Ot7 Zt]/'
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Linear Stochastic Difference Equations. At (K*,C*, Z*) the
linearized version of this system of equations is given by:

{0} _ {gi g%] |:[§t:| + {gi gé] E, |:Kt+1:|
0 9% 93 Cy gZ 952) Cia

17 1 -
+ [gé] Zy + {gg} EyZyyq,
g3 96

(2.34)

where Z; denotes x; —x*. Since equation (2.32d) implies E;Z,,, =
0Z; the last term in equation (2.34) may also be written as
olgt, g2]'Z;. We assume that the linear policy functions for Ky,
and C, are of the form

Ky =hEK, +h5 7, (2.35a)
Cy = WK, + h$ 7, (2.35D)

where hé-, i,j € {K,C} denotes the derivative of the policy func-
tion of variable ¢ with respect to its jth argument. Substituting
this guess in equation (2.34) yields

) e ) 7= )

where a; and b;, i = 1,2 are collections of coefficients to be given
in a moment. Obviously, if (2.35) is a solution to (2.34), this re-
quires a; = b; = 0, 4 = 1,2 and, thus, provides four (non-linear)
equations in the unknown coefficients h%, h¥, h%, hY. A modest
amount of algebra reveals these relations:

ay = g1 + g3h% + (91 + gsh)hi = 0, (2.36a)

=gi + thC + (g + 2R )k =0, (2.36b)
by = (g3 + gto) + (g + gto)hG + (g} + g2hS)RE =0, (2.36¢)
by = (g5 + ge0) + (95 + g20)hG + (g1 + gah)hy = 0. (2.36d)

Application of the Implicit Function Theorem. We will now
demonstrate that the same set of conditions emerges, if we apply
the implicit function theorem to the system E;g(x;,X;11) = O2x1.
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This allows us also to show that the linear policy functions are
indeed independent of the parameter o. We assume non-linear
policy functions K., = h*(K,, Z;,0) and C; = h%(K,, Z;, o) with
the property K* = h(K* Z*,0), C* = hY(K*, Z*,0) so that a
solution of g(+) = 09y at (K*, Z* 0) exists. It is not difficult to
see that differentiating g with respect to K; and Z; provides the
same conditions on the derivatives of h¢ and h¥ at the stationary
solution as presented in equations (2.36). Just note, that ¢*, ¢ =
1,2 can be written as

gi <Kt: hc(Kt, Zy, 0)7 Zy, hK(Kt, Zy, U):

hC (hK(Kta Zta 0)7 egln ZtJrUGH—l? 0)7 egln ZtJrUet-H) ’

so that, for instance,

dg9'(-)
0K,

= g + g3h% + g1l + gshSchy = ar.

Consider the derivatives with respect to o. They imply:!!

(91 +g3h%) (9 +gé)} [hff] _ H '
(93 +92h%) (95 +g3)| [RS] [0

This is a system of homogenous equations in hX and h¢. Since
its matrix of coefficients is regular, the only possible solution is
hE =hS = 0.

We have, thus, seen by means of an example that the applica-
tion of perturbation methods to a stochastic DGE model allows us
to derive linear approximations of the policy functions via the so-
lution of the linearized system of stochastic difference equations.!?

11 The derivative of the term Ziy1 = eeInZitocit with respect to o evaluated
at Z* =1 and 0 = 0 is €41. The expectation of this term as of time t,
Eieiq1, equals zero, the mean of N(0,1).

12 The generalization of this result is obvious but involves either intricate
formulas or the use of tensor notation so that we have decided not to
pursue it here. See SCHMITT-GROHE and URIBE (2004) for a proof.
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Derivation of the Solution. Rather than solving (2.36), we de-
termine the coefficients of the policy functions via the same proce-
dure that we used in Section 2.1. From (2.32) and (2.34) we obtain
the following system of linear, stochastic difference equations:

K] _
alezl= L

1 -1 K f _

8 t

Wity ﬁu’f”] [@] + [_ﬂu/ff"wu/] Zy.
~~ d —

U” u//

=W =R

(2.37)

The matrix W equals the Jacobian matrix of the deterministic
system (2.3), and, thus, has eigenvalues A; < 1 and Ay > 1. In the
new variables®

KL‘ -1 Kt -f(t -[_(t
~ = T — T ~ = = 2
c]= e e le) - (e o
the system of difference equations may be written as:'*
f(tJrl A1 812 f(t 41 5
E |- = U+ Zy. 2.39
' {Cwl} {O )‘2] {CJ {qQ ' (2:39)
—— ~~~
s Q=T-'R

Consider the second equation of this system, which is a relation
in the new variable C}; and the exogenous shock:

Etét-i—l == Agét + QQZt. (240)

We can solve this equation for C, via repeated substitution: from
(2.40) we get

Ot - _Etét-i-l - —Zt. (241)

Shifting the time index one period into the future yields:

13 Remember, T is the matrix that puts W into Schur form W = T.ST 1.
14 Pre-multiply (2.37) by 7~! and use the definitions in (2.38) to arrive at
this representation.
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~ 1 ~ Q2 =
Ct+1 = /\—2Et+10t+2 - )\_22t+1-

Taking expectations as of period ¢ on both sides and noting that
(via the law of iterated expectations) Fy(E;11Cii2) = ECiio
yields:

P

_ 1 ~
h\ EiZin = —EiCiro —
2

- 1 -
EtOt—i—l - _EtCt-i-Q - )\
2

=07 2.42
AQ Q t ( )

due to (2.32d). Substitution of this solution for E,C,.1 into (2.41)
results in:
1 q2 q2 0

Co=—ECio— | =+221|27,.
t 32 tCgo {)\24‘)\2)\2} t

We can use (2.42) to get an expression for Cy13 and so on up to
period t + 7:

T—1

X I 2 q2 0 .
Ci=|—| BECL,— = — | Z. 2.43
t {)\2] Gt N ; [)\2] t ( )

Suppose that the sequence

1 R o9
{ A_EEtOH—T }TZO

converges towards zero for 7 — oo. This is not very restrictive:
since 1/As < 1, it is sufficient to assume that E,C,., is bounded.
Intuitively, this assumption rules out speculative bubbles along
explosive paths and renders the solution unique. In addition, it
guarantees that the transversality condition (1.25) is met. In this
case we can compute the limit of (2.43) for 7 — oo:

~ Q2//\2 =
C=——""F - 7.
' 1 - (Q/)\z) '

We substitute this solution into the second equation of (2.38),

(2.44)

15 We denote the elements of T~! by (¢¥).
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Cr=t" K, + t2Cy,
to get the solution for C, in terms of K, and Z;:

N 2t G2/ N2 >

Ci=— — K;— L. 2.45
e P )
::h?( ::hg

From the first equation of (2.37),
_ 1 - _ _
Ki = EKt = Ci+ [ 2,

we can derive the solution for K, ;:

_ 1 - _ _ _
K= EKt - gh?(Kt + tht2+th
-G,

K1 = (% - h?{) K+ (f - hg) Zy.
————

::h§ ::hIZ{
Thus, given a sequence of shocks {e}L, and an initial K, we
may compute the entire time path of consumption and the stock
of capital by iteration over

ét = h?(Kt + thty (246&)
Ky = hig K, +hs Z;, (2.46b)
Zt+1 = QZt + €t41- (246(3)

The Gauss program Ramsey3a.g computes the linear approxima-
tions of the policy function of the stochastic growth model from
Section 1.3 along the lines described above. The utility function
is parameterized as u(C) = [C*™" —1]/(1 —n) and the production
function as f(K) = K. The program shows how to derive the
coefficients of the matrices in equation (2.34) by using numeric
differentiation. In the case with logarithmic preferences, complete
depreciation 0=1, a = 0.27, = 0.994 0 = 0.90, and o = 0.0072
the program delivers the following policy functions:
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C, = 0.736 K, + 0.4507,
K1 = 0.270K, + 0.1657,.

In this case, the exact analytic solution is

Cy = 0.268 2, K27,
K = 0.732Z, K

Figure 2.3 shows the histograms of the distribution for the cap-
ital stock that result from the simulation of both solutions. The
simulations use the same sequence of shocks to prevent random
differences in the results. By and large, the linear model implies
the same stationary distribution of the capital stock as does the
true, non-linear model.

Frequency in Percent

0.0

0.154 0.158 0.162 0.166 0.170 0.174
Capital Stock

Figure 2.3: Stationary Distribution of the Capital Stock from the
Analytic and the Linear Approximate Solution of the
Stochastic Infinite-Horizon Ramsey Model

In most applications we want a unit free measure of deviations
around the deterministic steady state. Given the linear approxi-
mations from above, this is easy to obtain: Just divide both sides
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of the policy function by the stationary value of the respective lhs
variable and rearrange. For instance, using (2.46a), we may write:

A C’t—C’*_th*Kt—K* th* Ly — L~

G G o KK Z R 02 2 T
CT T TWe ke Moz
— ——
=K =7

Since In(X,;/X*) ~ (X; — X*)/X*, this is a log-linear approxima-
tion of the policy function for consumption that relates the per-
centage deviation of consumption to the percentage deviations of
the stock of capital and the productivity shock, respectively.

In the next subsection we basically use the same steps to derive
the policy functions for the general system (2.23). If you dislike
linear algebra, you may skip this section and note that the pro-
gram SolveLA performs the above explained computations for the
general case. The program requires the matrices from (2.23) as in-
put and returns matrices L;'- that relate the vectors uy, A; and x;11
to the model’s state variables in the vectors x; and z;.

2.4.2 The General Method

In this subsection we consider the solution of a system of lin-
ear stochastic difference equations given in the form of (2.23),
which derives from the LQ problem. There are related ways to
state and solve such systems. The list of references includes the
classical paper by BLANCHARD and KAHN (1980), Chapter 3 of
the book by FARMER (1993), the papers of KING and WATSON
(1998), (2002), KLEIN (2000) and the approach proposed by UH-
LIG (1999). Our statement of the problem is the one proposed by
BURNSIDE (1999), but we solve it along the lines of KING and
WATSON (2002).

The Problem. Consider the system of stochastic difference equa-
tions (2.47):
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Cuut == Cx)\ |:§i:| + szt, (247&)
Do E, [;“iﬂ + By R’j = DBy + Fou, (2.47D)

+ DzEtZt—H + Fzzt'

To ease notation we use n(x) to denote the dimension (i.e., the
number of elements) of the vector x. We think of the n(u) vector
u; as the collection of variables that are determined within period
t as linear functions of the model’s state variables. We distinguish
between three kinds of state variables: those with given initial con-
ditions build the n(z) vector x;; the n(\) vector A; collects those
variables, whose initial values may be chosen freely. In the LQ
problem these are the costate variables. In the stochastic growth
model it is just the Lagrange multiplier of the budget constraint.
Purely exogenous stochastic shocks are stacked in the n(z) vector
z;. We assume that z; is governed by a stable vector autoregres-
sive process of first-order with normally distributed innovations
€

zy =1z 1 + €, €~ N(07 2)- (2-48)

Stability requires that the eigenvalues of the matrix II lie within
the unit circle.

System Reduction. We assume that the first equation can be
solved for the vector wu,:

Xt

u; = C’z:lcx)\ |:At

} +C1C Lz (2.49)

Shifting the time index one period into the future and taking
expectations conditional on information as of period ¢ yields:

Etut+1 = Cu_loa;)\Et |:§7::1:| -+ OJICZEtZt+1. (250)

The solutions (2.49) and (2.50) allow us to eliminate u; and E;uzyq
from (2.47b):
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Doy — DuC Cop) By |3 = = (Far — FuCL'Chp) |V
(Dur — D.C m[Am (For ~ FuC7 ) [ X

+ (Dz + DuCu_lCz> Etzt+1

+ (F. 4+ F,C.'C.) 7,
Assume that this system can be solved for Fy(x;11, Ar+1)’. In other
words, the matrix D,y — D,C;1C,, must be invertible. Using

Eyz;1 = Tlz;, which is implied by (2.48), we get the following
reduced dynamic system:

5 R:j —w M | Ra,
W == (Dar — DuCy'Cn) ™ (Fur — FUC'Cn) |
R= (Dyy— D,C;'Cpp) ™
x [(D. + D,C'C.) 1+ (F. + F,C,'C.)] .
(2.51)

Change of Variables. Consider the Schur factorization of the
matrix W:

S=T"'WT,

which gives raise to the following partitioned matrices:

_ Sxx S:E)\
s= % )
AT T Wy Wan| |The Tanl|”
71 W T

We assume that the eigenvalues of W appear in ascending order on
the main diagonal of S (see 11.1). To find a unique solution, n(z)
eigenvalues must lie inside the unit circle and n(\) eigenvalues
must have modulus greater than one. In the new variables

[2] - [;* ;i] [iﬂ (2.53)
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the dynamic system (2.51) can be rewritten as
itJrl S:E:E Sx)\ Xy Qx:|
E |« = |+ Zy,
' |:At+1:| { 0 SM] {AJ {Qx ' (2.54)
Q=[Qu, Q' =T7'R.

Policy Function for ;. Consider the second line of (2.54),
which is a linear system in A alone:

Etj\t+1 = S + Qazi. (2.55)
Its solution is given by:
A = Dz, (2.56)

There is a quick and a more illuminating way to compute the
matrix ®. Here is the quick one: Substitute (2.56) into equation
(2.55) to obtain

Ei®z,, = ®llz, = S, Pz + Qrz;.
Thus, ® must solve the matrix equation
DI = S\, @ + Q).

Applying the vec operator to this equations yields (see the rule
(11.10b))

vec d = [H/ & In()\) - In(z) & SA)\]_I vec Q.

One may also compute the rows of the matrix ® in the following
steps: The matrix Sy, is upper triangular with all of its eigenvalues
1; on the main diagonal being larger than one in absolute value:

M1 S12 .-+ Sia0)

0 p2 .. S
S = o .

0 0 ,un()\)
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Therefore, the last line of (2.55) is a stochastic difference equation
in the single variable A, just like equation (2.40):

Eio) 41 = tn()An) ¢ + q;(A)Zt, (2.57)

where q, o) denotes the last row of the matrix (). Note, that

An(n)t — as every other component of ;\t — may be a complex
variable. Yet, since the modulus (i.e., the absolute value) of the
complex number i,y is larger than one, the sequence

1 ) 00
{ = Et)\n(k) t+7'}
/‘Ln(k) =0

will converge to zero if the sequence

{Etj\n(k) t+1 } 0

is bounded (see Section 12.1). Given this assumption, we know
from equation (2.44) that the solution to (2.57) is a linear function
of Zy:

Ayt = (@n) 1 Pny2s - - an()\),n(z)): Zt.

/
¢n()\)

To determine the yet unknown coefficients of this function, i.e.,
the elements of the row vector qb;()\), we proceed as follows: we
substitute this solution into equation (2.57). This yields:

¢;1(A)Etzt+1 = Mn(k)gb;()\)zt + q;()\)ztv
(DI = Dl hin(n) Ze = dpn e,
¢;(A) (H - Mn(,\)fn(z)) Z; = q:z(,\)zt,

where the second line follows from (2.48). Equating the coefficients
on both sides of the last line of the preceding expression gives the
solution for the unknown vector @,,,):

-1
Oy = Doy (T =ty Ing)) - (2.58)
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Since the eigenvalues of Il are inside the unit circle, this solution
exists.
Now, consider the next to last line of (2.55):

Etj\n(k)—l t+1 = ,U/n()\)—l;\n()\)—lt + Sn(A)—1,n()) 5\n(m + q;L()\)flzty

/

Etj\n()\)fltJrl = ,Un()\)flj\n()\)flt + Sn(A)—1,n(\) ¢n(,\)zt + q;(,\)_ﬂt-

The solution to this equation is given by the row vector gb;()\)fl.
Repeating the steps from above, we find:

-1
Briny-1 = (Dopy1 T Sn)=100) Priy) (= ptny—11niz)) -
(2.59)

Proceeding from line n(\) — 1 to line n(\) — 2 and so forth until
the first line of (2.55) we are able to compute all of the rows ¢;
of the matrix ®. The respective formula is:

n(\)
= |di+ D s | (1= plu) ™
j=i+1

i=nA),n\)—1,..., 1.

(2.60)

Given the solution for A; we can use (2.53) to find the solution
for A; in terms of x; and z;. The second part of (2.53) is:

Xt = T)\xxt + T)\)\At.

Together with (2.56) this gives:

A= — (T T %, + (TV) D, (2.61)
P A

T z

Policy Function for x;,;. In obvious notation the first part of
(2.51) may be written as:

Xt+1 = W;m;Xt + Wx)\At + Rth.

Substitution for A; from (2.61) gives:
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xie1 = (Waw = War (T%) ' T)

-

N (2.62)
+ (Wr (M) " @+ R ) 20

J/

-~

Lz

z

The expression for L7 may be considerably simplified. In terms of
partitioned matrices the expression W = T'ST~! may be written
as:

me Wx)\ o Txm Tx)\ Sxx Sx)\ T T:v)\
Wie War]l [T D] | 0 S [T TM)°

which implies:

Wa::v - jﬁ:v:v‘g:v:vjﬁ:mj + TacacS:v)\TAx + T:UASAATA$7
Wx)\ - TxxSxxTx)\ + TxxSx)\T)\)\ + T;t)\S)\)\T)\)\'

Substituting the rhs of these equations into the expression for L,
from (2.62) gives:

Ls = TyuSe (T = T2 (1) 7 7).

Since
Tmc Tx)\ B T T:v)\ -1
T)\x T)\)\ - TA:c T)\A

the formula for the inverse of a partitioned matrix (11.15a) im-
plies:

(Too) ™' =T — T (TM) 7 T,
Putting all pieces together, we find:

LY =T, Sy Tt
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Policy Function for u,;. Using equation (2.49) the solutions for
x; and Ay imply the following policy function for the vector uy:

ut — Ciu—lcva»\ |:In(93):| Xt

Ly
e (2.63)
+ ((J;leA {0”(2’?”(”} + (J;l(Jz) Z;.
- . ,

Implementation. Our Gauss program SolveLA performs the
computation of the policy matrices according to the formulas
given by equations (2.61), (2.62), and (2.63). It uses the Gauss
intrinsic command Schtoc to get the matrices S and T'. However,
the eigenvalues on the main diagonal of S are not ordered. We use
the Givens rotation described in Section 11.1 to sort the eigen-
values in ascending order. The program’s input are the matrices
from (2.47), the matrix II from (2.48), and the number of elements
n(zx) of the vector x;. The program checks whether n(z) of the
eigenvalues of W are inside the unit circle. If not, it stops with an
error message. Otherwise it returns the matrices L%, L7, L, L2,
LY and LY. A second version of this program, SolveLA2, uses the
Gauss foreign language interface and calls a routine (written in
Fortran) that returns S and 7" so that the eigenvalues of the com-
plex matrix S with modulus less than one appear in the upper left
block of S. This routine in turn calls the program ZGEES from the
Fortran LAPACK library. Our Fortran version of SolveLA also
uses ZGGES to get the Schur decomposition with sorted eigenval-
ues. The Gauss version of SolveLA (and SolveLA2) also solves
purely deterministic models. Just set the matrices C,, F,, D, and
IT equal to the Gauss missing value code.

The matrices that are an input to both programs can be ob-
tained in two ways. The first and probably more cumbersome
approach is to use paper and pencil to derive the coefficients of
the matrices analytically. If the differentiation is done with re-
spect to the (natural) logs of the variables, SolveLA returns the
coefficients of the log-linear policy functions. Otherwise the coef-
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ficients refer to the linear approximation. One may, however, also
use numeric differentiation to obtain the matrices from (2.47). We
provide an example in the Gauss program Ramsey3a.g where we
show how to solve the stochastic growth model by using SolveLA.

2.5 Quadratic Approximation

In this section we consider quadratic approximations of the pol-
icy functions of DGE models. We introduce you to this topic in
the next subsection. Then, we consider two examples before we
provide the general algorithm in Subsection 2.5.4.

2.5.1 Introduction

We begin with the quadratic approximation of the solution of a
system of static equilibrium conditions. Consider the equilibrium
condition g(z,y) = 0 and suppose that a solution exists at (z*, y*).
Let y = h(x) be the solution in an € neighborhood of z*. A second-
order Taylor series approximation of h at x* is given by

1
h(x* +€) ~y* + h'(x%)e + i(h”)Q(x*)EQ.
Differentiating g(x, h(x)) once provides

g1(z, h(x)) + go(z, h(x))W (). (2.64)

At (x*, y*) this expression must equal zero, from which we obtain
the solution
:L,* *
h,(l‘*) _ _gl( *7y*)'
g2(x*, y*)
Differentiating (2.64) again and setting the result equal to zero
yields:
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g1 + (g2 + g21)0 + 922(h/>2
g2

This formula still looks pretty simple. Though straight forward,
the generalization to the case of n exogenous and m endogenous
variables g(x,y) = 0,,x1 produces formulas with lots of indices.
First note that in this context the quadratic approximation of the
solution h?(x), j =1,2,...,m is given by

h”(I*) _

N . ) 1 .
B (x) =k (x*) + hix + éx’Hﬂx, (2.65)
where b = [h] ki, ... ] |" is the vector of linear coefficients

and H’ = (h),) is the n-by-n matrix of quadratic coefficients. The
vectors h? are determined from the matrix equation

-1
h, = —D,'D,

where Dy (Dy) is the matrix of partial derivatives of g(x,y) with
respect to the variables in the vector y (x) (see equation (11.38)).
Note, that a single element in this matrix equation is given by

O—gxkxh +Zgy1Xh a:k’

1=1,2....m, k:1,2,...,n.

Differentiating this expression with respect to variable z; provides

_ . j l N j l
0= gikivi + Z g;kylhxi + Z gzj!lhivkévi + Z g?JJzﬂfihﬂ%
=1 =1 =1

+iigzj/zys :Stzhicka j=1....m;i,k=1,...,n.

s=1 [=1

These mn? equations can be arranged to n? matrix equations in
the coefficients h{;kwj, 7 =1,2,...,m. Due to the symmetry of the
Hesse matrices n(n+1)/2 of these equations are redundant. As you
will see in the next examples, since the structure of the equilibrium
conditions of DGE models is not as simple as g(x, h(x)) = 0,,x1,
the respective formulas to compute the Hesse matrices H’ are
more involved.
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2.5.2 The Deterministic Growth Model

We return to the deterministic growth model considered in Sec-
tions 1.2 and 2.1. We let K,y = h*(K;) and C; = h°(K;) denote
the policy functions for the next-period capital stock and con-
sumption, respectively. For both functions we seek a second order
approximation at the stationary solution K* of the form

_ _ 1 _
K= tht + ithKtQ’
_ _ 1 _

Ct — h?(Kt + éh?(KKf?

where h'- and h. ., i € {K,C} denote the first and second deriv-
ative of the policy function of variable ¢ with respect to the stock
of capital K. Of course, all derivatives are evaluated at the sta-
tionary solution K*. To obtain the coefficients h% and hi -, we
use a more general exposition. Observe that the resource con-
straint ¢g'(-) and the Euler equation for the optimal next-period
capital stock ¢*(+), equations (2.1a) and (2.1b), have the following
structure:

Jg'(K,C,K' C"
= ¢'(K,h°(K), k" (K),h° (¥ (K))) =0, i=1,2,

where we have omitted the time indices. To distinguish between
current period variables and next-period variables we used a prime
to denote the latter. Differentiating with respect to K yields (we
suppress the arguments of g but not of h?)

9k + 965 (K) + giehig (K) + gohie (KN hig(K) =0, (2.66)
i=1,2.

We have already solved these two equations in Section 2.1, so let
us assume here that we know A% and h%. To obtain equations
in b, and h% ), we must differentiate (2.66) with respect to K.
This yields:
2
g0+ 9ehk 96+ 960 (hi) ] lhﬁz{] _ [hkH(g")hk

_ (267
g% + g2 h% g3 + gk (h§)2 hx {h};H(g?)hK] (267)
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where

A Q%K 9@(0/

hﬂ = [1,h%,h§,h%hﬂ . H(g") := : : :
Jork - Yoo

Since (2.67) is a system of two linear equations it is easily solved
for K, and h%,. Usually, we will use numeric differentiation
to obtain the coefficients of equation (2.67). If u(C) := (C*™7 —
1)/(1 —n) and f(K) = (1 —0)K + K?, the matrix on the lhs of
(2.67) is given by

1 1
[[nhg +aB(l - a)C (K2 g [(hE)* - 1]]
and the vector on the rhs, say b, has elements
b = a(a—1)(K*)*?

and
by = (1) [()* = 1] ()
+aB(1—a) (K2 (hff)* (2nh?« +2- %Oé) -

In the Gauss program Ramsey2b.g we compute the coefficients of
the quadratic policy functions using both analytic and numeric
derivatives. Figure 2.4 displays the policy function for consump-
tion from the linear, the quadratic solution and the analytic solu-
tion (v = 0.27 and § = 0.994).

To compare the accuracy of the linear with the accuracy of the
quadratic approximation this program also computes the residuals
of the Euler equation (2.1b) over a grid of 200 points in the interval
[0.9K*, 1.1K*|. For the parameter values @ = 0.27, § = 0.994,
n =2, and 0 = 0.011 we find that the maximum absolute Euler
equation residual from the linear solution is about 13 times larger
than that obtained from the quadratic policy function which is
2.4 x 1075, and, thus, very small. We also find that there is no
noteworthy difference in accuracy, if we use analytic instead of
numeric derivatives.
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Figure 2.4: Policy Functions of Consumption of the Deterministic
Growth Model

2.5.3 The Stochastic Growth Model

The Framework. We return to the stochastic growth model con-
sidered in Sections 1.3 and 2.4.1 assuming u(C) = [C*™7—1]/(1—
n) and f(K) = K* As in the previous subsection, we drop the
time indices from all variables and use a prime to designate vari-
ables that pertain to the next period. This allows us to the write
the equilibrium conditions as'®

0=FE¢'(K,C 2z K ,CZ), i=12, (2.68a)
C = hC(K,Z,O'),
C'=hYh"(K, z,0),7, 0),

16 You may probably wonder why we use z = In Z as a state variable and not
Z itself. In the present context, in which we know what the equilibrium
conditions look like, we could indeed have used Z. Yet, when writing a
general purpose routine, we have no information about the structure of
the equilibrium conditions. In this case, we are bound to assume that the
shocks evolve according to a linear first-order autoregressive process.
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K'=h"(K, 2, 0),
7 =pz+40€, €~ N(01),

where
(V=K —(1-0)K —eK*+C, (2.68Db)
() =0 — B(C') (1 S+ aez/(K’)a_l) . (2.68¢)

The operator E denotes expectations with respect to information
available at the current period.

As in Section 2.4.1 we consider the model in a neighborhood
of o = 0, where it reduces to the deterministic growth model
with stationary solution (K*, C*, z* = 0) determined by equations
(2.33). For i € {C, K} we look for quadratic approximations of
the policy function h® given by

WK,z 0)=h(K* z*,0=0) (2.69)

+ R K +hz+hic
] e Mo Mg | [K
[K’ 27 U] ZZK hzzz hzzo' z )

hé’K thz hfm’ o
where the bar denotes deviations from the stationary solution.
Note that the Hesse matrix in (2.69) is a symmetric matrix, i.e.,
v = Dy g,k € {K, 2,0} To determine the coefficients of these
functions we closely follow SCHMITT-GROHE and URIBE (2004).7
As in Section 2.4.1 we differentiate (2.68a) with respect to K,

z, and o. To represent the respective formulas we define the vector
function

he(K, z,0)
h = hE (K, z,0)
WK (K, 2,0, 02 + o€ )

with the vector of derivatives denoted by hg, h,, and h,, re-
spectivley. In addition, we use gfi] for the (column) vector of first

17 In a recent paper LOMBARDO and SUTHERLAND (2007) outline an algo-
rithm that also provides second-order accurate solutions. Their procedure
relies on methods developed for the solution of linear models.
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derivatives of ¢* with respect to the indices in the vector i and
gfiﬂ[iz} for the matrix of second partial derivatives with respect
to the indices in i; (for the rows of the matrix) and iy (for the
columns). To avoid confusion, we denote the transpose of a vector
by the superscript 7.

Consider the derivatives of conditions (2.68a) with respect to
K, z, and o:

0=~F { [17 hzﬂ ng,C,K',cq} ; (2.70a)
0=E{[bl,1,0] gic.xrcrznn} (2.70b)
0=E{[h;,¢] gicrcr2n}- (2.70c)

Since we have already seen how we can compute the coefficients
of the linear part of (2.69) in Section 2.4.1, we proceed to the
coefficients of the quadratic part. For the following derivations we
will keep in mind that we found A! = 0.

Coefficients of the Hesse Matrices. Differentiating equation
(2.70a) with respect to K provides two linear equations in the
coefficients Rl

0= hj[;Kg[C,K’,C/] + [17 h?(] JIK.C,K',C"[K,CK",C"] |:th| , (2.71a)

where hy g is the vector of second derivatives of h with respect
to K. This equation corresponds to equation (2.67) in the deter-
ministic case.

To determine hi;,, we differentiate (2.70a) with respect to z,
yielding

T TV i hy
0 =hy.gicxcn+ L] gk crrenerors 1 (2.71b)
+ o [L, k] gl o xcr cnpen-

The first term in this equation equals

(9icr + 96h5%) Pics + (96 + 09irhic) iz + gonhich sy

Thus, (2.71b) provide two linear equations in A%, and h% .
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Differentiating conditions (2.70a) with respect to ¢ provides
conditions on hi:

0= E{hﬂagfc,fwcq + [1: h% 9ik.c.xr0ne.k o ho (2.71c)

+ [1, h£:| g[iK,C,K/,C’][Z/]el}'
The expectation of the first term in curly brackets is

E{hi,gicxront = (9 + 960%) ik + (96 + gerhic) PSs

since h = 0 and E(hEhS ,€') = 0. At the stationary solution
the second term in (2.71c) is obviously zero, since h, is a vector
with zeros. The expectation of the third term is also zero since
E(¢') = 0. Thus, system (2.71c) is a linear homogeneous system
with solution hi., = 0.

To determine the coefficients A’

* ., we differentiate (2.70b) with
respect to z. The result is:

0= hzzng,K/,C’}
h,
=+ [hZ7 1, Q] g[ZC,K’,C’,z,z’][C,K/,C’,z,z’] 1 . (271d)
0

The first term on the rhs of this equation equals

h.gic ko on = 9k + 9oh%) Wz + (96 + 96:0°) h 4
+ genhly (RS chl +20h%,) .

Differentiating (2.70b) with respect to o provides

0= E{hzag[ic,K',c']

h,

+ [hZ7 17 Q] ng,K’,C’,z,z’][C,K/,C’,z’} |:€/:| } (2716)
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As in equation (2.71c) all terms except the coefficients of h%_ and
h%, are equal to zero. Therefore, hi, = hy, = 0.

Finally, we turn to the coefficients h! . They are obtained from
differentiating equations (2.70c) with respect to o. This delivers:

0= E{haTang,K/,Cq

7 hU
+ [hgj, 6/] g[C,K/,C/,Z/}[C,K’,Clyzl] |:€/:| }, (271f)
hZa = [hgav hfav hga + h%hfa + A:| )

A= hy (h?(th + W g + h?(o‘)
+ € (hGchl +hG € + hS,) + hGchl + hi.€'.

To evaluate this expression, observe that

1. at ¢ = 0 the vector of derivatives h equals [0, 0, h$e], since
ht =0,

2. h; =hi, =0forie{K C}andje{K,z},

3. E(¢)*=1and E(¢) = 0.

Thus, equations (2.71f) reduce to

0= (gis + 9orhi) Mo + (9¢ + 961) Py
+ gch/cl(hg)Q + QQZC/Z/hg + g;/zl + gzc/hgz

Our Gauss program Ramsey3b.g computes the quadratic approx-
imation of the policy function from these formulas. It employs
numeric differentiation to compute gf_] as well as the Hesse matri-
ces that appear in (2.71).

Table 2.1 presents the coefficients from this exercise for the
parameter values a = 0.27, § = 0994, n = 1, and § = 1.
The second column shows solutions obtained from using the
Gauss commands gradp and hessp that provide forward differ-
ence approximations of the first and second partial derivatives,
respectively.!® Our own procedures CDJac and CDHesse imple-

18 See Section 11.3.1 on numeric differentiation, where we explain forward dif-
ference as well as central difference formulas for the numeric computation
of derivatives.
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Table 2.1

Coeflicient Forward Central Analytic

Differences Differences solution
hE 0.270000 0.270000 0.270000
hE 0.164993 0.164993 0.164993
hE 5 —1.194628 —1.194595 —1.194595
h¥, 0.269781 0.270000 0.270000
nE, 0.156787 0.164995 0.164993
hE —0.023160 0.000001 0.000000
hé 0.736036 0.736036 0.736036
RS 0.449782 0.449781 0.449781
hS g —3.256642 —3.256537 —3.256538
h%, 0.735831 0.736036 0.736036
r$, 0.479034 0.449782 0.449781
hS, 0.023160 —0.000001 0.000000

ment central difference formulas that involve a smaller approx-
imation error. The fourth column presents the coefficients com-
puted from the quadratic approximation of the analytic solutions
hE = aBe*K® and hY = (1 — af)e* K<, respectively. There is no
noteworthy difference in the linear coefficients as well as in Al ..
There is a small difference between the solutions for h% ,, but the
numeric value of A’ is far from its true value of zero when we
use forward difference formulas. This imprecision can also be seen
from the residuals of the Euler equation

Cy"=EBCY (1 =0+ a(e? 7 )Ki). (2.72)

We compute the residuals on a grid of 400 equally spaced points
on the square [0.9K™*, 1.2K*| x [In(0.95),In(1.05)]. With respect
to the maximum absolute value of these residuals the solution
displayed in the second column of Table 2.1 is about 2.5 times
worse than the solution based on the numbers in column four.
The Euler equation residual from the linear solution is almost 37
times larger than the Euler equation residual from the quadratic
solution displayed in column four. When we use the parameter
values from Table 1.1 for «, 3, 1, §, 0, and o, the linear solution
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is about 13 times less accurate than the quadratic solution, whose
maximum absolute Euler equation residual is 4.6 x 107°.

Computation of the Euler Equation Residual. Here we
briefly explain our computation of the residual in the stochastic
growth model. Given the approximate policy functions hE and h¢
the term to the right of the expectations operator F; in equation
(2.72) can be written as

&K, Z,0,€) = (EC(EK(K, Z,0), ¥+, a)) -

X (1 — § + ae?toe <izK(K, Z, a))a_l) :

For given values of K, z, and ¢ this is a function of the stochastic
variable € that has a standard normal distribution. Therefore, the
rhs of equation (2.72) is given by

[

e~ 5
V2T

We use the Gauss-Hermite four point integration formula given in
equation (11.77) to compute this expectation. Given A, the Euler
equation residual at (K, 7) is defined as

A::/ O(K,Z,0,€) de.

- —1/n
RS
hC (K, Z, o)

2.5.4 Generalization

Framework. Equations (2.68a) are readily generalized. Just re-
place K by an n(x) vector x of state variables, C' by a n(y) vector
y of control and costate variables, Z by an n(z) vector of shocks
z, and € by a n(z) vector € of N(0,), [, () distributed inno-
vations so that z; = Iz, 1 + 0Qe. The n(z) by n(z) matrix €2
allows for possible correlations between the elements of z. To see
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this, note that the conditional variance of z; given z, ; is given
by E(c$Q€)(cQ2e)’ = 02Q0T, where the superscript T' denotes the
transposition of a matrix or a vector.

The n(z) + n(y) equilibrium conditions are

0=FE¢(x,y,zx,y,2z), i=12 ..., n() +nly), (2.73a)

where
y =h'(x,2,0), (2.73b)
x' =h"(x,z,0), (2.73¢)
y' =h'(x,7, o), (2.73d)
z' =1z + 0Q¢€’ (2.73e)

The quadratic approximation of the policy function h?, i €
{Z1,.. ., Tn@), Y1, .-, Un(y) } is an expression of the form

h' = h'(x*,z",0 = 0) + (1) E]

1 Hi, H, O
+-[x".2", 0] |H}, Hi, O
2 0 0 Hi

-~
Hi

(2.74)

Q NI X

N

The row vector 1' holds the coefficients of the linear part and
the matrices H. ., Hi,, and H., contain the coefficients of the
quadratic part with respect to the state variables x and z. As
before, the bar denotes deviations from the equilibrium x* and
z*, respectively. The scalar H!_ is the coefficient of 0. Note that
in the general model both the linear coefficients of o are zero and
the matrices H:_ and H!_  are zero matrices as in the example of

the previous subsection. '

Computation of the Quadratic Part. To obtain these matri-
ces we proceed as in our example. Given the vector

19 See SCHMITT-GROHE and URIBE (2004) for a proof.
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[ hr(x,z,0) ]

h¥nw (x,z, o)
h*'(x,z,0)

: , (2.75)

h*n@) (x, 7, 0)
¥ (x', 2, o)

| W) (X!, 2!, o) |
we use h; to denote the vector whose elements are the derivatives
of the elements of h with respect to variable i.

We begin with the coefficients of the matrices Hyx. We dif-
ferentiate equations (2.73a) with respect to x; and evaluate the
result at the point (x*,z*, 0 = 0):

0=1[L hylg, oy i=12,... n(@)+n). (2.76)
Differentiating this expression with respect to xy provides a set of
(n(z) + n(y))n(z)? conditions in the unknown coefficients of the
matrices H!_:

. . 1
T i _ T 7
hxjxkg[xjvyvxlvyl} - |:1’ hx]:| g[xjvyvxlvyl} [xkvyvxlvy/] |:h33k:| ) (277&)

i=1,....nx)+ny),j=1,....,n(x), k=1,... ,n(z),
where

hI = [, B R RS AL AL L (27)

n(z)
1 _ Yi %1
A= nvn
=1
and
T _ Y1 Yn(y) 1 a1 Tn(x) 2 2
hxjxk - |:hxjxk7 e hxjxk 9 hxjxk7 ey hétjxk ) Az P An(y)] )

(2.77¢)

n(x) )
A7 =D RERZL, Y Ry RV, b
=1 =1 =1
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Different from our example in the previous subsection the system
of equations (2.77a) cannot be factored into smaller systems in
the pairs of coefficients (z;, x), since all the unknown coefficients
h¥:.. appear in each equation. The huge linear system (2.77a) may

be written as Aw = q, where

HY

xT
W = Vvec [H“ coy Hyxx®, HYL

XX

o HeM].

The element hg’, in this vector has the index iz(z,j,k) = (1 —
Dn(x)?+(j—1)n(z)+k. The index of h¥:, is iy(i, j, k) = n(z)*+
ixz(i, 7, k). Using the functions iz and iy it is easy to loop over
j=1,...,n(x),k=1,...,n(z),and i = 1,... ,n(x) +n(y) to set
up the matrix A and the vector q from (2.77a).

The elements of the matrices H', solve

- h -
1
T i _ T i
hszkg[y,x/7y/] == [th]} Ilwjy %'y ly X'y 2.2 W'lk " (2.78)
_Wn(z)k_

i=1,...,n(x)+ny),j=1,....,n(x), k=1,...,n(2),

where 7, is the element in the [th row and kth column of the
matrix II from equation (2.73e). This system is derived from dif-
ferentiating (2.76) with respect to z;. The elements of the vector

h,, are the derivatives of (2.75) with respect to z:
T ._ Yn(y) 1 Tn(z) A3 3
hzk P [hg}i,...,hzk Y 7hZ;7"'7th ,A:L,...,An(y)] 9

A=) T RERT 4> iy,
=1

=1

Differentiating the elements of (2.77b) with respect to z provides
the vector h, ., :

T Yn(y) pa Tn(y) 4 4
hszk T [hg;zka R hszi ) hx;zka ce h’sz:’l/c ) Ala SRR An(y)i| >
n(x) n(x) n(x) n(z)

4 . Yi 1,2y x] Yi Ty Yi
Ai T § hxlhszk + E hxj E hxl:trhzk + hxlzTﬂ-Tk?
=1 =1 r=1 r=1
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The system of equations (2.78) may also be written as Aw = q.
But note that different from (2.77a) the lhs of (2.78) not only
contains the elements of H!, but also terms that belong to the

vector q.
To obtain the matrices HY, we first differentiate (2.73a) with

respect to z; and then with respect to z,. The result is:

T i T
hZ]Zk [y x/7y/} - — |:th7 ]_7 7T1j, N 77Tn(z),j:|
_ th -
1
X gfy,x/,yﬁzwz’} [y x"y’ 25.2'] 7T'1k ’ (2.80)
_ﬂ-n(z),k_
T Yn(y T Tn(x) 5 5
!, = [hyk Y S N eI LG
5 i 1,T
Ai - Z hglhzjlzk
=1
+ Zhij Z 2@, Zlc . t Z hmzzr rk
=1 r=1
n(z) n(z) n(z)
D my | Dkl B Y R T
lzl 7’:1 7‘7

In the last step, we determine H!_. Differentiating (2.73a) twice
with respect to o yields

0= E{hyegly 0y}
hO'
T A6 6 i AY
+FE [ho AL An(Z)} Iy xy 2y xy' 2] : ’
A6

n(z)

= Zu}iSE;, (28]‘>
s=1
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where w;, is the element in the ith row and sth column of the
matrix Q from equation (2.73e). At the stationary equilibrium,
the vector h, is given by

h!=10,...,0, 0,...,0, AT, ... AT
N—_—— N —

n(y) elements n(x) elements

n(y) |
n(z)

A Z hYi Z Wsr€rs

since in the general model as well as in our example h¥' = hy’ = 0.
The vector h,, is given by

T Yn(y) T T (x) 8
h? = [hY, . B BT b A AT
n(z)
8 Yi [, Ts
Ai - E h:vshmf
s=1

n(z) n(z)

+ Z h:ts Z h:vsacrh§T + Z hacgz Z wrtet + h:ZI/:ZSU

n(z)

n(z) [ n(z) n(z) n(z)
Y D Swae | DBy B+ Z hYi Z Wi,
s=1 r=1 t=1 =1

t=1
n(z)
S S S o
s=1
Consider the expectation of the first term on the rhs of (2.81) and

note that

1. the vector gfy y] does not contain any stochastic variables,
2. in addition to hY' = 0 and hJ' =0 also Y, = hY, =0,
3. E(eie;) =0 for all i # j and E(eje;) = 1.

Therefore, we get
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L {hmfg [y, x",y’] }

= [RY, .. hoo” B, . hﬁg(’”) AL, An(y ] Gy ey
A? _ Z hyz hxs + hyz —+ Z Z ]’L Z WstWyt-
s—1 s=1 r=1 t=1

By using a well known property of the trace operator, the expec-
tation of the second term on the rhs of (2.81) equals®

( - 1)

1 7 6 6
tr g[y’,Z’Hy/,Z’]E [Alv .. A Al? ce An(z)}

n(y)’

\ n(z)] )

The expectation of the cross-products involved in this expression
are readily evaluated to be

E[ATAT] =) ") hviny Z WarWy
qg=1 s=1

n(z)

E [AZA?] - Z hyz Zws’rwjrv

Implementation. Our Gauss program SolveQA implements the
computation of the Hesse matrices H* in (2.74). It requires the
coefficients of the linear part, the matrices II, €2, the Jacobian
matrix of g stored in a matrix gmat, say, and the n(x) + n(y)
Hesse matrices of ¢* as input. The latter must be gathered in
a three-dimensional array hcube, say. The program returns two

20 The second term on the ths of (2.81), say a, is a scalar so that a = tr(a).
Yet, for any two conformable matrices A and B, it holds that tr(AB) =
tr(BA).
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three-dimensional arrays: xcube contains the n(x) Hesse matrices
H?" and ycube stores the n(y) Hesse matrices HY.

Of course, there is other software available on the world wide
web. SCHMITT-GROHE and URIBE (2004) provide Matlab pro-
grams that compute the matrices of the quadratic part in our
equation (2.74). An advantage of their program is its ability to
handle symbolic differentiation if you own the respective Matlab
toolbox. Other programs that can handle quadratic approxima-
tions are Dynare?! mainly developed by JUILLARD and Gensys
written by Sims.??

2.6 Applications

In this section we consider three applications of the methods pre-
sented in the previous sections. First, we solve the benchmark
model introduced in Chapter 1, second, we consider a simplified
version of the time-to-build model of KYDLAND and PRESCOTT
(1982), and third, we develop a monetary model with nominal
rigidities that give raise to what has been called the New Keyne-
sian Phillips curve.

2.6.1 The Benchmark Model

In Example 1.5.1, we present the benchmark model, in which a
representative agent chooses feed-back rules for consumption and
labor supply that maximize his expected live time utility over
an infinite time horizon. This section shows how we can obtain
linear and quadratic approximations of these feed-back rules by
using the methods introduced in Sections 2.2 through 2.5.

Linear and Quadratic Policy Functions. Our starting point
is the system of stochastic difference equations which we obtained

21 See the user’s guide written by GRIFFOLI (2007).
22 See KM, KM, SCHAUMBURG, and SIMS (2005) on this program.
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in Section 1.5. We repeat these equations for your convenience:?

0=c"(1—N)= — ), (2.82a)
0=0c (1= N,)PA=D=1 (1 — @)\ Z N7 k2, (2.82b)
0=akyy — (1—0)ke + ¢y — Z;N} k2, (2.82c)
0=\ —Ba "EX (1 -6+ aZi Nk - (2.82d)

Equation (2.82a) states that the shadow price of an additional unit
of capital, A\;, must equal the agent’s marginal utility of consump-
tion. Condition (2.82b) equates the marginal rate of substitution
between consumption and leisure with the marginal product of
labor. Equation (2.82c¢) is the economy’s resource constraint. Ac-
cording to equation (2.82d) the marginal utility of consumption
must equal the discounted expected utility value of the return on
investment in the future stock of capital. We complete the model
by specifying the law of motion for the natural log of the produc-
tivity shock z; :=In Z;:

Z = 0z1+e6, €~ N(00%). (2.82¢)

In Section 1.5 we explain the choice of the model’s parameters «,
G, 6, n, and 6. With these values at hand, we can compute the
stationary solution (k, A, ¢, N) from equations (1.46). The vectors
Xy, Wy, and Ay from equations (2.47) are then given by x, = k; — k,
A=M—ANw = [¢—¢N — N|, and zz = InZ;. In our
Fortran program Benchmark.for we use numeric differentiation
of (2.82) at (k, A\, ¢, N) to obtain the Jacobian matrix gmat. From
this matrix we derive the coefficients of the matrices C,, C,\, C.,
Dy, Fux, Dy, Fy, D,, and F,, that appear in (2.47). A call to
SolveLA returns the coefficients of the linear approximate policy
functions. To obtain the coefficients of the quadratic part, we
differentiate each equation of (2.82) twice using CDHesse. This

23 The symbols have the following meaning: C; is consumption, N; are work-
ing hours, K is the stock of capital, A; is the shadow price of an additional
unit of capital and Z; is the level of total factor productivity. Except for
At := A} Ay, the other lower case variables are scaled by the level of labor-
augmenting technical progress A; , that is, ¢; :== C;/A; and k= Ky /A;.
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provides the three dimensional array hcube that is an input to
SolveQA. Thus, it requires four steps to compute the solutions:

Step 1: solve for (k, A, ¢, n),

Step 2: write a procedure that receives the vector of 10 elements
(k,\,e,n, z, K N/ ;n' ) 2') and that returns the lhs of
(2.82),

Step 3: compute gmat and hcube by using CDJac and CDHesse,
respectively,

Step 4: set up the matrices required by SolveLA and SolveQA.

Linear Quadratic Algorithm. At first sight, it seems that the
law of motion of the productivity shock z; in equation (2.82¢) is
the only linear equation of the benchmark model. Yet, if we use
investment expenditures

it = ZtNtliakta — Ct (283)

instead of consumption ¢;, equation (2.82c) can be written as:

1. 1-96
kt-{-l = alt + kta (284)
which is linear in k.1, k¢, and 7;. Let x; := [1, ky, 2,/ denote the
vector of states and u; := [i;, Ny|" the vector of controls. Then, for

our model, the transition equation (2.31) is given by:

1 0 0 0 O 0
x1=10 (1—=90)/a 0| x4+ |1/a Ol u,+ |O]. (2.85)
0 0 0 0 0 €t
N ~~ d ——
A B

The remaining non-linearities are handled by the algorithm. The
current period return function in the scaled variables is given by:
g(X, u) = 1— (ethtliakta — th)l—n (1 — Nt>9(177))'
-1
You must write a subroutine, say GProc, that takes the vector
ybar=[1,k, z,i, N|' as input and returns the value of g at this
point.
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There is a final issue that concerns the appropriate discount
factor. The value function v that solves the Bellman equation

_ zpTl—a .« . - ! .
v(k, 2) = Tmax u (e N'"" k" + (1 — 0)k — ak’/,1 — N)
+ BB (K, 2)|]

is a function in the scaled variables. It is, thus, inappropriate to use
[ which pertains to the original variables. (3 is found by observing
that equations (2.82) solve the following scaled problem:

Sl I=nc1 _ N,)01=n)
max g [
c0,No P 1-— n

(2.86)
+ )\t (ZtNtl—O‘kg + (1 - (5)l€t — Ct — akt+1) :| },

B = Ba' .

Other Variables of Interest. Both the program SolveLA and
SolveQA provide approximations of the policy functions for k; 1,
¢, and N;. From these we obtain the solution for output y;, in-
vestment 7;, and the real wage w;, respectively, via

y, = Z,N} kL, (2.87a)
it =Yt — Ct, (2.87b)
Wy = (]_ — OZ)ZtNt_akg. (287C)

The program SolveLQA provides linear approximate solutions for
iy and N; from which we derive ¢; via equation (2.87b). Given ¢
the resource constraint (2.82c) yields the solution for k.

Time series for output 1, consumption ¢;, investment 4;, hours
Ny, and the real wage w, are derived by iterations that start at the
stationary solution k; = k. We use a random number generator to
obtain a sequence of innovations {¢;}7_ ;. The sequence of capital
stocks and the sequence of productivity shocks follow from

ki1 = fzk(kt, Zt),

t=1,2,....T -1,
Zi41 = 024 + €141,
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where ilk() denotes the approximate policy function for the next-
period stock of capital. Once we have computed the sequences
{ki}L | and {2} ,, the sequences for the other variables of the
model are obtained from the respective approximate policy func-
tions and from (2.87).

Results. Table 2.2 summarizes the results of our simulations car-
ried out with the Fortran program Benchmark.for. We used the
parameter values from Table 1.1. The length T of our artificial
time series for output, investment, consumption, working hours,
and the real wage is 60 quarters.?* The second moments displayed
in Table 2.2 refer to HP-filtered percentage deviations from a vari-
able’s stationary solution.? They are averages over 500 simula-
tions. We use the same sequence of shocks for all three solution
methods to prevent random differences in the results.

The first message from Table 2.2 is that except for the small dif-
ference in the standard deviation of investment of 0.01 between
the linear and the linear quadratic solution there are virtually no
differences in the second moments across our three different meth-
ods. There are, however, differences in accuracy. As explained in
Section 1.6.2, we use two measures of accuracy: the residuals of
the Euler equation (2.82d) and the DM-statistic.

The Euler equation residuals are computed over a grid of 400
equally spaced points over the square [k; k] x [z;Z]. We choose
2z =1n0.95 and Z = In 1.05 because in more than ninety percent
of our simulations z; remains in this interval. The largest interval
for the stock of capital that we consider is £ = [0.8; 1.2]k, where
k is the stationary solution. Yet, even the much smaller inter-
val [0.9; 1.1]k covers all simulated sequences of the capital stock.
We compute the Euler equation residual as the rate by which con-
sumption had to be raised over ﬂc(k, z) so that the lhs of equation
(2.82d) matches its rhs. The numbers displayed in Table 2.2 are
the maximum absolute values over the square indicated in the
left-most column of the table.

24 See Section 1.5 on the issues of parameter choice and model evaluation.
25 See Section 12.4 on the HP-Filter.
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Table 2.2

Linear Linear Quadratic Quadratic

Second Moments
Variable Sy Ty T Sz Tay Ty Sp  Tay Ty
Output 1.44 1.00 0.64 1.44 1.00 0.64 1.44 1.00 0.64
Investment 6.11 1.00 0.64 6.12 1.00 0.64 6.11 1.00 0.64
Consumption 0.56 0.99 0.66 0.56 0.99 0.66 0.56 0.99 0.66
Hours 0.77 1.00 0.64 0.77 1.00 0.64 0.77 1.00 0.64
Real Wage 0.67 0.99 0.65 0.67 0.99 0.65 0.67 0.99 0.65

Euler Equation Residuals

[0.90;1.10]% 1.835E-4 7.656E-4 1.456E-5

[0.85;1.15]k 3.478E-4 9.322E-4 4.085E-5

[0.80;1.20]% 5.670E-4 1.100E-3 8.845E-5
DM-Statistic

<3.816 2.0 1.3 2.7

>21.920 34 8.9 3.0

Notes: s;:=standard deviation of variable x, ry,:=cross correlation of variable x with
output, r5:=first order autocorrelation of variable . All second moments refer to HP-
filtered percentage deviations from a variable’s stationary solution. Euler equation
residuals are computed as maximum absolute value over a grid of 400 equally spaced
points on the square % X [In0.95;1n 1.05], where % is defined in the respective row
of the left-most column. The 2.5 and the 97.5 percent critical values of the x2(11)-
distribution are displayed in the last two lines of the first column. The table entries
refer to the percentage fraction out of 1,000 simulations where the DM-statistic is
below (above) its respective critical value.

First, note that all residuals are quite small. Even in the worst
case, the required change of consumption is merely 0.11 percent.
Second, and as expected from a local method, accuracy dimin-
ishes with the distance from the stationary solution. For instance,
consider the linear policy function. The Euler equation residual
over [0.85;1.15]k ([0.8;1.2]k) is almost two times (three times)
larger than the maximum residual over [0.9; 1.1]k. Third, the Euler
equation residuals of the linear quadratic approach are worse than
those of the linear approach. For the former, the maximum ab-



2.6 Applications 137

solute Euler equation residual over [0.9;1.1]k is more than four
times larger than the Euler equation residual of the linear solution
method. Fourth, although the quadratic policy function delivers
a more accurate solution than the linear policy function, the dif-
ference between the respective Euler equation residuals becomes
smaller as one moves further away from the stationary solution:
Over [0.9; 1.1]k the Euler equation residual of the linear solution
is more than twelve times larger than the Euler equation residual
of the quadratic solution. Yet over [0.8;1.2]k it is only six times
larger. Fifth, there are several possible ways to compute the Euler
equation residuals. For instance, since both the linear and the
quadratic perturbation method deliver a policy function for A, we
could use this function in the computation. We, however, used the
policy functions for consumption and hours and inferred A from
equation (2.82a), since the linear quadratic approach delivers only
policy functions for investment and hours. The difference is con-
siderable: When we use the linear approximate policy function for
A we find a maximum Euler equation residual over [0.9; 1.1]k that
is 26 times larger than that displayed in Table 2.2.

As explained in Section 1.6.2 (and more formally in Section
12.3), the DM-statistic aims to detect systematic forecast errors
with respect to the rhs of the Euler equation (2.82d). For this
purpose, we simulate the model and compute the ex-post forecast
error

e = fa "N\ (1 -0+ O‘Zt+1Nt1;1akg+_ll) — A

where ), is given by equation (2.82a). We use simulated time series
with many periods so that the asymptotic properties of the test
statistic will apply. The simulations always start at the station-
ary solution. To prevent the influence of the model’s transitional
dynamics on our results, we discard a small fraction of the initial
observations. In effect, we use 3,000 points. We regress e; on a con-
stant, five lags of consumption, and five lags of the productivity
shock and compute the Wald-statistic (which is the DM-statistic
in this context) of the null that all coefficients from this regres-
sion are equal to zero. We use White’s (1980) heteroscedasticity
robust covariance estimator. Under the null the Wald-statistic has
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a y2-distribution with 11 degrees of freedom. We run 1,000 tests
and computed the fraction of the DM-statistic below (above) the
2.5 (97.5) percent critical value (displayed in the first column of
Table 2.2). If systematic errors are not present, about 2.5 per-
cent of our simulations should yield test statistics below (above)
the respective critical values. Both, the linear and the quadratic
policy functions provide satisfactory results. Yet, the linear pol-
icy functions obtained from the linear-quadratic approach are less
good. The null is far more often rejected than can be expected,
namely in almost 9 percent of our simulations.

Finally, note that the second moments as well as the DM-
statistic depend on the random numbers used for the productivity
shock z;. Thus, when you repeat our calculations, you will find at
least small differences to our results.

2.6.2 Time to Build

Gestation Period. In the benchmark model investment projects
require one quarter to complete. In their classic article KYDLAND
and PRESCOTT (1982) use a more realistic gestation period. Based
on published studies of investment projects they assume that it
takes four quarters for an investment project to be finished. The
investment costs are spread out evenly over this period. Yet, the
business cycle in this extended model is similar to the business
cycle in their benchmark model with a one quarter lag. We in-
troduce the time-to-build assumption into the benchmark model
of the previous section. Our results confirm their findings. Nev-
ertheless, we think this venture is worth the while, since it nicely
demonstrates the ease of applying the linear quadratic solution
algorithm to a rather tricky dynamic model.

The model that we consider uses the same specification of the
household’s preferences and production technology as the model
in the previous section. The timing of investment expenditures
differs from this model in the following way. In each quarter ¢
the representative household launches a new investment project.
After four quarters this project is finished and adds to the cap-
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ital stock. The investment costs are spread out over the entire
gestation period. More formally, let S, i = 1,2, 3,4 denote an in-
vestment project that is finished after ¢ periods and that requires
the household to pay the fraction w; of its total costs. At any pe-
riod, there are four unfinished projects so that total investment
expenditures [/; amount to

4 4
L= wSu, Y wi=1 (2.88)
=1 =1

Obviously, the S;; are related to each other in the following way:

Slt+1 - SQta
Sat+1 = Sat, (2.89)
Szt+1 = Sat,

and the capital stock evolves according to
KtJrl - (1 - 5)Kt + Slt- (290)

First-Order Conditions. Since the model exhibits growth, we
transform it to a stationary problem. As in Section 2.6.1 we put
c = CyfAy, iy o= It/ Ay, by o= K /Ay, Noi= NAY, si = S/ As,
and B := [a'~". In this model, the vector of states is x; =
(1, k¢, S1t, Sot, Sat, In Z;]" and the vector of controls is w = [sy, Ny|'.
From (2.89) and (2.90) we derive the following law of motion of
the stationary variables:

1 0 0000 00 0
0 =2 1000 0 0 0
00 02100 0 0 0
Xip1 = 0 0 0 8 1 0 Xt + 0 0 Uy —+ 0 (291)
00 000 0 L 0
0 0 00 0 p 0 0 e

The remaining task is to compute the stationary equilibrium.
Consider the Lagrangean of the stationary problem:
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P EOZW{ (1= NP

I—mn
4
+ )\t (ZtNtliakta — Zwisit — Ct)

i=1
+ /yt((l — 6)kt + 81 — akt+1)},
where 7, is the Lagrange multiplier of the transformed constraint

(2.90). Differentiating this expression with respect to ¢;, Ny, sy
and k4 provides the following conditions:2°

A= ¢ (1 — NP, (2.92a)
Oc, oo
N =(1— ) Z;N; k7, (2.92Db)
0= Et[ — Wy — (B/a)wg)\tﬂ - (B/a)Qa)g)\Hg (2.92¢)
— (B/a)’wideys + (B/a)37t+3:|
0=E[— (B3/a)*vess + (B/a)' (1 — 6) Y44 (2.92d)

+ (ﬁ/a) )\t+4OZZt+4Nt1+4a kf+41] .

The first and the second condition are standard and need no com-
ment. The third and the fourth condition imply the following
Euler equation in the shadow price of capital:

0= Et{w4[(ﬂ~/a)(1 Nesr — A
+ws(B/a)[(B/a)(1 — 6) A2 — Mg
+ w2 (B/a)?[(B/a)(1 — 8)Aers — Avso]
+wi (B/a) [(ﬂ/a)(l — 0)Niga — A3
+(B/a) a>\t+4Zt+4Nt1+4“kf+41}

26 To keep track of the various terms that involve s and kg4, it is helpful
to write out the sum for ¢t =0,1,2,3,4.
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Stationary Equilibrium. On a balanced growth path, where
Zy =1 and A\ = Ay for all ¢, this expression reduces to

g:a—ﬁ(l—é)[

k a3 wr + (Q/B)“& + (G/B)ng + (a/5)3w4 )

(2.93)

Given a, [, ¢, and 7, we can solve this equation for the output-
capital ratio y/k. From (1—4§)k+s; = ak we find s; = (a+J—1)k,
the stationary level of new investment projects started in each
period. Total investment per unit of capital is then given by

. 4 4
1 .
% = E E W;S; = (a + 05— 1) E &Zﬁlwi.
i=1 =1

Using this, we can solve for

c Yy 1

ko k Kk
Since y/c = (y/k)/(c/k), we can finally solve the stationary
version of (2.92b) for N. This solution in turn provides k =
N(y/k)"@=1 which allows us to solve for 4 and c. The final step
is to write a procedure that returns the current period utility as
a function of x and u. The latter is given by:

4 1-n
1 n -], —
g(x,u) := R (el ZeNIToge — Z sit> (1—N,)% .

- i=1

Results. The Gauss program ToB.g implements the solution. We
use the parameter values from Table 1.1 and assume w; = 0.25,1 =
1,...,4. Table 2.3 displays the averages of 500 time series mo-
ments computed from the simulated model. We used the same
random numbers in both the simulations of the benchmark model
and the simulations of the time-to-build model. Thus, the differ-
ences revealed in Table 2.3 are systematic and not random.

In the time-to-build economy output, investment, and hours
are a little less volatile than in the benchmark economy. The in-
tuition behind this result is straightforward. When a positive tech-
nological shock hits the benchmark economy the household takes
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Table 2.3
Benchmark Time to Build
Variable Sz Txy Tz Sz Tzy T
Output 1.45 1.00 0.63 1.37 1.00 0.63
Investment 6.31 0.99 0.63 5.85 0.99 0.65

Consumption 0.57 0.99 0.65 0.58 0.97 0.56
Hours 0.78 1.00 0.63 0.71 0.98 0.65
Real Wage 0.68 0.99 0.64 0.68 0.98 0.58

Notes: sz:=standard deviation of HP-filtered simulated series of variable x,
rzy:=cross correlation of variable  with output, ry:=first order autocorrela-
tion of variable x.

the chance, works more at the higher real wage and transfers part
of the increased income via capital accumulation into future peri-
ods. Since the shock is highly autocorrelated, the household can
profit from the still above average marginal product of capital in
the next quarter. Yet in the time-to-build economy intertemporal
substitution is not that easy. Income spent on additional invest-
ment projects will not pay out in terms of more capital income
until the fourth quarter after the shock. However, at this time a
substantial part of the shock has faded. This reduces the incentive
to invest and, therefore, the incentive to work more.

LAWRENCE CHRISTIANO and RICHARD ToODD (1996) embed
the time-to-build structure in a model where labor augmenting
technical progress follows a random walk. They use a different
parameterization of the weights w;. Their argument is that in-
vestment projects typically begin with a lengthy planning phase.
The overwhelming part of the project’s costs are spent in the
construction phase. As a consequence, they set w; = 0.01 and
wy = w3 = wy = 0.33. This model is able to account for the pos-
itive autocorrelation in output growth, whereas the KYDLAND
and PRESCOTT (1982) parameterization of the same model —
w; = 0.25,7 =1,...,4 — is not able to replicate this empirical
finding. However, the random walk assumption does not lent it-
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self to the linear quadratic approach, and, therefore we will not
pursue this matter any further.

2.6.3 New Keynesian Phillips Curve

Money in General Equilibrium. So far we have restricted our
attention to non-monetary economies. In this subsection we focus
on the interaction of real and monetary shocks to explain the
business cycle.

Introducing money into a dynamic general equilibrium model
is not an easy task. As a store of value money is dominated by
other interest bearing assets like corporate and government bonds
or stocks, and in the basically one-good Ramsey model there is
no true need for a means of exchange. So how do we guarantee a
positive value of pure fiat outside money in equilibrium?

Monetary theory has pursed three approaches (see, e.g., WALSH
(2003)). The first device is to assume that money yields direct util-
ity, the second strand of the literature imposes transaction costs,
and the third way is to guarantee an exclusive role for money as a
store of value. We will pursue the second approach in what follows
and assume transaction costs to be proportional to the volume of
trade. Moreover, a larger stock of real money balances relative to
the volume of trade reduces transaction costs (see LEEPER and
S1Ms (1994)). Different from other approaches, as, e.g., the cash-
in-advance assumption, our particular specification implies the
neutrality of monetary shocks in the log-linear model solution.
This allows us to focus on other deviations from the standard
model that are required to explain why money has short-run real
effects.

The most prominent explanation for the real effects of money
that has been pursued in the recent literature are nominal rigidi-
ties that arise from sticky wages and/or prices.?” Among the var-

27 A non-exhaustive list of models of nominal rigidities includes BERGIN
and FEENSTRA (2000), CHARI, KEHOE, and MCGRATTAN (2000), CHO
and COOLEY (1995), COOLEY and HANSEN (1995, 1998), CHRISTIANO,
EICHENBAUM, and EVANS (1997), HAIRAULT and PORTIER (1995).
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ious models probably the CALVO (1983) model has gained the
most widespread attention. For this reason we use the discrete
time version of his assumption on price setting to introduce nom-
inal frictions into the monetary economy that we consider in the
following paragraphs.

The CALVO (1983) hypothesis provides a first-order condition
for the optimal relative price of a monopolistically competitive
firm that is able to adjust its price optimally whereas a fraction
of other firms is not permitted to do so. The log-linear version of
this condition (see equation (A.4.11e) in Appendix 4) relates the
current inflation rate to the expected inflation rate and a measure
of labor market tension. It thus provides solid microfoundations
for the well-known Phillips curve that appears in many textbooks.
This curve plays the role of a short-run aggregate supply function
and relates inflation to expected inflation and cyclical unemploy-
ment.?® In the CALVO (1983) model the deviation of marginal
costs from their average level measures labor market tension. Since
this equation resembles the traditional Phillips curve it is some-
times referred to as the New Keynesian Phillips curve.

The Household Sector. The representative household has the
usual instantaneous utility function v defined over consumption
C; and leisure 1 — N;, where N, are working hours:

C, (1 — N,)Pa=m
u(Cy, 1 — Ny) = =L ( — nt) : (2.94)

The parameters of this function are non-negative and satisfy
n > 6/(1+ 6). The household receives wages, rental income from
capital services, dividends D; and a lump-sum transfer from the
government 7;. We use P; to denote the aggregate price level. The
wage rate in terms of money is W; and the rental rate in terms of
consumption goods is r;. The household allocates its income net
of transaction costs T'C; to consumption, additional holdings of
physical capital K; and real money balances M,/P,, where M, is
the beginning-of-period stock of money. This produces the follow-
ing budget constraint:

28 See, e.g., MANKIW (2000), pp. 364.
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M1 — M, Wi
—— + K1 - (1-0)K; < —N; + 1 K; + D
P, t+1 ( ) t S P, t 229 t (2.95>
+ 71T, - TC; — C,.
Transactions costs are given by the following function
TC, (7@ )K C >0 (2.96)
= , , K . .
t 8 Mt+1/Pt t ,7

Importantly, the assumption that the costs T'C; depend upon
the ratio of consumption to real end-of-period money holdings
M, .1/ P, is responsible for the neutrality of money in our model.
The household maximizes the expected discounted stream of fu-
ture utility

E() Z ﬁtU(Ct, ]_ — Nt)

t=0
subject to (2.95) and (2.96).

Money Supply. The government sector finances the transfers to
the household sector from money creation. Thus,

_ My — M,

T,
t j2)

(2.97)
We assume that the monetary authority is not able to monitor
the growth rate of money supply perfectly. In particular, we posit
the following stochastic process for the growth factor of money

supply iy == Myy1/M;:
fier1 = P+ € =g —Inp, e ~ N(0,0"). (2.98)

In the stationary equilibrium money grows at the rate p — 1.

Price Setting. To motivate price setting by individual firms we
assume that there is a final goods sector that assembles the output
of a large number J; of intermediary producers to the single good
Y; according to

I €/(e—1)
Y, = |V ZY}%‘”“] Coe> 1 (2.99)
j=1
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The money price of intermediary product j is P;; and final output
sells at the price P;. The representative firm in the final sector
takes all prices as given. Maximizing its profits Y, — Zj;l PyY;
subject to (2.99) produces the following demand for good j:

P\ Y,
Y= |-+ —. 2.100
= (2) 3 2100

Accordingly, € is the price elasticity of demand for good j. It is
easy to demonstrate that the final goods producers earn no profits
if the aggregate price index P, is given by the following function:
1/(1—e)

(2.101)

An intermediary producer j combines labor N;; and capital
services Kj; according to the following production function:

Vit = Zy(ANp)' K5, — F, € (0,1),F > 0. (2.102)

F' is a fixed cost in terms of forgone output. We will use F' to
determine the number of firms on a balanced growth path from
the zero profit condition. As in all our other models A; is an
exogenous, deterministic process for labor augmenting technical
progress,

A1 =ady, a>1,

and Z; is a stationary, stochastic process for total factor produc-
tivity that follows

Zt+1 = pZZt + EtZ, Zt = anta EtZ ~ N(O,O'Z>

Note that «, F', A;, and Z; are common to all intermediary pro-
ducers, who also face the same price elasticity e.

From now on we must distinguish between two types of firms,
which we label A and N, respectively. Type A firms are allowed
to set their price P4y optimally, whereas type N firms are not. To
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prevent their relative price Py;/P; from falling short of the aggre-
gate price level, type N firms are permitted to increase their price
according to the average inflation factor . This is the inflation
factor on a balanced growth path without any uncertainty. Thus

PNt = 7TPNt_1. (2103)

To which type an individual firm j belongs is random. At each
period (1 —¢)J; of firms receive the signal to choose their optimal
relative price Pa;/P;. The fraction ¢ € [0, 1] must apply the rule
(2.103). Those firms that are free to adjust their price solve the
following problem:

0 T—t
T—t ™ PAt _
H;itx Et TEZt % Or |:( Pq— ) YAT gT(YAT + F)
WTtPAt) ¢ YT

P T

(2.104)
s.t. YAT = (

The sum to the right of the expectations operator F; is the dis-
counted flow of real profits earned until the firm will be able to
reset its price optimally again. Real profits are given by the value
of sales in units of the final good [(77~*Py4,;)/P,]Y; minus produc-
tion cost g, (Ya,+F'), where g, are the firm’s variable unit costs.?
The term ¢" ! captures the probability that in period 7 the firm
is still a type N producer. g, is the discount factor for time 7
profits. We show in Section 6.3.4 that this factor is related to the
household’s discount factor  and marginal utility of wealth A,
by the following formula:

A
=[BT, 2.1
QT /6 At ( 05)

Intermediary producers distribute their profits to the household
sector. Thus,

29 We show in Appendix 4 that g, also equals the firm’s marginal costs.
Note further that equation (2.102) implies that the firm must produce the
amount Y}; + F' in order to sell Y;.
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Ji

P, W,
D, = Z LY, - Ftht — redGy. (2.106)
t

This equation closes the model. To streamline the presentation we
restrict ourselves to the properties of the stationary equilibrium
and the simulation results. Appendix 4 provides the mathemat-
ical details of the analysis and the loglinear model used for the
simulation.

Stationary Equilibrium. The model of this section depicts a
growing economy. For this reason we must scale the variables so
that they are stationary on a balanced growth path. As previ-
ously, we use the following definitions: ¢; := Cy/A;, v, == Yi /Ay,
ke == Ki/Ay, A = MA]. In addition, we define the infla-
tion factor m, := P;/P,_; and real end-of-period money balances
my := M1 /(A P;). The stationary equilibrium of the determin-
istic model has the following properties:

1. The productivity shock and the money supply shock equal their
respective means Z;, = Z = 1 and p; = p for all £.

2. Inflation is constant: 7 = % for all t.

3. All (scaled) variables are constant.

4. All firms in the intermediary sector earn zero profits.

There are two immediate consequences of these assumptions.
First, inflation is directly proportional to the growth rate of money

supply p — 1:3°
_ M
T="=.
a

Second, the optimal relative price of type A firms satisfies

i.e., it is determined as a markup on the firm’s marginal costs g.
Furthermore, the formula for the price index given in equation
(A.4.5) implies P4 = P so that g = (e — 1)/e and Py = P. Since

30 See equation (A.4.2¢) for my = myi 1.
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all firms charge the same price, the market share of each producer
is Y/J. Therefore, working hours and capital services are equal
across firms, N; = N/J, and K; = K/J, and profits amount to

Y Y

Imposing D; = 0 for all j and using Y/J = (AN/J)'=*(K/J)* —
(F/J) yields
. Jt leak,a

j'_E_ el

Thus, to keep profits at zero, the number of firms must increase
at the rate a — 1 on the balanced growth path.3! The production
function (2.102) thus implies

e—1
€

y = Nl—aka'

Using this in the first-order condition for cost minimization with
respect to capital services (see equation (A.4.3b)) implies

r=ay/k).

Eliminating r from the Euler equation for capital delivers the well
known relation between the output-capital ratio and the house-
hold’s discount factor [3:

y a"—p(1-9)

[ (2.107a)

This result allows us to solve for the consumption-output ratio
via the economy’s resource constraint (see (A.4.9)):

s (S e G |

31 Alternatively, we could have assumed that fixed costs are given by A;F so
that the number of firms does not grow without bounds.
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The stationary version of the Euler condition for money balances
(see equation (A.4.2e)) delivers:

ﬂal’” . C 1+k
T 1— ry (f(M/P)) : (2.107b)

We need a final equation to determine the stationary level of work-
ing hours. Using the results obtained so far we derive this relation
from the household’s first-order condition with respect to labor
supply (see equation (A.4.2b)):

1 ivN -- 7 - (1 i _y?k_ 6)_ h(c/x), (2.107c)
hic/x) = L+ y(¢/2)" c._Fc

T 1490+ k) (c/x) & M

It is obvious from equation (2.107a) that the output-capital ratio
and therefore also the capital-labor ratio k/N and labor produc-
tivity y/N are independent of the money growth rate. As can be
seen from (2.107b), the velocity of end-of-period money balances
c/x = C/(u(M/P)) is an increasing function of the money growth
rate. In the benchmark model of Section 2.6.1 working hours are
determined by the first two terms on the rhs of (2.107c). The
presence of money adds the factor h(c/x). It is easy to show that
h(c/x) is an decreasing function of the velocity of money (c¢/x).
Since N/(1— N) increases with N, steady-state working hours are
a decreasing function of the money growth rate.

Calibration. We do not need to assign new values to the stan-
dard parameters of the model. The steady state relations pre-
sented in the previous paragraph show that the usual procedure
to calibrate 3, «, a, and ¢ is still valid. We will also use the em-
pirical value of N to infer 6 from (2.107c). This implies a slightly
smaller value of 6 as compared to the value of this parameter in
the benchmark model. Nothing is really affected from this choice.

Unfortunately, there is no easy way to determine the parame-
ters of the productivity shock, since there is no simple aggregate
production function that we could use to identify Z;. The problem
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becomes apparent from the following equation, which we derive
in Appendix 4:

g = 9(1 — )N, + Dok, +9Z,(1 —9)j,, O = (2.108)

6 pR—
This equation is the model’s analog to the log-linear aggregate
production function in the benchmark model given by

Qt - (1 - Od)Nt —+ Oél;t + Zt'

Since ¥ > 1 we overstate the size of Zt, when we use this latter
equation to estimate the size of the technology shock from data
on output, hours, and the capital stock. Furthermore, in as much
as the entry of new firms measured by J; depends upon the state
of the business cycle, the usual measure of Z, is further spoiled.
We do not consider this book to be the right place to develop
this matter further. Possible remedies have been suggested for
instance by ROTEMBERG and WOODFORD (1995) and HAIRAULT
and PORTIER (1995). Instead, we continue to use the parameters
from the benchmark model so that we are able to compare our
results to those obtained in the Section 2.6.1 and Section 2.6.2.

What we further need are the parameters of the money supply
process, of the transaction costs function, and of the structure of
the monopolistic intermediary goods sector.

Our measure of money supply is the West-German monetary
aggregate M1 per capita. As in Section 1.5 we focus on the period
1975.1 through 1989.iv. The average quarterly growth rate of this
aggregate was 1.67 percent. We fitted an AR(1) process to the
deviations of p; from this value. The autocorrelation parameter
from this estimation is not significantly different from zero and the
estimated standard deviation of the innovations is ¢ = 0.0173.
We use the average velocity of M1 with respect to consumption
of 0.84 to determine v from (2.107b). Finally, we can use the
following observation to find an appropriate value of x: The lhs
of equation (2.107b) is equal to

1
m(l—36+r)
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The term in the denominator is the nominal interest rate factor,
i.e., one plus the nominal interest rate ¢, say. This implies the
following long run interest rate elasticity of the demand for real
money balances:

d(M/P)/(M/P) —1

dq/q (1+r)m(1—0+7r)
The estimate of this elasticity provided by HOFFMAN, RASCHE,
and TIESLAU (1995) is about -0.2. Since 1/R ~ 1 we use k = 4.

Table 2.4
Preferences Production
3=0.994 a=1.005 a=0.27
n=2.0 6=0.011  p#=0.90
N=0.13 0%=0.0072

Money Supply Transactions Costs Market Structure

n=1.0167 C/(M/P)=0.84 ©=0.25
pH=0.0 k=4.0 €=6.0
o#=0.0173

The degree of nominal rigidity in our model is determined by
the parameter ¢. According to the estimates found in ROTEM-
BERG (1987) it takes about four quarters to achieve full price
adjustment. Therefore, we use ¢ = 0.25. LINNEMANN (1999)
presents estimates of markups for Germany, which imply a price
elasticity of € = 6. Table 2.4 summarizes this choice of parameters.

Results. The Gauss program NKPK.g implements the solution.
To understand the mechanics of the model, we consider the case
without nominal frictions first. Figure 2.5 displays the time paths
of several variables after a one-time shock to the money supply
process (2.98) in period ¢t = 3 of size o/. Before this shock the
economy was on its balanced growth path, after this shock the
growth factor of money follows (2.98) with €)' = 0.

The case p* = 0 highlights the unanticipated effect of the
shock, since after period 3 the money growth rate is back on its
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Figure 2.5: Real Effects of a Monetary Shock in the Model Without
Nominal Rigidities
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stationary path. The money transfer in period 3 raises the house-
hold’s income unexpectedly. Since both consumption and leisure
are normal goods the household’s demand for consumption in-
creases and its labor supply decreases. The latter raises the real
wage so that marginal costs increase. Higher costs and excess de-
mand raise inflation. This increase just offsets the extra amount of
money so that the real stock of money does not change. Therefore,
none of the real variables really changes. Money is neutral. This
can be seen in Figure 2.5 since the impulse responses of output,
consumption, and investment coincide with the zero line.

Things are different when the shock is autocorrelated. In this
case there is also an anticipated effect. Households know that
money growth will remain above average for several periods and
expect above average inflation. This in turn increases the expected
costs of money holdings and households reduce their cash hold-
ings. As a consequence, the velocity of money with respect to
consumption increases. To offset this negative effect on transac-
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tion costs the households reduce consumption. Their desire to
smooth consumption finally entails less investment. Note however
that these effects are very small. For instance, consumption in pe-
riod 3 is 0.16 percent below its stationary value, and investment
is 0.08 percent below its steady state level.

We find very different impulse responses, if nominal rigidities
are present. This can be seen in Figure 2.6. Since inflation cannot
adjust fully, households expect above average inflation even in the
case of p# = 0. This creates a desire to shift consumption to the
current period so that there is excess demand. Monopolistically
competitive firms are willing to satisfy this demand since their
price exceeds their marginal costs. Thus output increases. The
household’s desire to spread the extra income over several periods
spurs investment into physical capital.

There is another noteworthy property of the model: The spike-
like shape of the impulse responses. Consumption, hours, output,
and investment are almost back on their respective growth paths
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Figure 2.6: Impulse Responses to a Monetary Shock in the New
Keynesian Phillips Curve Model



2.6 Applications 155

after period 3, irrespective of whether or not the monetary shock
is autocorrelated. This is in stark contrast to the findings of em-
pirical studies. For instance, according to the impulse responses
estimated by COCHRANE (1998) and, more recently, by CHRIS-
TIANO, EICHENBAUM, and EVANS (2005) the response of output
is hump shaped and peaks after eight quarters. The apparent fail-
ure of the model to explain the persistence of a monetary shock
has let many researches to question the usefulness of the New
Keynesian Phillips curve. In a recent paper EICHENBAUM and
FISHER (2004) argue that the CALvo (1983) model is able to
explain persistent effects of monetary shocks if one abandons the
convenient but arbitrary assumption of a constant price elasticity.
WALSH (2005) argues that labor market search, habit persistence
in consumption, and monetary policy inertia together can explain
the long-lasting effects of monetary shocks. However, as HEER
and MAUSSNER (2007) point out, this result may be due to the
assumption of prohibitively high costs of capital adjustment. In
CHRISTIANO, EICHENBAUM, and EVANS (2005) wage staggering
and variable capacity utilization account for the close fit between
the estimated and the model-implied impulse responses of output
and inflation.

Table 2.5 reveals the contribution of monetary shocks to the
business cycle. To fully understand the model we must disentan-
gle several mechanisms that work simultaneously. For this rea-
son, columns 2 to 4 present simulations, where neither mone-
tary shocks, nor nominal rigidities, nor monopolistic elements are
present. This requires to set ¥ = 1, ¢ = 0, and ¢* = 0 in the
program NKPK.g. Obviously, this model behaves almost like the
benchmark model (see Table 2.2).

Next consider columns 5 to 7. In this model, there are no mon-
etary shocks, but there are monopolistic price setters facing nomi-
nal rigidities. The most immediate differences are: output is more
volatile and hours are less volatile than in the benchmark model.
How can this happen? Note that under monopolistic price setting
the marginal product of labor is larger than it is under perfect
competition. The same is true for the marginal product of capi-
tal. Thus, a technology shock that shifts the production function
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Table 2.5

9=1,¢p=0,0"=0 ot=0 ot =0.0173
Variable Sa Tay T Sx Tzy Te Sa T2y Tz
Output 143 1.00 0.63 155 1.00 0.68 1.69 1.00 0.56

(1.14) (1.00) (0.80) (1.14) (1.00) (0.80) (1.14) (1.00) (0.80)
Consump- 0.53 099 0.65 055 098 0.72 0.64 098 0.52

tion (1.18) (0.79) (0.84) (1.18) (0.79) (0.84) (1.18) (0.79) (0.84)
Invest- 6.16 100 0.63 687 100 067 7.31 1.00 058
ment (2.59) (0.75) (0.79) (2.59) (0.75) (0.79) (2.59) (0.75) (0.79)
Hours 0.76 100 0.63 059 099 075 097 0.86 023

(0.78) (0.40) (0.31) (0.78) (0.40) (0.31) (0.78) (0.40) (0.31)
Real 067 099 065 066 099 072 081 097 045
Wage (1.17) (0.41) (0.91) (1.17) (0.41) (0.91) (1.17) (0.41) (0.91)

Inflation  0.27 —0.53 —0.07 0.31 —0.48 —0.05 1.62 0.30 —0.06
(0.28) (0.04)(—0.03) (0.28) (0.04)(—0.03) (0.28) (0.04)(—0.03)

Notes: s;:=standard deviation of HP-filtered simulated series of variable x, ryy:=cross
correlation of variable x with output, 7r4:=first order autocorrelation of variable x.
Empirical magnitudes in parenthesis.

outward boosts output more than it would do in a competitive
environment. Due to the fixed costs of production, the shock also
raises profits and thus dividend payments to the household. This
in turn increases the household’s demand for leisure. Since prices
do not fully adjust, these effects are a bit smaller than they are
in a purely real model without nominal frictions.??

Columns 8 to 10 present the results from simulations where
both technology shocks and monetary shocks are present. The
most noteworthy effect concerns working hours. The standard de-
viation of this variable increases by 64 percent. The wealth effect
that we identified above now works in the opposite direction: A
monetary shock squeezes the profits of firms, since marginal costs
rise and prices cannot fully adjust. As a consequence, the house-

32 A detailed comparison between a real and a monetary model of monopo-
listic price setting appears in MAUSSNER (1999).
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hold’s demand for leisure falls. But note, most of the shock is
absorbed by inflation, which increases substantially.
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Appendix 3: Solution of the Stochastic LQ Problem

In this Appendix we provide the details of the solution of the stochas-
tic linear quadratic (LQ) problem. If you are unfamiliar with matrix
algebra, you should consult 11.1 before proceeding.

Using matrix algebra we may write the Bellman equation (2.15) as
follows:

x'Px + d = max |:X/QX +u'Ru + 2u’Sx
u
+ BFE (x'A'PAx +u'B'PAx + € PAx
+x'A'PBu+uB'PBu+ € PBu

(A.3.1)
+x'A'Pe + u'B'Pe + € Pe + d)] .

Since E(e) = 0 the expectation of all linear forms involving the vector
of shocks € evaluate to zero. The expectation of the quadratic form
€ Pe is:

n n n n
E <Z Zpijeiej) = Z Zpijaija
=1 i=1 =1 j=1

where 0;; (04;) denotes the covariance (variance) between €; and ¢;
(of €;). It is not difficult to see that this expression equals tr(PX).
Furthermore, since P = P’ and

z:=uB'PAx =7 = (X' A'PB'u)
we may write the Bellman equation as

x'Px+d=max |X'Qx+2uSx+ u'Ru+ gx'A'PAx
v (A.3.2)
+2px' A'PBu + pu’'B'PBu + 3tr(PX) + 3d|.

This is equation (2.16) in the main text. Differentiation of the rhs of
this expression with respect to u yields

25x + 2Ru + 23(x'A'PB)’ + 23(B’' PB)u.

Setting this equal to the zero vector and solving for u gives
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(R+ BB'PB)u=— (S + BB PA)x
s ca— D (A.3.3)
= u=-CDx.
If we substitute this solution back into (A.3.2), we get:
x'Px+d=x'Qx —2(CDx)'Sx + (CDx) RCDx + px'A'PAx
— 28X’ A'PBCDx + 3(CDx) B'PBCDx + Btr (PX) + 4d
=x'Qx + x'A'PAx
—2x'D'C'Sx — 28x' A’ PBC Dx
+x'D'C'RCDx + x'D'C' B'PBC Dx
+ B tr (PX) + fAd.

The expression on the fourth line can be simplified to

—2x'D'C"Sx — 2px' A’ PBC Dx
—_————
=20x'D'C"B'PAx

=-2x'D'C" (S + BB'PA)x = —2x'D'C' Dx.

—_———

D

The terms on the fifth line add to

x'D'C' (R + BB'PB)C Dx = x'D'C'D.
—_————
I

Therefore,
x'Px+d=x'Qx+ x'APAx—x'D'C'Dx+ Btr(PX)+(d. (A.3.4)

For this expression to hold, the coefficient matrices of the various
quadratic forms on both sides of equation (A.3.4) must satisfy the
matrix equation

P=Q+ BA'PA+D'C'D,

and the constant d must be given by

_ B
1-p
This finishes the derivation of the solution of LQ the problem.

d tr(PX).
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Appendix 4: Derivation of the Log-Linear Model of the New
Keynesian Phillips Curve

In this appendix we provide the details of the solution of the model
from Section 2.6.3.

The Household’s Problem. The Lagrangean of the household’s
problem is:

g:EOZﬂt

t=0

Cl7(1 = Ny)?-n)
I—n

+ Ay

W,
-ﬁm+m—&m+m+ﬂ
t

My — My

C K
_7( ¢ )@_@—mm—my- 5
t

M1/ P

}.

Differentiating this expression with respect to Cy, Ny, K11 and M4
provides the following first-order conditions:

_ C "
0= Ct 77(1 _ Nt)e(lfn) — EtAt l:l + ")/(1 + H) <m> :| s
Wi

0=0C"(1— N;)0-—m-1 _ A (A.4.1)
t
0= At — 5EtAt+1(1 — (5 + ’I”t+1),

Ay C, )“*1 A A
0=E{ - +nmy(——=) Z4ptit.
t{ P, ”(MtH/Pt P

As usual, we must define variables that are stationary. We choose
Ct = Ct/At, k‘t . Kt/At, )\t . AtA?, Wy = Wt/(PtAt), mi41 =
M;y1/(ALPy), and j, := J;/A;. The inflation factor is m := P;/P,_1.
Since the price level is determined in period ¢, this variable is also a
period t variable. The growth factor of money supply, also determined
in period ¢, is given by p; := M1 /My, where M; is the beginning-of-
period money stock and My, the end-of-period money stock. In these
variables, we can rewrite the system (A.4.1) as follows:

¢ (1 — Ny)P=m) = ), (1 + (1 + k) ( “ >K> , (A.4.2a)

mi+1
Awe = O, (1 — Ny (A.4.2b)
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miy1 = ﬂmt, (A42C)
aT¢
)\t = ﬁa_”Et)\tH (1 ) + Tt-i—l) s (A42d)
K+1
ﬁa—nEtﬁ =N\ <1 — Ry < “ > > : (A.4.2¢)
Te+1 mi+1

Price Setting. To study the price setting behavior, it is convenient
to first solve the firm’s cost minimization problem

. Wi
NURL, P +rKj st (2.102).
The first-order conditions for this problem are easy to derive. They
are:

Wt = gt(]- — CM)Zth;a(Kjt/At)a == gt(]- - Q)Zt(kt/Nt)a, (A43a)
Tt = gtaZthltia(Kjt/At)a_l = gtOéZt(k't/Nt)a_l, (A43b)

where g, is the Lagrange multiplier of the constraint (2.102), and w; :=
W, /(P Ay) is the real wage rate per unit of effective labor.?3 It is well
known from elementary production theory that g; equals the marginal
costs of production. Furthermore, the constant scale assumption with
respect to Yj; + I also implies that g; are the variable unit costs of
production:

(Wi/Py)Njt + 1 Kjt
Yie+ 1 '

gt =

Marginal costs as well as the capital-output ratio are the same in
all intermediary firms due to the symmetry that is inherent in the
specification of the demand and production function. For later use
we note the factor demand functions that are associated with this
solution:

33 Note that g; is equal for all firms. This can be seen by using

wy

].—OéKjt
Tt « th7

which implies that all firms choose the same capital-labor ratio k;/N; =
Kji/Nj;, since all firms face the same real wages and rental rates. Via
equation (A.4.3b) this also implies g; = g;; for all j.
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Ny = 27 (1 O‘) (%) , (A.4.4a)

AtZt (@ Tt
Kji = ”; ( O‘) (%> . (A.4.4b)
t « a7

In each period (1 — ¢)J; firms choose their optimal money price
Pa; and @J; firms increase their price according to average inflation,

Pny = mPng—1.

Therefore, the aggregate price level given in equation (2.101) is:

Py =[(1—¢)Py 4 o(mPrni—1) 7] 7 .

Now observe that the pool of firms that are not allowed to choose
their price optimally consists itself of firms that were able to set their
optimal price in the previous period and those unlucky ones that were
not allowed to do so. Thus, Py;—1 is in turn the following index:

Pyio1=[(1= )Py +o(mPyi—2) ] .
Using this formula recursively establishes:

Po=[(1= @) {Py + @(mPat-1)' " + @* (7 Par—2)' "+ ...}
which implies

P(TP-1)' ™ = [(1 = @) p(mPar1)' ™ + (1 Para) " +...}].
Thus, the aggregate price level can equivalently be written as

Pr=[(1-@)Py + (b)) =] 7. (A.4.5)

We now turn to the first-order conditions that determine the opti-
mal price of type A firms. Maximizing the expression in (2.104) with
respect to P4; provides the following condition:

e—1 > 7=\ 179y,
PuE T—1 T
o LAkt Z ¥ Or ( P, > A
\/_/ =1

=:1/9

sl

oo . 2T\ €
=E Y ¢ "o ( 5 ) 9r
T=t T
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We multiply both sides by P; € and replace o by the rhs of equation
(2.105). The result is:

Py - oM (deaen (P T Y
y < P:) By Y (pBa™)! SommI0 <Pt> -
T=t T

(A.4.6)

= —N\T— )‘T —e(7— PT EYT
S ey, () 2

T=t
Our next task is to determine aggregate output and employment. Note
from (2.100) that final goods producers use different amounts of type
A and N goods since the prices of these inputs differ. Therefore, ag-
gregate output is:
Y= (1~ )Jt—YAt + gth YNt
P
=(1—-p)Jt B (ZtAtNAt(KAt/AtNAt) - F)
t
+ pJ; [W— (ZiAtNne(Kne/AeNye) '~ — F)} .
t

Using the fact that all producers choose the same capital-labor ratio
ki /Ny provides:

P o T o
Y, = A, —];“t Zy (1 — @) JeNag(ke /N)'™ + = Z; 0J Ny (ky /Ny)*
t — Tt Ne—~——

n: Ny (1—n¢) Ny
Py T
— JiF (1—90)?7:"‘90— )
t Tt

where the fraction of workers employed by type A firms n; is given by:

1— ) JiN,
ng = L= 9TNar (A.4.7)
Ny

From this we derive the following equation in terms of aggregate out-
put per efficiency unit A;:

Y, Pa
t_ZtNl ak_a|: _+(1_nt)7r]
A f T (A48)
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In the log-linear version of this equation the variable n; drops out.
Thus, there is no need to derive the equation that determines this
variable.

Finally, consider the household’s budget constraint (2.95). In equi-
librium it holds with equality. Using the government’s budget con-
straint (2.97) and the definition of dividends (2.106), we end up with
the following resource constraint:

c K
akir =y + (1 —0)ky — v <mtt 1> ¢t — ¢y (A.4.9)
Jr

The Log-Linear Model. The dynamic model consists of equations
(A4.2), (A4.3), (A.4.5),(A.4.6), (A.4.8), and (A.4.9). The stationary
equilibrium of this system is considered in the main text so that we can
focus on the derivation of the log-linear equations. First, consider the
variables that play the role of the control variables in the system (2.47).
These are the deviations of consumption, working hours, output, the
inflation factor, the real wage rate, and the rental rate of capital from
their respective steady state levels:

1A (; A A ~ ~ 1/
u; = [chNtuyt?ﬂ-t?wtart] .

The state variables with predetermined initial conditions are the stock
of capital and beginning-of-period money real money balances. Thus,
in terms of (2.47):

Xt = [l;‘t, mt]/.

Purely exogenous are the technological shock Z;, the monetary shock
fit, and the entrance rate of firms J¢ into the intermediary goods sector.
For the latter we will assume it is independent of the state of the
business cycle so that j; = 0 for all ¢.34 Thus,

Zy = [Ztaﬂt]/-

The remaining variables are the shadow price of capital )\;, firms’
marginal costs g;, and real end-of-period money balances m;1. Note,
that we cannot determine the latter from equation (A.4.2c), since we

34 For instance, ROTEMBERG and WOODFORD (1995) link j; to the techno-
logical shock.
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need this equation to determine 7;. Thus, in addition to A\; and g,
this variable is a costate. To keep to the dating convention in (2.47)
we define the auxiliary variable z; = m,1. Hence, our vector of costate
variables comprises:

)\t = [j‘tagtv jjt]/-

We first present the static equations that relate control variables
to state and costate variables. The log-linear versions of equations
(A.4.2a) through (A.4.2c) are

—(n+&)é — &Ny = A\ — &y, (A.4.10a)
(1= n)ér — &Ny — 1y = Ay, (A.4.10b)
’ﬁ't = mt — CACt + ﬂt, (A4100)

ky(1+kK)(c/z)s ¢ C

ST T )/ 7 w(M/P)

& = 00—,
6 1= [0(1— ) — 1)

The log-linear cost-minimizing conditions (A.4.3) deliver two further
equations:

CMNt + ’llA)t == C%];'t + !?t + Zt, (A4.10d)
(a0 — DNy + 7 = (o — Dy + §¢ + Zs. (A.4.10¢)

To derive the sixth equation we use the formula for the price level to
write

1—e 1_16
Py Py Py 1—
T = =|(1- — + o€
o (e 2 I 4

s

Log-linearizing at P4/P = 1 provides:

N el 2=V
Tt — o PAt/Pt'

We use this relation to derive
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gy — 9(1 — a)N; = daky +9Z; + (1 —9)j;. (A.4.10f)

from equation (A.4.8). The six equations (A.4.10a) through (A.4.10f)
determine the control variables. We now turn to the dynamlc equa-
tions that determine the time paths of kt, Mg, Tt = Mpt1, )\t, and g;.
The log-linear versions of the resource constraint (A.4.9), the Euler
equations for capital and money balances (A.4.2d) and (A.4.2¢), and
the definition z; := my4 are:

aBikpyy — (1= 8)ky — &adiy = %@t — &56, (Ad.1la)
—E A1 + A = Ee By, (A.4.11D)

Etj\t+1 — j\t — 5756,5 = —57675 + Etﬁ'tJrl, (A4110)
Eyfvgsq — & =0, (A4.11d)

&4 1= wy(c/x)"(c/k),

& = (L+ (1 + w)(c/2)")(c/k),
& :=1—pa(1—-9),

&r = Y (L + k) (c/a) "

1 —k(c/z)ltr

The remaining fifth equation is the log-linear condition for the firms’
optimal price:

(1)1 = ppa™) .
¥

This looks nice and resembles a Phillips curve since it relates the
current inflation rate to the expected future rate of inflation and a
measure of labor market tension, which is here given by the deviation
of marginal costs from their steady state level. It requires a substantial
amount of algebra to get this relation and it is this task to which we
turn next. Considering (A.4.6) we find:

—5a*”Et7Art+1 + ’ﬁ't. (A4116)

(Pat/Pr)— j( + @Ba”" + (pBa")? + )
(I—¢Ba=n)~1

+ gg S (@Ba™) B [(5 T30 + (e~ V(P /B + (5r57)]

0% 2 Ba) T e (/) + PP+ (ue i) + 0]
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Since ¥g = 1 and P/At/\Pt = [p/(1 — ¢)]7; (see above), we can simplify
this expression to

o0

— (p)(fp_ et > (@Ba™) By |(Pr/Po) + g |

T=t

(A.4.12)

Next, we shift the time index one period into the future, multiply
through by ¢fBa™", and compute the conditional expectation of the
ensuing expression:3°

® pBa™" .
(75,) (275 e

(@5@"7)2 <Pt+2> + (tpﬁa_”)g (@> + -+ oBa” g

Py Piia

+ (0Ba™ ") Gy + . ..

We subtract this equation from (A.4.12) to arrive at:

¥
(1 =) (1 = pfa=n

_ ?H\l -2 ) (B2 ?tJr\Q
o007 () + (o) {( ) <Pt+1>}

) (7t — pBa™"Eyfteqr)

=g+ E

3 ﬂ?)_(ﬁ?)
+ (pBa™) {< B Ao ) ( (A.4.13)
Since

(P &~ .

(7)- 2

s=t+1

the terms in curly brackets reduce to ;11 so that the sum in brackets
equals

35 Here we use the law of iterated expectations according to which Eyzyyq =
E, (Et+1$t+1)~
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o1 [pBa™ + (pBa™)? +...]
(pBa=m)/(1—pBa=")

Substituting these results back into (A.4.13) delivers equation (A.4.11e).
To determine the time path of investment, we start from

‘ e \”
it = Yt — <1 + Y (x—t) > Ct, Tt = Myg41-
t

The log-linearized version of this equation is:

1g = LYt — L2Cp + 13Ty,

0= (y/i) = %, Ly = (1 + (1 + k)Y (9“) g,

e (G N\ e_y
ST\ u/py) i T
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Problems

2.1

2.2

2.3

Certainty Equivalence
Consider the deterministic linear quadratic optimal control problem of
maximizing

oo

Z B [x,Qx + u, Ru; + 2u}S%]

t=0

subject to the linear law of motion
Xt41 = AXt + But.

Adapt the steps followed in Section 2.2 and Appendix 3 to this prob-
lem and show that the optimal control as well as the matrix P are the
solutions to equations (2.17) and (2.18), respectively.

Relation Between the LQ Problems (2.12) and (2.19)
Show that the linear quadratic problem with the current period return
function

g(xt7 ui, Zt) = X;Axxxt + u;Auuut + 2z, A..27,
+2up Xy + 20s A ze + 2% Az
and the law of motion

Xiy1 = Bex¢ + Byug + Bz

is a special case of the problem stated in equations (2.12) and (2.11).
Toward that purpose define

~ Xt ~_On><1
Xt = 7|’ € = €

and show how the matrices A, B, @, R, and S must be chosen so that
both problems coincide.

Convex Costs of Price Adjustment

Instead of the CALVO (1983) model, consider the following model of price
setting introduced in HAIRAULT and PORTIER (1995). Intermediate pro-
ducers face convex costs of adjusting their price given by

POy = (0/2) (52 - w)g.

Jt—

Thus they solve the following problem:
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00
max E() Z %3 [(Pjt/Pt)Y}t — (Wt/Pt)th — rtKjt — PCjt] 5
t=0

S.t.
Yie = (Pje/P)~ (Ye/ o),
Yie = Zi(AiNj)* K}~ — F.

Calibrate the parameter ¥ so that a one percent deviation of the firm’s
inflation factor Pj;/Pj—1 from average the average inflation factor en-
tails costs of 0.01 percent of the firm’s value added. Do you find more
persistence of a money supply shock with this alternative specification of
nominal rigidities? What happens, if you increase 1?7

Government Spending in a Real Business Cycle Model

In most OECD countries, wages and labor productivity are acyclic or
even negatively correlated with output and working hours, while, in the
stochastic Ramsey model, however, these correlations are positive and
close to one (please compare table 2.2). One possible remedy for this
shortcoming of the stochastic growth model is the introduction of a gov-
ernment spending shock. The following model is adapted from BAXTER
and KING (1993) and AMBLER and PAQUET (1996).

Consider the stochastic growth model where the number of agents is nor-
malized to one. Assume that utility is also a function of government
consumption, where due to our normalization per capita government
spending G is also equal to total government spending G;. In partic-
ular, government consumption substitutes for private consumption C?:

Cy = CP +9G,,

with ¥ < 1 as some forms of government spending, for example military
spending, do not provide utility for private consumption. The household
maximizes her intertemporal utility:

— (1= NP

C
max F ok
CP.No 0 tz:; 1—n

Be(0,1),7>0,0=>0,n>0/(1+80),

subject to the budget constraint
Cf + Ig) == (1 - T)(U}tNt + T'th) + T?"t.
Both wage income w; N; and interest income 7, K; are taxed at the con-

stant rate 7. The household also receives lump-sum transfers T'r; from
the government. The private capital stock evolves according to:
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K= (1—-8)K +17,

where 0 denotes the depreciation rate. Production is described by a Cobb-
Douglas Production Function, Y; = ZtNtaKtl*a, where the productivity
Z,; follows an AR(1) process, Z;11 = Zfe, with ¢, ~ N(0,0?) and
0 =0.90 and o = 0.007. Factors are rewarded by their marginal products.
Government consumption Gy = ¢;G follows a stochastic process:

Ing: = pglngi—1 + €,

with e/ ~ N(0,0'g) and p, = 0.95 and o, = 0.01. In the steady state,
government consumption is constant and equal to 20% of output, G =
0.2Y. In equilibrium, the government budget is balanced:

T(tht + ’I”th) = Gt + T?"t.

The model is calibrated as follows: = 0.99, n = 2.0, ¢» = 0.5, a = 0.6,
d = 0.02. § and 7 are chosen so that the steady state labor supply N and
transfers Tr are equal to 0.30 and 0, respectively.

a) Compute the steady state.

b) Compute the log-linear solution. Simulate the model and assume that
e; and €/ are uncorrelated. What happens to the correlation of labor
productivity and wages with output and employment?

¢) Assume that transfers are zero, Tr; = 0, and that the income tax
always adjusts in order to balance the budget. How are your results
affected?

d) Assume now that the government expenditures are split evenly on
government consumption G; and government investment ItG . Govern-
ment capital K& evolves accordingly

K&y = (- KE +17,
and production is now given by

Vi= 2= ZNPE (KE) T
with a = 0.6 and v = 0.3. Recompute the model.

Government Spending and Nominal Rigidities

In the previous problem, you have learned about the 'wealth effect’ of
government demand. An increase in government expenditures results in
a reduction of transfers and, hence, wealth of the households is decreased.
Consequently, the households increase their labor supply and both em-
ployment and output increase. In this problem, you will learn about the
traditional Keynesian IS-LM effect. Expansionary fiscal policy increases
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aggregate demand and demand-constrained firms increases their output
as prices are fixed in the short run. The model follows LINNEMANN and
SCHABERT (2003).
Households maximize the expected value of a discounted stream of in-
stantaneous utility:

s 1-n 1 — N,)0(-mn)
max FEy Zﬂt G ) ,
Co,No P 1 — 77

B€(0,1),n>0,0=>0,7>0/(1+90).

A role for money is introduced into the model with the help of a cash-in-
advance constraint:

PtCt S Mt + PtTTt,

Nominal consumption purchases P,C; are constrained by nominal be-
ginning-of period money balances M; and nominal government transfers
P, Tr;.3% The household holds two kinds of assets, nominal money M, and
nominal bonds, B;. Bonds yield a gross nominal return R;. In addition,
agents receive income from labor, Piw; Ny, government transfers, P,/ Ty,
and from firm profits, fol Q;; di. The budget constraint is given by:

1
Mt+1 + Bt+1 + PtCt = thtNt + RtBt + Mt + PtTTt + / tadl
0

The number of firms i is one, 7 € (0,1). Firms are monopolistically com-
petitive and set their prices in a staggered way as in the model of Section
2.6.3. Accordingly, profit maximization of the firms implies the New Key-
nesian Phillips curve:

iy = Ymey + BE {fip}, v =(1—¢)(1—Bp)p ",

where me, denotes marginal costs (compare (A.4.11¢)).
Firms produce with labor only:

Yit = Nit.
Cost minimization implies that the real wage is equal to marginal costs:

36 Government transfers are included in this cash-in-advance specification in
order to avoid the following: an expansionary monetary policy consisting
in a rise of My, already increases prices P, due to the expected infla-
tion effect. Accordingly, real money balances M,;/P; fall and so does real
consumption Cy if government transfers do not enter the cash-in-advance
constraint. This, however, contradicts empirical evidence.
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W = MCq.

The government issues money and nominal riskless one-period bonds and
spends its revenues on government spending, G, and lump-sum transfers:

PTry+ PGy + My + Ry By = By + M.
Real government expenditures follow an AR(1)-process:
InGy=pnGi1+(1—p)InG+¢

with e, ~ N(0,0?) and p = 0.90 and o = 0.007.
Monetary policy is characterized by a forward-looking interest-rate rule:

Rt+1 = pr 0 =t 1 + py B, ppi > 1.

The restriction p, is imposed in order to ensure uniqueness of the equi-
librium.

a) Compute the first-order conditions of the household.

b) Compute the stationary equilibrium that is characterized by a zero-
supply of bonds, By = 0,>” and R > 1 (in this case, the cash-in-
advance constraint is always binding). Furthermore, in equilibrium,
the aggregate resource constraint is given by y; = ¢; + G¢ and firms
are identical, y;; = y4 = Ny = Ny. Define the equilibrium with the
help of the stationary variables {7, wy, m; = %, Ry, yt, G}

¢) Compute the steady-state.

d) Calibrate the model as in the previous problem. In addition, set p, =
1.5, py € {0,0.1,0.5}, 7 = 1, and ¢ = 0.75.

e) Log-linearize the model and compute the dynamics. How does con-
sumption react to an expansionary fiscal policy? Does it increase (as
IS-LM implies) or decrease (due to the wealth effect)?

f) Assume now that the interest-rate rule is subject to an exogenous
autocorrelated shock with autoregressive parameter pr € {0,0.5}.
How does a shock affect the economy?

g) Assume that monetary policy is described by a money-growth rule
that is subject to an autoregressive shock. Recompute the model for
an autoregressive parameter p, € {0,0.5} and compare the impulse
responses to those implied by an interest-rate rule.

37 Why can we set the nominal bonds supply equal to zero?






Chapter 3

Deterministic Extended Path

Overview. We know from Section 1.1 that the first-order condi-
tions of the deterministic finite-horizon Ramsey model constitute
a system of non-linear equations. The first section of this chapter
employs a non-linear equations solver to obtain the approximate
time profile of the optimal capital stock. We then extend this
approach to the infinite-horizon deterministic Ramsey model of
Section 1.2. At first sight this may seem impossible since this
model has an infinite number of unknowns. However, we know
from Section 1.2.4 that the optimal time profile of the capital
stock converges monotonically to the stationary solution. We use
this observation to reduce the system of first-order conditions to a
finite number of equations. In Section 3.2 we turn to the stochas-
tic Ramsey model (1.22). We use the property of this model to
converge after a one-time productivity shock, to trace out a Ratio-
nal expectations path for its variables. From this path we obtain
the solution for the decision variables of the current period. This
observation dates back to FAIR and TAYLOR (1983) and was ap-
plied to the stochastic Ramsey model by GAGNON (1990) from
whom we borrowed the label ’deterministic extended path’. More
broadly speaking, the method is a forward iteration method, since
we solve for current-period variables by determining a specific fu-
ture path of the economy. We sketch the general structure of this
approach at the end of Section 3.2 and close the chapter with
two further applications in Section 3.3: our benchmark model of
Example 1.5.1 and the small open economy model of CORREIA,
NEVES and REBELO (1995). This latter model is less suited for
the methods of Chapter 2, since it has no uniquely determined
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stationary solution. This feature, however, poses no problem for
the deterministic extended path algorithm.

The mathematical tools that we employ in this chapter are al-
gorithms that obtain approximate numeric solutions to systems
of non-linear equations. We explain the mathematical background
behind the most common routines in Section 11.5. It is the task
of each researcher to prepare the system of non-linear equations
to which her or his model gives rise so that a non-linear equations
solver is able to obtain the solution. For this reason, this chapter
is a collection of example applications that demonstrate the use
of the deterministic extended path approach. Since the solution
of non-linear equations with numerical methods is a delicate busi-
ness, we hope nevertheless that it will be useful for the reader to
go through the following pages.

3.1 Solution of Deterministic Models

In this section we use the finite-horizon deterministic Ramsey
model (1.3) to illustrate the use of non-linear equation solvers. We
then explain the computation of the saddle path of the infinite-
horizon Ramsey model (1.8).

3.1.1 Fainite-Horizon Models

The Model. Consider the first-order conditions of the finite-
horizon Ramsey model (1.5), which we here repeat for your con-
venience:

K = f(K;) — Cy, (3.1a)

oU(Co,....Cr)JOC, _,
AU (Co,. . Cr)joc,, | e (3.1b)

The first equation is the economy’s resource constraint, the second
condition determines the farmer’s savings. As usual, K; denotes
the capital stock of period t = 0,1,...,T and C}; consumption.
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To determine the time path of capital and consumption from this
system, we must specify functional forms for U and f. We assume
that U is given by the time-separable utility function

NN |
U(007"'7CT) ::Zﬁtﬁu 56(071)77]>07
t=0

and that
f(Kt> = (1_5>Kt+Ktaa o€ (071)766 [071]7

where (3 is the discount factor and ¢ the rate of capital deprecia-
tion. Using these two functions, equations (3.1) simplify to

0=[(1-08)K, + K — K1) "

— B[(1=0) K1 + Kfy — Kipo] " (1= 0+ aK7'),
t=0,1,...., 7T —1,
O - KT+1. (32>

For a given initial capital stock Ky, this is a system of T" non-linear
equations in the 7" unknown capital stocks K, Ko, ..., K. Thus,
it is an example of the general non-linear system of equations
f(x) = 0, x € R" considered in Section 11.5 and can be solved by
using the algorithms considered there.

Non-Linear Equations Solvers. For their proper use, you
should know how non-linear equations solvers work. The com-
mon structure of the algorithms that we employ in this book is
the iterative scheme:

Xe11 = X5 + pAXg, s=0,1,....

They start with an initial guess of the solution xy, determine a
direction of change Ax and a step length u, and proceed to the
next guess of the solution x;. This process is continued until either
f(xs) ~ 0, in which case the problem is solved, or x54; — x5 ~ 0
so that no further progress can be achieved. The algorithms differ
in the way they determine both p and Ax.
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The first problem that one, thus, encounters, is the choice of
the initial value xq. In the problems of this chapter, the stationary
solution of the model is usually an adequate choice. In subsequent
chapters, where we will face more complicated non-linear systems,
we will employ genetic search algorithms to tackle the initial value
problem. At least, we must find an xq so that f is defined at this
point. In our model, this amounts to ensure that consumption is
positive at xg, because in the set of real numbers it is an undefined
operation to raise a negative number to an arbitrary power. In
our Gauss program Ramseyl.g we set the starting value equal
to a fraction of (1 — §)Ky + K§ for all initial Ky, t = 1,...,T
guaranteeing C; > 0, where K is the capital stock inherited from
the past — an exogenously given, arbitrary number.

The second problem that may surface is that the algorithm
selects a point x4,; at which f cannot be evaluated. Note, that
many algorithms do not control for undefined operations, should
they occur during the course of iterations. Usually, the program
will stop with an error message. To prevent this, our own non-
linear equation solvers keep track of an error flag that you can set
before an undefined operation will be executed. If possible, the
algorithm then reduces p accordingly to way around this problem.
A second work around is to tell the algorithm that there are upper
and lower bounds for x. In the problems considered in this chapter
this will usually be the case.

Solutions. Figure 3.1 displays four different solutions for the
time path of the capital stock. They differ in the values of § and K
but rest on the same choice of o = 0.27, 3 = 0.994, and T" = 60.
The left panel displays solutions for the case 0 = 1. If the initial
capital stock K is small, the farmer quickly builds up his capital
to a certain level, to which he sticks until shortly before the end
of his planning horizon. Then he rapidly depletes this stock to the
terminal value of K71 = 0. The farmer displays a similar behav-
ior if his initial capital stock is very high. He dissaves to reach a
target level, which he again maintains almost up to the end of his
planning horizon.

The right panel displays solutions which rest on a more realistic
value of § = 0.011 so that the farmer’s savings are small relative
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Figure 3.1: Example Solutions of the Finite-Horizon Ramsey Model

to his wealth K;. Under this assumption the time path of the
capital stock is hump-shaped if the given initial capital stock Kj is
small. If the farmer starts with a high capital stock, he continually
depletes his resources over his entire planning period.

3.1.2 Infinite-Horizon Models

It is easy to extend the approach of the previous subsection to ob-
tain approximate solutions of the transitional dynamics of infinite-
horizon deterministic models. We take advantage of a model’s
property to approach a stationary solution from arbitrary ini-
tial conditions. An example of this property is the saddle path
of the Ramsey model (1.8), which we study in Section 1.2.4. To
approximate this path, we simply replace the terminal condition
Kry1 = 0in (3.2) with the stationary capital stock Kr3 = K*.
In this way, we obtain a finite-dimensional system of non-linear
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equations from the infinite number of equations that determine
the true solution.

The Model. The Euler equations of the Ramsey model (1.8)
are given in (1.17). Using the same functional forms as in the
previous subsection, these equations also simplify to the system
given in (3.2) except that they hold for all t = 0,1,.... This is a
system with an infinite number of unknown variables. However,
we know that this system determines a convergent path to the
stationary capital stock determined by the condition 1 = g f'(K*)
(see Section 1.2.4 on this point). Using the definition of f given
above, we can solve this condition for K™ resulting in

K — {#;_5))] o (3.3)

To reduce the infinite number of equations, we assume that the
economy will be close to K* in period ¢t = T'. This allows us to
replace K711 =0 by Kryp = K* in (3.2).

Solution. To generate a reliable approximation of the true saddle
path, we must set 1" large enough so that Kr,; is indeed close
to K*. An appropriate method to determine 7" is to start with
some small T', increase this to 7", solve the larger system and
compare the first T" elements of this solution to the T elements of
the previous solution. Should they differ by a small amount only,
the proper T has been found. Otherwise this process is continued
until sufficiently close solutions are found.

In the infinite-horizon model, the choice of the starting value is
more delicate than in the finite-horizon model. The strategy that
was successful in the latter model does not work if the economy’s
inherited capital stock Ky (remember, this is a parameter of our
model!) is small relative to K*, because it implies C'r < 0. On
the other hand, if we set all initial values equal to K*, and K
is small, we get Cy < 0. Instead of using different starting values
for each K;, we employ a homotopy method to approach Ky: We
use K* for all K, to initialize the non-linear equations solver. This
works, if we set K very close to K*. We then use this solution as
starting value for a smaller Ky and continue in this fashion until



3.2 Solution of Stochastic Models 181

of —e
d -
ol
~ S|
18]
2
n
T of
= of
S o
3 |
Il Forward lIteration
S| ®- - Analytic Solution
®— Linear Approximation
of
Q I I I I I
S0 1 2 3 4 5 6

Period

Figure 3.2: Approximate Time Path of the Capital Stock in the
Deterministic Growth Model

Ky has reached the value we desire. In our program Ramsey2c.g
we reduce K| in this way to ten percent of the stationary capital
stock. Figure 3.2 displays the time path of the capital stock for
the case where an analytical solution is available, that is for n =1
and 0 = 1. It is, thus, similar to Figure 2.2. Very obviously, the
forward iteration method produces a much better approximation
of the saddle path than the linear solution which we computed in
Section 2.1. It is visually indistinguishable from the path obtained
from the analytic solution K1 = afK;* (see Section 1.2.5).

3.2 Solution of Stochastic Models

In this section we use forward iterations to solve for the time path
of stochastic DGE models. We use the infinite-horizon stochastic
Ramsey model (1.22) to develop this method before we outline
the algorithm in general.
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3.2.1 An Illustrative Example

The time path of the stochastic infinite-horizon Ramsey model
(1.22) is determined from the Euler equations (1.24). Let u(Cy) :=
(CF7" —1)/(1 = n) and f(K;) = K denote the current-period
utility function and the production function, respectively. In this
case, these conditions may be written as:

O — [(1 - 5)Kt + ZtKL? - Kt+1]*77
— BEA [(1 = 0) K1 + Zen Ky — Kiio]
x (1-64aZm K"}, t=0,1,2,.... (3.4)

As previously, we assume that the natural log of the productivity
level Z;, In Z;, is governed by a first-order autoregressive process:

In Zt = an thl + €, o€ [07 1)7 € ~~ N(Oa 02)' (35>

Assume that the farmer observes the initial Z,. His expected value
of Zy, then, is

Eo(ln Zl) = EO (an ZO + 61) = an ZO

since Fy(e1) = 0. Iterating on equation (3.5), he is, thus, able to
determine the expected future path of Z;:

{207 Z17 ce } = {Zt}:io - {th}t:() '

Given this path, we can determine the time path of the capital
stock under the assumption that no further shocks will occur, that
is ¢ = 0,Vt = 1,2,.... Under this assumption Z; will approach
Z =1, and, consequently, K; will converge to K*, as given by
equation (3.3). We can obtain an approximation of this path from
the solution of the system of 7" non-linear equations

t -
0= [(1 0K, + Z0K® — Ktﬂ}
t+1 -n
-0 [(1 — Ky + 2§ Ky — Kt+2] (3.6)
x <1 —0+ azgt“Kf;f) ,
t=0,1,2,...T—1,
KT+1 - K*
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This solution approximates the Rational expectations equilibrium
of the model from the point of view of period ¢ = 0. From this
solution the farmer chooses K as his next-period capital stock.
At ¢t = 1 he will observe a new shock e; that will alter the ex-
pected path of Z;. From this new path, we can again compute the
Rational expectations equilibrium and obtain K5. Proceeding in
this way, we are able to compute the approximate dynamics of
the model for an arbitrary number of periods.

Figure 3.3 plots a time path computed from the Gauss model
Ramsey3c.g. The parameters are a = 0.27, # = 0.994, o = 0.9,
o = 0.0072, n» = 1, and 6 = 1 so that an analytic solution
K1 = afZ, K} exists. The time path obtained from the de-
terministic extended path (DEP) method is so close to the true
solution that it is virtually impossible to distinguish them from
each other with the naked eye. Numerically, the maximum ab-
solute relative distance between the two paths,

DEP True
Kt B Kt

max
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Figure 3.3: Simulated Time Path of the Stochastic Ramsey Model
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is about 1.7E-08. In Problem 3.1 we ask you to compute the linear
solution and to compare it to those shown in Figure 3.3. You will
find that the maximum absolute relative distance of the linear
solution to the true one is about 1.4E-3, and, thus, several orders
of magnitude worse than the DEP solution.

3.2.2 The Algorithm in General

In this subsection we provide the general structure of the deter-
ministic extended path algorithm. We resort to the notation of
Section 2.5.4 to describe an arbitrary stochastic DGE model.
Notation. x; € R™* ig the vector of those state variables that
have given initial conditions xy but are otherwise determined en-
dogenously. y, € R*® is the vector of control and costate vari-
ables. Sometimes — as in our example consumption C; — it may be
easy to substitute these variables out of the dynamic system, but
in general this will not be the case. The vector of purely exoge-
nous variables, the vector of shocks, is denoted by z, € R™"*). The
system of stochastic difference equations that governs this model
is

0= E; [9'(Xt, ¥t 20, X1, Yer1, Zes1)]
z; = 1lz;_1 + 0Qes, € ~ N(On(z), In(z)), o >0,
i=1,2,...,n(x) + n(y),

t=01,....

(3.7)

The eigenvalues of the matrix II are all within the unitUnit circle
circle so that z, will approach 0., if €, = 0,(,)Vt. We further
assume that in this case x; and y; converge to the stationary
values x* and y*, respectively. The local convergence of the model
can be verified from the linearized model at (x*,y* 0). In the
notation of the reduced system (2.51) the matrix W must have
n(zx) eigenvalues within the unitUnit circle circle.

The Algorithm. Given these properties, we can obtain a finite-
dimensional system of non-linear equations from (3.7) which al-
lows us to compute the Rational expectations path of the model
for each given z;.
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Algorithm 3.2.1 (Deterministic Extended Path)

Purpose: Simulation of the stochastic DGE model (3.7)

Steps:

Step 1: Initialize: Let p denote the number of periods to consider
and (Xq,zo) the initial state of the model.

Step 2:

Step 1.1:
Step 1.2:

Step 1.5:

Use a random number generator and draw a se-
quence of shocks {€:};_,.

Compute the time path {z,}}_, from z, = Ilz,_,+
olle;.

Choose T large enough so that (x*,y*) is a good
approzimation of (Xr,yr) under the maintained
assumption that after t = 0,1,...,p the vector
of innovations equals its unconditional mean:
€1s = 0 Vs = 1,2 ...,T. (Iterate over T to
see whether this condition holds.)

Fort=0,1,...,p repeat these steps:

Step 2.1:

Step 2.2:

Step 2.3:

Compute the expected time path of {ZHS}ZJ;g

from z,, s = 11°z,.
Solve the system of T'(n(x) + n(y)) equations

0= gi (Xttss Vs, 2, Xey 11, Yerst, HSHZt);
i=1,2,...,n(x) +n(y),
s=01,...,T—1,

)(4< = Xt+T7

for {x1s}_, and {y.1s}._,. From the solution,

keep X411 and y;.
Use x411 as starting value for period t + 1.

Note that it is not possible to set y,. 7 equal to y* in Step 2.2,
since this would yield a system with more equations than unknown
variables. As a consequence, it is, thus, not possible to iterate
backwards starting from

0= gl (XtJrT*la Yitrr-1, HT?lZa X*a y*a HT)a
i=1,2,...,n(x) + n(y).
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We must, indeed, solve the entire system of interdependent equa-
tions. Even with a moderate number of variables this systems
will comprise several hundreds of equations. Algorithms which
compute the Jacobian of the system to determine the direction
of progress will consume a considerable amount of computation
time. It is, thus, advisable to reduce the system as far as possible.
For instance, one may use static equations to substitute out a part
or even all of the control variables of the model. The applications
of the next section illustrate this approach.

3.3 Further Applications

The first application which we consider is the benchmark model
of Example 1.5.1.

3.3.1 The Benchmark Model

Our starting point is the system of stochastic difference equations
from Section 1.5. We repeat these equations for your convenience
but assume that you are familiar with our notation. If not, please
refer either to Chapter 1 or to footnote 23 in Chapter 2 for a quick
reference.

0=c;"(1— N, _ )\, (

0=0c (1= N,)PO=D=1 (1 — @)\ ZN;7 k2, (3.8b
0=akey — (1—0)ke + o — Z; N}k, (3.8¢
0=XN\—Ba "EX (1 -6+ aZi Nk - (3.8d

This system is an example of the general model defined in equa-
tions (3.7), with x; = ky, y¢ = [er, Ny, M), and 2z, = In Z,. For a
given T, for example T" = 150, we have to solve a system of 600
unknown variables. This is a pretty large number. In Problem 3.2
we ask you to write a program that solves this system. We, in-
stead, will use the two static equations (3.8a) and (3.8b) to reduce
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the above system to a system with 27" variables. Substituting for
At in equation (3.8b) from equation (3.8a) yields:

11—«

Ct — (1 — Nt)ZtNtiakta.

This allows us to eliminate consumption ¢; from the resource con-
straint (3.8¢c). In addition, we solve (3.8a) for \; and use the solu-
tion to replace this variable from equation (3.8d). In the ensuing
equation we eliminate ¢; with the help of the resource constraint
(3.8¢). The result is a system of 27" equations in the unknown
variables { N, }1_, and {k .} "

0= ZE NEky + (1= 0)keps — akipop
1 -«
0
ZE N2 ke (L= 0) ks — ak !
0= t St+5+1 t+s+1 t+s+1 ARt 4s+2
Ztg NtlJr_sak?Jrs + (1 - 6)kt+s - akt-ﬁ-s-{-l

(1= Nivs) 28 NSOk

1 o N s 0(1_77) s
(R )" e (1= )
1— Nt+s+1

S:O,...,T—l, kT:kTJrlzk.

Our program Benchmark.for solves this system with our non-
linear equations solver FixvMN2 . This program takes care of the
upper and lower bounds for both the capital stock and working
hours. In addition, we use a flag that signals the program if con-
sumption becomes negative. If this should occur during the simu-
lations, the program computes a homotopy path: The distance be-
tween (ky, z;) — the state of the system at period t from which the
rational expectations path is to be computed — and the stationary
solution (k,InZ = 0) is divided into n small steps (Ak, Aln 7).
The non-linear equations solver is restarted from (k+ Ak, Aln 7)
using the stationary solution as initial value. This always works
if Ak and AZ are small enough. The solution is then taken as
starting value for the next pair of states (k + 2Ak,2AInZ). In
this way, the algorithm proceeds until it arrives at (ki, z¢).

Table 3.1 compares the results of our simulations to those ob-
tained in Chapter 2 from the linear policy functions (see Table 2.2).
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Table 3.1

Linear DEP

Second Moments

Variable Su Ty T S Tay T
Output 1.44 1.00 0.64 1.44 1.00 0.64
Investment 6.11 1.00 0.64 6.11 1.00 0.64
Consumption 0.56 0.99 0.66 0.56 0.99 0.66
Hours 0.77 1.00 0.64 0.77 1.00  0.64
Real Wage 0.67  0.99 0.65  0.67 099  0.65
Euler Equation Residuals
[0.90;1.10])% 1.835E-4 8.370E-7
[0.85;1.15]k 3.478E-4 9.130E-7
[0.80;1.20]% 5.670E-4 1.101E-6
DM-Statistic
<3.816 5.0 2.8
>21.920 3.0 3.0

Notes: s;:=standard deviation of variable x, 7yy:=cross correlation of
variable z with output, r;:=first order autocorrelation of variable x. All
second moments refer to HP-filtered percentage deviations from a vari-
able’s stationary solution. Euler equation residuals are computed as max-
imum absolute value over a grid of 400 equally spaced points on the
square # X [In0.95;1n1.05], where .# is defined in the respective row
of the first column. The 2.5 and the 97.5 percent critical values of the
x2(11)-distribution are displayed in the last two lines of the first column.
The table entries refer to the percentage fraction out of 1,000 simulations
where the DM-statistic is below (above) its respective critical value.

The parameters of the model are those presented in Table 1.1. The
length of the deterministic extended path (DEP) is 7" = 150. We
have chosen this number, because it implies a high degree of ac-
curacy. When we reduced 7" to 100, the maximum absolute Euler
equation residual increased by a factor of 14. Table 3.1 confirms
our first finding in Section 2.6.1: There are no numeric differences
(up to the second digits) between the second moments. However,
the DEP method provides a remarkable increase in the degree of
accuracy. The respective Euler equation residuals are about 500
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times smaller than those of the linear method. This comes, how-
ever, at the cost of computing time. It requires less than a second
to compute the second moments by using the linear policy func-
tions. The DEP method consumes more than two and half an
hour for the same task. There is a second difference between the
two methods. The Euler equation residuals of the DEP method
do not change much if we increase the interval around the sta-
tionary solution. The DEP is not a local method. It computes a
Rational expectations path from the given state of the system to
the stationary solution implied by this state. If T is reasonably
large, this path will be very close to the true saddle path, even if
the initial state is far from the stationary solution. The smaller
fraction of simulations that result in a DM-statistic below the 2.5
percent critical value also indicates that the DEP method pro-
vides a more accurate solution than the linear method. However,
it took almost two weeks to compute the DM-statistic.

3.3.2 A Small Open Economy

As a second example we present the small open economy model of
CORREIA, NEVES, and REBELO (1995). We portray this economy
from the perspective of a representative household who is both
a consumer and a producer. This will streamline the derivation
of the necessary equations. Problem 3.3 sketches a decentralized
economy with the same dynamic properties.

The Model. Consider a consumer-producer in a small open econ-
omy who uses domestic labor N; and domestic capital K; to pro-
duce output Y; according to

Yy = Z,F (AN, K).

The natural logarithm of total factor productivity Z; follows the
AR(1) process

InZ, =olnZ 1 +e, 0€]0,1), ¢~ N(0,6°%),

while the level of labor augmenting technical progress A; grows
deterministically
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At+1 = &At, a 2 1.

Capital formation is subject to frictions, that is, investment ex-
penditures I; do not produce additional capital one-to-one. In-
stead, it becomes more and more difficult to build up capital, if
investment expenditures increase. This is captured by

Kipy = o(1i/ K) Ky + (1 = 6)K;, 6 €(0,1), (3.10)

where ¢(-) is a concave function. The usual, frictionless process of
capital accumulation, Ky = I, + (1 — §) K4, is a special case of
(3.10) for ¢(I;/ Ky) = I/ K.

The consumer in this economy can freely borrow or lend on the
international capital market at the real interest rate r;. At period
t, his net foreign wealth is B;. Accordingly, his budget constraint
is given by

Bt+1 - Bt S TBt -+ frtBta (311)
where
TBt - }/;5 - Ct - It

is the country’s trade balance. However, there are legal restric-
tions on the amount of international borrowing that prevent the
consumer from accumulating debt at a rate that exceeds the re-
spective interest rate, that is:

lim B > 0.
t—o00 (1 + To)(l + 7“1)(1 + TQ) s (1 + Tt) -

A country that is initially a net debtor (By < 0) must therefore
allow for future trade surpluses so that the inequality

oo

TB,
B S 2 T ) 1

will be satisfied. The consumer-producer chooses consumption Cj,
investment [;, working hours /V;, his future domestic capital stock
K1 and net foreign wealth B;; to maximize
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Ut - Et Zﬂsu(cﬂrsa Nt+s)7 ﬂ € (07 1)

s=0

subject to his budget constraint (3.11), the capital accumulation
equation (3.10), the solvency condition (3.12), and given initial
stocks K; and By, respectively.

First-Order Conditions. The Lagrangian of this problem is

L = Et ZﬁS{U(OH_S, Nt—f—s)
s=0

+ At+s [Zt—l—sF(At-i-sNt—I—s; Kt—f—s) + (1 + Tt—l—s)BH—S
- Ct-i—s - It—f—s - Bt+s+1:|
+ AtisQirs [¢(It+s/Kt+s)Kt+s + (1= 0)Kiys

- Kt+s+1] }

The multiplier ¢; is the price of capital in terms of the consumption
good so that A.q; is the price in utility terms (that is, in the units
in which we measure utility u). Differentiating this expression
with respect to Cy, Ny, I}, K;1 and By, provides the first-order
conditions

0= ’LLC(Ct, Nt) — At, (313&)

0= UN(CtaNt) +AtZtFAN(AtNt7Kt)At7 (313b)
1

0=q¢— ————, 3.13c

L) (3:15¢)
A

0=q — BE; [t\H [ZtJrlFK(AtJrthJrla Kt+1) (3-13d)

t
+ Q41 (1 -0+ ¢(It+1/Kt+1)) - (]t+1/Kt+1)]7
0= At - ﬁEtAt—i-l(l -+ Tt+1). (3136)

The first two equations and the last equation are standard and
need no further comment. The third equation determines invest-
ment expenditures as a function of the current capital stock and
the price of capital ¢. According to the fourth equation (3.13d),
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the current price of capital must equal the expected discounted
future reward from an additional unit of capital. This reward has
several components: the increased output as given by the marginal
product of capital Z;, 1 F(A;11Niv1, Ki11), the residual value of
the remaining unit of capital ¢;1(1 — 0), and the increased pro-
ductivity of future investment

Qt+1¢(') - Qt+1¢/(')(]t+1/Kt+1)'
=1

Functional Forms. CORREIA, NEVES, and REBELO (1995) as-
sume that F'is the usual Cobb-Douglas function

F(ANy, K;) = (AN)'7*K?,  a e (0,1). (3.14)

For the current period utility function they consider the speci-
fication proposed by GREENWOOD, HERCOWITZ and HUFFMAN
(1988):

(Ct—l_%/AtNtHy)kn

L—n

U(Ct, Nt) = s 9, v > 0. (315)
They do not need to specify the function ¢, because they resort
to the linear solution method, which only requires the elasticity
of ¢’. We, however, need an explicit function to solve for the de-
terministic extended path and use

¢ (L)
o(I/ Ky) = 1—¢ (E) +¢2, (2>0. (3.16)

This is an increasing, concave function of its argument I,/ K;. The
parameter ( is the elasticity of ¢’ and determines the degree of
concavity. For ( close to zero, adjustment costs play a minor role.

Temporary Equilibrium. The model depicts a growing econ-
omy. Therefore, we must define new variables that are stationary.
As in the benchmark model this is accomplished by scaling the
original variables (in as far as they are not themselves stationary)
by the level of labor augmenting technical progress A;. We think
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by now your are familiar with this procedure and able to derive
the following system from (3.13) and the functional specifications
(3.14), (3.15), and (3.16), respectively.

0 1 1
0= (Ct — 1—|——1/ ter) — )\ta (3 17&)
0=0N; — (1 — ) ZN; K}, (3.17b)
0=1i; — (drq0)" ey, (3.17¢)
A
0= q—Ba "B [aZmNtl;fkggf (3.17d)
t
+ g1 (1 = 0 + Bivs1 /K1) — (ies1 /i) |
0= )\t - ﬁa_nEtAt+1(1 -+ Tt-l—l)u (317@)
0= a/kt+1 - ¢(Zt/kt)kt - (1 - 6)kt, (317f)
0= &btJrl — ZtNtliakta — (1 + T’t)bt + ¢+ it. (317g>
The lower case variables are defined as z;, = X;/A;, X, €

{Cy, I, Ky, B} except for A\, := AJA;. Equation (3.17b) follows
from (3.13b) if A; is replaced by (3.13a). It determines working
hours NV, as a function of the marginal product of labor. In a de-
centralized economy the latter equals the real wage per efficiency
unit of labor w;. Viewed from this perspective, equation (3.17b)
is a static labor supply equation with w, as its single argument
so that there is no operative income effect. This is an implication
of the utility function (3.15). Equation (3.17f) is the scaled tran-
sition law of capital (3.10), and equation (3.17g) derives from the
households budget constraint (3.11).

Calibration. We do not intend to provide a careful, consistent
calibration of this model with respect to a specific small open
economy (say, the Portuguese one to which CORREIA, NEVES, and
REBELO (1995) refer), since we left out a few details of the original
model (as government spending and international transfers) and
since our focus is on the technical details of the solution but not
on the model’s descriptive power. For this reason we continue to
use the values of the parameters a, o, 3, 1, 0, 0, o, N from Table
1.1. As we have just noted, (3.17b) defines a labor supply schedule
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with 1/v as the elasticity of labor supply with respect to the real
wage. As in HEER and MAUSSNER (2008), we use v = 5 and
calibrate 0 so that the stationary fraction of working hours equals
N = 0.13. We borrow the value of ¢ = 1/30 from the authors of
the original model and choose the remaining parameters of (3.16)
so that adjustment costs play no role on the model’s balanced
growth path. This requires i = (a +d — 1)k and ¢ = 1, implying

¢1 = (a+5_1)<7
¢
= 0—1)——.

¢2 (CL + )g 1
Balanced Growth Path. Given the choices made so far, we can
solve equations (3.17) for the economy’s balanced growth path by
ignoring the expectations operator and by setting x; = x4, =«
for all variables x. Equation (3.17e) then implies

a’l

This is a restriction on the parameters of our model, since the
real interest rate r is exogenous to the small open economy. The
properties of the function ¢ imply the solution for the output-
capital ratio from equation (3.17d):

y a’—p(1-9)

R (3.18b)

Given N we can infer k£ and y from this solution. This, in turn,
allows us to solve (3.17¢) for 7. It is, however, not possible to
obtain definite solutions for both b and c¢: on the balanced growth
path the budget constraint (3.17g) simplifies to

(a—(14+7r)b=y—c—i. (3.18¢)

Formally, the parameter restriction (3.18a) deprives the model
of one equation. Economically, the possibility to borrow on the
international capital market allows consumption smoothing to a
degree that imposes a unit root. To understand this, consider
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equation (3.17e) and assume a constant real interest rate r and
perfect foresight. This implies

Att1
At

=1

so that there is no tendency for \; to return to its initial value A,
say, after a shock. However, N is determined from a, o, 3, 0, 6,
and v, and will converge, if the stock of capital will converge to
k. As a consequence, any permanent jump of \; translates into a
permanent jump of consumption and — via the budget constraint
— into a permanent change of b;.

This unit root is an obstacle for any local solution method.
After all, these methods determine the parameters of the policy
function from the stationary solution. A model without tendency
to return to its balanced growth path can be driven far apart from
it, even by a sequence of shocks that are themselves generated
from a stationary stochastic process. The policy functions that are
used to simulate this model, thus, might become more and more
unreliable. As we will demonstrate in the next paragraph, the
deterministic extended path algorithm is immune to this problem.

Before we turn to the solution of our model, we resolve the
problem with ¢ and b. We simply assume that the economy starts
with zero net foreign debt, b = 0, so that ¢ =y — 1.

Solution and Results. The system of equations (3.17) fits
into the general structure of equations (3.7). The shocks are
z; = [In Z;, ry]’, the state variable with initial conditions are x; =
[k, by, the control and costate variables are y; = [¢y, i, Ny, A, ¢i]'-
As in the previous subsection, we reduce this system by substitut-
ing out the control variables (¢, i, IV;). This is easily accomplished
since equations (3.17a) through (3.17¢) can be solved analytically
for these three variables. We can further reduce the number of un-
known variables by noting that equation (3.17¢) determines the
entire path of {\,},_, from the exogenous path {r,}”_ of the world
interest rate and from \yg. We assume — without proof — that the
capital stock approaches k, but invite you to use the methods from
Section 2.4.2 and check numerically that at (k,0, A, 1) the model
has indeed one root equal to unity, one root between zero and one
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and two roots outside the unitUnit circle circle. As noted above,
this implies that Ny, y;, and i, also approach their stationary val-
ues. For the model to be consistent with the solvency condition
(3.12), it must hold that b; does not grow without bounds but
converges to a certain limit in response to a shock. We induce
this condition by assuming by = br_; for some large T'. In this
way we reduce (3.17) to a system of 37 equations in {k;}1 ",
b {a:rE,, and Ag. The Gauss program SOE.g computes
impulse responsesImpulse response function to productivity and
interest rate shocks from this system.

Consider, first, a productivity shock. Figure 3.4 plots the re-
sponse of the model’s state and costate variables, Figure 3.5 shows
the time paths of several other variables.

The figures confirm what we have noted in the previous para-
graph. The shock boosts the current — and since it is highly au-
tocorrelated — the expected future rewards of labor. In Figure 3.5
this appears as a temporary increase of the real wage. Due to the
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Figure 3.4: Response of State and Costate Variables to a Productivity
Shock in the Small Open Economy
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the Small Open Economy

small elasticity of labor supply, working hours increase slightly,
and raise output beyond the level which is implied by the in-
creased total factor productivity. The household also anticipates a
temporary increase of the marginal product of capital. This higher
reward raises investment and induces the hump-shaped response
of the capital stock seen in Figure 3.4. Note that the shadow
price of capital falls below unity on its way back to the station-
ary value of ¢ = 1. Consider, now the reaction of consumption.
Different from the closed economy, where the interest rate will ap-
proach its former level after a temporary productivity shock, the
household can earn the rate r on his savings forever. This allows
him to increase consumption permanently — a much stronger way
to smooth consumption. To achieve this, the household sells part
of the domestic production on the world market in exchange for
bonds. After domestic production and investment have returned
to their respective pre-shock values, the interest income allows for
a permanently higher level of consumption. The mirror image of
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this exchange is the development of the trade balance: initially,
we observe a surplus that finally turns into a permanent deficit.
Corresponding to the permanent increase of consumption is the
once and for all drop of the marginal utility of consumption dis-
played in the lower left panel of Figure 3.4, where the broken line
indicates the pre-shock value of \.

Consider, second, a shock to the world interest rate. If this shock
is not autocorrelated, and if — as assumed here — the domestic
economy 1is initially neither a net debtor nor a net creditor, this
shock has no impact: the current income does not change (since
robg = 0), so A does not need to adjust, and in ¢t = 1 the world
interest rate is back to its initial value so that there are no further,
anticipated effects. In Figure 3.6 we display the consequences of
an autocorrelated, positive interest rate shock (see the upper left
panel) that hits the economy in period ¢t = 1. The autocorrela-
tion coefficient of the shock equals 0.90 and the shock increases
the world interest rate by one percent in ¢ = 1. The prospect of
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temporarily higher returns on the international capital market in-
creases savings (see the small, but visible fall of consumption) and
triggers a portfolio adjustment. Temporarily, investment in the
home country stock of capital declines in favor of foreign bonds.
The reduced stock of capital decreases the marginal product of
labor so that the real wage and employment shrink. This occurs
no sooner than in period t = 2, so that output begins to decline in
the period after the incidence of the shock. In the end, we observe
a permanent increase of consumption financed from the interest
income on foreign bonds. Therefore, the initial trade surplus is
being replaced by a permanent trade deficit in the long-run.
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Problems

3.1 Stochastic Ramsey Model. Figure 3.3 displays a simulated time path
of the stochastic Ramsey model 1.22 obtained from the deterministic
extended path method. Use our program Ramsey3c and the vector of
productivity levels zvec_Figure3_3 to recompute this path. In addition,
compute the linear solution as explained in Section 2.4. Compare the
linear solution to the analytic solution and to the deterministic extended
path solution.

3.2 Benchmark Model. In Section 3.3.1 we use a reduced system of equa-
tions to compute the deterministic extended path solution of the Bench-
mark model from Example 1.5.1. Use the system of equations (3.8) in-
stead of this system and recompute the solution. Compare the run-time
of your program to the run-time of our program.

3.3 A Small Open Economy with Consumers and Producers. The
economy is populated by a unit mass of identical consumers. The rep-
resentative consumer supplies labor services INV; and allocates his wealth
between the stocks S; of domestic firms and an internationally traded
bond B;. The rate of return of this bond is determined on the world
capital market and denoted by r;. Domestic firms are distributed on the
unit interval and are identical. As a result, the consumer must choose
how much of his wealth he wants to put in the stocks of domestic firms,
but he has no need to decide about the allocation of funds invested into
specific firms. The stock price of the representative firm is v;. Each stock
yields a dividend payment of d;. The consumer’s budget constraint, thus,
is:

Bit1 — By + vi(Se41 — St) = we Ay Ny + (1 + 1) By + diSe — C,

where C} denotes consumption, w; is the real wage per efficiency unit of
labor A;N;. At period t = 0 the consumer chooses Cy, Ny, S1, and B; to

maximize
1—n
C, — 2 Nl+u> 1
t ( vt
Eotz:;b’ T , B€(0,1),0>0, v>0,

subject to his budget constraints and given his initial portfolio (By, Sp).
The consumer is not allowed to accumulate debt at an ever increasing
rate. Thus

lim Bi >0
t—o0 (1 —|—T‘0)(1 —|—’I"1) s (1 +7”t)

The representative firm produces output Y; according to the function
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Y; = Zy(A{N)' TOK®, a € (0,1).

Z; is a stationary random process and the level of labor augmenting
technical progress A; is governed by

A1 =ady, a>1.

The firm is not able to rent capital services but must accumulate capital
according to

Kt+1 - ¢(It/Kt)Kt —+ (1 - (5)Kt

The firm funds its investment expenditures I; from retained earnings RE;
and the emission of new stocks v (S¢1 — St):

It = REt + Ut(StJrl — St)

Profits Y; —w; A; N; which are not retained for investment are distributed
to its share holders:

dtSt = Y;g — thtNt — REt

Let Ry = (vt + di)/vi—1 denote the gross return on shares. At ¢ = 0 the
firm maximizes

oo

Y, —w AcNy — Iy
Vo := Ei
0 0; RoR,--- Ry

subject to the above given constraints with respect to Ny, Iy, and K;.
Show that the first-order conditions of the consumer’s and the firm’s
problem together with the various constraints specified above imply the
system of stochastic difference equations given in (3.17).

Consumption Smoothing in the Small Open Economy. According
to our findings in Section 3.3.2, a small open economy should display more
consumption smoothing than an otherwise identical closed economy. To
confirm this assertion, we ask you to write a program that computes
second moments of consumption from simulated time series. To stick as
close to our benchmark model of Example 1.5.1 use the traditional utility
function

_ G- N0 1

U(Ct,Nt) 1 s

instead of equation (3.15). Assume a constant world interest rate given
by r = (a"/8) — 1 so that productivity shocks are the single cause of
the business cycle. Calibrate ¢ from equation (3.16) so that the standard
deviation of investment equals the standard deviation of investment in
the benchmark model.



202 Chapter 3: Deterministic Extended Path

3.5 Productivity and Preference Shocks. Empirically the correlation
between working hours and the real wage is close to zero. The benchmark
model, however, predicts a strong positive correlation. In the following
model, which is adapted from HOLLAND and ScOTT (1998), we introduce
a preference shock in the benchmark model of Example 1.5.1. Specifically,
we assume that the parameter 6 in the momentary utility function of the
representative household is not a constant but a random variable 6, that
is governed by a first-order autoregressive process:

0, =0'"70]_e*, ye0,1], & ~ N(0,07).

The innovations &; induce shifts of the labor supply schedule along a given
labor demand schedule. By this, they counteract the positive correlation
between the real wage and working hours introduced by shocks to total
factor productivity Z;. The planer’s problem is as follows:

°° I=nc1 _ 01 (1—m)
1— N,
-_ EO{Zﬁtct (1-Ny) }
t=0

Co.No 1-n
s.t.
K1 +C < Zy(AN)' K + (1 - 6)K,,
A = aAt,l, a>1,
Zy = Z% e, ¢~ N(0,02), t=0.1,...
0 S Ct7
1 > Nt > 07
0 < Kiq,

Koy, Ay Zy given.

Use the parameter values given in Table 1.1 to calibrate this model. In
addition, put v = 0.9 and o¢ = 0.01 and calibrate 6 so that the stationary
fraction of working hours equals N = 0.13.

a) Derive the first-order conditions for the planer’s problem and write
it down in terms of stationary variables. Modify the extended path
algorithm 3.2.1 to suit this model.

b) Simulate the model several hundred times. Pass the time series for
working hours and the real wage to the HP-filter and compute the
average cross-correlation between those two variables.

¢) Repeat this exercise for a value of o¢ close to zero.

3.6 Transition Dynamics and Endogenous Growth. The following en-
dogenous growth model is based on Lucas (1990). The description of the
dynamics is adapted from GRUNER and HEER (2000).

Consider the following deterministic Ramsey problem that is augmented
by a human capital sector. Households live infinitely maximizing in-
tertemporal utility:



Problems 203

oo o\1—n
Zﬁt%, 0<pB<1,0<0,

t=0

where ¢; and [; denote consumption and leisure in period t. The individual
can allocate his time endowment B to work n, learning v and leisure [:

B:nt—l—vt—i—lt.

The human capital of the representative individual h is determined by
the time v he allocates to learning according to:

ht+1 = ht (1 + D’U;y) :
Physical capital k; accumulates according to:
kt+1 = (1 — Tw)nthtwt + (1 =+ (1 — T/,'-)T't) k?t + bt — Cy¢,

where wage income and interest income are taxed at the rates 7, and
T, respectively. Pre-tax wage income is given by the product of the wage
rate wy, the working hours n;, and the human capital h;. 7, and b; denote
the real interest rate and government transfers, respectively.

Production per capita y is a function of capital k& and effective labor nh.
Output is produced with a CES technology:

1
yr = F(k,nh) = ag (a1k°? + as (nh)7")r |

where 0, denotes the elasticity of substitution in production. Define the
state variable z = % The production per effective labor is defined by

f(z) = F(z,1). In a factor market equilibrium, factors are rewarded with
their marginal products:

w=f(z) - 2f(2),
r=f(2).

The government receives revenues from taxing labor income and capital
income. The government budget is balanced so that government con-
sumption g and transfers b equal tax revenues in any period:

gt + by = Twnihyw 4+ Tk

Periods t correspond to years. The model is calibrated as follows: n = 2.0,
0 =0.5n=097 B=213, D =0.035~v=0.8, 0, = —2/3, ap = 0.77,
a; = 0.36, ax = 0.64, 7, = 0.36, 7. = 0.40. The share of government
consumption in output is g/y = 0.21.
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a) Derive the first-order conditions of the household and the equilibrium
conditions of the model.

b) On a balanced growth path, consumption, output, physical capital,
and human capital grow at a constant rate p, while the time alloca-
tion is constant. Derive the equations that characterize the balanced
growth equilibrium. For this reason, express the equations with the
help of stationary variables. For example, divide the government bud-
get constraint by y;.

¢) Use our non-linear equation solver to compute the stationary equi-
librium.

d) How does the growth rate react to a reduction of the capital income
tax rate 7, from 40% to 25% that is financed i) by a reduction in
transfers b; and ii) by an increase in the wage income tax rate 7,7
Explain why the growth rate decreases in the latter case.

e) Compute the dynamics for the transition between the old steady
state that is characterized by a capital income tax rate 7, = 40%
and the new steady state that is characterized by 7. = 25%. Assume
that during the transition and in the new steady state, g/y and b/y
are constant and that the wage income tax rate 7, adjusts in order
to balance the government budget. Use forward iteration to compute
the dynamics. (difficult)

Business Cycle Fluctuations and Home Production.

In the US economy, hours worked fluctuate considerably more than pro-
ductivity, and the correlation is close to zero. The standard real business
cycle model presented in Section 1.4 has considerable difficulties to repli-
cate this fact. For our German calibration, forCalibration example, hours
worked and productivity have approximately equal standard deviations
(0.77% and 0.72%, respectively). The following extension of the stochastic
growth model is based on BENHABIB, ROGERSON, and WRIGHT (1991).
In their model, agents work in the production of both a market-produced
good M and a home-produced good H.

Households maximize intertemporal utility

% 1= ,,)6(1=)
R{ 3 [T

where C} is the following composite of the consumptions of good M and
H:

Ci = (aCy + (1 - a)cf,t)% .

The time endowment of one unit is allocated to market and home pro-
duction according to:
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1=1L;— Nyt — Nyt

Notice that the two types of work are assumed to be perfect substitutes,
while the two consumption goods are combined by an aggregator that
implies a constant elasticity of substitution equal to ¢/(1 — ¢).

The model has two technologies:

Yue = F (Zne, Ko, Nare) = ZMtKI?/ItNJb—tG’
Vi = G (Ze, K, Nut) = Zin K, Nyg, 7.

The technology shocks follows the processes:

InZyr 41 = pInZngs + €,
InZg i1 = pln Zgy + €m,

where €;: ~ N(0,0?) are normally i.i.d. for i = M, H and have a contem-
poraneous correlation ras g = cor(€enrt, €t ).
Total capital K; = K¢ + Kg¢ accumulates according to

Kt+1 - (1 - 6)Kt + It.

New capital is produced only in the market sector implying the con-
straints:

Cume + I = Y,
Cui = Y.

Model periods correspond to quarters. The model is calibrated as follows:
8 =10.99, a=0.36,0 =0.025, = 1.5, ¢ = 0.8, v = 0.08, ryyg = 0.66,
p=0.9, oy = oy = 0.007. The steady state leisure L = 0.7 is used to
calibrate 6. a is set so that Cp/Cp = 1/4.

a) Derive the first-order conditions of the model.

b) Compute the steady state and calibrate the parameters a and 6.

¢) Compute the standard deviation of hours worked in the market ac-
tivity, Nast , and productivity, Zys, as well as the correlation of Ny
and Zp¢. Apply the HP-filter to the simulated time series. Explain
why the variance of hours worked has increased. Vary ¢ and analyze
the sensitivity of your result with regard to this parameter. Explain
your result.
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Discrete State Space
Methods

Overview. In this chapter we explore methods that replace the
original model by a model whose state space consists of a finite
number of discrete points. In this case, the value function is a
finite dimensional object. For instance, if the state space is one-
dimensional and has elements 2~ = {1, xs,...,2,}, the value
function is just a vector of n elements where each element gives
the value attained by the optimal policy if the initial state of the
system is x; € 2. We can start with an arbitrary vector of val-
ues representing our initial guess of the value function and then
obtain a new vector by solving the maximization problem on the
rhs of the Bellman equation. This procedure will converge to the
true value function of this discrete valued problem. Though simple
in principle, this approach has a serious drawback. It suffers from
the curse of dimensionality. On a one-dimensional state space, the
maximization step is simple. We just need to search for the maxi-
mal element among n. Yet, the value function of an m-dimensional
problem with n different points in each dimension is an array of
n™ different elements and the computation time needed to search
this array may be prohibitively high.

For this reason we will confine ourselves in this chapter to
problems where the maximization step can be reduced to search
a vector of n elements. While this limits the class of representative
agents models to which we can apply this method, this endeavor
is nevertheless worth the while. As you will learn in the second
part of the book, there are many heterogenous agent models in
which discrete state space methods play an integral part of the
solution procedure.
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In Section 4.1 we use the infinite-horizon Ramsey model (1.8)
to discuss the choice of the set 2", the choice of the initial value
function, the maximization step, and the termination of the se-
quence of iterations. In addition, we consider methods to speed up
convergence and to increase precision. Section 4.2 extends these
methods to the stochastic growth model (1.22). Additional appli-
cations in Section 4.3 cover the stochastic growth model with irre-
versible investment and our benchmark model of Example 1.5.1.

4.1 Solution of Deterministic Models

In this section we introduce discrete state space methods. The de-
terministic infinite-horizon Ramsey model of Section 1.2 serves as
our point of departure. We repeat its main properties in the next
paragraph. Then we present a simple algorithm that computes the
value function of a discrete version of this model. Subsequently
we consider several improvements of this algorithm with respect
to computation time and precision.

The Model. In the model of Section 1.2 a fictitious planer (or
farmer) equipped with initial capital K, chooses a sequence of
future capital stocks {K;}?°, that maximizes the life-time utility
of a representative household

UO = Zﬁtu(ot)u ﬁ € (07 1)7
t=0

subject to the economy’s resource constraint
f(Ky) > Cy + Ky,

and non-negativity constraints on consumption C; and the capital
stock K;y1. The utility function u(C}) is strictly concave and twice
continuously differentiable. The function f(K;) = F(N, K;)+(1—
0)K; determines the economy’s current resources as the sum of
output F(N, K;) produced from a fixed amount of labor N and
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capital services K; and the amount of capital left after deprecia-
tion, which occurs at the rate § € (0,1). The function f is also
strictly concave and twice continuously differentiable.

The method that we employ rests on a recursive formulation
of this maximization problem in terms of the Bellman equation
(1.14):

K) = K)-K' K. 4.1
oK)= _max - u(f(K)-K')+ Bu(K) (4.1)
This is a functional equation in the unknown value function wv.
Once we know this function, we can solve for K’ as a function h
of the current capital stock K. The function K’ = h(K) is known
as the policy function.

Discrete Approximation. We know from the analysis of Sec-
tion 1.2.4 that the optimal sequence of capital stocks monotoni-
cally approaches the stationary solution K* determined from the
condition Sf'(K*) = 1. Thus, the economy will stay in the inter-
val [Ko, K*] (or in the interval [K*, K| if Ky > K*). Instead of
considering this uncountable set, we use n discrete points of this
set to represent the state space. In this way, we transform our
problem from solving the functional equation (4.1) in the space of
continuous functions (an infinite dimensional object) to the much
nicer problem of determining a vector of n elements. Note, how-
ever, that the stationary solution of this new problem will differ
from K*. For this reason we will use X > K* as an upper bound
of the state space.

Our next decision concerns the number of points n. A fine
grid # = {Ky,Ks,... K.}, K; < K;41,1=1,2,...,n, provides
a good approximation. On the other hand, the number of func-
tion evaluations that are necessary to perform the maximization
step on the rhs of the Bellman equation increases with n so that
computation time places a limit on n. We will discuss the rela-
tion between accuracy and computation time below. For the time
being, we consider a given number of grid-points n.

A related question concerns the distance between neighboring
points in the grid. In our applications we will work with equally
spaced points A = K;,1 — K; forall : = 1,2,...,n — 1. Yet, as
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the policy and the value function of the original problem are more
curved for low values of the capital stock, the approximation is
less accurate in this range. As one solution to this problem one
might choose an unequally-spaced grid with more points in the
lower interval of state space; for instance K; = K; + A(i — 1),
A = (K,—K;)/(n—1)?, or choose a grid with constant logarithmic
distance, A = In K;,1 —In K;. However, one can show that neither
grid type dominates uniformly across applications.

In our discrete model the value function is a vector v of n
elements. Its ith element holds the life-time utility U, obtained
from a sequence of capital stocks that is optimal given the initial
capital stock Ky = K; € . The associated policy function can
be represented by a vector h of indices. As before, let 7 denote
the index of K; € J, and let j € 1,2,...,n denote the index of
K' = K; € #, that is, the maximizer of the rhs of the Bellman
equation for a given K;. Then, h; = j.

The vector v can be determined by iterating over
e max u(f(K;) — Kj) + poj, i=1,2,...,n,

J 7

9, = {K ¢ & : K < f(K))}.

Successive iterations will converge to the solution v* of the dis-
crete valued infinite-horizon Ramsey model according to the con-
traction mapping theorem.!

A Simple Iterative Procedure. The following steps describe
an algorithm that is very simple to program. It computes v* iter-
atively. Since the solution to

max  u(f(K) = K') + 3 x0

is obviously K’ = 0, we start the iterations with v{ = u(f(Kj;)) for
all i = 1,...,n. In the next step we find a new value and policy
function as follows: For each i = 1,...,n:

Step 1: compute
w; = u(f(K;) —Kj)—i-ﬁvg, j=1...,n.

1 See, e.g., Theorem 12.1.1 of JUDD (1998), p. 402.
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Step 2: Find the index j* such that
wj* 2 ’LU]VJ = 1,...,n.

Step 3: Set h; = j* and v} = wj-.

In the final step, we check if the value function is close to its
stationary solution. Let ||[v® — v!||o, denote the largest absolute
value of the difference between the respective elements of v? and
v!. The contraction mapping theorem implies that ||[v? — vl|, <
(1 — () for each € > 0. That is, the error from accepting v' as
solution instead of the true solution v* cannot exceed e(1 — ).

If one uses a standard programming language (as, e.g., C, For-
tran, Gauss, or Matlab) there is no need to care about finding the
maximal element of w = [wy,wy, ..., w,] in Step 2, since there
are built-in subroutines (as. e.g., the maxindc command in Gauss
or the MaxLoc function in Fortran 95).

Exploiting Monotonicity and Concavity. The algorithm that
we have just described is not very smart. We can do much better,
if we exploit the structure of our problem. The first thing we can
do is to select the initial value function more carefully. We can
save on iterations, if the initial value function is closer to its final
solution. Using K™ from the continuous valued problem as our
guess of the stationary solution, the stationary value function is

defined by
o = ul(/(K*) = K*) + Buf, ¥i=1.2...n

and we can use v} = u(f(K*) — K*)/(1 — () as our initial guess.
Second, we can exploit the monotonicity of the policy function
(see Section 1.2.3 on this result), that is:

As a consequence, once we find the optimal index ji for K, we
need no longer consider capital stocks smaller than K. in the
search for j;. More generally, let j denote the index of the max-
imization problem in step 2 for i. Then, for ¢ + 1 we evaluate
u(F(N, K;) — Kj) + (v] only for indices j € {j;,...n}.
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Third, we can shorten the number of computations in the max-
imization Step 2, since the function

¢(K') = u(f(K) — K') + fv(K') (4.2)

is strictly concave.? A strictly concave function ¢ defined over
a grid of n points either takes its maximum at one of the two
boundary points or in the interior of the grid. In the first case
the function is decreasing (increasing) over the whole grid, if the
maximum is the first (last) point of the grid. In the second case the
function is first increasing and then decreasing. As a consequence,
we can pick the mid-point of the grid, K,,, and the point next to it,
K11, and determine whether the maximum is to the left of K, (if
O(Km) > ¢(Kg1)) or to the right of K, (if ¢(Kpi1) > 0(Kp)).
Thus, in the next step we can reduce the search to a grid with
about half the size of the original grid. KREMER (2001), pp. 165f,
proves that search based on this principle needs at most logy(n)
steps to reduce the grid to a set of three points that contains
the maximum. For instance, instead of 1000 function evaluations,
binary search requires no more than 13! We describe this principle
in more detail in the following algorithm:

Algorithm 4.1.1 (Binary Search)

Purpose: Find the mazimum of a strictly concave function f(x)
defined over a grid of n points " = {x1,..., T, }

Steps:

Step 1: Initialize: Put i, = 1 and 1y = n.

Step 2: Select two points: iy = floor((imintimaz)/2) andi, = i;+1,
where floor(i) denotes the largest integer less than or equal
toi e R.

Step 3: If f(xi,) > f(xi,) Set imin = ;. Otherwise put ipmay = iy.

Step 4: If tmazr — tmin = 2, stop and choose the largest element
among f(;,..), f(inii)s, and f(x;,,,). Otherwise re-
turn to Step 2.

2 Since the value function, as well as the utility and the production function,
is strictly concave. See Section 1.2.3.
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Finally, the closer the value function gets to its stationary so-
lution, the less likely it is that the policy function changes with
further iterations. So usually one can terminate the algorithm,
if the policy function has remained unchanged for a number of
consecutive iterations.

Putting all pieces together we propose the following algorithm
to solve the infinite horizon deterministic Ramsey problem via
value function iteration on a discrete state space:

Algorithm 4.1.2 (Value Function Iteration 1)

Purpose: Find an approximate solution of the policy function for
the Ramsey model (1.8)

Steps:
Step 1: Choose a grid

%:{Kl,KQ,,Kn}, K1<K]7 Z<j:1,2,n

Step 2: Initialize the value function: Y1 =1,...,n set

o (R~ KY)
i 1—3 )
where K* denotes the stationary solution to the continuous-
valued Ramsey problem.

Step 3: Compute a new value function and the associated policy
function, v' and h', respectively: Put j; = 1. For i =
1,2,....,n, and j;_, use Algorithm 4.1.1 to find the index
Jr that mazimizes

u(f(KG) — K5) + Bof

in the set of indices {ji 1,751+ 1,...,n}. Set h} = j;
and vi = u(f(K;) — Kj;) + Bv}-.

Step 4: Check for convergence: If |[v0 — vl < €(1 — ), € >
0 (or if the policy function has remained unchanged for
a number of consecutive iterations) stop, else replace v°
with v and h® with h' and return to step 3.




214 Chapter 4: Discrete State Space Methods

Policy Function Iteration. Value function iteration is a slow
procedure since it converges linearly at the rate J (see Section
11.4 on rates of convergence), that is, successive iterates obey

V=t = vl < vt =7l

for a given norm ||z||. Howard’s improvement algorithm or policy
function iteration is a method to enhance convergence. Each time
a policy function h® is computed, we solve for the value function
that would occur, if the policy were followed forever. This value
function is then used in the next step to obtain a new policy
function h**!. As pointed out by PUTERMAN and BRUMELLE
(1979), this method is akin to Newton’s method for locating the
zero of a function (see Section 11.5) so that quadratic convergence
can be achieved under certain conditions.

The value function that results from following a given policy h
forever is defined by

v =u(f(K;) — K;)+ Pv;, i=1,2,...,n.

This is a system of n linear equations in the unknown elements v;.
We shall write this system in matrix-vector notation. Towards this
purpose we define the vector u = [uy, ug, ..., u,], u; = u( f(K;) —
K;)), where, as before, j is the index of the optimal next-period
capital stock K; given the current capital stock K. Furthermore,
we introduce a matrix () with zeros everywhere except for its row
¢ and column j elements, which equal one. The above equations
may then be written as

v =u-+ [GQv, (4.3)

with solution v = [I — 8Q] 'u.

Policy function iterations may either be started with a given
value function or a given policy function. In the first case, we com-
pute the initial policy function by performing Step 3 of Algorithm
4.1.2 once. The difference occurs at the end of Step 3, where we
set vl = [I — BQ'v". Q' is the matrix obtained from the policy
function h! as explained above.
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If n is large, @ is a sizeable object and you may encounter a
memory limit on your personal computer. For instance, if your
grid contains 10,000 points @ has 10% elements. Stored as dou-
ble precision (that is eight bytes of memory for each element) this
matrix requires 0.8 gigabyte of memory. Fortunately, ) is a sparse
matrix (that is a matrix with few non-zero elements) and many
linear algebra routines are able to handle this data type. For in-
stance, using the Gauss sparse matrix procedures allows to store
(@ in an n x 3 matrix which occupies just 240 kilobyte of memory.

If it is not possible to implement the solution of the large linear
system or if it becomes too time consuming to solve this system,
there is an alternative to full policy iteration. Modified policy
iteration with k steps computes the value function v! at the end
of Step 3 of Algorithm 4.1.2 in these steps:

wh =v’,
wil =u+8Qw!, 1=1,... .k, (4.4)
vl = whtL,

As proved by PUTERMAN and SHIN (1978) this algorithm achieves
linear convergence at rate S**! (as opposed to 3 for value function
iteration) close to the optimal value of the current-period utility
function.

Interpolation Between Grid-Points. In the Ramsey model
that we have considered so far, we are able to restrict the state
space to a small interval. This facilitates a reasonably accurate
solution with a moderate number of grid-points so that conver-
gence is achieved in a few minutes. Yet, in the heterogenous agent
models of the second part, we will encounter problems, where the
relevant state space is large and where we repeatedly need to com-
pute the value function. In these situations, computation time on
a grid with many points may become a binding constraint. We,
thus, look for methods that increase precision for a given number
of grid-points without a compensating rise in computation time.

How do we accomplish this? Consider Step 3 of Algorithm
4.1.2; where we maximize the rhs of the Bellman equation (4.2)
with respect to K’. Assume that K is this solution. Since the
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value function is increasing and concave, the true maximizer must
lie in the interval [K;_1, K;41]. If we were able to evaluate the rhs
of the Bellman equation at all K" € [K;_y, K;11], we could pick
the maximizer of ¢(K”’) in this interval. Two things are necessary
to achieve this goal: an approximation of the value function over
the interval [K;_1, K;11] and a method to locate the maximum of
a continuous function.

We consider function approximation in Section 11.2. The meth-
ods that we will employ here assume that a function y = f(x) is
tabulated for discrete pairs (x;, ;). Linear interpolation computes
g ~ f(x) for x € [x;,x2;41] by drawing a straight line between
the points (x;,y;) and (211, yi+1). The cubic spline determines a
function fz(x) = a; + bz + ¢;a? + d;x® that connects neighboring
points and puts § = ﬁ(x), x € [x;,2:41]. The first method pro-
vides a smooth function between grid-points that is continuous
(but not differentiable) at the nodes (x;,y;). The second meth-
ods determines a smooth (continuously differentiable) function
over the complete set of points (z;, ;). Since the current-period
utility function is smooth anyway, these methods allow us to ap-
proximate the rhs of the Bellman equation (4.2) by a continuous
function ¢(K):

O(K) == u(f(K;) — K) + 8(K), (4.5)

where v is determined by interpolation, either linearly or cubically.

In the interval [K;_;, K;41] the maximum of ¢ is located ei-
ther at the end-points or in the interior. For this reason, we need
a method that is able to deal with both boundary and interior
solutions of a one-dimensional optimization problem. The golden-
section search considered in Section 11.6.1 satisfies this require-
ment.

We are now able to modify Step 3 of Algorithm 4.1.2 in the
following way: we determine j’ as before and then refine the solu-
tion. First, assume that j; is the index neither of the first nor of
the last grid-point so that the optimum of (4.2) is bracketed by
Iy = [Kj 1, Kj»11]. Instead of storing the index j;, we now locate
the maximum of (4.5) in J; with the aid of Algorithm (11.6. 1) and

store the maximizer K € I; in the vector h in position 1. qb( i)
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is stored in v;. If jF = 1, we evaluate (4.5) at a point close to
K. If this returns a smaller value than at K, we know that the
maximizer is equal to K;. Otherwise, we locate f(j; in [K, Ks).
We proceed analogously, if 7 = n.

Evaluation. In the preceding paragraphs, we introduced six dif-
ferent algorithms:

1. Simple value function iteration, which maximizes the rhs of the
Bellman equation by picking the maximizer from the list of all
possible values,

2. value function iteration (Algorithm 4.1.2), which exploits the
monotonicity of the policy function and the concavity of the
value function,

3. policy function iteration, i.e., Algorithm 4.1.2, where we use
vi=u+[I — BQY V" in Step 3,

4. modified policy function iteration, i.e., Algorithm 4.1.2, where
v! in Step 3 is computed via (4.4),

5. value function iteration according to Algorithm 4.1.2 with lin-
ear interpolation between grid-points,

6. value function iteration according to Algorithm 4.1.2 with cubic
interpolation between grid-points.

We use these six algorithms to compute the approximate solu-
tion of the infinite-horizon Ramsey model with u(C) = [C'™7 —
1]/(1 = n) and F(N,K) = K“ and evaluate their performance
with respect to computation time and accuracy as measured by
the residuals of the Euler equation (see (1.48) for the definition of
this variable)

W(Cy) = Bu (Con) f'(Kira).-

We used a notebook with a dual core 2 gigahertz processor. The
source code is available in the Gauss program Ramsey2d.g. The
parameters of the model are set equal to a = 0.27, 5 = 0.994,
n = 2.0, and 6 = 0.011. The value and the policy function are
computed on a grid of n points over the interval [0.75K*, 1.25K*|.
We stopped iterations if the maximum absolute difference between
successive approximations of the value function became smaller
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than 0.01(1 — ) or if the policy function remained unchanged in
30 consecutive iterations. (This latter criterium is only applicable
for methods 1 through 4.) Modified policy iterations use k = 30.
The Euler equation residuals are computed for 200 equally spaced
points in the smaller interval [0.8 K*, 1.2K*]. Linear — and in the
case of method 6 — cubic interpolation was used to compute the
policy function between the elements of the vector h. Table 4.1
presents the maximum absolute value of the 200 residuals.

Table 4.1
Run Time

Method n=250 n=>500 n=1,000 n=25,000 mn=10,000
1 0:00:43:06 0:03:04.44 0:12:39:51  7:16:36:28
2 0:00:05:63 0:00:12:91 0:00:28.94  0:04:00:67  0:09:16:91
3 0:00:02:08 0:00:05:02 0:00:14:22 0:06:18:61  0:22:11:48
4 0:00:02:31  0:00:04:47 0:00:08:31 0:01:18:53  0:04:39:17
5 0:01:05:97 0:02:34:89 0:06:36:89  1:25:07:61  7:43:13:78
6 0:01:15:92  0:02:27:94  0:04:48:80 0:22:41:84  0:44:14:28

Euler Equation Residuals

Method n = 250 n=>500 n=1,000 n=25,000 mn=10,000
1 4.009E-2 2.061E-2 9.843E-3 1.835E-3
2 4.009E-2 2.061E-2 9.843E-3 1.835E-3 8.542E-4
3 4.026E-2 2.061E-2 9.363E-3 2.562E-3 8.722E-4
4 4.026E-2 2.061E-2 8.822E-3 3.281E-3 8.542E-4
5 5.814E-4 4.605E-4 2.339E-4 4.093E-5 2.013E-5
6 3.200E-7 3.500E-7 3.200E-7 3.800E-7 3.600E-7

Notes: Method numbers are explained in the main text. Run time is given in
hours:minutes:seconds:hundreth of seconds on a dual core 2 gigahertz processor. The
empty entry pertains to a simulation which we interrupted after 8 hours of compu-
tation time. Euler equation residuals are computed as maximum absolute value of
200 residuals computed on an equally spaced grid of 200 points over the interval
[0.8K*,1.2K*].
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As can be seen from the first row of this table, computation time
becomes prohibitive for simple value function iteration if n is large.
Even on a grid of 5,000 points the algorithm requires more than
7 hours to converge. For the same n, Algorithm 4.1.2 needs just 4
minutes and modified policy iteration (method 4) 1 minute and 18
seconds! The rows labeled 3 and 4 in the upper panel of Table 4.1
convey a second finding. Policy iteration requires more time than
modified policy iteration if n is reasonably large. In our example,
this occurs somewhere between n = 250 and n = 500. The time
needed to solve the large linear system (4.3) considerably slows
down the algorithm. For a sizable grid of n = 10,000 points,
method 4 is about five times faster than method 3. It should come
as no surprise that adding interpolation between grid-points to
Step 3 of Algorithm 4.1.2 increases computation time. After all,
we must determine the line connecting two points of the grid and
must locate the maximizer of (4.5) via a search routine. Method
5 requires almost eight hours to converge, if n equals 10,000. It
is, however, surprising, that cubic interpolation, which requires
additional computations as compared to linear interpolation, is
nevertheless quite faster for large grids. In the case of n = 10, 000
the algorithm converged after about three quarters of an hour. It
seems that the smoother cubic function — though more expensive
to compute — allows a quicker determination of K. it

In the case of methods 1 through 4 the Euler equation residuals
decrease from about 4.E-2 to about 9.E-4, if n increases from 250
to 10,000. It, thus, requires a sizable grid to obtain an accurate
solution. Linear interpolation (method 5) achieves residuals of size
6.E-4 already with n = 250. In the case of n = 10,000 (i.e., with
40 times more points), the Euler residual shrinks by a factor of
20 at the cost of many hours of patience before we could discover
this result. Cubic interpolation achieves very high accuracy at
n = 250 that cannot be increased by making the grid finer. The
high degree of accuracy that can be achieved with this method
even for a small number of grid-points is further illustrated in
Figure 4.1.

The upper panel of this figure plots the analytic policy func-
tion of the model, which is given by K’ = a8K®* in the case of
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Policy Functions
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Figure 4.1: Policy Functions of the Next-Period Capital Stock of the
Infinite-Horizon Ramsey Model

n =0 =1 (see (1.18)) together with two approximate solutions.
Both use a grid of n = 100 points over [0.75K*,1.25K*]. The so-
lution obtained from linear interpolation between the grid-points
wriggles around the true solution, whereas the solution based on
cubic interpolation is visually not distinguishable from the latter.
Although even the first approximate solution is close to the true
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one (the maximum absolute value of the distance to the true solu-
tion is less than 4.E-4), the second approximation is so close that
the distance to the analytic solution is almost zero (see the lower
panel of Figure 4.1).

The cubic interpolation between grid-points, thus, outperforms
the other five methods. It needs only slightly more than a minute
(see Table 4.1) to compute a highly accurate approximate solution
of the deterministic growth model (see the column n = 250 in
Table 4.1).

4.2 Solution of Stochastic Models

In this section we adapt the methods presented in the previous
section to the stochastic growth model (1.22). This model belongs
to a more general class of recursive problems that we will describe
in the next paragraph. We then develop a flexible algorithm that
solves a discrete version of this problem via value function itera-
tion.

The Framework. Let K denote the endogenous state variable
of the model and Z a purely exogenous shock governed by a
stationary stochastic process. The current-period return u de-
pends on the triple (Z, K, K'), where K’ denotes the next-period
value of K. The choice of K’ is restricted to lie in a convex set
Pk z that may depend on K and Z. In the stochastic growth
model of Section 1.3 u is the current-period utility of consump-
tion C = Zf(K)+ (1 —0)K — K' and Pk 7 = {K': 0 < K' <
Z f(K)+(1—0)K}. The solution of the problem is a value function
v(K, Z) that solves the Bellman equation

v(K,Z)= max u(Z,K,K')+ BEw(K', Z)|Z], (4.6)

K’E@K,Z

where FE[-|Z] is the mathematical expectations operator condi-
tional on the realization of Z at the time the decision on K’ is to
be made.
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Approximations of E[-|Z]. As in Section 4.1 we replace the
original problem by a discrete valued problem and approximate
the value function by an n x m matrix V = (v;;), whose row ¢
and column j argument gives the value of the optimal policy, if
the current state of the system is the pair (K, Z;), K; € # =
{K1,Ks,...,K,}, Z; € & ={Z1,2s,....,Zn}.

The further procedure depends on the model’s assumptions
with respect to Z. There are models that assume that Z is gov-
erned by a Markov chain with realizations given by the set 2" and
transition probabilities given by a matrix P = (pj;;), whose row j
and column [ element is the probability of moving from Z; to state
Z; (see Section 12.2 on Markov chains). For instance, in Section
7.1 you will encounter a model with just two states. A household
is either employed (Z; = 1) or unemployed (Z2 = 0), and he faces
given probabilities pjo to loose his job (if he is employed) or pg;
to find a job (if he is unemployed). Since the probability to stay
employed p;; must equal 1 — pi5 and the probability not to find
a job must equal pss = 1 — poy, the matrix P is fully determined.
Given Z and the matrix P, the Bellman equation of the discrete
valued problem is

Uij = 1max. u(Zj, Ky, Ky) +5ijwkl,
=1

(4.7)
1=1,2,...,n, g =1,2,...,m,

where we use Z;; as a shorthand for the set P, z,. As in the previ-
ous section, we can use iterations over this equation to determine
the matrix V.

Suppose, as it is the case in the benchmark model of Example
1.5.1, that In Z follows an AR(1)-process:

an’:anZ—i—ael’ o€ [0,1), EINN(O,l). (48>

The first approach to tackle this case is to use Algorithm 12.2.1
(see Section 12.2) that provides a Markov chain approximation
of the continuous-valued AR(1)-process. To use this algorithm,
you must provide the size of the interval I, = [Z;,Z,,] and
the number of grid-points m. The algorithm determines the grid
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Y ={Z,Zs,...,Zy} and the matrix of transition probabilities
P = (p;) so that the discrete-valued Bellman equation (4.7) still
applies. The boundaries of Z must be chosen so that Z remains
in the interval I;. The usual procedure is to set Z,, — Z; equal to

a multiple of the unconditional standard deviation of the process
(4.8), which equals®

One can use simulations of this process to find out if it leaves a
given interval. Usually, an interval of size equal to 904 or 100,
is large enough. TAUCHEN (1986) provides evidence that even 9
grid-points are sufficient for a reasonably good approximation of
(4.8).

The second approach to approximate the conditional expecta-
tion on the rhs of the Bellman equation (4.6) rests on the analytic
expression for E(-|Z). In the case of the process (4.8) this equals

o —(e/)2

/ / o 1 _olnZ+o€ € 2 /

E[(K', 2')|Z] /_OOU<K,6 ) o
If the value function is tabulated in the matrix V = (v;;), we
can interpolate between the row-elements of V' to obtain an in-
tegrable function of Z, which allows us to employ numeric in-
tegration techniques to obtain E[-|Z]. As explained in Section
11.3.2, Gauss-Hermite quadrature is a suitable method. In HEER
and MAUSSNER (2008), we point to a serious drawback of this ap-
proach. Gauss-Hermite quadrature requires a much larger interval
for Z than it will be necessary for simulations of the model. I,
must contain the integration nodes ++v/20x, where z denotes the
largest node used by the respective Gauss-Hermite formula. For
instance, x ~ 1.65 in the four-nodes formula that we usually em-
ploy to compute a conditional expectation. Thus, instead of using
an interval of size 100, say, you must use an interval of size 210.
In particular, we have to ascertain that oln Z,, + 20z < In Z,,

3 See, e.g., HAMILTON (1994), pp. 53-56 for a derivation of this formula.
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and olnZ; — 20z > InZ;. For given o, o, and z these equa-
tions can be solved for the lower and the upper bound In Z;
and In Z,,, respectively. For our parameter values this delivers
|In Z,, — In Z| ~ 21o4. Yet, as explained below, the boundaries
of J will usually depend on the boundaries of Z. For a given
number of grid-points n, a larger interval Ix = [Ky, K,,| implies
a less accurate solution that may outweigh the increase of preci-
sion provided by the continuous-valued integrand. With respect
to the benchmark model of Example 1.5.1 we indeed find that the
Markov chain approximation allows a much faster computation of
the value function for a given degree of accuracy. For this reason,
we will consider this approach only.

The Basic Algorithm. The problem that we, thus, have to
solve, is to determine V iteratively from

m

s+1 S

G = max  u(Z;, K, Ky) + 8 E PtV
Ki€2;; =1

v

(4.9)
1=1,2,...,n, g =1,2,...,m.

This process will also deliver the policy function H = (h;;). In our
basic algorithm, this matrix stores the index £7; of the optimal
next-period state variable K € % in its 7th row and jth column
element. The pair of indices (i,7) denotes the current state of
the system, that is, (K, Z;). We assume that the value function
v of our original problem is concave in K and that the policy
function h is monotone in K so that we can continue to use all of
the methods encountered in Section 4.1. As we have seen in this
section, a reasonable fast algorithm should at least exploit the
concavity of v and the monotonicity of h. Our basic algorithm,
thus, consists of steps 1, 2.1, and 2.2i of Algorithm 4.2.1 (see
below). We first discuss the choice of # and V° before we turn
to methods that accelerate convergence and increase precision.

Choice of .# and V. This choice is a bit more delicate than
the respective step of Algorithm 4.1.2. In the deterministic growth
model considered in the previous section the optimal sequence of

4 See HEER and MAUSSNER (2008).
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capital stocks is either increasing or decreasing, depending on the
given initial capital stock K. This makes the choice of % easy. In
a stochastic model, the future path of K depends on the expected
path of Z, and we do not know in advance whether for any given
pair (K;, Z;) the optimal policy is to either increase or decrease
K. For this reason, our policy to choose % is "guess and verify”.
We will start with a small interval. If the policy function hits the
boundaries of this interval, that is, if h;; = 1 or h;; = n for any pair
of indices, we will enlarge . In the case of the stochastic growth
model (1.22) an educated guess is the following: If the current
shock is Z; and we assume that Z = Z; forever, the sequence of
capital stocks will approach K7 determined from

1= 61— 6+ Z;f(K})). (4.10)

Approximate lower and upper bounds are, thus, given by K; and
K, respectively. Since, the stationary solution of the discrete-
valued problem will not be equal to the solution of the continuous-
valued problem, K (K,) should be chosen as a fraction (a mul-
tiple) of Ky (K7).

As we already know from Section 4.1 computation time also
depends on the initial V°. Using the zero matrix is usually not
the best choice, but it may be difficult to find a better starting
value. For instance, in the stochastic growth model we may try
v?j = u(Z;f(K;)—6K;), that is, the utility obtained from a policy
that maintains the current capital stock for one period. Or, we
may compute VO from the m different stationary solutions that
result if Z equals Z; forever:

o = w(Zf(KD) — 0K3) + 5> pu),
=1

where K7 solves (4.10). This is a system of linear equations in the
nm unknowns v?j with solution

V0= (I-pP)'T,
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A third choice is vj; = u(f(K*) —0K*)/(1 = j3), that is, the value
obtained from the stationary solution of the deterministic growth
model.

There is, however, an even better strategy: i) start with a coarse
grid on the interval [K7, K,]; ii) use the basic algorithm to com-
pute the value function V* on this grid; iii) make the grid finer by
using more points n. iv) interpolate column-wise between neigh-
boring points of the old grid and the respective points of V* to
obtain an estimate of the initial value function on the finer grid.
Since on a coarse grid the algorithm will quickly converge, the
choice of V¥ in step i) is not really important and V° = 0 may be
used.

Acceleration. In Section 4.1 we discovered that policy function
iteration is a method to accelerate convergence. This method as-
sumes that a given policy H! is maintained forever. In the context
of the Bellman equation 4.7 this provides a linear system of equa-
tion in the nm unknowns v;; (for the moment, we suppress the
superscript of V):

m
vy = Ui + 3 E DjlVhyjls
=1

— (4.11)
ugj = u(Zy, Kiy Ky,), 1=1,2,...n, j=1,2,...,m.
In matrix notation, this may be written as
vecV =vecU + QvecV, U = (u;5). (4.12)

vec V' (vecU) is the nm column vector obtained from vertically
stacking the rows of V' (U). The nm x nm matrix @ is obtained
from H and P: Its row r = (i — 1)m + j elements in columns
¢1 = (hij —1)m +1 through ¢,, = (h;; — 1)m + m equal the row j
elements of P. All other elements of @) are zero. Even for a grid 2
with only a few elements m, () is much larger than its respective
counterpart in equation (4.3). In the previous section we have
seen that for n > 500 (and, in the notation of this section m = 1),
modified policy iteration is faster than full policy iteration. For
this reason, we only will implement modified policy iteration into
our algorithm. This is done in Step 2.3 of Algorithm 4.2.1
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Interpolation. We know from the results obtained in Section 4.1
that interpolation between the points of J#" is one way to increase
the precision of the solution. Within the current framework the
objective is to obtain a continuous function ¢(K) that approxi-
mates the rhs of the Bellman equation (4.6) given the tabulated
value function in the matrix V' and the grid .#". We achieve this
by defining

S(K) =u(Z;, K, K)+ B8 puin(K). (4.13)
=1

The function 0;(K) is obtained from interpolation between two
neighboring points K; and K;, from J# and the respective points
vy and v, q; from the matrix V. Thus, each time the function d;(K )
is called by the maximization routine, m interpolation steps must
be performed. For this reason, interpolation in the context of a
stochastic model is much more time consuming than in the case
of a deterministic model. Our algorithm allows for either linear or
cubic interpolation in the optional Step 2.2.ii.

Algorithm 4.2.1 (Value Function Iteration 2)

Purpose: Find an approximate policy function of the recur-
sive problem (4.6) given a Markov chain with elements 2 =
{Z1,Z5, ..., Zn} and transition matriz P.

Steps:
Step 1: Choose a grid

%:{Kl,KQ,,Kn}, K1<K]7 Z<j:1,2,n,

and initialize V°.
Step 2: Compute a new value function V' and an associated policy
function H': For each j = 1,2,...,m repeat these steps:
Step 2.1: Initialize: kg; = 1.
Step 2.2: 1) For each i = 1,2,...,n and ki_y; use Algo-
rithm 4.1.1 to find the index k* that maximizes

Wy = U(Z_ya Ki7 Kk) + ﬁzpﬂvgl

=1
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in the set of indices k € {k}_ 1 ki 41, n}.
Set kj; = k*. If interpolation is not desmzd, set
hi; = k* and vj; = wy-, else proceed as follows:
ii) (optional) If k* = 1 evaluate the function b
defined by equation (4.13) at a point close to K.
If this returns a smaller value than at K, set
K = K., else use Algorithm 11.6.1 to find the
mazimizer K 0f¢ in the mterval Ky, Ks]. Store
K in h1 and ¢( ) in v . Proceed analogously
if K5 =n. If k* equals nez’ther 1 nor n, find the
mazimizer K of ¢ in the interval (K1, Kpeiq]
and put hj; = K and vy = H(K).

Step 2.3: (optional, if Step 2.2.1 was taken) Set w' =
vec VY, and for 1l =1,2,..., k iterate over

w = vec U + BQ'w!

and replace V' by the respective elements of
Wk-i—l.

Step 3: Check for convergence: if

max [v; — vyl <e(1-p), e€R .

j=1,...m

(or if the policy function has remained unchanged for a
number of consecutive iterations) stop, else replace VY
with V' and H® with H' and return to Step 2.

We provide both a Gauss and a Fortran version of this algorithm
in the program SolveVI . The program facilitates four different
methods:

1. Value function iteration (Step 1, Step 2.1, Step 2.2.i, and Step
3))

2. modified policy function iteration (method 1 amended by Step
2.3)

3. value function iteration with linear interpolation (Step 2.2.ii in
addition to Step 2.2.i),

4. value function iteration with cubic interpolation.
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Evaluation. We apply these four methods to the stochastic
growth model presented in (1.22). As in the previous chapters,
we use

ot —1
U(C):Tn’
fK) =K,

and measure the accuracy of the solution by the residuals of the
Euler equation®

e = E{ [ (1= 6 +a(e 2o (k) 1) || 2}

The residual is computed by replacing C' and C’ in this equation
by the approximate policy function for consumption,

WK, Z)=ZK*+ (1 - 86K — h®(K, Z),

where the policy function for the next-period capital stock hE is
obtained from bilinear interpolation between the elements of the
matrix H. The residuals are computed over a grid of 2002 points
over the interval [0.8K*, 1.2K*] x [0.95,1.05]. Table 4.2 displays
the maximum absolute value of the 200% residuals. We used a
notebook with a dual core 2 gigahertz processor. The source code
is available in the Gauss program Ramsey3d.g. The parameters of
the model are set equal to a = 0.27, 7 = 0.994,n = 2.0, 6 = 0.011,
0 =0.90, and ¢ = 0.0072. The value and the policy function are
computed on a grid of n x m points. The size of the interval I; =
[Z1, Z,,] equals 11 times the unconditional standard deviation of
the AR(1)-process in equation (4.8). We stopped iterations, if the
maximum absolute difference between successive approximations
of the value function became smaller than 0.01(1 — ) or if the
policy function remained unchanged in 50 consecutive iterations.
(This latter criterium is only applicable for methods 1 and 2.)
Modified policy iterations use k = 30.

5 See Section 1.3.2, where we derive this equation and Section 2.5.3 where
we explain the computation of the residuals in more detail.
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Table 4.2
Method n m Run Time Euler Equation

Residual

i ii
2 250 9 0:00:22:06 7.407E-2
4 250 9 0:00:22:94 7.407E-2
5 250 9 2:13:37:84 0:13:31:16 1.272E-3
6 250 9 2:04:01:67 0:21:01:69 1.877E-4
6 500 9 5:12:58:44 0:23:17:52 1.876E-4
6 250 15 1:04:39:22 4.930E-6
2 10,000 9 2:33:26:16 0:20:10:94 1.933E-3
4 10,000 9 1:06:48:58 0:03:52:42 1.933E-3
4 10,000 31 1:06:49:52 0:13:40:80 1.931E-3
4 100,000 15 0:17:59:56 2.089E-4
4 500,000 15 3:43:03:81 4.387E-5

Notes: The method numbers are explained in the main text. Run time is given in
hours:minutes:seconds:hundreth of seconds on a dual core 2 gigahertz processor. The
column labeled i gives the run time where the initial value function was set equal
to u(f(K*)—§K*)/(1 — (), column ii presents computation time from a sequential
approach: we start with a coarse grid of n = 250 and increase the number of grid
points in a few steps to the desired value of n given in the second column. Except in
the first step — where we use the same initial V° as in the third column — each step
uses the value function obtained in the previous step to initialize V0. Euler equation
residuals are computed as maximum absolute value of 2002 residuals computed on
an equally spaced grid over the interval [0.8K*,1.2K*]| x [0.95,1.05]. Empty entries
indicate simulations, which we have not performed for obvious reasons.

On a coarse grid for the capital stock, n = 250, the first four
rows in Table 4.2 confirm our intuition. Interpolation increases
computation time drastically, from about 25 seconds (for meth-
ods 1 and 2) to over 2 hours but provides reasonably accurate
solutions. In the case of method 3 (method 4) the Euler equation
residual is about 50 times (400 times) smaller than that obtained
from methods 1 and 2. The run times given in column ii high-
light the importance of a good initial guess for the value function.
The results presented there were obtained in the following way.
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We used method 2 to compute the value function on a grid of
n = 250 points (given the choice of m as indicated in the ta-
ble). For this initial step we use v;; = u(f(K*) —0K*)/(1 — () as
our guess of V. In successive steps we made the grid finer until
the number of points given in column 2 was reached. Each step
used the previous value function, employed linear interpolation to
compute the additional points in the columns of V', and took the
result as initial guess of the value function. The computation time
in column ii is the cumulative sum over all steps. In the case of
method 3 this procedure reduced computation time by about 2
hours! The entries for method 1 and 2 and n = 10, 000 in column
i confirm our findings from the deterministic Ramsey model that
modified policy iteration is an adequate way to reduce computa-
tion time (by almost one and half an hour). Since it is faster close
to the true solution, it clearly outperforms method 1 in successive
iterations (compare the entries for n = 10,000 and n = 9 in col-
umn i and ii): it is about 5 times faster as compared to 2.3 times
in the simulations without a good initial value function.

The entries for method 4 document that increased precision
does not result from additional points in the grid for the capi-
tal stock but in the grid for the productivity shock. In the case
n = 250 and m = 15 the Euler equation residual of about 5.E-6
indicates a very accurate solution. However, even with good start-
ing values, it takes about an hour to compute this solution.

There are two adequate ways to compute a less precise but
still sufficiently accurate solution with Euler equation residuals
of magnitude of about 2.E-4: either with method 4 on a coarse
grid, n = 250 and m = 9 or with method 2 on a much finer grid,
n = 100, 000 and m = 15. Both methods require about 20 minutes
to compute the policy function. Thus, different from our findings
in the previous section, cubic interpolation is not unambiguously
the most favorable method.

However, if high precision is needed, cubic interpolation on
a coarse grid is quite faster than method 2. As the last row of
Table 4.2 shows, even on a fine grid of n = 500,000 points the
Euler equation residual is still about 10 times larger than that
from method 4 for n = 250 and m = 15. Yet, whereas method 4
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requires about an hour to compute the policy function, method 2
needs almost four hours.

4.3 Further Applications

In this section we consider two applications of Algorithm 4.2.1.
First, we consider the stochastic growth model under the assump-
tion that the given stock of capital cannot be transferred into
consumption goods. This places a non-negativity constraint on
investment. Second, we compute a discrete approximation of the
policy function of our benchmark model.

4.3.1 Non-Negative Investment

The methods presented in Chapters 2 and 3 are not suitable for
models with binding constraints. The local methods of Chapter 1
require that the system of equations that determines the model’s
dynamics is sufficiently differentiable at a certain point. This will
not hold with binding constraints. If the constraints do not bind
at this point but nearby, the true policy functions will have kinks
that the approximate policy functions do not display. Thus, as
soon as the model leaves the close vicinity of the stationary point,
the approximate policy functions are no longer applicable. The
non-linear methods that we employ to solve for the model’s Ra-
tional expectations path in Chapter 3 also rely on differentiable
functions. Yet, even if one resorts to derivative-free methods, con-
straints are hard to embed. Each time when a constraint binds it
creates a different branch of the economy’s future time path. All
these different paths must be compared to each other to single
out the correct one. Even in models with one state variable this
a formidable task, which easily encounters reasonable limits on
computation time.

Within the recursive approach taken in this chapter, however,
it is not very difficult to take care of constraints. The stochastic
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growth model with a binding constraint on investment is a good
example to make that point.

The Model. Suppose that it is not possible to eat up the current
stock of capital so that consumption cannot exceed production.
This places the restriction

K'>(1-0)K

on the choice of the future capital stock. Equivalently, investment
i =K' — (1 —0)K cannot be negative. The problem, thus, is to
find a value function that solves the Bellman equation

v(K,Z)= max  u(Zf(K)+(1-0)K - K')

K'€Pk 7

+BE[(K', 2| 2], (4.14)
Dy =K (1- 86K <K' < Zf(K)+ (1 - §)K}.

In Problem 4.1 we ask you to derive the first-order conditions for
this maximization problem from the Kuhn-Tucker Theorem 1.1.1
under the assumption of a given value function v. These conditions
are required to compute Euler equation residuals for this model.
Yet, in order to find v, it is not necessary to know these conditions
at all.

Modifications of the Algorithm. It requires just one line of
additional programming code to adapt Step 2.2.i of Algorithm
4.2.1 to take care of the constraint on investment. Consider the
set of indices {k;_1;, ki 1; +1,...,n} which we search to find the
maximizer K, € J# of the rhs of the Bellman equation. Instead
of starting the search with k& = kj_;;, we first check if Kj >
(1 —0)K;. If K} violates this condition, we try Kj,; and so forth
until we arrive at a point Ky, 7 = 1,2,...,n—k that meets this
condition. Since (1 — §)K; < K, there is always an r that meets
this requirement. Then, we locate k in the set {k; ,; +7,...,n}.

Similar changes must be made to Step 2.2.ii. We think this is a
good exercise, and leave these changes to the reader (see Problem

4.1).
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Results. You will find the modified Algorithm 4.2.1 in the Gauss
program SGNNI_a.g . For the constraint to bind, it requires large
productivity shocks. Instead of o = 0.0072 (the value that we
used in the model of the previous section), we set ¢ = 0.05 and
left all other parameter values unchanged. We use a Markov chain
of m = 31 points on a grid of size 907 to approximate the AR(1)-
process of the natural log of the level of productivity Z. Our grid
of the capital stock has n = 50,000 elements.

Figure 4.2 displays the policy function of consumption h° (K, Z)
in the domain [0.6K*,1.6K*] x [0.6,1.6]. In simulations of the
model with a large number of periods, both K and Z never left this
square. The policy function was computed at 1002 pairs (K, Z) via
bilinear interpolation from the policy function of the next-period
capital stock. The graph displays a clear kink. For each K there is
a threshold value of the level of total factor productivity (TFP).
Below this point the household would like to consume some of his
capital stock to smooth consumption. Above this point, the con-

3.0

2.6

Consumption
2.2

7.8

Figure 4.2: Policy Function for Consumption of the Stochastic Growth
Model with Non-Negative Investment
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straint does not bind and the consumption function is identical
to the function of the model without constraint.

4.3.2 The Benchmark Model

We have already encountered the recursive formulation of the
benchmark model of Example 1.5.1 in Section 2.6.1. For your con-
venience, we restate the Bellman equation of this model:

_ zpTl—a .« - - ! .
v(k,z)—rlg’aj\?( u(eN'"" k" + (1 — 0)k — ak’/,1 — N)
+BE (K, 2)|2],
where the utility function wu is specified as

(1 — NP 1

u(e,1 = N) =
L=mn

Remember,
c=eN"k* + (1 —0)k — ak’

and k refer to consumption C' and capital K per unit of labor
augmenting technical progress A, and 3 = Sa'~". The next-period
capital k£’ stock must lie in the interval

0<K < (e* Nk +(1-0)k)/a

and working hours N are restricted to (0, 1).

It is easy to apply Algorithm 4.2.1 to this model. There is just
one change compared with the stochastic growth model of Section
4.2: Inside the procedure that returns the household’s utility as a
function of (Z = e* k, k'), we must solve for N. We can use the
first-order condition with respect to working hours for this pur-
pose. Differentiating the rhs of the Bellman equation with respect
to N and setting the result equal to zero yields

O(e* Nk + (1 — )k —ak’) = (1 —a)(1— N)e*N~*k*. (4.15)
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Table 4.3
Linear Value Function Iteration
Approximation n = 5,000 n = 250
m=29 m =19

Second Moments
Variable Sg Ty Tz Sz Ty Tz Sy Toy Tz
Output 1.44 1.00 0.64 1.40 1.00 0.64 1.44 1.00 0.64
Investment 6.11 1.00 0.64 5.79 1.00 0.64 6.11 1.00 0.64
Consumption 0.56 0.99 0.66 0.58 0.99 0.66 0.56 0.99 0.66
Hours 0.77 1.00 0.64 0.72 0.99 0.63 0.77 1.00 0.64
Real Wage 0.67 0.99 0.65 0.68 0.99 0.65 0.67 0.99 0.65

Euler Equation Residuals

[0.90;1.10]% 1.835E-4 1.373E-3 2.390E-6

[0.85;1.15]k 3.478E-4 1.277E-3 2.370E-6

[0.80; 1.20]k 5.670E-4 1.691E-3 2.396E-6
DM-Statistic

<3.816 2.0 0.0 2.7

>21.920 3.4 54.8 3.1

Notes: s;:=standard deviation of variable x, 744 :=cross correlation of variable
z with output, r4:=first order autocorrelation of variable z. All second moments
refer to HP-filtered percentage deviations from a variable’s stationary solution.
Euler equation residuals are computed as maximum absolute value over a grid
of 400 equally spaced points on the square ¢ X [In0.95;1n1.05], where ¢ is
defined in the respective row of the left-most column. The 2.5 and the 97.5
percent critical values of the x2(11)-distribution are displayed in the last two
lines of the first column. The table entries refer to the percentage fraction out of
1,000 simulations where the DM-statistic is below (above) its respective critical
value.

For each k' < (e*k® + (1 — §)k)/a this equation has a unique
solution in (0, 1). We use the modified Newton-Raphson method
described in Section 11.5.2 to solve this equation. From this solu-
tion, we can compute ¢ and, thus, u(c,1 — N).

Table 4.3 depicts the results from two simulations of the model
with our program Benchmark.for. The first one rests on a policy
function for the next-period capital stock &’ computed on a grid
of n = 5,000 and m = 9 points without interpolation between



4.3 Further Applications 237

these points. The second was computed on a grid of n = 250
and m = 19 points with cubic interpolation between the points of
the grid of the capital stock. To reduce run-time, we first solved
the problem on a grid of n = 250 and m = 9 points and used the
result to initialize the value function for subsequent computations.
It took about six and half a minute to find the first solution and
two hours to compute the second policy function.

The first solution is obviously inferior to the linear solution,
whose results are reproduced from Table 2.2. The Euler equa-
tion residuals are about three times larger and the DM-statistic
clearly indicates that the errors are correlated with past informa-
tion. The differences in the second moments, however, are insignif-
icant. For instance, the standard deviation of output (computed
as the average from 500 simulations) has itself a standard devia-
tion of 0.24 so that the difference of 0.04 is between two standard
error bounds. The same is true for the differences between the
other second moments. The reason for these relatively bad results
is the coarse grid for the productivity shock. A simulation (the
results of which are not presented in the table) with the same
n but m = 19 performs better. From 1,000 simulations 3.1 (2.5)
percent have a DM-statistic below (above) the 2.5-percent (97.5-
percent) critical value, and except for the standard deviation of
investment (which differs by 0.01) the other standard deviations
match those from the linear solution. Cubic interpolation between
the points of a coarse grid provides an even more accurate solu-
tion. There is no difference to the second moments obtained from
the linear solution. Yet, the FEuler equation residuals are about
200 times smaller and, thus, indicate a highly accurate solution.
Note, finally, that the size of the Euler equation residual is almost
independent of the length of the interval on which it is computed.
We have already seen this property of non-linear, global methods
in the chapter on the deterministic extended path method and it
is confirmed here.
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Problems
4.1 Stochastic Growth Model with Non-Negative Investment. In

4.2

Section 4.3.1 we consider the stochastic growth model with non-negative

investment.

a) Use the Kuhn-Tucker-Theorem 1.1.1 and the procedure outlined in
Section 1.2.3 to derive the Euler equation of this model from the
Bellman equation (4.14).

b) Devise a procedure to compute the residuals of this equation.

¢) Modify the program SolveVIS so that it can handle the non-negativity
constraint on investment in the case of interpolation between grid-
points.

Stochastic Growth. In the benchmark model of Example 1.5.1 labor-
augmenting technical progress grows deterministically. Suppose instead
the following production function

Y, = (AtNt)liaKfa

where the log of labor augmenting technical progress A; is a random walk
with drift p:

ImA; =p+InA; 1 +e, €~ N(O,U2).

The household’s preferences are the same as those presented in Example
1.5.1. Use p = 0.00465 and o = 0.006 and the parameter values given
in Table 1.1 to calibrate the model. Except for the stock of capital de-
fine stationary variables as in Section 1.4.2. For the capital stock define
ki := K;/A;_1. This ensures that the stationary capital stock k; is still a
predetermined variable at the beginning of period .

a) Derive the first-order conditions for the planers problem:

o0 1— _
C, 71— Ny)oC=m)
E, t 't
z B{L

L=
s.t.
Kt+1 + Ct < (AtNt)liaK? —+ (1 — (5)Kt,
Ay = Apgerte
0 < Gy t=0,1,...,
1 Z Nt Z 0)
0 é Kt+17
Koy, Ag given.

b) State this set of equations in terms of stationary variables and com-
pute the balanced growth path.
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¢) Place a grid over k; and solve the model via value function iteration.
(Hint: Don’t forget to use the correct discount factor!).

d) Use a random number generator and simulate the model. Compute
second moments from first-differences of the logged variables (why?)
and compare their empirical analogs obtained from German data (see
the following table).

Variable Sy Tzy Ty

Output 0.75 1.00 0.24
Consumption 0.76 0.56 0.04
Investment 1.99 0.68 0.25
Hours 0.97 0.59 —0.26
Real Wage 1.01 -0.14 —0.23

Notes: Second moments from first differences of
logged German data, 70.i to 89.iv. s;:= standard de-
viation of variable x, syy:=cross correlation of x with
output y, rz:=first order autocorrelation.

4.3 Wealth Allocation. EROSA and VENTURA (2002) analyze the money
demand of households in a heterogeneous-agent economy. In order to
compute the optimal household decision they cannot rely upon pertur-
bation methods because households differ with regard to their individ-
ual asset holdings. Instead, they use value function iteration. In order
to facilitate the computation, they apply a nice trick that may become
handy whenever you consider household optimization problems where
the households hold different kinds of assets. In the present problem,
households can choose to allocate their wealth w on real money m and
capital k. In the following, we will compute the steady state for a simple
representative-agent economy.

The household supplies one unit of labor inelastically. The individual
consumes a continuum of commodities indexed by i € [0, 1]. The repre-
sentative household maximizes intertemporal utility

[e.¢] . - Clin
> Suld ule) =1,

where ¢ denotes a consumption aggregator ¢ = inf; ¢(7). As a consequence,
the household consumes the same amount of all goods 7. Following DOT-
SEy and IRELAND (1996) the households chooses whether to buy the
goods with cash or credit. Let s > 0 denote the fraction of goods that
are purchased with credit. The cash goods are purchased with the help
of real money balances giving rise to the cash-in-advance constraint:
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e(l—s)=m.

In order to purchase the good ¢ by credit, the household must purchase
w(i) of financial services:

v(i)=70<1ii)97

with # > 0. w denotes the wage rate, and the financial services are pro-
vided by competitive financial intermediaries who only use labor L{ as
an input. Clearly, some goods will be purchased with cash as the credit
costs go to infinity for ¢ — 1. Therefore, real money balances m will not
be zero. Likewise, credit costs go to zero for ¢ — 0 and some goods will be
purchased with credit as long as nominal interest rates are above zero,
which will be the case in our economy. Therefore, we have an interior
solution for 0 < s < 1.

Let 7 denote the exogenous inflation rate that characterizes monetary
policy. The decision problem can be formulated by the following Bellman
equation

v(k,m) = max {u(c) + Bu(k',m')}

c,s,m",

subject to the cash-in-advance constraint and the budget constraint
S
c+w/ y(e,i) di+k +m'(14+7) =1 +7r)k+w+m,
0
where 7 denotes the interest rate.
Production uses capital K and labor LY:
Y = K*(LY)'™“.
Capital depreciates at rate §. In a factor market equilibrium,
w=(1-a)K*(LY)"*,
r=aK* N (LY)'T* =6

In general equilibrium, the government spends the seignorage mM on
government consumption G. The equilibrium conditions are given by

G = 1M,

M = m, ,C=¢, K=k,
1 = LY+ LS,
Y = G+6K+C.

Periods correspond to quarters. The model parameters are set as follows:
8=0.99,7=2.0,9 =0.02, « = 0.36, 7 = 0.01, vo = 0.0421, 6 = 0.3232.
The algorithm consists of the following steps:
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Step 1: Choose initial values for K, M, and LY and compute w and r.
Step 2: Solve the household decision problem.
Step 3: Compute the steady state with &’ = k'(k,m) = k and m' =
m'(k,m) = m.
Step 4: Return to step 1 if £ # K and m # M.
Compute the steady state of the model as follows:
a) Use value function iteration over the state space (k,m).% Provide a
good initial guess for K and M (Hint: 1) assume that » = 1/0 and
LY =~ 1 implying a value for K from the first-order condition of the
firm. 2) Assume that ¢ =Y — ¢K and that households finance about
82% of consumption with M1, which is the approximate number for
the US.)
b) Use the following two-step procedure in order to solve the household
optimization problem (as suggested by EROSA and VENTURA (2002)
in their Appendix A):
i. Assume that the household allocates his wealth w = k+ (1+m)m
on capital and money according to the optimal portfolio functions
m = gm(w) and k = gi(w). As an initialization of these functions
in the first iteration over K and M, use a linear function that
represents the weights of K and M in total wealth K+ (1+7)M.
Solve the following Bellman equation in the first stage:

o(w) = max {u(c) + Bv(w')}

c,s,w’
subject to the cash-in-advance constraint
(1l —5) = gm(w)

and the budget constraint:
S
c+ w/ v(e,i) di+w' = (14 7)gp(w) +w + gm(w).
0

This provides the policy function w’ = g, (w).
ii. In the second stage, solve the optimization problem:

(00,02 = arg s {maxu(o)}

k,m c,8

6 In order to compute the optimum, you need to know the Leibniz rule:

b(z) )

/b(x) f(t,x) dt = f(b(x), z)b' (z) — f(a(z),x)d (v) +/ — f(t,x) dt.
a(x) a(z) Oz
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subject to
I+m)m+k=w
c(l —s)=m,
c—i—w/os'y(c,i) di+w' = (1+7r)k+w+m,

where W’ = g, (w).
Iterate until convergence and compare the policy functions, Euler
equation residuals and the computational time of the two proce-
dures.
¢) How does an increase of the quarterly inflation rate from 1% to 2%
affect the equilibrium allocation?
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Parameterized Expectations

Overview. We know from Chapter 1 that there are two ways
to characterize the solution of a Ramsey problem or, more gen-
erally, of a recursive dynamic general equilibrium (DGE) model:
(1) in terms of a policy function that relates the model’s decision
or control variables to the model’s state variables or (2) in terms
of a system of stochastic difference equations that determines the
time paths of the model’s endogenous variables. The method pre-
sented in this chapter rests on yet a third solution concept. In
the Rational expectations equilibrium of a recursive DGE model
agents’ conditional expectations are time invariant functions of
the model’s state variables. The parameterized expectations ap-
proach (PEA) applies methods from function approximation (see
Section 11.2) to these unknown functions. In particular, it uses
simple functions instead of the true but unknown expectations
and employs Monte Carlo techniques to determine their parame-
ters.

The PEA has several advantages vis-a-vis both the value func-
tion iteration approach and the extended path algorithm. In con-
trast to the former, it does not suffer as easily from the curse
of dimensionality and, therefore, can be applied to models with
many endogenous state variables. Unlike the latter, it deals easily
with binding constraints. Our applications in Section 5.3 illustrate
these issues.

We describe the PEA in two steps. (1) In the next section we
look at the solution of a Ramsey problem from a different angle.
Instead of focusing on agents’ policy functions, we consider their
conditional expectations of future prices, quantities, and shocks.
Except in our discussion of the deterministic extended path al-
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gorithm considered in Chapter 3, we have tacitly assumed that
these expectations are consistent with the model. It is now the
time to make this more obvious. The ensuing concept of a ratio-
nal expectations equilibrium is yet another way to describe the
solution of a DGE model. Its feature is a time invariant (possibly
vector-valued) function & used by agents to predict their future
economic environment. An approximate solution is a simple func-
tion & , for example a finite degree polynomial, that approximates
& sufficiently well. We will see that the definition of conditional
expectations provides the clue to compute the parameters of &.
This naturally implies a general framework for the PEA.

(2) Section 5.2 considers the single steps of this algorithm in
more detail. Specifically, we will deal with two approaches to solve
the fixed-point problem that defines the PEA solution. The first
approach is iterative, the second solves a non-linear equations
problem. Both approaches require good starting values and so
we will consider this problem subsequently.

Having read this chapter you will have seen applications of
almost every tool from the collection of numerical methods pre-
sented in Chapter 11.

5.1 Characterization of Approximate Solutions

This section provides a general description of the parameterized
expectations approach (PEA). In the first subsection we use the
stochastic growth model of Section 1.3 to illustrate the basic idea.
The second subsection provides the general framework and the
third subsection highlights the relation between the PEA and
models of adaptive learning.

5.1.1 An Illustrative Example

The Model. The dynamics of the stochastic Ramsey model from
(1.22) is governed by two equations:!

1 See Section 1.3.2 for their derivation.
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Ko = Zf () + (1 — 6)K, — ., (5.1a)
U (Cy) = BE W (Cra) (1 = 6 + aZpa [/ (Kia)) |- (5.1b)

C; denotes consumption, K; the stock of capital, and Z, the total
factor productivity that evolves over time according to

Zy =78 e, ¢ ~ N(0,07). (5.1¢)

Equation (5.1a) is the economy’s resource constraint. Implicit in
the Euler equation (5.1b) is the statement that the expected mar-
ginal rate of substitution between current and future consumption
must equal the expected gross return on investment, i.e., one plus
the marginal product of capital net of depreciation 9.

Conditional Expectations. We know from Chapter 1 that the
solution to this set of equations can be written in terms of a
time invariant policy function K;,, = h™ (K}, Z;). Accordingly,
the conditional expectation on the rhs of equation (5.1b) is also
a time invariant function & of the model’s state variables K; and
Z;. 'To see this, let

he(Ky, Zy) = Z,f () + (1 — 8) K, — W' (KK, Z,)

denote the solution for consumption given K; and Z;. Therefore,
Ciy1 = h (W5 (Ky, Zy), Zsy ). Using (5.1¢) to replace Zy, 1, we may
summarize the expression inside the expectations operator E; in
a function ¢(Ky, Zy, €141):

(Ko, Zy, €4) = (hc(hK(Kt, Zy), Ztgeet“))
< (L= b0+ Zien (WS (12, 20).

Since the innovations to (5.1c) are normal variates, we get & via
integration:

oo *(5t+1)2
e 202
5([(,5,2,5) 3:/ ¢(Ktazt7€t+l)Td€t+l'

To?




246 Chapter 5: Parameterized Expectations

Approximation of &. Suppose we knew &. Then, given an ar-
bitrary initial capital stock Ky and an arbitrary initial level of
the total factor productivity Z;, we can compute the rhs of equa-
tion (5.1b) and solve the system of two equations (5.1) for K
and Cy. With K; at hand, Z; derived from Z;, and a draw from
the N (0, 0?)-distribution, we can use &(K;, Z;) and (5.1) again
to solve for (K, C4). Repeating these steps over and over, we
can trace out an entire time path for the variables of our model
economy.

As with the policy function h¥, there is generally no analytic
solution for &. The idea behind the PEA is to approximate the
unknown function & by a simple function ¢. For instance, DEN
HAAN and MARCET (1990) use ¥(v1, Ve, V3, K, Zi) = K2 Z)?
to approximate the solution of the stochastic difference equation
(5.1).

Given the choice of the approximating function, the remaining
task is to fix its parameters. Remember the definition of condi-
tional expectations: let y denote a random variable that we wish to
forecast using observations on (x1, s, ..., z,). We seek a function
h that minimizes the expected mean quadratic error

E[(y — h(zy,29,...,2,))?].

The solution to this problem is the conditional expectation:?
E[y’(xla Lo, ... 7xn)] = arg m}}n E[(y - h(xla L2 .- 7xn))2]'

The parameter choice mimics this definition. We need some ad-
ditional notation to describe this procedure. For simplicity, we
collect the model’s variables in the vector s, := [Cy, Ky, Ki11, Z)
and stack the model’s state variables in the vector w; := [K}, Z;]'.
We use ¥(,w;) to denote the function approximating & for a
given p-vector of parameters vy := [y1,72, . .., 7, and assume that
a time path {s;}_, of length T + 1 has been computed based on
a given (Ko, Zy) and T draws from the N(0, 0?)-distribution. To
emphasize the dependence on vy we write s;(7) and w;(y). Given
this, let

2 See, e.g., Sargent (1987), p. 224.
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O(st41(7)) = ' (Cra) (1 = 6 + Zia f'(Kig1))

denote the (ex post) rhs of equation (5.1b) associated with this
time path so that ¢(s11(7y)) — ¥ (7, wi(y)) is the time ¢ + 1 pre-
diction error. Next, define the map I' : RP — RP by

N

D) = argmin 3 [6(sin (7)) = ¥ (&, wi(v)))?.

t

I
=)

Thus, I'() is the parameter vector £ that minimizes the sum
of squared prediction errors associated with the time path that
results from predictions of the rhs of equation (5.1b) using the
function (7, -). The fixed point «y, 7 of this mapping,

’Yp,T = F(’Yp,T)’

is the approximate model solution. It depends on the length of
the time path 7" and the function ¢ (-).

5.1.2 A General Framework

This section describes the parameterized expectations approach
in more general terms. Each of the representative agent models
that you will encounter in this book fits the following framework.

Let s; denote an n(s)-dimensional vector that collects all of the
model’s variables. This vector belongs to some subset U of R™(*) 3
It is convenient to consider two further subsets of the variables in
s;. The first subset, the n(z)-vector z,;, includes all exogenous sto-
chastic processes with the Markov property that drive the model.*
The second subset collects the model’s state variables in the n(w)-
dimensional vector w; € X € R™®)_ Note that w, includes z; and

3 Many of the variables of an economic model are restricted to belong to
a given subinterval of the real line. For instance, output, consumption,
investment, and the stock of capital cannot be negative. For this reason, we
restrict s; to a subset U of R™*). This set implicitly imposes the restrictions
on the values which the variables can take.

4 See Section 12.2 on this property.



248 Chapter 5: Parameterized Expectations

all those variables from the vector s; that have given initial condi-
tions but are otherwise determined endogenously. In the notation
of Section 2.5.4, w; = [x},z;|". The variables in w; summarize the
information that is relevant to predict the future economic envi-
ronment. In addition, there are two vector-valued functions that
govern the model’s dynamics. The function ¢ with argument s,
maps U to V, a subset of R*. The function g with arguments
Ei[d(si11)] and s; collects the model’s Euler equations, defini-
tions, resource constraints, and so forth. In the example from the
previous subsection ¢ equals the single-valued expression to the
right of the conditional expectations operator E; while g is given
by equations (5.1), and V' is the one-dimensional space of positive
real numbers R, . Accordingly, the system of stochastic difference
equations that drive the model can be written as follows:

g (B [@(st1)],8:) =0forallt =0,1,...,00. (5.2)

Due to the recursive nature of the model (that allows for its solu-
tion in terms of a time invariant policy function) there is a time
invariant conditional expectations function & given as the solution
to

& = arg min B[ ($(si1) — h(wy) ($(sis1) — h(w)) |
that solves (5.2), i.e.,
g(&(wy),s) =0forallt=0,1,...,00. (5.3)

The parameterized expectations approach approximates this so-
lution in the following steps:

Algorithm 5.1.1 (PEA)
Purpose: Approzimate the solution to (5.3)
Steps:

Step 1: Choose a function (v, ) : X — V that depends on the
vector of parameters v € RP.
Step 2: Draw a sequence of shocks {z}_q.



5.1 Characterization of Approximate Solutions 249

Step 3: Iterate on

g (Y(v, wi(7)),8:(7)) = 0

to find the sequence {wy(v)}L,.
Step 4: Find the fived point v, = I'(v,7) of the map I' defined
by

=
L

[B(s41(7)) — ¥ (& wi ()%,

Nl =

['(v) := argmin
¢4

I
=)

where || - || denotes the Euclidean norm.

Step 5: Decide whether (v, r,) is close to the true but unknown
solution &. If not, change either T' or ¥ (-) and return to
Step 1.

MARCET and MARSHALL (1992, 1994) provide conditions on
the functions g, ¢, ¥ as well as on the process {z;}:°, that make
the PEA a meaningful concept. Using a weaker definition of an
approximate solution than that given in Step 4 they are able to
show that the approximation can be made arbitrarily close to the
true solution (5.3) by letting 7" — oo and p — oco. Since we will
be dealing with the computation of -, for a fixed 7" and p we
can sidestep the involved technical details and can proceed with
the definition given in Step 4.

5.1.3 Adaptive Learning

Models of Learning. There is an interesting relation between
the approximate solution discussed in the previous section and
attempts to formalize how agents learn about their environment.

The rational expectations equilibrium defined in (5.3) presup-
poses two requirements: individual rationality and mutual con-
sistency of perceptions of the environment. The agents in the
model use the true conditional expectations function for their
forecasts. They have somehow solved estimation and inference
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problems that an econometrician must deal with. Models of learn-
ing depict economic agents as econometricians that use current
and past observations to estimate the parameters of the econ-
omy’s law of motion. Since the actual law of motion depends
upon the law perceived by agents, this is like chasing a mov-
ing target. Agents that act like econometricians are not as smart
as those that populate the rational expectations equilibrium. For
that reason, SARGENT (1993) refers to the former as agents with
’bounded rationality’, a term coined by HERBERT SIMON (1957).
Others use the term ’adaptive learning’ to characterize this ap-
proach. EVANS and HONKAPOHJA (2001) provide an introduction
into the related methods and present many applications. In the
following paragraphs we will sketch an adaptive learning process
whose stationary point is the approximate solution discussed in
the previous subsection.

Recursive Least Squares. Assume that you want to estimate
the linear equation

yi:7lxi+eia 1= 1727"'7t7

where ~ is a p-dimensional column vector of parameters related
to the observations of p independent variables collected in the
column vector x; = [@;1, Tia, - . ., Tip) . Put y = [y1, 92, ..., y) and
X = [x1,X2,...,%¢]". The well-known formula for the least squares
estimator gives:”

v, = (X'X)' X'y = (Z XiX;> (Z Xiyi> : (5.4)

Suppose you have estimated = from ¢—1 observations and now you
are given one additional observation (v, 41, 42, ..., Ty,). There is
a convenient formula that updates your estimate as follows:°

5 This formula is derived in most introductory and advanced textbooks on
econometrics. See, e.g., GREENE (2003), pp. 19ff. or JUDGE,HILL, GRIF-
FITHS, and LUTKEPOHL (1988), p. 164ff.

¢ You can verify this formula by substituting the definitions of ~y, from (5.4)
and of Ry into (5.5).
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1
Ye = Vi1t ;Rt 1Xt(yt - 72—1Xt>a
(5.5)

1
Ry =R 1+ g(XtX; — Ry 1),

where

1 [

is a square matrix of dimension p and R; ! its inverse. The update
of ~ in the first line of (5.5) uses the most recent forecast error
Yt — Vi1 Xt

Learning Dynamics and the PEA. Suppose the agents in our
model economy were not able to compute the true conditional
expectations function &. For ease of exposition assume that the
range of ¢ : X — V is a subset of the real line (as in the Ramsey
model of Section 5.1.1). Let 1(-y,, -) denote the agents’ forecast of
¢(+) using their most recent estimate of the parameter vector ~,.
Since the entire history of the model economy depends upon the
sequence of estimates {v,}._, the time sequence of the model’s
variables is different from the sequence {s,}._, obtained for a
given and constant vector <. To emphasize this difference, we
use S; and w; to denote the vector of variables and the vector
of states, respectively, that are associated with a given sequence
of estimates {~,}._,. Assume that agents use non-linear least
squares to estimate 7y, i.e., at period ¢ they choose ~, to minimize

t—1

[6(8i41) — (v, Wi)]%.

1
t <

7

I
=)

A solution to this problem that fits into the framework of recursive
least squares can be found as follows. Linearize ¥(7,-) at the
previous estimate «y,_;:

V(Yer ) = V(Y5 ) + VO (vm) (v — i)

where the symbol Vi)(«,_;) denotes the row vector of first deriv-
atives of the function v evaluated at the point ~, ;. Put
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Ui = d(Siv1) — V(vem1, Wi) + V(1)1
W; = vw(’%ﬁ—l)a

and solve
=
min — Z[@Z — 7;Wz]2
Yt t i—0

The solution is given by (5.4) with y; and x; replaced by g; and
w;, respectively. Now, we are able to apply the recursive formula
(5.5) to formulate the dynamics of our model under non-linear
least squares learning:

1
Ye=Ye—1 T ﬁv¢(7t—1>/(¢(§t) —P(Yi1, Wie1)),

Ry =Ry 1 + % (Vw('Yt—l)lvw('Yt—l) - Rtfl) ’
0= g(¢(Vs W), 8)-

MARCET and MARSHALL (1994) show, that the approximate
solution defined in Step 4 of Algorithm 5.1.1 for ¢ — oo, denoted
by v, is a rest point of this process. Furthermore, if the absolute
values of the eigenvalues of I'(y) evaluated at ~, are less than
one, there is a neighborhood .#'(v,) such that all v € A4 (v,)
converge to this rest point.

(5.6)

5.2 Computation of the Approximate Solution
This section considers the single steps of the PEA Algorithm 5.1.1

in more detail. We start with the choice of the sample size T" and
the approximating function 1) in the next subsection.

5.2.1 Choice of T and

Sample Size. We note in Section 5.1.2 that the accuracy of the
approximation increases with 7. The underlying intuition is as
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follows. Suppose we would compute the time sequence of Qp =
{s:}L, from the true function &. In this case Qp is a sample
drawn from the ergodic distribution that is the solution of the
system of stochastic difference equations defined in (5.3). As usual
in sampling, the larger {27 is, the better does it represent the
properties of the underlying distribution. In particular, those parts
of the space U where the solution spends most of its time receive
a high frequency count in 27, whereas those parts of U which
are visited very rarely appear hardly in Q7. As a consequence,
the non-linear least squares estimator invoked in Step 4 of the
PEA will be eager to keep the expectational errors small on those
subsets of U, which we are most interested in. Of course, this
property carries over to any sufficiently good approximation ¥ of
&.

Applications of the PEA to solve the stochastic growth model
therefore use large integer values of 7T'. For instance, DUFFY and
McNELIS (2001) use 7' = 2,000, DEN HAAN and MARCET (1990)
choose T' = 2,500, the Fortran programs of MARCET and LOREN-
ZONI (1999) allow for a maximum of 10,000 data points, and
CHRISTIANO and FISHER (2000) even put 7' = 100, 000. To elim-
inate the influence of the initial value wy one can disregard the
first 0.5 or 1.0 percent of the data points from the simulated time
series and choose the parameter vector -, » with respect to the
remaining sample.

Function Approximation. More challenging is the choice of 1.
Remember that this function is vector-valued, as it maps points
from a subset of R™™) to points in a subset of R¥. If we think
of the j-th coordinate of 9 as a map ¢; : X C R* — R we
can reduce this problem to the simpler one of approximating a
real-valued function. In Section 11.2 we present various ways to
approximate a given function. In our applications of the PEA we
use a complete set of polynomials of degree p in the n(w) vari-
ables (w1, ..., Wywy) to build ;. The members of the set are
either products of monomials (w! w52 - - -w, (w)*) or Chebyshev
polynomials (see Section 11.2.6), where Y "  (w)k; = p. Mono-
mials are easy to deal with in the PEA for the following reason:
in many applications we do not know the boundaries of X in ad-
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vance. However, the domain of orthogonal families of polynomials,
as for the Chebyshev polynomials, are certain compact intervals of
the real line. When we use bases from members of these families,
we must specify a compact region X before we start the com-
putations. This is not necessary in the case of monomials, since
their domain is the entire real line. The drawback from using
monomials that we will encounter later is the problem of multi-
collinearity. Very often, higher order terms of a variable w; appear
to be indistinguishable from one another on the computer so that
it is impossible to regress the errors @(sii1,7) — ¥ (v, W) on wy.
Hence, even if the theory tells us that we get a more accurate
solution if we increase the degree of the polynomial, we will not
be able to achieve this on the computer with monomials. Since
the orthogonality of Chebyshev polynomials in discrete applica-
tions pertains to the zeros of these polynomials (see (11.56)) only,
their use does not really provide a work around of this problem.
Of course, the PEA is not restricted to a certain class of func-
tions, and you may want to redo our examples using, e.g., neural
networks (see Section 11.2).

5.2.2 Iterative Computation of the Fired Point

Convergence. There is a last step to be taken in order to imple-
ment the parameterized expectations approach: the actual com-
putation of the parameters of the expectations function (7, -).
Probably the most obvious thing to do is to iterate on the map-
ping I' defined in Step 4 of Algorithm 5.1.1,

Vo1 =1(7,),s=0,1,..., (5.7)

starting with an arbitrary «y,. However, since (5.7) is essentially a
non-linear difference equation, this procedure need not converge,
even if the fixed point exists. DEN HAAN and MARCET (1990) as
well as MARCET and MARSHALL (1994) propose to iterate on

Vo1 = (1= A)ve + AT(7s) (5.8)
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for some A € (0,1] to foster convergence. Indeed, if the related
adaptive learning model is locally stable, there are starting values
v, such that for a sufficiently small A (5.8) will converge.

Non-Linear Least Squares. If we use this iterative procedure
we have to solve

min = 3 (502 (3)) = (& W) |

at each step. This breaks down to solving k non-linear least
squares problems. To see this let ¢;(-) and ;(-) denote the j-th
component of ¢ and 1), respectively, and partition the parameter
vector 7y so that v, = [y, ., Y, 7 = 1,2,..., k. With this
notation the minimization problem can be rewritten as

i 330 1565 )
= > LS s 9) — 456y
= 3 i & 30501 () — €5 W)

In our applications we use the damped Gauss-Newton method
explained in Section 11.6.2 to solve this problem. In the early
stages of the iterations over (5.7) it is not necessary to compute the
minimum with great accuracy. Thus one can make the algorithm
faster by choosing very generous stopping criteria. For instance,
the programs by MARCET and LORENZONI (1999) bypass the
convergence test (11.86) (see Section 11.4 on this criterion).

5.2.3 Direct Computation of the Fixed Point

In this subsection we consider the PEA as solution to a compli-
cated system of k& x p non-linear equations.
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Remember the following notation used so far. ¥;(~v;, wi(v)),
J =1,2,...,k is the time t forecast of the j-th conditional ex-
pectation given the vector of states w; and the parameter vector
Y = [Y1,Y2 - Vi), Where v, = [v15,7%2j, - - -, Yps). Accordingly,
¢;(si41(7)), is the time t + 1 value of the expression to the right
of the expectations operator that defines the j-th conditional ex-
pectation.

In this notation, the k& x p first-order conditions for the mini-
mization problem in Step 4 of Algorithm 5.1.1 may be written as
follows:

_o 7! .
0= [0 (7)) = (&5 we())]5 = (&5, wi(7)),
t=0

forall:=1,2,...,p, and j =1,2,... k.

The iterative procedure of the previous subsection solves this
problem for & = [£,&,,...,&,] given v and stops if & ~ . Here
we replace £ in the above system with v to get:

I b
0= [0j(se11(7)) = i (v WY 5 (45, Wi (7)),
T = 0ij
::so:;("/)
foralli=1,2,...,p, and j =1,2,... k. (5.10)

The zero of this non-linear system of equations in ~ is an equiv-
alent characterization of the approximate model solution. Thus,
instead of the iterative procedure outlined above, we can apply a
non-linear equation solver to (5.10).

This sounds nice and easy! But think of the following issues.
Routines that solve non-linear equations, as the modified Newton-
Raphson method with line search, require a starting value. With
an arbitrary «y,, however, it may not be possible to perform the
simulations in Step 3 of Algorithm 5.1.1 at all. For instance, it
may happen that at some ¢ a non-negativity constraint implicit
in the definition of g(-) is violated so that it is impossible to
compute {s;}_,. Even if this does not happen at the given =,
the algorithm may want to try a vector where it is not possible
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to simulate the model for all 7. For this reason any procedure
that performs the simulation step must return an error flag that
signals the calling program to stop. Otherwise your program will
crash because of overflows, underflows or other run-time errors
arising from undefined numerical operations. By the same token,
the procedure that computes the rhs of (5.10) must return an
error flag to the non-linear equations solver telling it to stop or
to look for a different ~ if it is not possible to evaluate all the
©ii (7). Yet, standard software usually assumes that it is possible
to evaluate a given non-linear system everywhere and there is no
way to tell the program to do otherwise. So, unless you write
your own non-linear equations solver (or trust our routines) you
are bound to find very good starting values. It is this issue that
we turn to next.

5.2.4 Starting Points

Good starting values are essential to both the iterative and the
direct approach to locate the PEA solution. The iterations over
(5.8) may not converge if the initial point is outside of the basin
of attraction of the respective learning algorithm, and non-linear
equations solvers easily get stuck if the simulation step fails. There
are several ways to handle this problem.

Homotopy. In mathematics two vector-valued functions f : X —
Y and g : X — Y are said to be homotopic if f can be continu-
ously deformed into g. A function h(x, s) that performs this task,
i.e., that equals f for s = 0 and g for s = 1, is called a homotopy
function. For instance,

h(x,s) == (1 — s)f(x) + sg(x) (5.11)

is a homotopy function.

Suppose we want to solve g(x) = 0 and know the solution
xo of f(x) = 0. The idea behind homotopy methods is to con-
struct a path in X x R that takes us from the known solution
to the solution of the problem of interest. Simple continuation
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methods use the linear homotopy (5.11), form an increasing se-
quence 0 < s < s9 < --- < 1 and solve the related sequence of
problems h(x, s;) = 0. If the homotopy path in X x R has peaks
and troughs along the s dimension, simple continuation methods
can fail. More advanced methods construct the homotopy path by
solving a related system of differential equations.”

As regards DGE models the problem is to construct a simple
model whose solution is either known or has been found in pre-
vious work and to move gradually from this model to the model
of interest. This may be simple, as it is in the stochastic growth
model, where an analytic solution exists for log-preferences and
full depreciation of capital (see Example 1.3.2). As you will see
in Section 5.3.1, in this case we can also derive an analytic ex-
pression for the conditional expectations function & (K, Z;). We
can then use small steps to move from 6 = 1 and n = 1 to a
version of this model where the rate of capital depreciation ¢ is
in the range of empirical estimates and where the elasticity of the
marginal utility of consumption 7 is different from one. However,
if we think of a model with capital and real balances of money as
a second asset, it is less obvious from where to start. Moreover,
if the model of interest departs significantly from the simple sto-
chastic growth model it may be very cumbersome to trace out a
sequence of more and more complicated models. For this reason,
we consider search methods that are easy to implement for any
kind of model and that have been found effective in quite different
areas, such as automatic programming, machine learning, game
theory, and numerical optimization.

Genetic Algorithms. In Section 11.6.4 we introduce genetic
algorithms as a tool to minimize a given function. Here, our
problem is to find the zeros of a set of non-linear functions
f1(x), fA(x), ..., f"(x). But the solution to this problem is also a
minimum of

i=1

7 See, e.g., JUDD (1998), pp. 176ff.
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Though the converse is not true, a solution to this minimization
problem might be a good starting point for a non-linear equations
solver.

Using the Linear Policy Functions. In Section 2.4 we consider
the linear approximation method. Very often it is possible to ob-
tain the solution from this method with little additional effort.
The extra work to be done is to obtain the linearized equations of
the model. One can then use the linear policy functions to trace
out a path for the vector s; and solve the non-linear regression
problem

~
_

min % [¢(St+1) - ¢(’Yo= Wt)]2 :
Yo

t

I
o

At this point one can also apply econometric tests to check
whether the chosen degree of 1 is appropriate. For instance, if
the t-ratio of a regressor is smaller than unity, one might exclude
it from the regression.

5.3 Applications

In this section we consider three applications of the PEA. First,
we illustrate its ability to implement constraints on some of
the model’s variables. For this purpose we resolve the stochas-
tic growth model with a non-negativity constraint on investment,
which we have already encountered in Section 4.3.1. Second, we
obtain the PE solution of the benchmark model of Example 1.5.1,
and third, we show how the PEA can be applied to models with
more than one conditional expectations function.

5.3.1 Stochastic Growth with Non-Negative
Investment

The Model. To apply the PEA to the model of Section 4.3.1, we
must first derive the set of difference equations that governs the
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time path of this model. While we are quite aware that you have
already mastered this task (see Problem 4.1), we will repeat the
necessary steps for your convenience. In terms of the Lagrangian
the problem is to maximize

- s— Cdi@77 —1
L= B'E [ﬁ + prrs (K — (1= 0) Kips)
s=0

+ Ay (Zt+sKta+s + (1 =) Kiys — Crps — Kt+s+1) ]

Differentiating this expression with respect to C} and K;,; and
setting the results equal to zero provides the conditions:

0=Cy" = = BE[C (1 =0+ aZin KT — (1= 0)],

(5.12a)
0= ZK*+ (1 —80)K; — Cy — Kyp1, (5.12b)
0= w[Kip1 — (1= 8Ky, (5.12¢)
0< (5.12d)
0< Kt — (1-0)K,. (5.12)

Line (5.12¢) to (5.12e) are the Kuhn-Tucker conditions associ-
ated with the non-negativity constraint on investment: either the
constraint does not bind, in which case p; = 0 (from (5.12¢)) or
gross investment is zero, in which case pu; > 0. Equation (5.12a)
is the model’s Euler equation and equation (5.12b) the economy’s
resource restriction.

Implementation. We already know from Example 1.3.2 that
this model has an analytic solution for the policy function if
n =6 = 1, which is given by

Kt+1 = C(ﬂZtha
Since, in this case,
Ct = (1 - O‘ﬂ)Zthaa

the non-negativity constraint never binds, irrespective of the size
of the productivity shock. Therefore, we can evaluate the rhs of
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(5.12a) to find the analytic solution for the conditional expec-
tations function & (K3, Z;). We ask you to perform this task in
Problem 5.1. Here, we just report the result:

_¥ —ar7—1
gm;ay_u_amﬁm Z,

We use this information to approximate & in the general case
n > 0 and 6 € [0,1] by an exponential polynomial in (K, Z;).
We use a complete set of base functions, which either consist of
monomials or of Chebyshev polynomials. For instance, the first
degree, complete polynomial with monomial base functions is

77Z)(77 Kt7 Zt) ‘= exp (71 + V2 In Kt + 73 In Zt)7
while the second degree polynomial is

V(v, Ky, Zy) = eXp(’Yl + 7 In K +931n Z;
+ (0 K;)? + v 1In K In Z; + v6(In Z,)?).

In the case of a base of Chebyshev polynomials the terms in In K
and In Z in the equations above are replaced by T;(X (In K)) and
T;(X(InZ)), where X : [a,b] — [—1,1] defines the function that
maps points from the interval [a,b] to the interval [—1, 1], which
is the domain of the Chebyshev polynomial T; of degree i (see
Section 11.2.6).

The Kuhn-Tucker conditions in the simulation are implemented
as follows: given (K, Z;) we first solve for

Cr = (BY (v, Ki, Z0)) ™7,

and compute
Kiyn = ZK)+ (1 = 90)K, — Ch.

We then test the non-negativity constraint. If
K1 —(1-90)K,; <0,

we set
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C, = Z,K* < Cy,
and
Ko =(1-9)K,.
The Lagrange multiplier p, is found by solving

e = é;n - 51/)(’)’7 K, Zt)'

This solution is always positive, if C; > C}, i.e., if the constraint
binds. Indeed, setting up the model with a non-negativity con-
straint is computationally easier than without this restriction.
Otherwise we would have to check for K;,.; < 0 and terminate
the computations with the given vector of parameters -. This
introduces a discontinuity that must be handled explicitly in the
non-linear equations solver. Nevertheless, it may happen that this
routine tries a vector - for which it is not possible to evaluate 1 (-),
either because of an over- or an underflow. So the program must
take this into account (see below).

Our Fortran program SGNNI_b.for determines the parameter
vector 7 by solving the non-linear equation (5.10). In Problem
5.2 we ask you to find the PE solution via fixed-point iterations.
Our program either accepts an initial v, to start computations or
uses a genetic algorithm to find reasonable starting values from
scratch.

Results. Table 5.1 presents accuracy statistics from several simu-
lations. The parameter values are a = 0.27, § = 0.994, 6 = 0.011,
n = 2, and o = 0.90. We consider two different values of the
standard deviation of the innovations in the process (5.1c). If o
equals 0.072, the non-negativity constraint never binds so that
the solution equals the solution of the stochastic growth model
without any constraint. In the case o = 0.05, the non-negativity
constraint binds occasionally. Our simulations further distinguish
between a small 7" of 5,000 points, and a large 7" of 100,000 (or
even 1,000,000) points. As we have pointed out above, we expect
the precision of the solution to increase with 7. Finally, we con-
sider different degrees p. Note in this respect that for p = 1 the
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monomial and the Chebyshev base functions are identical (ex-
cept for the different domain). Our measures of accuracy are the
residuals of the Euler equation (5.12a) and the fraction of the DM-
statistic below (above) the 2.5 (97.5) percent critical value of the
x*(11)-distribution. We compute this statistic from a regression
of the prediction error on a constant, five lags of consumption,
and five lags of the total factor productivity. The Euler equations
are computed over a square that is chosen so that 90 (80) percent
of the realizations of (K, Z;) obtained in 1,000 simulations with
as many as 3,000 periods lie in this square.

Consider, first, the choice of T'. For both the small and the high
value of o the DM-statistic indicates that the solution based on
only T'= 5,000 points is less good than the one obtained from a
time series of length 7" = 100, 000. The Euler equation residuals
are less sensitive to this parameter. The largest reduction occurs
in the case of o = 0.0072 for p = 2 in the 80% interval. The
maximum Fuler equation residual for 7" = 5,000 is about 8 times
larger than that for 7" = 100,000. In the case of ¢ = 0.05 for
p = 1 the Euler equation residual computed in both intervals is
almost unchanged when 7' is increased from 5,000 to 100, 000.
Note, however, that these results rest on the random draw of Z;
so that you may find somewhat different results if you redo our
experiment.

Consider, second, the degree p of the polynomial. If ¢ is small,
there is no noteworthy gain in accuracy from increasing p. In some
cases — see line one and two in the first panel and line four and five
in the second panel — accuracy even decreases. The reason is that
additional, higher-order terms in the polynomial contribute more
noise than further information. In the terminology of regression
analysis these additional elements are almost linear combinations
of the already present lower-order terms. This is known as the
problem of multicollinearity. In a linear regression model the solu-
tion will be highly imprecise. Yet, as we have seen in Section 5.2.3,
the non-linear regression step that is involved in the computation
of the fixed point can be reduced to a series of linear regression
problems (the Gauss-Newton algorithm). If we determine the PE
solution from the non-linear system of equations (5.10), we may
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Table 5.1
Base Function Euler Equation Residual DM-Statistic
90% 80% <3.816 > 21.920

o =0.0072, T = 5,000

Monomial: p=1 5.779E-5 4.668E-5 0.7 11.1

Monomial: p = 1.501E-4 9.630E-5 0.7 26.8

Chebyshev: p =2 1.501E-4 9.630E-5 0.7 26.8
o =0.0072, T = 100,000

Monomial: p=1 2.011E-5 1.224E-5 1.4 4.1

Monomial: p =2  1.981E-5 1.200E-5 1.6 3.5

Chebyshev: p =2 1.981E-5 1.200E-5 1.6 3.5

Chebyshev: p =3 2.705E-5 1.668E-5 1.6 3.5

o =0.05,T = 5,000

Monomial: p=1 1.141E-3 7.133E-4 1.0 9.0

Monomial: p =2  5.850E-4 3.721E-4 1.0 11.7

Chebyshev: p =2 5.850E-4 3.721E-4 1.0 11.7
o = 0.05, T = 100,000

Monomial: p=1 9.993E-4 5.673E-4 2.2 5.2

Monomial: p =2  2.289E-4 1.189E-4 2.0 3.7

Chebyshev: p =2 2.289E-4 1.189E-4 2.0 3.7
o = 0.05, T = 1000, 000

Chebyshev: p = 2.608E-4 1.040E-4 2.8 3.7

Chebyshev: p =3 1.941E-4 7.137E-5 2.9 3.6

Notes: T is the length of the time series from which the coefficients are com-
puted, p is the degree of the polynomial. Euler equation residuals are computed
as maximum absolute value of 200% residuals computed on an equally spaced
grid # x 2. The size of the interval for K was chosen so that 90 (80) percent of
the realizations of K out of 1,000 simulations with 3,000 points each are within
the respective interval. The interval for Z was likewise determined.

not be able to find a solution in this case. Indeed, we were not
able to solve the model with p = 3 in a base of monomials in rea-
sonable time. If the size of the shocks is larger, higher-order terms
provide additional information. Moving from p =1 to p = 2 al-
most halves the residual (see lines one and two in panel three).
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The increase in accuracy is even more pronounced for a large 7'
However accuracy does not improve noteworthy, if we move from
p =2 to p= 3 in a base of Chebyshev polynomials.

Also note, third, that for a given degree, where we were able
to compute both the solution with respect to a monomial and
a Chebyshev base, the solutions coincide: While the parameters
differ due to the different domains, both functions predict the
same value of the rhs of the Euler equation (5.12a) for a given
pair (Ky, Z).

Summarizing the results, one can be confidential to compute
a reasonably accurate solution of the model in either base with a
degree p = 2 polynomial and a sample size of T" = 100, 000.

5.3.2 The Benchmark Model

In this subsection we provide the details of the PE solution of the
benchmark model of Example 1.5.1. The time path of this model
is determined from the system of equations

A = ¢; (1 — NP4, (5.13a)
0=0c, (1 — NP1 — (1 — )\ Z, N7k, (5.13h)
akio1 = ZNFOkY + (1 — 8)k; — ¢, (5.13c)
A = Ba"Ed1 (1 — 6 + aZy NLPESD. (5.13d)

Remember the definitions: ¢; := C;/A;, ky == K;/A;, and A, =
A}A;, where A; is the Lagrange multiplier of the budget con-
straint, which equals the marginal utility of consumption (see
(5.13a)). The second line in (5.13) is the optimality condition with
respect to labor supply, the third line gives the budget constraint,
and the fourth line represents the Euler equation for the capital
stock. We can eliminate consumption from the first two equations
of (5.13). The result is an implicit equation for V;:

(1 = a)/0)Z,N; %k = A1 — Nylea-m/i-1, (5.14)

Its solution determines N; as a function of (ki, Z;, A¢). In our pro-
gram Benchmark.for we use the modified Newton-Raphson algo-
rithm 11.5.2 to find this solution.
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The program allows you to either choose a complete polyno-
mial in a base of monomials or a product base polynomial with
Chebyshev polynomials as base functions (see Section 11.2.7 on
the respective definitions) to parameterize the conditional expec-
tation on the rhs of (5.13d). Let A\, = Ba~")(~, k¢, Z;) denote
this parameterization. Given \; as well as k; and Z;, we can solve
equation (5.14) for N;. In the next step we determine consump-
tion from equation (5.13a). Finally, the budget constraint (5.13c)
provides the next-period capital stock k1.

To find good starting values =, for the non-linear equations
solver that determines the PE solution from equation (5.10) we
use the linear policy function computed in Section 2.6.1 to trace
out an initial time path for A\;, k;, and Z;. We then use Algorithm
11.6.2 to regress Ay on ¥ (7, K, Z;). The program also allows you
to employ a genetic search algorithm to find ~,,.

Table 5.2 presents the results of our simulations for the same
set of parameters used in Chapter 2 through Chapter 4 (see Table
1.1). We used a second degree complete polynomial with mono-
mial base functions to parameterize the rhs of the Euler equation
(5.12d). The table displays results obtained from two different PE
solutions and from the linear policy functions.

Consider, first, the accuracy of the solutions. The small sample
size of T" = 5000 yields a solution that is less accurate than the
linear solution: its Euler equation residuals are about 10 times
larger. There is, however, a remarkable gain in precision, from
increasing T" from 5,000 to one million observations. The maxi-
mum Euler equation residual out of 400 residuals computed over
the square [0.8k*, 1.2k*] x [0.95, 1.05] shrinks by a factor of 1/80.
It required about 12 minutes to compute this second solution as
compared to about five seconds for the first one. The reason is
the time consuming computation of the Jacobian matrix if 7" is
large. Recall from Section 4.3.2 that it takes about six minutes to
compute an equally precise solution from value function iteration
and about two hours to obtain a solution with Euler equation
residuals that are an order of magnitude smaller than those from
the PE solution with a sample size of one million. While the PEA
is a non-linear, global approach to solve DGE models, it is never-
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Table 5.2
Linear Parameterized Expectations
Approximation T = 5,000 T = 1,000,000
Second Moments
Variable S Toy T S Toy Ty Sy Toy Ty
Output 1.44 1.00 0.64 1.45 1.00 0.64 1.44 1.00 0.64
Investment 6.11 1.00 0.64 6.19 1.00 0.64 6.11 1.00 0.64
Consumption 0.56 0.99 0.66 0.55 0.99 0.66 0.56 0.99 0.66
Hours 0.77 1.00 0.64 0.78 1.00 0.64 0.77 1.00 0.64
Real Wage 0.67 0.99 0.65 0.67 0.99 0.65 0.67 0.99 0.65
Euler Equation Residuals
0.90; 1.10]k 1.835E-4 1.404E-3 3.687E-5
[0.85;1.15]k 3.478E-4 2.864E-3 5.110E-5
[0.80;1.20]% 5.670E-4 5.215E-3 6.531E-5
DM-Statistic

<3.816 2.0 0.4 3.1
>21.920 3.4 27.5 3.1

Notes: s;:=standard deviation of variable x, ryy:=cross correlation of variable x with
output, r5:=first order autocorrelation of variable . All second moments refer to HP-
filtered percentage deviations from a variable’s stationary solution. Euler equation
residuals are computed as maximum absolute value over a grid of 400 equally spaced
points on the square % X [In0.95;1n 1.05], where ¥ is defined in the respective row
of the left-most column. The 2.5 and the 97.5 percent critical values of the x2(11)-
distribution are displayed in the last two lines of the first column. The table entries
refer to the percentage fraction out of 1,000 simulations where the DM-statistic is
below (above) its respective critical value.

theless more precise in those areas of the state space which have
a higher probability of being visited by the sampled time path.
Therefore, the Euler equation residuals increase with the area of
the square over which they are computed.

Consider, second, the time series moments. What we already
know from Chapter 2 through Chapter 4 is confirmed here. Even a
relatively bad solution in terms of the Euler equation residuals and
the DM-statistic provides second moments that are very similar
to those obtained from a more accurate solution.
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5.3.3 Limited Participation Model of Money

In this subsection we develop a monetary model that features
three expectational equations. This allows us to demonstrate the
usefulness of the PEA in models with many state variables. We
begin with a motivation of this model.

Motivation. In the textbook IS-LM model an expansionary
monetary shock lowers the nominal interest rate. Since inflation-
ary expectations do not adjust immediately, the real interest rate
also declines. This spurs investment expenditures, which in turn
raise aggregate spending. Given a sufficiently elastic short-run
supply function output and employment increase. This story is
in line with the empirical evidence provided by vector autore-
gressions.® Yet, most monetary DGE models do not reproduce
this liquidity effect. Consider, for instance, the model presented
in Section 2.6.3. In this model there is only an anticipated infla-
tion effect on the nominal interest rate: when agents learn about a
temporarily high money growth rate, they expect a rise of future
inflation and demand a higher nominal interest rate.

In this section we present a model of a monetary economy that
is able to account for both the liquidity and the inflationary expec-
tations effect.” The model includes a rudimentary banking sector.
Households face a cash-in-advance constraint and can lend part of
their financial wealth M; to the banking sector at the gross nom-
inal interest ¢; (one plus the nominal interest rate). The firms in
this model pay wages to the household sector before they sell their
output. To finance their wage bill they borrow money from the
banking sector. The government injects money into the economy
via the banking sector. The crucial assumption is that banks re-
ceive the monetary transfer after households have decided about
the volume of their banking deposits. Given the additional money,
banks lower the nominal interest rate to increase their loans to

8 See, e.g, CHRISTIANO, EICHENBAUM, and EVANS (1999).

9 The model is based on a paper by LAWRENCE CHRISTIANO, MARTIN
EI1CHENBAUM, and CHARLES EVANS (1997). Different from their model,
we also include capital services as a factor of production.
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firms. At the reduced credit costs firms hire more labor and in-
crease production. The fact that households cannot trade on the
market for deposits after the monetary shock has been observed
has given the model its name: limited participation model.

The Banking Sector. At the beginning of period ¢ banks receive
deposits of size B; from households. Government transfers amount
to M1 — M,, where M, are beginning-of-period money balances.
Banks, thus, are able to lend By + (M. — M,;) to firms. At the
end of the period they pay interest and principal ¢;B; to their
creditors and distribute the remaining profits,

_ q( By + My — M) @B M1 — M,
N P, r "R

to the household sector. As in Section 2.6.3 P, denotes the money
price of output.

DP (5.15)

Producers. The representative producer employs labor N; and
capital services K; to produce output according to

}/;5 = Zt(AtNt)liaKta, o€ (O, 1) (516)

As in the benchmark model A; is the level of labor-augmenting
technical progress that grows deterministically at the rate a —
1 > 0. Total factor productivity Z; is governed by the stochastic
process

Zy =20, &~ N(0,0%). (5.17)

Producers hire workers at the money wage rate W, and capital
services at the real rental rate r;. Since they have to pay workers
in advance, they borrow W, N; at the nominal rate of interest ¢; —1
from banks. Hence, their profits are given by

|44
DF =Y, - qt?tNt — K. (5.18)
t
Maximizing (5.18) with respect to N; and K; provides the follow-
ing first-order conditions:
Wi K,
= k=
Ahy Ay
Ty = aZ N} Ok (5.19b)

Consequently, profits in the production sector are zero.

qu; = (1 —a)Z N, kY, wy e (5.19a)
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Money Supply. Money supply is governed by the same process
that we used in Section 2.6.3. Thus,
M,
pei= s = et e~ N(0, o). (5.20)
t

Households. The households’ total financial wealth at the be-
ginning of period ¢ is given by M; = B; + X;, where B; is the
amount deposited at banks and X, are cash balances kept for the
purchase of consumption goods. Since households receive wages
before they go shopping, their cash-in-advance constraint is

X + Wi N,
< ———.
t = Pt

(5.21)

The real income of households consists of wages W;N;/P,, net
rental income (r; — §)K; from capital services (where capital de-
preciates at the rate ¢), interest on banking deposits (¢;—1)B;/ P,
and dividends from banks DZ. This income is split between con-
sumption C; and savings S;. Savings are used to increase financial
wealth M; and the stock of physical capital K;. Accordingly, the
budget constraint is given by:

(X¢s1 — Xi) + (Be1 — By)

Kig — Ky + 2

W t N (5.22)
<IN+ (re — 0Ky + (¢ — 1)— + DE — ..

P, P

We depart from our usual specification of the household’s pref-
erences over consumption and leisure and follow CHRISTIANO,
E1cHENBAUM, EVANS (1997) who use the instantaneous utility
function:

u(Cy, Ny) = ﬁ [(C’t — OAtNt”)l_n — 1} , 0>0,v>1
that we have already encountered in the small open economy
model of Section 3.3.2. As you will see in a moment, this func-
tion implies a labor supply schedule that depends on the real wage
only. In particular, labor supply does not depend on wealth. Tech-
nically, this makes it easy to solve for N, given the real wage and
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to separate the role of the elasticity of labor supply 1/(v—1) from
other factors.

The household maximizes the expected stream of discounted
utility

Eqy Z Btu(ct, Ny)
t=0
with respect to Cy, Ny, K1, X1, and B; subject to (5.21) and
(5.22). Since the household must decide on the size of its nominal

deposits before the monetary shock is observed, X; and B; are
state variables of the model. The Lagrangean for this problem is:

ZL=EY ﬁf{# (G — 0ANY) ™" 1]

t=0 L=
W, —1)B
+At —tNt‘i‘(Tt—(;)Kt‘f‘u‘i‘DtB—Ct
P Py
X1 — X By — B
_(Kt-l-l_Kt)_( t41 t);r( t+1 — By)
t
— | Xi + W N,
= | —— = C .
t 7, t}

From this expression we can derive the set of first-order condi-
tions that describes the household’s decisions. In the following,
we present these conditions in terms of the stationary variables
Y = YAy ¢ = Cy /Ay, ke = Ky JAy, wy = W/ (AR, m o=
Pt/Ptfla Ap = AtA?, Ty = Xt/(Atflptfl)a my = Mt/(Atflptfl):
and & := Z;A]. The definitions of z; and m; guarantee that these
variables are pre-determined at the beginning of period .

)\t + ft = (Ct — eNtV)in s 5.24a

Ov
)\t = ﬁaant/\t_,_l (1 -0 + OZZt_i_thlJ:laktaJ:ll) s (524C

A = Ba"E, (M) , (5.24d

Tt+1

(5.24a)

N, = (ﬂ)+ : (5.24b)
)

)
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A\ = [Ba"E; (M) : (5.24e)
Ti+1
0= ft(xt/(cmt) -+ tht — Ct). (524f)

Equation (5.24a) shows that the marginal utility of consumption
departs from the shadow price of wealth )\; as long as the cash-in-
advance constraint binds, i.e., if & > 0. The related Kuhn-Tucker
condition is equation (5.24f). Equation (5.24b) is the labor supply
schedule. The well-known Euler equation for capital is given in
(5.24¢). Together with equations (5.24d) and (5.24e) it implies
equal expected rewards on the holdings of physical capital, of
banking deposits, and of cash balances.

In addition to these equations the household’s budget con-
straint is satisfied with the equality sign and the cash-in-advance
constraint holds. Since

By + My — M,
APy

we Ny = = my — 2/ (amy),

we may write the latter in the following way:

Ct = My, if ft > 0, (525&)
Ct S mgt1, if gt = 0, (525b)
M1 = /Z::t, (5.25¢)

where the third equation is implied from the definition of my.
In equilibrium, the household’s budget constraint reduces to the
well-known resource restriction:

a/ktJrl = ZtNtliakta + (1 — 6)kt — Ct. (526)

Stationary Equilibrium. In a stationary equilibrium all shocks
equal their unconditional means, Z; = 1 and p; = p for all ¢, and
all (scaled) variables are constant. Equation (5.25¢) implies that
the inflation factor 7 (one plus the rate of inflation) is proportional
to the money growth factor:
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—_ —. o2
= (5.27a)

The Euler equation for capital (5.24c) delivers

1=pa7"(1-6+a(y/k) = % = %(;_5). (5.27b)
17‘5,+r

Together with (5.24d) this implies the Fisher equation, here writ-
ten in terms of gross rates:

g=7n(1—0+r). (5.27¢)
Given this, the stationary version of (5.24e) implies:
E=ANg—1). (5.27d)

Accordingly, the cash-in-advance constraint binds in equilibrium
if the nominal interest rate is positive: ¢ — 1 > 0. Combining
(5.27a) and (5.27c), we find that this condition is satisfied, if the

growth rate of money is not too small:
w> Bat™m,

Finally note that equation (5.24b) and equation (5.19a) imply

_ 1/1—-—avy
Nl =Z Z ). 5.27
CI( vo N) (5.27%)

Since y/N is a function of y/k, it is independent of the money
growth rate. Yet, according to (5.27c¢) and (5.27a) ¢ is an in-
creasing function of p. Thus, steady-state working hours depend
inversely on the rate of money growth. As in the model of Section
2.6.3 money is not superneutral.

The PEA Solution. Our model has two exogenous shocks, Z;
and p;, and three variables with given initial conditions, kg, my,
and x;. However, there are not enough equations to determine
consumption, working hours, the rate of inflation, the nominal
interest rate, and the Lagrange multiplier of the cash-in-advance
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constraint given the former variables. We must define additional
co-state variables. However, there is no easy way to do so, since the
three Euler equations (5.24c) through (5.24e) have the same lhs.
Technically speaking, the system of stochastic difference equations
g(-) is not easily invertible. There are various possible ways to deal
with this situation. The following is the solution that really works.

As in the applications above we parameterize the rhs of the
Euler equation for capital:

At = 5(1_”@/)1(’)’17 ke, mu, e, Zy, ). (5.28a)

Since m; > 0 in any solution where money has a positive value,
we multiply the second Euler equation (5.24d) on both sides by
mq,1 and parameterize the ensuing rhs of this equation:

mt+1)\t = BGian (’72, kt, My, Ty, Zt, ,LLt) (528b)

Analogously, we multiply the third Euler equation by z;,; and
put

Tpp1 At = &L_nl/)g (’)’37 ke, my, x4, Zy, Mt)' (5‘28@

We are now able to trace out a time path as follows: Given the
five-tuple (k¢, my, x4, Zy, 1y) we use (5.28a) to solve for ;. We use
this solution to infer m;.; and x;,; from (5.28b) and (5.28¢c),

respectively. Given m; and m,, 1 equation (5.25¢) delivers ;. Since
my —
w,N, = He = 2
QT

we can solve for wyN; and use this in (5.24b) to solve for N,. In
the next step we use the first-order condition for labor demand
(5.19a) to solve for ¢. Finally we check the Kuhn-Tucker condi-
tions: assume & = 0. This implies

e =N+ ONY,
from (5.24a). If ¢, < my41 we accept this solution. Otherwise we
put ¢ = myyq and solve for & from (5.24a):

ft - (6,5 - QNtV)in - At'

Since ¢; > ¢;, we also have & > 0. In the last step we compute
k11 from the resource constraint (5.26).
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Implementation. The Fortran program LP.for implements the
PEA solution. As in the previous applications we use exponen-
tials of simple polynomials for ¢%, i = 1,2, 3. The program allows
the user to find the solution either iteratively or in one step by
solving the related system of non-linear equations. In both cases
the program obtains starting values from the solution of the log-
linearized model. We do this for the following reason. Since we
have five state variables and three expectational equations the
potential number of coefficients in the expectational equations is
large. For instance, a complete second degree polynomial in five
variables has 21 coefficients. Accordingly, the potential of multi-
collinearity among the 21 regressors is high and we do not consider
higher degree polynomials. Given the log-linear solution, we com-
pute time paths for the relevant variables. In a first step we look
at the correlation matrix between the potential regressors and ex-
clude those that are highly correlated with others.!® In a second
step we regress the error terms from the log-linear solution on
the remaining regressors. For this step, we use the Gauss-Newton
method presented in Algorithm 11.6.2. Given these initial values
we either invoke our non-linear equations solver or compute new
time paths and estimates until the estimates converge. In a third
step we reduce the set of regressors further: we exclude all regres-
sors whose t-ratios from the solution of step 2 are smaller than
one in absolute value. As it turns out, we get good results with a
small number of coefficients.

Note also that the number of regressors depends on your as-
sumptions with regard to monetary policy. If the monetary au-
thority is able to control money supply perfectly, i.e., o* = 0, the
vector p = [pq, ..., ur] is a vector of constants. Neither p nor
any of its integer powers or cross-products with other variables
can be used as regressor. To see this, consider the case

Yk, ) = exp(m1 + y2 In(ke) + 3 In(p)).

The Jacobian matrix of ¢ with respect to ~; is given by:

10 The program allows you to write this matrix to a file without doing any
further computations.
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Yk, ) P(ke, pa) In(ky) (ke pa) In(p)
(ks pra) (ko pr2) In(ke) (kg p2) In(p)

lkropr) e, pr) (k) (kr, pr) In(or)

Thus, if u; = p for all ¢, the third column of this matrix is a mul-
tiple In(p) of the first and the Jacobian is singular. Accordingly,
the Gauss-Newton step cannot be computed.

Concluding this paragraph, we strongly advice you to go
through steps one to three from above for every parameter set
that you wish to consider.

Table 5.3
Preferences Production Money Supply
(=0.994 a=1.005 a=0.27  p=1.0167
n=2.0 §=0.011  p?=0.90 p*=0.0
N=0.13 0%=0.0072 o"=0.0173

v=>5.0

Results. If not mentioned otherwise the following results are
computed for the calibrationCalibration displayed in Table 5.3.
The parameters for the production side and for money supply are
the same as those used in Section 2.6.3 and are, therefore, repro-
duced from Table 2.3. The preference parameters 3 and 7 are the
same as in the benchmark model. Furthermore, we choose 6 so
that stationary working hours are N = 0.13. The parameter that
determines the labor supply elasticity v is taken from HEER and
MAUSSNER (2008).

Table 5.4 displays the arguments and estimated coefficients of the
functions that we use to parameterize expectations. They are the
results of the steps described in the previous paragraph.

We will first consider the relative strength between the liquid-
ity and the anticipated inflation effect. If the monetary shock is
not autocorrelated — as our estimates of this process from German
data indicate — there is no anticipated inflation effect. This effect
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Table 5.4
Regres- ot =0.0173 ot =0
sors ! e W3 Wt e 3
c 4.1457 2.4675 —8.5449 4.1161 2.3547 —3.7464
(56.45)  (18.70) (—23.03) (54.70)  (87.23)  (—59.33)
k —1.4201 —0.8764 1.2091 —1.2503 —0.6635 0.0492
(—36.28)  (—3.68) (6.17)  (—32.01) (—13.80) (1.51)
T —0.1440 —4.8323 —0.1033 0.0016 —2.1977
(—3.43) (—22.76)  (—2.39) (1.64)  (—60.54)
Z —0.4868 —0.1099 —3.6561 —0.4859 —0.1046 —3.7700
(—183.87) (—14.31) (—275.13) (—183.33) (—31.95) (—1692.54)
o —0.0040 0.0140 —0.1237
(—2.21) (2.06) (—13.68)
k2 0.2333 0.1841 —0.5130 0.1570 0.0880 0.0225
(13.20) (L.71)  (—5.80) (8.90) (4.05) (1.53)
z? —0.0227 —0.7571 —0.0164 —0.3410
(—3.50) (—22.96)  (—2.45) (—60.36)
Z? —0.1063 —5.0438 —0.1023 —5.7785
(—1.74) (-16.58)  (—1.66) (—112.73)
u? 0.0734 3.9122
(1.61) (17.30)

Notes: c refers to the intercept, t-ratios of estimated coefficients at final solution in
parenthesis.

gains importance, if the autocorrelation parameter p* increases.
The impulse responsesImpulse response function displayed in Fig-
ure 3.1 show this very clearly. The monetary shock hits the econ-
omy in period ¢ = 3. The solid lines correspond to the case p* = 0.
The liquidity effect is obvious from the lower right panel of Figure
5.1. The additional supply of money lowers the nominal interest
rate. The costs of hiring labor decrease, working hours and pro-
duction increase. Part of the extra income is consumed and part is
transferred to future periods via additional capital accumulation.
The positive effect on consumption is very small, and, thus, not
visible in Figure 5.1.

The dotted lines correspond to an autocorrelated money sup-
ply process. In addition to the liquidity effect, there is also an
inflationary expectations effect. As can be seen from Figure 5.1
the latter dominates the former for our choice of parameters. Since
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Figure 5.1: Impulse Responses to a Monetary Shock in the Limited
Participation Model

households expect higher inflation, their costs of holding money
balances increase. They substitute physical capital for financial
wealth so that there is a stronger increase in investment. Since
the cash-in-advance constraint binds, the reduced money holdings
entail lower consumption. On the production side the increased
nominal interest rate reduces working hours and output. This neg-
ative income effect puts additional pressure on consumption.

Table 5.5 presents second moments from two different simu-
lations of the model. The first run considers the case of steady
money growth, i.e., # = 0, the second simulation assumes mon-
etary shocks of the size observed in the data.

First, consider columns 2 to 4. They show one obvious dif-
ference between the benchmark model and the present model
(compare Table 5.2). The standard deviation of working hours
in the benchmark model is more than four times larger, and, as a
consequence, output fluctuations are more pronounced. This dif-
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Table 5.5
Variable PEA Solution Loglinear Solution
ot =0 ot =0.0173 ot =0.0173
Sy Txy Ty Sx Txy Ty Sx Txy Ty
Output 0.98 1.00 0.68 0.98 1.00 0.68 0.98 1.00 0.68

Investment 4.47 1.00 0.69 4.47 1.00 0.69 4.45 1.00 0.69
Consumption 0.34 0.98 0.67 0.34 0.98 0.67 0.34 0.98 0.67

Hours 0.17 0.87 0.78 0.18 0.83 0.67 0.18 0.83 0.67
Real Wage 0.69 0.87 0.78 0.74 0.83 0.67 0.73 0.83 0.67
Inflation 0.27-0.43-0.09 1.69—-0.02-0.07 1.70—0.02 —0.09

Notes: s;:=standard deviation of HP-filtered simulated series of variable =z,
reyi=cross correlation of variable x with output, r,:=first order autocorrelation
of variable x.

ference is easily traced to the small elasticity of labor supply of
1/(v —1) = 0.25. In the benchmark model the Frisch elasticity of
labor supply is determined implicitly, and is about 1.7.1
Given our calibration, the real effects of monetary shocks in the
limited participation model are quite small and negligible. The
standard deviations in column 5 differ from those in column 2
only in two instances: due to the liquidity effect, the standard de-
viation of the real wage is about 7 percent higher, which translates
into a greater variability of hours. Of course, inflation is substan-
tially more volatile if monetary shocks are present. The standard
deviation of this variable is almost equal to o*.

Finally, consider columns 7 to 9. They present the second mo-
ments obtained from the simulation of the loglinear solution of the

1 The Frisch elasticity measures the relative change of working hours to a
one-percent increase of the real wage, given the marginal utility of wealth
A. In the steady state of the benchmark model it is given by

dN/N _1-N (1-n, -
dw/w N n '
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model. Both the loglinear and the PEA simulations use the same
random numbers, so that differences between the two solutions
are non-random.'? Compared to columns 4 to 6, no noteworthy
difference is discernible.

12 They are random only in so far as the PEA solution depends itself on a
long sequence of random numbers.
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Problems

5.1

5.2

5.3

Analytic Solution to the Expectations Function
Consider the stochastic Ramsey Model from Example 1.3.2. The problem
is to solve

max Z B1n C;
=0
subject to Ky = Zi K — Cy,

Ky, Zy given.
We already know that the policy function g is given by
g(Kt, Zt) = OéﬂZtK?

Use this information to find the analytic solution for the expectations
function &.

Fixed-Point Iterations

Consider the stochastic growth model with irreversible investment from
Section 5.3.1. Write a program that determines the PE solution of this
model from fixed-point iterations. For this purpose you can use the rele-
vant parts of our program SGNNI_b.for. Your program should implement
these steps:

i) Given an initial ,, and a sequence of productivity shocks {Z;}7_,
compute the time path of consumption, the capital stock and the
Lagrange multiplier pu.

i) Use the damped Gauss-Newton algorithm in GaussNewton. for to es-
timate a new parameter vector v, from a non-linear regression of the
error terms C, "\ (1 —0) + aZy1 Ky — (1= 0) i1 on (v, Ky, Zy).

iii) Tterate on equation (5.8) until convergence. Choose different values
of A\ to how this choice affects convergence.

A Cash-in-Advance Model

A less complicated DGE model of a monetary economy than the limited
participation model of Section 5.3.3 is the model of COOLEY and HANSEN
(1989). This paper introduces money into the model of HANSEN (1985)
via a cash-in-advance constraint. The authors demonstrate that a policy
of constant money growth does not alter the business cycle characteristics
of the original model and that an erratic money supply resembling the
US historical experience alters the behavior of real variables slightly.
CoOLEY and HANSEN (1989) solve their model with a variant of the
linear-quadratic method of Section 2.3. We ask you to employ the PEA
to solve their model and to reproduce their results.
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We use the same symbols for consumption, capital, working hours, money
balances, and so forth as in the model of Section 5.3.3. The representative
household solves the following problem:

max Ey Z Bt (InCy — ONy)

Co,No,K1,M; —o
subject to
M1 — M W,
K1 _Kt“‘% < ?tNt—l-(’l“t—é)Kt"‘Tt_Ch
t t
M,
Cy < — +T,.
t < 2 + 1y

Money supply is determined by

_ M1 — My

T
t Pt )

M1 = pe M.

The policy of a constant money supply implies u; = p for all ¢, whereas
fir = (1= p" )+ pl'fie—1 + €, € ~N(0,0"), fiy := In(p/p)

describes an erratic money supply.
The representative firm solves
W,
max ZNOK} = — ?tNt — Ky,
t

N, Ky

where Z; is governed by
nZ =p?InZ_1+e, € ~N(0,0%).

a) Set up the Lagrangean of the household’s problem and derive the
first-order conditions for this problem.

b) Use the first-order conditions of the firm’s problem to substitute for
the wage rate and the rental rate in the household’s optimality con-
ditions and derive the system of stochastic difference equations that
govern the model’s dynamics.

¢) Solve for the model’s balanced growth path and show that working
hours are a decreasing function of the steady state growth rate of
money.

d) Consult the Appendix of DEN HAAN and MARCET (1994) to find out
how they solve this model using the PEA.

e) CooLEY and HANSEN (1989) calibrate their model as follows: 8 =
0.99, # = 2.86, o = 0.64, p? = 0.95, 0% = 0.00721, p* = 0.48, and
ot = 0.009. Use a polynomial in K;, Z;, and u; to parameterize the
conditional expectation appearing in the Euler equation of capital and
solve the model.



f)

g)
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Use the solution and simulate the model. As in the original paper use
time series with 115 observations and compute seconds moments as
averages over 50 simulations from the HP-filtered time series.
Consider the COOLEY and HANSEN (1989) model with current period
utility given by

1 _ _ 0
u(Cy, Ny) = mctl 1= N £, 6>0,n> 7o

Put n = 2 and choose 6 so that working hours in the steady state
equal N = 0.33.

With these preferences it is no longer possible to solve the model along
the lines of DEN HAAN and MARCET (1994). To solve the model you
must parameterize the conditional expectations not only in the Euler
equation for capital but also in the Euler equation for money balances.
Solve the model and compare your results to those of the original
model.

(Hint: Use Aymy 1 = ¥?(Ky, Zy, my, j1g) as the second parameterized
equation.)






Chapter 6

Projection Methods

Overview. The parameterized expectations approach (PEA) con-
sidered in the previous chapter solves DGE models by approxi-
mating the agents’ conditional expectations and determines the
best approximation via Monte-Carlo simulations. In this chapter,
we also employ methods from function approximation. Yet, these
methods are not limited to functions that determine the agents’
conditional expectations, nor do they necessarily resort to simu-
lation techniques to find a good approximation. These methods,
known as projection or weighted residual methods, may, thus, be
viewed as generalizations of the PEA along certain dimensions.
1) The functions that we approximate do not need to be the con-
ditional expectations that characterize the first-order conditions
of the agents in our model. Instead, we may approximate the
agent’s policy function, or the value function of the problem at
hand. 2) We use different criteria to determine the goodness of
the fit between the true but unknown function and its polyno-
mial representation. These criteria prevent the problem that we
encountered in the previous chapter, namely, that it may be diffi-
cult to increase precision by using a higher degree polynomial. 3)
Some of these criteria require numerical integration. The Monte-
Carlo simulation is just one way to do this. Other techniques exist
and often are preferable.

This chapter is structured as follows. First, the general idea of
projection methods is presented. Second, we consider the various
steps that constitute this class of methods in more detail. It will
become obvious that we need several numerical tools to implement
a particular method. Among them are numerical integration and
optimization as well as finding the zeros of a set of non-linear
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equations. Third, we apply projection methods to the determin-
istic and the simple stochastic growth model and compare our
results to those of Chapter 2 and Chapter 4. As an additional ap-
plication, we study the equity premium puzzle, i.e. the (arguably)
missing explanation for the observation that the average return
on equities has been so much higher than the one on bonds over
the last century. For this reason, we consider asset pricing within
the stochastic growth model.

6.1 Characterization of Projection Methods

6.1.1 An Example

Projection methods derive approximate solutions to functional
equations.! The unknown of a functional equation is not a point
in R™ but a function f that maps R™ to R™. Since an appropri-
ately defined set of functions is itself a vector space, the problem
is to pick an element from a function space. Different from R",
however, function spaces have infinite dimensions, and in many
circumstances it is impossible to derive analytic solutions. Pro-
jection methods use a family of polynomials P := {;}3°, and
approximate f by a finite sum of members of this family.
To be concrete, consider the ordinary differential equation?

(t) +x(t) =0, z(0)=1, (6.1)

with solution

I Early expositions of projection methods are provided by JUDD (1992,1998)
and REDDY (1993). MCGRATTAN (1996) also considers so-called finite-
element methods that approximate the solution over non-overlapping sub-
domains of the state-space. In these methods, low-polynomials are fitted
on subdomains rather than high polynomials on the entire state-space. Our
piecewise linear or cubic approximation of the value function in Algorithm
4.2.1 can be interpreted as a finite-element method. In the following, we
will not consider these methods and refer the interested reader to REDDY
(1993) and MCGRATTAN (1996).

2 In the following, we draw on MCGRATTAN (1999).
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z(t) =e". (6.2)

Suppose we use the monomials (1,¢,t?) to approximate the solu-
tion in the interval [0, 2]:*

E(t) =1+t + 1t (6.3)

How shall we choose the unknown parameters v;, ¢ = 1,27 In
econometrics, we approximate a given set of points (z;,v;) € R?
by drawing a line so that the sum of squared distances of (x;,y;)
from this line attains a minimum. Something similar to this also
works here. Let us define the residual function

R(7,t) i= 71 + 2ot + 1 4+ 7t + 7ot (6.4)
—_——— —
di/dt &(t)

This function describes the error that results, if we use our guess
of the solution (6.3) instead of the true solution (6.2) in the func-
tional equation (6.1). By analogy, we could choose the parameters
so that in the interval [0,2] Z(t) is as close as possible to z(t) in
the sense of

min /2 R(v,t)%dt. (6.5)

V1,72

The first-order conditions for this problem are given by the fol-
lowing two equations:

’ OR(7. 1)
0:/ R(vy,t)—"at,
i (v:1) o

? OR(v,t)
0:/ R(~y,t)———=dt.
i (v:1) 9

By using (6.4) and the derivatives of this function with respect to
v and 7s, it is easy to compute the integrals. This delivers the
following linear system of equations in the two unknowns ~; and

Ye:

3 Note that we set 79 = 1 to satisfy the boundary condition x(0) = 1.
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2
—4 = 85 Y1 =+ 16"}/2,

2 1
—6- =16 33— s.
3 Y1+ 5 Y2

Figure 6.1 shows that the approximate solution is not too far from
the true function e~*. Of course, we can get a better approximation
if we use a higher degree polynomial.

Using a well known property of the least squares estimator de-
livers another solution concept, the Galerkin method. Remember,
the least squares residuals are orthogonal to the space spanned
by the vectors that represent the observations of the independent
variables. Here, the functions ¢ and ¢? play the role of these vec-
tors. Thus, we demand

2
O:/ R(~, t)tdt,
0

2 (6.6)
0= / R(v,t)t*dt.
0
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Figure 6.1: Polynomial Approximation of e~
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Computing the integrals on the rhs of (6.6) gives a second set of
linear equations in the unknown parameters v; and vs:

2—42 +91
= 371 372;

2 2 2
—2—- =06-v + 14— 5.
5 371 572

The dotted line in Figure 6.1 represents the Galerkin approximate
solution of the differential equation (6.1).

Finally, we may want that the residual function is equal to zero
at a given set of points. Suppose we choose t; = 1 and t, = 2.
This gives the linear system

—1 =2y + 37,
—1 =371+ 82.

The solution based on this principle is known as collocation
method. Figure 6.1 reveals that this approximation is about as
close to the true curve as the other solutions.

6.1.2 The General Framework

The three different solutions that we have just considered may
be obtained from the following setting. We want to approximate
an unknown function f : X — Y, where X and Y are subsets
of R™ and R™, respectively. This function is implicitly defined by
the functional equation F(f) = 0, where F' : C; — Cs. C; and
(U5 are given spaces of functions, e.g., the set of all continuously
differentiable functions on [a, b]. Examples of functional equations
are the Bellman equation (1.14) of the deterministic growth model
considered in Chapter 1 and the Euler equation of the stochastic
growth model (1.45¢) also presented in Chapter 1. Given a family
of polynomials P := {¢;}2,, we approximate f by a finite linear
combination of the first p + 1 members of this family:

f(x) = Z%«pi(x), x e X CR"™ (6.7)
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The residual function is obtained by substituting f into the func-
tional equation:

~

R(v,x) = F(f(7,x)), v:=00,---, %) (6.8)

Suppose there is a set of test functions {g;(x)}’_, and a weighting
function w(x). Together with R they define an inner product given
by

/X w(x)R(, %)gs(x)dx.

On a function space, this inner product induces a norm (i.e., a
measure of distance) on this space and we choose the vector of
parameters v so that

/X w(x)R(7y,x)gi(x)dx =0, Vi=0,1,...,n. (6.9)

It is easy to see that the three different solutions considered above
are derived from (6.9) for special choices of g; and w.

1. The least squares solution puts g; = 0R/dvy; and w = 1.

2. The Galerkin solution chooses g; = ¢; and w = 1.

3. The collocation method uses the Dirac delta function as
weighting function,

w(x):{ 0 if x # x;,

1if x = x;,
and puts ¢; = 1.

In the following, we restrict ourselves to these three definitions of
a solution being close to the true function. Before we consider the
different steps to implement a specific solution in more detail, we
summarize the general procedure that underlies projection meth-
ods in an algorithm.

Algorithm 6.1.1 (Projection Method)

Purpose: Approximate the solution f : X — Y of a functional
equation F(f) = 0.
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Steps:

Step 1: Choose a bounded state-space X C R™ and a family of
functions p;(x) : X =Y, i=0,1,....
Step 2: Choose a degree of approximation p and let

flrx) =Y ).

Step 3: Define the residual function:

A

R(v,x) == F(f(v,%)).

Step 4: Choose a projection function g;, a weighting function w
and compute the inner product:

G; = /Xw(x)R('y,x)gi(x)dx, i=20,...,n.

Find the value of v that solves G; = 0, or, in the case of
least squares projection (g; = OR/0v; and w = 1), that
minimizes

/X R(v,x)%dx.

Step 5: Verify the quality of the candidate solution ~y. If necessary,
return to step 2 and increase the degree of approrimation
p or even return to step 1 and choose a different family
of basis functions.

6.1.3 Relation to Parameterized Expectations

LAWRENCE CHRISTIANO and JONAS FISHER (2000) point out
that the conventional parameterized expectations approach (PEA)
presented in Chapter 5 is a particular projection method. Consider
again the non-linear regression step 4 of algorithm 5.1.1. In this
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step, we solve the non-linear equation system (5.10), which we
restate for your convenience:

- ;[@(stH(v)) - wmj,wmﬂ%m"m)%

foralli=1,2,....p, and j =1,2,... k.

In this equation, the n(w)-vector of states w, € X C R™™) con-
tains all relevant information to predict the conditional expecta-
tion ¢(s;11). The function that approximates ¢;(-) is given by
¥;() and parameterized by ;.

In order to generate the time series for w, and for s;;; in
the stochastic growth model, for example, a random sample of
the technology shock Z; is drawn. If the time horizon T is
getting large, the probability distribution of the state variables
w, € X C R™™) approaches the ergodic distribution, say m(w),
induced by the choice of ¢(-) and the distribution of Z;. The PEA
can now readily be identified with a specific projection method.
The residual is given by

Rj(v,%) = ¢ (se11(7)) — ¥ (7, wi(7))
and the weight for the -th component of ~ is simply

' (wiy) = (w0 92 oy ().
Yij
In particular, the residual at point w, € X is also weighted by
its probability 7(w;) = 1/T. The Monte-Carlo simulation used in
the conventional PEA more likely generates data points near the
steady state for two reasons. First, since the innovations in the
AR(1)-process are drawn from a normal distribution, realizations
far from the mean of 0 are less likely. Second, the economy tends
to return to the steady state after a shock.

This property of the Monte-Carlo simulation, however, also
constitutes a major weakness of the conventional PEA. If we nu-
merically approximate a function, we use nodes that are not con-
centrated in a certain area of the interval over which we want to
approximate this function.* For example, with Chebyshev regres-

4 See Section 11.2.
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sion a relatively large proportion of the nodes is distributed close
to the limits of the interval [—1, 1]. Therefore, we could get a much
better quality of fit with much less fitting points if we modify the
PEA accordingly. We will show this in Section 6.3.2, where we
solve the stochastic growth model.

6.2 The Building Blocks of Projection Methods

In this subsection we consider the separate steps of Algorithm
6.1.1 in more detail. We begin with the choice of the family of
functions.

6.2.1 Approximating Function

In the applications of Chapter 5 we use the family of monomials
{1,z,2% ...} to approximate the conditional expectations func-
tion. There, we already encountered the problem that the fitting
step may fail due to the fact that higher degree monomials may
be nearly indistinguishable from each other numerically. We can
circumvent this problem by using a family of orthogonal polyno-
mials, as, e.g., the Chebyshev polynomials described in Section
11.2.6. There are further considerations that make Chebyshev
polynomials a prime candidate for projection methods. Some of
them are mentioned in Section 11.2.6 and others will become ob-
vious in the next paragraphs.

One further issue must be resolved at this step. Polynomials are
single valued functions. So, how are we going to interpret the term
©;(x) in equation (6.7)7 As we explain in Section 11.2.7, ¢;(x) is
the i—th member of a so called product base, which consists of
products of members of a family of polynomials. If x € X C R",
let (kq, ko, ... k,) denote the n-tuple of integers from the set Z :=
{0,1,2,...,p}. Then:

n

(Pi(x) = H Pk, (ZL‘])

J=1
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Note that there are (1 + p)™ different n-tuples that can be built
from the set Z. The respective product space is called the n-fold
tensor product base. A smaller set, the complete set of polyno-
mials, derives from the condition Z;‘:l k; = p. For instance, if
n = 2, this set consists of (p+ 1)(p + 2)/2 members, whereas the
tensor product base has (1 + p)? members.

6.2.2 Restdual Function

In many economic applications there are several ways to solve
the model. For instance, in Chapter 5 we approximate the agent’s
conditional expectations function. Yet, we can solve the models
considered there also by computing the agent’s policy function.
In some cases it is not always obvious, which way is best, and
some experimentation with different solution concepts may be
warranted. In other cases a particular solution may suggest it-
self on a priori reasons. In the stochastic growth model with a
binding constraint on investment the agent’s policy function will
have a kink at the point where the constraint becomes binding.
As we demonstrate in Section 11.2.6, it is difficult to approxi-
mate a kinked function with a linear combination of differentiable
functions as the Chebyshev polynomials. Thus, in this case it is
better to solve the model by computing the agent’s conditional
expectations function.

Even if we have decided on the function that we wish to approx-
imate it is not always obvious how to define the residual function
in step 3 of Algorithm 6.1.1. Consider the Euler equation of the
deterministic growth model from (1.12):

_ (@)
0= wicy ~ O ),

Kt+1 = f(Kt) - Ct7

where C} is consumption in period t, K; the agent’s stock of cap-
ital, u/(-) the marginal utility of consumption, and f’(-) the mar-
ginal product of capital. Assume we want to solve this model



6.2 The Building Blocks of Projection Methods 295

in terms of the policy function C(K;). Letting C(, K) denote
the approximate solution, the residual function may be computed
from

i u[C(y, K)|
W[C(y, f(K) = C(v, K))] (6.10)
— Bf[f(K) — C(v,K)].

Notice that by this formulation we do not put more weight on
low asset values K (and, hence, low consumption C') with a cor-
responding high value of marginal utility because we form the
fraction of current and next-period marginal utilities. However, if
we chose the alternative residual function

R(y, K) = u/(C(v, K))
— B [C(y, f(K) — C(v, K)f[f(K) = C(v, K)]

small errors in the approximation of the true consumption func-
tion C'(K') would result in large residuals at low values of the capi-
tal stock K, while relatively larger deviations of the approximated
function from the true solution for high values of K would result
in a much smaller residual. As we aim to find a good uniform ap-
proximation of the policy function over the complete state-space,
we should be careful with respect to the choice of the residual
function and rather use (6.10).

R(v,K) =

6.2.3 Projection and Solution

Depending on the choice of the projection function and the weight-
ing function this step may become more or less involved. Note that
for x € X C R" the shorthand | « denotes the n-fold integral:

[ wi Ry x)ax)ax

/ / / ,X)gi(x)dx1dzy . . . dr,.

(6.11)
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If the dimension of the state-space is small, we can use one of
several methods to compute numeric approximations to these in-
tegrals. For instance, in Section 11.3.2 we consider the Gauss-
Chebyshev quadrature that replaces the integral by a weighted
sum of m function values, computed at the zeros of the m-th
degree Chebyshev polynomial. Suppose x = (z1,z3) so that the
double integral is approximated by a double sum over the pairs
(i,x), i,7 = 1,2,...,m. If we use m = 100 nodes to com-
pute the integral, this amounts to adding up 10,000 elements. In
general, using Gauss-Chebyshev quadrature to evaluate (6.11),
requires m"” — 1 summations. In higher dimensional problems,
the integration step can become a binding constraint. For in-
stance, HEER and MAUSSNER (2004) use the Galerkin method
to solve a multi-country, representative agent model. For eight
countries with idiosyncratic productivity shocks the state-space
of this model has dimension n = 16. Even with only 3 nodes
Gauss-Chebyshev quadrature requires 43,046,721 evaluations of
the integrand. In this paper we employ an integration formula
that uses 2" + 2n + 1 points. On a personal computer with Pen-
tium III, 846 MHz processor it takes 14 days, 16 hours and 32
minutes to find the solution.

If we project the residual against the Dirac delta function, we
circumvent the computation of integrals. Of course, this will save
a lot of computer time if the state-space is large. Instead, the task
is to solve the non-linear equation system

R(v,x;) =0, j=0,1,...,p.

But at which set of points x; should the residual function equal
zero? It is well known from the so called Chebyshev interpolation
theorem® that the Chebyshev zeros minimize the maximal inter-
polation error. For this reason, one should use the Chebyshev
nodes of the Chebyshev polynomial of order p+ 1. This particular
projection method is called Chebyshev collocation.

We have seen that the least squares projection derives from
minimizing [, R(,x)*dx. Thus, instead of solving the set of p+1

® See, e.g., JUDD (1998), Theorem 6.7.2, p. 221.
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non-linear equations

/ R(*y,x)%dx =0, Vj=0,1,...,p,
X Vi

we can also employ numerical optimization techniques to find the
minimizer of [, R(v,x)?dx. Otherwise we must compute the par-
tial derivatives of the residual function either analytically or nu-
merically. Depending on the structure of the problem, the latter
approach — though not as accurate as the former — may be prefer-
able since it requires less programming. What is required is just
passing the function R(-) to a subroutine that returns the gradient
of a user supplied function.

6.2.4 Accuracy of Solution

A first and simple to perform check of the accuracy of the solution
is to compute the residuals R(«,x) over a grid of points in X.
To get an idea of how good your solution is, you must compare
it to a second solution. This second solution could use different
projection functions g; or a more accurate, but perhaps more time-
consuming integration routine.

A second accuracy check is to simulate the model. From this
simulation the second moments of important economic variables
and the DM-statistic (see Section 12.3) can be computed. Hints
at a bad solution are implausible second moments or signs of cor-
relation of expectational errors with past information.

In the case of Chebyshev polynomials, there is a third, easy to
use criterium. From Theorem 11.2.4 we know that the coefficients
7y; drop off rapidly and that ~, is small. If your solution does not
display this pattern, you should return to step 2 or even step 1 of
Algorithm 6.1.1.

6.3 Applications

In this section, we present several applications. First, we compute
the policy function of the deterministic growth model that we also
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consider in Sections 1.2, 2.1, 2.5.2, 3.1.2 and 4.1. The state-space
of this model is one-dimensional and consists of the capital stock
K, only. In the second example, we extend the analysis to a two-
dimensional state-space considering the stochastic growth model
of Section 1.3. Finally, we model asset pricing. Towards this end,
we introduce habit persistence and adjustment costs of capital
into the stochastic growth model. The state-space of this model
consists of the productivity shock, the stock of capital and past
consumption.

6.3.1 The Deterministic Growth Model
The Model. In Section 1.2 we introduce the deterministic growth

model. For your convenience, we restate the farmer’s decision
problem given in (1.8):

= O -1
Uy = —_ € (0,1),n>0,
Juax Uy ;5 7 (0,1),m

.. (6.12)
Kt+1 + Ct S Kta + (]_ — 6)Kt, o€ (0, ].),
O S Oty t:O,l’...,
0 S Kt+17
Ky given,

where C} is consumption in period t and K, the farmer’s stock of
capital. Here, we assume that the current period utility function
u(C}) has a constant elasticity of marginal utility with respect
to consumption of —7. The production function F(N, K;) = K}*
is of the Cobb-Douglas type and capital depreciates at the rate

d € (0,1].
The Euler equation of this problem is given by:
Cor] " 51 54 akes) —1—0 6.13
C, ﬁ(——}-oz t+1)__‘ (6.13)

From this equation we derive the steady state value of the capital
stock:
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o af3 1/(1-a)
“litea-a,

Implementation. The state-space X of the problem is one-di-
mensional and consists of the capital stock K;. In order to perform
the computation, we need to specify an upper and a lower bound
for the state-space. We choose X := [0.5K*, 1.5 K*]. Depending on
the nature of our problem, we might want to specify a smaller or
larger interval. For example, if we consider the transition dynamics
from an initial capital stock Kj, we may choose an interval [K, K|
that contains K, and K*, and choose the borders K and K to be
close to these values.

In the first and second step of Algorithm 6.1.1, we choose a
family of functions for the approximation. In particular, we ap-
proximate the consumption function C(K) with the help of a
Chebyshev polynomial of order p,

where K (K) maps the capital stock K into the interval [—1,1]
according to equation (11.48).

In step 3, we define the residual function R(vy, K). We argued in
the previous subsection that it is best to use a version of the Euler
equation, where the fraction of current and future marginal utility
appears. For this reason we use equation (6.13) as our starting
point. We compute the residual R(7y, K) in the following steps:

1. Given a parameter vector v and Ky € [K, K| we use Algo-
rithm 11.2.1 to compute Cy := C’(’y, Kj). At this step we will
terminate the algorithm if the returned value of consumption
is non-positive. This may occur if - is far from the solution.

2. From C’O we compute the future stock of capital K; from the
resource constraint:

K, =K%+ (1-0)K — C,.

Here we must check whether K is in [K, K]|. If this condition
is not satisfied, we must stop the algorithm: for values of K



300 Chapter 6: Projection Methods

outside the interval [K, K| the transformed variable K (K) is
outside the interval [—1,1] where the Chebyshev polynomial
is not defined. We know from Section 1.2 that the true solu-
tion converges to K*. Therefore, the true policy function C'(K)
always satisfies

K< K"+ (1-0)K - C(K),
K>K"'+(1-6K - C(K).

Of course, a bad approximate solution does not need to satisfy
this requirement. We invite you to discover what strange things
can happen if you ignore this condition in the computation of
a candidate solution. Just out-comment the respective line in
the file Ramsey2e.g.
3. Given K; we use Algorithm 11.2.1 again to get C; := C(v, K1).
4. In this final step we compute the residual from

~

&

0

-

(1-6+aKy™) —1.

R(’77 KO) = ﬂ

The fourth step of Algorithm 6.1.1 concerns the projection
method. The least squares method requires the minimization of

K
/ R(v, K)*dK
K

with respect to the parameter vector v. We use Gauss-Chebyshev
quadrature (see equation (11.76)) and approximate this integral
by the sum

L

5t = TEZED S iy, k()1 - Rz

=1

where f(i are the zeros of the L-th degree Chebyshev polynomial
and K(K;) is the transformation of these zeros to the interval

[K, K] given by equation (11.49). The minimization of S(v) via a
quasi Newton algorithm requires good starting values. With bad
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initial values it is not possible to evaluate S. It turns out that it
is no trivial task to pick admissible points from which Algorithm
11.6.3 converges. In the case where an analytic solution exists we
get starting values from a regression of the analytic solution on
a Chebyshev polynomial. For this purpose we employ Algorithm
11.2.2. In all other cases we use a genetic search routine that
provides an initial point for Algorithm 11.6.3.

For the Galerkin projection method we use again Gauss-
Chebyshev quadrature. With this, we must solve the system of
p + 1 non-linear equations:

(K — K) - A 2 2
0= TS > Ry, K(Kz))Ti(Kl)M’ (6.14)

=1
1=0,1,...,p.

The simplest method in terms of computer code required
to specify the respective system of non-linear equations is the
Chebyshev collocation method. Here, we determine the coeffi-
cients 7o, ..., 7, from the conditions:

R(v.K(K;) =0, Yi=0,2,....p. (6.15)

where, again, K; is the i-th zero of the Chebyshev polynomial of
order p + 1.

To solve both the non-linear system (6.14) and (6.15), we
use the modified Newton-Raphson algorithm with line search ex-
plained in Section 11.5. Again, it is difficult to find good initial
values. Our short cut to solve this problem was to regress the ana-
lytic solution on a Chebyshev polynomial using Algorithm 11.2.2
if an analytic solution is available. Otherwise we use the solution
returned by the search algorithm employed to minimize S(7).

Results. The program Ramsey2e.g computes the different solu-
tions. Table 6.1 displays the results for p = 4. The parameter
values are a = 0.27, f = 0.994, n = 2, and 6 = 0.011. The
coefficients differ only slightly. They drop off nicely so that we
are confident of having found a good solution. The last row of
Table 6.1 shows the maximum absolute value of 100 Euler equa-
tion residuals computed on equally spaced points in the interval
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Table 6.1

Coefficient Least Galerkin  Collocation Quadratic

Squares
Yo 2.262612  2.262619 2.262620 0.021081
Y1 0.477002  0.477001 0.476935  -0.000243
Yo -0.032233  -0.032274 -0.032398
Y3 0.004766  0.004764 0.004870
Y4 -0.000873 -0.000843 -0.000792
EER 5.471E-6  5.377TE-6 7.558E-6 3.864E-5

Notes: Euler equation residuals (EER) are computed as the maximum
absolute value of 100 equally spaced points in the interval [0.8 K*, 1.2K*].

[0.8K*,1.2K*|. The residuals are quite small for all three solutions
and about one order of magnitude smaller than the Euler equation
residual obtained from the quadratic policy function computed in
Section 2.5.2. Comparing the different test and weighting func-
tions, the collocation solution is slightly less precise than both
the least squares and the Galerkin solution.

Figure 6.2 nicely shows the difference between a local and a
global method to determine the policy function of a DGE model.
It plots the 100 Euler equation residuals associated with the
Galerkin solution and the quadratic policy function. Near the sta-
tionary solution of the model, there is no remarkable difference.
Yet, to the right of 1.1 K™ and to the left of 0.9K™* the precision
of the quadratic solution rapidly worsens.

6.3.2 The Stochastic Growth Model with
Non-Negative Investment

In Section 4.3.1 we employ discrete state-space methods to solve
the stochastic growth model with a non-negativity constraint on
investment. The solution of this model via the parameterized ex-
pectations approach is considered in Section 5.3.1. Here we com-
pute a solution with the methods outlined in the first two sections
of this chapter. We assume that you are by now familiar with this
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Figure 6.2: Euler Equation Residuals from the Deterministic Growth
Model

model so that we can turn to the details of our implementation
immediately. For your convenience, we repeat the first-order con-
ditions from (5.12) that characterize the model’s solution:

0=Cy" = = BE[C (1 =0+ aZi KPR — (1= 0)],

(6.16a)
0= ZK+(1— 0k, — C, — K1, (6.16b)
0= w[Kior — (1 0)K), (6.16¢)
0 < fu, (6.16d)
0< Kput — (1 - 0)K,. (6.16¢)

Implementation. We know from the previous discussion of this
model that the consumption function has a kink (see Figure 4.2) at
the points where the non-negativity constraint binds. Since kinked
functions are difficult to approximate, we choose the conditional
expectation on the rhs of (6.16a) as our target. As in Section 5.3.1,
we use the exponential of a polynomial in In K and In Z:
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V(. Z,K) = Bexp <Z > %ﬂ(@ﬂ@) ,

i=0 j=0

where K and Z denote the transformations of In K € [In K, In K]
and In Z € [In Z, In Z], respectively, to the interval [—1, 1] as given
by (11.48).

The state-space X of this model consists of all pairs (K, Z;) €
R?, and we must choose a compact (that is, closed and bounded)
subset X of this space to determine the parameters of 1. There
are two different considerations that guide our decision. First,
we know from previous discussions of the model that the capital
stock remains in a small neighborhood of the stationary capital
stock of the deterministic growth model, if the level of total factor
productivity Z; stays close to its unconditional mean Z = 1. Since
we want a good approximation of the model in this part of its
state-space and not in those parts which the economy never visits,
we will choose X as small as possible. Simulations of the process

InZ, =olnZ, 1 +oe, €~ N(0,1) (6.17)

helped to find lower and upper bounds for Z and simulations with
the parameterized expectations solution provided the bounds of
the capital stock. Without previous experience with the model
trial and error must guide your choice of upper and lower bounds
of the capital stock. For instance, the lower (upper) bound can be
set to a small fraction (multiple) of the stationary capital stock.
When a solution has been found, these bounds can be adjusted
accordingly. There is, however, a second issue that we must con-
sider. The domain of Chebyshev polynomials is the compact in-
terval [—1, 1] and we must map X into [—1,1] x [—1,1] via the
transformation (11.48). It is, however, dangerous to use the same
compact region chosen to determine the parameters of v for this
purpose. In order to compute the residual function R(v, K, Z), we
must evaluate conditional expectations. As before, we use Gauss-
Hermite integration for this purpose. This algorithm also considers
very extreme productivity levels Z that are beyond the bounds
within which Z stays in simulations of the model. Furthermore,
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with extreme levels of Z savings may be either very high or very
small and may put the capital stock outside the interval which we
have specified. To prevent this, we use a different and much larger
compact set X as domain of the function 1.

In our program SGNNI_c.for we compute the residual function
from (6.8) in the following steps.

1. Given a pair (Z, K), we solve
C =y, 2, K)"
and check the non-negativity constraint. If
Ky =ZK*+(1-0)K-C>(1-9))K,
we accept this choice, else we put

C = ZK",
K =(1-0K.

If K, € X, we proceed to the next step; otherwise we stop and
try a different vector 4 or adjust the bounds of X.

2. Let K (Z, K) denote the solution from the first step and let
7y = elnZtoc ¢ ~ N(0,1) be the productivity level of the
next period. We solve for

Cl = w(’Y? Zla Kl(Za K))_l/n'

Again, we must check whether this solution violates the non-
negativity constraint on investment. Thus, if

Ky=7Z1K}{+(1-0)K,—C; > (1 —-0)K;
we accept and put p; = 0, else we set

Cy = Z1 K7,

p=Cr" = (v, Z1, Ky).
Given this, we can compute the expression

9(Z1,Z,K):=C;"(1 =5+ aZi K{™Y) — (1 = 8) .
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3. The conditional expectation on the rhs of (6.16a) is then

_¢2

e 2
V2T

In our program we compute this integral via Gauss-Hermite
quadrature with four nodes.

As an alternative, one can approximate the AR(1)-process in
equation (6.17) by a Markov chain with m states. Thus, if Z;
is the i-th element of the grid 2 = {Z;, Z,,..., Z,} and if p;;,
1,7 = 1,2,...,m denotes the probability of moving from 7 to
J, the conditional probability on the rhs of (6.16a) is approxi-
mated by

o(Z,K) = B/Oo g(e® 7 Z K) de.

m

N2, K) =8> g(Z; Zi, K)py.

J=1

In any way, we are now done, and the residual function is de-

fined by
R(’Y: Za K) = ¢(Z7K> _w('Ya Z:K>

Our program SGNNI_c.for has many options. You can choose
the type of the polynomial (product base versus complete base),
its degree, the projection type (least squares, Galerkin, or colloca-
tion), the bounds on K and Z that determine the set X, and the
way to initialize the parameter vector. Specifically, you can use a
former solution as starting value for a new one or use a genetic
search routine. In addition, the program allows you to apply the
linear policy function for \; found by the program Ramsey3a.g
and estimate an initial parameter vector from the formulas given
in (11.60). Note, however, that the program does not allow you to
use the collocation solution together with a complete polynomial.
A complete polynomial in two independent variables of degree
p has n = (p+ 1)(p + 2)/2 different parameters. Yet, there are
m = (p+ 1)? > n different zeros of the single Chebyshev polyno-
mials. Which combination of n zeros out of m should we use to
determine the parameters? Of course, there is a natural answer:
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the solution that is best in terms of the Euler equation residual.
Yet, even with a low degree of p = 4, this becomes a laborious
task. To find the solution with the smallest Euler equation resid-
ual, we had to compare [ = m!/nl(m —n)! = 3,268, 760 different
solutions.

Results. Table 6.2 presents the results from a few experiments
that we conducted. The parameters of the model are as in our
previous simulations, that is, a = 0.27, = 0.994, 6 = 0.011,
n =2, o =0.9. We considered two different values of o = 0.0072
and o = 0.05. For the smaller value, the non-negativity constraint
never binds so that the model is identical to the stochastic growth
model. It proved rather tricky to obtain the solutions. In some
cases the linear solution provided a good starting value, in others
our genetic search routine supplied acceptable initial values. The
solutions shown in the first panel of the table were computed from
the final solutions for o = 0.05.

Table 6.2 supports several conclusions. First, consider the
choice of the type of the polynomial. A complete polynomial with
15 parameters (the case p = 4) achieves about the same degree
of accuracy as a product base polynomial with twenty parame-
ters (the case p; = 3 and py = 4). From our experiments (which
are not all listed in the table) it is save to recommend complete
polynomials instead of product base polynomials. For the least
squares as well as for the Galerkin projection they provide the
same degree of accuracy with fewer parameters than the latter
family of polynomials.

Second, consider the kind of the projection. Least squares and
Galerkin projection deliver about the same degree of accuracy. In
the case of the smaller value of o = 0.0072, we were not able to
obtain the same degree of accuracy from the collocation solution.
The last two rows of the first panel of Table 6.2 show that neither
a product base polynomial with 12 nor with 16 parameters was
able to reduce the Euler equation residual to about 2.E-8, which
results from both the least squares and the Galerkin solution with
15 parameters. For the larger productivity shock, we obtain Euler
equation residuals of the same size from all three methods with
15 (p = 4) and 12 (p; = 2 and p, = 3) parameters, respectively.
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Table 6.2
Projection Degree of  Euler Equation Residual ~DM-Statistic
Polynomial 90% 80% < 3.816 > 21.920
o =0.0072

Least Squares p=2 5.542E-6  4.303E-6 1.7 3.3
p=3 1.104E-7  1.085E-7 1.8 3.2

p=4 2.220E-8  2.100E-8 1.8 3.2

Galerkin p=2 6.196E-6 4.863E-6 1.7 3.4
p=3 1.165E-7 1.151E-7 1.8 3.2

p=4 1.950E-8  1.650E-8 1.8 3.2

p1=3,p2=4 1.817E-8  1.533E-8 1.8 3.2

Collocation  p; =2, po =3 1.391E-6 1.294E-6 1.6 3.3
p1 =3, p2 =3 3.347TE-6  3.177E-6 1.8 3.0

o =0.05

Least Squares p=2 5.966E-4 4.676E-4 0.3 14.8
p=3 2.674E-4  1.540E-4 1.6 4.8

p=4 2.896E-4 1.906E-4 1.4 5.4

Galerkin p=2 6.177E-4 4.863E-4 0.3 15.1
p=3 2.905E-4  1.737E-4 1.5 5.2

p=4 2.661E-4  1.708E-4 1.5 5.3
p1=3,p2=42719E-4  1.501E-4 1.8 5.0

Collocation  p; = 2, po = 3 2.550E-4 1.254E-4 1.6 5.6
p1=3,po=3 2544E-4  1.340E-4 1.3 5.7

Notes: p is the degree of the complete polynomial, p1 and p2 refer to the dimensions of
the product base polynomial. The Euler equation residuals are computed as maximum
absolute value of 2002 residuals computed on an equally spaced grid # x %. The
size of the interval for K was chosen so that 90 (80) percent of the realizations of
K out of 1,000 simulations with 3,000 points each are within the respective interval.
The interval for Z was determined likewise.

But note, that the collocation solution with 16 parameters (the
case p; = 3 and py, = 3) performs not really better than the one
with 12 parameters.

Third, the Euler equation residuals computed over the 90 and
80 percent interval for the capital stock are about the same size.
Being a global, non-linear method, the projection approach pro-
vides an equally precise solution over the relevant state-space of
the model.
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Fourth, compare the parameterized expectations (PE) solu-
tions displayed in Table 5.1 with the results in Table 6.2. In the
case of the small standard deviation o = 0.0072, the least squares
and the Galerkin solutions are almost an order of magnitude more
accurate than the PE solution for p = 2. In addition, whereas it
was not possible to obtain a more accurate solution from the PE
approach, it was easy to reduce the Euler equation residuals from
about 5.5E-6 to 2.0E-8 by increasing p from 2 to 4. On the other
hand, for ¢ = 0.05, the PE solution is about as accurate as the
solutions from the different projection methods. In this case, we
have not been able to increase the precision markedly by using
higher-order polynomials.

6.3.3 The Benchmark Model

Our solution of the benchmark model of Example 1.5.1 draws
on the conclusions from the previous subsection. To facilitate the
comparison with the parameterized expectations solution of Sec-
tion 5.3.2 we approximate the rhs of the Euler equation (5.13d)
by a complete Chebyshev polynomial of degree p = 2 and use
Galerkin projection to determine the parameters of this function.
The residual function R(7y, k, Z) is obtained as follows.

Given A = ¢(v,k,Z), we use equation (5.14) to determine
working hours N and consumption c¢. Then, we compute the
next-period capital stock k; from the budget constraint (5.13c).
Let Z; = e?mZ+9¢ denote the next-period level of total fac-
tor productivity associated with Z and € ~ N(0,1), so that
A = (v, k1, Z1). We use (5.14) again to find N;. In this way,
we have determined

g(k’ Z’ 6) — )\1(1 -9 + OétenZJraeNllfak?fl)’

and the residual function is given by

o) e

Ry, k. Z) = A — fa™ / gk, Z,6) =

de.
—oo V2T
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Table 6.3
Linear Projection Methods
Approximation Galerkin Collocation
p=2 p1=1,p2=2
Second Moments
Variable Sz Tey Ta Sg  Tay Ta Sz Ty Tz
Output 1.44 1.00 0.64 144 1.00 0.64 1.43 1.00 0.64

Investment 6.11 1.00 0.64 6.11 1.00 0.64 6.10 1.00 0.64
Consumption 0.56 0.99 0.66 0.56 0.99 0.66 0.56 0.99 0.66
Hours 0.77 1.00 0.64 0.77 1.00 0.64 0.77 1.00 0.64
Real Wage 0.67 0.99 0.65 0.67 0.99 0.65 0.67 0.99 0.65

Euler Equation Residuals

[0.90;1.10]% 1.835E-4 1.543E-6 4.227E-5

[0.85;1.15]k 3.478E-4 1.993E-6 4.217E-5

[0.80;1.20]% 5.670E-4 3.770E-6 5.950E-5
DM-Statistic

<3.816 2.0 2.7 1.5

>21.920 3.4 3.0 5.3

Notes: s;:=standard deviation of variable x, ryy:=cross correlation of variable
x with output, r4:=first order autocorrelation of variable x. All second moments
refer to HP-filtered percentage deviations from a variable’s stationary solution.
Euler equation residuals are computed as maximum absolute value over a grid of
400 equally spaced points on the square % X [In0.95;1n1.05], where % is defined
in the respective row of the left-most column. The 2.5 and the 97.5 percent critical
values of the x2(11)-distribution are displayed in the last two lines of the first
column. The table entries refer to the percentage fraction out of 1,000 simulations
where the DM-statistic is below (above) its respective critical value.

We compute the integral in this expression as before from the
Gauss-Hermite formula (11.77) with four nodes.

Table 6.3 displays the results computed from our Fortran pro-
gram Benchmark.for . This program has the same options as the
program SGNNI_c.for so that you can experiment with differ-
ent settings. The table shows two different solutions. Both use a
polynomial with 6 parameters. The Euler equation residuals, the
DM-statistic, and the second moments clearly show that the collo-
cation solution with a product base polynomial is worse than the
Galerkin solution with a complete polynomial. Compared with
the parameterized expectations solution in Table 5.2 the Galerkin
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solution is an order of magnitude more precise than the PE solu-
tion. Note, however, that both solutions deliver the same second
moments as the linear solution.

6.3.4 The Equity Premium Puzzle

The Puzzle. One of the most regarded puzzles in the theory
of financial economics is the equity premium puzzle: Why has
the average real return on stocks in the US been six percentage
points higher than the return on US Treasury Bills over the last
century?® In this chapter, we present a model of asset pricing in
a production economy based on the work of JERMANN (1998).

The model is an extension of the stochastic growth model that
you are, by now, most familiar with. In the latter model the ex-
pression

Ry =aZ; K} =9

(i.e., the marginal product of capital less the rate of depreciation)
is the net return on one unit of output invested in the capital
stock of a representative firm. We also know from this model that
the household’s lifetime utility does not change, if she trades one
unit of consumption today against

u'(Cy) N Ay
BEW (Cr1)  BEMA
units of consumption tomorrow. Thus, the household is willing to
pay

6 An excellent overview of this issue is provided by KOCHERLAKOTA (1996).
JAGANNATHAN, MCGRATTAN, and SCHERBINA (2001) argue that the eq-
uity premium has declined significantly in the last two decades and is likely
to remain at a lower level on average as the transaction costs for trading
stocks have been reduced substantially. For recent views on the puzzle
and the efforts to solve it, see MEHRA (2003) and MEHRA and PRESCOTT
(2003).
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for a bond that promises one unit of consumption tomorrow for
certain. For this reason we can use
1 - Ay

" Pt - BEM
as a measure of the risk free rate of return. Note that the time
subscript ¢ in this definition refers to the date on which the return
becomes known. The return materializes in period ¢+ 1 when the
bond pays one unit of consumption. The mean equity premium
in the simple stochastic growth model is E(R;.1 — 1), where, as
usual, F(-) denotes the unconditional mathematical expectation
taken over the probability distribution of (7, K, C).

In the simple stochastic growth model with less than full de-
preciation there is not much variation in the marginal product of
capital, since investment is only a small portion of the stock of
capital. One way to raise the variability of the stock of capital is
to provide further incentives for investment. For instance, if the
household’s current period utility depends not only on current but
also on past consumption, its desire to smooth consumption in-
creases. This is usually referred to as habit persistence. A second
way to obtain more variation in the return on equity is to allow for
a variable price of shares. In the simple stochastic growth model
the price of capital in terms of consumption goods is constant and
equal to one, because it is possible to consume the stock of capi-
tal. The most common way to allow for a variable price of capital
goods is to introduce adjustment costs.

In the following we extend the simple stochastic growth model
along these two lines. We consider a decentralized economy in-
habited by a continuum of identical households of mass one and
a continuum of identical firms of the same size.

1

Households. The representative household provides one unit of
labor to firms and earns the competitive real wage w;. As a share-
holder she is entitled to receive dividends d; per unit of stocks S;
of the representative firm. The current price of stocks in terms
of the consumption good is v;. Thus, total income is w; + d;.S;.
The household buys consumption goods C; and additional shares
v¢(Sgs1 — S¢). Her budget constraint, thus, is
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’Ut(StJrl — St) S wy + dtSt — Ct. (618)

The household’s current period utility function is specified in
the following way:

(C, — bCy_ )= — 1

U(Ot, Ct—l) = 1 1

. bel0,1),n>0. (6.19)

Habit persistence occurs if b > 0, otherwise we get the standard
isoelastic current period utility function. The household maxi-
mizes expected lifetime utility

= (Cy—=bCy_) =1
N )]
t=0

subject to (6.18) and the initial number of shares S;. Employing
the techniques presented in Section 1.3, we derive the following
first-order conditions:

At = (Ct — th_l)_n — ﬁbEt(Ot+1 - bC't)_n, (620&)
At = /BEtAtJrlRtJrl’ (620b)
d
Ry o= G0 (6.20c)
Ut—1

The term R, gives the current period (ex post) gross rate of return
on equities. As usual, A; is the Lagrange multiplier of the budget
constraint, and E; denotes expectations conditional on informa-
tion available at the beginning of the current period t.

Firms. The representative firm uses labor services V; and capital
services K; to produce output according to

Y, = Z,N} K. (6.21)

The level of total factor productivity Z; follows the AR(1)-process
specified in equation (6.17). The firm finances its investment ex-
penditures I; by issuing new equities v;(S;y; — S¢) and out of
retained earnings RF;:

-[t == Ut(St-i-l - St) -+ REt (622)
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Investment expenditures increase the firm’s current capital stock
by

Kt+1 - Kt - ¢(It/Kt)Kt - 6Kt, 5 c (O, 1] (623)

¢(I;/Ky) is an increasing, concave function of its argument. The
case ¢(I;/ K;) = I/ K, specifies the capital accumulation equation
in the standard model. As in Section 3.3.2 we parameterize this
function by:

1-¢
o1,/ K,) = 1a_1€ (%) tas, ¢>0. (6.24)

The firm’s profits equal revenues Y; less labor costs w;/N;:
Ht = }/; — tht‘ (625)

The amount RE}; of these profits are used to finance investment.
The remaining profits are distributed as dividends to the firm’s
shareholders:

dtSt — Ht - REt (626)

To motivate the firm’s objective function, we consider the de-
terministic case first. The value of the firm at the beginning of
time ¢ + 1 is given by

Vig1 = 0eSi41-
Using (6.22), (6.26), and (6.25) this may be expressed as

Vigr = veSip1 = vS + Iy — RE),
=Sy + I + dS; — 11,

dy +v
= ( ! t) V15 — (Y;t — wy N, — [t)7

Vi—1

or, using the definition of R; in (6.20c), as

Vier + (Y —weNy — ) = RV,
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Iterating this equation forward beginning with ¢ = 0 and ending
with t = T yields:

Vo

W +§Yt—tht—It

RoRi...Rr = RoRy.. . Ry '
For the present value of the firm V; to be finite if T tends to
infinity requires:

I Vr 0
im ——— = 0.
T—o0 R0R1 Ce RT_1
In effect, this condition rules out speculative bubbles. Thus, we
end up with the following formula for the present value of the
firm:

= 1
Vo= alVi—wiNe— L, o: (6.27)
t=0

"~ RoR,---R,

Note that the firm is not able to choose its discount factor. In equi-
librium the household sector requires a return on equities given
by

L
ﬁAt—l—l7

which follows from (6.20b) in the case of no aggregate uncertainty.
As a consequence, the firm’s value depends on the sequence of cash
flows and the sequence of shadow prices A; but not on the firm’s
dividend policy.”

The firm aims at maximizing its present value (6.27) subject
to (6.23). The respective Lagrangean for this problem is

Rt+1 - (628)

g = Z Qt{ZtNtliaKta — tht — [t

t=0

+ [0/ KK+ (1= 0)K; = K] },

" This is not generally true. Here it follows because we neglect income and
corporate taxes. See TURNOVSKY (2000), 292ff.
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where ¢, is the period ¢ value of the Lagrange multiplier attached
to the constraint (6.23).

The first-order conditions for the optimal choice of N;, I;, and
Ky are:

wi = (1 — ) ZN K, (6.292)
1
qr = e 6.29b
"= LK) (6:290)
1
q = Fs {OéZt+1Nt1f1aKf+_11 — (Iy31/Ki41) (6.29¢)

+ Gey1 [¢(L§+1/Kt+1) +1- 5] }
In addition, the transversality condition
thm thth+1 =0 (629d)

must hold.
The first condition determines labor input in the usual way
and deserves no further comment, except that it implies

Ht = K — tht = OdZtNtliaKta = Oé}/; (630)

Given ¢, the shadow value of an additional unit of new capital
in terms of the firm’s output, the second equation can be solved
for the optimal amount of investment expenditures I;. We want
adjustment costs of capital to play no role in the deterministic
stationary state of the model. This has two consequences: ¢ must
equal one and I must equal JK. Using (6.24) and (6.29b) the first
condition requires

ap = (5<
Via the second condition this in turn implies:
- __C(g
1-¢
It is easy to see that for ¢ > 0 condition (6.29b) implies ¢; — 0 =

I; — 0. Thus, there is always a solution featuring ¢, I; > 0. Using
equations (6.23) and (6.30) condition (6.29¢) may be rewritten as

ag
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1
Ry

1
Ky

qt {YZH — W1 Nepr — L + C]t+1Kt+2}

[terating on this equation delivers

T
Qo = Z oYy — w Ny — L) + orqrKr4q.
=1

Taking the limit for 7" — oo, invoking the transversality condition
(6.29d), and comparing the result to the definition of the present
value of the firm in equation (6.27) establishes

QK = V.

Since the choice of the current period is arbitrary, we have just
shown that V,,1 = ¢ K;11. In words, ¢, is the ratio of the firm’s
stock market value to the replacement costs of its capital stock.

This result carries over to the stochastic case to which we turn
next. Since we have already seen that the management of the
firm has to use the household’s marginal valuation of wealth Ay,
we define the expected present value of the firm in the following
way:

> A
‘/b = EO Zﬁt/\—tl (ZtNtl_aKta — tht — It) .
t=0 -

Proceeding in a way analogous to Section 1.3.2, we can derive
first-order conditions. With regard to optimal labor input and
the optimal amount of investment these conditions are equal to
(6.29a) and (6.29b), respectively. The condition with respect to
K44 is the obvious modification of (6.29¢):

A
Ay

q = BE,

I
<aZt+1(Kt+l/ Newa)™™ = [(tt:—ll (6.29¢")
.29¢’

+ quy1 [@(Lis1/ Kig1) + 1 — 0] )
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Market Equilibrium. Since the size of the household sector
is one and since leisure is not an argument of the household’s
utility function, total labor supply always equals unity: N, = 1.
The household’s budget constraint (6.18) together with defini-
tions (6.22), (6.26), and (6.25) implies the economy’s resource
constraint:

Thus, the model’s dynamics is governed by the stochastic Euler
equations (6.20a) and (6.29¢’), the capital accumulation equation
(6.23), the resource constraint (6.31), and the investment function
that derives from condition (6.29b).

Deterministic Stationary State. Remember that we have as-
sumed that adjustment costs of capital play no role in the deter-
ministic stationary state of the model, i.e., ¢ = 1 and ¢(I/K) = 0.
Using this, as well as A;,; = Ay = A and Z = 1 in the Euler equa-
tion (6.29¢’) implies:

h= le—aﬂ o

Hence, the deterministic stationary stock of capital coincides with
the solution for the same variable in the simple deterministic
growth model. From the resource constraint we get

C=K*-0K.

Finally, the Euler equation (6.20a) delivers the stationary value
of A:

A= (1-Bb)[(1-b)C]™.

Implementation. We can solve for all period ¢ variables, if we
know ¢; and A;. These variables in turn depend on the predeter-
mined variables K; and C;_; and the level of total factor produc-
tivity Z;. Therefore, the state-space X of our model is a subspace
of R3, given by
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X = [K,K] x [C,C) x [2,Z),

for suitable lower and upper bounds on K;, C;_1, and Z;, respec-
tively. As in the previous applications, we choose the intervals as
small as possible, but pay attention that all variables remain in
the respective interval in the simulations of the model. For the
Chebyshev polynomials we choose larger intervals. In particular,
the interval for the productivity shock must be large enough so
that it encompasses the nodes of the Gauss-Hermite quadrature
formula, which we employ to compute conditional expectations.
Since both ¢, and )\, are non-negative variables, we employ ex-
ponentials of complete polynomials of degree p;, © = 1,2. The
first polynomial ! (', K, C, Z) approximates the rhs of equation
(6.29¢’) and, thus, determines the relative price of capital ¢. The
second polynomial ?(v% K, C, Z) approximates the conditional
expectation on the rhs of equation (6.20a). The parameters of
these functions are collected in the yet to be determined vectors
~! and 2. Before we consider this step, we explain our computa-
tions of the residual functions R' and R2.

1. Given a triple (K, C, Z) we compute
q1 = ¢1(717 K’ O’ Z)

Using equation (6.29b) and our parameterization of ¢ given in
(6.24), we find

I = K(alfh)l/g-
The resource constraint (6.31) delivers
Cy =ZK* -1,
and from the capital accumulation equation (6.23) we get
Ky =¢(/K)K + (1 -0)K.
Finally, we compute A; from
Ay = (G —b0) ™" - B (+%, K, C, Z).

Before we proceed, we check if C'y and K, are in the domain of
our polynomials.
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2. Let Z; = e?!"%+9¢ with € ~ N(0,1) denote the level of total
factor productivity for an arbitrary realization of e. We repeat
the previous sequence of computations:

@ =V (y", Ky, C1, Z1),

I = Ks(aig2)"/*,

Co=2Z1K5 — Iy,

Ay = (Cy — bCy) ™" = Bbv*(v?, Ky, Cy, Zy)

to get

g (K,C, Z,€) = B(As/ M) [0Z1 K§7" — (I/ K>)

+ oL/ Ky) + 1 — 6)},
GH(K,C, Z €)= (Cy — bCy)™".

3. In the last step, we use these two functions to compute the
residuals from the Euler equations (6.29¢”) and (6.20a):

oo 67262
R1(77K)O)Z) = Q1—/ gl(K7C,Z,E)E

R:(v,K,C, Z) = *(v*, K, C, Z —/ 2K,C, 7, €)—

(v ) =V (y ) 9 ( ) W
We employ the Gauss-Hermite formula with six points to com-
pute the integrals in these equations.

de,

de.

Our program Equity.for determines the parameter vector from
the Galerkin projection. Thus, it solves the set of equations

K pC (Z

O:/ / / R'(v, K, C, 2)T}(K)Ti(C)T(Z)dKdCdZ,
Kk Jo Jz

i=12 jkl=01 p, j+k+l<p; (6.32)

The program approximates the three-fold integral with the Gauss-
Chebyshev quadrature formula in three dimensions.

Notice that we do not need to solve for the share price v,
appearing in the definition of the return on equities R :=
(dis1 + veg1)/ve. To see this, consider the proposition
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R, — Wi = L1 + @1 K1 dipr + 0
t+1 = = .
@K1 Ut

(6.33)

The first term on the rhs equals the term in round brackets on
the rhs of equation (6.29¢’) divided by ¢;. We have shown above
that the firm’s total value at ¢t + 1 is given by v;S;11 = Viiq =
¢+ K¢11. This allows us to replace ¢; K11 and g1 Ki o with 04541
and v;41.549, respectively. When we eliminate I;,; by the rhs of
equation (6.22), the first term on the rhs of (6.33) transforms
into the second. Thus, we can compute the ex-post return on
equities from the simulated times series for output Y;, investment
I;, the stock of capital K;, and the relative price of capital ¢;. The
conditional expectation E;A;,; that appears in the definition of
the risk free rate r; := A;/(BEA;11) is computed in a manner
analogous to steps 2) and 3) above.

The program has several options to initialize the parameter
vectors for the non-linear equations solver. The first option, ge-
netic search, is rather time-consuming, if the degrees of the poly-
nomials are high and if the quadrature formula uses many nodes.
For instance, with 20 nodes in each dimension, the program must
evaluate 8,000 times the residual functions R’ in order to compute
the rhs of the system (6.32). One way to speed up this process,
is to determine the initial parameters from the collocation solu-
tion. The second option uses the linear policy functions and the
extension of Algorithm 11.2.2 to three dimensions to determine
initial parameters. The problem with this approach is, that the
linear policy functions may imply negative values for either ¢ or
A, because the six-point Gauss-Hermite formula uses rather ex-
treme points for Z. The third option is to use a solution found in a
previous step for a different set of parameters or different degrees
p;. The strategy that finally proved successful was genetic search
for a collocation solution with p; = p, = 2 that could be used to
determine the Galerkin solution. Note that even for p; = 2 each
polynomial has 10 parameters. We increased the degrees of both
polynomials stepwise until the results with respect to the equity
premium stabilized. In each step we used the previously found
solution with zeros in the places of the yet unknown coefficients
as starting values.
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Calibration. Though there are prominent studies close to the
model of the previous paragraph, namely JERMANN (1998) and
BOLDRIN, CHRISTIANO, and FISHER (2001), from which we could
have taken the parameters, we stick to our usual set of parameters
and borrow only the additional parameter ( from these studies.
This allows us to compare the results to the stochastic growth
model that we have considered in this and the previous chapters.
Thus, we employ a = 0.27, 3 =10.994, n =2, 6 = 0.011, 0 = 0.90,
o = 0.0072. From the study of JERMANN (1998) we take the value
of the elasticity of investment with respect to ¢ of 0.23. In our
notation, this implies ¢ = 1/0.23. We vary the habit persistence
parameter to uncover its influence on the equity premium. We
note, however, that for ¢ as small as 0.23, our model does not
imply a significant equity premium, even for b close to one.

Results. Table 6.4 shows that our model is able to generate a
significant equity premium, if the household is sufficiently averse
to changes in consumption. The statistics are averages from 500
simulations with 120 periods each. For the small value of b = 0.1,
we found a good solution with p; = 3 and ps = 2 (30 parameters
altogether). Yet, for b = 0.8 and n = 3, we had touse p; = py =7

Table 6.4
n=2.0 n=3.0
b=01 =05 =08 b=0.8
R—-1 0.62 0.71 1.26 1.41

E(R—r) 0.04 0.17 1.05 1.34

(240 parameters altogether) until a further increase in p; did not
change the equity premium noticeably. In this case we find an
equity premium of about 5.5 percent p.a. (1.34 per quarter). The
estimates for the U.S. economy between 1802 and 2000 presented
in Table 1 of MEHRA (2003), range between 4.9 and 8.0 percent
p.a., depending on the chosen time period. For our baseline para-
meters it is not possible to obtain a higher annual equity premium
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by increasing n any further. For instance, JERMANN (1998) uses
1 = 5. In our model this implies a negative risk free rate since the
denominator in r, = A;/(SE; A1) increases with a more curved
utility function and since the risk free rate in the deterministic
case is small: r = (1/3) — 1 yields an annual risk free rate of
2.4 percent. In a model with economic growth — as considered by
JERMANN (1998) — this rate equals » = (1/(8a™")) — 1. Using
a = 1.005 and = 2 as in our benchmark model, the annual risk
free rate equals 6.6 percent. In this setting, it is possible to ob-
tain a higher equity premium by raising n from 2 to 5 for a still
positive and sizable risk free rate.

Considering the case of b = 0.1, where the equity premium is
negligible, and remembering what we said about the adjustment
cost parameter (, reveals that it is the combination of consumers
that strife for a very smooth time profile of consumption and
costly adjustment of capital that is able to explain the equity
premium.

The ability of the model to predict a sizeable equity premium is
sensitive to the assumption of a fixed supply of labor. If labor sup-
ply is endogenous, agents can smooth consumption over time quite
effectively by adjusting their working hours. The burden placed
on the stock of capital as a vehicle for consumption smoothing
is greatly reduced. The variability of the relative price of capital
declines and diminishes the equity premium. BOLDRIN, CHRIS-
TIANO, and FISHER (2001) introduce frictions in the adjustment
of labor by considering a two-sector model, where workers cannot
move from one sector to the other within a given period. In this
model, they are able to replicate the average equity premium.
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Problems

6.1

6.2

6.3

Human Capital Accumulation

Consider the following discrete time version of Lucas’ (1988) model of
growth through human capital accumulation. In this deterministic model
the social planner solves the following problem:

NN O |
maXZB ﬁ, 66(0,1), 7’]>07
t=0

subject to
Kip1 = (uHy)“K} 7 + (1 = 0) Ky — C,
Hiy1 =A(1l —u)He + (1= 6)H,, A >0,
Ko, Hy given.

Here C} is consumption in period t, K; the stock of capital, H; the stock
of human capital. The size of the working population N is normalized to
1 so that wu; is the fraction of human capital adjusted labor H; N devoted
to the production of output. The state variables of this model are physical
capital K; and human capital H;. The control variables are consumption
C; and the fraction of hours spent in the production of output wu;.

In the steady state of this model all variables grow at the rate gy =
A(l —u*) + (1 — ), where u* is the steady state value of w;. Therefore,
variables that are stationary (and, thus, remain within a compact space)
are, for instance, k; := Ky/Hy, ¢; := Cy/Hy, and hyqq := Hyy1/Hy.

Use projection methods to approximate the functions c(ky, ht) and u(ky, he).
We propose the following values of the model’s parameters: a = 0.27,
08 =0.994,n =2 6 =0.011. Choose A so that the steady state growth
rate is 0.005 per quarter. Compute the transitional dynamics of the model
for both an economy with a relative shortage of physical and a relative
shortage of human capital. Is there any difference?

The Equity Premium and Endogenous Labor Supply
In the model of Section 6.3.4 modify the instantaneous utility function
of the household to include leisure:

(Cy —bCy )= (1 = N;)PCO=m — 1

U(Ct,ct,1,1 —Nt) = 1 .

and solve this model. Are you still able to produce a sizeable equity
premium?

Oil Price Shocks
Consider the following model with a variable utilization rate of capital
u; and a second shock that represents exogenous variations in the price
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of imported oil p; (this is adapted from FINN (1995)). The representative
agent solves

max Ey Y B [InCy+0In(1— N,)], Be€(0,1),0>0,

t=0
subject to
K1 = (ZeN)* (g K)' ™% + (1= 6(ue)) Ky — Cr — piQy,
)
(S(Ut) = —t,
~y
Qi _ up
K, ¢’

nZ,=mZ+InZ 1+, & ~N(0,o7%),
1npt = pp 1npt—1 + efa Gf ~ N(O7 0.10),
Ky given.

As usual, C} denotes consumption in period ¢, Ny are working hours,
K is the stock of capital, and @ it the quantity of oil imported at the
price of p;. A more intense utilization of capital increases the amount of
energy required per unit of capital. Thus, if the price of oil rises, capital
utilization will decrease. Verify this claim as follows.

In this model, labor augmenting technical progress follows a random walk
with drift rate In Z. Define the following stationary variables ¢; := Ct/Z,
ki == K;/Z,_1, and z; := Z;/Z,_1. The state variables of the model are
ki, zt, and p;. Solve the model for the consumption function (Cy/Z;) =
c(kt, zt, pt). Given this solution, compute the time path of the utilization
rate of capital for a one-time oil price shock of the size of one standard
deviation of €P. Use the following parameter values taken from FINN
(1995): 6 = 0.9542, 0 = 2.1874, o = 0.7, v = 1.4435, { = 1.7260,
pP = 0.9039, o = 0.0966, Z = 1.0162, 0% = 0.021.
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Chapter 7

Computation of Stationary
Distributions

Overview. This chapter introduces you to the modeling and
computation of heterogeneous-agent economies. In this kind of
problem, we have to compute the distribution of the individual
state variable(s). While we focus on the computation of the sta-
tionary equilibrium in this chapter, you will learn how to compute
the dynamics of such an economy in the next chapter.

The representative agent framework has become the standard
tool for modern macroeconomics. It is based on the intertemporal
calculus of the household that maximizes lifetime utility. Further-
more, the household behaves rationally. As a consequence, it is a
natural framework for the welfare analysis of policy actions. How-
ever, it has also been subject to the criticism whether the results
for the economy with a representative household carry over to one
with heterogenous agents. In the real economy, agents are different
with regard to many characteristics including their abilities, their
education, their age, their marital status, their number of chil-
dren, their wealth holdings, to name but a few. As a consequence
it is difficult to define a representative agent. Simple aggregation
may sometimes not be possible or lead to wrong implications. For
example, if the savings of the households are a convex function
of income and, therefore, the savings rate increases with higher
income, the definition of the representative household as the one
with the average income or median income may result in a con-
sideration of a savings rate that is too low.! In addition, we are
unable to study many important policy and welfare questions that

! To see this argument, notice that the rich (poor) households with a high
(low) savings rate contribute much more (less) to aggregate savings than
the household with average income.
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analyze the redistribution of income among agents like, for exam-
ple, through the reform of the social security and pensions system
or by the choice of a flat versus a progressive schedule of the in-
come tax.

In the remaining part of the book, agents are no longer homo-
geneous and cannot be represented by a single agent. For obvious
reasons, we will not start to introduce the diversity of agents along
its multiple dimensions at once, but we will first confine ourselves
to the consideration of one source of heterogeneity. In the next
section, therefore, we augment the standard Ramsey model by
the real life feature that some agents are employed, while others
are unemployed.? For simplicity, we assume that the agent cannot
influence his employment probability, e.g. by searching harder for
a new job or asking for a lower wage. In addition, agents cannot
insure against the idiosyncratic risk of being unemployed. Ac-
cordingly, agents in our economy differ with regard to their em-
ployment status and their employment history. Those agents who
were lucky and have been employed for many years are able to
save more and build up higher wealth than their unlucky contem-
poraries who have been unemployed for longer periods of time.
As a consequence, agents also differ with regard to their wealth.
Besides, all agents are equal. In the second part of this chapter,
we will compute the stationary distribution of the individual state
variables. In the final section, we present two prominent applica-
tions from macroeconomic theory, the puzzle of the low risk-free
interest rate and the distributional effects of a switch from an in-
come tax to a consumption tax. In addition, we give you a short
survey of the modern literature on the theory of income distribu-
tion.

2 Different from the model of HANSEN (1985), we also assume that agents
do not pool their income.
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7.1 A Simple Heterogeneous-Agent Model with
Aggregate Certainty

In Chapter 1, we present the deterministic infinite horizon Ram-
sey problem and show that the equilibrium of this economy is
equivalent to the one of a decentralized economy and that the
fundamental theorems of welfare economics hold. In this section,
we consider heterogeneity at the household level, but keep the
simplifying assumption that all firms are equal and, hence, can
act as a representative firm. As a consequence, we most conve-
niently formulate our model in terms of a decentralized economy
and study the behavior of the households and the firm separately.

As a second important characteristic of our model, we only
consider idiosyncratic risk. In our economy, households can be-
come unemployed and cannot insure themselves against this risk.
However, there is no aggregate uncertainty. For example, the tech-
nology is deterministic. As you will find out, the economy will
display a long-run behavior that is easily amenable to computa-
tional analysis. In the stationary equilibrium of the economy, the
distribution of the state variable, the aggregate wage and the ag-
gregate interest rate are all constant, while the employment status
and the wealth level of the individual households vary.?

In our simple model, three sectors can be distinguished: house-
holds, production, and the government. Households maximize
their intertemporal utility subject to their budget constraint. In
order to insure against the risk of unemployment, they build up
precautionary savings during good times. Firms maximize profits.
The government pays unemployment compensation to the unem-
ployed agents that is financed by an income tax. We will describe
the behavior of the three sectors in turn.

Households. The economy consists of many infinitely lived indi-
viduals. In particular, we consider a continuum of agents of total

3 Aggregate uncertainty will be introduced into the heterogeneous-agent ex-
tension of the Ramsey model in Chapter 8.



332 Chapter 7: Computation of Stationary Distributions

mass equal to one.* Each household consists of one agent and we
will speak of households and agents interchangeably. Households
differ only with regard to their employment status and their asset
holdings. Households maximize their intertemporal utility

Ey  Bule), (7.1)

where § < 1 is the subjective discount factor and expectations
are conditioned on the information set at time 0. At time zero,
the agent knows his beginning-of-period wealth ay and his em-
ployment status ey € {e,u}. If ¢ = e (¢ = u), the agent is em-
ployed (unemployed). The agent’s instantaneous utility function
is twice continuously differentiable, increasing and concave in his
consumption ¢; and has the following form:

ci_"
U(Ct) = 1 y N > 07 (72>

where 7, again, denotes the coefficient of relative risk aversion.
In the following, lowercase letters denote individual variables and
uppercase letters denote aggregate variables. For example, ¢; is
individual consumption, while C} is aggregate consumption in the
economy. We, however, keep the notation that real prices are de-
noted by lower case letters, while nominal prices are denoted by
upper case letters.

Agents are endowed with one indivisible unit of time in each
period. If the agent is employed (e = e) in period ¢, he earns gross
wage wy. If the agent is unemployed (e = u) in period ¢, he receives
unemployment compensation b;. We will assume that (1 —7)w; >
b;, where 7 denotes the income tax rate. The individual-specific
employment state is assumed to follow a first-order Markov chain.
The conditional transition matrix is given by:

n(€'le) = Prob{es1 = €'le, = €} = ( gu“ ]];ue ) : (7.3)

4 This amounts to assume that the number of individual households is in-
finite and, if we index the household with ¢ € [0,1], the probability that
i € [ig, 1] is simply 1 — dp.
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where, for example, Prob{e; 1 = ele; =u} = p,. is the proba-
bility that an agent will be employed in period ¢ 4+ 1 given that
the agent is unemployed in period ¢. Households know the law of
motion of the employment status ¢;.

In our economy, unemployment is exogenous. We have not
modeled any frictions which might be able to explain this feature.
In this regard, we follow HANSEN and IMROHOROGLU (1992) in
order to simplify the exposition and the computation. Of course, it
would be straightforward to introduce endogenous unemployment
into this model. For example, various authors have used search
frictions in the labor market in order to explain unemployment
with the help of either endogenous search effort as in COSTAIN
(1997) or HEER (2003) or endogenous separation from the firms
as in DEN HAAN, RAMEY, and WATSON (2000). In addition, we
assume that there are no private insurance markets against un-
employment and unemployed agents only receive unemployment
compensation from the government.®

The household faces the following budget constraint

A+ -1+ 1 -—1w—¢ ife=e (7.4)

G+1 = (I+ (1 —7)r)ar+ by — ¢ if € = u, '

where r; denotes the interest rate in period t. Interest income
and wage income are taxed at rate 7. Fach agent smoothes his
consumption {¢;}7°, by holding the asset a. An agent accumulates
wealth in good times (¢ = e) and runs it down in bad times
(e = u). As a consequence, agents are also heterogeneous with
regard to their assets a. We impose the asset constraint a > a,,,,
so that households cannot run down their assets below a,,;, < 0.

The first-order condition of the household that is not wealth-
constrained can be solved by introducing the Lagrange multiplier
A and setting to zero the derivatives of the Lagrangean expression

5 One possible reason why there are no private insurance markets against the
risk of unemployment is moral hazard. Agents may be reluctant to accept
a job if they may receive generous unemployment compensation instead.
CHiu and KARNI (1998) show that the presence of private information
about the individual’s work effort helps to explain the failure of the private
sector to provide unemployment insurance.
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¥ =E, Z {6 u(ce)+ M (Leymube + (L4 (1= 7)re)ay

Hle=e(l — T)wy — ag1 — )]}

with respect to ¢; and a;1. 1= (l¢,=,) denotes an indicator
function that takes the value one if the agent is employed (unem-
ployed) in period t and zero otherwise. The first-order condition
for the employed and unemployed agent in period ¢ is

u'(cy)

g

The solution is given by the policy function c(e;,a;) that is a
function of the employment status ¢; and the asset holdings a,
in period t. In particular, the policy function is independent of
calendar time t. Together with (7.4), the policy function c(e;, at)
also gives next-period asset holdings a; 1 = a'(€;, ay).

= By [W(ce)(L+ (1= 7)r)] - (7.5)

Production. Firms are owned by the households and maximize
profits with respect to their labor and capital demand. Production
Y; is characterized by constant returns to scale using capital K;
and labor N, as inputs:

Y, = N'"K®, ae(0,1). (7.6)

In a market equilibrium, factors are compensated according to
their marginal products and profits are zero:

N l1-a
re =« (é) — 4, (7.7a)

wy = (1—a) (E)a, (7.7b)

where ¢ denotes the depreciation rate of capital.

Government. Government expenditures consist of unemploy-
ment compensation B; which are financed by a tax on income.
The government budget is assumed to balance in every period:

Bt - Tt, (78)

where T; denotes government revenues.
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Stationary Equilibrium. First, we will analyze a stationary
equilibrium. We may want to concentrate on the stationary equi-
librium, for example, if we want to analyze the long-run effects of
a permanent change in the government policy, e.g. a once-and-for-
all change in the unemployment compensation b. In a stationary
equilibrium, the aggregate variables and the factor prices are con-
stant and we will drop the time indices if appropriate, e.g. for the
aggregate capital stock K or the interest rate » and the wage w.
Furthermore, the distribution of assets is constant for both the
employed and unemployed agents, and the numbers of employed
and unemployed agents are constant, too. The individual agents,
of course, are not characterized by constant wealth and employ-
ment status over time. While we focus on a stationary distribution
in this chapter, we will also analyze 1) the transition dynamics for
a given initial distribution of the assets to the stationary distribu-
tion and 2) the movement of the wealth and income distribution
over the business cycle in the next chapter.

For the description of the stationary equilibrium, we need to
describe the heterogeneity in our economy. In this book, we use
a very pragmatic and simple way to define the stationary equilib-
rium. In particular, we only use basic concepts from probability
theory and statistics which all readers should be familiar with,
namely the concept of a distribution function.® In the stationary
equilibrium, the distribution of assets is constant and we will refer
to it as either the stationary, invariant or constant distribution.
In our particular model, we are aiming to compute the two distri-
bution functions of the assets for the employed and unemployed
agents, F'(e,a) and F(u,a), respectively. The corresponding den-
sity functions are denoted by f(e,a) and f(u,a). The individual
state space consists of the sets (¢,a) € X = {e,u} X [amin, 00).

6 A description of more general heterogeneous-agent economies might neces-
sitate the use of more advanced concepts from measure theory. Since the
algorithms and solution methods developed in this chapter do not require
a thorough understanding of measure theory and should already be com-
prehensible with some prior knowledge of basic statistics, we dispense with
an introduction into measure and probability theory. For a more detailed
description of the use of measure theory in recursive dynamic models please
see STOKEY and Lucas with PREscoTT (1989).
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The concept of a stationary equilibrium uses a recursive repre-
sentation of the consumer’s problem. Let V' (¢, a) be the value of
the objective function of a household characterized by productiv-
ity € and wealth a. V' (¢, a) for the benchmark government policy
is defined as the solution to the dynamic program:

V(e.a) = max [u(c) + 5 V(€ a")e}]. (7.9)

subject to the budget constraint (7.4), the government policy
{b, 7}, and the stochastic process of the employment status e as
given by (7.3).7

Definition. A stationary equilibrium for a given government
policy parameter b is a value function V' (e, a), individual policy
rules c(¢,a) and da'(¢,a) for consumption and next-period capi-
tal, a time-invariant density of the state variable z = (€,a) € X,
f(e,a) and f(u,a), time-invariant relative prices of labor and cap-
ital {w,r}, and a vector of aggregates K, N, C, T, and B such
that:

1. Factor inputs, consumption, tax revenues, and unemployment
compensation are obtained aggregating over households:

K = Z /00 a f(e,a) da, (7.10a)

ec{e,u} ¥ dmin

N = f(e,a) da, (7.10b)

C = Z c(e,a) f(e,a) da, (7.10c)
ec{eu} V dmin

T =71(wN +rK), (7.10d)

B=(1—-N)b (7.10¢)

2. ¢(e,a) and d'(€,a) are optimal decision rules and solve the
household decision problem described in (7.9).

T The solution obtained by maximizing (7.1) s.t. (7.4) and (7.3) corresponds
to the solution obtained by solving (7.9) s.t. (7.4) and (7.3) under certain
conditions on the boundedness of the value function V(.) (see also Section
1.2.3). This correspondence has been called the Principle of Optimality by
Richard Bellman.
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3. Factor prices (7.7a) and (7.7b) are equal to the factors’ mar-
ginal productivities, respectively.
4. The goods market clears:

N K*+(1-§)K=C+K =C+K. (7.11)

5. The government budget (7.8) is balanced: T = B.
6. The distribution of the individual state variable (¢, a) is sta-
tionary:

F(e,d) = Z m(€'le) F (e,a (e, a')) (7.12)

ec{e,u}

for all (¢/,a’) € X. Here, a’"!(¢,a’) denotes the inverse of the
function a'(e, a) with respect to its first argument a.® Accord-
ingly, the distribution over states (€,a) € X is unchanging.

Calibration. As we will often use the model as an example in
subsequent sections, we will already assign numerical values to its
parameters in this introductory part. Following IMROHOROGLU
(1989), periods are set equal to six weeks (= 1/8 of a year). Pref-
erences and production parameters are calibrated as commonly
in the dynamic general equilibrium models. In particular, we pick
the values a = 0.36 and n = 2.0. Our choice of 3 = 0.995 implies
a real annual interest rate of approximately 4% before taxes. The
employment probabilities are set such that the average duration
of unemployment is 2 periods (=12 weeks) and average unemploy-
ment is 8%. The employment transition matrix is given by:

Puu Pue \ _ ( 0.5000 0.5000 (7 13>
Deuw  Pee 0.0435 0.9565 |- '

8 In particular, we assume that a’(e, a) is invertible. As it turns out, a’(e, a)
is invertible in our example economy in this chapter. In Section 7.2, we
will also discuss the changes in the computation of the model that are
necessary if a/(e,a) is not invertible. This will be the case if the non-
negativity constraint on assets is binding.

9 Notice that unemployed agents stay unemployed with a probability of 0.5.
As a consequence, the average duration of unemployment is simply 1/0.5=2

periods. In Section 12.2, you will learn how to compute the stationary
unemployment rate from the employment transition matrix.
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The non-capital income of the unemployed household b amounts
to 1.199 and is set equal to one fourth of the steady-state gross
wage rate in the corresponding representative agent model,!°
where the gross interest rate is equal to the inverse of the dis-
count factor 3 and, therefore, the capital stock amounts to K =
(a/(1/B—1+46))Y/0=*)N_ In the literature, the ratio of unemploy-
ment compensation to net wage income is also called the replace-
ment ratio which will be approximately equal to 25.6% in our
model. In addition, the income tax rate is determined endoge-
nously in the computation with the help of the balanced budget
rule. Finally, the annual depreciation rate is set equal to 4% im-
plying a six-week depreciation rate of approximately 0.5%.

7.2 The Stationary Equilibrium of a
Heterogeneous-Agent Economy

With only very few exceptions, dynamic heterogeneous-agent
general equilibrium models do not have any analytical solution
or allow for the derivation of analytical results. Algorithms to
solve heterogeneous-agent models with an endogenous distribu-
tion have only recently been introduced into the economic liter-
ature. Notable studies in this area are ATYAGARI (1994, 1995),
DEN HAAN (1997), HUGGETT (1993), IMROHOROGLU, IMRO-
HOROGLU, and JOINES (1995), KRUSELL and SMITH (1998) or
Rios-RULL (1999). We will use Example 7.2.1 as an illustration
for the computation of the stationary equilibrium of such an econ-
omy.

Example 7.2.1
Consider the following stationary distribution:

a) Households are allocated uniformly on the unit interval [0,1] and
are of measure one. The individual household maximizes

10 Tn such a model, the 'representative’ household consists of (1 — N) unem-
ployed workers and N employed workers.
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1-n

Ve, a) = max [f_ +0E {V(e',a')\e}} ,
s.t.
o = 1I+(1—-71)r)a+(1—-—7T)w—c e=ce,

+(1—-71)r)a+b—c € = u,
a 2 Gmin,
m(e'le) = Prob{e; 1 = €leg =€ —(uu pue).
( ’ ) { e ‘ ! } Peu  Pee

b) The distribution of (e,a) is stationary and aggregate capital K,
aggregate consumption C, and aggregate employment N are con-

stant.
c) Factors prices are equal to their respective marginal products:

N -«
r = a<?> — 9,

v - aa(E)

d) The government budget balances: B =T
e) The aggregate consistency conditions hold:

K = Z /:o a f(e,a) da,

ec{eu} ” dmin

N:/ f(e,a) da,

c= Y [ clew sea) o

ec{e,u}
T =71(wN +rK),
B=(1-N)b.

The computation of the solution of Example 7.2.1 consists of
two basic steps, the computation of the policy function and the
computation of the invariant distribution. For this reason, we will
apply several elements of numerical analysis that we introduced
in the first part of this book. In order to solve the individual’s op-
timization problem, we need to know the stationary factor prices
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and the tax rate. For a given triplet {K, N, 7}, we can use the
methods presented in Part I in order to compute the individual
policy functions c¢(e,a) and a'(¢,a). The next step is the basic
new element that you have not encountered in the computation
of representative agent economies. We need to compute the distri-
bution of the individual state variables, aggregate the individual
state variables, and impose the aggregate consistency conditions.
The complete solution algorithm for Example 7.2.1 is described
by the following steps:

Algorithm 7.2.1 (Computation of Example 7.2.1)
Purpose: Computation of the stationary equilibrium.
Steps:

Step 1: Compute the stationary employment N.

Step 2: Make initial guesses of the aggregate capital stock K and
the tax rate 7.

Step 3: Compute the wage rate w and the interest rate r.

Step 4: Compute the household’s decision functions.

Step 5: Compute the stationary distribution of assets for the em-
ployed and unemployed agents.

Step 6: Compute the capital stock K and taxes T that solve the
aggregate consistency conditions.

Step 7: Compute the tax rate T that solves the government budget.

Step 8: Update K and T and return to step 2 if necessary.

In Step 1, we compute the stationary employment N. In our
simple Example 7.2.1, employment /N; does not depend on the en-
dogenous variables wy, 7;, or the distribution of assets a; in period
t. N; only depends on the number of employed in the previous
period N, ;. Given employment N, ; in period ¢t — 1, we know
that next-period employment is simply the sum of the lucky un-
employed agents who find a job and the lucky employed agents
that keep their job

Nt - pue(]- - Nt—l) +peeNt—1- (715)
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Given any employment level Ny in period 0, we can iterate over
(7.15) for t = 1,2, .. .. In fact, if we use the probabilities p,. = 0.50
and p.. = 0.9565 from (7.13) and iterate some ten to twenty times
for any given employment level Ny € (0, 1), the percentage of em-
ployed people in the economy, or equally, the number of employed,
Ny, converges to the so-called stationary employment N = 0.92. In
essence, we are computing the invariant distribution of a simple
2-state Markov-chain. There are, however, more efficient meth-
ods in order to compute the stationary values of a Markov-chain
process and we describe them in more detail in Section 12.2.

In Step 5, we compute the stationary distribution of assets for
the employed and unemployed workers. The wealth distribution
is continuous and, hence, is an infinite-dimensional object that
can only be computed approximately. Therefore, in general, we
apply other methods for its computation than in the case of a
finite-state Markov-chain. Three different kinds of methods are
presented in order to compute the invariant distribution F(e,a)
of the heterogeneous-agent model. First, we will compute the dis-
tribution function on a discrete number of grid points over the
assets. Second, we will use Monte-Carlo simulations by construct-
ing a sample of households and tracking them over time. And
third, a specific functional form of the distribution function will
be assumed and we will use iterative methods to compute the
approximation.

Discretization of the Distribution Function. We first con-
sider a method which relies upon the discretization of the state
space. Our individual state space consists of two dimensions, the
employment status € and the wealth level a. However, the first
state variable € can only take two different values, € € {e,u}, so
that we only need to discretize the second state variable, the asset
level a. Assume that we choose a grid over the state space with m
points. If the policy function has been computed with the help of
methods that rely upon the discretization of the state space, for
example discrete value function approximation, we want to choose
a finer grid for the computation of the state space following Rios-
RULL (1999). Denote the distribution function by F'(e,a) and the
density function by f(e,a).
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If we discretize the distribution function, the state variable
(e,a) can only take a discrete number of values 2m. In this case,
we are in essence trying to compute the Markov transition matrix
between these states (€,a). For the computation of the transi-
tion matrix between employment state e, we presented several
methods in the previous section and in Section 12.2. These meth-
ods are not all applicable for the computation of the transition
matrix between the states (€, a). In particular, with current com-
puter technology, we will run into problems using the procedure
equivecl.g to compute the ergodic distribution due to the curse
of dimensionality because the Markov transition matrix has (2m)?
entries. For reasonable values of grid points 2m, we have a stor-
age capacity problem and GAUSS, for example, will be unable to
compute the ergodic matrix.!!

In the following, we will present two iterative methods that rely
upon the discretization of the state space in order to compute the
discretized invariant distribution function. Both methods can be
applied over a fine grid with a high number of points m. Algorithm
7.2.2 computes the invariant distribution function based on the
equilibrium condition (7.12), while Algorithm 7.2.3 computes the
invariant density function.

Algorithm 7.2.2 (Computation of the Invariant Distribu-
tion Function F'(¢,a))

Purpose: Computation of the stationary equilibrium.

Steps:

Step 1: Place a grid on the asset space A = {a1 = amin, a2, . . .,
Uy = Qag b Such that the grid is finer than the one used
to compute the optimal decision rules.

11 The transition matrix between the 2m states mainly consists of zero entries,
i.e. the matrix is sparse. As a consequence, we may still be able to apply
the procedure equivecl.g; however, we have to change the computer code
applying sparse matrix methods. In essence, we only store the non-zero
entries. Gauss, for example, provides commands that handle sparse matrix
algebra.
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Step 2: Choose an initial piecewise distribution function Fy(e =
e,a) and Fy(e = u,a) over the grid. The vectors have m
rows each.

Step 8: Compute the inverse of the decision rule (e, a).

Step 4: Iterate on

Fii(€,ad) = Z (e, e)F; <a'_1(e,a'),e> (7.16)

e=e,u

on grid points (¢',a’).
Step 5: Iterate until F' converges.

The Algorithm 7.2.1 that computes the stationary equilib-
rium of the heterogeneous-agent economy 7.2.1 and the Algo-
rithm 7.2.2 that computes the invariant distribution function are
implemented in the GAUSS program Rch7_disf.g. The individ-
ual policy functions are computed with the help of value func-
tion iteration with linear interpolation as described in Chapter
4. We compute the value function at n = 200 equidistant grid
points a; in the interval [—2;3,000]. The interval is found by
some trial and error. Of course, it should contain the steady state
capital stock of the corresponding representative agent economy,
K = (a/(1/8 =1+ 6)Y1=0N = 247.6. We would also love to
choose an ergodic set so that once the individual’s capital stock is
inside the set, it stays inside the interval. As it turns out, this in-
terval is rather large and we choose the smaller interval [—2; 3, 000]
instead. In the stationary equilibrium, all employed agents have
strictly positive net savings over the complete interval [—2; 3, 000].
However, the number of agents that will have assets exceeding
1,500 is extremely small. In fact, fewer than 0.01% of the agents
have assets in the range of [1,500;3,000] so that we can be very
confident that our choice of the interval is not too restrictive. The
reason for the low number of very rich people is the law of large
numbers. We simulate the economy over 25,000 periods or more
and sooner or later, the employed agents will loose their job and
start decumulating their wealth again.

After we have computed the individual policy function d'(e, a)
for given capital stock K, unemployment compensation b, and
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income tax 7, we compute the invariant distribution function ac-
cording to Algorithm 7.2.2. In step 1, we choose an equidistant
grid with m = 3n = 600 points on [—2; 3, 000] for the computation
of the distribution function.'? In step 2, we initialize the distribu-
tion function with the equal distribution so that each agent has
the steady-state capital stock of the corresponding representative
agent economy.

In step 3, we compute the inverse of the policy function d'(e, a),
a = a'"'(e,a;), over the chosen grid with j = 1,...,m. Since
the unemployed agent with low wealth may want to spend all
his wealth and accumulate debt equal or exceeding —a,, a
may not be invertible when a' = a,,;,. For this reason, we de-
fine @'~ (€, Gmin) as the maximum a such that a'(e,a) = dpp.
Furthermore, the computation of da’(e, a) involves some type of in-
terpolation, as a/(e, a) is stored for only a finite number of values
n < m. We use linear interpolation for the computation of da'(¢, a)
for a; <a < aj1.

In step 4, the invariant distribution is computed. F'is computed
for every wealth level «’ =a;, 7 =1,...,m, and € = e, u. In the
computation, we impose two conditions: 1) If o'~ !(€,a;) < @min,
F(e,a;) =0, and 2) if (e, a;) > amaz, F (€, a;) = g(€), where
g(€) denotes the ergodic distribution of the employment transi-
tion matrix. The first condition states that the number of em-
ployed (unemployed) agents with a current-period wealth below
Amin 1S equal to zero. The second condition states that the num-
ber of the employed (unemployed) agents with a current-period
wealth equal to or below a,,q, is equal to the number of all em-
ployed (unemployed) agents. In addition, as there may be some
round-off errors in the computation of the next-period distribu-
tion Fj,1(€/,a’), we normalize the number of all agents equal to
one and multiply Fiii(e,a’) and Fjyq(u,a’) by 0.92/F; (e, Gmaz)
and 0.08/F;11(u, Gmaz), respectively. Again, we need to use an
interpolation rule, this time for the computation of Fj(e,a). In
(7.16), ap = a’*(e,a;), = 1,...,m, does not need to be a grid

12 The grid over the asset space for the value function and the distribution
function do not need to be equally spaced.
13 HUGGETT (1993) establishes that a’ is strictly non-decreasing in a.
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point. As we have only stored the values of Fj(¢, ag) for grid points
a = aj;, j =1,...,m, we need to interpolate the value of F; at
the point ag. We use linear interpolation for the computation of
Fi(e,a) for a; < a < aji;.

Once we have computed the distribution function, we are also
able to compute the aggregate capital stock in step 6 of the Algo-
rithm 7.2.1. Therefore, we assume that the distribution of wealth

a is uniform in any interval [a;_y, a;]. Thus, with the denotation
A = F(e,aj) — F(e,a;-1), we have

(lj aj A
/ af(ea &> da = / a————  da =
a-1 ajor G5~ Q-1
1 a?A |Y 1

aj—1

(7.17)

With the help of this assumption, the aggregate capital can be
computed as follows:

K = Z /aoo a f(e,a) da

e€f{e,u}  dmin

~ Z (Z (F'(e, aj) — F(e, a-1)) % + F(e, al)a1> .

€

(7.18)

In this computation, we assume that the distribution of the in-
dividual asset holdings is uniform in the interval [a;_;,a;] for
J = 2,...,m. Of course, the accuracy of our computation will
increase with a finer grid and increasing number of grid points m.
If the capital stock K is close to the capital stock in the previous
iteration, we are done. We stop the computation if two successive
values of the capital stock diverge by less than 0.1%.

In the program Rch7_disf.g, we also increase the number of
iterations over the invariant distribution as the algorithm slowly
converges to the invariant aggregate capital stock K. We start
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with an initial number of 500 iterations ¢ over Fj(.) which we in-
crease by 500 in each iteration to 25, 000 iterations in the iteration
q = 50 over the capital stock. In the first iterations over the capital
stock, we do not need a high accuracy in the computation of the
invariant distribution. It saves computational time to increase the
accuracy as we get closer to the solution for the aggregate capital
stock. Similarly, the value function is getting more accurate as the
algorithm converges to the aggregate capital stock. The reason is
that we use a better initialization of the value function in each
iteration, namely the solution of the last iteration.

The divergence between the capital stocks in iteration 50 and
51 is less than 0.1% so that we stop the computation. The compu-
tational time is very long and amounts to 5 hours and 45 minutes
using an Intel Pentium(R) M, 319 MHz machine. For our cali-
bration, the invariant aggregate capital stock is K = 243.7. The
implied values for the wage rate, the interest rate, and the tax
rate are w = 4.770, r = 0.513%, and 7 = 1.724%. Notice that
[ =0.99500 ~ 0.99499 = 1/(1 + (1 — 7)), where the deviation is
due to numerical round-off errors. As in the representative agent
deterministic Ramsey model, the inverse of (3 is equal to the gross
interest rate (after taxes). In the heterogeneous-agent economies
of Example 7.2.1, this equation does not always need to hold. For
our calibration, the wealth constraint a > a,,;, is found to be non-
binding. HUGGETT and OsPINA (2001) show that the stationary
interest rate is always larger in any equilibrium with idiosyncratic
shocks as long as the consumers are risk averse (7 > 0) and if the
liquidity constraint binds for some agents. We will also demon-
strate this result to hold in the application of Section 7.3.1.

At this point, we need to draw your attention to an important
issue. For our Example 7.2.1, it is rather the exception than the
rule that Algorithm 7.2.2 converges. For instance, if you increase
the number of simulations over the distribution from {500; 1, 000;
1,500; . ..;25,000} to {2,500;5,000;...;12,5000} while you iter-
ate over the capital stock ¢ = 1,...,50, the algorithm will not
converge. Similarly, if we choose the uniform distribution over the
interval [—2;3,000]:



7.2 The Stationary Equilibrium of a Heterogeneous-Agent Economy 347

a — Qmg;
F(E, &) = 777””7 a € [@mina amax]
Amaz — Amin

for the initial distribution rather than the equal distribution:

1 fa>K
F(e;a) :{ 0 else_

where all agents hold the representative-agent economy steady-
state capital stock, the algorithm does not converge either. There-
fore, computing the stationary solution to Example 7.2.1 in-
volves a lot of trial and error. Furthermore, as the computation
time amounts to several hours, the solution might be very time-
consuming.

Why is convergence so hard to achieve with the help of Al-
gorithm 7.2.27 Consider what happens if we are not close to the
stationary solution and, for example, our choice of the stationary
capital stock is too low. As a consequence, the interest rate is too
high and agents save a higher proportion of their income than
in the stationary equilibrium. Consequently, if we choose rather
too many time periods for the simulation of the distribution when
we start the algorithm (and are far away from the true solution),
the distribution of wealth among the employed agents becomes
increasingly concentrated in the upper end of the wealth inter-
val [—2;3,000]. As a result, we have a new average capital stock
that is much higher than the stationary capital stock. In the next
iteration over the capital stock, we might, therefore, also choose
a capital stock that is much higher than the stationary capital
stock and an interest rate that is lower than the stationary rate.
As a consequence, agents may now save a much lower proportion
of their wealth than in the stationary equilibrium. For this reason,
as we simulate the distribution over many periods, the distribu-
tion may now become increasingly centered in the lower part of
the interval [—2;3,000]. If we are unlucky, the distribution might
alternate between one that is concentrated in the lower part of the
interval for individual wealth and one that is concentrated close
to the upper end of the interval.
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The algorithm, furthermore, fails to converge at all if we do
not fix the unemployment compensation b,'* but, for example,
calibrate it endogenously to amount to 25% of the net wage rate
in each iteration over the capital stock. In this case, you will not
be able to generate convergence even with the choice of the equal
distribution for the initial distribution. Our choice of b = 1.299
serves as an anchor. If we do not fix it, b starts to alternate between
high and low values and, as a consequence, precautionary savings
of the employed agents also switch between low and high values,
respectively. The convergence of the algorithm improves consid-
erably if we could also fix the wage incomeof the agents. In fact,
you will get to know two prominent applications from the litera-
ture in Sections 7.3.1 and 8.4.1, where we will exactly do this. By
this device, we will be able to compute the stationary equilibrium
in the models of HUGGETT (1993) and IMROHOROGLU (1989)
without any problems and convergence can be achieved for any
initial distribution. In Section 7.3.2, you will encounter another
example where convergence is not a problem. Different from Ex-
ample 7.2.1, we will then introduce endogenous labor supply. In
this case, richer agents supply less labor ceteris paribus and, as a
consequence, the wage income decreases with higher wealth and
so do savings. This mechanism, of course, improves convergence.
In Chapter 8, where we compute the dynamics of the distribution
endogenously, this problem does not occur either. In these models,
as we will argue, an increase in the average capital stock during
the simulation of a time series is then accompanied by a decrease
in the endogenous interest rate and, hence, an endogenous reduc-
tion of the savings rate.

The convergence of the mean of the distribution during the
final iteration over the capital stock is displayed in Figure 7.1.
Notice that the rate of convergence is extremely slow. We also
made this observation in all of our other applications: Convergence
of the distributions’ moments'® only occurs after a substantial

14 We encourage you to recompute Example 7.2.1 with the help of
RCh7_disf.g for the cases discussed.

15 The same result holds for the second and third moments of the distribu-
tions.
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Figure 7.1: Convergence of the Distribution Mean

number of iterations well in excess of several thousands. It is for
this reason that the computation of the stationary equilibrium of
a heterogeneous-agent economy is extremely time-consuming.

Figure 7.1 also suggests that we should increase the number
of iterations over the distribution function further to perhaps
n = 100, 000 or more.'% In order to judge if our results are already
accurate it is instructive to look at Figure 7.2 which displays the
convergence of the aggregate capital stock K. At the first itera-
tion over the capital stock, ¢ = 1, we only use 500 iterations over
the distribution functions and our value functions are highly in-
accurate. For higher values of ¢ > 30, our aggregate capital stock
remains rather constant no matter if we iterate 15,000, 20,000
or 25,000 times over the distribution function (corresponding to
q=30, 40, and 50, respectively). This result indicates that we have
indeed found the stationary solution.

From the stationary distribution function that we computed
with the help of Rch7_disf.g, we can also derive the invariant

16 We encourage the reader to change the program RCh7_disf . g accordingly.



350 Chapter 7: Computation of Stationary Distributions

300 340 380

260

180 220

140

100

0 5 10 15 20 25 30 35 40 45 50
Number of Iterations over K

Figure 7.2: Convergence of K

density function. Assuming that the wealth distribution is uniform
in the interval [a;_1, a;], a;, a;_1 € A, we compute the density such
that f(e,a) = (F(e,aj) — F(e,a;-1))/(aj —aj_1) for a € [a;_1,a;].
The invariant density function of the employed (unemployed)
worker that is computed with the help of Algorithm 7.2.2 is dis-
played by the solid (broken) line in the Figure 7.3. Notice that the
wealth constraint a > a,,;, is non-binding and that the number of
agents with wealth above a = 1,000 is almost zero. Therefore, our
choice of the wealth interval [amin, Gmaez] = [—2,3000] is sensible.
Notice further, that, as observed empirically, the distribution is
skewed to the left.

Discretization of the Density Function. Alternatively, we
may approximate the continuous density function f(e,a) by a
discrete density function, which, for notational convenience, we
also refer to as f(e,a). Again, we discretize the asset space by
the grid A = {a1 = amin, @2y .., @ = Gaz }. We assume that
the agent can only choose a next-period asset a’ from the set A.
Of course, the optimal next-period capital stock a'(e,a) will be
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Figure 7.3: Invariant Density Function of Wealth

on the grid with a probability of zero. For this reason, we in-
troduce a simple lottery: If the optimal next-period capital stock
happens to lie between a;_; and aj, aj_1 < a’ < a;, we simply
assume that the next-period capital stock will be a; with prob-
ability (¢’ — a;_1)/(a; — aj_1) and a;_; with the complementary
probability (a; —a’)/(a; — a;—1). With these simplifying assump-
tions, we can compute the invariant discrete density function with
the help of the following algorithm:

Algorithm 7.2.3 (Computation of the Invariant Density
Function f(e, a))

Purpose: Computation of the stationary equilibrium.

Steps:

Step 1: Place a grid on the asset space A = {a1 = amin,a, ...,

U = Qag b Such that the grid is finer than the one used
to compute the optimal decision rules.
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Step 2: Set i = 0. Choose initial discrete density functions fo(e =
e,a) and fo(e = u,a) over that grid. The two vectors have
m rows each.

Step 3: Set fir1(e,a) = 0 for all € and a. i) For every a € A,
€ € {e,u}, compute the optimal next-period wealth a;_; <
a =d (e a) < a; and ii) for alla’ € A and € € {e,u} the
following sums:

fz+1 6 , Aj— 1 Z Z 7'('(6/‘6)7“]%(6,&),

€=eu a€c A
aj—1 < al(ev a) < aj

o) = S w0l p e ).
-

e=e,u a€c A
aj—1 < a'(ea) <a;

Step 4: Iterate until f converges.

The Algorithm 7.2.3 is implemented in the GAUSS program
Rch7_denf .g. The invariant discrete density function is computed
with the same policy functions and parameterization that we were
using for the approximation of the invariant distribution function.
In particular, we use the equal distribution as initial distribution
and increase the number of iterations over the density function
from 500 to 25,000 by 500 in each iteration over the capital stock
K. Again, we stop the computation as soon as two successive val-
ues of the capital stock diverge by less than 0.1% and the number
of iterations over the density function is equal to 25,000.

The density function of the employed worker that is computed
with the help of Algorithm 7.2.3 is displayed by the solid line with
dots in Figure 7.4. The two density functions for the wealth of the
employed worker computed with the help of the Algorithms 7.2.2
(solid line with squares) and 7.2.3 almost coincide and cannot be
discerned. The two means K = 243.7 are identical. However, the
computational time is much longer in the case of the discretized
distribution function. The computation with the help of Algo-
rithm 7.2.2 takes 40% longer than the one with Algorithm 7.2.3
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Figure 7.4: Invariant Density Function of Wealth for the Employed
Worker

due to Step 3 where we compute the inverse of the policy func-
tion @(e,a). Table 7.1 summarizes the computational time and
the first moment of the distribution for the various methods in-
troduced in this section. In the last row, the number of iterations
over the aggregate capital stock is presented.

Monte-Carlo Simulation. The second method to compute the
invariant distribution is by means of Monte Carlo simulation. In
this method, we choose a large sample of households, typically in
excess of some thousands, and track their behavior over time. The
household is subject to an employment shock which follows the
Markov process (7.13). We simulate this individual employment
shock with the help of a random number generator. As a conse-
quence of these random draws, we may have too many or too few
employed and unemployed agents so that their respective masses
are not equal to those in the stationary distribution. Therefore, we
will have to adjust these numbers at the end of each iteration over
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Table 7.1
Invariant Invariant Monte Exponential
Distribution  Density Carlo Function
n=2
Mean 243.7 243.7 243.4 246.6
Runtime 5:45 4:05 15:14 3:52
Tterations 51 51 54 63

Notes: Run time is given in hours:minutes on an Intel Pentium(R) M, 319
MHz computer. Iterations are over the aggregate capital stock K.

the distribution of the individual state variable. The algorithm is
as follows:

Algorithm 7.2.4 (Computation of the Invariant Distribu-
tion Function F(e,a) by Monte-Carlo Simulation)

Purpose: Computation of the stationary equilibrium.
Steps:

Step 1: Choose a sample size N.

Step 2: Initialize the sample. Fach household 1 = 1,..., N is as-
signed an initial wealth level a) and employment status
€y -

Step 3: Compute the next-period wealth level a'(€',a’) for all i =
1,...,N.

Step 4: Use a random number generator to obtain ¢’ for all i =
1,...,N.

Step 5: Compute a set of statistics from this sample. We choose
the mean and the standard deviation of a and e.

Step 6: Iterate until the distributional statistics converge.

The algorithm is implemented in the program Rch7_mont.g.
As an initial asset level, the agent is assigned the wealth level
a = 247.6, which is equal to the steady-state capital stock in the
corresponding representative-agent model. Similarly, the agent is
employed with the ergodic employment probability g(e) and un-
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employed with the complementary probability. The statistics of
the sample distribution are the mean of the wealth and the stan-
dard deviations of the wealth and the employment status. We
choose N = 10,000 individuals in order to keep the computa-
tional time to a reasonable amount and in order to demonstrate
the necessity to choose a high number of individuals. Furthermore,
we need to adjust the share of employed and unemployed agents
in each iteration. As we use a random number generator in step
4, the number of employed agents does not need to be equal to
the number of employed agents in the ergodic distribution, Ng(e).
If the number of employed agents in any iteration of the simula-
tion is higher than the ergodic number, we select a random set
of employed agents and change their employment status to 'un-
employed’ until the number of employed agents, again, is equal
to the respective number in the ergodic distribution. If the num-
ber of unemployed agents is higher than the respective number in
the ergodic distribution, we change the employment status of the
unemployed agents in an analogous way.

We stop the computation after 50 iterations over the aggregate
capital stock K. During the last iteration, we simulate the econ-
omy over 25,000 periods. The aggregate capital stock K amounts
to 243.4 and diverges by less than 0.2% between two successive it-
erations. The distribution function that is computed with the help
of Monte Carlo Simulation is displayed by the solid line in Fig-
ure 7.4. Notice that the distribution function has a lower variance
than those computed with the help of Algorithms 7.2.2 and 7.2.3.
It is also less smooth than these two distributions. In our appli-
cation, the computational time becomes exorbitant and exceeds
15 hours. It is for this very reason that we do not recommend the
use of Monte Carlo simulations in many applications.

Function Approximation. In this section, we introduce a third
method to compute the invariant distribution function. In partic-
ular, we approximate the distribution function by a flexible func-
tional form with a finite number of coefficients. In Chapter 6, we
approximated the policy function with a linear combination of
Chebyshev polynomials. Chebyshev polynomials, however, can
take a value below zero. For this reason, it is advisable to use
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another class of functions. We follow DEN HAAN (1997) and use
the class of exponential functions for th