No country for old distributions?
On the comparison of implied option parameters between the Brownian
motion and variance gamma process

Markus Ulze?, Johannes Stadler?, Andreas. W. Rathgeber®*

@ Professorship for Finance, Information & Resource Management, Institute of Materials Resource Management, University of Augsburg,
Address: Universitdtsstr. 2, 86135 Augsburg, Germany

Abstract

Advanced stochastic approaches are often suggested as a solution to real-world derivative pricing inconsis-
tencies like the non-linearity of the implied volatility smile. Using a novel high-frequency data set with over
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distribution approach with a variance gamma process, which is — as a pure jump process — especially suitable
for tick-by-tick data. We are able to report a flattened implied volatility smile with the variance gamma process.
Other low-frequency results like time, information, and underlying moment dependencies for both stochastic
processes are unchanged. All in-sample residuals of the normal distribution have a smaller variance below
the 1% significance level compared to the variance gamma process. Additionally, we reveal a mean-reversion
process. We show that the normal distribution is superior to the variance gamma process in an out-of-sample
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1. Introduction

In the past years a lot of work has been done on new and complex models for stock price modeling
and option pricing. These models mostly incorporate real-world phenomena that are not addressed by
the classical normal distribution assumption like higher moments and jumps in underlying prices (Kon,
1984). These models achieve superior in-sample fits due to more degrees of freedom. At the same time,
there is a long history in the analysis of different determinants that drive option prices. First and foremost,
the moneyness smile is such an example, often explained by the influence of higher moments and tail risks
being visible in the implied volatility calculated under the normal distribution assumption. Here, the link
between the distribution assumptions and the determinants of the implied parameters can be seen, giving
rise to a research question: If determinants influence option prices in a classic Black-Scholes setting and
modern distribution approaches apply, can we observe a reduced influence from certain determinants or
even that the influence vanishes completely?

The phalanx of proposed distributions forms a long line, all with different strengths and weaknesses.
Despite the variety of approaches in literature, e.g.: wavelets (Ortiz-Gracia and Oosterlee, 2013), GARCH
option pricing with conditional volatility (Byun and Min, 2013), a Cornish—Fisher option pricing model
(Aboura and Maillard, 2016), or even neural networks (Cao et al., 2020), the class of Lévy processes have
emerged as a common spearhead for option pricing. They have become very popular in Finance in the
last few years (e.g., Geman et al., 2001; Carr et al., 2003; Cont and Tankov, 2015). In short, a stochastic
process with independent and stationary increments is called a Lévy process (Schoutens, 2005). It has
a typical characteristic function and allows for two additional features when compared to the normal
distribution, which is essential to our research. Firstly, it is possible to incorporate higher moments like
skewness and kurtosis. This means that tail risks can be accounted for. Secondly, this enables modeling
price jumps, which are very useful for high-frequency tick data and minimum tick sizes. Therefore, in
our particular case we use the well established variance gamma process introduced by Madan and Seneta
(1990) to combine ease of use with the application of context-related features. As Lévy processes seem
superior in both fitting real movements of the underlyings and pricing real options (e.g., Madan et al.,
1998), we ponder the question, is the normal distribution part of an “old-world” and thus outdated and
in need of replacing, or do Lévy processes only promise a good in-sample fit, but ultimately lead to
estimation problems, instability, computational intensity, and a poor out-of-sample fit, as they introduce
many degrees of freedom (Figlewski, 1997).

It is interesting to examine how the influences of individual parameters on the implicit parameters change.
Therefore, we briefly review this line of research next. On the front line of the implied volatility deter-
minants, four groups can be categorized: (1) momentum-, (2) time-, (3) liquidity- or information-related,
and (4) miscellaneous. Provided one of these interrelation exists, the analysis should show a weakening
of the momentum-related effects along with the same results as previously for the other categories. Papers
that evaluate deterministic implied volatility functions particularly analyze possible determinants of the
implied volatility. Besides the classical first four underlying moments (return, standard deviation, skew-
ness, and kurtosis), we summarize under the first category measurement of historical returns as motivated
by Mixon (2002) and Pefa et al. (1999) and the smile component. As second category the well-known
extension from a simple smile to a volatility surface opens the door to the time-related determinants, in-
cluding several dummies. For the third category, we follow Bollen and Whaley (2004), who analyze the
implication of net buying pressures (NBP) and information flow within a lagged first difference analysis



and add other liquidity and risk measures. Lastly, we contribute to the literature by introducing a dummy
variable, to control for the order book side (buyer-/seller motivated trade) and is a useful measure for
insights in the market microstructure.

To perform a comprehensive study on the influence of the determinants of the implied parameters under
different distribution assumptions, we use a novel high-frequency option dataset with trades and corre-
sponding order book data. Existing literature is mostly limited to low-frequency, end of day data or narrow
time windows. From the contributions to the strand of implied volatility mentioned above only Wallmeier
and Hafner (2001), Wallmeier (2015) and to some extent, Corrado and Su (1997) use a sub-5-minute
frequency for their central models. Even if some others also have reported a high-frequency dataset like
bid-ask intra-day prices, they are not mentioned as high-frequency literature, because after transforming
and filtering the data to e.g., a daily frequency, they use low-frequency for their analysis. This state of
affairs does not reflect the rising importance of high-frequency trading and data. The choice of the vari-
ance gamma process, which is a pure jump process, is particularly suited for high-frequency tick-by-tick
data. Due to minimum tick requirements, such data consists only of jumps and should not be assumed
to be continuously distributed. With this dataset, can we additionally open our paper to the possibility
that we may end up with superior knowledge, thus contradicting the market efficiency hypothesis? This
is especially relevant in the context of high-frequency traders, who often base their strategy on this kind
of information. We are interested in this topic as it is one of the most fundamental questions in finance.
The relevance is made clear, not least because of the 2013 Nobel Prize for Eugene Fama, Lars Hansen,
and Robert Shiller. With this, it is noteworthy to mention that non-normally distributed returns are not
incompatible to efficient markets (Samuelson, 2016). Much work has been done on the question of how
efficient markets are. The topic is still discussed with some evidence for (among others Fama et al. (1969);
Muntermann and Guettler (2007); Welch and Goyal (2008); Fama and French (2010)) and against efficient
markets (e.g., Chan (1992); Foster and Viswanathan (1993); Hong et al. (2000); Kirilenko et al. (2017)).
So far, the literature analyzes mainly long-term effects within days, weeks, or years. However, for markets
to be truly efficient, the hypothesis must also hold with high-frequency data. Besides addressing the mar-
ket efficiency question in the context of high-frequency trading, our dataset — covering over one million
DAX equity option trades of the year 2012 on a microsecond base and corresponding order book data — is
used to construct further determinants, like a dummy variable for buyer-/seller motivated trades.

We contribute to the literature by showing that novel distributions in a high-frequency context cover
momentum-related effects quite well at the cost of being more prone to changes in other determinants
and leaving a ragged image when it comes to stability and out-of-sample errors. Our results are in line
with the previous low-frequency literature. The new order book based parameters like clustering and
controlling for buyer-/seller-motivated trades support the novel approach and give new insights. We show
that the implied volatility follows a mean-reversion process, even if the order book side is controlled for.
Although we have a very good fit, we find no sign of violation of the market efficiency hypothesis and no
limits to arbitrage in an algorithmic trading scenario.

With this novel high-frequency data, the existing literature — in particular in the market microstructure
field — can be challenged further in subsequent studies. This paper is an essential step in the context of
high-frequency data and Lévy processes and is structured as follows. In section 2, we present the research
design, such as the regression-based moneyness and time-dependent foundation model, adoptions with

further incorporated determinants (normal model), and a delta approach. Section 3 follows with the



novel dataset, consisting of XETRA and EUREX tick data with corresponding order books and further
information. We analyze the results for the different regression models (delta, normal) separately and
present the out-of-sample results in section 4. In sector 5, we discuss the results in the context of the

previous literature. The last sector provides a conclusion and an outlook for further research.

2. Theoretical background and research design

Our empirical analysis is based on the comparison of underlying prices fitted by a straight forward nor-
mal distribution and an advanced jump process, which can cope with real world high-frequency non-
continuous tick data. Correspondingly the implied volatility under the normal distribution assumption
of dividend-paying American style options is calculated using an adapted version of Barone-Adesi and
Whaley (1987) (BAW) (see appendix C.4). For the variance gamma process (VG), a Lévy-process, the
parameters (0, 0, and V) are obtained using a fast Fourier transformation and convolution properties
following the work of Lord et al. (2008) and Kienitz and Wetterau (2012) (see appendix C.5).

To analyze how different features like moneyness influence these implied volatilities and other higher im-
plied moments, we make use of deterministic volatility models, which have already been used to describe
the implied volatility as a function. Based on the literature, we use two approaches to analyze and discuss
the impact of different distribution assumptions in detail in a high-frequency setting. Hereby, we follow
the idea of Pefia et al. (1999), who explain the implied parameter directly (normal model), as well as
Bollen and Whaley (2004), who use a first difference approach (delta model). As a foundation for our
panel regressions, we use a volatility surface, as described in section C.1 in the appendix. In this case, we
compare the smile approaches of Pefa et al. (1999), Wallmeier (2015), and Wallmeier and Hafner (2001)
with an additional time-to-maturity parameter. While adding flexibility increases the fitting quality of the
in-sample model, the important out-of-sample performance suffers. Therefore, and in line with Dumas
et al. (1998), we restrict our foundation model to be less complex with at most a single time parameter.
To choose which specification fits best, the AIC, AICc, and BIC are analyzed. All tested specifications
with corresponding AIC values can be found in chapter C.1 in the appendix. Pefia et al. (1999), and Tanha
and Dempsey (2015) review the parameters of the daily estimated individual smile components. This
approach does not make use of high-frequency data and decouples any intra-day relationships, which is
why we do not elaborate this further. However, for the sake of completeness, we also analyzed this proce-
dure without any remarkable gains in knowledge. It is only worth mentioning that the parameters show a
cyclical pattern relative to the rolling or expiration days, as seen in figure B.2 in the appendix. Noteworthy
at this point is the approach of Chen et al. (2016), who model the implied volatility surface with a nonlin-
ear Kalman filter using moneyness and time as parameters. However, this results in a far more complex
dependency structure, which does not allow easy comparison of the influence of the individual determi-
nants within the BAW and VG setting — not to mention the additional computational complexity of real
tick-data, which we use. We estimate the models separately for puts and calls, and cluster in buyer- and
seller-motivated trades as well, as for example, puts and calls could have a different dependency structure
on certain determinants (Dash, 2019). All in all, as we are interested in the potential direct shift of de-
terminant influences on implied volatility, we use the following regression models to explain the implied
volatility or change in implied volatility directly.



2.1. Normal model

Inspired by the approach of Pefia et al. (1999), we first develop a model to explain the implied volatility
directly, thus allowing review of determinants using trade-by-trade data. As a foundation for the models
we also determine if adding an autocorrelation process is suitable. The optimal lag length is analyzed
using information criteria (see table A.4 in the appendix) and a one-sided F-test (see table A.5). Thereby,

we find that an AR(1)-process fits best. Based on these insights, we apply a so-called ‘normal model’
o(t)=Po+Pi-o(t—1)+ P -Determinants + €, (1)

where o () is an individual implied parameter (volatility, skewness and kurtosis, respectively), and o (t —
1) is the preceding implied parameter from the same option and the same day. All determinants are
derived from literature and explained in detail in section 2.3. For our main results, we conduct a panel
regression with fixed-effects (FE) for every individual underlying, whereby we challenged the FE-panel
against a random-effects model. As a result of this, firm-clustered errors are used. For robustness checks,
we develop additional normal model variations (see the appendix C.2, equations 20, 21, and 22)

2.2. Delta model
Besides a general potential decrease of determinant dependency using a VG process measured with the
normal model, a decreased influence on variations in the determinants could also be seen. In the prominent
case of moneyness (which is one determinant of many), we could ask if a moneyness shift has as severe
an effect on implied volatility calculated using the VG-process as on one calculated based on BAW. To
measure the change within the implied volatility, we use the change of the implied volatility between two
observations. This approach can also be found in the literature. Therefore, we introduce a delta approach
based on Bollen and Whaley (2004), whereby we use our model foundation as a starting point again and
add an autocorrelation term. The optimal lag length is determined in line with the normal model with
information criteria and a one-sided F-test (see table A.6 and A.7 in the appendix). The delta model is
defined by

Ac(t)=Po+Pi-Ac(t — 1)+ B - Determinants + €, )

where Ac(t) = o(t) — o(t — 1). Again, we also utilize additional specifications of the delta model for
robustness (see the appendix C.3, equations 23 and 24).

Consequently, in contrast to other approaches that model the volatility surface dynamic and evolution
(Chen et al., 2016), we analyze the dependency on variations of the determinants (e.g.: moneyness) with
the delta model. This allows us to compare a potential change of these dependencies between implied

volatilities calculated based on the normal distribution and the VG process.

2.3. Determinants

The reviewed parameters are derived from literature and based on economic reasoning, whereby we use
our model foundation with the volatility surface and the AR(1)-process with the addition of the specifi-
cation by Bollen and Whaley (2004) as a starting point. We contribute to the literature by additionally
introducing new determinants, which cover the unique high-frequency order book data (e.g., buyer-/seller-
motivated trades) as well as dummies for days relative to the time to maturity.

For reasons of reader-friendliness, we group the determinants into (1) momentum-, (2) time-, (3) liquidity-
or information-related and (4) miscellaneous. Ergo, a change in the distribution assumption should only

affect the momentum-related determinants.



Within the momentum-category (1) fall the classical first four underlying moments (return, standard de-
viation, skewness and kurtosis), the history of returns measure of Pefia et al. (1999), and the smile com-
ponent. Thereby, we compute the underlying return as the log-return between the closing price of the
previous day and the underlying price during the option trade. Pefia et al. (1999) define a variable to
capture the information of return history as

&Y 80 Price;

T=t—1 , (3)

momentum effects / history of returns = log -
Price;

where the option price of day ¢ is given as Price;. We estimate the underlying standard deviation, skew-
ness, and kurtosis within a 60-minute window on underlying minute-by-minute return data, to fulfill the
high-frequency approach and simultaneously avoid issues due to unequal time intervals. Additionally, we
test a 60-day window of end-of-day returns for higher underlying moments. Wherever possible, trade-by-
trade based parameters are used. Bollerslev (2006) determines a negative effect of underlying returns on
implied volatility. This is explained by a more greatly leveraged and, therefore, riskier firm if the prices
go down (leverage effect) or by a price reduction in the market if volatility goes up (volatility feedback
hypothesis). Especially for deep-in and deep-out-of-the-money options the skewness is negatively and the
kurtosis positively correlated with the implied volatility (Corrado and Su, 1997). The smile shape over the
moneyness is covered by Pefia et al. (1999), who use a linear smirk and quadratic smile component and
review the role of different determinants on daily smiles. Their smile model is backed theoretically by
Zhang and Xiang (2008), who highlight that the implied volatility depends on a general level, on a linear
(slope), and on a squared (curvature) moneyness. Furthermore, Wallmeier (2015) fits smiles and expands
the smile function with a spline to the power of three.

When moving forward from the volatility smile to the volatility surface, we dive into the second group
of time-related determinants. Dumas et al. (1998) report different models with time parameters and con-
clude that while time is essential simpler models should be favored, especially regarding out-of-sample
performance. They use index options and estimate the volatility function once every week. Moreover,
Ncube (1996) analyzes the time to maturity by using daily data and additionally points out that volatility
is higher for put options in general. Based on this, we use the (square root of) time to maturity in days in
our normal model and the (square root of) time between two trades in seconds for the delta approach. A
weekly pattern is pointed out by Jones and Shemesh (2018) and Pefia et al. (1999). In the style of these
approaches and selection criteria of e.g., Day and Lewis (1992), we extend the analysis and add dummy
measures for the last trading day and shortest-term options.

Besides the parameters for the implied volatility surface, we review important liquidity and information
flow measures in the third category. Thence, we subsume trade and volume-based variables for the un-
derlying and options. Bollen and Whaley (2004) analyze the implication of net buying pressure (NBP)
on different moneyness categories for daily closing prices using a first difference regression. The daily
calculated information parameter NBP is defined for a single underlying, option style, and moneyness
category (see table A.3 in the appendix) as

A()pt : VOlopt “Dear 'Dput/call 'Dbuy

NBPput/call _
ot T}%es A(}pt ' VO!()])I ' Dpul/call
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; “4)




where A, is the option delta and Vol,,; the corresponding volume. The dummy variables are D,
which equals one if the trade matches the specified moneyness category, D, /¢4, Which equals one if the
traded option matches the specified contract type, and Dy, as defined below. For the NBP, all moneyness
categories (separated and combined), as well as option styles (put and call), are checked. As a control
variable for information flow, Bollen and Whaley (2004) apply daily trade volume of the underlying.
Besides trade volume, Longstaff (1995) notes that transaction costs and liquidity play a crucial role. He
reviews these determinants with a regression model using data of option prices and bid-ask quotations.
With this, we subsume trade and volume-based variables for the underlying and options. We calculate
another information criterion — the relative bid-ask spread — as the difference between the respective
top book entries divided by the mean bid-ask price, whereby the results are similar to the normal bid-
ask spread and therefore not reported separately. The last information parameter (round trip costs) is
computed as relative (compared to the hypothetical investment amount) costs to buy and sell an (delta
adjusted) amount of the underlying considering the order book depth and volume of each entry. We
review different investment amounts (1,000, 10,000, and 100,000 euros) with similar results for all.

Closely linked to plain volume and liquidity is the flow toxicity measure of Easley et al. (2012). They
introduce an estimated volume-synchronized probability of informed trading (VPIN), to measure flow tox-
icity as a potential risk management tool for market makers. Volume-based, it is specifically designed for
a high-frequency tick-by-tick context. Compared to regularly traded index and crude oil futures (Easley
et al., 2012) or stock prices (Poppe et al., 2016; Abad et al., 2018) our data consists of sparsely traded
options, with several option series per underlying, which is why we need to adjust the proposed buy and
sell volume estimates. Nonetheless, we strive to calculate a VPIN for each underlying. The basic idea is
that each respective volume is allocated based on the likelihood that it is a buy or sell order. Thereby, the
likelihood is measured as a trade price change from the previous traded volume bucket to the current. This
is exactly why we cannot merge different option series with different option premiums easily. A possible
workaround would be to calculate implied spot prices; however, for this procedure we would need an
estimate of the implied volatility itself. This is not applicable in our case; therefore, we apply a different
methodology. First, we compute for every trade i within the individual option series the likelihood of a
buy (Lf;) and the delta adjusted volume (V;). The buy and sell likelihood (Lﬁ.9 and Lf ) for a call is computed

as p_p
L?ZI—LI-S:Z(’_H), 5)
OAP

where P; is the trade price, and O-KP = ﬁ Y (P — P )2 with 7 as the total number of trades. For puts the
buy and sell likelihoods reverse. Please note that the first trade for every option series cannot be included
as we need a first P,_. After this procedure, the data is now comparable across each underlying and sorted
by time. The trading day is divided into n equal volume buckets Vv, to calculate the buy and sell volume

(V{? and VY‘S ) for every bucket as
B/S B/S
Ve =Y LS, ©)
ieY
The daily VPIN is then simply the absolute difference of the buy and sell volume divided by the total

volume: s 5
Yo Ve —Vrl
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We utilize each trade (which might be split by the volume bucket) to make use of the high-frequency



context. We choose for each underlying ten equal volume buckets for each day, taking into consideration
the option volume relative to the underlying volume as well as a potential intraday information shift.
However, we also have tested different bucket sizes without change in the general results. As the VPIN
measure and the indirect classification in buyer- and seller-motivated trades is very much disputed in the
literature (Andersen and Bondarenko, 2014b; Easley et al., 2014; Andersen and Bondarenko, 2014a) we
use both NPB and VPIN.

Within the fourth category, we add three measures. First, a dummy to control for the order book side
(buyer-/seller motivated trade) is a useful measure for insights in the market microstructure. The buyer-
/seller-motivated trade dummy (Dy,y) equals one if the trade price is above the mean bid-ask price (buyer-
motivated) and zero otherwise (seller-motivated). The volatility itself, and consequently the implied
volatilities are viewed as risk measures (e.g., Slim et al., 2020); thus, it is of no surprise that Dennis
and Mayhew (2000) find a clear positive relationship between the daily beta factor of the CAPM and
the implied volatility. To calculate the CAPM beta, we use the DAX as the market benchmark. Lastly,
the volatility is highly autocorrelated (Wallmeier and Hafner, 2001). Therefore, we use lagged implied
volatility, analogous to Bollen and Whaley (2004).

For all daily measures (e.g., beta of CAPM), we apply a time window of 60 days following Pefia et al.
(1999). Other time frame specifications are tested but provide similar results. As mentioned above, the
determinants to be used are selected based on economic reasoning and information criteria. The picked
determinants are benchmarked against factors selected by applying the lasso method following Tibshirani
(1996). The F-test results show that the manually-picked factors perform significantly better than the lasso
picked, both out and in-sample and in panel as well as in company-individual regressions.

Table 1 gives an overview of the finally reviewed determinants, their expected influence (+ denotes a
positive relation and — a negative, respectively) and literature references.

To conclude the research design, it should be noted that we apply Cook’s distance for all regressions to
exclude outliers and use the % recommendation of Bollen and Jackman (1985) as cut off criteria, whereby
n is the number of observations. Furthermore, we exclude all second moments larger than 1 as well as
relative pricing errors larger than 1%, as this could hint at bad convergence of our pricing models. To
evaluate for the pricing error, we first fit the implied parameters (e.g., implied volatility for the normal
distribution) based on the traded option prices and then use the implied parameters directly without any
further transformation to calculate the option price of the model. If the implied parameters fit well, the

traded price and the option price obtained with the implied parameters should not deviate by much.

3. Data and descriptive statistics

For our analysis of the determinants of the implied volatility smile, we use American DAX equity options
traded at the EUREX. The observation horizon covers 252 trading days of the sample period of the year
2012 and contains 1,044,976 trades from all 30 DAX members as of the end of the year 2012. Use
of this period has the advantage that it covers bullish as well as bearish times with different volatility
conditions. The option and underlying DEUTSCHE BOERSE trade and order book data is obtained via
the European Financial data Institue (EUROFIDAI) and provided by the BEDOFIH (Base Européenne de
Données Financieres a Haute Fréquence) database. Trade-by-trade option data covers for every trade at
least the series specification, the price, the time, and the quantity (volume). After disregarding trades that

breach the arbitrage boundaries of Merton (1973) during extreme market situations, trades for which it
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is impossible to calculate an implied volatility due to no convergence (0.28% of all trades regarding the
normal distribution and 2.96% regarding the variance gamma process), and trades on the expiration day
(1.97% of all trades), a sample of 972,907 trades remain. Note that the sample points of the regressions
are further reduced, as we demand that the lagged parameters and calculation of the delta parameters
must be from the same option series of the same day. After further adjustments in accordance with the
research design (cutting all options with an implied second moment greater than one or a relative pricing
error greater than 1% and applying Cook’s distance as well as excluding data points with any missing
information) the normal model results in 316,124 and the delta model in 250,266 usable observations for
the normal distribution, if we do not cluster any further into put/call or buyer-/seller-motivated trades.
Additionally, we require that at least one hour of trading must have passed for the underlying moments.
The sample also covers order book data besides trade information. Analogous to the underlying price,
this data is also available as snapshots. An order book snapshot of actively traded options is created about
every 35 seconds on average, whereas the gap between a trade and an order book entry is around 20
seconds. The order book snapshot must always be created before the corresponding trade. Every snapshot
has an order book depth up to three levels and includes the corresponding bid and ask prices as well as
the quantities. For every bid and ask price, the corresponding quantity (volume) is known as well. For the
first two months, we use additional real order book data (difference information).

The underlying prices are obtained from XETRA snapshot data. This means that it is not trade-based, but
that a price snapshot is frequently saved. The distance between two snapshots for one underlying varies
between less than a second and around half a minute with an average of seven and a half seconds during
the trading hours from 9:00 a.m. to 5:30 p.m. Additional data from other sources is required to calculate
the implied volatility. First, the Svensson method with input parameters from the Deutsche Bundesbank is
used to determine yield curves for each day. Second, we obtain dividend yields for each underlying from
the Thomson Reuters Datastream. Based on this data, we present an example comparison of the actual
used implied volatilities calculated using BAW and VG in the appendix (see figure B.1). It is noteworthy
that the smile component is not as distinct when we use the VG process.

Table 2 presents an overview of the traded options in our dataset. It should be noted that nearly as many
calls as puts are traded and that one trade can contain several contracts. Buyer- and seller-motivated trades
are nearly balanced, with a little more buyer- (53.76%) than seller-motivated trades (46.24%). Details can
be found in table A.1 in the appendix. The trades are arbitrarily distributed over time and do not follow a
trend.

The majority of traded contracts have a short time to maturity. Table 3 highlights that the shorter the time
to maturity, the more liquid the option series is.

The option term structure depends on the horizon. Up to three months, there are options for every month,
up to a year for every quarter, up to three years for every half-a-year, and up to five years for every year.
Options always expire on the third Friday of a month, and if not a business day the previous day is used.
To guarantee a correct assignment of lagged and delta data it is essential to sort the data first by option
series and then chronologically ascending. To avoid jumps, we exclude all data from the regression with
lagged terms from another day or option series than the dependent variable. We also review the correlation
of the determinants, because high values can lead to problems. Additionally, this reveals relations between
the different variables and helps to understand specific effects. Table A.8 in the appendix reports the

correlation coefficients of the panel date for 23 parameters, which we use in the normal model (tables
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Table 2: Number of trades over the year 2012 per underlying

Ticker symbol  Underlying Calls Puts All
ADS Adidas AG 6,397 8,730 15,127
ALV Allianz SE 3,462 3,339 6,801
BAS BASF SE 20,108 20,942 41,050
BAY Bayer AG 19,927 21,581 41,508
BEI Beiersdorf AG 22,475 24,005 46,480
BMW Bayerische Motoren Werke AG 22,207 24,520 46,727
CBK Commerzbank AG 13,930 16,360 30,290
CONT Continental AG 1,329 1,484 2,813
DAI Daimler AG 44,023 48,701 92,724
DB1 Deutsche Borse AG 3,672 4,541 8,213
DBK Deutsche Bank AG 55,053 59,988 115,041
DPW Deutsche Post AG 6,482 7,277 13,759
DTE Deutsche Telekom AG 19,400 20,833 40,233
EOA E.ON SE 33,436 31,747 65,183
FME Fresenius Medical Care AG 29,938 35,565 65,503
FRE Fresenius SE 2,188 2,719 4,907
HEI HeidelbergCement AG 3,062 3,405 6,467
HEN3 Henkel AG 4,147 4,721 8,868
IFX Infineon Technologies AG 5,601 6,732 12,333
LHA Deutsche Lufthansa AG 5,781 6,382 12,163
LIN Linde AG 2,322 2,557 4,879
LXS LANXESS AG 5,617 6,784 12,401
MRK Merck KGaA 3,182 3,867 7,049
MUV2 Miinchener Riickversicherungs-Gesellschaft AG 8,606 11,497 20,103
RWE RWE AG 30,223 30,408 60,631
SAP SAP SE 21,529 20,139 41,668
SDF K+S AG 9,507 9,197 18,704
SIE Siemens AG 40,914 41,910 82,824
TKA ThyssenKrupp AG 18,810 21,776 40,586
VO3 Volkswagen AG 3,311 4,561 7,872
Total 466,639 506,268 972,907

Table 3: Liquidity statistics for option trades relative to time to maturity

Time to maturity <lweek <lmonth <3 month <6month <Iyear >1 year
Proportion of trades 10.0% 25.3% 31.1% 13.9% 14.1% 5.7%

The proportion of trades refers to the given time to maturity interval, excluding the previous interval.

6 and 7). In addition, a low correlation prevails in general, with a maximum coefficient of 0.82 for the
bid-ask spread and round trip costs and a minimum coefficient of —0.68 for the time to maturity and the
dummy for the shortest time to maturity. Furthermore, we test the determinants by applying an Augmented

Dickey-Fuller test and reject a unit root.

4. Results

In this section we first present the results of the delta and normal models as well as a robustness checks.
We focus on comparison of the two pricing methods with determinants like the net buying pressure of
Bollen and Whaley (2004) and the mean-reversion process of the implied volatility and give an outlook

with an out-of-sample approach.

4.1. Delta model results

We start to investigate the effects of determinants on the implied volatility with the delta model and set

the results for the normal distribution of table 4 in reference to the results of the variance gamma process
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assumption of table 5. If not otherwise reported, all factors are highly significant at the 1% level.

It is striking that an alternating volatility smile dependency is apparent in both tables. For normally
distributed returns, we see a positive linear and squared A moneyness influence throughout (except for
buyer-motivated puts) and a mixed influence of the A moneyness to the power of three, which is neg-
ative for calls and positive for puts if clustered in buyer-/seller-motivated trades. In contrast the smile
component for the variance gamma process is less prominent for unclustered calls, while it reverses for
unclustered puts. Here, we report a A moneyness to the power of three, which is mostly positive if we
report a negative smile component and vice versa. These alternating effects may weaken the smile. The
A moneyness to the power of three has a bigger magnitude than the squared A moneyness, resulting from
the very low moneyness values near zero. The time component is negative for all pricing models, yet,
never significant.

For the change in the underlying return and standard deviation, the results for the normal distribution are
positive throughout, indicating an increasing implied volatility with higher returns or standard deviation.
This statement coincides with the variance gamma assumption only for the standard deviation. For the
change in returns, we have an alternating picture with smaller estimates for calls and bigger ones for puts,
analogous to the linear moneyness results. This comes as no surprise, as the two measures are highly
correlated. It should be noted that these changes are tiny, especially for the A returns, as the average
absolute percentage change for returns is nearly zero.

The liquidity measures seem contradictory when comparing the two assumptions, yet are significant for
all clusters. As an example, the A bid-ask spread for no clustering (all/all) has a negative estimate of
-0.0025, and the variance gamma process has a comparable positive value of 0.0089. However, the round
trip costs act in precisely the opposite way, with regression results of 0.0069 and -0.0136. Overall it is
necessary to take a closer look at the buyer and seller cluster, as for the normal distribution an increasing
A bid-ask spread has a negative influence on all seller-motivated trades. This indicates sellers receive less
money for their options and vice versa for buyers, as they have to pay more. Analog conclusions can be
drawn for the variance gamma process, whereby the round trip costs counteract.

Additionally, a control for the sale direction is equally important in both worlds. Due to the construction
of the A buyer-/seller-motivated determinant, it has the value 1 if the trade direction changes from a seller
trade to a buyer trade, —1 if it changes in the opposite direction, and O if the direction does not change
(seller- following a seller-motivated trade or buyer- following a buyer-motivated trade). This quasi dummy
is only useful and applicable for regressions, which are not clustered in seller- or buyer-motivated trades.
This means that with an estimate regarding all options (non-clustered) of 0.0012 and 0.0018, respectively,
the option price rises if we look at buyer-motivated trades.

We can replicate the results of Bollen and Whaley (2004) and show an influence of the net buying pres-
sure, reported for at the money call (ATMC), and put (ATMP). Contrary to most other determinants, it
is not highly significant for all variations. The measure is daily, which could weaken the influence. For
the variance gamma process, it can be seen in the buyer-/seller clustered columns that if both ATMC
and ATMP are jointly significant, ATMC is positive for seller-motivated trades and negative for buyer-
motivated. In contrast for ATMP, it is the other way round (negative for the seller and positive for the
buyer). To some extent, this pattern repeats itself for the implied volatility calculated based on the normal
distribution assumption. If only one of the two is highly significant, it is positive. Looking at the signifi-

cances, it appears that the ATMC factor is more informative for calls and the ATMP for puts, as expected.
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The VPIN measure is always positive in the normal distribution case, and in general bigger for puts than
for calls. Thus, apparently more informed trading leads to rising implied volatilities. It is negative for
clustered calls in the variance gamma case. Besides the net buying pressure, we control for further daily
constant factors.

Particularly remarkable are the highly significant negative autocorrelation terms for all variations. The
regression results range from —0.365 to —0.237, suggesting a mean-reversion process.

The R? is around 10% for both assumption variations, with the variance gamma process having a seem-
ingly better fit for buyer-motivated trades and the normal distribution for both seller-motivated and non
clustered trades. However, despite these R2, all residuals of the normal distribution have a highly signifi-
cant lower variance well below the 1% level, which was tested with the F-test. This contradiction can be
explained by the inherent lower volatility of the dependent variable within the normal distribution context
when compared to the variance gamma approach. This is a result from the initial fit. Consequently, the
linear regression on the variance gamma parameter is — in the above mentioned cases — able to explain
relatively more of the (larger) in-sample variance of the dependent variable; however, the residuals still
bear a higher variance.

Also, the higher moments three and four (skewness and kurtosis, not separately reported), as well as the
actual direct parameters of the variance gamma process (0, 6, and V), behave similarly in general, espe-
cially regarding the mean-reversion process of the negative AR(1) lag. Hereby, the net buying pressure is
less significant.

4.2. Normal model results

In line with the delta model, we report and compare the panel regression results for the normal model
with the normal distribution assumption (see table 6) and the variance gamma process (see table 7) in the
following.

As expected, we see a highly significant volatility surface dependency with a negative smirk (linear mon-
eyness) and at least for the normal distribution a positive smile with a negative spline (moneyness to the
power of three). A somewhat surprising result is that this positive smile pattern repeats itself also for the
variance gamma assumption. Thereby, the estimate for the smile (moneyness squared) over all trades is
around 0.024 for both assumptions. For the variance gamma process however, it even changes to negative
values for some buyer-motivated trades, flattening the smile with alternating results for the moneyness
to the power of three. Overall, it seems like the smile dependency is more pronounced for the variance
gamma process. Yet, it should be noted that this reverses if we perform a panel regression without the
lagged implied volatility term. This reduction in the smile component can also be seen in the plotted
implied volatilities over the moneyness in figure B.1 of the appendix. In both worlds the time factor is
highly significant and negative throughout, with higher absolute values for the variance gamma process.
The time dummies consistently show that for shorter maturities, a rising implied second moment is to be
expected because of parameter stationarity — in line with the behavior of the volatility surface. This is
mostly true for the normal distribution as well, besides the negative connection of buyer-motivated trades
to the shortest time to maturity dummy, which might suggest lower spreads.

The return factor is negative for the normal distribution assumption as expected; however, a positive
effect is often noticeable for the variance gamma process. This might result from the negative relation
between the returns and the oppositely-acting historical returns (see table A.8 in the appendix), which
significantly and positively influences the implied factor in both assumptions, just like the underlying

13



standard deviation. Due to the definition, the historical returns are negative if the current return is higher
than the average past return. The negative skewness is an essential factor for the normal distribution,
indicating tail risks. In general this is also true for the variance gamma process, yet the results are less
significant. Here it is noteworthy that the third implied moment of the variance gamma process has a
positive and more significant relation to the underlying skewness. For the fourth implied moment, the
underlying kurtosis is in general not significant; however, the signs of the regression estimates become
positive. Similar conclusions can be drawn for the direct factors of the variance gamma process (o, 0,
and v).

All volume measures are insignificant, just like the overall net buying pressure. In contrast, the at-the-
money net-buying-pressure for puts and calls is significant with a positive sign, which means that a higher
buying pressure drives the prices. It is essential to review the results of the liquidity measures in detail,
similar to the delta model. We see again the puzzle of these measures balancing each other out to a cer-
tain extent. The results of the VPIN measure within the normal distribution case show that the implied
volatility is herewith positively connected for seller-clustered calls and buyer-clustered puts, and nega-
tively connected for seller-motivated puts and buyer-motivated calls. This is also true for the VG process,
with the exception of seller-motivated calls. In summary, the results surprisingly seem to indicate that for
half of the cluster a higher probability of informed trading lowers the option prices. If we break down the
results into buyer- and seller-motivated trades, we see at least for the normal distribution that the spread
is negative for sellers and positive for buyers, beside buyer puts — indicating that sellers face a lower and
buyers a higher price. This condition is not as clear for the variance gamma approach. The risk measure
CAPM is a significant positive driver for both.

Once again, the new dummy factor buyer-/seller-motivated trade is an essential addition and nearly always
highly significantly positive, which implies that control for an order book side is working and relevant.
The AR(1) process is again very dominant with an estimate near one for the normal distribution as-
sumption and around 0.8 to 0.9 for the variance gamma process, thus highlighting the importance of the
autocorrelation process.

The R? near one (normal distribution) indicates a very good fit, mostly driven by the lagged implied
volatility. Analogous to the delta model, the R? for the variance gamma process is lower, yet still very
high with values greater than 80%. The F-test on the residuals reveals once again a highly significant
lower variance for the residuals of the normal distribution approach below the 1% level.

Similar results are observable for the regressions of the implied third and fourth moment and the factors

of the variance gamma process, ¢, 6, and v (not reported).
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4.3. Further tests and robustness analysis

As mentioned, we also conducted all our analyses with the implied third and fourth moment as well as
with the variance gamma process parameters o, 8, and v. To keep the scope of this paper somewhat
moderate, we do not report the corresponding tables separately — just like the results of our additional
model specifications, described in sections C.2 and C.3 in the appendix. They consist of an approach using
only the AR(1) term and of all determinants without the dominant AR(1) term, based on the approach of
Peiia et al. (1999). We only use the simple autocorrelation process of the fourth normal model (NM4) as
an out-of-sample benchmark.

Following the approach of Bollen and Whaley (2004), we perform all of our analysis on the individual
firm level and aggregate the results with the median to control for potential outliers. As there have been
no new insights we do not report the tables separately.

Additional smaller variations like heteroscedastic and autocorrelation robust standard errors, different
time horizons, and much more have been tested without loss of generality. All the approaches are listed
in table A.2 in the appendix.

We noted that even though the in-sample fits of the normal distribution and the variance gamma behave
very well, the out-of-sample estimates of these two approaches are very diverse. Consequently, we present
and compare the out-of-sample errors of the distributions using both the delta and normal model in table
A.9 in the appendix as the last addition to our results. The errors are computed daily with a rolling

out-of-sample estimation of the pricing parameters:

1. We exclude the day d; of our sample D (d; € D) and estimate with the remaining data of the days
D’ = D # d; the regression coefficients B of the delta and normal models.

2. We calculate the out-of-sample implied parameters for the day d; with the regression results from
step 1 (Bpy) for the delta and normal models.

3. We determine a price with the option price models and use the out-of-sample implied parameters of
step 2 as input.

4. We compute the relative out-of-sample errors from the model price of step 3. and the real price
from the trading data.

5. We perform steps 1 to 4 for all days (d;,d5,d3,... € D) in the sample to obtain the relative pricing
errors for all recorded trades.

Due to the strong reaction of the variance gamma process on small changes, we estimate the implied mo-
ments (second, third, and fourth) and calculate the parameters o, v, and 6 with the simplified method of
moments, as described in equation 37, which smoothes the outcome and results in lower errors. Neverthe-
less, the process remains very sensitive to parameter variations, leading to very high relative out-of-sample
errors for the variance gamma (often bigger than 1000%). For the normal distribution assumption, very
small out-of-sample errors arise, which are around 1% and just a fraction of the bid-ask spread. While this
shows a very good fit, they are not superior to a naive forecast or to the tick size. As the benchmark values
for tick size and spread are the same in both distribution assumptions, the same values are reported twice.
We see that the delta model is superior to the normal model for the normal distribution assumption; how-
ever, the opposite is true for the variance gamma process. For the naive forecast of the variance gamma
process, a percentage error of 12.65% seems high, as it would be expected to be in the same range as the
naive forecast of the normal distribution at 1.21%. This is due to the smoothing usage of the simplified

method of moments approach as described in this paragraph. The same naive forecast benchmark with
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the direct variance gamma process parameters is indeed in the same range. Not reported are the additional
model specifications, whereby it should be noted that models without an autocorrelation term perform

worst. Clustering helps in general to improve pricing errors.

5. Discussion

In general, we can report the expected flattening of the moneyness smile when applying a variance gamma
process. However, we find a highly significant positive smile pattern present for both distribution assump-
tions. When reviewing the different model specifications in detail, the moneyness smile is less pronounced
if we incorporate an autocorrelation term. This is true not only for the delta model but also for the normal
model. Therefore, it is essential to understand that some effects are covered by the autocorrelation. This
is also true for most of the smile effects, which is why the smile results within the normal model are of
the same magnitude for both option pricing methods, even if there is clearly a flattened smile as reported
for the normal model without the autocorrelation (NM2, equation 20, see also figure B.1). It is an essen-
tial learning that the lagged term potentially covers several effects and this behavior will come up again
with other determinants. Therefore, the tail risk measures skewness and kurtosis (drivers of the smile) are
already incorporated in the autocorrelation term in the normal model. All of this suggests that additional
factors must also be taken into account. Besides the aforementioned model assumptions, the smile pattern
is often attributed to behavioral effects (Han, 2008; Poteshman, 2001), which are not entirely incorporated
in the net buying pressure. Additionally, Tanha and Dempsey (2015) show that only the smile coefficients
of in-the-money options react to a change of liquidity, volume, and momentum measures. This could drive
the smile. We control for these effects implicitly within our models via a moneyness-depending dummy.
Our results suggest that also in a high-frequency context, a combination of both tail risk measures and
additional factors leads to the observed smile. Therefore, approaches that flatten the smile completely
must be considered critically.

Contrary to the volatility smile, the influence of market microstructure and information flow determinants
is unchanged and independent of the distribution assumptions. As these measures should not be affected
by the pricing model the general suitability of the variance gamma approach is highlighted. Influence of
information flow on all implied parameters is found in line with Bollen and Whaley (2004) for the net
buying pressures at the money (ATMC and ATMP). New market information drives investors’ market
activity, the demand for options, therefore market prices, and consequently, the implied volatility. If many
market participants intend to buy, the implied volatility rises, and vice versa if they want to sell. Atten-
tion should be drawn to the fact that call (put) buying pressure is negatively (positively) associated with
skewness, also showing the influence of buying pressures on the pricing of tail risk. Thereby, information
is interestingly not related to volume, but to buying pressures at the money. This price formation process
not just widens the bid-ask spread but also drives prices, because the spread and net buying pressures
are not correlated. The ATMC measure seems to be more informative for calls and the ATMP for puts.
Regarding the market microstructure, the control for buyer- and seller-motivated trades is one of the most
important extensions. It is particularly crucial for the delta models. Therefore, this determinant must be
controlled for either by clustering or with a dummy approach. The positive influence on unclustered data
is obvious, as buyer-motivated trades are more expensive than seller-motivated trades. This parameter is
particularly important in the context of high-frequency trade-by-trade data for both distribution assump-

tions. The results of the VPIN measure seem puzzling. If we focus on calls, we see that a higher VPIN,
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which should capture a higher probability of informed trading, leads to a smaller spread (positive VPIN
for seller- and negative VPIN for buyer-motivated calls). It seems counter intuitive that more informed
trading leads to a lower spread, as we would expect market makers to widen the spread in high VPIN
cases, to protect themselves from traders with superior information. Therefore, we argue that the VPIN
does not measure informed trading in our case, but rather discount trading. If one order book side has a
favorable price, market participants would use this opportunity and trade on this side; e.g., if the offered
price to buy a call is relatively high, a market participant would sell his option, thus driving the seller-
motivated price and leading to a high VPIN. The reverse causality is true for buyer-motivated call trades.
The put results underline this argument. In the construction of the VPIN, we chose to reverse the VPIN
buyer and seller volume (if an informed trader knows that the underlying is undervalued, he could buy
calls or sell puts). Therefore, the results of an information measure should be the same for puts and calls,
if indeed information is measured. However, if a price discount is measured, a reversion of the (reversed)
VPIN put result — the case within our sample — would make sense. Therefore, we believe that the VPIN
is not always a suitable tool to measure flow toxicity, which is an interesting addition to the debate of
Andersen and Bondarenko (2014b), Easley et al. (2014), and Andersen and Bondarenko (2014a), as well
as Collin-Dufresne and Fos (2015).

A negative impact of time is evident, in contrast to Dumas et al. (1998). However, they adjust their
moneyness by %, leading to a steeper smile for longer time horizons. The negative effect of time,
especially for deep-in and deep-out-of-the-money options, can be seen in Cont and da Fonseca (2002) or
Fengler et al. (2006). Moreover, Hull and White (1987) find that the Black-Scholes formula causes an
overpricing that increases with time to maturity. Even though the time component is not significant in
the delta model, the signs are consistently negative. Further time-related parameters are the dummies for
the shortest time to maturity and the last trading day. Many studies, like that of Day and Lewis (1992),
only focus on options with the shortest time to maturity for liquidity reasons. As we perform a dummy
control approach, we do not have to exclude data. However, we also use a robustness test, excluding
options with time to maturity longer than a month without any differences. Time dummies have the same
effects as the time to maturity for the VG process (higher implied second moment with a shorter time to
maturity); however, for the normal distribution assumption the influence of the shortest time to maturity
reverses for buyer-motivated trades. Even if this might hint at narrowing spreads for shorter maturities,
we see correlation-wise no such connection. Counterintuitively, the time measures are correlated in such
a way that shorter maturities are connected to higher spreads (see table A.8 in the appendix). This might
be explained by increased trade of deep in and out of the money options (see figure B.3 in the appendix),
as we see a shrinking spread with time for (deep-)in-the-money options and a widening spread for (deep-
)out-of-the-money options. But the main driver is, in fact, the definition of a relative bid-ask spread. On
average option prices decrease with time, while the absolute spread is relatively unaffected by time leading
to the reported negative correlation between spread and time, which becomes positive for absolute spread
measures. Therefore, the spread is in both cases (relative and absolute) not only a liquidity measure
but also another time measure. This is especially true for the variance gamma distribution due to the
diminished influence of the AR(1) process. As less movement of the dependent variable can be explained
by the lagged term, the time influence of the bid-ask spread becomes more pronounced. Additionally,
it is difficult to see a clear pattern in the influence of the liquidity parameters, bid-ask-spread and round

trip costs, as their signs switch based on different clusterings and model assumptions, respectively. While
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Pefia et al. (1999) only report a positive influence of the spread on the smile, we see that the two measures
are interleaved and counterbalance each other to a certain extent. However, it can be seen for the normal
distribution that a wider spread has a generally negative influence on seller-motivated trades and a positive
influence on buyer-motivated trades. To some extent this is also true for the VG process, but the effect
is not as clear due to entanglement with time to expiration. However, we conclude that datasets should
be clustered into buyer- and seller-motivated trades so that the liquidity parameters can unfold their full
potential. Consequently, we report that with a higher spread, the implied volatility is lower for seller-
motivated trades, thus they must be sold for lower prices. For buyer-motivated trades the spread has a
positive influence; therefore, trading becomes more expensive for buyers.

Furthermore, the moments of the underlying returns are very effective measures. The negative influence
of returns on implied volatility is vastly reviewed in the literature and ascribed to either the leverage or
volatility feedback hypotheses. The first hypothesis argues that with a decline in share prices, the leverage
of a firm rises as the equity value decreases. As an investment becomes more risky the volatility rises.
The second hypothesis has a reversed causal relationship: with an increase in volatility, investors expect
to be compensated with lower prices. In general, our high-frequency data shows this negative relation
between implied volatility and underlying returns as well. However, if we look at the delta model results,
all estimates for the normal distribution are positive and differ from the expectations. This is also true
for some clusters of the VG process. For the delta model, this results from the positively correlated A
Moneyness. If we exclude the moneyness terms, the influence of the underlying return becomes always
negative for the normal distribution, which can occur because of leverage or volatility feedback effects
(Bollerslev, 2006). The results of the normal model point to the leverage effect. While we report only
negative relations between implied volatility and returns in a normal distribution setting, the picture for the
variance gamma process is intermixed. What we report for the VG process is a transition of the risk from
the leverage effect to the higher moments, which the variance gamma process enables. In comparison, we
find no indication for the volatility feedback hypothesis, which necessarily predicts a negative connection
between implied volatility and return.

For the history of returns (a short momentum effect) the classic picture holds. Due to the construction of
the factor, a positive value implies that a current return is lower than the average. Therefore, all returns
lower than the average have a positive impact on the implied volatility. Regarding the other moments,
we start with the underlying second moment. Even if the Black and Scholes (1973) assumption of a
linear volatility does not hold, it should be evident that the current underlying volatility influences the
implied volatility in the same manner. The skewness is more complex to review. For the normal model,
a solely negative effect is present in the Black-Scholes setting, which is puzzling. We would expect, as
seen for the variance gamma assumption that we have a negative sign for puts and a positive sign for
calls. Herewith, fat tail risks are priced accordingly. Interestingly, the significance of the third moment
decreases in the variance gamma context, whereas it rises again if we review the implied third moment,
which evinces a sensible model behavior and foundation. Even if the influence of the fourth moment,
kurtosis, is not significant for any regression (also regarding the implied fourth moment), the regression
coefficients become positive, as expected from a robust model.

The beta of the CAPM captures the underlying’s sensitivity to the market risk of the underlying (Copeland
and Weston, 2000). Hence, we control for a more general risk by using it. With higher market risks the

implied volatility rises, which itself is viewed and used as an uncertainty measure and predictor (Baker
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et al., 2016). Consequently, a positive relation of historic risk (beta) to future expected risk (implied
volatility) is consistent with the expectations.

The last and most important determinants to be reviewed are the lagged implied volatilities. For the normal
model it is obvious that the process is nearly entirely autocorrelated, in line with Cont and da Fonseca
(2002). For the variance gamma distribution the autocorrelation is not quite so pronounced. Resulting
effects have already been shown, such as the temporal characteristics of the bid-ask spread. The reduction
of the AR(1) term is probably caused by the broader scattering of the numerically-computed implied
parameters — also important for the out-of-sample pricing, discussed later. The delta model provides
further insightful results. The highly significant negative autocorrelation on a sub-second time scale in
this model could be explained by trades alternating between higher ask and lower bid prices, like in the
model of Roll (1984). Nevertheless, the significant negative AR-process prevails, if we cluster separately
for buyer- and seller-motivated trades. This mean-reversion process is due to the order book dynamics and
algorithmic trading. When reviewing the order book dynamic, we see that a mean reversion process in
the prices and, consequently, in the implied volatility is induced by so-called flickering quotes or fleeting
orders (a rapid order submission and cancellation pattern). Figure B.4 presents a representative six minutes
example of order book prices at the top of the book. In this example not a single trade occurred, thus the
price movements are purely dynamics of the order book. The trades clustered for one side (bid or ask)
do not alternate between the bid (bottom) and ask (top) prices, but between new (better) offers and (bad)
offers after a subsequent cancellation. These flickering quotes drive our highly-significant mean-reversion
process.

One shortcoming of our approach should be mentioned. Even if we try to use high-frequency data when
applicable, we still rely on some determinants with a daily-frequency (e.g., the CAPM coefficients).
Table 8 gives an overview of the results and comparison with expectations. Despite some possible weak-
nesses, the added value of our analysis outweighs it. We show the resilience and strength of our unique
high-frequency trade-by-trade data, and apart from confirmation of existing literature, we introduce new
important order book based determinants. All in all, the broad and unique dataset gives a good overview
and covers many different effects.

The last but most crucial point is the direct comparison of the standard Black-Scholes inspired models
using the normal distribution and advanced approaches with, e.g.: Lévy processes such as the variance
gamma process in our case. We have shown that using fast Fourier methods, it is easily possible to adapt
a Lévy process to (American) option pricing. The models behave as expected, meaning there was a less
distinct volatility smile, and the influence of higher moments (third or fourth) on the second moment be-
came weaker while the respective underlying moment for the implied third and fourth model was stronger.
The obvious downsides are that using advanced stochastic processes, especially for calculating implied
moments for American options, is very computationally expensive. Furthermore, some data points did
not converge to a useful solution. Additionally, of course, advanced methods are harder to cope within a
trading environment. Instead of one intuitively understood relative price parameter (like implied volatil-
ity), in our case at least three parameters must be taken into account. Leaving all these points aside, the
biggest disadvantage can be seen in the out-of-sample test. While the variance gamma process allows for
flexibility, it reacts drastically to the smallest parameter variations. We have a very stable approach with
our delta model, but even with this, the pricing errors are tremendous. For a business case with proba-

bly even more uncertainty in parameter forecasting, this problem worsens and results in a not applicable
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outcome. On the other hand, the out-of-sample prices of the normal distribution setting are — despite the
shortcomings of the model — very stable and result in a tiny error in the range of one tick. This means that
this approach is usable in a working environment and beats the variance gamma process in this context
easily. Compared to the forecasting error found by Chen et al. (2016), who model the implied volatility
surface using a nonlinear Kalman filter approach, we report smaller errors within the normal distribution
setting. As further research, the complete analysis could also be applied to index options. For this type
of options, a very interesting research subject would be to compare the impact of a Black-Scholes setting
against a Lévy process on different determinant dependencies. The smile of index options is generally
steeper for index options (Branger and Schlag, 2004; Elyasiani et al., 2020), so we would expect that the
influence offloading of moment and moneyness parameters is more evident, while the market microstruc-
ture determinants should prevail. Additionally, the computational complexity of index options is reduced,
as the option style is mostly European. Furthermore, a theoretical paper on why index options have a
more prominent smile could enlighten the discussion.

In the end, we are not able to deliver a superior forecast with all of our high-frequency data. Even if
we have a very rich dataset with adequate relevant information in the determinants, the naive forecast
is at least equally good. From this follows that even within a high-frequency trading environment and
potential co-location of traders, no excess profits can be made. This might be due to high-frequency
traders adjusting prices and expectations very fast, leading to efficient prices. All things considered, it is
not possible for non-insiders to make a profit, even if all public information is considered. Therefore, as a

closing thought, we conclude that the markets are semi-strong efficient.

6. Conclusion and outlook

In this study we compare the classical Black-Scholes setting with the (pure jump) variance gamma pro-
cess, which accounts for higher moments. Using high-frequency tick-by-tick data of over one million
American option trades, we are able to review the different influences of several implied volatility de-
terminants with the two distribution assumptions. We show that the variance gamma process weakens
the smile problem of the normal distribution, even if it does not resolve it completely, indicating that the
smile incorporates not just tail risks but also other effects, like a behavioral component. The influence
of the underlying moments (return, skewness, and kurtosis (Corrado and Su, 1997; Mixon, 2002; Boller-
slev, 2006)) reflect the expectations — like growing importance of the higher moments for higher moment
related variance gamma parameters — and reveal interesting conclusions such as an indication of the lever-
age effect in the underlying return. Other determinants known from the low-frequency literature, like time
(Dumas et al., 1998; Peiia et al., 1999; Wallmeier, 2015), liquidity and information flow (Longstaff, 1995;
Bollen and Whaley, 2004; Easley et al., 2012), and market microstructure are not significantly influenced
by the pricing model choice. A further learning is that the time effect influences the relative bid-ask
spread, which is more pronounced for the variance gamma process. With the help of our detailed and
novel dataset, we can develop new significant parameters like a control for buyer- and seller-motivated
trades. Furthermore, we reveal a mean-reversion process of the implied volatility on a sub-second scale,
driven by the market microstructure. Our results are proven by different robustness checks. In addition,
the power of the deterministic implied volatility model can be seen from the small out-of-sample errors.

We also provide an out-of-sample test of the pricing models. The seemingly advanced variance gamma

process reacts drastically to small parameter variations, which is not applicable for any market maker,
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even if it is more robust compared to other distributions like CGMY (Fiorani, 2004). By contrast, the
simpler pricing methods of the normal distribution with a simple forecast of the implied volatility delivers
very good and stable pricing errors in the range of the tick size, well below the bid-ask spread. It is
manageable, intuitive, and easy to talk about, as it just uses one implied parameter.

Future additional research should be done on the order book phenomena of fleeting orders and their causes.
Even if there are some explanations like the search for hidden liquidity (Hasbrouck and Saar, 2009), this
does not apply to our data as there are no hidden orders possible. This would be in line with the objective
of O’Hara (2015), who emphasizes that market microstructure literature must reflect the new reality of
high-frequency trading. The excellent quality of our data allows for other order book-based research.
With this dataset, the lead-lag relationship between stocks and their derivatives when new information is
introduced to the market can be analyzed further, as done by Huth and Abergel (2014) and Judge and
Reancharoen (2014). This could reveal the role of hedge activities, wherein the usage of order book data
promises a better understanding of market connections. Additionally, the ongoing debate of the put-call
parity (see, for example, Kamara and Miller (1995), Hsieh et al. (2008), and Cremers and Weinbaum
(2010)) can be challenged. Lastly, the effect of crises on the different determinants, like the COVID-19
pandemic (Papadamou et al., 2020) as well as index options would be interesting to analyze in the future.
All in all, our findings support the information content of different determinants, which notably does not
contradict efficient markets. Echoing the last scene of the Coen brothers’ neo-Western crime thriller: We
awake from a dream, report a bit disenchanted on new approaches that tend to backfire in the free and open
out-of-sample world, and simultaneously are confident in the justness of the predecessor, which shines the

way for us. In spirit of the tale, it still is “a country for old distributions”.
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A. Tables

Table A.1: Proportion of buyer- and seller-motivated trades per underlying

Underlying Buyer-motivated ~ Seller-motivated
Adidas AG 52.73% 47.27%
Allianz SE 51.89% 48.11%
BASF SE 53.82% 46.18%
Bayer AG 52.92% 47.08%
Beiersdorf AG 52.37% 47.63%
Bayerische Motoren Werke AG 52.53% 47.47%
Commerzbank AG 55.73% 44.27%
Continental AG 48.78% 51.22%
Daimler AG 53.78% 46.22%
Deutsche Borse AG 54.95% 45.05%
Deutsche Bank AG 55.13% 44 .87%
Deutsche Post AG 55.41% 44.59%
Deutsche Telekom AG 55.04% 44.96%
E.ON SE 56.37% 43.63%
Fresenius Medical Care AG & Co. KGaA 56.67% 43.33%
Fresenius SE & Co. KGaA 58.04% 41.96%
HeidelbergCement AG 55.56% 44.44%
Henkel AG & Co. KGaA 53.93% 46.07%
Infineon Technologies AG 55.21% 44.79%
Deutsche Lufthansa AG 56.35% 43.65%
Linde AG 52.75% 47.25%
LANXESS AG 54.69% 45.31%
Merck KGaA 50.77% 49.23%
Munich Re AG 51.11% 48.89%
RWE AG 55.41% 44.59%
SAP SE 51.13% 48.87%
K+S AG 53.26% 46.74%
Siemens AG 51.44% 48.56%
ThyssenKrupp AG 54.84% 45.16%
Volkswagen AG 51.94% 48.06%
Total 53.76% 46.24%

Trades with a price above the present mid bid-ask spread are classified as buyer-motivated
and trades with a price below as seller-motivated, respectively.
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Table A.2: Analyzed specifications and robustness tests

Usage of LASSO picked determinants

Usage of single regressions

Usage of maturities shorter than 1 month

Usage of maturities longer than 1 month

Usage of base model on hourly frequency

Usage of random effects panel regression

Usage of clustered Newey-West standard errors (HAC)

Usage of OLS errors in panel regressions

Usage of specifications of the normal model

Usage of specifications of the delta model

Usage of different time horizons for daily parameters (30, 60 and 100 days)
Usage of different time horizons for intra-day parameters (1, 30, 60 minutes and whole day)
Usage of only order book snapshots

Table A.3: Moneyness categories defined by Bollen and Whaley (2004)

Category Labels Range
Deep in-the-money call 0.875< Ac < 0.98
1 Deep out-of-the-money put  -0.125< Ap < -0.02
5 In-the-money call 0.625< Ac < 0.875
Out-of-the-money put -0.375< Ap <-0.125
3 At-the-money call 0.375< Ac < 0.625
At-the-money put -0.625< Ap <-0.375
4 Out-of-the-money call 0.125< A¢c < 0.375
In-the-money put -0.875< Ap <-0.625
Deep out-of-the-money call 0.02< Ac < 0.125
5 Deep in-the-money put -0.98< Ap <-0.875

Ac is the call option delta and Ap the put option delta.
Categories, labels and range definitions follow Bollen and Whaley (2004).

Table A.4: Information criteria of different AR-processes for optimal
lag length of the normal model

Lag structure AIC AlCc BIC

AR(0) -1.06E+06 -1.06E+06 -1.06E+06
AR(1) 241E+06 -2.41E+06 -2.41E+06
AR(2) -1.93E+06 -1.93E+06 -1.93E+06
AR(3) -1.59E+06 -1.59E+06 -1.58E+06
AR#4) -1.33E+06 -1.33E+06 -1.33E+06
AR(S) -1.13E+06  -1.13E+06 -1.13E+06
AR(6) -9.75E+05 -9.75E+05 -9.75E+05
AR(7) -8.54E+05 -8.54E+05 -8.54E+05
AR(8) -7.53E+05 -7.53E+05 -7.53E+05
AR(9) -6.65E+05 -6.65E+05 -6.65E+05
AR(10) -5.93E+05 -5.93E+05 -5.93E+05

Table A.5: F-test results of different AR-processes for optimal lag
length of the normal model

AR(1) vs. AR(2) AR@B) AR#) AR(5)
p-value of F-test ~ 0.93 0.19 0.11 0.42
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Table A.6: Information criteria of different AR-processes for optimal
lag length of the delta model

Lag structure AIC AICc BIC

AR(0) -1.89E+06 -1.89E+06 -1.89E+06
AR(1) -1.93E+06 -1.93E+06 -1.93E+06
AR(2) -1.59E+06 -1.59E+06 -1.59E+06
AR(®3) -1.33E+06 -1.33E+06 -1.33E+06
AR(4) -1.13E+06  -1.13E+06 -1.13E+06
AR(5) -9.76E+05 -9.76E+05 -9.76E+05
AR(6) -8.55E+05 -8.55E+05 -8.55E+05
AR(7) -7.54E+05 -7.54E+05 -7.54E+05
AR(8) -6.66E+05 -6.66E+05 -6.66E+05
AR(9) -5.94E+05 -5.94E+05 -5.94E+05
AR(10) -5.32E+05 -5.32E+05 -5.32E+05

Table A.7: F-test results of different AR-processes for optimal lag
length of the delta model

AR(1) vs. AR(2) ARQB) AR#) AR(5)
p-value of F-test ~ 0.71 0.60 0.38 0.44
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Table A.9: Out-of-sample pricing error

Put Call All Put Call All
BAW VG Moment
Normal model Buyer | 0.96% 1.05% 0.97% 119.08% >1000% 844.07%

Seller | 1.14% 1.19% 1.03% 110.73% >1000% 624.96%
All | 1.07% 1.25% 1.15% 118.45% >1000% 713.92%

Delta model Buyer | 0.72% 0.84% 0.75% 109.69% >1000% 908.50%
Seller | 0.78% 0.90% 0.82% 99.92% >1000% 633.63%

All | 0.78% 0.84% 0.76% 111.40% >1000% 795.98%

Benchmark Spread | 4.33% 4.10% 4.17% 4.33% 4.10% 4.17%
One Tick | 0.92% 091% 0.92% 0.92% 0.91% 0.92%

NM4: o; = 074 1.21% 12.65%

Values are the median of absolute out-of-sample percentage errors \? |. The out-of-sample values § are calculated by
excluding one whole day, estimating the models and using the results to calculate the values y for the excluded day. This
is done in a rolling manner for all days. The value for the bid-ask-spread is calculated in the same manner with the bid

and ask prices |%| for comparison. For the VG process we estimated the moments and used the simple method
of moments to calculate the VG input parameters, as this yielded more stable results. To benchmark we report the spread

and one tick as percentages as well as a naive forecast with o; = ¢;_.
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B. Figures
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Shown are call options on Deutsche Bank AG six to three months before maturity with the same maturity date

Figure B.1: Exemplary comparison of implied volatility computed with BAW and VG
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Figure B.2: Cyclical behavior of one 8 of the foundation model in the example of Deutsche Bank AG and f3
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Figure B.3: Proportion of traded moneyness categories over time to maturity at the example of Deutsche Bank AG
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Figure B.4: Six minute excerpt of an order book at the example of one Munich Re option on the 2nd January 2012
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C. Models
C.1. Model foundation

We review different specifications for the foundation model. We use the AIC criteria to evaluate the best
model from the following alternatives. Equation 17 has the minimum AIC and is therefore used as our

model foundation, as expressed in chapter 2.

AIC=—1.0177E+06 6 =1+N -M+7-M*+¢, ®)
AIC= —1.0382E+06 G =1+% -M+p-M*+y-VT +e, ©)
AIC= —1.0282E+06 o =Y+N -M+p-M*+1 T+e, (10)
AIC= —1.0219E+06 G =%+% -M+7% -M>+7-T> +¢, (1)
AIC= —1.0242E+06 G =1 +% -M+p-M*>+y5-M* Dy=o+¢, (12)
AIC= —1.0538E+06 G =1+1 -M+p -M*+y-M*> -Dy=o+1- VT +&, (13)
AIC= —1.0404E+06 o =Y+% -M+Y -M*+15-M*-Dy~o+%-T +E&, (14)
AIC= —1.0304E+06 G =1 +% -M+p-M>+9-M*> -Dy=o+1-T*+¢, (15)
AIC= —1.0273E+06 G =1+% -M+7-M*>+7-M?-Dy~o+¢, (16)
AIC= —1.0583E+06 G =%+% -M+% -M>+7%-M> Dy=o+7%-VT +e¢, (17)
AIC= —1.0448E+06 o= +% -M+Pp -M*+y5-M> -Dy-o+1%-T +¢, (18)
AIC= —1.0341E+06 G =%+ -M+p-M>+9%-M> -Dy-o+%-T> +e¢, (19)

where o is the implied volatility, M is the moneyness, defined as % — 1, with the strike price X and the
spot price S. M is derived from the absolute moneyness of Dumas et al. (1998). T is the time to maturity
(in days). Furthermore, the dummy Dy~ is 1, if the moneyness is greater than zero and O otherwise and
T is the time until expiration in days. The regression coefficients are denoted as ¥ and € is an error term.

C.2. Additional normal models
The additional reviewed specifications of the normal model for robustness reasons are as follows. The

second normal model (NM2) excludes the autocorrelation term,
o(t) = Bo+ B - Determinants + €, (20)
whereas the third normal model (NM3) is a pure AR(1) process,
o(t)=Po+PBi-o(t—1)+e, (21)
and the fourth (NM4) is a presumed pure autocorrelated process with a correlation coefficient of one,

o(t)=0(t—1)+¢& (noregression). (22)

C.3. Additional delta models
The additional reviewed specifications of the delta model for robustness reasons are as follows. The
second delta model (DM2) is a pure AR(1) process,

Ac(t)=Po+Pi-Ac(t—1)+e, (23)
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with Ao (t) = o(t) — o(t — 1), and the third delta model (DM3) only considers the determinants without
an autocorrelation,
Ao (t) = Bo+ B - Determinants + €. 24)

C.4. Pricing American style options under normal-distribution
The adjusted option pricing model of Barone-Adesi and Whaley (1987) is used for the dividend paying
American style equity options. The implied volatility is numerically calculated.

The option price for calls C(S,T) is

1—N(d(5*))e
35

C(S,T)=S—X, when § > §* (25)

C(S,T)=c(S,T)+ S, when § < §*

and the price for puts P(S,T)

1 —N(—d(5*))e™?
qls*’h*]
P(S,T)=X -5, when S < S$*. (26)

P(S,T)=p(S,T)— S, when S > §*

with ¢(S,T) and p(S,T) being the price of an European Call and Put, respectively, with time to maturity

T, spot price S, strike price X, zero-coupon rate r and dividend yield d. Furthermore,

—(N=1)—/(N—1)2 -4
5 =q1
= 2
a —(N=1)+y/(N—1)2—4% @7
p) =q2

with the substitutions M = %, N = % and K(T)=1-— ¢ 'T. As known from Black and Scholes (1973)

2
we use d| = W and N(x) as the normal cumulative distribution function.

C.5. Pricing American style options and Lévy-processes

We calculate the implied option parameters under a Lévy-process following and utilizing the work of Lord
et al. (2008) and Kienitz and Wetterau (2012) by inverting and solving for the option price. The value
of an American option is determined using Bermuda options with different exercise dates, the convolu-
tion method and the 4-point Richardson extrapolation as suggested by Fang and Oosterlee (2009). The

extrapolation gives the American call value using Bermuda options with M exercise dates B(M) as

1
S 21
In the following we present a short summary and overview of the valuation of Bermuda calls.

C(d) (643(2d+3) — 56B(2972) + 14B(27H)) —B(Zd)) . 28)

The Bermuda call value B at a given exercise date f,, is the maximum of the intrinsic option value c, the
possible instant payout A and zero.
By, = max[c(ty),h(ty),0] (29)

The possible payout is thereby the maximum of the spot price at ¢, minus the strike and zero.
h(t,) = max[Spe* — X, 0] (30)
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Thereby, x is a vector representing a uniform grid of possible future returns at time #,,. It is constructed in

such a way that the Nyquist relation is considered.

L S(tw)
x(ty) =In Sio) (31)
Analogously,
_ S(tm—H)
y(tm) =In Sto) (32)

Finally, the intrinsic option value at grid point p determined using the fast Fourier transformation and the

convolution method is given as

C(Xp(lm)) _ e—r'(lm+l—tm)—(X'xp(tm)+i~u0‘<y0(tm)—xo(1‘m)) . (71)17 (33)

FFT{eiojo(m(lm)*xo(tm))OAu o(—(uj—ia))}-
IFFT{wob(y(tm))}

Hereby, o is the Hadamard (element-wise) product, w is a modified weight vector with the form w' =
(0.5;—1;1;—1;...;1;—0.5), j is simply a vector with the form j' = (0,1,2,...,N — 1) and the frequency
domain u is defined as u = (j — ¥ ) - Au with Au = m All three vectors have the same size N
just like b, x or y. @ is the characteristic function, in our case the characteristic function of the variance-
gamma process with input o, 0, v among others. However, it is easy to incorporate any Lévy process
with a characteristic function by simply using the respective one. « is a dampening factor, which we set
as 0.5. FFT and IFFT denote the fast Fourier transformation and the inverse fast Fourier transformation,
respectively. For convergence it is important that the discontinuity lies on the x grid. For a plain vanilla
option the discontinuity would be the point § = X. Therefore, equation 33 is calculated twice for each
exercise point, with an adjusted grid for the second time. Additionally, the calculation of the option value
is an iterative process, as the damped option value of the previous period b from equation 29 is needed
in equation 33. After each time step the x grid is set equal to the y grid and the calculation starts over
until we reach the last time step 7. For the first time step )y the value of the Bermuda call is simply
By, = max[h(ty),0]. The final Bermuda value is B = c(xy /241 (%))

C.6. Moments of the variance-gamma process

We use the second (M>), third (M3) and forth moment (M) of the variance-gamma process (e.g. volatility,
skewness, and kurtosis) in our analysis. These moments are calculated as described by Rathgeber et al.
(2019):

M, =c*+6%v (34)
2 34,2 2
My = 0°v-+30°0v (35)
3/2
M2
36%v +120626%v2 + 6663
My =3+ v (36)
2
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C.7. Simplified method of moments
For the out-of-sample pricing we estimate the aforementioned moments and use these to calculate the pa-
rameters of the variance-gamma process (0, 6, and V). The parameters are estimated using the simplified

method of moments (SMoM). According to Rathgeber et al. (2019) the calculations are:

OsmvoM = VM (37)
0 _ M30Osmom
SMoM — 3
Vsmom
M,

VsMmoMm = 3 1
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