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ENTROPY FOR PRACTICAL STABILIZATION*
FRITZ COLONIUS' AND BOUMEDIENE HAMZI

Abstract. For deterministic continuous time nonlinear control systems, e-practical stabilization
entropy, and practical stabilization entropy are introduced. Here the rate of attraction is specified by
a KL-function. Upper and lower bounds for the diverse entropies are proved, with special attention
to exponential XL-functions. The relation to feedbacks is discussed; the linear case and several
nonlinear examples are analyzed in detail.
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1. Introduction. This paper analyzes entropy properties for practical stabiliza-
tion of control systems described by ordinary differential equations. The constructions
are similar to the theory of invariance entropy motivated by digitally connected con-
trol systems. A controller which in finite time intervals [0, 7] receives only finite data
can generate only finitely many (open-loop) control functions on [0,7]. Invariance
entropy abstracts from this situation by counting the number of control functions
needed in order to achieve invariance on [0,7] and then looks at the exponential
growth rate of this number as T tends to infinity. The specific relations to minimal
data rates are worked out in the monograph Kawan [15], where also the relations
to feedback entropy introduced in the pioneering work by Nair et al., (23] are clari-
fied. Related work includes Kawan and Da Silva {16] using hyperbolicity conditions,
Huang and Zhong [11] for a dimension-like characterization, and Wang, Huang, and
Sun [27] for a measure-theoretic version. A similar approach is taken in Colonius [5]
for entropy of exponential stabilization, and analogous constructions are also used
for state estimation in Liberzon and Mitra {20] as well as in Matveev and Pogrom-
sky {21, 22] and Kawan, Matveev and Pogromsky [17]. Related work is also due to
Berger and Jungers [2], where finite data rates for linear systems with switching are
analyzed.

Our motivation to consider practical stabilizability is twofold (throughout the pa-
per practical stabilizability means practical asymptotic stabilizability): Firstly, there
are systems where instead of stabilization only practical stabilization is possible. Some
examples are provided in section 5. Secondly, and perhaps more relevant, is the fact
that standard stabilization algorithms may only lead to practical stabilization, al-
though, theoretically, stabilization is possible. This is the case for economic model
predictive control schemes (cf. Zanon and Faulwassser [28, Theorem 1 and Theo-
rem 3]), where practical stabilization is achieved, but stabilization does not hold.
Furthermore, sampled feedback of stabilizable systems may only lead to practical
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stabilization; cf. Griine [9, section 9.4] for a simple example. Similarly, the restriction
to other classes of feedbacks may entail that only practical stabilization is possible.

The purpose of the present paper is to contribute to an understanding of entropy
for practical stabilization. We specify not only the sets I' of initial states and the
“target set” A of final states, but also the convergence rate given by a KXL-function,
similarly as in the definition of practical stability in Hamzi and Krener [10]. For this
purpose we introduce new notions of entropy for e-practical stabilization, practical
stabilization, and also stabilization. We consider the minimal number of control
functions needed in order to achieve the practical stabilization goal on a finite time
interval. Then we let time tend to infinity and consider the exponential growth rate
of these numbers. This is similar to the familiar definition of invariance entropy as
exposed, in particular, in Kawan [15]. Note, however, that here in contrast to [15],
the set of initial states is in general not a subset of the target set. The relation to
feedbacks is briefly discussed based on a new notion of entropy for feedbacks.

In more specific terms the basic construction for entropy is the following. Consider
a control system in R? of the form %(t) = f(z(t),u(t)) with a set U of admissible
control functions u and trajectories denoted by ¢(t, zg, u),t > 0. Fix subsets I', A C
R? and a KL-function ¢. For 7 > 0 a set S C U of controls is said to be (1,¢, T, A)-
spanning if for every initial value zo € I" there exists u € S with

(1.1) d(p(t, zo,u),A) < {(d(zo,A),t) for all ¢ € [0,7].

Denoting by r(r,{,T, A) the minimal cardinality of a (7, {, I, A)-spanning set we define
the stabilization entropy by m,_m} logr(7,¢, T, A). This number measures how fast
the average number of required controls increases, when the system should approach
the set A with the bound (1.1) as time 7 tends to infinity. In order to guarantee the
existence of finite spanning sets of controls, this notion has to be slightly modified;
cf. Remark 2.4. Practical stabilizability properties, which are the focus of the present
paper, are obtained if we require that the solutions approach A only approximately; cf.
Definition 2.2. We remark that the construction of entropy via spanning sets follows
the classical construction of entropy for dynamical systems in metric spaces due to
Bowen and Dinaburg. The logarithm with base 2 is directly related to the number
of bits needed to choose a control u; for continuous time systems, as considered here,
the natural logarithm is more convenient.

The contents of this paper are as follows. Section 2 introduces e-practical sta-
bilization entropy, practical stabilization entropy, and stabilization entropy about a
compact set A for compact sets I' of initial states and compact control ranges. Also
modifications for noncompact control ranges and noncompact sets of initial states
are indicated. Section 3 proves upper bounds for the diverse entropies, and lower
bounds based on volume growth arguments are established. Special attention is given
to exponential XL-functions of the form ((r,s) = e=**Mr,r,s > 0, with o > 0 and
M > 1. Section 4 briefly discusses the relation to feedbacks. Section 5 first analyzes
linear systems. Then two scalar nonlinear examples and a higher dimensional sys-
tem are analyzed which are not locally C?! stabilizable at the origin. Here practically
stabilizing quadratic and piecewise linear feedbacks, respectively, can be constructed,
and estimates for the entropies can be obtained. The analysis reveals some subtleties
in the constructions. The proofs for the practical stabilizability of the two scalar
example are provided in the appendix. Finally, section 6 draws some conclusions and
presents open questions. 4

Notation. A KL-function is a continuous function ¢ : [0, 00) X [0,00) — [0, 00)
such that {(r,s) is strictly increasing in r for fixed s with {(0,s) = 0 and strictly
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decreasing with respect to s for fixed r with lim,,o {(r,s) = 0. In a metric space,
the distance of a point z to a nonvoid set 4 is d(z, A) := inf{d(z,a) |a € A}, and for
a compact set A the e-neighborhood is N(4;¢) = {z|d(z, A) < €}. For a point a we
write the ball with radius € around a as B(a,¢) = {z|d(z,a) < £}. The cardinality,
viz. the number of elements, of a finite set A is denoted by #A. The natural logarithm
is denoted by log, and the limit superior is denoted by Iim.

2. Entropy notions. We consider control systems in R? of the form

(2.1) £(t) = fz(t),w(t)), u(t) €U,

where f : R x R™ — R? is continuous. The control range U is a nonvoid subset of
R™, and the set of admissible control functions is given by

U = {u € L*([0,00),R™) : u(t) € U for almost all ¢}.

We assume standard conditions on f guaranteeing existence and uniqueness of solu-
tions ¢(t, zo,u),t > 0, with ¢(0,zp,u) = zo for all zo € R? and u € U as well as
continuous dependence on initial values.

Consider the following stability properties for a differential equation & = g(z,t)
with (unique) solutions ¥(t,zo),t > 0, for initial conditions (0, zo) = zo.

DEFINITION 2.1. Let T, A C RY, and let ¢ be a KL-function. Then the system is
(¢, T, A)-stable if every xo € T satisfies

d(¥(t, 2o), A) < {(d(zo, A),t) fort > 0.
For € > 0 it is e-practically ((,T', A)-stable if every xo € I satisfies
d({t, 7o), A) < ((d(z0, A),t) +& fort >0,

Recall that stability of an equilibrium e is equivalent to the existence of a KXL-
. function for A = {e}; cf. Clarke, Ledyaev, and Stern [4, Lemma 2.6]. We are interested
in the data rate needed to make the control system (2.1) stable or at least e-practically
stable for certain € > 0 or for all € > 0. Again, let subsets I',A C R? and a KL-
function ¢ be given. For 7, > 0 we call a set S C U of controls (7,¢,(, ', A)-spanning
if for every zp € I there exists u € S with

(2.2) d(p(t, xo,u), A) < ¢ (d(zo,A) +¢,t) for all t € [0,7].

(Here € > 0 is introduced in order to guarantee that finite spanning sets exist; cf.
Remark 2.4.) Furthermore, a set S C U of controls is called practxcally (1,&,¢, T, A)-
spanning if for every xo € I' there exists u € S with

(2.3) d(p(t, o, u),A) < ¢ (d(zo,A) +&,t) + e forall t € [0,7]. -

The minimal cardinality of a (7,,{, T, A)-spanning set and a practically (7,¢,(, T, A)-
spanning set are denoted by rs(7,¢,(, I, A) and rps(7,€,(, T, A), respectively. If there
is no finite spanning set or no spanning set at all, we set these numbers equal to +oo.

DEFINITION 2.2. Let T',A C R¢, and let ¢ be a KL-function.
(i) For € > 0 the e-stabilization entropy and the stabilization entropy are

—1 :
hs(g,¢, T, A) = fll,ngo; logrs(7,€,(,T',A) and he(¢, T, A) = 31_1)1(1) hs(e, ¢, T, A).

L3
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(if) For € > 0 the e-practical stabilization entropy hps(e,¢, T, A) and the practical
stabilization entropy hps(¢, T, A) are
(2.4)

— ' . '
hps(51 ¢, T, A) = _rlg{.lo; log Tps('rv &¢I, A) and hps((: T, A) = 21_1’% hps(E: o A)-
For €1 > €2 > 0 the following inequalities are easily seen:

(2'5) hPS(El’ C’ F9 A) S hps (E2> C, Fy A) S hps(C; F, A) S hs((v Fy A)

This shows, in particular, that in (2.4) the limit for ¢ — 0 exists and coincides
with the supremum over € > 0 (it may equal +o00). Our results will mainly concern
compact control ranges U and compact sets I' and A, but cf. Remarks 2.7 and 2.8
for generalizations. Definition 2.2 does not require that I' is a neighborhood of A.
Nevertheless, situations where I' is a neighborhood of A or, at least, has nonvoid
interior are certainly most interesting.

First we will ascertain that under weak assumptions finite spanning sets exist.

LEMMA 2.3. Consider for a control system of the form (2.1) subsets T,A C R¢
and a KL-function {. Assume further that I" is compact, and fixr € > 0.
(i) Suppose that for every xo € T there is a control u € U with

d{p(t, zo,u), A) < {(d(zo,A) +&,t) for allt > 0.

Then for every T > 0 there is a finite set S = {u1,...,un} C U such that for every
zo €[ there is u; € S with

d(p(t, o, u;),A) < ¢ (d(a:o,A) + 2¢,t) for allt € [0,7].
(ii) Suppose that for every zo € I there is a control u € U with
d((t, zo,u), A) < ((d(zo,A) +&,t) + ¢ for allt > 0.

Then for every T > 0 there is a finite set S = {uy,...,un} C U such that for every
zo €T there is u; € S with

d((t,20,u7), A) < ¢ (d(zo, A) +2¢,1) + 2¢ for allt € [0,7].
Proof. (i) For every o € I' choose a control u € Y with
d(p(t, zo,u), A) < {(d(zo, A) +¢,t) for all t € [0, 7].

By continuous dependence on initial values (as assumed for (2.1)) there is § with
0 < § < € such that, for all z; € R? with ||zg — z1|| < 6 and for all ¢ € [0,7],
d(p(t, 71, 8), &) < {(d(zo, A) +&,t) < ((llzo — z1]| + d(71, A) +&,1)
< ¢(8 +d(z1,A) +&,t) < ((d(z1,A) + 2¢,t).
Here we have used that for all z,y € R? one has d(z, A) < ||z — y|| + d(y, A) together
with the monotonicity properties of the X.L-function (. Now compactness of I shows

that there is a finite set $ = {uy,...,u,} C U such that for each z; € I there is
u; € S satisfying, for all t € [0, 7], : ’

d(p(t,z1,u3), A) < ¢ (d(z1,A) + 26, ).

(ii) This is proved analogously.
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We observe that the assumption in Lemma 2.3(i) holds, in particular, if there
exists a stabilizing feedback. See also section 4 for more on the relations to feedbacks.

The following remarks refer to related results in the literature and elaborate on
some variants of the entropy notions introduced in Definition 2.2. -

Remark 2.4. In Colonius [5] the following notion of entropy for exponential sta-
bilization about an equilibrium in the origin is introduced. Consider a compact set
T' ¢ R? of initial states, and let & > 0, M > 1, and € > 0. For a time 7 > 0 a subset
S C U is called (7,¢,, M,I')-spanning if for all 29 € T there is u € S with

(2.6)  le(t,zo, w)]| < e=*t(e + M |jzo]|) for all t € [0, 7].

The minimal cé.rdinality of such a set is denoted by sstab(7,€,a, M,T"), and the sta-
bilization entropy is defined by

. o— 1
h’stab(a, M, F) = 31_1;% -rli)n;o; 108 Sstab(T’ g Q, M$ F)'

The spanning condition (2.6) can be rewritten in the following way: With A = {0} let
a KL-function ¢ be defined by {(r, s) := e"**Mr. With Me instead of ¢, condition
(2.6) is

d(p(t, 9, u), {0}) < e~ **M (e + ||zo||) = ¢{(d(z0, {0}) + &, 1) for all ¢t € [0, 7].

Thus hgab(a, M, T') is a special case of stabilization entropy as specified in Definition
2.2(i). In [5, Proposition 2.2] it is shown that finite spanning sets can only be expected
for positive € > 0 in (2.6). This is the reason why we also consider positive € in
Definition 2.2(i). Observe that one could similarly relax the condition for e-practical
stability in Definition 2.1 by requiring

d(¥(t,z0),A) < ((d(zo,A) +€,t) + € fort > 0.

Relations of entropy to minimal bit rates for (nonexponential) stabilization are glven
in {5, Lemma 5.2 and Theorem 5.3].

Remark 2.5. Hamzi and Krener {10] call a control system locally practically sta-
bilizable around an equilibrium in the origin if for every € > 0 there exists an open set
D containing the closed ball B(0,¢), a KL-function (., a positive constant § = §(¢),
and a control law u = k.(z) such that for any initial value z(0) with ||z(0)]| < §, the
solution z(t) of the feedback system & = f(z, k.(x)) exists and satisfies

2.7) d(z(t), B(0,€)) < ¢ (d(z(0), B(0,&)),¢) for all t > 0.

Note that here §(¢) < ¢ is admitted; hence attractivity is not required. The trajecto-
ries may leave B(0, €), but the bound (2.7) ensures that they converge to it for ¢ — oo.
In view of the fact that here the KXL-function ¢, depends on ¢ the following variant of
practical stabilization entropy might be considered: Define for € > 0 the e-practical
stabilization entropy by

a pap— |
hps(e, T, A) = 1?¢f Tll)ngo = log rps(T, €, ¢, I, A),

where the infimum is taken over all KL-functions (., and let a practical stabilization
entropy be hps(T', A) = lim._s0 hps(€,T', A). Also a corresponding local version might
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be introduced by requiring the practical (7,¢,(,T', A)-spanning condition (2.3) only
for all 2o € I';, where I'; is compact neighborhood of A. If one requires this spanning
condition for all initial values zy in a compact neighborhood I's(y of A containing
a ¢(g)-neighborhood of A, §(¢) > 0, one obtains a local notion without attractivity
requirement.

Remark 2.6. For control-affine systems, Da Silva and Kawan define in [7] a version
of invariance entropy (for “practical stabilization”) in the special situation, where (in
our notation) I' = A is a compact subset of a control set D with nonvoid interior (i.e.,
a maximal set with approximate controllability). Then they consider the maximum
of the corresponding entropies taken over all I = A contained in D. Under a uniform
hyperbolicity condition for clD, [7, Theorem 9] shows that the corresponding entropy
varies continuously with respect to system parameters.

Remark 2.7. In the examples in subsections 5.2 and 5.3 (cf. Theorems 5.4 and
5.7) also unbounded closed control ranges U occur, where it will be appropriate to
employ a reduction to compact control ranges by using the following modified notion:
For compact sets K € R™ a subset S C U of controls with values in U N K is
practically (r,¢,¢(,T', A,U N K)-spanning if for every xo € I there exists u € § with

d(p(t, zo,u),A) < ¢ (d(zo,A) +¢,t) +eforallt €[0,7].

Denoting the minimal cardinality of such a spanning set by rps(7,¢,{,[,A,UNK) we
define the e-practical stabilization entropy by

o e— 1
hps(e,¢, T, A U) = 1}1{le1’1€1°; log rps(7,6,¢, T, A, U N K),

where the infimum is taken over all compact subsets K C R™. Then the practical
stabilization entropy again is obtained by letting £ — 0. In the case of an exponential
KL-function ¢(r,s) = e~ **Mr, the relevant quantity is the exponential rate . In
the examples in subsections 5.2 and 5.3 constants M which depend on € occur while
a does not.

- Remark 2.8. In the theory developed below, compactness of the set I' of initial
states plays a crucial role. For general closed sets I' a reasonable notion of practical
stabilization entropy might be introduced as hps(¢, I, A) := supy hps(¢, T N K, A),
where the supremum is taken over all compact sets K C R%. This is in the same
spirit as the definition of topological entropy for uniformly continuous maps on metric
spaces; cf. Walters [26, Definition 7.10].

3. Bounds for practical stabilization entropy. In this section we derive
upper and lower bounds for the practical stabilization entropy and the stabilization
entropy. ’

First we present an upper bound for the e-practical stabilization entropy. The
proof is based on a cut-off function and is a modification of the proofs in Katok
and Hasselblatt [12, Theorem 3.3.9] (for topological entropy) as well as Colonius and
Kawan [6, Theorem 4.2] (for invariance entropy). ' '

For compact sets ', A C R?, a KL-function ¢, and € > 0 define the compact set

d(z,A) <¢ (mggcd(y,/\) +e,0) +s} ;
yer .
and define L¢ := sup(, yyep, xv || fz(2, u)|| where fz(z,u) = 8L (x,u). Observe that L.

depends on ¢ and I' and, naturally, on A. We suppose that ¢(r,0) > r for r € [0,00),
implying I" C P..

P, = {:z:eRd
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THEOREM 3.1. Consider for control system (2.1) compact sets T, A C R%, and let
¢ be KL-function. Suppose that the control range U is compact, that f is differentiable
with respect to =, and that the partial derivative f,(z,u) is continuous in (z,u).

(i) Fiz € > 0. If for every x¢ € I there is a control u € U with

(3.1) d(p(t, o, u), A) < ((d(x0,A) +¢,t) + € for allt >0,

then the 2¢-practical stabilization entropy satisfies hps(2¢,(,T',A) < Ld.
(ii) If the assumption in (i) holds for alle > 0, the pmctzcal stabilization entropy
satisfies hps(¢,T', A) < Lod.

Proof. Define for e >0
R, := {(zo,u) € T x U |d(p(t,z0,u),A) < {(d(zo,A) +&,t)+eforallt >0}
Note that every (zg,u) € R, satisfies ¢(t,zo,u) € P: for t > 0, since
d(p(t, zo,u),A) < ((d(zo,A) +&,t) +e < C(mealgcd(y,A) +¢,0) +¢,
. Y
using that ¢ is increasing in the first argument and decreasing in the second argument.
(i) Fix € > 0, and let &, 7 > 0 be given. Since the compact set P.2z is contained
in the interior of P, 43¢ one can choose a C*-function 8 : R¢ — [0,1] with 6(z) = 1 for
all z € Pey2¢ and support contained in Pey3; (cf. Abraham, Marsden, and Ratiu [1,
Proposition 5.5.8, page 380]). We define f : R? x R™ — R? by f(z,u) := 0(z) f(z,v)

(note that f depends on &). Then f is continuous, and the derivative with respect to
the first argument is continuous in (z,u). Consider the control system

(32) | #(t) = Fa(®),u(®), u(t) €U,

The right-hand side of this system is globally bounded, and thus solutions exist glob-
ally (see, e.g., Sontag [24, Proposition C.3.7]). We denote the solution map associated
with (3.2) by 9 and observe that

(¢([01 T], mO,U) & P£+2E or (P([O, T]aI(Jv U) - P€+2E)
= Y(t,zo,u) = p(t,zo,u) forallt e [0,7].

A global Lipschitz constant for f on R x U with respect to the first variable is given
by

(33) Li=max{|l folew) /() e REx U},

which satisfies

L = Feyaz o= max {|| fole,u) |l |(z,u) € Pz x U }.

Using continuity of f; and ¢ and compactness of Pey3z x U one finds
(3.4) Leyaz = L for €2 0.

Every (y,u) in R.4¢ satisfies ¢(t,y,u) € Pet¢, and hence p(t,y,u) = ¥(¢,y,u),t > 0.
Now let S* = {(y1,%1),- .- (¥n tUn)} C Rtz be a subset with the property that
for every zo € I there exists (y;,u;) € St with

txen[ax d(y(t, :co,u,) (t, yi, u;)) <E.

-
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Thus also (¢, zo,u;) = @(t, Zo, us), since ¢(t, o, u;) € Peyas,t € [0,7]. By continuity
and compactness, we may in fact assume that St has finite cardinality, and we take
S* with minimal cardinality denoted by r*(7,&). We claim that for 2 < ¢,

(3.5) 7 Tps(7,26,¢(, T, A) S rps(T,€ +28,(, T, A) < r¥(7,8).

The first inequality follows by monotonicity in the second argument. The second
inequality follows, since for a minimal set S* as above and zg € I' there are (y;,u;) €
S* such that for all ¢ € [0, 7],

d(y(t, o, us), A) < d(9(t, o, i), Y(t, Yi, wi)) + d(P(t, i, ui), A)
<E+C(d(ys, A) +e+Et)+e+E
< C(lyi — zol| + d(zo, A) + e+ &,t) + €+ 28
< ¢(d(xo, A) + €+ 26,t) + e+ 26

Since Y(t,zo,ui) = ¢(t,To,u;),t € [0,7], it follows that St is practically (7,e +
2¢,¢, T, A)-spanning, and (3.5) is proved.
Next define the sets

;= {:z:o er| tlel}g{} d(P(t, o, us), Y, yi, ui)) < s'} , i=1,...,n=r%(1,8d).

By the definitions, T' = |J; ;. Let zo € R? be a point with ||zo — yi|| < e~L7& for

=1

some i € {1,...,r%(r,é)}. By (3.3) it follows that

t
(3:6) |l¥(t,zo, ws) — Y(t, i, ui)ll < llzo — will +L[) l¥(o, 2o, wi) — SL'(U’ Yi ui)|do
for all ¢ > 0. By Gronwall’s lemma this implies for all ¢ € [0,7],

3.7) (2,0, us) — 9(t, sy will < [l20 — wille™ < &.

It follows that zo € I';, and thus I' contains the union of the balls B(y;, e_‘L"E‘).

Now assume that there exists a cover V of I consisting of balls B(z;,e~L7&),z; € T
for i =1,...,N, such that N = #V < #8* = r*(r,£). By assumption (3.1) we can
assign to each point z; a control function v; with (z;,v;) € Reyz. Then, by the

arguments above, the ball B(z;, e‘f”é) is contained in the set
{a:o €R?| max d(¥(t, xo, vi), Y(t, i, vi)) < E} .
tefo,7] :

This contradicts the minimality of St. Let ¢(4, Z) is the minimal cardinality of a
cover of a bounded subset Z C R¢? by d-balls. We have shown that r*(7,&) < ¢(4,T)
with § := e~L7¢.
Recall that for a bounded subset Z C R? the upper box or fractal dimension
satisfies log c(6, Z)
. —10g clo,
— —_— <
dimg(Z) %1{1(1] og(1/9) <d;
cf., e.g., Boichenko, Leonov, and Reitmann [3, Proposition 2.2.2 in Chapter III]. Since

= = : = log€
_ Lr~—1 . Lr~-1
Lt =log(e""é™") + log& = log(e*"€7%) (1 + ____log(efﬁe"")> ;
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it follows that

=— 1 I e | I logc(e‘f"'e',I")
Tlg&;_— logr™(r,&) < Tl_x_}n(}o; loge(e™™7¢,T') = L lim —————"—~

T—00 Lt
(3.8) - I Tm _ logc(e‘f“"s”, T) i _iTm log c(ejf"'é, T)
T7®log(elTe-1) (1 + Fg(-l;‘-’,-_gféfl)) T log(elré~1) F:
= Ldimp(T).

As £ tends to zero, the Lipschitz constants L = Ee+3§ tend to L. by (3.4). Taking
into account also (3.5), this implies

hps(26,¢,T,A) < (lim Lesse) dimp(T) = L, dimp(T) < Led,

which proves assertion (i).
(ii) If the assumptions in (i) hold for all € > 0, then the Lipschitz constants L,
converge for € — 0 to L, and the assertion follows from

hps(C,T, A) = lim hps(e,¢, T, A) < lim Led = Lod. O

The following theorem gives a similar estimate for the stabilization entropy with
exponential XL-function. For compact control range U and € > 0, M > 0, define the
compact set :

P8 = {:c eR?|d(x,A) < M (rggg{d(y, A)+ 5) }

™

and the constant L§ := maX(z u)epsxv | fz(z, u)||-

THEOREM 3.2. Consider an ezponential KL-function {(r,s) = e~ **Mr,r,s > 0,
with constants o > 0, M > 1, and suppose that the assumptions of Theorem 3.1 are
satisfied for control system (2.1). Assume that for every € > 0 and for every zg € T
there is a control u € U with

(3.9) d(p(t, zo,u),A) < e~ **M(d(zo,A) +€) for allt > 0.

Then the stabilization entropy satisfies hs(¢, T, A) < (L + a)d.

Proof. This proof follows similar steps as the proof of Theorem 3.1 but is some-
what simpler. Define, for € > 0,

RS := {(z0,u) € T x U |d(¢p(t, o, u), A) < e~ **M(d(zo,A) +¢) for all t > 0}.

Fix £ > 0, and choose a C*-function 6 : R? — [0,1] with 6(z) = 1 for all z € P§, and
support contained in P§.. We define f : R¢ x R™ — R? by f(x,u) := 6(z) f(z,u) and
consider the control system .

(t) = flz(t),u(t), u(t)eU.
The solution map % associated with this system satisfies for 7 > 0,

(1/’([0’7]1370’ u) - §e or w([O,T]axo,u) - P.’;e)
= ¥(t,zo,u) = ¢(t,zo,u) for allt € [0,7].
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Now let 8* = {(y1,%1),..-, (Yn,un)} C R, n = r*(7,€), be a minimal subset with the
property that for every zg € I there exists (y;,u;) € S* with

trer}gx] d(z/:(t,xo,ui),z/;(t, Yi, u;)) < e~ for t € [0,7].

Define

;= {.1:0 el tg}ga:] d(®(t, o, ui), Y(t, yi, ui)) < ee"”'} , t=1,...,n=r%(1§),

e 1= max (]| fa(z,0) 11(z,w) € Pae x U } = max {|| fo(aw) ||| (2, w) € RO x U }.

Consider zo € R? with [lzg — yi|| < e~ (4c*®)7e for some i € {1,...,n}. Then
Gronwall’s lemma implies instead of (3.7), for t € [0, 7],

(¢, 0, us) — (¢, yi ws)|| < [|lzo — yille™ie™ < e~ (Liet@Tgelae™ = gemo7,

It follows that x¢ € I'y, and thus I" contains the union of the balls B(y;, e‘(L:?""")"s).
Instead of (3.5) we obtain r4(7,3e,(,T,A) < r*(r,€), since for a minimal set S* as
above and zg¢ € I there are (y;,u;) € S* such that for all ¢ € [0, 7],

d(9(t, 2o, us), A) < d(¥(t, zo, ui), Y(t, ¥i, wi)) + d(¥(t, v, ui), A)
< e e e M(d(yi, A) +€)
< e M(ly; — zoll + d(zo, A) + 2¢)
< e~ **M(d(zo,A) + 3¢).

Furthermore (t, 2o, u;) € Pj.; hence 9(t, 2o, u:) = ¢(t,Zo,u;),t € [0,7], and the set
of controls {uy,...,us},n = r*(r,€), is (1, 3¢, I, A)-spanning. One finds that

16(7,36,¢, T, A) < r*(7,€) < ¢(6,T) with § := e~ Lic+a)7g

and
= 1 " .
_rli’ngo - logr (7’, €) < (L + a)dimp(T) < (L, + a)d.

For € — 0 the Lipschitz constants L§, converge to Lj, and the assertion follows. 0O

Remark 3.3. Theorem 3.2 generalizes and improves Colonius [5, Theorem 3.3],
where an upper bound for stabilization entropy about an equilibrium is given using a
global Lipschitz constant L.

Next we prove lower bounds for the e-practical stabilization entropy based on
a volume growth argument. For general KL-functions the lower bound is given by
the divergence div, f(z,u) = trfz(z,u) of f with respect to x, while for exponential
KL-functions a stronger result involving also the exponential bound holds.

THEOREM 3.4. Consider for control system (2.1) compact sets T', A C R?, where
T has positive Lebesque measure, and let { be a KL-function. Suppose that f is
differentiable with respect to = and the partial derivative fy(z,u) is continuous in
(z,u) with inf(; yyeaxv fo(z,u) > —00 for bounded sets A C R9.
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(i) For € > O the e-practical stabilization entropy and the practical stabilization
entropy satisfy

00 2 hps(€, ¢, T, A) 2 min _ div,f(z,u),
(z,u)EN(A;e)xU

> > i i .
00 > hps(¢, T, A) 2 (wglelxxudlvmf(x, u)

(i) Let A = {0} and {(r,s) := e~ **Mr,r,s > 0, with constants a > 0, M > 1.
Then the e-practical stabilization entropy and the practical stabilization entropy satisfy
> > - - .
00 2 hps(e,¢, T, {0}) > ad + uzu?e'ﬁeud“'“f (z,u),
00 > hps(¢, T, {0}) > ad + rréi[r}divzf(o, u).
u

Proof. (i) If hps(e,¢,T', A) = o0, the inequalities in (i) are trivially satisfied. Hence
we may assume that for 7 > 0 there is a finite practically (7,¢,(,T’, A)-spanning
set S = {ui,...,u,} of controls, and we pick S with minimal cardinality; hence
n = rps(7,€,(,I', A). Define, for i =1,...,n,

T := {xo € T'|d(p(t, 2o, ui), A) < {(d(zo,A) +¢,t) +eforallt e[0,7]}.
Denote £ := maxzer d(z,A) and §(t) := {(k + ¢, t),t € [0,7]. Then, fori=1,...,n,
(3.10) o(t,Ti,u;) C N(A,{(k +&,t) +€) = N(A; 6(t) +€),t € [0,7],
implying for the Lebesgue measures
(3.11) Alp(t, T, ui)) < AN (A;6(t) +¢€)).

On the other hand, by the transformation theorem for diffeomorphisms and Liouville’s
trace formula (cf. Teschl [25, Lemma 3.11]) we get, for i =1,...,n,

Op - dp
- gr:)) = S o : > e =
AMep(r, T, u3)) -/.- det e (7yzo, ui)| dzo = ML) (;(1)15}) det i (1,20, 1)
(3.12) = AI%) - (,inf)exp (/ divzf((p(s,mo,u),u(s))ds) ;
. Zo,u 0

Here, and in the rest of this proof, inf(,, ., denotes the infimum over all (zo, u) € I'xU
with (¢, z0,u) C N(A;d(t)+e) for all t € [0,7]. Fix 79 € [0,7]. Then (zo,u) as above
satisfies the estimate

/T'divzf(QD(Sa Zo, U), u(s))ds

0

(3.13) > / " divaf(p(s,20,u), u(s))ds + (7 — o) min div £ (3, v),
0 (y.v)

where the minimum is taken over all (y,v) € R¢ x U with d(y,A) < ((k+¢&,70) +€ =
(7o) + €. This holds since the function ¢ is decreasing in the second argument, and

for all s € [r,7],

d(¢(s, zo, u), A) < C(;ngisd(ro,!\) +¢,8)+e<((k+¢e,7m)+e.
4]
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We may assume that A(I';) = max;=1;..n A(T;). Inequalities (3.12) and (3.11) imply

Me(r,T1,1))
inf(zo,u) €XD (IOT div, f(i(s, To, u), u(s))ds)

0 < MI) < ih(n) <n-Al1) <n-

i=1

| AN (4 5(r) +£)) .
inf(zg,u) €Xp (f(;r diva:.f(cp(sa Zo, u), u(s))ds) ’

hence ‘

ME) : "
AMN(A; 6(T) + €)) (21:(111,{:) °xp (jo dive fi(s, o, u)1u(3))d5) -

Using (3.13) and taking the logarithm on both sides one finds

<n

n= irl3S(""'ié:7 Cary A) 2

logrps(7,€,¢, T, A) 2 log A(T') — log A(N(A;6(7) + £))

+ inf divzf((p(sa o, u)i u‘(s))ds + (T - TO) {nlr; diV_.,_.f(‘y, U)'
v.v

(301") 0

This yields the inequality

— 1
(3.14) ?li)ngo; log rps(T,€,¢, T, A)

— 1 1 ) L T—To . .
> lim [—;log/\(N(A,J(T)+€))+ - gl,lsdw,f(y,v)].

Since §(7) < §(0) and A(N(A;€)) > 0, we find

= 1 . B
Tll)n.}o -= log A(N{A;6(7) +¢)) =0.

It follows that 1 . .
T = > min di .
Jim ~logrps(r,e,(, T, A) 2 min div, f(y,v)

Recall that the minimum is on the set {(y,v) € R? x U |d(y,A) < 8(ro) + £ }. In the

Hausdorff metric, these compact sets converge to N(A;e) x U for 9 — oo. This
proves the first assertion in (i); the second follows by taking the limit for ¢ — 0.

(ii) For & > 0 inequality (3.14) holds. If we employ the maximum-norm in R?, we
obtain for the Lebesgue measure

AN({0},8(7) + £)) = A(B(0,8(7) + &) < (25(1) + 2¢)%,

and, by the choice of ¢,
i L — 1im Log oo e
Jim - log(d() +€) = lim - log [e™*"M(k +¢) +¢] a.
Hence (3.14) implies
—— ]. — T — TO . N
TILI{.IO; log rps(T,€,¢, T, A) > ad + Tll)ngo ( - g’nvri div. f{y, 1;))

= ad + mindiv. f(y, ),
(wv)

and the inequalities in assertion (ii) follow as in (). - O
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Remark 3.5. Note that in Theorem 3.4 the assumption inf(; y)yeaxv fo(z,u) >
—oo for bounded sets A is of interest only if the control range U is unbounded. The
lower bounds provided by this theorem are independent of I' and ¢. They may be
negative and then yield no information. In the lmear case, this can be improved; cf.
Theorem 5.1.

Remark 3.6. Theorem 3.4(ii) improves Colonius [5, Theorem 3.2], where a similar
lower bound for the stabilization entropy (which may be greater than the practical
stabilization entropy) is proved. .

4. Relations to feedbacks. We will prove an upper bound of the &-stabilization
entropy under the assumption that a feedback exists such that the system satisfies an
appropriate stability property. This is illustrated in the linear case.

Consider system (2.1), and fix € > 0 and a X£-function ¢. Let k. : R = U be a
Lipschitz continuous feedback such that the solutions (¢, zo; ke (-)), ¢ > 0, of

(4.1) 2(0) =z, &(t) = f(z(t), ke(z(t)))

are well defined and depend continuously on the initial value. Define the e-entropy
of k.(-) in the following way. Let I' C R% be compact, and define for every 2o € I a
control by

(4.2) Uzo(t) = ke((t, z0; ke (+))), ¢ 0.

For 7 >0 aset E = {y,.. ,yn} C I is called (7,¢,¢,T)- spanmng for k. () if for all
zo € I' thereis j € {1,...,n} with

“x() - y]" < ¢ and “‘P(t, Zo, uy,-) - SO(t, yj!uyj)” < C(”-’CO - y]" +67t) fort e [07T]'

DEFINITION 4.1. For system (2.1), a set ' C R? of initial states, and a KL-
function ¢ the e-entropy of the feedback k.(-) is

(e, C, ke(),T) = L ~ logmin{#E |E is (,e,,T)-spanning for k.()}.

If the feedback k.(-) is independent of €, we define the entropy of the feedback k(-) :=
ke(‘) as .
hfb(<1 k()) F) = eh_lf(l) hfb(é‘, C? k()’ F)

These notions of entropy are based on the concept that only in the beginning, at
time ¢t = 0, an estimate of the initial point is used. The control is not corrected at
any later time.

The following propos1t1on shows that the e-stabilization entropy can be bounded
above by the e-entropy of feedbacks for which the system satisfies an e-stability prop-
erty.

PROPOSITION 4.2. Let I',A C R¢ be compact and € > 0. Suppose that there is
a feedback k.(-) such that for every o € T the solution (t,zo;ke(-)),t 2> 0, of the
feedback system (4.1) satisfies

(4.3) d(¥(t, zo; ke()), A) < ((d(zo, A) +&,t) for t 2 0.

Then the e-stabilization entropy is bounded above by the e-entropy of the jeedback

ke(-),
hps(2¢,2¢, T, A) < hg(2¢,2¢,T, A) < hgo(e, ¢, ke (), T).
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Proof. Note that the first inequality trivially holds. Fix 7 > 0, and consider a
minimal (7,¢,(,T')-spanning set E = {y1,...,yn} for k.(-). Using (4.2) we associate
to every y; a control function u,, and claim that the set of control functions defined
by ‘ ' : '

S(E) = {uy,,-..,uy, }

is (7,2¢,2¢,T, A)-spanning. By assumption (4.3) for the feedback system we know
d(p(t, s, uy;), A) = d((t, Yz ke(-)), A) < ¢ (d(ys, A) +¢,t) for all £ > 0.
By the spanning property of E, for all o € T there is j such that for all ¢ € [0, 7],

d (‘p(tv Zo, uyj)’A) = ”(,D(t, Zo, uy,) - (P(t, Yj» uyj)” + d((p(t? Yjs uyj)aA)
< (o — ysll + &,8) + d(¥(t, y5: ke (1)), A)

(@.4) < C@e,8) +C(dly; A) + &, 8)
< ¢(2e,8) + ¢ (Ily; — zoll + d(zo, A) + ¢, )
< 2¢(d(zo, A) + 2¢,1).

This shows the claim for S(E), and it follows that

min{#§ |S is (7, 2¢,2¢,T', A))-spanning }
< min{#FE |E is (1,¢,¢,I')-spanning for k.(-) }.

Taking logarithms and the limit for 7 — 0o, one obtains the assertion
hs(2¢,2¢,T,A) = Tl_:réo-i— log min{#S|S is (7,2¢,2¢,T’, A)-spanning }
T

< Tﬁi’—}_— log min{#E |E is (7,¢,I')-spanning for k.(:) } = A (€,¢, ke(+),T). 0O

Remark 4.3. If one replaces (4.3) by the wéaker condition
d(¢P(t, o3 ke(+)), A) < {(d(z0,A) +&,t) + € fort >0,
one can prove analogously a bound for the e-practical stabilization entropy,
hps(22,2¢, T, A) < hep(e, G, ke(-),T).
Next we illustrate Proposition 4.2 by considefing linear systems of the form
(4.5) ‘ z(t) = Az(t) + Bu(t), u € U,

with matrices A € R¥*¢ B € R4¥*™, control range U = R™, and A = {0}. For a
linear feedback K the feedback system has the form

#(t) = (A + BK)x(t), u € U,

with solutions (¢, zo; K) = e(4tBK)tz, Suppose that K is stabilizing such that all
eigenvalues A; of A + BK satisfy Re); < —a for some a > 0. Hence the solutions of
the feedback system satisfy, for every initial value zo € R and some constant M > 1,

(4.6) 192, 20; K)|| < €™M ||zoll = {(lIzoll ,2),
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where {(r,s) := e"**Mr,r,s > 0. Thus assumption (4.3) in Proposition 4.2 holds;
hence hs(2¢,2¢,T, {0}) < hpy(e, ¢, K, T). For a compact subset I' C R? the e-entropy
of K is determined by the following. Let, for yo € R?,

Uy, (t) = Ktp(t, yo; K) = KelATBF)by, - ¢ >0,
Noté that, for zo,yo € RY,
©(t, To, tyo) — ©(t) Yo, Uy, )
=eftzy + /0 t e~ By, (s)ds — eAtyo — /0 t e~ By, (s)ds

= et(zg — yo).

For e,7 > 0 a set E = {y1,...,yn} is (7,¢,¢,')-spanning for the feedback K, if for
all zg € T there exists j such that ||zo — y;]| < € and, for ¢ € [0, 7],

47 |lelt,zo,uy,) — @(t, yj, Uy;)” = |le#*(zo — v5)|| < €™M (||zo — y; | +¢)-

A classical result shows that the topological entropy hiop(®:) of a linear flow &; =
ettt € R, is given by heop(®e) = 3. Rea;>0 R€Ai, where Ay, ..., A, denote the ei-
genvalues of A; cf. Walters [26, Theorem 8.14]. It follows that the topological entropy
of the flow e4*eDt t € R, is 3, per,>—a ReXi. By the definition of topological en-
tropy of flows, for any compact set T' C R? a set F = {z1,... 2} is (7,&,')-spanning
if for every xo € I there is 2; such that, for t € [0, 7],

”e(‘““m(zo - Zj)” <, hence |le*t(zq — z;)|| < e™*.

This shows that F' is also (7,¢,(,I')-spanning for the feedback K; cf. (4.7). Using
Proposition 4.2 one finds for 7 — oo that the e-stabilization entropy and the e-entropy
of the feedback K satisfy ‘

hs(26,26,T,{0)) < hio(e, 6, K,T) < huop (6442D) = 37 Reds.
i: Re(\i)>—a

Note that here 2{(r, s) = e~**2Mr,r, s > 0. Since the right-hand side is independent
of g, it actually follows for € — 0 that the practical stabilization entropy and the
stabilization entropy satisfy

(4.8) hps(zg,K,r,{o})ghs(Qg,K,r,{O})ghn,(c,K,r)s > Re
i: Re(\i)>-a

In Theorem 5.1 we will show that here equalities hold.
For general nonlinear systems, it seems very hard or impossible to derive explicit
formulas for the e-entropy of a feedback.

Remark 4.4. The papers by Liberzon and Hespanha [19] and De Persis {8] use
input-to-state stability properties in order to derive stabilizing encoder/decoder con-
trollers. This condition (Assumption 2 in [19]) requires (in our notation) that there
exists a Lipschitz feedback law u = k(z) which satisfies £(0) = 0 and renders the
closed-loop system input-to-state stable with respect to measurement errors. This
means that there exist p € KL and v € Kf(i-e,, v : [0,00) = [0,00) is continu-
ous, strictly increasing, and unbounded with 4(0) = 0) such that for every initial
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state z(to) and every piecewise continuous signal e the Correspondlng solution of the
system & = f(z, k(z + e)) satisfies

le@®l < p(llz(to)ll ,t —to) +( sup |le(s)]]) for all ¢ > to.
s€(to,t
The input-to-state stability property is used in order to estimate the effect of pertur-
bations on feedbacks. In Proposition 4.2, we have used instead the entropy property
of the feedback k.(-).

5. Applications. In this section we present several examples illustrating prac-
tical stabilization properties and estimates for the corresponding entropies. For linear
control systems we show that the practical stabilization entropy and the stabiliza-
tion entropy coincide and they are characterized by a spectral property. This uses
inequality (4.8). Then two scalar examples are discussed, where quadratic feedbacks
and piecewise linear feedbacks, respectively, only lead to practical stabilization prop-
erties. For these examples and a similar higher dimensional system we estimate the
e-practical stabilization entropy using the results from section 3. The three nonlinear
systems analyzed here are not locally C! stabilizable.

5.1. Linear systems. In this subsection, the practical stabilization entropy is
determined for linear control systems in R? of the form

(5.1) z(t) = Az(t) + Bu(t), u(t) e U=R™
with matrices A € R%*4 and B € R**™. The next theorem characterizes the practical

stabilization entropy about the equilibrium z = 0.

THEOREM 5.1. Consider a linear control system of the form (5. 1) Assume that
there are a > 0, M > 1 such that for all initial values 0 # xo € R? there is a control
u € U with

(5.2) ll(t, zo, u)|| < e~ **M/2||zo|| for allt > 0.

Then for the exponential KL-function ((r,s) = e **Mr the e-practical stabilization
entropy, the practical stabilization entropy, and the stabilization entropy satisfy for
every compact subset I' with nonvoid interior

hpS(":, 9 {0}) = hps(c’ T, {0}) = hs(C,F, {0}) = E (a + Re,\,-).

Rel;>~a
Here summation is over all eigenvalues \; of A, counted according to their algebraic
multiplicity, with Re\; > —a. .

Proof. One easily proves that assumption (5.2) holds if and only if there is a
feedback K such that all eigenvalues of A + BK satisfy Re A\;; < —a.. Thus condition
(4.6) holds, and it follows from (4.8) that
(53)  hps(C, KT, {0}) < (¢, KT, {0}) S hao(¢/2K,T) S 30 L Reds.

For the proof of the converse inequalities note that f(z,u) = Az + Bu satisfies

d d
div; f(z,u) = trfz(z,u) =trd = Z)“ = ZRe/\,-.

i=1 t=1
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Theorem 3.4(ii) can be applied to the system obtained by the projection 7 to the
sum of the real generalized eigenspaces for all eigenvalues with real part larger than
—a along the subspace corresponding to the sum of the other generalized eigenspaces.
Then the e-practical stabilization entropy of this projected system is bounded below
by
adim(r(R?))+. Y Rel= > (a+Re)).
Rel;>-a ReAi>—a

The equality follows since the eigenvalues are counted according to their algebraic
multiplicity. Since practically (,¢,¢,T, {0})-spanning sets for the system in R? yield
practically (7,¢,¢,m(I),{0})-spanning sets for the projected system and =(I) has
nonvoid interior, it follows that hps(e,¢, T, {0}) > 3", ren,>—a(@ + Re ;). Together
with (5.3) the assertion follows. O

Remark 5.2. The characterization of stabilization entropy in Theorem 5.1 has
already been proved in Colonius [5, Lemma 4.1 and Theorem 4.2]. The proof above
is a considerable simplification.

5.2. A scalar example with quadratic feedback. In this subsection we dis-
cuss a scalar example, where only practical stabilization properties can be used. Our
strategy is to construct quadratic feedbacks such that the closed-loop systems has,
in addition to the unstable equilibrium at the origin, a stable equilibrium arbitrarily
close to the origin. Thus for every € > 0 the feedback systems are e-practically stable
in the sense of Definition 2.1, and we use the estimates for entropy from section 3.

Consider the scalar control system given by

(5.4) z = f(z,u) = Az + aoz? + foru + You’,

where A > 0 and ayg, Bo,Y0 with 7o # 0 are real parameters and the controls take
values u(t) e U CR. '

For system (5.4) the origin x = 0 is an equilibrium corresponding to v = 0 if
0 € U. For z = 0 the right-hand side of (5.4) is given by f(0,u) = you?. For y9 >0
one has f(0,u) > 0 for all 0 # u € R, and for 99 < 0 one has f(0,u) < 0 for all
0 # u € R. Hence the system is not controllable around the origin. By Brockett’s
necessary condition (cf. Sontag {24, Theorem 22)) it is not locally C! stabilizable.
Hence for 7y > 0 stabilization can only be expected for initial values in (—o00,0) and
for 4o < O for initial values in (0, o). '

For quadratic feedbacks of the form
(5.5) kquad(z) = kz + xqz with k,q € R,
the closed-loop system is

T=Az+ aoa:? + Box(kz + qz2) + vo(kz + qx?)?
(5.6) = Az + (a0 + ok + 0k*)z® + q(Bo + 2v0k)2® + Y0g’z*.

We denote the solutions of this equation by (¢, zo; k, g) on their existence intervals.
The following theorem shows that with quadratic feedback (5.5) system (5.4) can be
made e-practically stable with exponential rate a € (0, 3)), where the constant M in
¢(r,s) = e"**Mr depends on ¢ (and I'); cf. Definition 2.1.

THEOREM 5.3. Consider system (5.4) with quadratic feedback (5.5) and A = {0}.
Fiz € > 0, and let the control range be either U} = [0, p(€)] or U = [—p(e),0] with
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p(€) large enough. If v < 0 consider initial values in a compact set I' = T't C (0, 00);
if vo > 0 consider a compact set ' =1~ C (—00,0). -

Then for every a € (0,3)) there are k,q € R such that for ((r,8) = e~ **M(e)r,

r,8 > 0, with M(g) > 1, the closed-loop system (5.6) is e-practically (¢, T, {0})-stable.

. The proof of Theorem 5.3 is given in the appendix.
Next we estimate the e-practical stabilization entropy. The control ranges will
vary; hence we add this argument in the notation for the entropy. In Theorem 5.4(ii)
we employ the modified notion for noncompact control ranges in Remark 2.7.

THEOREM 5.4. Consider system (5.4) with quadratic feedback (5.5), and let the
assumptions of Theorem 5.3 be satisfied.

(i) For € > 0 let the exponential KL-function (. be given by Theorem 5.3. Then
the e-practical stabilization entropy satisfies

hps(2€,Ge, T, {0}, UF) < max {|fz(z, u)| |(,u) € P x U¥ } < 0,
where ' =T'F forvo <0 and T =T~ fory > 0, and
fe(z,u) = XA + 200z + Bou and P. = {z € T'||z| < M maxyer |yl + (M +1)}.

(ii) Suppose that the Lebesgue measure of I' as in (i) is positive, and either By > 0
and the control range is U = Ut = [0,00), or Bo < 0 and the control range is
U=U" = (~,0]. Assume sign(y,) = —sign(fo). Then for every a € (0,3)) and
¢(r,8) = e~ **Mr with M > 1, the e-practical stabilization entropy and the practical
stabilization entropy satisfy

00 > hps(€,¢, T, {0}, U) > a+ A —3|agle and 00 > hys(¢, T, {0},U) > a+ A

For (. given by Theorem 5.3, one has hps(€, ¢, T, {0}, U) < 0.

Proof. (i) Fix a € (0,3)). Theorem 5.3 shows that for every zo € I' there is a
control u(t) = kquaa(¥(t, Zo; k, q)),t > 0, with values in UZ such that

d(p(t, zo,u), {0}) < ((d(z0,{0}),t) + € for all ¢ > 0.
Then Theorem 3.1(i) yields the upper bound
hoe(26:¢:, T, {O},Usi) <L = max{lf,(:c,u)i |(.7:, u) € P. x Uf } ,
where f;(x,u) and P. are as stated in the assertidn. This proves (i).
(ii) Recall the modified notion of e-practical stabilization entropy for noncompact
control ranges from Remark 2.7:

hps(Ea Ca Pv {0}, U) = i%fhps(sa C9 Fir {0}7 un K)»

where the infimum is taken over all compact subset K C R™. Let Ko be compact
“with
iII}f hps(€, ¢, T, {0}, U N K) > hps(e, ¢, T, {0}, U N Ko) — |axol
| > hps(: 6, T, {0}, UZ) — lool €
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if p(¢) > 0 is large enough such that UN Ko C U} if Bp > 0 and UN Ky C U if
Bo < 0. By Theorem 3.4(ii) we obtain
hps(e,¢, T, {0},U) 2 a+ ‘<minu_‘t fz(z,u) — |aole

z|<e,u€U;

=a+A+ min (20(0:1: + ﬁo'u,) - Iao| 3
lz|<e,ueUE

> a+ A —3laple + min (Bou).
ueUZE

For o > 0, By < 0 the control range is U;” = [—p(¢), 0], and we get min,, ¢, (Bou) = 0.
For 79 < 0,8 > 0 the control range is U} = [0, p(¢)], and we get min, .+ (Bou) =
minye(o,p(c)] (Bou) = 0. This proves the lower bound on the e-practical stabilization
entropy. The assertion for the practical stabilization entropy follows for € — 0. The
final assertion follows from (i) by choosing M(e) from Theorem 5.3 and noting that
hps(€, &, Ty {0}, U%) < hps(e, ¢, T, {0}, UZ). This completes the proof of assertion
(ii). 1}

Remark 5.5. Observe that in Theorem 5.4(i) the upper bound L, converges to oo
for e — 0 if p(e) = oo and By # 0.

5.3. A scalar example with piecewise linear feedback. Consider the scalar
system given by

(5.7 &= f(z,u) = Az + aoz? + fozu + Y0u? + e1z® + frz’u + Nz’ + Mmud,

where A > 0, ag, £o,70, @1, 81,71, and 7; are real parameters with 49,71 # 0, and the
controls take values u(t) € U C R.

We follow an approach in Hamzi and Krener [10] to construct piecewise linear
feedbacks such that the closed-loop systems have, in addition to the unstable equi-
librium at the origin, two stable equilibria arbitrarily close to the origin. Then we
evaluate the bounds for entropy from section 3.

The origin z = 0 is an equilibrium corresponding to © = 0. For z = 0 the
right-hand side of (5.7) is given by f(0,u) = you? + n;u®. If the control range is
U = [-p,p] C R with p > 0 large enough, there are control values uy,us € U with
f(0,u;1) > 0 and f(0,u2) < 0; hence the system is controllable around the origin. It is
not locally C! stabilizable, since the linearized system has the uncontrollable unstable
eigenvalue A > 0; cf. Sontag [24, Corollary 5.8.8].

First we will show that system (5.7) is practically stabilizable about the origin
using a piecewise linear feedback with k1, ks € R of the form

‘ _J kix for z2>0,
(5.8) k(z) = { kox for z <0.

We denote the solutions of the feedback system by (¢, zo; k1, k2),t > 0.

THEOREM 5.6. Consider system (5.7) with piecewise linear feedback (5.8); let
I' € R be a compact set of initial values and A = {0}. For alle > 0 anda > 0
there is M = M(e,a) > 1 such that the KL-function (.(r,8) = e"**Mr,r,s > 0,
satisfies the following property. If the control range is U, = [—p(e), p(€)] with p(e)
large enough, then there are ky, k2 € R such that the feedback system is e-practically
(¢,T, {0})-stable.

The proof of Theorem 5.6 is given'in the appendix.
Next we estimate the e-practical stabilization entropy. In Theorem 5.7(ii) we
employ the modified notion for noncompact control ranges in Remark 2.7.
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THEOREM 5.7. Consider system (5.7) with piecewise linear feedback (5.8), and
let the assumptions of Theorem 5.6 be satisfied. ‘

(i) Fore > 0 let the KL-function (. be given by Theorem 5.6. Then the e-practical
stabilization entropy satisfies ’

hps(2¢, e, T, {0}, Ue) < L. := max {|fz(z,u)| |(z,u) € Pe x U } < o0,
where
folz,u) = X+ 20z + Bou + 3122 + 281 2u + 27112,

P€={a:€I‘ |z|$Mmgrag|y|+e(M+1)}.
v

(ii) Suppose that the Lebesgue measure of T is positive and v1 > 0,8 # 0, and
the control range is U = R. Then for a KL-function { = e~ **Mr,r,s >0, witha >0
and M > 1 the e-practical stabilization entropy and the practical stabilization entropy
satisfy

00 > hpo(e, ¢, T, {0}, U) > o+ A — 3Jao|e — 3 |az| €2 — Z%;(ﬂo + 2sign(Bo) |1 €)2,
oo 2 hPS(CiI‘a{O},U) Z a+A— 'Eg—
dm

For ¢, given by Theorem 5.6 one has hys(e, (., T, {0},U) < oo.
Proof. (i) By Theorem 5.6 for every zo € I" the control u(t) = u(v¥(t, zo; k1, k2)),
t > 0, with values in U, yields
d(e(t,zo,u), A) < ((d(zo,A) +¢,t) + ¢ for all £ > 0.
Then Theorem 3.1(i) yields the upper bound _
hps(2¢,¢,T, {0}, Ue) < L := max {| fo(z,u)| |(z,u) € P x Uc },

where f.(z,u) and P, are as stated in the assertion. This proves (i).
(ii) As in the proof of Theorem 5.4 we use that for p(e) large enough

hps(sy C? Fa A7 U) = iﬁf hps("':: Ca P? Aa Uun K) = hps(ey C> F7 Aa Ue) - IQOI €.

Using the lower estimate provided by Theorem 3.4(ii) we obtain

hps(ev (4% W) {0}» U)

> a-+ min T,u) — |aple
Z |I|S€,‘u€U¢fZ( ’ ) | 0|

=a+A+ min {200z + 3a12% + (Bo + 2B1z) u + 2m1u?} - |agle
|z|<eu€Ue

> a+ A+ min {200z + 332} + min min {(Bo + 281z) u + 211u?} — || €.
jz|<e |z|<eu€U.

Clearly, minj; <. {200z + 30122} — |ap|€ > —3 |ap] € — 3ai| €2, and for the parabola

(Bo + 261z) u + 1u?,u € R, with 1 > 0, the minimum is attained in u = —§~—°;3f".

Hence for € > 0,
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2} = min (__ (Bo + 2B17)* + (Bo + 2131-1‘)2)
lzl<e \ 21 in

. 2
= 47”< ax(fBo + 2B:1z)

> —E(ﬂo + 2sign(Bo) |B1| €)°.

2 2
I’;}g&l}}l {(Bo +2B17) u + 2711

Together this yields the lower estimate for hye(e,(,T",{0},U). The estimate for
hps(¢, T, {0}, U) follows by taking the limit for ¢ — 0. The final assertion is a conse-
quence of (i). This completes the proof of assertion (ii). O

5.4. A higher dimensional example. The following system is a generalization
of the system in subsection 5.2 by connecting it with a chain of integrators. This
system occurs in a quadratic normal form; cf. Krener, Kang, and Chang [18, Theorem
2.1]. We will rely on a practical stabilization result due to Hamzi and Krener [10].
Consider the control system in R? given by

d
. 2 2 s s
%1 = Az1 + apzi + Boz1T2 + E YiTjy &2 =T3,...,E4 =1,
Jj=2

where A > 0 and ayg, Bp,y2 with 72 # 0 are real parameters and the controls take
values u(t) € U C R. Let

010 0 0

0 01 0 0
Az=| sy Ba=| 1 |,

0 0O 1 0

0 0 0 0 1

and abbreviate z = (z3,...,24)7. Then we may write the system as

d
(5.9) Iy = Az + aoxf + Bozxi122 + Zj=2 'yj:cf,
2= Az + Bau.

The system is not locally C? stabilizable since the linearized system has the uncon-
trollable unstable eigenvalue A > 0; cf. Sontag [24, Corollary 5.8.8]. We use linear
feedback of the form

(5.10) k(zy,2) = kiz1 + Koz
with k; € R and choose K> € RI"(d 1) such that Az + B, K> is stable. The feedback
system becomes
d
(5.11) £y = Az1 + aozi + foz1z2 + ZJ_=2 VT3,
2i= (A2 + Bsz) z+4 szlIl.

The following theorem shows a practical stabilizability result.

THEOREM 5.8. Consider system (5.9) with linear feedback (5.10) and A = {0}.
Suppose that A > 0 is sufficiently small. Fiz e > 0, and let p(¢) > 0 be large enough.
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If v2 < 0, let the control range be U} = [0, p(e)], and consider initial values in a
compact set T =Tt C (0,00). Ify2 > 0, let the control range be U = [—p(¢),0], and
consider initial values in a compact setI' =T'~ C (—00,0).

Then there is a KL-function (. such that the closed-loop system (5.6) is e-
practically ((., T, {0})-stable.

Proof.- This follows from Hamzi and Krener [10, proof of Theorem 3, pages 44-
47]. Here a center manifold reduction is used to show the following. If v, < O there
is k1 < O such that the feedback system (5.11) has an equilibrium et with positive
first component and domain of attraction including I't. If 45 > 0 there is k; > 0 such
that the feedback system (5.11) has an equilibrium e~ with negative first component
and domain of attraction including I'~ and corresponding X L-function ¢.. Choosing
|k1| large enough, these equilibria are arbitrarily close to the origin This implies the

assertion. o

THEOREM 5.9. Consider system (5.9) with linear feedback (5.10), and let the as-
sumptions of Theorem 5.8 be satisfied. For every € > 0 define

d |
L i= max (1, maxzer, {3+ 2laolz + ol 2 +23 7, biles )

where P. = {z € R?|||z|| < (.(maxyer |lyll +&,0) +&}. Then for every € > 0 the
e-practical stabilization entropy satisfies

A= (2 Iaol ot |ﬂ0l)5 < hpS(E’ Cea]-—‘, {0}) < Le/2 d.
Proof. Denoting the right-hand side of (5.9) by f(z,u) one finds

A+ 20071 + Box T1+2vxs --- 2v47
fz(a:,u)zz[ 001 Boxz PoTi + 27272 " ’Ydd]_

Using the max-norm in R? and trA4; = 0, Theorem 3.4(i) yields the lower bound

oa(e, Ceo T, {0) > min {t2f2(z, ) |(z, u) € B(0,€) x U }
= min {\ + 2aoz1 + Poz2 + trdz |z € B(0,¢) }
= /\—2|ao]6— [ﬂole

Theorem 3.1(i) yields the upper bound L, /2 d with L,/ := maX(z u)ep, ,» xv | fz(2, vl
< o0o. Using the matrix norm induced by the max-norm in R? we get

i=2

: d
|| fz(z, u)|| = max {l/\ + 2a9z1 + Boz2| + Z [27524] 1} ;
hence
ma.x{||fz(a:,u)” [(:z:,u) € Pg X U% }

d
= max )\+2|ao|:z:1+lﬁol$2+2z|7jl$j . o
xEP,& . =2



ENTROPY FOR PRACTICAL STABILIZATION 2217

6. Conclusions and open questions. In section 3, we have derived upper and
lower bounds for e-practical stabilization entropy and practical stabilization entropy
(i.e., in the limit for € — 0) based on general KXL-functions ¢, with special attention
to exponential KL-functions. Section 4 presents an upper bound for e-practical stabi-
lization entropy based on an g-entropy notion for feedbacks. In section 5 this is used
for linear control systems in order to prove that the practical stabilization entropy
and the stabilization entropy coincide provided that the system is stabilizable and
to characterize them by a spectral condition. Furthermore, two scalar examples are
analyzed where quadratic feedbacks and piecewise linear feedbacks, respectively, only
lead to e-practical stabilization for every € > 0. Here and for a similar higher dimen-
sional system the employed exponential XL-functions depend on ¢, and the upper
bounds diverge for € — 0. '

Major research problems include the following: Suppose that the considered con-
trol system is e-practically stabilizable for every € > 0 but not stabilizable (either by
appropriate feedbacks or in the sense of (3.1), where open-loop controls are consid-
ered). Will the corresponding e-practical stabilization entropies diverge for £ — 07
It is also not clear to us when there exist KL-functions which work for every € > 0.
Furthermore, suppose that the system is stabilizable. Is there a gap between the
practical stabilization entropy and the stabilization entropy? In the linear case, The-
orem 5.1 shows that both entropy notions coincide. The answer will be of interest
for control devices which only lead to practical stability but not to stability. Further-
more, the relations of practical stabilization entropy to mlmmal data rates for digital
communication channels merit exploration.

Our results do not yield formulas for practical stablllzatlon entropy. In the well
studied case of invariance entropy, only for hyperbolic control systems such strong
results are available; cf. Kawan and Da Silva [16]. In this context Kawan [13] shows
a lower bound for stabilization in terms of topological pressure under a uniform hy-
perbolicity assumption. See also Kawan [14] for a general discussion of hyperbolicity
in the context of control systems. However, hyperbolicity conditions are not directly
applicable in our framework, since it is not local (with respect to A).

7. Appendix. In this appendix we prove Theorem 5.3 and Theorem 5.6.
Proof of Theorem 5.3. Equilibria different from the trivial equilibrium z = 0
satisfy
(7.1) 0 = A+ (ap + Bok + 10k?)z + q(Bo + 270k)z® + Y0q*2>.

‘We choose the constant k& in order to eliminate the quadratic term,

__Po
(7.2) Bo + 270k =0, i.e., o

Then it is immediately clear that the properties of the feedback system (5.6) do not
depend on the sign of ¢q. Furthermore, one finds

B3 ﬁ_oz _ 4o - A3

7.3 ap + Bok + Yok? = ap — —= ;
(7:3) ek 0 2’70 470 4%

hence the equilibria are determined by

dagyo — B2 x A

+ =0.
4v¢q? Yogq?

(7.4) 73 +
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The solutions of this cubic equation in reduced form z2 + 3az + b = 0 are given by

the classical Cardano formula; cf., e.g., Zwillinger [29, subsection 2.3.2]. For (7.4) one
2 v
has a = %"ggzﬁl and b= ,YT”;;. If thg discriminant
3
4 (dagyo — B2 1 A2
D:=4a3 +b> = — (—-—0 +——>0
, ¢\ 129 g

there is a unique real real solution, hence a unique nontrivial equilibrium, given by .

1 1 1
b 1\ /b 1\ A L1\ A1 =\t
“w=(-3+3Y8) +(-5-3) =(-mz*3*D) +(-mz~2P) -
The condition D > 0 holds for |g| large enough. The dominant term for |g| — oo in

Dis ;‘;%}, and hence the dominant term in e(g) is

A A e A1 A\ 1 A3
(7.5) (‘ 5+ ‘T)’ % (-——2‘ - —2—‘) =-=E1E
210¢® 24’70/ 27%0¢®  2¢%% g2B AL/
Thus for |g] — 0o one has e(g) — 0 with |g|~*/3. Let |q| be large enough. Then for
7o > 0 the initial values are taken in I' C (—o0,e(g)) and e(g) < 0. For 79 < 0, the
initial values are taken in I' C (e(g), c0) and e(g) > 0.

Next we analyze stability of the equilibria. Since the equilibrium in the origin
is unstable, general properties of scalar autonomous differential equations imply that
e(g) is asymptotically stable with domain of attraction given by (—o0,0) if e(g) < 0
and (0,00) if e(q) > 0. In order to prove exponential stability, we compute the
Jacobian of (5.6) with (7.2) and (7.3):

a g
J(z) = — [Az + (a0 + Bok + v0k?)® + ¢(Bo + 2v0k)x® + 7oq2a;4}

dagyo — B2

z+4 oq2x3.
27 L

For z = e(q) we obtain by (7.5) that for |g| =& oo the dominant term in the Jacobian
J(e(g)) is

_B2 1/3 — g3 V3
A+4Oto7o ﬁo( 1A )_ 70q21 Ay 1 doon =B AT 4y 3y

2% _W 71/3 ;15% - q_2/'§ 2% '73/3

0

Hence for |g| large enough, the equilibrium e(g) is locally exponentially stable with

{(r,s) = e *r for 0 < a < 3.
Claim. There is M = M(g) > 1 such that for every o € (0,3)) and every zo € T

the following exponential estimate holds:
(7.6) |9(t, 203 k, q) — e(q)] < €™M o — e(q)| for t > 0.

For the proof we first consider the case e(g) > 0. Then one can choose z = z(g) € R
in the domain of exponential attraction such that e(g) < z; hence

Y(t, 2k, q) — e(q) < e~ (z — e(q)) for t > 0.
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For every zg € I there is T, > 0 with ¥(T%,, Zo; k,q) = 2; hence, fort > 0, -

(7.7) Y(t + Ty, Tos £y q) — e(q) = Y(t, V(Tz0, Zos k, 9); £, q) - e(q) < e *(z—e(q)).

By compactness of I it follows that T := maxz.er Iz, < 00, and hence with M = 3T
it follows, for zg € I', that

¥(t, zo; k,q) — e(q) <z-e(q) < e'“TM ma.x{y —e(g)} for t € [0, T,

and for ¢t > Ty, this yields together with (7.7) and (7.6),

1/"(tv To; kv q) - e(Q) = '»b(t - Tgcov ¢(Txovzﬁ; kv Q); ka q) _ e(q) < e_a(t-Tzo) (Z - C(Q))
' < e *t-Teo)g=0T20 M (24 — e(q)) = e~ **M (z0 — e(q)) .
Note that Ty, and T depend on g, since the point z = z(q) is taken in the domain of
exponential attraction of e(q) and hence depends on ¢. This entails that M depends
on ¢, since |g| is taken large enough in dependence on &.

Analogously, one argues for e(gq) < 0. Thus the claim is proved.
Choosing |g| large enough, it follows that e(g) € (—3%7, 557); hence

[%(t, zos k, @) < [9(t, Zo; &, 0) — e(@)] + le(q)| < e M |zo — e(g)| + le(q)]
< e ™M |xo| +e. o

Thus the system is e-practically (¢, T, {0})-stable with (.(r,s) = e~ **M(e)r. Our
assumptions on the control range U guarantee that the values of the quadratic
feedback (5.5) can be taken in UZ for 2o € I.

Proof of Theorem 5.6. We will show that for every € > 0 there are k1,k2 € R
such that, besides the trivial equilibrium at the origin, the feedback system has two
equilibria in (—&,€) which are locally exponentially stable.

Let ¢ € {1,2}. Any nontrivial equilibrium z must satisfy

(7.8) 0=+ [ao + Bok: +oki]z + o + Buks + k] +mk]z®.
Abbreviate ‘

Ag,i(ks) = ag + Boki +ok? and A; (ki) = a1 + Brki + 11k? + k.
Then the solutions of (7.8) are |

—Bo,i(k;) £ /B3 4(k,) — AAy,i(k, ]
24,,i(k;)

(7.9) = (ki) =

Claim. The feedback system with |k;| large enough and 31gn(k ) = —sign(m) has
three equilibria given by

ez(ks) := :v2+(k2) < 0 < ey(ky) :== z7 (k).
For the proof of the claim observe first that =" (k;) € R if

(7.10) A% (k) -4\D1i(k,) >0,
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and z (k1) is an equilibrium if and only if it is positive, and z3 (k2) is an equilibrium
if and only if it is negative. For k; as in the claim it follows that A; ;(k;) < 0. Hence
(7.10) holds, and zF(k;) € R. For |k;| — o it follows that A; ;(k;) — —oo with [kl

We distinguish the following two cases.

- Let 70 > 0. For |k;] = oo it follows that Ag;(k;) — oo with |k;|%; hence
zE(k;) — 0 with |k;| ™", and z (k;) > 0 and z} (k;) < O for |k;| large enough.

- Let 40 < 0. For |k;| — oo it follows that Ag(k;) — —oo with |k;|%; hence
zE(k;) — 0 with [k:) ™. Again, z; (ki) > 0 and z;f (k;) < 0 for |k;| large enough.

Thus the claim is proved. Note that for |k;| large enough, the equilibria e;(k;) are
arbitrarily close to 0.

Next we analyze the stability properties of the equilibria. Since the equilibrium
in the origin is unstable, it follows from general properties of scalar autonomous
differential equations that e; (k1) and e2(k2) are asymptotically stable with domains
of attraction (0, c0) and (—00, 0), respectively. In order to prove exponential stability,
we compute the Jacobian in a nontrivial equilibrium of the feedback system using the
product rule and (7.8):

9 .
J(z) = . [:c(A + a0z + Bokiz + Yok?x + a1x® + B1ak; + nzkiz + mk?xz]
=z [ao + Bok; + 70’6,-2 + 2((11 + Bik; + ’)’1k? + nlk?)l']
=X [Aoy,’(k«;) + 2A1’,'(k,')l‘] .
For z = z7 (k1) = e1(k1) > 0 one finds, by (7.9),

J(ei(k1)) = ex(k1) [Do,1 (k1) + 2A1,1(k1)e1 (k1))
= —ex(k1)y/Bo,1(k1)2 — 4AA1,1 (k1) <O,

and for z = z3 (k2) = e2(k2) < 0 one obtains

T(ea(k2)) = ea(k2)y/ Aoa(ka)? — AAD1,2(k2) < 0.

Concluding, we have found constants k1, k2 with [k; 2| large enough such that there
are, besides the trivial equilibrium at the origin, the two equilibria ez(k2) < 0 < e;(k1)
which are locally exponentially stable with domain of asymptotic attraction (—o0,0)
and (0, c0), respectively. Note that for |k;| — oo one has that J(e;(k;)) = —oo with
|ki]. This follows since e;(k;) — 0 with |Ic,v|~1 and /Ao,i(ki)? — 4AA12(k;) — oo
with ]kilz. Hence the exponential rate o can be chosen arbitrarily large for |k;| large
enough.

Similarly as in the proof of Theorem 5.3 one finds for a > 0 a constant M =
M(e,) > 1 such that the solutions (¢, Zo; k1, k2) satisfy for o € I' N (0, 00] with
t =1 and for zg € ' N (—00,0) with i = 2,

[4(t, o3 k1, k2) — €i(ki)| < e **M|zo|, t>0.

With ¢.(r,s) = e"®*M(g,a)r one shows as in the proof of Theorem 5.3 that the
system is e-practically (¢, T, {0})-stable for k12| large enough. The required control
values k;1(t, zo, k1, k2), Zo € I, are in the control range if p(¢) is large enough. n|
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