
quademi di matemática, 25
ISBN 978-88-548-4391-2 
001104399/97888548439124
pag. 37-50

Some Remarks on Stabilization by 
Additive Noise

Dirk Blömker, Martin Hairer and GrigoriosA. Pavliotis

Contents

1. Introduction (39).
2. Numerical Example (40).
3. Multiscale Analysis for the Stochastic Burgers Equation (42).
4. Amplitude Equation (43).
5. Stabilization by Additive Noise (44).
6. Conclusions and Open Problems (48).



Some Remarks on Stabilization by Additive Noise 39

1. Introduction

Stabilization of solutions to (ordinary) stochastic differential equations (S- 
DE’s) due to multiplicative noise is a well known phenomenon that has been 
studied extensively in several different contexts. For example, Stratonovich 
multiplicative noise leads to an averaging of the noise over stable and unsta­
ble directions, as was noted by Arnold, Crauel, and Wihstutz [1] and Pardoux 
and Wihstutz [22, 23]. Furthermore, it has been shown that when the SDE 
is driven by Ito multiplicative noise the stabilization of the solution is due to 
the Ito-Stratonovich correction, e.g., Kwiecinska [17, 18]. For stochstic par­
tial differential equations (SPDE’s) there are several works investigating these 
phenomena by Caraballo, Liu, and Mao [11], Cerrai [12], Caraballo, Kloeden, 
Schmallfuf, [10] and many others. Stabilization due to rotation has been studied 
by Baxendale, Hennig [2] or Crauel et.al. [13]. Results related to stabilization 
by multiplicative noise also presented in [19], [15].

Amplitude equations for finite-dimensional trimcations of Burgers-type sto­
chastic PDEs have been derived for example by Majda, Timofeyev, Vanden 
Eijnden [20, 21]. The amplitude equations derived by these authors have ad­
ditive and/or multiplicative noise and it was observed by the authors that the 
noise can have a stabilizing effect. In principle, their formal calculations can 
be justified by using Kurtz’s theorem [16]. However, this approach does not 
enable us to obtain error estimates, nor does it seem to be possible to generalize 
it to arbitrary dimensions.

The aim of this paper is to review some recent rigorous error estimates 
for amplitude equations and to present some analysis of the interplay between 
noise and nonlinearity. This is based on recent results obtained by the authors 
on the stabilizing effects of additive noise on solutions to semilinear parabolic 
stochastic PDEs with quadratic nonlinearities [7]. This work improves the re­
sults of [24], where numerical experiments and formal calculations based on 
center manifold theory indicated that additive noise has the potential of stabi­
lizing dominant behavior. Our proof is based on the derivation of an amplitude 
SDE for the dominant mode and on a careful analysis of this equation. This 
enables us to justify rigorously formal asymptotic expansions, the approach is 
very well adapted to infinite-dimensional problems (i.e. there is no need to
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consider finite dimensional truncations) and leads to the derivation of error 
estimates.

We consider two cases. First SPDE’s in a scaling where the noise acts 
directly as additive noise on the dominant mode. Secondly, w<’ show in a 
different scaling limit that degenerate additive noise can be transported to the 
dominant mode by the nonlinearity. As a result, the evolution of the dominant 
mode is governed in the limit by an SDE with multiplicative noise which can, 
potentially, stabilize the solution of this SDE.

For simplicity of presentation in this article we focus on SPDE’s of Burgers- 
type near a change of stability. There, it is well-known [4, 8, 7] that the 
dominant modes evolve on a slow time-scale, and stable modes decay on a fast 
time-scale. Moreover, the evolution of the dominant modes is given by a finite 
dimensional SDE, the so-called amplitude equation, the reduction to which is 
well-known in physics [14].

2. Numerical Example

As an example consider the following Burgers-type SPDE

(2-1) dt u =  (c^ +  l)u  4- e2u + udx u + 

where u(t,x) C R for t > 0, x € [0, TT] subject to Dirichlet boundary conditions 
(u(t, 0) = u(t, TT) =  0)) and e <  1. Notice the different scaling of the linear 
term e2u and the noise cre .̂ For the numerical experiment we set e =  0.1 and 
we use the highly degenerate noise £(t,x) = dt /3(t) sin(2x) acting only on the 
second Fourier mode, where (3(t) is a standard one-dimensional, real-valued 
Brownian motion.

We solve equation (2.1) using a spectral Galerkin method, keeping only 
the first four Fourier-modes. This is sufficient to provide us with an accurate 
solution of (2.1), since higher order modes are negligible [7]. Figures 1, 2, and 3 
show snapshots of solutions and their first and second Fourier-modes for a  =  2 
and cr =  10. The 3rd  and 4th  mode are not shown, as they are small.
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Figure 1 -  Snapshot of the solution of the 4-mode truncation of (2.1) for a =  2 (left) and for 
<7 = 10 (right).

Figure 2 -  First Fourier mode of the solution of the 4-mode truncation of (2.1) for o — 2 (left) 
and for a =  10 (right) for a single typical realization. It is clearly seen that 0 is stabilized 
(i.e., sin destabilized) by large noise.

Figure 3 -  Second Fourier mode of the solution of the 4-mode truncation of (2.1) for rr = 2 
(left) and for <7 =  10 (right) for a single typical realization. For e —> 0 one can show that it 
converges in a weak sense to white noise acting on sin(2x).



42 Dirk Blömker, Martin Hairer and Grigorios A. Pavliotis

3. Multiscale Analysis for the Stochastic Burgers Equation

The theory presented in [7] enables us to prove rigorously the stabilization 
effect that was observed in the numerical experiment. For simplicity of pre­
sentation in this article we will consider only a modified scalar Burgers SPDE. 
However, our theory is applicable a much larger class of stochastic PDEs with 
quadratic nonlinearities, if we consider them at the onset of instability with the 
right scaling of P and a w.r.t. e. As example we mention the surface growth 
SPDE

dt h = -dfyi -  v<%h -  d2 \dx h\2 +  <r£.

See [5] and the references therein. Our method also applies to the Rayleigh Bé­
nard Convection, which is described by the 3D-Navier-Stokes equations coupled 
to a heat equation.

In this section we will consider the Burgers SPDE under the following scal­
ing, where the noise scales like e2 :

(B) dt u = (d2 + l)u  + ve2 u + ^dx u2 +  e2£ .

Here, u(t, ar) 6 R for t > 0 and x E [0, TT] is subject to Dirichlet boundary 
conditions (i.e., u(t, 0) =  u(t, 7r) =  0)). The term ve2u is a  linear (in)stability 
and the small parameter |z/e2 | 1 measures the distance from bifurcation.
The noise process £(t, x) is Gaussian, white in time and colored in space. The 
detailed description of ^(t, x) is given below. Consider the linear operator 
L := —d2 — 1 subject to Dirichlet boundary conditions on [0, TT], SO that its 
eigenfunctions, {et =  s in ( A :z ) f o r m  an orthonormal basis for L2 (0, TT), 
with corresponding eigenvalues A*, =  — 1, A: G N.

We will refer to the first eigenfunction «i =  sin(x), which corresponds to 
the zero eigenvalue Ai =  0, as the dominant mode. We will use the notation 
A/" =  span{sin} for the kernel of L. The n-th mode is given by en .

Assumptions - The noise £,(t,x) = dt W (t,x)  is given formally as the time 
derivative of an infinite dimensional Wiener process W  such that

W (t,x) = ^ 2 f f k 0k(t) sin(kx) ,
k=l
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where &k € IR with lo^l <  C and {/3fc}kgN are independent and identically 
distributed standard 1-dimensional Brownian motions.

We will consider two cases of noise

• White noise acting directly on Ai, so that in particular <7] A 0.

• Degenerate noise not acting directly on A/", that is oy = 0.

Remark 3.1 - Space-time white noise is given by a t = 1 Vk.

Our goal is to understand how the noise affects the dynamics of the dominant 
modes in A/.

4. Amplitude Equation

We rewrite Equation (B) in the form

(B l ) dt u = -L u  + ve2 u + B(u,u) +

with B(u,v) = ±dx (uv). Observe that the Burgers nonlinearity maps A/ to 
Air , so that the image of B  in Ai necessarily involves higher order inodes.

We will use the ansatz u(t, x) = ea(e2i) sin(x) + O(e2 ) to derive (formally)
the am plitude equation

(A) &ra = v a — ^ a 3 + djiL

where (3(T) = eai/3i(e~2T) is the rescaled noise in A .
More precisely, for the formal calculation we use the ansatz

u(t, x) = e A(e2 t) +c2 ^(e2 t) +...
eV eV 1

We use the slow time T  = t 2t, the projection P, onto A  and P* -  I - Pr . Since
PCB (A ,A ) =  0 as mentioned above, we obtain, setting W{T} - i T).

&r A = P .4 + 2PCB( A, + (lr PA^ +- O(<)
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and
e2&r^ = -Lip + PSB(A, A) + e&rPs W  + O(e) .

Neglecting higher order terms leads to the algebraic condition V’ = L ~1 PSB( A, A) 
and therefore

&rA = uA + 2PCB(A, ip) + &r Pr W  .

For the real-valued amplitude a of the dominant mode sin(-) (i.e. A(T, ■) = 
a(T) sin(-)) we indeed obtain Equation (A), with

= 2PcB(sin(-),L - 1 Fs B(sin(-),sin(-))).

This formal calculation can be made rigorous. In fact, we can prove the fol­
lowing theorem (see also [4, 8]).

Theorem 4.1 ([9]). Let u be a solution o f (Bl) and let a be a solution o f (A).
Suppose u(0, •) = ea(O) sin(-) +  e^oG) with tM ') -L sin(-) and a(0), V’o =  0(1).

Then for K, TQ, p  > 0 there is C >  0 such that

p i  sup ||u(t, •) — ea(te2) sin^H-x, > e2 ” *) < Cep . 
v t€[o,rl)£-2] /

Thus u(t) = ea(e2 t) sin(-) + O(e2~).

Remark 4.1 - Only the projection of the noise onto the dominant mode enters 
into the amplitude equation. The noise which appears in the higher modes is 
too weak under the scaling considered in Equation (B) to affect the dynamics 
of the dominant mode.

5. Stabilization by Additive Noise

In this section we investigate whether additive degenerate noise (i.e. noise 
that does not act directly on the dominant mode) can lead to stabilization of 
the solution of the SPDE (B). In particular, we will assume that no noise acts 
directly onto the dominant mode (i.e., crj = 0):

W (t) = ^ 2 f f k /3k(t)sin(k-) , £(f) = dt W (t)
k=2
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Our aim is to understand how the noise interacts with the nonlinearity to 
produce a stabilization effect for the solution of the amplitude equation. We 
will consider two examples.

• Highly degenerate noise acting only on the second mode, i.e. = 0 for 
k 2.

• Near white noise, i.e. &k =  1 for k > 2.

Consider first the case of highly degenerate noise:

dt W (t,x) = C(t,x) = sin(2;r) .

Theorem 4.1 applied to this case shows that, for noise-strength of order t2 , that 
the amplitude equation (A) becomes a deterministic equation:

dra = va ^ a 3 .

Hence, there is no impact of the noise on the dominant behaviour. In order to 
see the effect of degenerate noise, we have to consider stronger noise. To this 
end, we set <re = ere and consider the SPDE

(B2) dt u = —Lu + 4- B(u, u) + ae^

A formal calculation [7] then allows to derive the amplitude equation

(A2) da =  (p -  )adT — ^ a 3^  +  f  a o ,

where the noise is interpreted in the Stratonovich sense, with = e02^~2T).

Remark 5.1 - It is not hard to show that, for v g (0, <T2 /88), the solution 
of (A2) converges to 0 almost surely. Hence, in this parameter regime we get 
stabilization due to additive noise in a very strong sense.

Let us see in more detail where the stabilizing term in (A2) comes from. The 
2 2

Ito to Stratonovich correction is — ̂ a ,  but this does not explain the term — ̂ a  
that appears in the amplitude equation (A2).
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Let us recall the formal calculation. We consider the SPDE at the slow time 
scale. Substituting u(t) = eip(e2t~) we derive from (B2)

(B2’) = + PT/’ +

where ¿(T) =  €_ 1 £(Te~2 ) is the rescaled noise. Let Bk(u, n) denote the pro­
jection of B(u,v) onto span (sin (A.\r)). Note that £ = $>. We use the following 
ansatz with tpk 6 span(sin(fcr))

0(T) =  ^ T )  +  V’2 (T) + e M T )  + O(f) .

We obtain, using B n ( ÿ k , = 0 for n  & {|£ -  ¿1, + /}, 
1s t mode: d r^ i = +  2e” 1B i(^ 2 , Vq) + 2B I (^ 2 , ^ 3 ) +  0(e).
2nd  mode: ¿^2 =  eB2 (^ 1; ^ i)  + 
3rd  mode: = 2B3 (V>2 ,^ i)  + O(e).
There is a new contribution to the 1s t mode given by

4e2B i(£  1dr^2iL 1 A .

We need now to define the term (noise)2 that appears on the righthand side of 
the equation above. Instead of e& rh  we use Z( (T) = r 1 f Q e~ !(7  - s ) f  
in the proofs and the following averaging with error bounds (see [7]):

Lem m a 5.1. Suppose A  is a stochastic process, such that for all y  E (0. | ) ,  
K,p, To > 0 there is a constant C > 0 such that

E sup 
t,se[O.To]

< C e pK
| t  -  S|PT

then
f T  CT
/ A(s)Z e (s)2 ds = |  / A(s)ds + r t (T)

Jo Jo
where E sup[0 Tü] |r£ |p  < CTl>,K,P^

PROOF -  We only give a sketch. If A is the solution of (A2) then Itô’s 
formula gives the result, with re =  O(e). In our case A  is Holder continuous, 
and we have bounds on moments of Holder norms up to Holder exponents less 
then | .  Thus it is enough to prove the lemma first for A  =  const, and then 
carry over using the Holder continuity of A, where we split the integral into 
many small parts. □
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T heorem  5.1 (|7]). Let u be a continuous ([0,7r])-valued solution of (B2) 
with u(0) =  ea(0) sin(-) + e^0 , where ip0 T sin and a(0), = 0(1)- Let a be a
solution of (A2) and define

R(t) = e~L t tp0 +  o' ( /  e- 3 ^ - s ) d/32 (s)^ sin(2-), 

then for all K , p, To > 0 there is a constant C such that
p f  sup ||u(t) — e a ^ t )  sin -e/?(t)||/ i i > e

3 / 2 - < Cep .
v te[o,Tot-2] '

Consider finally the case of white noise on i.e. W(t, x) = 52^2 Pk(t) sin(kx) 
Equation (B2) becomes

(B3) dt u = —Lu + ne2 u + ^dx u2 + edt W  .

In this case the results of [7] show that there exists a Brownian motion B  and 
constants (P0 , cra , (p,) such that the amplitude equation for (B3) is

(A3) da = yQa dT — ~ a 3 dT + y/<ra a2 + <JbdB .

There are explicit formulas for all the constants that appear in this amplitude 
equation. We emphasize the fact that this equation has both multiplicative 
and additive noise. We already saw where the multiplicative noise term comes 
from. The additive noise arises from (noise)2 times an independent noise.

This result relies on a martingale approximation result of a (one-dimensional) 
stochastic integral driven by an infinite-dimensional Brownian motion by a 
stochastic integral driven by the one-dimensional Brownian motion B  that ap­
pears in the amplitude equation (A3). Sharp error estimates are also obtained 
depending on estimates for quadratic variations of the stochastic integrals:

Lem m a 5.2. Let M (t) be a continuous martingale with quadratic variation f  
and let g be an arbitrary adapted increasing process with 9(0) = 0. Then, with 
respect to an enlarged filtration, there exists a  continuous martingale M(t) 
with quadratic variation g such that, for every 7 < 1/2 there exists a constant 
C with

E sup \M (t) -  M (t)\p  < C(E5 (T)2”) 1 / 4 (E sup |/(t) -  .? (0 lT  
te[o.T] <e[o,r]

+CE sup \ f ( t ) - g ( t ) \ ^ 2 .
tejo.T]
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Theorem  5.2 ([7]). Suppose A i is one-dimensional. For a  e  [0, 5) let u be a 
continuous H Q ([0,7r])-valued solution of (B3) with u(0) = ea(0) sin +e-0o, where 
V’o -L sin and a(0), V’o = 0(1). Let a be a solution of (A3) and define

R(t) = e~ t L ^ 0 + i  e - ( t~s^d W (s)  .
Jo

Then for all K,p, To > 0 there is a constant C  > 0 such that

IP [ sup ||u(i) — ea(e2 i)sin — < Cep . 
\te[o.r,>e-2] )

6. Conclusions and Open Problems

Some recent results on stabilization of solutions to SPDE’s of Burgers type 
due to additive noise were presented in this paper. It was shown that the reason 
for stabilization is because the noise from the stable modes is transported via 
the nonlinearity and the scale separation to the amplitude equation, where it 
can act as both an additive and a multiplicative noise. Our theory applies to 
a wide class of SPDE’s with quadratic nonlinearities.

There are still many open questions in the theory of amplitude equations for 
SPDE’s. As examples we mention the proof of attractivity, the approximation 
of moments and the approximation of the invariant measure(s) of the SPDE by 
the invariant measure(s) of the amplitude equation. The difficulty in obtaining 
these results is mainly due to the lack of nonlinear stability for our SPDE, 
which makes estimates on solutions for arbitrary initial conditions not easy. 
In the case where the amplitude equation stabilises the system, it is also not 
clear whether the invariant measure for the original equation is unique. Finally, 
one challenging problem is to derive space-dependent amplitude equations for 
Burgers-type SPDE’s on large domains, that is on domains of size <9(e- 1 ), as 
obtained in [6] for the simpler case of cubic nonlinearities.
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