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Abstract
The collection of emotional speech data is a time-consuming

and costly endeavour. Generative networks can be applied to
augment the limited audio data artificially. However, it is chal-
lenging to evaluate generated audio for its similarity to source
data, as current quantitative metrics are not necessarily suited to
the audio domain. We explore the use of a prototypical network
to evaluate four classes of generated emotional audio with this
in mind. We first extract spectrogram images from WAVEGAN
generated audio and other audio augmentation approaches, com-
paring similarity to the class prototype and diversity within the
embedding space. Furthermore, we augment the source training
set with each augmentation type and perform a classification to
explore the generated audio plausibility. Results suggest that
quality and diversity can be quantitatively observed with this ap-
proach. In the chosen context, we see that WAVEGAN generated
data is recognisable as a source data class (F1-score 43.6 %),
and the samples add similar diversity as unseen source data.
This result leads to more plausible data for augmentation of the
source training set – achieving up to 63.9 % F1 which is a 3.5 %
improvement over the source data baseline.

Index Terms: generative adversarial networks, prototypical net-
works, audio generation, speech emotion recognition.

1. Introduction
There are many advantages to generating new audio data compu-
tationally, mainly the scarcity of actual data, particularly in the
speech emotion domain [1]. The time-dependent nature of audio
makes sourcing and annotating such data an extremely time-
consuming process [2, 3]. Generative models such as Generative
Adversarial Networks [4] (GANs) can be used as an augmen-
tation method. However, one challenge for generative models
remains a consensus on appropriate strategies for evaluating the
generated data in comparison to the original source [5].

With this in mind, to evaluate the generated output of a
GAN, researchers typically focus on aspects including, similar-
ity, diversity, and plausibility [5, 6, 7]. Currently, for generated
audio, time-consuming human listening studies are a common
qualitative approach to observe these aspects. There are also
various metrics, e. g. , the inception score [8], that quantitatively
evaluates the quality and diversity of generated data [5]. How-
ever, to the best of the authors’ knowledge, there is no agreement
on which approach is most valid, particularly in the audio do-
main, and a pitfall of the inception score for the domain of
emotional speech is primarily its need for large amounts of data
to obtain a robust score [8]. Furthermore, in emotion-based
spectrogram images, the classes’ subjective nature may be less

intuitive to metrics such as the inception score, which are based
on more objective class-categories, from e. g. , CIFAR-10 [9], or
MNIST [10]. The Fréchet Inception Distance [11] and Kernel
Inception Distance [12] scores are extensions of the inception
score and introduce a comparison to the source data. However,
these approaches remain partly based on objective image classes.
Further to this, for audio in general, quality is often an aspect of
interest. There are metrics such as the perceptual evaluation of
speech quality [13], and methods including Contrastive learning
for perceptual audio similarity [14], which evaluate quality by
similarity to a reference point. However, these focus on different
audio domains and do not observe diversity and plausibility as is
needed for generated audio.

Data augmentation is another quantitative approach for eval-
uating the plausibility of generated audio [15, 1]. In this case,
generated samples are added to the training set of a classification
paradigm, and where an increase in test accuracy is observed,
the samples are deemed to be of value. However, this approach
alone is not completely interpretable and limits any conclusions
that can be made concerning the generation method.

We therefore propose an evaluation framework based on a
prototypical network trained on the source data to tackle the
problems above. The Prototypical Network was initially pro-
posed for image-based few-shot learning by [16], and assumes
that a prototypical representation exists for each class and cal-
culates the Euclidean distance of unseen data points to a trained
class prototype (cf. Section 3). This method is based on class
prototypes and their embeddings and requires fewer data. With
this in mind, when applied to synthetic emotional speech, in
combination with data visualisation, it may allow for a more
human-interpretable and fine-grained evaluation of similarity,
diversity and plausibility.

Our approach is based on the calculation of class prototypes
from the generated and source audio. First, we train a WAVE-
GAN [4] on the GEMEP corpus of nonsense emotional speech
and generate several audio samples for four emotional classes.
We then train a prototypical network to learn a task-specific em-
bedding space, in which prototypes for each class can be built.
These prototypes are then used to evaluate data generated by a
WAVEGAN , as well as data generated by other augmentation
approaches, i. e. , time-shifting, additive noise, and spectrogram
masking [17]. In order to do so, we (i) measure the Euclidean
distance of the generated samples to the learnt prototypes, thus
evaluating similarity, (ii) we use the trained prototypical network
to extract embeddings from the generated data and analyse their
diversity, and (iii) retrain the prototypical network as a classifier
while incorporating the augmented data into the training set to
evaluate plausibility.
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Table 1: Speaker-independent folds, for the four emotional
classes utilised from a sub-set of the GEMEP corpus.

Fold-1 Fold-2 Fold-3
∑

Speakers (M:F) 6 (3:3) 2 (1:1) 2 (1:1) 10
Pleasure 60 18 12 90
Anger 60 18 12 90
Elation 48 18 24 90
Sadness 48 18 24 90∑

216 72 72 360

2. The GEMEP Corpus
For our experiments, we utilise a sub-set of the Geneva Multi-
modal Emotion Portrayals (GEMEP ) corpus [18]. The GEMEP
corpus was utilised in the 2013 Computational Paralinguistics
Challenge (COMPARE) [19], and includes ten native French ac-
tors (five female) speaking nonsense utterances to avoid cultural,
and lexical bias. The sub-set includes four emotional classes,
Hot-Anger (referred to as Anger), Elation, Sadness, and Pleasure.
The emotions are selected to cover the four quadrants of Russel’s
circumplex for affect [20] (e. g. , Elation = High Arousal, High
Valence, and Sadness = Low Arousal, Low Valence), allowing
for a controlled emotional setting, with perceived diversity in
the classes. Furthermore, given the small sub-set that we utilise
(16 m:32 s), this fits with the realistic use-case of data augmen-
tation, as many well-gathered corpora in the emotional speech
domain are a smaller size.

When processing the raw audio, we first convert to 16 kHz,
16 bit, mono, WAV format, and split the data into three (speaker-
independent) folds, cf. Table 1. The partitioning chosen is ap-
plied for all experiments, and considers as best possible a balance
between classes and speaker demographics. As a note, Fold-1 is
utilised as the core training set for data plausibility experiments
and WAVEGAN training, and for this reason is larger than Fold-2
and Fold-3, which are used as validation and test sets.

2.1. Audio generation

We utilise WAVEGAN to generate new audio data, as first pro-
posed in [4]. We have chosen WAVEGAN , as it shows promise
for a range of audio generation tasks, in the domain of emo-
tional speech [21], and music [4], as well as being successfully
adapted for the task of data augmentation [22]. Typically, in a
GAN paradigm, a generator produces new samples and competes
against the discriminator, attempting to classify the instances
as fake or real. WAVEGAN is a GAN developed explicitly
for audio and is based mainly on Deep Convolutional GANs
(DC-GANs) [23]. In the GEMEP corpus, samples are of varied
length. As WAVEGAN requires fixed-length data, we randomly
select 1-second chunks from the samples during training. The
WAVEGAN we apply was trained using the default parameters
described in [4] for 100 000 training steps. For our experiments,
we generate samples until the quantity is equal to the classes
within the source training data (total of 526 1-second samples)1.

From a qualitative evaluation of the generated audio, the
samples seem to have similar attributes as the source speak-
ers. Of note, as is typical for GAN generated audio, there is a
shimmer type artefact in the high-frequency range, which is also
visible in the extracted spectrograms, cf. Figure 1. In future work,
inclusion of a processing step (denoising, or low-pass filtering)
to remove such artefacts may be of value for comparison.

1To listen to a selection of the generated samples for each of the four
classes visit shorturl.at/mwDZ1.

2.2. Data augmentation

To compare any results obtained with WAVEGAN generated
data, we also utilise several low-resource audio augmentation
approaches, namely, time-shifting and additive noise. As a more
state-of-the-art approach, we also apply spectrogram warping
with time and frequency masking utilising the SPECAUGMENT
(SPECAUG ) method [17]. We choose these types of augmen-
tation for the audio to give a broad range of representations to
compare to. As can be seen in Figure 1, the time-shift repre-
sentation is most similar to the source; and subjectively, the
additive noise or SPECAUG approaches are the most dissimilar.
We duplicate the total number of samples from the training set of
the GEMEP corpus for each of these augmentation approaches.
The audio signal is moved by a maximum of 0.5 seconds from
the end of the signal for time-shifting the audio samples, se-
lecting the value for time-shift randomly for each sample. For
additive noise, white noise is injected at a level of 1 % of the
amplitude from the source. The spectrogram augmentation ap-
proach (SPECAUG ), unlike the other approaches, is applied to
the spectrogram image itself. This approach masks segments on
the frequency and time axis, as well as warping the time axis.
For more detailed information on this approach, cf. [17].

Original Noise Time-shift SPECAUG WAVEGAN

Figure 1: Spectrogram representation (with a range of 0–8 kHz)
for source and augmented audio samples for the anger class.

2.3. Spectrogram extraction

As an input source for the prototypical network, we extract
spectrogram images (cf. Figure 1) from the raw audio. The spec-
trograms are extracted with a pixel dimensionality of 256 × 256
(a dimension within a common range as applied to other speech
emotion studies [24]). We limit the spectrograms to a maximum
frequency of 8 kHz to reduce the presence of high-frequency non-
speech related activity. The colour-map for the spectrograms is
viridis as this has shown promise in other spectrogram-based
speech emotion recognition tasks [25].

3. The Prototypical network
For our experiments2, we adapt the prototypical network first
presented in [16]. Prototypical networks have shown to achieve
robust performance for few-shot learning classification of im-
ages [16], text [26], and audio [27]. To the best of the authors’
knowledge, a prototypical network has not yet been utilised for
evaluating generated audio samples. In the following section,
we describe our network; however, we would refer the interested
reader to [16], for further details of specific terminology not
explicitly defined herein.

A prototypical network is searching for a prototypical (i. e. ,
typical) representation of a class k (cf. Figure 2 for an example
of the class-prototypes within the embedding space) from data
points provided as a support set Sk – a set of spectrogram images
xi and labels yi for each class k, function as an anchor for the
class-prototypes ck – and the distance of these is compared to a

2GitHub repository: https://github.com/EIHW/
prototypical-network-audio-evaluation.
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query set – as with Sk, excluding yi. Essentially, a prototypical
network learns an embedding function fφ, which maps spectro-
grams to a N -dimensional embedding space. The prototype for
k is calculated from the average of the support set embedding as

ck =
1

|Sk|
∑

(xi,yi)∈Sk

fφ(xi). (1)

Further, the euclidean distance d between a class-prototype
and the embedding of a query is input to a softmax function,
allowing the network to additionally serve as a classifier.

3.1. Model architecture
The embedding function (fφ), which learns data representations
based on the four classes, applies a Convolutional Neural Net-
work (CNN) architecture. For our model we implement four con-
volutional blocks, consisting of a convolutional layer with batch
normalisation and ReLU activation as well as a max-pooling
layer. The first three blocks have a 3 × 3 filter, 64 channel out-
put, and the last 3 × 3 block has a reduced channel output of
32. For the first two convolutional blocks, a 2 × 2 max-pooling
layer is applied, and for the third layer, the max-pooling is in-
creased to 4 × 4. As a measure to avoid overfitting the network,
we apply a 40 % dropout before the last convolutional block.
The same model is used for embedding both support and query
sets. The model is trained with the Adam optimiser applying
an initial learning rate of 10−3, which is halved every epoch
of 100 episodes. An episode can be referred to as a mini-batch.
We have four classes for training, 20 spectrograms per class in
the support set and 20 per class in the query set are presented
to the classifier. From preliminary experiments, we choose to
stop training after 10 epochs. The episodic sampling approach
mitigates the class imbalance in the data as samples are evaluated
in randomly selected class pairings. Given this, we report the
F1-score (F1) as an evaluation metric. To evaluate the trained
models, a smaller episode size of 50 is applied, with 5 samples
in both the query and support sets. We perform the evaluation of
each model five times and report the result with the highest F1.

4. Experimental Settings
When augmenting a training set, considering the quality and
diversity of the new data to the already known data is a neces-
sary factor [28]. To this end, to explore the use of prototypical
networks as an evaluation method for these aspects – similarity,
diversity as well as plausibility – of generated data, we perform
three core experiments which are described as follows:

Generated data similarity: As a first-step to observe the
similarity of the generated samples, we train two prototypical
networks on the source data, one which uses Fold-1, and the
other using a concatenation of Folds 2 and 3 (cf. Table 1). We
then test these models with data from Fold-1, for each of the
data augmentation types. Samples are classified based on the
distance between support class prototypes and query samples,
and therefore samples with higher distance (lower similarity) to
the support class-prototypes will be miss-classified.

Pairwise-embedding space diversity: To investigate diver-
sity of the generated data, we look at distances between samples
in a trained model’s embedding space. A representation of a sam-
ple in the embedding space is a data point. We assume that two
similar samples lead to similar representations and, therefore,
to a small distance of points in the embedding space. Counter
to this, two samples from a diverse corpus are expected to lead
to separation in the embedding space. We measure the distance
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Figure 2: t-distributed stochastic neighbour embedding (t-SNE)
representation of the four classes of interest from the WAVEGAN
generated and Source Fold-1 data within the prototypical em-
bedding space of the F2+F3 trained model, where the prototype
is based on the source data support set.

between generated and source data points with the target of gen-
erating diverse data that is distinct from the source data. For this
purpose, we build point pairs such that each generated data point
is matched with its closest source data point according to the
Euclidean distance. Finally, we calculate the mean Euclidean
distance between points in a pair. As a reference point, we com-
pare generated data to source data from a different fold and the
source data from the same fold.

Generated data plausibility: As mentioned, a common
use-case for generated emotional speech is to improve classifi-
cation accuracy through data augmentation[1]. Therefore, we
augment the training set (Fold-1) of the source data with the four
data augmentation approaches for this experiment. As well as
showing the plausibility of the data for the specific task, will
validate and compare to the previous experiments, analysing if
similarity and diversity in the prototypical embeddings space
impact the results when using the generated data to augment.

5. Discussion of Results
The results for each of the three experiments described in Sec-
tion 3, are given in, Table 2 for generated data similarity, Fig-
ure 3 for pairwise-embedding space diversity, and Table 3 for
generated data plausibility. For ease of discussion, we will
discuss the results from these experiments individually.

Generated data similarity: The prototypical networks
trained for evaluating prototype similarity are reporting accu-
racies above chance level (25 %). These results suggest that
the network can differentiate between the four classes to a rea-
sonably high degree. For example, in Figure 2, we see the
class-prototypes from the Source-F2+3 experiments as a t-SNE
representation, appear to have definition within the embedding
space, with source data clusters very close to the class-prototype.
However, we would like to note that the model’s overall per-
formance was not the focus of our experiments, so although a
higher F1 may have been obtainable through a hyperparameter
search, we consider the results obtained to be robust for our
comparison. Specifically for evaluating the augmentation types,
we see the time-shifting approach has a consistently strong test
accuracy, which would confirm that this is the most similar to the
source data. For all other augmentation types between the mod-
els, the results are less clear, and when evaluating with unseen
data (Fold-2+3 model), Noise, SPECAUG and WAVEGAN fall
within a similar range with WAVEGAN showing to be the lowest
performing. Furthermore, the SPECAUG approach appears to
perform reasonably well, which could be due to retaining aspects
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Table 2: Reporting F1 (%) obtained for the generated data sim-
ilarity experiment. Training models on (F)old-1, and Fold-2+3
source data, and evaluating with all data combinations – Source,
Additive (Noise), SPECAUG , Time-shift, and WAVEGAN .

Trained on Evaluated w/ Test score

Source-F1 Source-F1 95.6
Noise-F1 61.4
SPECAUG 77.9
Time-shift-F1 87.8
WAVEGAN -F1 53.1

Souce-F2+F3 Source-F1 59.3
Noise-F1 46.0
SPECAUG 48.3
Time-shift-F1 57.5
WAVEGAN -F1 43.6

of the source. In this regard, we consider SPECAUG to be the
second most similar to the prototype after time-shifting when ob-
serving all results. For the WAVEGAN samples, the model can
classify the data above chance level, however, results are lower
than that of all augmentation approaches. This low performance
still shows promise for the WAVEGAN samples, as it shows that
it in range of the source class prototypes, but perhaps has higher
diversity in the embedding space.

Pairwise-embedding space diversity: In these experi-
ments, we analyse the embedding space from the models of
the previous experiment (generated data similarity). The mean
Euclidean distance between augmented query set data points
and the closest source query set data point in the prototypical
(Source-F1, and Source-F2+3) embedding space is calculated.
As a reference, we also provide the same measure for the source
support samples and the source query samples. Per Section 4,
the prototypical network was trained with Fold-1 and Fold-2+3,
respectively. We note that any augmentation technique is based
on the source data of Fold-1, implying an inherent dependence
within the data. Figure 3 shows that the time-shift augmenta-
tion has the smallest average pair-distance, which is in line with
the assumption that this augmentation technique only slightly
modifies the source data. Therefore, the time-shift adds the
least diversity to the data. The right plot of Figure 3 implies
that the WAVEGAN samples show a very similar average pair-
distance as the independent source support samples taken from
Fold-2+3. We consider this to show that the WAVEGAN sam-
ples add a similar level of diversity to the source query data as
additional independent source support data might. Finally, the
noise and SPECAUG generated samples show a higher average
pair-distance than the other approaches, especially in the case
of SPECAUG samples, which suggests that these approaches
add more diversity than the previously mentioned. However,
as it seems unlikely that any suggested augmentation methods
add more variance than independent source data, which would
improve augmentation results, the higher average pair-distance
might also result from a distortion of the source data. The left
side of Figure 3 depicts the pairwise distance where source
query and source support data are identical. This again shows a
very similar diversity trend for samples augmented with noise,
SPECAUG and WAVEGAN approaches.

Generated data plausibility: Finally, to affirm the findings
obtained thus far and explore a use-case for such data generation,
we augment the source training data with each augmentation
type. We train using Fold-1 source data and each of the Fold-
1 augmentation types, and evaluate these models with Fold-3
source data. Although improvement with data augmentation is
minimal here, the WAVEGAN data has shown the best results
of 63.9 % F1. The augmentation type performing worst was
time-shift, which reports results slightly lower than the baseline.
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Figure 3: A heat map representation of the results for the
pairwise-embedding space diversity experiments. (left) is the
Source-F1 trained model, and (right) is the Source-F2+3 trained
model. Reporting the mean of each augmentation type’s absolute
Euclidean distance from the source query samples.

Table 3: Results obtained for the generated data plausibility
experiments, cf. Section 4. Training a prototypical network with
source data augmented with Additive (Noise), SPECAUG , Time-
shifting, and WAVEGAN data. Fold-3 is used here for Test
evaluation. Reporting F1 as an evaluation metric.

Fold-1 Test score

Source Baseline 60.4

Source + Noise 61.8
Source + SPECAUG 61.0
Source + Time-shift 60.2
Source + WAVEGAN 63.9

These lower results for time-shift may be explained by higher
similarity of the data points to the prototype, as well as their
limited diversity. These results establish the plausibility of the
emotional WAVEGAN data, and show that there is a relationship
in this case between diversity and similarity in the prototype
embedding space.

6. Conclusions and Future Work
We proposed the use of a prototypical network to evaluate simi-
larity, diversity, and plausibility of generated emotional speech
samples in the present contribution. Despite the complexity of
spectrogram images and the limited training data used, we see
that all aspects can be observed with this approach and con-
sistently throughout each experiment. The data augmentation
results support that the data similarity and diversity in the pro-
totypical embedding space should be neither too close to the
prototype nor too far from the prototype. WAVEGAN samples
meet this middle point and are therefore found to be plausible
data for augmenting the training set.

As we previously mentioned, human listening studies remain
common practice for generation evaluation, and so to compare
the prototypical network predictions empirically to those ob-
tained by human listeners would be a needed next step. Further-
more, comparing these results to other quantitative evaluation
metrics such as the inception score may offer further insight.
Of most promise from the current experiments, it appears that
we can obtain an understanding of all evaluation criteria, and
through various visualisations of the embedding space, begin to
have a more interpretable representation of the generated audio.

7. Acknowledgement
This work is funded by the DFG’s Reinhart Koselleck project
No. 442218748 (AUDI0NOMOUS) as well as the European
Union Horizon 2020 research and innovation programme, grant
agreement 856879 (PRESENT).

3164



8. References
[1] A. Baird, S. Amiriparian, and B. Schuller, “Can Deep Genera-

tive Audio be Emotional? Towards an Approach for Personalised
Emotional Audio Generation,” in Proc. International Workshop on
Multimedia Signal Processing (MMSP). Kuala Lumpur, Malaysia:
IEEE, 2019, 5 pages.

[2] R. Lotfian and C. Busso, “Building naturalistic emotionally bal-
anced speech corpus by retrieving emotional speech from existing
podcast recordings,” IEEE Transactions on Affective Computing,
vol. 10, no. 4, pp. 471–483, 2017.

[3] A. Baird and B. Schuller, “Considerations for a more ethical ap-
proach to data in ai: on data representation and infrastructure,”
Frontiers in Big Data, vol. 3, p. 25, 2020.

[4] C. Donahue, J. McAuley, and M. Puckette, “Adversarial audio
synthesis,” arXiv preprint arXiv:1802.04208, 2018.

[5] A. Borji, “Pros and cons of gan evaluation measures,” Computer
Vision and Image Understanding, vol. 179, pp. 41–65, 2019.

[6] V. Costa, N. Lourenço, J. Correia, and P. Machado, “Exploring the
evolution of gans through quality diversity,” in Proc. of Genetic
and Evolutionary Computation Conference, 2020, pp. 297–305.

[7] K. Shmelkov, C. Schmid, and K. Alahari, “How good is my gan?”
in In Proc. European Conference on Computer Vision (ECCV),
2018, pp. 213–229.

[8] T. Salimans, I. Goodfellow, W. Zaremba, V. Cheung, A. Radford,
and X. Chen, “Improved techniques for training gans,” in Advances
in neural information processing systems, 2016, pp. 2234–2242.

[9] A. Krizhevsky, G. Hinton et al., “Learning multiple layers of
features from tiny images,” University of Toronto, 2009.

[10] G. Cohen, S. Afshar, J. Tapson, and A. Van Schaik, “Emnist:
Extending mnist to handwritten letters,” in Proc. International
Joint Conference on Neural Networks (IJCNN). IEEE, 2017, pp.
2921–2926.

[11] M. Heusel, H. Ramsauer, T. Unterthiner, B. Nessler, and S. Hochre-
iter, “Gans trained by a two time-scale update rule converge to a
local nash equilibrium,” arXiv preprint arXiv:1706.08500, 2017.

[12] M. Bińkowski, D. J. Sutherland, M. Arbel, and A. Gretton, “De-
mystifying mmd gans,” arXiv preprint arXiv:1801.01401, 2018.

[13] A. W. Rix, J. G. Beerends, M. P. Hollier, and A. P. Hekstra, “Percep-
tual evaluation of speech quality (pesq)-a new method for speech
quality assessment of telephone networks and codecs,” in Proc.
International Conference on Acoustics, Speech, and Signal Pro-
cessing., vol. 2, 2001, pp. 749–752 vol.2.

[14] P. Manocha, Z. Jin, R. Zhang, and A. Finkelstein, “Cdpam: Con-
trastive learning for perceptual audio similarity,” arXiv preprint
arXiv:2102.05109, 2021.

[15] G. Rizos, A. Baird, M. Elliott, and B. Schuller, “Stargan for emo-
tional speech conversion: Validated by data augmentation of end-
to-end emotion recognition,” in Proc. International Conference on

Acoustics, Speech and Signal Processing (ICASSP). IEEE, 2020,
pp. 3502–3506.

[16] J. Snell, K. Swersky, and R. S. Zemel, “Prototypical networks for
few-shot learning,” arXiv preprint arXiv:1703.05175, 2017.

[17] D. S. Park, W. Chan, Y. Zhang, C.-C. Chiu, B. Zoph, E. D.
Cubuk, and Q. V. Le, “Specaugment: A simple data augmen-
tation method for automatic speech recognition,” arXiv preprint
arXiv:1904.08779, 2019.

[18] T. Bänziger and K. R. Scherer, “Introducing the geneva multi-
modal emotion portrayal (gemep) corpus,” Blueprint for affective
computing: A sourcebook, vol. 2010, pp. 271–94, 2010.

[19] B. Schuller, S. Steidl, A. Batliner, A. Vinciarelli, K. Scherer,
F. Ringeval, M. Chetouani, F. Weninger, F. Eyben, E. Marchi et al.,
“The interspeech 2013 computational paralinguistics challenge: So-
cial signals, conflict, emotion, autism,” in Proc. INTERSPEECH,
Lyon, France, 2013.

[20] J. Russel, “Core affect and the psychological construction of emo-
tions,” Psychological Review, vol. 110, pp. 145–172, 2003.

[21] A. Chatziagapi, G. Paraskevopoulos, D. Sgouropoulos, G. Pan-
tazopoulos, M. Nikandrou, T. Giannakopoulos, A. Katsamanis,
A. Potamianos, and S. Narayanan, “Data augmentation using gans
for speech emotion recognition.” in Proc. INTERSPEECH, 2019,
pp. 171–175.

[22] S. Mertes, A. Baird, D. Schiller, B. Schuller, and E. André, “An
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