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Abstract

Background: Microglia cells represent the resident innate immune cells of the retina and are important for retinal
development and tissue homeostasis. However, dysfunctional microglia can have a negative impact on the
structural and functional integrity of the retina under native and pathological conditions.

Methods: In this study, we examined interferon-regulatory factor 8 (/rf8)-deficient mice to determine the
transcriptional profile, morphology, and temporospatial distribution of microglia lacking /rf8 and to explore the
effects on retinal development, tissue homeostasis, and formation of choroidal neovascularisation (CNV).

Results: Our study shows that /rf8-deficient MG exhibit a considerable loss of microglial signature genes
accompanied by a severely altered MG morphology. An in-depth characterisation by fundus photography,
fluorescein angiography, optical coherence tomography and electroretinography revealed no major retinal
abnormalities during steady state. However, in the laser-induced CNV model, Irf8-deficient microglia showed an
increased activity of biological processes critical for inflammation and cell adhesion and a reduced MG cell density
near the lesions, which was associated with significantly increased CNV lesion size.

Conclusions: Our results suggest that loss of /rf8 in microglia has negligible effects on retinal homeostasis in the
steady state. However, under pathological conditions, /rf8 is crucial for the transformation of resident microglia into
a reactive phenotype and thus for the suppression of retinal inflammation and CNV formation.
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Background

Retinal microglia cells (rMG) constitute the resident
myeloid cell population in the neuroretina and are crit-
ical for retinal development, tissue homeostasis and re-
sponse to cell damage. During development, rMG are in
intimate contact to endothelial tip cells and contribute
to postnatal vascular development [16] as well as neur-
onal survival by modulating programmed cell death and
trophic influences [56]. During adulthood, rMG interact
closely with synapses to maintain synaptic structure and
electroretinal function and continuously scan the local
environment for danger signals associated with injury or
pathogens [56]. In response to tissue damage or infec-
tion, rMG rapidly attain an activated phenotype, migrate
towards the site of injury and contribute to phagocytosis,
inflammation and pathological events [4, 52, 59]. As
such, activated microglia cells have been found in the
subretinal space of patients with age-related macular de-
generation (AMD) and in particular at sites of choroidal
neovascularisation (CNV) in neovascular AMD [11, 20]
which is a common cause of irreversible blindness in the
elderly [10, 60]. Studies on the role of rMG in the devel-
opment of CNV, however, revealed conflicting results,
and both detrimental and protective roles of MG for the
progression of CNV have been discussed in the past [2,
14, 36, 49, 51].

The interferon regulatory factor (IRF) family of tran-
scription factors consists of nine members that are in-
volved in hematopoietic differentiation, oncogenesis,
Toll-like and purinergic receptor signalling and expres-
sion of interferons and interferon-inducible genes [39,
57]. In particular, Irf8 plays a pivotal role in the regula-
tion of lineage commitment and MG cell maturation
during brain development [27, 47]. Besides its essential
role during development, Irf8 is crucial for the function
of resident myeloid cells in the adult steady state. As
such, the deletion of [rf8 in mice leads to a disturbed
homeostasis of resident tissue macrophages in the liver,
the kidney and brain including microglia and other
CNS-associated macrophages [19, 25, 48, 58]. The role
of Irf8 in regulating rMG gene expression and its influ-
ence on retinal development and neuroretinal function,
however, are currently unknown.

The aim of this study was to determine the function of
IRF8 in retinal microglia in the healthy as well as per-
turbed retina. Specifically, we aimed to investigate
whether IRF8 is involved in microglial cell homeostasis,
neuroretinal function and pathological CNV formation.
The latter is of particular interest, as PU.1 and CSFIR
signalling acting upstream and downstream of IRFS, re-
spectively, are critical for postnatal angiogenesis and for-
mation of pathological neovascularisation in the eye [16,
54]. For this purpose, we analysed Irf8 reporter and
knockout mice by in vivo imaging, functional studies,
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flow cytometry, immunohistochemistry and RNA se-
quencing (RNA-seq). We found that Irf8-deficient MG
exhibited functionally relevant alterations in gene ex-
pression patterns that were associated with a significant
disruption of microglial development, normal postnatal
retinal vascular and functional development, and in-
creased CNV lesion size in the adult situation.

Methods

Mice

All animal experiments were authorized by the local ani-
mal care and use committee under the respective EU,
national, federal and institutional regulations for animal
experiments (ethical protocol numbers G14/89, G20/13).
Mice were bred on a C57BL/6] background and devoid
of the Crbl mutation. Cx3cr1°**/S " mice were crossed
with C57BL/6] mice to generate Cx3cr1SH* (Irf8 WT)
mice. Irf8”" mice were crossed with Irf8” Cx3cr1°F"/SFF
mice to obtain Cx3cri®f *:IrfS’/ " (Irf8 KO) mice [24,
26]. Phage artificial chromosome-transgenic Irf8-VENUS
reporter mice were used to trace the expression of IRF8
[53]. CAG:mRFPI mice were purchased from the Jack-
son Laboratory (Bar Harbor, ME).

Genotyping
Transgenic mice were genotyped according to the
primers and programs shown in supplemental table 1.

Laser-induced choroidal neovascularisation (CNV)

The laser-induced CNV model was used as previously
described [15, 31, 50]. In brief, mice were anaesthetized
by intraperitoneal administration of ketamine hydro-
chloride (100 mg/kg, Pharmacia & Upjohn, Erlangen,
Germany) and xylazine (6 mg/kg, Bayer Vital GmbH, Le-
verkusen, Germany). Pupillary dilatation was achieved by
applying 0.5% tropicamide (Bausch + Lomb, Berlin,
Germany) and 5% phenylephrine hydrochloride (URSA-
PHARM Arzneimittel GmbH, Saarbriicken, Germany).
After covering the cornea with a coverslip coated with
dexpanthenol eye gel (50 mg/g, Bausch + Lomb, Berlin,
Germany), three to six laser spots (488 nm, 150 mW,
100 um and 100 ms) were applied to each eye using the
VISULAS 532s Laser System (Carl Zeiss, Jena, Germany)
in combination with ZEISS Laser Slit Lamp 532s (Carl
Zeiss, Jena, Germany). Only laser spots with visible for-
mation of vaporisation bubbles were included in this
study.

Bone marrow transplantation

Bone marrow transplantation experiments were carried
out as previously described [22]. In brief, a total of 12 re-
cipient control and 14 Irf8 knockout mice were head-
shielded and lethally irradiated (RS2000 irradiator, Rad
Source, Kanas, USA) in two independent experiments.
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Meanwhile, bone marrow cells (BMCs) were collected
from the tibias and femurs of CAG-mRFP1 mice and re-
suspended in phosphate-buffered saline (PBS). The re-
cipient mice were intravenously injected with 3 x 10°
BMCs via the tail vein. Nine weeks after bone marrow
transplantation, the efficiency of reconstitution was
assessed by flow cytometry which will be explained
below.

In vivo characterisation and analysis

Fundus morphology, retinal structure and physiological
function were investigated using fundus photography,
fundus fluorescein angiography (FFA), optical coherence
tomography (OCT) and electroretinography (ERG) as
previously described [32]. Fundus photography, FFA and
OCT were performed using a Micron III retinal micro-
scope (Phoenix Technology Group, Pleasanton, CA,
USA) and the StreamPix software (Norpix Inc.,, Mon-
treal, Canada). For FFA, 10% sodium fluorescein (Alcon,
Freiburg, Germany) was diluted to a concentration of 50
puL/mL in 0.9% sodium chloride for injection (VWR,
Leuven, Belgium) and administered intraperitoneally (2
uL/g). Ninety seconds after dye injection, the angiograms
were recorded. For quantification of CNV size, hyper-
fluorescent areas in early-phase angiograms were mea-
sured in pixels using Image]. Image-guided OCT was
performed using the OCT2 scan head. In OCT images,
the thickness of the inner nuclear layer (INL) (200 pixels
from the optic nerve head) was measured using Image]J
(https://imagej.nih.gov/ij/). For ERG, mice were dark-
adapted overnight and anaesthetized by intraperitoneal
injection of ketamine hydrochloride (66.8 mg/kg) and
xylazine (12.76 mg/kg). ERG signals were amplified, re-
corded and analysed automatically using Ganzfeld Q450
(Roland-Consult, Brandenburg, Germany) with the inte-
grated software developed by Prof. Dr. rer. nat. Michael
Bach (Eye Center, University of Freiburg, Germany).

Immunohistochemistry and imaging

After intracardiac perfusion with PBS and 4% parafor-
maldehyde (PFA), eyes were fixated in 4% PFA for 45
min at room temperature and processed to RPE-
choroidal-scleral and retinal flat mounts. After incuba-
tion in PBST/BSA blocking buffer overnight, the flat
mounts were incubated with primary antibodies against
collagen type IV (1:500, AB769, Merck Millipore, Darm-
stadt, Germany), Ibal (1:500, #019-19741, Wako, Neuss,
Germany) or alpha smooth muscle actin (SMA, 1:500,
ab5694, Abcam, Cambridge, UK) for two nights at 4 °C,
followed by incubation with Alexa Fluor® 568 or 647-
conjugated secondary antibodies overnight at 4 °C (1:
500, Life technologies, Eugene, OR, USA). Eyes of Irf8-
VENUS mice were fixated in 4% PFA for 1 h and incu-
bated in 10%, 20% and 30% sucrose for 24 h each prior
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to embedding in Tissue-Tek O.C.T. compound (Sakura,
Aplphen aan den Rijn, The Netherlands). Seven
micrometre-thick cryosections were cut using a cryostat
(Leica CM1950, Leica, Nussloch, Germany). Following
blocking in Ultra V block for 10 min at room
temperature, the sections were incubated with primary
antibodies against BIII tubulin (1:500, ab18207, Abcam,
Cambridge, UK), collagen type IV (1:1000, ab6586,
Abcam, Cambridge, UK), Ceh-10 homeo domain con-
taining homolog (CHX10, 1:200, ab16141, Abcam, Cam-
bridge, UK), GFP (1:500, 600-101-215, ROCKLAND,
Limerick, PA, USA), glial fibrillary acidic protein (GFAP,
1:500, 087A1005RE, Fremont, CA, USA) or Ibal (1:500)
for 60 min with corresponding Alexa Fluor® 568-
conjugated secondary antibodies (1:500, Life technolo-
gies, Eugene, OR, USA). Nuclei were counterstained
with 4,6-diamidino-2-phenylindole (DAPI). Stainings
were imaged using the Nano Zoomer S60 digital slide
scanner (Hamamatsu, Herrsching am Ammersee,
Germany) and analysed with NDP viewer software (Ha-
mamatsu, Herrsching am Ammersee, Germany) or with
a confocal laser scanning microscope (Zeiss LSM 510 or
Leica TCS SP8 or Olympus FV1000), Zen software (Carl
Zeiss, Jena, Germany), LAS X software (Leica, Nussloch,
Germany) or Fluoview FV1000 (Olympus, Tokyo, Japan).
For a detailed list of antibodies used, see supplementary
table 2.

Three-dimensional reconstruction of retinal microglia
Imaging for 3D reconstruction was performed using a
Zeiss LSM 510 confocal laser scanning microscope with
a 20x objective, 3x zoom and 1024 x 1024 pixel reso-
lution. The interval thickness of the z-stacks was set to
1.0 pm. The morphology of retinal microglia in the inner
plexiform layer (IPL) and outer plexiform layer (OPL)
was determined by a three-dimensional reconstruction
using the filament mode of IMARIS software (Bitplane,
Zurich, Switzerland). Three cells per layer and mouse
were reconstructed and analysed.

Fluorescence-activated cell sorting

Following transcardial perfusion with 1x PBS and enu-
cleation, eyes were dissected in ice-cold 1x PBS to iso-
late  the  retinae  of  Irf8"/*Cx3cr1S*'t or
Irf8""Cx3cr1SF"*. For the lasered mice, the central parts
(70%) of the retinae were used for FACS while the per-
ipheral parts were omitted. After tissue homogenisation
and filtration through a 50-um cell strainer (Sysmex,
Goerlitz, Germany), dead cell exclusion was performed
by incubation with fixable viability dye 780 (1:1000, 65-
0865-14, eBioscience, Waltham, MA, USA). Anti-CD16/
CD32 (Fc) receptor (1:200, 553142, BD Biosciences, Hei-
delberg, Germany) was used to avoid unspecific binding.
Following staining with anti-CD45 (1:200, 103133,
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BioLegend, San Diego, CA, USA), anti-CD11b (1:200,
17-0112-83, eBioscience, Waltham, MA, USA), anti-
Ly6C (1:200, 560593, BD Bioscience, Heidelberg,
Germany) and anti-Ly6G (1:200, 560601, BD Biosci-
ences, Heidelberg, Germany) for 20 min at 4 °C, retinal
microglia characterised as CD45°“CD11b*Cx3cr1F
P+ Ly6CLy6G™ were analysed and sorted into RNA sta-
bilisation reagent (QIAGEN, Hilden, Germany) using a
MoFlo Astrios EQ High Speed Cell Sorter (Beckman
Coulter, Munich, Germany). For RNA sequencing, an
average number of 10,000 retinal microglia per sample
was obtained from pooling 3 to 4 mice. Flow cytometric
purification of wild-type retinal and brain microglia to-
gether with bone marrow—derived monocytes was de-
scribed before [59]. Data are available under the GSE
accession number GSE160845. For a detailed list of anti-
bodies used, see supplementary table 2.

RNA extraction

RNA extraction, RNA library preparation and RNA se-
quencing were performed in collaboration with the Gen-
omics Core Facility "KFB-Center of Excellence for
Fluorescent Bioanalytics" (University of Regensburg,
Germany). RNA extraction was performed according to
manufacturer’s instructions using the RNeasy Plus Mini
Kit (QIAGEN, Hilden, Germany). After pelleting the
sample by centrifugation, the RNA stabilisation reagent
was removed and replaced by RLT Plus buffer for lysing
retinal microglia. Genomic DNA was removed select-
ively and efficiently by using gDNA Eliminator spin col-
umns for RNA purification. After adding Ethanol to the
flow-through, the sample was applied to an RNeasy
MinElute spin column to collect RNA. Finally, after
washing the column, total purified RNA was eluted in
RNase-free water. The quality and integrity of total RNA
was assessed with a Agilent 2100 Bioanalyser in combin-
ation with the RNA 6000 Pico LabChip Kit (Agilent,
Palo Alto, CA, USA).

RNA sequencing

First-strand cDNA was generated using SMARTer Ultra
Low Input RNA Kit for Sequencing v4 (Clontech La-
boratories, Inc., Mountain View, CA, USA). Double-
standed cDNA was amplified with LD PCR and purified
with AMPure XP beads. Library preparation was con-
structed conforming to the Illumina Nextera XT Sample
Preparation Guide (Illumina, San Diego, CA, USA). In
brief, 150 pg of input cDNA was tagmented via Nextera
XT transposome. The products were purified and ampli-
fied with a limited-cycle PCR program to construct se-
quencing libraries. The libraries were quantified with the
KAPA SYBR FAST ABI Prism Library Quantification Kit
(Kapa Biosystems, Wobum, MA, USA). Equimolar
amounts of each library were pooled for cluster
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generation on the cBot using the Illumina TruSeq SR
Cluster Kit v3. The sequencing run was performed on a
HiSeq1000 instrument with TruSeq SBS Kit v3 accord-
ing to the Illumina HiSeq 1000 System User Guide. Illu-
mina image analysis and base calling were recorded in
library base call format (.bcl) and further converted to
Fastq files via the CASAVA1.8.2 software.

RNA sequencing data analysis

Quality control and transcriptome profiling including
reads mapping, annotation, quantification and normal-
isation were performed by GenXPro (GenXPro, Frank-
furt, Germany). Briefly, FastQC was performed to assess
sequencing quality. After removing reads containing
adapter sequences and duplicate reads via cutadapt soft-
ware (GitHub, San Francisco, CA, USA) and FastUniq,
the filtered reads were mapped to the mouse genome
from ENSEMBL (https://www.ensembl.org/Mus_
musculus/Info/Index) using bowtie2. The transcripts
were functionally annotated with gene transfer format
file version 90, quantified using HTSeq and normalised
as transcripts per kilobase million (TPM) via DESeq2.
Differential gene expression analysis with threshold
(log2 fold change greater than 1.5 or less than - 1.5, p <
0.05, TPM = 100 in at least one of the two compared
groups) was performed using DESeq2. Data was visua-
lised using RStudio (v1.2.1335) and R (v3.5.3). Volcano
plots were created using the ggplot2 package, and Gene
Ontology (GO) analysis was performed using R with the
clusterProfiler 3.10.1 package [62].

Protein analysis

Protein was extracted from the choroid and the retinae using
RIPA buffer (#R2078, Sigma Aldrich) containing protease in-
hibitor (cOmplete, Mini; edta-FREE Protease inhibitor Cock-
tail, Roche Diagnostics, Manheim, Germany) and
phosphatase inhibitors (PhosSTOP, Roche Diagnostics, Man-
heim, Germany), respectively, for preservation. Total protein
concentration for each sample was measured with the Pier-
ce™ Bicinchoninic Acid Protein Assay Kit (Thermo Fisher
Scienticis, Inc., Rockland, IL, USA).

Statistical analysis

Statistical analysis was performed using GraphPad Prism
v6 (La Jolla, USA) as follows: an unpaired ¢ test was ap-
plied if the normality was given by the Kolmogorov-
Smirnov test. Otherwise, the Mann—Whitney U test was
used. Difference with significance was defined as p < 0.05.

Results

IRF8 is the most abundantly expressed member of the IRF
family in retinal microglia

The interferon regulatory factor (IRF) family is critical
for the development, maturation and function of
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myeloid cells [40]. Using flow cytometry and RNA se-
quencing, we first determined the expression levels of
different IRF family members in adult retinal microglia
(rMG@G), brain microglia (bMG) and bone marrow (BM)
monocytes (Fig. 1A, B). In general, genes belonging to
the IRF family were expressed at different levels in MG,
bMG and BM monocytes (Fig. 1B). Compared with
other IRF family members, Irf5 and Irf8 exhibited the
highest expression levels in rMG, bMG and BM mono-
cytes. In the retina, Irf8 emerged as the most prominent
IRF member in rMG. Interestingly, the expression of Irf8
in rMG exceeded the expression in bMG and BM mono-
cytes indicating a distinct function of Irf8 for rMG. To
validate Irf8 expression in adult rMG, we next analysed
Irf8-VENUS reporter mice by flow cytometry and immu-
nohistochemistry. Flow cytometry analysis revealed a
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CD45"°CD11b* rMG in the steady state (Fig. 1C). In line
with this finding, immunofluorescence analysis of retinal
flat mounts and cryosections confirmed that IRF8 is
mostly expressed in IBA1-positive microglial cells in the
steady state (Fig. 1D and Supplementary Figure 1C).
Since expression of Irf family members may change in
response to stress and inflammation, we next assessed
the expression levels of all IRF family members (1-9)
and of common MG signature genes, such as Tmem119
and P2ryl12, in retinal MG in 2-3 months old
Cx3crI®** mice in the steady state and upon MG acti-
vation in the laser-induced CNV model. While the ex-
pression of the signature genes P2ryl2 and Tmeml19
decreased in retinal MG after laser injury, activation
markers such as Cd74 were increased, as reported before
[59]. However, most members of the IRF family were
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laser-induced inflammation compared with controls.
Only Irf2 and Irf5 were slightly downregulated in retinal
MG, whereas Irf7 was modestly upregulated. Notably,
the expression of [rf8 in retinal MG remained stable in
the laser-induced CNV model compared with controls
(data not shown).

Deficiency of Irf8 has a substantial impact on
morphology, distribution and transcriptional activity of
retinal MG in the steady state

To assess the role of IRF8 in distribution and cell morph-
ology of M@ in the adult situation, we next examined ret-
inal flat mounts from 8-week-old Irf8 knockout (KO)
mice by immunofluorescence microscopy (Fig. 2A,B). Irf8
KO mice revealed a strikingly altered rMG distribution
and morphology compared with wild-type (WT) animals,
characterised by slightly reduced MG numbers in the
inner plexiform layer (IPL, Irf8 WT: 104 + 7 cells/mm?,
Irf8 KO: 88 + 5 cells/mm?, p = 0.09) and highly significant
decrease of cell numbers in the outer plexiform layer
(OPL, Irf8 WT: 116 + 6 cells/mm? Irf8 KO: 43 + 1 cells/
mm?, p < 0.0001, Fig. 2B,C). Quantitative morphometric
analysis using IMARIS revealed a severely altered morph-
ology of retinal microglia in 78 KO mice, including sig-
nificantly shorter length of dendrites (IPL: Irf8 KO: 356.5
+ 14.3 pm, Irf8 WT 1043.0 + 59.4 pum, p = 0.009; OPL:
Irf8 KO: 297.7 + 35.6 pum, Irf8 WT: 788.8 + 26.1 um, p =
0.01), and reduced number of dendrite segments (IPL: Irf8
KO: 62 + 4, Irf8 WT: 167 + 14, p = 0.009; OPL: Irf8 KO:
44 + 6, Irf8 WT: 139 + 6, p = 0.01), branch points (IPL:
Irf8 KO: 30 + 2, Irf8 WT: 82 + 7, , p = 0.009; OPL: Irf8
KO: 21 + 3, Irf8 WT: 68 + 3, p = 0.01) and terminal points
(IPL: Irf8 KO: 33 + 2, Irf8 WT: 86 + 7, p = 0.009; OPL:
Irf8 KO: 23 + 3, Irf8 WT: 71 + 3, p = 0.01, Fig. 2D,E) com-
pared with controls. Having established a profoundly al-
tered rMG distribution and phenotype in the adult
situation, we next explored rMG cell numbers at earlier
stages of postnatal development. Interestingly, reduced
microglia cell numbers were already present in the neuro-
blast layer at postnatal day 1 (P1) and later in the OPL at
P7 but only transiently in the IPL at P7 that could be com-
pensated until adulthood (Suppl. Figure 2A, B). These
findings suggest an impaired MG distribution specifically
in the deeper layers of the retina which is already present
shortly after birth and persists into adulthood.

To explore the associated transcriptional changes in
Irf8-deficient rMG, we next performed RNA sequencing
(RNA-seq) of FACS-sorted rMG from adult Irf8 KO
mice and controls. We determined 277 differentially
expressed genes (DEGs) of which 142 were significantly
upregulated, and 135 genes were downregulated in Irf8
KO microglia compared with microglia of control mice
(Fig. 3A). Gene ontology (GO) cluster analysis revealed
that most of these downregulated genes contribute to
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processes such as “cell migration” (GO:0016477, p.adj. <
1.3 x 107), “cell motility” (GO:0048870, p.adj. < 4.8 x
10°°), “localization of cells” (GO:0051674, p.adj. < 4.8 x
107), “regulation of cell proliferation” (GO:0032944,
padj. < 3.5 x 10%) and “cell adhesion” (GO:0007155,
padj. < 7.7 x 10™*) suggesting a reduced migratory po-
tential of retinal microglia in the /rf8 KO mice compared
with controls (Fig. 3B). Among the downregulated
DEGs, we found numerous microglia signature genes es-
sential for microglia homeostasis, including the spalt like
transcription factor 1 (Salll, log2FC = - 10.69, - logl0p
= 24.57), allograft inflammatory factor 1 (Aifl or Ibal,
log2FC = - 2.73, - loglOp = 35.04), purinergic receptor
P2Y, G-Protein couple 12 (P2ry12, log2FC = - 2.50, -
loglOp = 45.06) and transmembrane 119 (Tmemll9,
log2FC = - 2.13, - loglOp = 24.57) (Fig. 3A,C). In ac-
cordance with the RNA-seq data, we found a strong im-
munoreactivity for TMEMI119 and P2RY12 in Irf8-
competent rMG cells, which was almost absent in Irf8-
deficient rMG. Conversely, we found an increased im-
munoreactivity for the mannose receptor (CD206, Mrcl)
in Irf8-deficient rMG, consistent with and further sup-
porting the RNA-seq results (Fig. 3D). In addition, flow
cytometry analysis of homeostatic CD45"CD11b* rMG
confirmed our RNA-seq results showing a reduced but
still detectable protein expression of CX3CR1 and CD64
in Irf8-deficient rMG compared with controls with a
trend towards lower MERTK and higher F4/80 expres-
sion as reported before in bMG [44] (Fig. 3E).

Taken together these results strongly suggest that
IRF8 plays a critical role in maintaining the distribution,
morphology and homeostasis of retinal microglia and
has a substantial impact on the transcriptional activity of
rMG in the steady state.

IRF8 is not required for the development of the retinal
structure, vasculature and function

Having established the quantitative and qualitative
changes in Irf8-deficient rMG, we next investigated
whether Irf8-deficiency influences retinal structure and
electroretinal function during steady state. To this end,
we examined the retina of adult Irf8-deficient and con-
trol mice using color fundus photography (CF), fluores-
cein angiography (FA), optical coherence tomography
(OCT), electroretinography (ERG) and immunohisto-
chemical staining of retinal flat mounts for retinal ves-
sels (Suppl. Figure 3).

In general, Irf8 KO mice showed regular retinal struc-
ture, vasculature and function compared with controls.
Qualitative assessment of retinal structure and vessels
on CF and FA images of Irf8-deficient and control mice
revealed no gross abnormalities, particularly no vascular
dye leakage as an indicator of disturbed vascular archi-
tecture or spontaneous neovascularisation (Suppl. Figure
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3A,B). In OCT images, the thickness of the inner nuclear =~ compared with control animals (INL: 15.8 + 0.4 pm,
layer (INL) and the outer nuclear layer (ONL) contain- ONL: 72.3 + 1.0 pm, Suppl. Figure 3C). ERG measure-
ing the photoreceptors (PR) was similar in Irf8-deficient ments demonstrated similar dark-adapted scotopic and
mice (INL: 152 + 0.5 um, ONL: 69.8 + 1.0 um) light-adapted photopic responses in Irf8 KO mice and
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Fig. 3 /rf8 deficiency leads to expression loss of homeostatic signature genes. A Volcano plot of differentially expressed genes in Irf8 KO retinal MG (n = 3)
compared with control (n = 5). Significantly up- and downregulated genes are shown in red and blue, respectively. The top significantly up- and
downregulated genes are labelled. B The top 5 downregulated GO clusters in 18 KO retinal MG. Significance is represented as p.adjust, the size of each data
circle indicates the number of genes involved in each enriched GO term. C Representative signature genes found to be highly expressed in competent retinal
MG are significantly downregulated in the /8 KO mice. D Immunohistochemistry of retinal flat mounts demonstrate a strong immunoreactivity for P2RY12 and
TMEM119 shown as colour-coded signal intensity in If8-competent retinal MG that is reduced or absent in /8 KO mice. The mannose receptor CD206
(encoded by MrcT) is absent under homeostatic conditions but detectable under Irf8-deficient conditions. E Myeloid expression levels shown as transcripts per
million (TPM) and analogue surface marker expression, as determined by flow cytometry, of If8 WT (blue) and 18 KO (red) mice, expressed as mean
fluorescence intensity (MFI) (left). Representative histograms are shown (right) including fluorescence minus one controls (grey line). Six mice per group were
analysed for CX;CR1, CD64 and MERTK, three mice per group for F4/80. Data are shown as mean + SEM

controls (Suppl. Figure 3D). Specifically, no significant
difference was detected between Irf8 KO mice and con-
trols with respect to scotopic a-waves emanating from
rods, scotopic b-waves corresponding to depolarisation
of bipolar cells, and photopic b-waves arising from
cones. Immunohistochemical staining of retinal flat
mounts revealed a regular retinal vasculature in Irf8 KO
mice, including equal numbers of arteries labelled by
smooth muscle actin (SMA, Irf8 WT 6.2 + 04, Irf8 KO:
59 + 0.3 per animal) and major vessels stained with
Isolectin-B, (IB4, Irf8 WT: 11.3 + 0.5, Irf8 KO: 11.0 +
0,5 per retinal per animal, Suppl. Figure 3E). Addition-
ally, branch points in the central superficial vascular
plexus (Irf8 WT: 17.0 + 2.7, Irf8 KO 22.1 + 2.4 per ani-
mal), central deep plexus (Irf8 WT: 8.7 + 4.7, Irf8 KO:
74.0 + 3.4 per animal), peripheral superficial plexus (Irf8
WT: 29.0 + 3.5, Irf8 KO: 28.1 + 2.0 per animal) and per-
ipheral deep plexus (Irf8 WT: 59.0 + 5.1, Irf8 KO: 63.9 +
5.7 per animal) were similar between both groups
(Suppl. Figure 3F).

Overall, these data show that Irf8 is not essential for
the development and maintenance of homeostatic retinal
structure, vascular network and function. This is particu-
larly surprising given the significant changes in rMG cell
numbers in the [rf8 KO mice during development and in
the adult. Thus, the impaired retinal MG cell morph-
ology and expression profile in otherwise unremarkable
retinal homeostasis in [rf8-deficient mice provide a
unique opportunity to investigate the role of retinal MG
in the development of CNV.

Irf8 deficiency aggravates CNV formation

Retinal MG change their phenotype and transcriptional
profile after tissue injury and modulate the development
of pathological CNV, which represents a hallmark of
neovascular AMD [59]. To investigate the role of IRF8 in
microglial cell activation after tissue injury and formation
of CNV, we next studied Irf8-deficient and control mice in
the laser-induced CNV model. Both 78 KO and Irf8 WT
mice developed typical laser-induced CNV 7 days after
laser photocoagulation visible, as hyperfluorescent lesions
with clear demarcation in FA images (Fig. 4A). Quantifica-
tion of hyperfluorescent CNV areas in angiograms

revealed more than 2-fold larger CNV lesions in Irf8 KO
mice (8603 + 1309 pixels per animal) compared with con-
trols (3697 + 425 pixels per animal, p < 0.005). Measure-
ment of collagen type IV-labelled CNV area on RPE/
choroidal flat mounts confirmed significantly enlarged
CNV lesions in Irf8 KO mice (52143 + 7670 umz) com-
pared with Irf8 WT (25203 + 4156 um? p < 0.005, Fig.
4B). As expected, microscopic evaluation of RPE/choroidal
flat mounts revealed that activated amoeboid Cx3cri-
GFP" cells accumulate at CNV lesions in Irf8 KO mice as
well as in controls. The number of Cx3crI-GFP* cells
around CNV lesions, however, was significantly decreased
in Irf8 KO mice (34 + 7 cells per lesion per animal) com-
pared with control animals (84.6 + 8.8 cells per lesion per
animal, p < 0.001, Fig. 4C). In addition, the number of
rMG significantly increased in the IPL above CNV areas
in controls, whereas no such increase was observed in Irf8
KO mice, further pointing to a defect in rMG migration
(Suppl. Figure 4).

Taken together, Irf8-deficient mice revealed reduced
MG cell numbers suggesting an impaired MG migratory
behaviour under physiological and pathological condi-
tions which was associated with increased CNV lesion
size in the laser-CNV model.

Retinal microglia rather than infiltrating monocytes
account for the larger CNV lesions in the Irf8 KO mice
Since Cx3crl is expressed in retinal microglia and infil-
trating monocyte-derived macrophages from the blood
[26], the observed Cx3cri1Sf'* positive cells around
CNV lesions could belong to both cell populations.
However, Irf8-deficient mice are characterized by a low
number of peripheral monocytes, which suggests that
very few monocytes from the blood infiltrated the CNV
lesion (Terry et al, 2015 PMID: 25277331). To investi-
gate the influence of peripheral monocytes in our model,
we next performed bone marrow transplantation experi-
ments with bone marrow from CAG-RFP reporter
animals to restore the peripheral monocyte pool in Irf8-
deficient mice with I[rf8 potent monocytes (Fig. 5A).
Following head-shielded bone marrow transplantation,
we observed a successful reconstitution of RFP" Irf8-po-
tent peripheral monocytes in [rf8-deficient animals
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Fig. 4 Irf8-deficiency aggravates CNV formation. A Fundus fluorescein angiography at day 7 following laser treatment demonstrates enlarged
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compared with controls by using flow cytometry (Irf8
KO: 9578 + 0.59% (REP*Ly6CM), 9742 + 0.14%
(RFP*Ly6C"), Irf8 WT: 31.19 + 4.85% (RFP*Ly6C™M),
4024 + 55% (REP'Ly6C"), Fig. 5B). The observed
higher recombination efficiency of Ly6C™ and Ly6C"
monocytes in Irf8 KO is likely due to the initially low
abundance of these cells and their respective progenitors
in Irf8 KO mice. Of note, due to the head shielding, the
recipients’ bone marrow in the skull is still active and
not substituted by the donor cells that could explain the
comparably lower recombination efficiency in Irf8 WT

mice (Mildner et al, 2007 PMID: 18026096). Interest-
ingly, the reconstituted Irf8-deficient animals still dem-
onstrated increased CNV lesion size that was
approximately twice as large compared with reconsti-
tuted Irf8 WT animals (Irf8 KO 82,009 + 16,242 um?
Irf8 WT 53,386 + 4793 pm?, p = 0.06) which was associ-
ated with slightly reduced numbers of RFP"GFP" micro-
glia at sites of CNV (Irf8 KO 74 + 16.5; Irf8 WT 197.3 +
12.1, p = 0.14) (Fig. 5C,D). The numbers of reconstituted
RFP'GFP™ monocyte-derived macrophages, in contrast,
were around twofold increased in Irf8-deficient mice
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compared with controls (Irf8 KO 96.6 + 20.1; Irf8 WT
49.25 + 5.3, p = 0.07) (Fig. 5D).

Transcriptional profile of Irf8 KO retinal microglia during
CNV formation
In order to decipher the molecular mediators of en-
hanced CNV formation in [rf8 KO mice, we next iso-
lated CNV-associated rMG from Irf8 KO and control
mice by flow cytometry and analysed the cells using
RNA-seq. In total, we found 84 genes that were differen-
tially upregulated and 78 genes that were downregulated
in Irf8-deficient microglia 7 days following laser injury.
In line with the RNA-seq analysis under homeostatic
conditions, we identified similar DEG that were down-
or upregulated in Irf8-deficient microglia after tissue in-
jury, such as Salll, P2yr12 and Mrcl (Fig. 6A). The
downregulation of P2ryI12 in laser-treated Irf8 KO mice
prompted us to explore the expression of other puriner-
gic receptors which are critical for MG cell activation
and migration. Here, we found several other genes en-
coding purinergic receptors to be strongly downregu-
lated in Irf8-deficient MG, such as Adoral, P2ryl2 and
P2ry13, underlining the proposed migration defect upon
laser injury (Fig. 6B). Furthermore, we analysed the ex-
pression of key M1 (Cd86, H2-Ab1, Tir2) and M2 signa-
ture genes (CDI163, Mrcl) in isolated CNV-associated
MG in Irf8-deficient mice and control animals (Suppl.
Figure 5). We found that common M1 markers such as
Cd86, H2-Abl and Tir2 were significantly downregu-
lated in Irf8-deficient MG compared with Irf8-potent
MG in the laser CNV model. On the other hand, some
of the common M2 markers, such as Cd163 and Mrcl,
were significantly upregulated in Irf8-deficient retinal
MG compared with Irf8-potent M@ at sites of CNV sug-
gesting a M1 to M2 polarization in Irf8-deficient MG
compared with wild-type MG in the laser CNV model.
Next, we analysed the DEG that were upregulated in
Irf8-deficient MG by GO cluster analysis and found an
activation of biological processes such as “defense re-
sponse” (GO:0006952, p.adj. < 8.4 x 10°°), “biological ad-
hesion” (GO:0022610, p.adj. < 2.9 x 10, “cell adhesion”
(GO:0007155, p.adj. < 6.1 x 10™), “inflammatory re-
sponse” (GO:0006954, p.adj. < 9.5 x 10°) and “positive
regulation of cell substrate adhesion” (GO:0010811,
padj. < 1.9 x 107) in Irf8-deficient MG (Fig. 6C). A
closer look at the DEG of three key GO clusters essential
for CNV development, namely "angiogenesis", "inflam-
matory response" and "cell adhesion", revealed Fibronec-
tin, a profibrotic mediator encoded by Ful, as a
prominent upregulated gene in Irf8-deficient MG linking
all three biological processes (Fig. 6D). In addition, we
found a marked increase in the expression of other pro-
fibrotic factors such as Fgf2 and Sppl and a subtle in-
crease in the expression of Tgfbl in CNV-associated
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retinal MG in Irf8-deficient mice compared with control
mice (data not shown). Consistent with the increased
number of Fnl transcripts in Irf8-deficient MG, we
found significantly increased FN1 protein levels in the
RPE/choroid of Irf8-deficient mice (3314 + 587.1 pg/ug
protein) compared with controls (1550 + 268.5 pg/ug
protein, p < 0.05) using ELISA on tissue lysates (Fig. 6E,
F). Immunohistochemical studies showed that FN1 ex-
pression was restricted to the area of CNV lesions and
expressed by microglia at sites of CNV (Fig. 6G). In
addition to the enlarged collagen IV-positive CNV lesion
described above, Irf8-deficient mice showed a markedly
enlarged FN1-positive CNV lesion compared with WT
mice, indicating increased fibrosis (Fig. 6H).

Taken together, these studies show that [rf8-deficient
microglia exhibit a significantly altered expression profile
in the laser CNV model with downregulated migratory
genes, such as purinergic receptors, and upregulated
pro-fibrotic factors, such as Fnl.

Discussion

The interferon regulatory factor 8 (IRF8) is an essential
transcription factor for the development, maturation and
homeostasis of microglia (MG) in the brain and other
tissue macrophages [19, 21, 27]. However, the role of
IRF8 for retinal MG (rMG) during homeostasis and neo-
vascular eye disease has not been elucidated so far. In
this study, we show that Irf8 is essential for a mature
rMG gene expression profile and influences MG morph-
ology, migration and the response to pathological
neovascularisation.

Our results show that Irf8 is strongly expressed in
rMG in the steady state compared with other IRF family
members. The expression of Irf8 in rMG was even sub-
stantially higher than in brain MG (bMG), suggesting a
distinct and tissue-specific function of [rf8 in microglia
of the retina. Morphological analysis revealed that Irf8-
deficient mice exhibited an overall reduced branching of
rMG@G as well as a decreased MG cell number specifically
in the outer plexiform layer, which was already observed
during postnatal development. These findings recapitu-
late findings in the brain [21, 27, 39, 44] and point to a
migratory defect that is already present during postnatal
retinal layering and maintained into adulthood. To gain
further insight into the molecular changes in Irf8-defi-
cient rM@G, we isolated rMG by flow cytometry and ana-
lysed their transcriptional profile by RNA sequencing.
Our analysis revealed significant transcriptional differ-
ences between Irf8-potent and Irf8-deficient microglia,
which is consistent with several in vitro studies [25, 40].
We found that Salll was the most downregulated MG
signature gene in the retina of Irf8-deficient mice. This
is of particular functional importance since SALLI is a
critical transcription factor for maintaining the
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homeostatic gene expression pattern of MG and thus
regulates, for example, the expression of MG signature
genes such as Aifl, P2ry12 and Tmem119 [6, 33, 55]. Ac-
cordingly, we found Tmeml119 and P2ryl2 as signifi-
cantly reduced in Irf8-deficient rMG recapitulating the
findings from human brain microglia which suggest a
dependence of P2RY12 expression on IRF8 signalling
[5]. Notably, because SALL1 is not exclusively expressed
by microglia but also by astrocytes and oligodendrocytes
[8, 38, 48], non-cell autonomous effects of this gene can-
not be excluded. Further, single-cell RNA-seq (scRNA-
Seq) of conditional Irf8 KO mice (Fcgri-Cre:Irf8"") re-
vealed a strong downregulation of Salll, Aifl, Tmemi119
and P2ryl2 in bMG while other genes, typically
expressed in macrophages, like Mrcl, encoding the man-
nose receptor CD206, were upregulated [58]. In line with
this study, we found a strong upregulation of Mrcl on
transcriptional level and the encoded mannose receptor
CD206 on protein level in Irf8-deficient rMG which is
consistent with data from Irf8-deficient bMG [44]. In
addition, other myeloid genes like Fcgrl, also known as
CD64, were downregulated on RNA and protein level.
These findings strongly support common transcriptional
changes between retinal MG and brain MG under Irf8-
deficient conditions, as shown before in a direct com-
parison of wild-type rMG and bMG by scRNA-seq [59].
Furthermore, it underscores that retinal microglial dif-
ferentiation and maturation are highly dependent on a
defined transcriptional program instructed by PU.1 [16],
SALL1 [29] and IRFS.

To identify functionally related gene signatures, we
performed a gene ontology (GO) enrichment analysis
that revealed a downregulation of the clusters “cell mi-
gration®, “cell motility”, “cell adhesion” and “regulation of
cell proliferation” in adult Irf8-deficient rMG in the
steady state. The downregulation of these GO terms was
consistent with the reduced number of rMG in the OPL
in adult Irf8 KO mice, supporting previous in vitro data
describing IRF8 as an essential transcription factor for
microglial motility and migration [28, 39]. The signifi-
cant downregulation of genes relevant for cell migration
could also explain the observed developmental pheno-
type and point to an impaired Irf8-dependent perception
of guiding cues. During development, neurons con-
stantly release guiding cues, such as purines and other
extracellular nucleotides which guide microglia to colon-
ise the developing outer retina [1, 37]. Irf8-dependent
downregulation of sensors that detect these guiding
cues, such as Adoral or P2yrl2, may be responsible for
the disruption of purinergic signalling in Irf8-deficient
rMG, which attenuates their migratory capacity. Indeed,
in vitro cultivated brain MG lacking Irf8 had a strongly
reduced phosphorylation of AKT after ATP treatment,
thereby diminishing the ATP-mediated signalling
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pathways of P2RY12 [40]. This hypothesis is supported
by in vitro studies showing a diminished entry of rMG
into retinal explant cultures following an interruption of
purinergic signalling [37]. Furthermore, proliferation of
myeloid cells relies on IRF8 signalling [61] which could
explain the insufficient compensatory expansion of MG
in the OPL and contribute to the niche-dependent
phenotype with reduced microglial density especially in
the OPL in adult Irf8-deficient mice.

Despite the aforementioned significant changes in MG
cell density and transcriptional profile, Irf8-deficient
mice exhibited a normal retinal structure, vascular sup-
ply, and physiological function. This is particularly sur-
prising as retinal MG are in close contact with retinal
vessels, especially during development, and are known to
shape the mature retinal vasculature [9, 13, 16, 18]. This
suggests that [rf8-deficient MG are functionally suffi-
cient to accompany physiological retinal development
and that minor developmental disturbances, which we
cannot completely rule out, can be compensated over
time. The fact that Irf8-deficient microglia exhibit tran-
scriptional changes that reduce their responsiveness
while maintaining a normal retinal phenotype, provides
an ideal setting to study the role of microglia in the de-
velopment of choroidal neovascularisation, which is
known to be associated with significant microglia activa-
tion and migration [35, 52, 59].

In the laser-induced CNV model, which mimics as-
pects of neovascular AMD, we found significantly in-
creased CNV lesion size under [rf8-deficient conditions.
At the same time, the overall numbers of Irf8-deficient
Cx3crl-GFP™ cells were significantly reduced around the
lesions compared with wild type. In line with this find-
ing, MG density in the IPL above CNV lesions was sig-
nificantly decreased in Irf8 KO mice compared with wild
type. These observations may be mediated either by a
migration defect caused by impaired purinergic signal-
ling [45] or by reduced microglial proliferation of Irf8-
deficient MG, or both, as discussed above. Interestingly,
the present study shows that impaired migration and a
lower number of MG in the vicinity of CNV are associ-
ated with a more severe CNV phenotype in Irf8-deficient
mice. This finding is in contrast to previous studies
showing that depletion of retinal or circulating myeloid
cells by clodronate is associated with reduced CNV size
suggesting an anti-angiogenic effect of myeloid cells on
CNV [14, 34, 51]. On the other hand, however, our re-
sults are consistent with reports showing that increased
accumulation of myeloid cells in neovascular lesions is
associated with decreased CNV and that myeloid cells
use FasL. (CD95L) to inhibit CNV formation [2]. These
seemingly contradictory contributions of myeloid cells
to CNV development could be reconciled by the poten-
tially different roles of resident MG and infiltrating
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monocyte-derived macrophages. To investigate the dis-
tinct roles of these cellular populations, this study ex-
ploits Irf8-deficient mice which are characterized by a
near absence of circulating monocytes and, at the same
time, altered but present resident retinal microglia. The
enlarged CNV lesions in Irf8-deficient mice associated
with reduced numbers of Cx3crI-GFP" resident micro-
glia cells may thus be interpreted as a consequence of
dysfunctional pro-fibrotic Irf8-deficient MG or as a re-
sult of insufficient numbers of CNV-suppressing micro-
glia in Irf8-deficient animals. The latter may in turn
indicate a general protective role of wild-type microglia
which would be in line with previous studies [2, 46]. The
hypothesis that deficient microglia substantially influ-
ence CNV size in Irf8-deficient mice is further supported
by the head-shielded bone marrow transplantation ex-
periments performed in this study, which showed en-
larged CNV in Irf8-deficient animals compared with
controls despite successful reconstitution of Irf8-potent
peripheral monocytes. However, we cannot exclude the
possibility that other Irf8-expressing cell types in the ret-
ina or from the blood contribute to the increased CNV
lesion size in Irf8-deficient mice. Since Irf8 expression in
the retina was mainly restricted to retinal microglial
cells, which represent the most numerous myeloid cell
population in CNV, in contrast to a low number of infil-
trating peripheral monocytes [59], we consider this pos-
sibility rather unlikely. Furthermore, heterozygous
Cx3cr1®™* expression could have an impact on mye-
loid cells and be associated with an inflammatory pheno-
type. However, since both Irf8 wild-type and knockout
mice in our study were consistently heterozygous for
Cx3crl, we consider this effect negligible and used the
Cx3cr1™’* line to visualise Irf8 wild-type and knockout
mice in a comparable manner, since other standard
markers such as IBA1 are dysregulated and cannot be
used [44].

To explore potential mechanisms in Irf8-deficient ret-
inal MG contributing to CNV formation, we next per-
formed RNA-sequencing on sorted retinal MG at sites
of CNV.

Among others, we found that purinergic receptors,
encoded by genes such as P2ryl2, P2ryl13 and Adoral,
were significantly downregulated in Irf8 KO rMG after
laser injury. Since these receptors are critical for the rec-
ognition of ATP released during tissue injury and thus
control cell migration, their downregulation may be at
least partly responsible for the reduced MG cell number
at sites of CNV in Irf8-deficient mice [12, 23, 30]. This
hypothesis is in line with in vitro work by Masuda et al.
showing a downregulation of genes encoding purinergic
receptors, including P2ry12 and P2rx4, in Irf8-deficient
brain microglia which was associated with a migration
defect in vitro [39]. It is interesting to note that Irf8-
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deficient retinal microglia accumulating at CNV showed
less M1 and more M2 signature gene expression com-
pared with wild-type MG at CNV, suggesting increased
M1 to M2 polarization in Irf8-deficient MG. This is of
particular clinical interest as some studies have sug-
gested that more M2-like macrophages, which are as-
sumed to be pro-angiogenic, accumulate at the site of
wet compared with dry AMD and that the pathological
shift of macrophage polarization may contribute to the
pathogenesis of CNV in neovascular AMD [7]. The ex-
pression signatures or myeloid cells at the lesion site are
likely to be more complex than the aforementioned
polarization state; however, it confirms an altered signa-
ture of a set of well-known and characterized markers.
Furthermore, GO cluster analysis showed that Irf8-defi-
cient rMG exhibit increased activity of biological pro-
cesses that are critical for inflammation and cell
adhesion, which points to an interaction of microglia
with extracellular matrix components driving CNV for-
mation. We hereby identified Fibronectin, encoded by
the Fnl gene, as being significantly higher expressed in
Irf8 KO rMG and linking the GO terms "cell adhesion”,
"inflammatory response” and "angiogenesis”. The immu-
nohistochemical and ELISA analyses confirmed that the
expression of Fibronectin protein was also significantly
increased at sites of CNV, suggesting that Irf8-deficient
MG or other cells affected by the loss of Irf8 contribute
to increased Fibronectin abundance at sites of CNV. Of
note, collagen IV fibers were reported to depend on an
established Fibronectin matrix directly co-localizing with
Fibronectin fibers in vitro that could be functionally re-
lated to our observation of increased CNV lesion size
promoted by higher Fibronectin expression in rMG [42,
43]. Furthermore, we found a marked increase in the
expression of the pro-fibrotic factors Fgf2 and Sppl
and a subtle increase in the expression of Tgfbl in
CNV-associated retinal MG in Irf8-deficient mice
compared with control mice. Since FGF2 and SPP1
are important mediators of scarring and have been
identified in human choroidal neovascular membranes
[17, 52], overexpression of these factors in retinal MG
may have further contributed to increased CNV lesion
size in Irf8-deficient mice. This is of particular inter-
est as pharmaceutical inhibition of SPP1 has been
shown to modulate CNV formation and inhibition of
FGF2 was associated with reduced CNV and subret-
inal fibrosis in a laser-induced mouse CNV model [3,
41, 52].

Conclusions

In conclusion, this study identifies IRF8 as a critical me-
diator for the morphology, distribution and expression
profile of retinal microglia, and for transformation to a
reactive phenotype. The niche-dependent phenotype
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already present during postnatal development, the al-
tered morphology and the disturbed rMG distribution
did not lead to any impairment of retinal morphology
and function in the steady state, but to enlarged lesions
in the laser CNV model. This highlights the importance
of IRF8 and retinal MG for the development of patho-
logical neovascularisation in the eye and highlights the
potential of immunomodulatory therapeutic interven-
tions of rMG recruitment in retinal disease.

Abbeviations

Adoral: Adenosine A1 receptor; Aif1: Allograft inflammatory factor 1;
AMD: Age-related macular degeneration; ATP: Adenosine triphosphate;
CNS: Central nervous system; CNV: Choroidal neovascularization;

CSF1R: Colony stimulating factor 1 receptor; ELISA: Enzyme-linked
immunosorbent assay; ERG: Electroretinography; FFA: Fundus fluorescein
angiography; FN: Fibronectin; GO: Gene ontology; INL: Inner nuclear layer;
IRF: Interferon regulatory factor; MG: Microglia; OCT: Optical coherence
tomography; ONL: Outer nuclear layer; P2ry12: Purinergic receptor P2Y, G-
Protein couple 12; PR: Photoreceptors; Sall1: Spalt-like transcription factor 1;
Trem119: Transmembrane 119; WT: Wild type
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Additional file 1. Supplemental figure 1 Irf8 is expressed predominantly
in retinal MG and in some bipolar or Miller cells. No /rf8-VENUS
expression could be detected co-localised with GFAP (A), Blll-Tubulin (B)
and Collagen IV (E), indicating that IRF8 is not expressed in retinal astro-
cytes, ganglion cells or vessels. All IBA1* cells exhibited a strong Irf8-
VENUS signal (C) suggesting that all retinal MG express IRF8. Some
CHX10" cells could be co-localised with Irf8-VENUS expression (D) dem-
onstrating that some bipolar cells or Miller cells express VENUS.

Additional file 2. Supplemental figure 2 Temporal and spatial
distribution of retinal microglia during development. A Representative
pictures showing the numbers of microglia per field of view in Irf8 WT
and /rf8 KO mice in comparison between the ganglion cell and inner
plexiform layer (GCL/IPL) and the developing neuroblast layer (NBL) or
outer plexiform layer (OPL), respectively, at postnatal day (P) 1, P7 and in
adult mice. B Quantification thereof. Data are presented as mean + SEM.

Additional file 3. Supplemental figure 3 Irf8 deficiency does not affect
the retinal structure, function and vasculature. A-C Representative color
fundus images (A), fluorescein angiography (B) and optical coherence
tomography (OCT) images of I8 WT and Irf8 KO mice. C) Both Irf8 WT
(blue, n=12) and Irf8 KO (red, n=12) mice displayed a regular retinal struc-
ture, a similar thickness of the inner nuclear layer and the outer retina at
100 and 200 um from the optic nerve head in the optical coherence
tomographs. Data are shown as mean + SEM. ONH = Optic nerve head.
D Electroretinography (ERG). No significant difference was found between
the Irf8 WT (blue, n=9) and /rf8 KO (red, n=9) mice concerning the dark-
adapted scotopic and light-adapted photopic ERG measurements at dif-
ferent flash intensities. Data are shown as mean + SEM. E Staining against
smooth muscle actin (SMA, red) reveals a comparable number of arteries
(Irf8 WT (n=5); Irf8 KO (n=7)) and major vessels (Irf8 WT (n=11); If8 KO (n=
13)) between both groups. Data are shown as mean + SEM. F No signifi-
cant differences in vessel branch formation in the superficial (upper
panel) or deep plexus (lower panel) in the central or peripheral area of
the retina could be observed, compared between /rf8 WT (n=6) and /rf8
KO (n=7). Data are presented as mean + SEM.

Additional file 4. Supplemental figure 4 Spatial distribution of retinal
microglia in CNV lesions. A Spatial distribution of microglia in the inner
plexiform layer (IPL) in lasered and unlasered /rf8 WT and /rf8 KO mice. B
Quantification of the numbers of microglia per field of view in the inner
plexiform layer in lasered and unlasered /rf8 WT and /rf8 KO mice. Data
are presented as mean + SEM.
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Additional file 5. Supplemental figure 5: Polarisation markers expressed
by CNV-associated microglia. The M1 and M2 polarisation markers Cd86,
H2-Ab1, TIr2, Cd163 and Mrci (CD206) are shown as transcripts per million
in comparison between /rf8 WT and KO under CNV conditions.

Additional file 6. Supplemental table 1: List of primer sequences.

Additional file 7. Supplemental table 2: List of antibodies used for
immunohistochemistry and flow cytometry.
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