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Abstract

A chronic low-grade inflammation within adipose tissue (AT) seems to be the link between obesity and some of its
associated diseases. One hallmark of this AT inflammation is the accumulation of AT macrophages (ATMs) around
dead or dying adipocytes, forming so-called crown-like structures (CLS). To investigate the dynamics of CLS and their
direct impact on the activation state of ATMs, we established a laser injury model to deplete individual adipocytes in
living AT from double reporter mice (GFP-labeled ATMs and tdTomato-labeled adipocytes). Hence, we were able to
detect early ATM-adipocyte interactions by live imaging and to determine a precise timeline for CLS formation after
adipocyte death. Further, our data indicate metabolic activation and increased lipid metabolism in ATMs upon forming
CLS. Most importantly, adipocyte death, even in lean animals under homeostatic conditions, leads to a locally confined
inflammation, which is in sharp contrast to other tissues. We identified cell size as cause for the described pro-
inflammatory response, as the size of adipocytes is above a critical threshold size for efferocytosis, a process for anti-
inflammatory removal of dead cells during tissue homeostasis. Finally, experiments on parabiotic mice verified that
adipocyte death leads to a pro-inflammatory response of resident ATMs in vivo, without significant recruitment of
blood monocytes. Our data indicate that adipocyte death triggers a unique degradation process and locally induces a
metabolically activated ATM phenotype that is globally observed with obesity.

Introduction

Obesity is linked to numerous diseases, such as ather-
osclerosis, cancer, cardio-vascular disease, and most
prominently diabetes mellitus type 2 (refs. ™). In clinical
practice, body weight or the body mass index are routinely
used to classify overweight or obesity’. However, meta-
bolically healthy obese individuals indicate that adipose
tissue (AT) mass per se is not indicative for development
of obesity-associated diseases, but rather an obesity-
driven AT dysfunction™®. Hallmarks of AT dysfunction
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are adipocyte hypertrophy, immune cell infiltration, and
increased expression of pro-inflammatory cytokines®.

The increase of immune cells in AT of obese individuals
during chronic, low-grade inflammation is predominately
due to an increase of adipose tissue macrophages
(ATMs)*”. ATMs are routinely classified into two groups:
‘classically activated’ (M1) ATMs, that express pro-
inflammatory cytokines and decrease insulin sensitivity,
and ‘alternatively activated’ (M2) ATMs, that express anti-
inflammatory cytokines and participate in tissue remo-
deling®. Resident ATMs in lean mice are mostly M2
polarized, but with progression of obesity, the proportion
of M1 ATMs increases™.

More recent studies, however, found that obesity
induced ATM activation differs from classical M1 acti-
vation and rather induces a metabolically activated
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phenotype, characterized by increased lysosomal biogen-
esis and lipid metabolism®°, A comparable phenotype can
be induced by treatment with palmitate, insulin, and
glucose (PIG)". Within CLS these activated ATMs digest
apoptotic adipocytes via lysosomal exocytosis, resulting in
lipid-laden foam cells®'. PIG or obesity-induced meta-
bolic activation of ATMs leads to increased expression of
pro-inflammatory cytokines Interleukin (IL) 1p and
Tumor necrosis factor (TNF) a’®*? and lipid-laden ATMs
in CLS, showing pro-inflammatory properties comparable
to M1 activation!®, Consequently, the number of CLS
correlates with the progression of AT inflammation'®.

Initial studies suggested that these pro-inflammatory
ATMs are preferentially recruited from blood mono-
cytes™®, but M1 polarization of resident M2 ATMs was
also postulated'®'®, However, the molecular pathways
leading to formation and resolution of CLS as well as the
origin of pro-inflammatory ATMs remain poorly
understood'®"”.

On the other hand, obesity is characterized by an
enhanced turnover of adipocytes'®. Although the process
of differentiation of newly formed adipocytes has been
studied intensively in the last years, our knowledge of
adipocyte degradation in vivo is rather limited. The
degradation process of adipocytes is of special interest,
since the number of dying adipocytes increases dramati-
cally in obesity.

In this work, we studied the immune response following
adipocyte death. Hence, we introduce the first model for
induced cell death of individual adipocytes in living AT by
laser  irradiation, giving new  insights into
adipocyte—macrophage interactions following adipocyte
death. Our data presented here identify accumulation of
multiple ATMs around dying adipocytes as a physiologi-
cal degradation process leading to a local inflammation,
even under homeostatic conditions in lean mice. This is in
sharp contrast to fast, anti-inflammatory efferocytosis by
single macrophages after cell death of smaller cell types in
other tissues. Therefore, analysis of the size-dependent
phagocytic capacity of ATMs provides a direct link
between adipocyte hypertrophy and AT inflammation.

Our data indicate that adipocyte death is the underlying
reason for AT inflammation in obesity. Hence, we here
provide first-time evidence for a long-standing hypothesis
in AT pathophysiology'* and our data, therefore, call for
adipocyte-protective strategies in future pharmacotherapy
of obesity.

Results
Adipocyte size is above the threshold for efficient
efferocytosis

We analyzed ATM activity around lipid droplets
(probably resulting from adipocyte rupture) of different
sizes in AT explants from HFD-fed mice ex vivo using
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our established live-imaging approach at single cell
resolution. The observed events were recorded and
categorized into three groups: classical efferocytosis
(uptake of lipid by an individual ATM), fragmentation
(separation of one solid lipid remnant into several smaller
lipid remnants by ATMs with subsequent uptake) and
CLS formation (surrounding of a lipid remnant by several
ATMs without evidence for degradation or uptake).
Interestingly, the size of lipid remnants affected lipid
handling by ATMs. Small lipid droplets were effectively
efferocytized and digested by single ATMs (Fig. 1A). In
some cases, medium-sized lipid droplets were fragmented
into smaller portions and then each small lipid droplet
was efferocytized individually by ATMs (Fig. 1A). How-
ever, in the vast majority of cases, large lipid droplets
could not be efficiently efferocytized or fragmented by
ATMs, but instead were surrounded by numerous ATMs,
forming characteristic CLS (Fig. 1A). The duration for
degradation varied between the described processes. The
classical efferocytosis process led to fast digestion of lipid
droplets within ~36 h (Fig. 1A). In contrast, fragmenta-
tion and digestion took several days (Fig. 1A). The pro-
cess of CLS formation appeared to take about 24—48 h.
However, no uptake or decrease in lipid droplet size was
detectable > 100 h after initial ATM-lipid contact in
observed cases of CLS formation (Fig. 1A). While we did
observe some CLS in AT explants of chow-fed mice, a
representative image shows ATMs located between adi-
pocytes, whereas CLS were frequently observed in AT
explants of HFD-fed mice (Fig. 1B). To determine a
threshold size for the individual lipid-handling processes,
we measured the sizes of all lipid droplets cleared or
surrounded by ATMs. We found that a diameter of
25 um is the critical threshold size for classic efferocytosis
in living AT (Fig. 1C). Importantly, this threshold for
particle uptake was confirmed using BMDMs in vitro and
commercially available beads of distinct sizes. BMDMs
were able to phagocytose beads up to 20 um in diameter,
whereas phagocytosis of 45 pm beads (similar to small
adipocytes) was only rarely observed (Supplementary Fig.
1). In AT ex vivo, some medium-sized lipid droplets
between 25 and 50 um were fragmented and subse-
quently digested by multiple ATMs. However, most lipid
droplets above 25pum in diameter (presumably dead
adipocytes) were surrounded by numerous ATMs to
form CLS (Fig. 1C). Next, we measured the lipid droplets
of live, unprocessed and unfixed adipocytes in living AT
of lean and obese mice. Importantly, we found almost no
adipocyte-associated lipid droplet smaller than 25 pm.
On average, lipid droplets in adipocytes of chow-fed mice
were ~50 pm in diameter. After 20 weeks of HFD, lipid
droplets in adipocytes increased in size to an average of
~100 pm, some even reaching close to 200 um (Fig. 1D).
Therefore, our data indicate that almost every case of
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Fig. 1 Live-imaging indicates a size threshold for efferocytosis of lipid remnants. Live-imaging of AT explants of HFD-fed MacGreen mice
(green: BODIPY-stained lipids, red: ATMs, movies provided as online supplement). A Degradation of adipocyte remnants in AT explants occurs in
three distinct ways: efferocytosis (upper row), fragmentation (middle row), or CLS formation (lower row). B Representative overview images of living
AT of chow-fed and HFD-fed mice. C Quantification of lipid diameter associated with either efferocytosis, fragmentation, or CLS formation (188
registered events in 40 movies from 6 independent experiments). D Quantification of lipid diameter in adipocytes of chow-fed or HFD-fed littermates
(N = 3). Asterisks mark lipid remnants degraded by ATMs. Blue line indicates the threshold for efferocytosis. Scale bars = 25 um.
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adipocyte death leaves behind lipid remnants above the
critical threshold size for efficient efferocytosis by single
ATMs.

Adipocyte death leads to crown-like structure formation
Next, we aimed to investigate, if adipocyte death could

be a sole cause for CLS formation by targeted depletion

of small adipocytes in AT of lean mice. We chose AT
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from lean mice to exclude interference of an already
established inflammation as in AT from obese mice. We
established a protocol for precisely killing a single adi-
pocyte by laser injury. After induced adipocyte death,
live-imaging was performed for the next 4-5 days
(Fig. 2B, C).

In our model, CLS formed around ~60% of target adi-
pocytes, killed by laser injury (Fig. 2D). CLS formation
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Fig. 2 Model of targeted adipocyte death by laser injury in living AT. A Scheme of laser injury protocol and B formation process of CLS after
adipocyte death in AT explants from lean double reporter mice (Csf1r-eGFP x AdipogCreERT2:TDTO mice). Movie provided as supplemental online
material. C, E GFP fluorescence quantification in proximity to the targeted adipocyte (E, no laser damage n = 13; no CLS n = 23; CLS formed n = 35;
N =5). D CLS formation after laser injury (N =15). Scale bars = 50 um. *p < 0.05 and ***p < 0.001. Data presented as mean + SEM.

(defined by an ATM-derived increase of GFP fluores- Further, we aimed at characterizing the induced adi-
cence) started to increase 10 h after laser injury and pla-  pocyte death and early CLS formation. Phosphati-
teaued after 60 h (Fig. 2E). dylserine externalization was detected via Annexin V
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Fig. 3 Characterization of adipocyte death and CLS formation post laser injury. A Phosphatidylserine externalization detected via Annexin V
staining (magenta) 24 h post laser injury. Nucleus of depleted adipocyte shows no DAPI staining, while some surrounding ATMs are DAPI positive
(white; highlighted by arrows), validating DAPI staining (N = 3). B Induced CLS formed 48 h post laser injury in AT explants of chow-fed (chow) and
HFD-fed (HFD) mice. C Frequency of CLS formation after laser injury (N = 3). Asterisks mark depleted adipocytes, scale bars =50 pm.

48 h

staining in adipocytes 24h post laser injury (Fig. 3A).
Additionally, nuclei of these adipocytes did not show
DAPI staining (Fig. 3A), together indicating an
apoptosis-like cell death post laser injury with intact cell
membrane at this early stage. Interestingly, CLS formed
with the same frequency and within the same timeframe
after HFD compared to matched chow-fed controls (Fig.
3B, C).

Adipocyte death leads to local activation of resident
macrophages

Our live-imaging setup allows for targeted CLS induc-
tion and detection in high spatio-temporal resolution. We
used this model to further analyze the early immune
response of resident ATMs in newly formed CLS by
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performing post-hoc immunostainings for different M1
and M2 marker proteins. Interestingly, as in obesity,
ATMs in CLS were predominantly positive for the com-
monly used M1 markers CD11c, CD86, and CD9, whereas
interstitial ATMs showed almost no expression of these
marker proteins (Fig. 4A—C). Staining with the M2 mar-
kers CD301 and CD206 mirrored these results as inter-
stitiall ATMs were CD301- and CD206-positive, while
ATMs in CLS were negative (Fig. 4D, E). Both, interstitial
and CLS-forming ATMs showed high expression of CD64
(Fig. 4F), whereas no distinct ATM population with high
expression of TREM2 could be detected (Fig. 4G). Of
note, the high CDllc expression observed in ATMs
forming CLS could not be induced by treatment of ATMs
with palmitate or by efferocytosis of small lipid droplets
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Fig. 4 Macrophages in laser-induced CLS exhibit a locally confined M1 polarization. A-C Expression of M1 markers CD11c, CD86, and CD9 and
D, E M2 markers CD206 and CD301 by ATMs of induced CLS and interstitial macrophages. F, G Expression of CD64 (all macrophages) or TREM2.
Targeted adipocytes are marked by an asterisk. M2 ATMs outside of CLS are highlighted by arrows. Scale bars = 50 um.
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and is, therefore, a unique characteristic for large particle
efferocytosis (Supplementary Fig. 2).

In vivo verification of local activation in induced CLS

To exclude that the observed change in M1 — and M2
marker expression is caused by the artificial laser injury
and not related to adipocyte death, we also stained AT of
lean mice directly after dissection and searched for phy-
siologically occurring CLS due to adipocyte turnover.
Interestingly, we obtained similar results compared to
laser-induced CLS. CLS-associated ATMs in vivo also
showed high expression of putative M1 markers CDl1l1c,
CD86, and CD9 (Fig. 5A-C), while interstitial ATMs
remain negative (Fig. 5A—C, arrows). Interstitial ATMs
expressed the M2 markers CD206 and CD301, in contrast
to M2 marker negative CLS-associated ATMs (Fig. 5D, E).
Both, interstitiall ATMs, and ATMs forming CLS
expressed CD64 (Fig. 5F) and TREM2 was expressed in
some ATMs forming CLS, but more prominent in inter-
stitial ATMs (Fig. 5G, arrows). All-together, this indicates
that the local activation of ATMs in CLS is a physiological
response to adipocyte death and no artifact of the used
laser-injury model or a consequence of the pro-
inflammatory environment in obesity.

RNA sequencing reveals metabolic activation in CLS

Our results indicated CD11c (Itgax) as distinct marker
for CLS-associated ATMs early after adipocyte death.
Therefore, we sorted ATMs 48 h post laser injury into 2
groups based on CD1lc expression and analyzed them
using RNA sequencing (Fig. 6A). Pathway analysis
revealed increased expression of genes related to antigen
presentation and processing, oxidative phosphorylation,
and lysosomal biogenesis in the CD11c high group while
expression of genes related to cell cycle was decreased
(Fig. 6B and Supplementary Table 1). Further, the CD11c
high group showed increased expression of several M1
associated genes, while expression of genes associated
with a M2 phenotype were significantly reduced (Fig. 6C).
CD11c high ATMs also showed significantly increased
expression for several genes associated with either meta-
bolic activation or lipid metabolism (Fig. 6D and Sup-
plementary Table 2). Additionally, expression of some
chemokines or respective receptors differed between the
CD11c high and low ATMs (Fig. 6D), indicating tight
regulation of chemotaxis within the tissue. To verify RNA
sequencing data on protein level, we proceeded with
staining of induced CLS. ATMs in induced CLS expressed
CD36, a marker of metabolic activation, while interstitial
ATMs were mostly CD36 negative (Fig. 6E). Lampl and
Lamp?2 were also expressed by ATMs in induced CLS, but
not exclusively, as interstitial ATMs also showed strong
expression as highlighted by arrows (Fig. 6E). The same
staining pattern was verified in in vivo formed CLS in lean
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mice. ATMs residing in CLS express CD36, Lampl, and
Lamp?2 (Fig. 6F). Intriguingly, ATMs in induced CLS did
not express CD38 and CD274, two selective markers to
distinguish metabolic activation from M1 activation, while
these markers were strongly expressed in in vivo formed
(and probably older) CLS (Fig. 6E, F). This might indicate
a time-dependent development of pro-inflammatory
characteristics in ATMs forming CLS. Overall, these
data reveal that early adipocyte death induces a metabo-
lically activated ATM phenotype that is accompanied by
an increased expression of genes associated with M1-
polarization.

Local activation of ATMs is independent of monocyte
recruitment

Our previous results indicate that resident ATMs
exhibit a metabolic activation with pro-inflammatory
properties in response to adipocyte death ex vivo and
in vivo. We proceeded to study the involvement of
monocyte recruitment to this locally confined AT
inflammation around dying adipocytes. Therefore, we
performed parabiosis experiments of wild-type and
ActalS™"" reporter mice. The shared blood circulation
resulted in ~45% GFP-positive cells in the wildtype
parabiotic partner after parabiotic surgery. This allowed
for fate mapping of recruited cells from the blood stream
into target tissues of the wild-type mice. Importantly, in
contrast to the paradigm of monocyte-derived tissue
macrophages, very few ATMs were GFP-positive in AT of
wild-type mice 2 weeks after parabiosis, increasing to
~20% of GFP-positive ATMs 12 weeks after parabiosis
(Fig. 7B, C). Thus, individual ATMs were derived from
blood monocytes, but the vast majority of resident ATMs
is either extraordinarily long lived or maintained by
continuous local proliferation. However, to analyze,
whether monocyte recruitment plays a role in physiolo-
gical CLS formation, we used the M1 markers CD11c and
CD86 to stain naturally occurring CLS in lean parabiotic
mice (Fig. 7D, E). Although few cells in these in vivo
formed CLS were GFP-positive, ~90% of ATMs in CLS
were GFP-negative indicating a local origin. Therefore,
monocyte recruitment does not seem to have a major
impact on CLS formation in vivo.

In conclusion, our data collectively and comprehen-
sively indicate that adipocyte death during adipocyte
turnover, even in lean, healthy mice, enhances expression
of genes associated with M1-polarization and leads to a
metabolic activation of resident ATMs early after
adipocyte death.

Discussion

The link between obesity and associated diseases is AT
dysfunction caused by a chronic inflammation® CLS
abundance correlates with the progression of AT



Lindhorst et al. Cell Death and Disease (2021)12:579 Page 8 of 15

Bodipy

GFP Bodipy

GFP Bodipy

A

B BV

Fig. 5 In vivo formed CLS in lean mice show comparable inflammation marker expression to induced CLS. Whole mount antibody staining of
CLS formed in vivo in lean mice under homeostatic conditions. A-C ATMs in in vivo formed CLS express pro-inflammatory markers CD11c, CD86, and
CD9, while interstitial ATMs are negative (highlighted by arrows). D, E Interstitial ATMs express the anti-inflammatory markers CD206 and CD301
(highlighted by arrows), while ATMs in CLS are negative. F, G Expression of CD64 (all macrophages) or TREM2 (highlighted by arrows). Asterisks mark
adipocytes inside CLS. Scale bars = 100 um.

Official journal of the Cell Death Differentiation Association



Lindhorst et al. Cell Death and Disease (2021)12:579

Page 9 of 15

Scale bars =50 um.

CD11c

M1 polarization

M2 polarization

——CD11chish

—— CD11clow

l

3 RNAseq

CD11c'w  CD11chigh
— I Experiment

S100a11
H2-Eb1
H2-Aa
H2-Ab1
H2-DMa
Csf2ra
Csf2rb
Csf2rb2

Antigen Processing and Presentation (@)
NES

l Cd11c high
Epithelial Cell Signaling in Enriched

Helicobacter Pylori Infection

Type | Diabetes Melltus Catiolow

Enriched

Oxidative Phosphorylation ~logso(Padj)

@ 14
Graft Versus Host Disease @ s

@ ¢

Lysosome ®
. 18
celicyce @
CD11clw  CD11chigh

[ | I Experiment
| Cg36

Metabolic activation
1
(o]
O

Lipid metabolism
1
w»
o
58

Chemokines
o

1
0.5

-0.5

Fig. 6 RNA sequencing reveals metabolic activation following adipocyte death. A GFP positive cells were sorted in CD11c"" and CD11c°%
groups for RNA sequencing 48 h following laser injury. B Pathway analysis of gene expression profiles between the sorted groups. C, D Heatmaps
comparing differentially expressed genes related to either M1 or M2 polarization (C) or associated with metabolic activation, lipid metabolism or
chemokines and their receptors (D). Colors indicate the log, fold change of gene expression in the 2 individual experiments from average across all
samples. Expression of genes shown is significantly different between CD11c high and CD11c low group (p < 0,001). E Expression of markers

differentiating between M1 polarization (CD38, CD274) and metabolic activation (CD36) and markers for lysosomal exocytosis in induced CLS.

F Expression of the respective markers in vivo in lean mice. Asterisks mark adipocytes within CLS, positive interstitial ATMs are highlighted by arrows.
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Fig. 7 CLS formation does not involve monocyte recruitment in vivo. A Timeline of parabiosis experiments. B Quantification of GFP* F4/80"
mice and wild-type parabiotic mice (WT) after 2 weeks (N = 4) and 12 weeks (N = 3) parabiosis. C-E Representative images
of CD11c and CD86 stained CLS in vivo of WT mice after 2 and 12 weeks parabiosis. Scale bars = 100 um.

inflammation leading to accumulation of up to 90% of
ATMs in CLS in obese mice!'®®. It is under debate,
whether the pro-inflammatory microenvironment in
obesity leads to increased CLS formation or vice versa.
We here used a confocal real-time live-imaging
approach to study living AT in order to characterize the
dynamics of CLS formation. We further described a new
laser injury protocol to induce cell death in individual
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targeted adipocytes. To the best of our knowledge, this
represents the first model to induce single CLS specifi-
cally, allowing for a detailed analysis of initial ATM-
adipocyte interaction after adipocyte death. Importantly,
the timeline of CLS formation after laser injury matches
previously proposed data after systemic induction of
adipocyte death in vivo®®. Due to the high spatio-temporal
resolution of our approach, the earliest ATM-adipocyte
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interaction could be observed 10 h following induction of
adipocyte death. 24 h post laser injury, membranes of
depleted adipocytes were impermeable for DAPI with
phosphatidylserine externalization, both features of
apoptotic cell death. However both, apoptotic and
necrotic adipocyte death can lead to CLS formation,
indicating that the cause of adipocyte death does not
affect the degradation pathway'"'®?°, Therefore, our data
collectively show that adipocyte death per se induces a
locally confined activation of resident ATMs during adi-
pocyte degradation. In contrast, the vast majority of
interstitial ATM sustain their anti-inflammatory M2
phenotype in AT explants ex vivo for several days as
described before®”. Thus we directly verify CLS as the
center of metabolic activation of ATMs early after adi-
pocyte death accompanied by a shift towards MI-
associated gene expression'*'*1°,

ATMs in induced CLS show increased expression of
genes associated with antigen presentation that could
indicate involvement of dendritic cells. However, strong
expression of CD64 in induced CLS validates these cells as
macrophages®. TREM?2 is discussed as driver in CLS
formation and CD1l1c expression of ATMs in different
obesity models®**°. We could not detect increased
TREM2 expression in CLS-associated ATMs, suggesting
that while TREM2 appears to be necessary for CLS for-
mation and adipocyte clearing, it is not upregulated in
ATMs forming CLS. In line, others reported that meta-
bolic effects of TREM2 are uncoupled from its expression
on ATMs>.,

Previous studies described monocyte recruitment as key
source for pro-inflammatory ATMs in inflamed AT and
CLS formation®'>***>, We here demonstrate that CLS
can be induced in AT explants ex vivo (without blood
supply), excluding recruitment from blood monocytes as
prerequisite for CLS formation and M1 polarization. Most
importantly, by analyzing AT from parabiotic mice, we
further demonstrate that CLS formation occurs without
significant recruitment from blood monocytes in vivo, at
least in lean mice. However, ATMs in induced CLS
showed changes in expression of chemokines or their
receptors, indicating a signaling pathway for chemotaxis
of ATMs to the site of adipocyte death within the tissue.
Some of the upregulated signaling pathways, such as
Ccl22, have been reported to recruit anti-inflammatory
macrophages to other tissues, while others, e.g., CXCL14,
are implied in recruitment of pro-inflammatory macro-
phages®* 7, all-together indicating a tight regulation of
intra-tissual recruitment of resident ATMs.

AT inflammation in obesity leads to a distinct metabolic
activation of macrophages, characterized by increased
lipid metabolism and lysosomal biogenesis® which can be
mimicked by treatment with palmitate, insulin, and glu-
cose (PIG)'. Importantly, our RNA sequencing results
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show a similar pattern of upregulated genes by ATMs
early after adipocyte death in AT from lean mice. NOX2
(Cybb), a key regulator of metabolic activation'?, is also
upregulated early after adipocyte death. This data indi-
cates that adipocyte death suffices to induce a phenotype
comparable to obesity-associated AT inflammation or
PIG treatment, pointing to adipocyte death as causal link.

In other tissues, homeostatic cell death followed by
efferocytosis is an active anti-inflammatory process per-
formed by tissue macrophages®®. Of note, apoptotic and
necrotic adipocyte death both lead to CLS forma-
tion'"'®%, but in other tissues, necrotic cells are also
rapidly cleared by the immune system®. Hence, the
challenge with efferocytosis of adipocytes appears to be the
extraordinary large cell size. We here show, for the first
time, that the threshold size for classic, fast efferocytosis by
ATMs is ~25pum. Adipocytes, however, especially after
HFD, are up to 5-fold this size, rendering classic phago-
cytosis impossible. This may lead to longer persistence of
cell remnants even after adipocyte apoptosis and a so-
called secondary necrosis®. Importantly, inefficient effer-
ocytosis is accompanied by increased release of pro-
inflammatory cytokines, such as TNFa, whereas release of
anti-inflammatory cytokines, like transforming growth
factor B and IL-10, is diminished®*~™*'. AT inflammation
and CLS formation show strong parallels to ineffective
efferocytosis, leading to a similar cytokine expression
profile®. Further, both processes show the same cellular
cascade, starting with a rapid neutrophil infiltration and
resulting in a pro-inflammatory phenotype of tissue mac-
rophages®®. Therefore, CLS formation is a sign for inef-
fective efferocytosis of dead adipocytes and we hypothesize
that chronic low-grade inflammation in obesity is a result
of this process.

PIG treatment leads to NOX2-mediated increased
expression of pro-inflammatory cytokines IL1p, IL6, and
TNFa'?. While our data does not show increased
expression of these cytokines in induced CLS, we believe
that at later time points after CLS induction, this will be
the case, as NOX2 is already upregulated in induced CLS
and CDl11c expressing ATMs are strongly associated to
pro-inflammatory cytokine release®. In line, early CLS
after laser injury did not express CD38 or CD274 (selec-
tive markers for M1 activation)'®, whereas CLS in vivo
(which are probably older) strongly express both proteins.
This suggests a progressive pro-inflammatory phenotype
of ATMs within CLS and stresses the importance of fast
and effective clearing of dead adipocytes.

While ATMs in induced CLS show many similarities to
LPS stimulated M1 macrophages, their metabolism differs
profoundly. Our data show increased expression of genes
associated with oxidative phosphorylation, that is usually
attributed to M2 macrophages, while classically activated
macrophages increase glycolysis and decrease oxidative
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phosphorylation®. This further questions the classic M1/
M2 dogma and underlines that CLS-associated ATMs
have a unique phenotype.

In summary, our results indicate adipocyte death as the
major reason for CLS formation and a subsequent
metabolic activation of ATMs that shows pro-
inflammatory characteristics analogous to inefficient
efferocytosis, as origin for chronic inflammation in obe-
sity. Obesity induced hypertrophy, increased metabolic
rate, hypoxia and oxidative stress in visceral AT lead to
increased turnover of adipocytes and, therefore, more CLS
formation as well as longer abundance of CLS until
complete adipocyte clearing. Thus, expanding the locally
confined inflammation around individual dead adipocytes
to chronically inflamed, dysfunctional AT. Importantly,
since our data indicate that adipocyte death is the
underlying reason for AT inflammation in obesity,
adipocyte-protective strategies in future pharmaco-
therapy should be considered.

Methods
Mice

Animal experiments followed the ‘Principles of labora-
tory animal care’ (NIH publication no. 85e23, revised
1985) as well as specific national laws approved by the
local authorities. Mice were housed in pathogen-free
facilities in groups of three to five mice at 22 +2°C on a
12-h light/dark cycle. Mice were fed either a standard
chow diet or a high fat diet (HFD, both Sniff GmbH,
Soest, Germany) and had free access to water. For
visualizing macrophages in vivo, we used Csf1r-eGFP
reporter mice (MacGreen mice)'”. For live-imaging of
adipocytes—macrophage interactions, MacGreen mice
were crossed with AdipogCreER"*:Rosa26-tdTomato™
Jo mice®. Of note, these mice exhibit previously reported
sufficient tamoxifen-independent tdTomato (TDTO)
expression, especially in homozygous mice®'. Therefore,
no tamoxifen induction was applied.

Adipose tissue explant culture

For CLS induction, we used an established tissue culture
model'®. After sacrifice, the rostral part of the epididymal
white adipose tissue (EWAT) was dissected and cut into
small pieces of <1 mm® (AT explants) under sterile con-
ditions at 37 °C in PBS. AT explants were then transferred
to six-well plates filled with 1 ml RPMI cell culture
medium supplemented with 10% fetal bovine serum, a 1%
insulin-transferrin-selenium mixture (1.0 mg/ml bovine
insulin, 0.55mg/ml human transferrin (iron-free), and
0.5 pg/ml sodium selenite (Sigma-Alderich, Munich,
Germany) and antibiotics (100 U/ml penicillin and
streptomycin). AT was immobilized at the bottom of wells
by sterile cell culture inserts (Merck Millipore, Darmstadt,
Germany). Five AT explants per well were cultured at
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37 °C with 5% CO, and 21% O, for 3 days before starting
live-imaging experiments. During cultivation, the medium
was regularly exchanged carefully without removing cell
culture inserts.

Live-imaging of naturally occurring CLS in AT explants of
HFD-fed mice

Live-imaging was performed on AT explants of HFD-
fed MacGreen mice stained with 1 ug/ml BODIPY 558/
568 C12 (Life Technologies GmbH, Darmstadt, Germany)
as described previously'®. To quantify morphologically
distinct ways of lipid degradation, 188 such events were
registered in 40 multi-day movies (mean observation time
>6 d) from 6 independent experiments. In these movies,
ATM-lipid interactions were classified post-hoc into
three classes: efferocytosis (full engulfment and sub-
sequent intracellular  degradation), fragmentation
(separation of a big lipid droplet into two or more small
lipid droplets with subsequent efferocytosis), or CLS for-
mation (attachment of multiple ATMs to a central lipid
droplet without signs of degradation). After classification,
the lipid droplet diameter was measured in the last image
before the respective event occurred. For direct compar-
ison, living AT explants of chow-fed and HFD-fed Mac-
Green littermates were stained and imaged in the exact
same manner as described above to determine the mean
lipid droplet diameter within living adipocytes without
artefacts from fixation, tissue dehydration, or embedding.

Laser-injury model to induce adipocyte death in AT
explants of chow-fed mice

Laser-injury of individual adipocytes was performed on
AT explants of chow-fed mice without pre-established AT
inflammation. After the 72h of cultivation, the six-well
plate was transferred into a preheated (37 °C, 5% CO,)
incubation chamber on a confocal FV300 microscope
(Olympus Deutschland GmbH, Hamburg, Germany).
200 pum stacks with 10 um slices were collected once per
hour for ~80 h. Adipocyte death was induced by a laser
injury. We used a 20x objective lens for laser injury with
10x zoom on the supposed nucleus (identified by adipo-
cyte sickle ring-like shape) irradiating with the available
laser lines at 100% intensity for 45 s using the “point scan”
mode (used lasers and respective power: 405 nm: 4 mW;
491 nm: 0.42 mW; 553 nm: 15pW; 633 nm: 0.62 mW).
One single adipocyte was irradiated per explant. For
quantification, stacks were flattened using the “max
intensity” mode and a region of interest (ROI) was
determined around the irradiated adipocyte (Fig. 2). Then,
the GFP positive area above a determined threshold
within the ROI was measured. Threshold was set to
exclude unspecific background noise, ensuring specificity
of the GFP signal. Formation quantification analyses were
performed using Fiji software 2.0 (ref. *%).
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Whole mount staining

Antibody staining was performed on AT whole mounts
and AT explants after live-imaging. Of note, AT explants
were immobilized on the cell culture inserts by adding a
drop of histoacryl (B. Braun Melsungen AG, Melsungen,
Germany) on top of the respective inserts, keeping AT
explants in position without interfering with the antibody
staining. AT explants fixed to inserts were then washed
with PBS and subsequently fixated in zinc formalin
(Polysciences, Hirschberg, Germany) for 15min. For
whole mount staining of living mice, EWAT was dissected
immediately after sacrifice, washed in PBS, fixated for
20min in zinc formalin and cut into small pieces
(<1 mm?). After fixation, the tissue was washed with PBS,
blocked with staining buffer (3% bovine serum albumin
(BSA) in PBS) for 1h, and stained with pre-labeled anti-
bodies in staining buffer (1:100 for antibodies from Bio-
Legend, San Diego, USA: CD9 [Cat# 124810], CD36 [Cat#
102610], CD38 [Cat# 102716], CD1lc [Cat# 117312],
CD64 [Cat# 139332], CD86 [Cat# 105020], CD274 [Cat#
124312], F4/80 [Cat# 123122] and from R&DSystems,
Minneapolis, USA: TREM2 [Cat# FAB17291A]; 1:200 for
antibodies from AbD serotec, BioRad, Feldkirchen, Ger-
many: CD301 [Cat# MCA2392A647] and CD206 [Cat#
MCA2235A647T] at 4 °C overnight. For whole mounts of
mice with no TDTO"' adipocytes, we used 1pg/ml
BODIPY 558/568 C12 and Hoechst (1:10,000 in PBS, Life
Technologies) to stain neutral lipids of adipocytes and
nuclei, respectively. Samples were then washed 3 times
with PBS, transferred into cavities of microscope slides,
and mounted using fluorescent mounting medium (Dako;
Hamburg, Germany). AT explants fixed to inserts, were
cut off together with the adherent filter membrane after
the last washing step. Finally, the AT explant was
mounted with the tissue-side facing the cover slip,
allowing imaging from the exact same region as during
live-imaging. Also, in some cases AT explants fixed to
inserts were transferred to glass-bottom six-well plates
with 1 ml PBS and imaged immediately without fixation.
For apoptosis detection, iFluor 647 labeled Annexin V
assay was used (Abcam, Cambridge, UK). Explants were
immobilized on inserts 24 h after laser injury using his-
toacryl as described before. After buffer rinse, explants
were stained with 1 pg/ml DAPI (Thermo Fischer Scien-
tific) in PBS for 30 min, washed twice with assay bulffer,
transferred to glass-bottom six-well plates with 1:100
Annexin V in assay buffer and imaged immediately.
Images were acquired using an inverted FV1000 confocal
microscope (Olympus).

Culture of bone marrow-derived macrophages (BMDM:s)
and phagocytosis assay

Bone marrow was flushed with PBS from femurs and
tibiae of adult female MacGreen mice. BMDMs were
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differentiated in RPMI1640 (Thermo Fisher Scientific)
supplemented with 10 mM glucose (Sigma-Aldrich),
1 mM GlutaMax, 10% FBS, 1% Penicillin/Streptomycin
(all from Thermo Fisher), and 20ng/ml M-CSF
(PeproTech, Hamburg, Germany). At day 3 and 5
fresh M-CSF and culture media was added and cells
were harvested at day 7 with ice-cold 1 mM EDTA/PBS
solution. BMDMs were seeded at a density of 3 x 10°/ml
in a 12-well plate in RPMI1640 (10% FBS and 1% Pen/
Strep). After two hours, cells were incubated for 48 h
with IgG-opsonized and BODIPY-stained beads (Poly-
sciences, Hirschberg, Germany) with 10 um (600.000/
well), 20 um (150.000/well), or 45pm (30.000/well)
diameter. Experiments were performed in duplicates.
Representative images were acquired at a confocal
FV1000 microscope (Olympus) to ensure full engulf-
ment of the phagocytosed beads. Quantification of cell
suspensions was performed using a MACSQuant 16
analyzer (Miltenyi Biotech, Bergisch Gladbach, Ger-
many). Cells were harvested with Cell dissociation
solution (5 min at 37 °C, Sigma), washed with staining
buffer (3% BSA in PBS), and analyzed directly following
addition of DAPI (0.2 ug/ml) for dead cell exclusion.
Quantification of phagocytosis was performed at DAPI-
negative, GFP-positive single cells using the increasing
SSC as a readout for phagocytosis. Uptake of BODIPY-
stained beads was further verified by increasing BODIPY
signal in phagocytosing BMDMs (Supplementary
Fig. 1C).

Small lipid efferocytosis

AT was cultivated in explants as above in RPMI med-
ium additionally containing 1 pg/ml BODIPY 558/568
C12. After a 24'h cultivation period, AT explants were
washed in PBS and fixated for 15 min in zinc formalin,
washed in PBS, blocked with staining buffer for 1h at
room temperature, and stained with a pre-labeled CD11c
antibody (BioLegend, San Diego, USA) 1:100 in staining
buffer at 4 °C overnight. AT explants were then washed
three times with PBS and mounted in cavities of micro-
scopic slices using fluorescent mounting medium. AT
explants were cultivated from chow-fed mice as well as
from mice having received a HFD for 12 or 24 weeks,
respectively.

Collagenase digestion

We used collagenase to digest AT and extract the
stromal vascular fraction. Adipose tissue was chopped up
with scissors and digested by 1 mg/ml (~315U/ml) col-
lagenase type 2 (Worthington, Lakewood, USA) in
digestion buffer (13 mM HEPES; 0,8 mM ZnCL,; 3% BSA
in HBSS) shaking at 1400rpm at 37°C for 20 min.
Digestion was stopped by adding 10% FBS and tubes were
put on ice. The suspension was filtered using 70 um mesh
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filter and centrifuged twice (400 g, 5 min, 4 °C, no break)
after adding staining buffer.

Palmitate stimulation

AT of male C57BL6 mice was cultivated using the tissue
explant model as described above. After 72 h, different
concentrations of palmitate were added to the cell culture
medium. After 24 h cultivation with palmitate, the AT
explants were digested using collagenase as described
above. After the last centrifugation step, the cell pellet was
resuspended in staining buffer and Fc-receptors blocked
by anti-CD16/32 treatment (1:100, eBioscience, Frankfurt,
Germany) for 10 min on ice. After centrifuging (300 g,
5min, 4°C, no break), the pellet was resuspended in
staining buffer and stained with 1:100 dilution of F4/80-
AF488 and CD11c-AF647 (BioLegend, San Diego, USA)
for 20 min on ice. Cells were then centrifuged (300 g,
5 min 4 °C), resuspended in staining buffer and kept on ice
until analysis. DAPI was added to exclude dead cells.
CDl11c-positive cells and mean fluorescence intensity of
F4/80 positive, living, single cells were analyzed using a
MACSQuant 16 analyzer.

Cell sorting and RNA sequencing

48 h post laser injury, AT explants were digested using
collagenase as described above. Cells were resuspended in
staining buffer and the Fc-receptors blocked by anti
CD16/32 (1:100, eBioscience, Frankfurt, Germany) treat-
ment for 10 min on ice. After centrifugation (300 g, 5 min,
4.°C, no break) cells were stained with pre-labeled CD11c
antibody (BioLegend, San Diego, USA) on ice for 15 min,
centrifugated (300 ¢, 5min, 4°C, no break), resuspended
in cultivation medium with Hoechst (1:10.000), and kept
on ice until sorting. Living, GFP-positive cells were sorted
into a CD11c high and a CD1llc low group (Fig. 6A,
~10,000 cells per sample) using a BD FACSAria SORP
(Becton Dickinson, Franklin Lakes, USA) and frozen at
—80°C in TRIzol (Thermo Fischer Scientific) until
sequencing. RNA sequencing and analysis was performed
by Single Cell Discoveries (Utrecht, The Netherlands).
RNA extraction and library preparation followed the CEL-
seq2 protocol®* with a sequencing depth of 10 million
reads/sample. Results were then analyzed using the
DESeq2 package on Rstudio®. Gene set enrichment
analysis was performed with datasets from The Molecular
Signatures Database. Shown is the KEGG pathway ana-
lysis of the C2 gene set.

Parabiosis experiments

We thank Fabio M. V. Rossi for kindly providing AT
from parabiotic mice. Pairs of WT and Actal®™'" mice
were surgically connected for two and twelve weeks as
previously described**. Blood samples were evaluated by
flow cytometry at the day of dissection to verify a
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successful blood sharing of 45.7 + 2.6% (mean + SEM) of
GFP"/CD45" cells in the wild-type parabiotic partner.

Statistical analysis

Data are presented as means + SEM or as dot plots of at
least three independent experiments or mice were eval-
uated. Data were checked for normality by using Graph-
Pad Prism (GraphPad Software Inc., La Jolla, USA) and
subsequently analyzed by either a two-tailed Student’s ¢
test or Mann—Whitney U-test. P values < 0.05 were con-
sidered statistically significant. Sample size was estimated
based on previous experiments. For qualitative analyses at
least three independent experiments were performed.
Compared groups showed similar variances. Analyses
were performed without additional blinding of the
respective investigator. Allocation to the groups were
done according to the genotyping without randomization.
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