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Brief Definit ive Report

Idiopathic Parkinson’s disease (PD) is the sec-
ond most frequent neurodegenerative disorder. 
Current medical treatments are only able to 
provide partial symptomatic relief of the major 
motor symptoms, namely rigor, tremor, and 
akinesia. Only in a minority of all PD patients 
is a familial mutation known to be the cause of 
the disease, whereas 90% of all PD cases are 
idiopathic. Mitochondrial dysfunction, oxida-
tive stress, and impaired degradation of proteins 
have been proposed as possible etiology of idio-
pathic PD (Dauer and Przedborski, 2003). Ac-
cordingly, environmental exposure to neurotoxic 
pesticides increases the risk of developing PD, 

and indeed, intoxication with the dopaminer-
gic toxin 1-methyl-4-phenyl-1,2,3,6-tetrahydro
pyridin (MPTP) elicits PD in humans, primates,  
and rodents and represents a well-characterized 
toxin-based mouse model for PD (Dauer and 
Przedborski, 2003). In addition, increasing evi-
dence from genome-wide association (Ahmed 
et al., 2012), epidemiological (Gao et al., 2011), 
postmortem, and animal model studies indicate 
that neuroinflammation, including glial activation, 
release of proinflammatory factors, and T cell 
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Neuroinflammation is increasingly recognized as a hallmark of neurodegeneration. Acti-
vated central nervous system–resident microglia and infiltrating immune cells contribute to 
the degeneration of dopaminergic neurons (DNs). However, how the inflammatory process 
leads to neuron loss and whether blocking this response would be beneficial to disease 
progression remains largely unknown. CD95 is a mediator of inflammation that has also 
been proposed as an apoptosis inducer in DNs, but previous studies using ubiquitous dele-
tion of CD95 or CD95L in mouse models of neurodegeneration have generated conflicting 
results. Here we examine the role of CD95 in 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridin 
(MPTP)–induced neurodegeneration using tissue-specific deletion of CD95 or CD95L. We 
show that DN death is not mediated by CD95-induced apoptosis because deletion of CD95 
in DNs does not influence MPTP-induced neurodegeneration. In contrast, deletion of CD95L 
in peripheral myeloid cells significantly protects against MPTP neurotoxicity and preserves 
striatal dopamine levels. Systemic pharmacological inhibition of CD95L dampens the pe-
ripheral innate response, reduces the accumulation of infiltrating myeloid cells, and effi-
ciently prevents MPTP-induced DN death. Altogether, this study emphasizes the role of the 
peripheral innate immune response in neurodegeneration and identifies CD95 as potential 
pharmacological target for neurodegenerative disease.

© 2015 Gao et al.  This article is distributed under the terms of an Attribution– 
Noncommercial–Share Alike–No Mirror Sites license for the first six months after 
the publication date (see http://www.rupress.org/terms). After six months it is  
available under a Creative Commons License (Attribution–Noncommercial–Share  
Alike 3.0 Unported license, as described at http://creativecommons.org/licenses/ 
by-nc-sa/3.0/).

T
h
e 

Jo
u
rn

al
 o

f 
E
xp

er
im

en
ta

l 
M

ed
ic

in
e

D
ow

nloaded from
 http://rupress.org/jem

/article-pdf/212/4/469/1161714/jem
_20132423.pdf by U

niversity H
ospital of Augsburg user on 14 O

ctober 2021



470 Monocyte infiltration in neurodegeneration by CD95 | Gao et al.

and activation of T cells (Peter et al., 2007) and myeloid cell 
recruitment to inflammatory sites (Letellier et al., 2010).

To tease out the actual role of CD95 in PD, we used  
mutant mice deficient in CD95 in DNs or in peripheral my-
eloid cells and systemic pharmacological inhibition of CD95’s  
activity. Here, we report that lack of CD95 in DNs does not 
render mice resistant to MPTP-induced toxicity. In contrast, 
exclusive deletion of CD95L in peripheral myeloid cells sig-
nificantly attenuates loss of DNs in mice intoxicated with 
MPTP. Neuroprotection was also achieved by pharmacologi-
cal inhibition of CD95L, which hampered infiltration of the 
brain by peripheral myeloid cells. Thus, this study underscores 
the contribution of peripheral inflammation to neurodegen-
eration in a mouse model of PD and identifies inhibition of 
CD95 as potential systemic therapy for PD patients.

RESULTS AND DISCUSSION
Neuronal CD95 activity is not involved  
in MPTP-induced neurodegeneration
To elucidate whether lack of CD95 in DNs exacerbates or 
attenuates MPTP-induced DN death in vivo, we generated 
mice with specific deletion of CD95 in DNs (hereafter re-
ferred to as CD95f/f;DATcre mice; Fig. 1 A). To this end, saline or 
a subacute dose of 30 mg/kg MPTP per day was adminis-
tered for five consecutive days to CD95f/f;DATcre mice or their 
control littermates. 6 d after the last injection of MPTP, the 
number of tyrosine hydroxylase (TH)–positive (TH+) DNs  
in SNpc and the striatal dopamine (DA) metabolite levels 
were quantified (Fig. 1, B–E). First, the number of  TH+ DNs  
in SNpc and ventral tegmental area (VTA) was not influ-
enced by the deletion of CD95, as it was similar in nontreated  
CD95f/f;DATcre and control counterparts. Importantly, MPTP-
exposed CD95f/f and CD95f/f;DATcre groups exhibited signi
ficantly reduced numbers of TH+ neurons in SNpc when 
compared with saline-treated controls. Thus, CD95 deficiency 
in DNs does not influence MPTP-induced toxicity of nigral 
DNs (Fig. 1 C). Count of Nissl+ cells confirmed that reduc-
tion of TH+ cell number was not caused by down-regulation 
of TH expression (not depicted). To further evaluate whether 
the lack of neuroprotection through loss of CD95 in DNs is 
caused by changes in DA metabolism, striatal levels of DA and 
its metabolites 3,4-dihydroxyphenylacetic acid (DOPAC) and 
homovanillic acid (HVA) were determined using HPLC. As 
shown in Fig. 1 (D and E), striatal DA levels as well as the me-
tabolite ratio [(DOPAC + HVA)/DA] did not differ between 
CD95f/f;DATcre and control counterparts after application of 
MPTP. Altogether, these data allow the conclusion that death 
of DNs is not directly mediated by CD95 activity in DNs. 
This observation is in line with our previous findings show-
ing that neurodegeneration in an animal model of spinal  
cord injury is not prevented by the lack of CD95 in neurons 
(Letellier et al., 2010).

Brochard et al. (2009) recently reported that CD4+ T cell–
deficient mice exhibit reduced degeneration of SNpc DNs 
after MPTP intoxication. Interestingly, microglial activation  
is almost completely abolished in these mice. In addition,  

infiltration (Brochard et al., 2009) are actively involved in  
PD progression. Activation of microglia is also observed 
after MPTP intoxication, thus enabling investigators to study  
neurodegeneration-related inflammation (Członkowska et al., 
1996; Hayley et al., 2004).

At the histopathology level, PD is characterized by a slow 
and progressive degeneration of dopaminergic neurons (DNs) 
in the substantia nigra pars compacta (SNpc), which exhibit 
accumulation of misfolded proteins. Apoptotic death of DNs 
has been observed both in postmortem samples of PD pa-
tients and in MPTP-intoxicated mice (Venderova and Park,  
2012). The CD95/CD95 ligand (CD95L) system was discov-
ered as a paradigmatic trigger of apoptosis, and thus, expres-
sion of these proteins has been characterized in preclinical 
models of PD and PD patients. Levels of CD95 protein and 
mRNA are higher in PD patients than in healthy individuals 
(Mogi et al., 1996; Simunovic et al., 2009). Therefore, this  
system was hypothesized to induce apoptosis of DNs. To ad-
dress this issue, MPTP-mediated DN neurodegeneration was  
studied in mice with a targeted ubiquitous deletion of CD95 
(Fas null) and in mice with a global spontaneous mutation in 
CD95 (lpr) or CD95L (gld). Although CD95-deficient mice 
(FAS null) exhibit attenuated loss of dopaminergic SNpc 
neurons as well as attenuated microglial activation in the 
SNpc in response to MPTP (Hayley et al., 2004), MPTP neu-
rotoxicity is exacerbated in lpr and gld mice (Landau et al.,  
2005). These opposite outcomes underline the problem of 
using animal models with a global deletion of CD95 or 
CD95L for the study of tissue-specific pathologies. A global 
deficiency of either CD95 or CD95L causes a lymphoprolif-
erative disorder that is present to a variable degree and in an 
age-dependent manner in each mutant mouse line, which 
hampers interpretation and comparison of experimental results 
(Roths et al., 1984; Adachi et al., 1996; Karray et al., 2004; 
Martin-Villalba et al., 2013).

Available tissue-specific mutant mice have greatly ad-
vanced our understanding of the role of the CD95/CD95L 
system in disease. This is best exemplified by studies on the 
role of CD95 in spinal cord injury. First experiments using 
mouse mutants ubiquitously deficient in CD95 or CD95L 
showed that these mice were protected against spinal cord in-
jury, suggesting that triggering of CD95 in neurons induces 
apoptosis (Demjen et al., 2004). Later experiments showed 
that neuroprotection was caused by abrogation of neuroin-
flammation and not by inhibition of direct CD95-mediated 
neuronal apoptosis (Letellier et al., 2010). CD95 activity is 
used by macrophages and neutrophils to migrate to the injury 
site, and inhibition of CD95-mediated inflammatory in
filtration decreases neuronal death. This and other studies 
highlight that the CD95 receptor fulfils diverse functions  
in different tissues in vivo beyond apoptosis (Martin-Villalba 
et al., 2013). In the central nervous system (CNS), it is in-
volved in axonal outgrowth and adult neurogenesis, as well as 
migration of malignant glioblastoma cells (Desbarats et al., 2003; 
Zuliani et al., 2006; Kleber et al., 2008; Corsini et al., 2009). 
While in the immune system, it mediates survival, proliferation, 
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DNs and accumulation of CD11b+ cells in SNpc were assessed 
by immunohistochemistry. CD95Lf/f control mice exhibited a 
25% loss of SNpc TH+ neurons as compared with saline-
treated CD95Lf/+;LysMcre mice. In contrast, CD95Lf/f;LysMcre mice 
were protected against MPTP-induced neurodegeneration 
(Fig. 2, B and C).

Microgliosis has been associated with neurodegeneration, 
and several studies have reported robust microgliosis in the 
SNpc of MPTP-intoxicated mice (reviewed by McGeer and 
McGeer [2008]). Hence, we assessed whether accumulation of 
CD11b+ microglia cells in SNpc was altered in CD95Lf/f;LysMcre 
mice. Microglia belong to the myeloid lineage (Ransohoff 
and Cardona, 2010), and Cre-mediated recombination occurs 
in activated microglia in LysM-cre+ mice (Cho et al., 2008; 
Ros-Bernal et al., 2011; Goldmann et al., 2013), suggesting 
that microglia in neuroprotected CD95Lf/f;LysMcre mice are 
CD95L deficient. In line with a previous study, MPTP-treated 
littermate controls showed manifest accumulation of acti-
vated microglia with a round and thickened shape (Hayley  
et al., 2004). However, MPTP-treated CD95Lf/f;LysMcre mice 
exhibited minimal CD11b immunoreactivity, with microglia 

T cell–deficient mice reconstituted with splenic T cells from 
CD95L-deficient gld donor mice were equally protected, thus 
suggesting that CD95L is required for CD4+ T cell–mediated 
dopaminergic toxicity. The authors suggested that CD4+  
T cells could participate in the inflammatory reaction by ac-
tivating innate immune cells or astrocytes via CD95L. Indeed, 
increased expression of CD95 is reported in these glial cells 
both in PD patients and in the MPTP model (Ferrer et al., 
2000; Hayley et al., 2004).

Deletion of CD95L in the myeloid cell lineage  
attenuates MPTP-induced neurodegeneration
To address the contribution of CD95L expressed on myeloid 
cells in general to MPTP-induced neurodegeneration, we 
took advantage of mice deficient in CD95L in the myeloid 
lineage (monocytes/macrophages, microglia, and neutrophils; 
mice hereafter referred to as CD95Lf/f;LysMcre; Fig. 2 A). CD95L 
deletion was confirmed by genome DNA quantitative PCR 
of FACS-sorted neutrophils and monocyte samples (not de-
picted). 6 d after the last MPTP injection, remaining TH+ 

Figure 1.  Selective deletion of CD95 in DNs (CD95f/f;DATcre mice) does not influence dopaminergic neurodegeneration after treatment with 
MPTP. (A) Scheme of CD95f/f;DATcre mice. (B) Representative images of TH+ neurons in SNpc of control and CD95f/f;DATcre mice. Bar, 100 µm. (C) Quantifica-
tion of total TH+ DNs in the SNpc at day 6 after last administration of saline or MPTP to WT, CD95f/f, or CD95f/f;DATcre mice. Data are presented as dot plot 
with median; n = 4–12. ANOVA followed by Newman–Keuls post-hoc test: CD95f/f versus CD95f/f + MPTP: **, P < 0.01; CD95f/f;DATcre versus CD95f/f;DATcre + 
MPTP: †, P < 0.01; n.s., not significant. (D and E) Quantification of DA metabolite levels and metabolite ratio in striatum at day 6 after last administration 
of MPTP in saline-treated WT, MPTP-treated CD95f/f, and CD95f/f;DATcre mice. Data are presented as mean ± SEM; n = 6–7. ANOVA followed by Newman–Keuls 
post-hoc test: ***, P < 0.001.
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microglia and thereby contribute through other effector mol-
ecules to kill DNs.

Pharmacological neutralization of CD95L protects mice 
against MPTP toxicity and alters peripheral immune response
CD95Lf/f;LysMcre mice lack CD95L in the whole myeloid lineage, 
including peripheral myeloid cells. Therefore, CD95L in circu-
lating myeloid cells could be involved in the pathogenesis of PD. 
Notably, in the experimental autoimmune encephalitis (EAE) 
mouse model, the myeloid compartment does not only em-
brace resident microglia, but also peripheral monocytes (Ajami 
et al., 2011). The pathogenic significance of circulating myeloid 
cells, and in particular of inflammatory monocytes, which in 
turn infiltrate the lesion site, is increasingly appreciated in  
inflammation-associated diseases (Mildner et al., 2009). In mice, 

showing a ramified shape characterized by thin processes, which 
are indicative of an inactive state (Fig. 2, D and E).

Thus, these findings provide a causal link between my-
eloid cells, and particularly the CD95L from myeloid cells, 
and dopaminergic neurodegeneration. Consistent with these 
results, mice with ubiquitous CD95 deficiency (Fas null) 
show reduced dopaminergic neurodegeneration and attenu-
ated microglial activation in response to subacute MPTP 
(Hayley et al., 2004). Microglial activation and release of 
proinflammatory factors have been clearly associated with 
degeneration of SNpc DNs (Liberatore et al., 1999; Wu et al., 
2002). Activation of microglia in turn leads to up-regulation 
of CD95L in vivo (Terrazzino et al., 2002) and increased  
release of soluble CD95L in vitro (Taylor et al., 2005). There-
fore, it cannot be excluded that CD95L may also activate 

Figure 2.  Mice with deletion of CD95L in myeloid cells (CD95Lf/f;LysMcre mice) are more resistant to MPTP. (A) Scheme of CD95Lf/f;LysMcre mice. 
(B) Quantification of total TH+ DNs in the SNpc at day 6 after last administration of saline or MPTP to CD95Lf/+;LysMcre, CD95f/f, or CD95Lf/f;LysMcre mice. 
Data are presented as dot plot with median; n = 6. ANOVA followed by Newman–Keuls post-hoc test: control versus CD95Lf/f: *, P < 0.01; CD95Lf/f 
versus CD95Lf/f;LysMcre: †, P < 0.05. (C) Representative images of TH+ neurons in SNpc of control and CD95Lf/f;LysMcre mice. (D) Representative photomi-
crographs of SNpc sections immunostained with anti-CD11b from control and CD95Lf/f;LysMcre mice. Note the different morphology of CD11b+ cells  
in CD95Lf/f and CD95Lf/f;LysMcre mice, as shown in the magnified pictures of anti-CD11b staining in the insets in SNpc. Bars: (C and D) 100 µm  
(D, insets) 50 µm. (E) Quantification of CD11b+ cells in SNpc. Data are presented as mean ± SEM; n = 6. ANOVA followed by Newman–Keuls post-hoc test:  
**, P < 0.01; n.s., not significant.

D
ow

nloaded from
 http://rupress.org/jem

/article-pdf/212/4/469/1161714/jem
_20132423.pdf by U

niversity H
ospital of Augsburg user on 14 O

ctober 2021



JEM Vol. 212, No. 4 473

Br ief Definit ive Repor t

in the brain of MPTP + APG–treated mice (not depicted). 
Thus, the CD95-Fc main site of action is in the periphery, 
and therefore, it can be used to distinguish between the con-
tribution of neurodegeneration of peripheral myeloid cells 
and resident microglia. 6 d after the last MPTP injection, we 
analyzed brains and blood of saline- and MPTP-treated mice. 
Mice that received saline showed a significant reduction of DNs 
upon MPTP intoxication, whereas, similar to CD95Lf/f;LysMcre 
mice, mice that had been systemically treated with APG112 
were resistant to MPTP-induced degeneration of SNpc DNs. 
Altogether, these data demonstrate that CD95L neutralization 
is neuroprotective in a mouse model of DN degeneration 
(Fig. 3, B and C).

Furthermore, after MPTP intoxication, mice that were 
injected with APG112 exhibited slightly higher striatal DA 
levels than saline-treated counterparts (Fig. 3 D). In addition, 
the metabolite ratio [(DOPAC + HVA/DA) × 100] was sig-
nificantly lower in the APG112 treatment group than in the 
saline-treated one, implying that treatment with APG112 
protected DNs (Fig. 3 E). MPTP toxicity depends on the 
enzymatic conversion of MPTP to 1-methyl-4-phenylpyri-
dinium (MPP) ion (MPP+) by monoamine oxidase. To ex-
clude the possibility that administration of APG112 affects 
MPTP metabolism, we measured striatal MPP+ levels 90 min 
after MPTP application. Similar levels of MPP+ levels were 
observed in saline-treated control mice and APG112-treated 
mice, indicating that MPTP metabolism is not influenced by 
APG112 treatment (Fig. 3 F).

To elucidate the effect of CD95L neutralization on mono-
cyte recruitment in PD mice, we measured the blood mono-
cyte levels by flow cytometry (Fig. 3 G). The number of Ly6Chi 
inflammatory monocytes was significantly higher in MPTP-
intoxicated WT mice than in saline-treated controls (Fig. 3 H). 
Remarkably, in MPTP-intoxicated mice that received APG112 
(WT + APG112 mice), the fraction of Ly6Chi monocytes 
remained at saline control levels. The proportion of the Ly6Clo 
monocyte subset was not affected in either the saline-treated 
or the MPTP-intoxicated group.

Mice with deletion of CD95L in peripheral myeloid cells  
are resistant to MPTP neurotoxicity
To confirm that infiltrating peripheral myeloid cells are the 
major source of CD95L contributing to striatal degeneration, 
we set out to perform MPTP experiments with BM chime-
ras. However, chimeric mice generated from BM transplanta-
tion after whole body irradiation demonstrate disadvantages 
for studying the involvement of BM-derived cells in CNS 
diseases, such as induction of proinflammatory cytokines in 
the brain (Mildner et al., 2007; Kierdorf et al., 2013b) and 
disruption of the BBB, which leads to the engraftment of 
BM-derived cells in healthy conditions (Priller et al., 2001; 
Diserbo et al., 2002). Interestingly, an approach using head-
shielded (protected CNS) irradiation has been shown to over-
come these problems (Mildner et al., 2007, 2011). Therefore, 
we generated CD95Lf/f;LysMcre BM chimeras in which the heads 

inflammatory Ly6C+CCR2+CX3CR1lo (Ly6Chi) monocytes 
can be distinguished from Ly6CCCR2CX3CR1hi (Ly6Clo) 
resident monocytes that are thought to correspond to human 
classical (CD14+CD16CD64+) monocytes (Cros et al., 2010; 
Yona and Jung, 2010). Inhibition of monocyte accumulation 
at inflammatory sites by lineage depletion or siRNA silenc-
ing of CCR2 mRNA in monocytes alleviates symptoms in 
several inflammation-associated cardiovascular disease mouse 
models (Leuschner et al., 2011). And also in PD patients, strong 
up-regulation in the percentage of peripheral blood mono-
cyte precursors (CFU-Ms) and surface CCR2 levels was ob-
served in classical monocytes (Funk et al., 2013). In the MPTP 
model, studies using lethal irradiation and BM reconstitu-
tion with GFP+ donor cells have suggested that BM-derived 
cells infiltrate the CNS and differentiate to microglia-like  
cells, thus contributing to neuroinflammation (Kokovay and  
Cunningham, 2005; Rodriguez et al., 2007). However, the  
validity of these reconstitution studies has been questioned.  
Mildner et al. (2007) recently demonstrated that irradiation in  
conjunction with the process of BM reconstitution activates 
the competence of reconstituted cells to cross the blood–brain 
barrier (BBB) and engraft in the CNS of healthy hosts. By ap-
plying a combination of parabiosis and myeloablation, another 
study revealed that, contrary to studies using BM transplantation, 
in healthy and even in EAE diseased mice CNS microglia are 
not replenished by BM-derived progenitors but can self-renew 
lifelong (Ajami et al., 2011). Using this approach to investigate 
pathogenic involvement of myeloid cells in various CNS dis-
eases, they demonstrated that circulating monocytes infiltrate 
the CNS of mice with EAE and that infiltration strongly cor-
related with EAE progression to the paralytic stage. However, 
in the long term, monocytes do not contribute to the resident 
microglia pool in EAE. Interestingly, Ly6Chi monocytes already 
accumulate in the blood and CNS during the preclinical stage 
in EAE mice (Mildner et al., 2009). In addition, the pathogenic 
significance of circulating monocytes has most recently been  
shown in the SOD1 mouse model for ALS by Butovsky  
et al. (2012). Using flow cytometric analysis, they revealed that  
circulating inflammatory monocytes are recruited to the spinal  
cord and monocyte infiltration correlates with neuronal loss. 
Treatment with anti-Ly6C mAb reduces monocyte infiltration, 
neuronal loss, and increases survival time in SOD1 mice (Butovsky 
et al., 2012). Notably, Ly6Chi monocytes in the spleen show  
a proinflammatory profile in the early presymptomatic stage 
of disease. Previously, we have shown that neutralization of 
CD95L inhibits recruitment of peripheral myeloid cells to the 
injured spinal cord, thereby alleviating neuronal loss (Letellier 
et al., 2010). Thus, the neuroprotective effect we observed by 
CD95L deficiency in MPTP-intoxicated CD95Lf/f;LysMcre mice 
might also arise from reduced recruitment of circulating my-
eloid cells in SNpc.

To test this hypothesis, we treated WT mice with a stable 
CD95-Fc fusion protein that neutralizes CD95 activity and 
does not cross the BBB (CD95-Fc hereafter referred to as 
APG112; Fig. 3 A). Accordingly, APG112 was not detected in 
the brain tissue of MPTP-treated mice but only endovascular 
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which was comparable with our previous data (Fig. 4, B and C; 
Mildner et al., 2007). Upon MPTP treatment, peripheral 
CD95L deletion in CD95Lf/f;LysMcre chimeras significantly  
rescued DNs from neurotoxicity as compared with control 
CD95Lf/f chimeras (Fig. 4 D). These experiments suggest that 
CD95L in peripheral myeloid cells is an essential mediator of 
dopaminergic degeneration.

of the recipient animals were protected from the irradiation 
before BM transplantation (Fig. 4 A). In these mice, the mi-
croglia were WT (CD45.1) and circulating blood cells were 
majorly derived from the CD95Lf/f;LysMcre± (CD45.2) donor 
BM. As the BM in the skull was protected from irradiation, 
donor BM–derived blood cells (CD45.2+) constituted 75% of 
all CD45+ blood cells in the chimeras 8 wk after reconstitution, 

Figure 3.  Pharmacological neutralization of CD95L protects mice against MPTP toxicity and alters peripheral immune response. (A) Scheme of MPTP 
and APG112 treatment. (B) Quantification of total TH+ DNs in the SNpc at day 6 after last administration of saline or MPTP of control or APG112-treated mice. 
ANOVA followed by Newman–Keuls post-hoc test: control versus MPTP: *, P < 0.001; MPTP versus MPTP + APG112: †, P < 0.01. (C) Representative images of TH+ 
neurons in SNpc of control and APG112-treated mice. Bar, 100 µm. (D) Quantification of striatal DA levels using HPLC at day 6 after last administration of saline 
or MPTP to control or APG112-treated mice. (E) Calculation of the metabolite ratio [(DOPAC + HVA/DA) × 100] after quantification of striatal DA metabolite  
levels by HPLC. (D and E) Data are presented as mean ± SEM; n = 8. ANOVA on ranks, Student–Newman–Keuls multiple comparison: *, P < 0.05; **, P < 0.01;  
***, P < 0.001. (F) HPLC measurement of striatal MPP+ levels in WT and WT + APG112 mice at 90 min after MPTP injection. Data are presented as mean ± SEM;  
n = 3. Student’s t test: n.s., not significant. (G) Representative dot plots of blood monocytes and gating scheme of flow cytometry. (H) Quantification of blood 
monocyte subsets by FACS at day 6 after last administration of saline or MPTP of control or APG112-treated mice. ANOVA followed by Newman–Keuls post-hoc 
test: *, P < 0.05. (B and H) Data are presented as dot plot with median and were pooled from two independent experiments; n = 16–17.

D
ow

nloaded from
 http://rupress.org/jem

/article-pdf/212/4/469/1161714/jem
_20132423.pdf by U

niversity H
ospital of Augsburg user on 14 O

ctober 2021



JEM Vol. 212, No. 4 475

Br ief Definit ive Repor t

positive. CD11b single-positive cells were not detected in 
SNpc or VTA of saline-treated mice. However, in MPTP- 
intoxicated mice, infiltrating CD11b single-positive cells accu-
mulated in the SNpc and VTA. These data suggest that these 
cells are peripheral myeloid cells. Most importantly, we found 
that APG112 treatment significantly reduced the MPTP- 
mediated infiltration of circulating myeloid cells in the SNpc 
and VTA (Fig. 5 C).

Moreover, the monocyte marker CD169 (Siglec1) has 
been shown to be expressed only by recruited BM-derived 
monocytes, but not by microglia in a mouse model of amyo-
trophic lateral sclerosis (Butovsky et al., 2012). In MPTP-
treated mice, we observed CD169-positive cells in SNpc, which 
further proved monocyte infiltration during DNs degenera-
tion (Fig. 5, D–H).

To further confirm the peripheral myeloid cell infiltra-
tion, we used the recently established Cx3cr1creER:Rosa26(R26)-
yfp reporter mice, a new animal tool to study the distinct 
functions of microglia compared with infiltrating monocytes 
(Goldmann et al., 2013). Upon the pulse induction using ta
moxifen, microglia and circulating monocytes are efficiently 
labeled with YFP. However, as monocytes have a shorter  
lifetime and microglia persist through lifetime, circulating  
YFP+ monocytes are replaced by nonlabeled cells 4 wk  
after tamoxifen induction, and microglia still express the  
YFP reporter. Taking this advantage, we crossed Cx3cr1creER 
mice with Rosa26(R26)-tdTomato mice (hereafter referred to 
as tdTomatoR26f/f;Cx3cr1creER mice) and treated them 6 wk after 
tamoxifen induction with MPTP and APG112 to investigate 
the role of CD95L on monocyte infiltration in DN degener-
ation (Fig. 6 A). The infiltrating monocytes were unam-
biguously identified as CD11b+tdTomato cells in contrast  
to CD11b+tdTomato+ microglia. In MPTP-treated mice, 

Neutralization of CD95L reduces infiltration  
of circulating myeloid cells in SNpc
The origin of microglia has been a matter of debate for sev-
eral decades. Recent studies show conclusively that adult  
microglia derive from yolk sac myeloid progenitors at E8 and 
are distinct from monocyte-derived macrophages (Ginhoux 
et al., 2010; Schulz et al., 2012; Kierdorf et al., 2013a). Despite 
the difference in developmental origin, microglia share similar 
features with other myeloid cells such as the expression of Fc, 
complement receptors, CD11b, F4/80, CX3CR1, and other 
epitopes typically expressed by myeloid monocytes (Prinz and 
Mildner 2011). These features make it difficult to distinguish in-
filtrating monocytes from microglia simply by immunostaining.

Although microglia share very similar surface markers 
as circulating monocytes, accumulating evidence shows that  
some molecules can be used to distinguish them from each 
other. Expression of P2Y12, a metabotropic purinergic recep-
tor, was observed in central microglia but not in peripheral 
myeloid cells (Haynes et al., 2006). Interestingly, a recent study 
based on gene profiling and quantitative mass spectrometry 
analysis of CD11b+CD45lo microglia isolated from the CNS 
and CD11b+Ly6C+ monocytes isolated from the spleen dem-
onstrated that P2Y12 is uniquely and highly expressed in  
microglia but not in circulating monocytes (Butovsky et al., 
2014). These studies indicate that P2Y12 can be used as a marker 
to distinguish myeloid cell–derived microglia from CNS- 
resident microglia.

To analyze circulating monocyte infiltration in DN de-
generation, we analyzed infiltration of circulating innate  
immune cells into SNpc in MPTP-intoxicated mice by as-
sessment of CD11b/P2Y12 expression. As shown in Fig. 5  
(A and B), CNS-resident microglia are P2Y12 and CD11b 
double positive and engrafted myeloid cells are CD11b single 

Figure 4.  Mice with deletion of CD95L 
in peripheral myeloid cells (CD95Lf/f;LysMcre 
chimera mice) are resistant to MPTP neu-
rotoxicity. (A) Scheme of CD95Lf/f;LysMcre BM 
chimera mice. The heads of BM recipient mice 
were covered with a lead cap during irradia-
tion to avoid irradiation-induced monocyte 
infiltration. (B) Representative FACS dot plots 
of CD45.1- and CD45.2-stained blood samples 
from CD95Lf/f;LysMcre± BM chimera mice. (C) BM 
reconstitution level of chimera mice before 
the injection of saline or MPTP. Data are pre-
sented as mean ± SEM; n = 6–7. (D) Quantifi-
cation of total TH+ DNs in the SNpc at day 6 
after last administration of saline or MPTP to 
CD95Lf/f;LysMcre± BM chimera mice. Data are 
presented as dot plot with median; n = 6–7. 
(C and D) ANOVA followed by Newman–Keuls 
post-hoc test: *, P < 0.05; ***, P < 0.001.
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(unpublished data), future studies will have to address whether 
the CD95-driven myeloid cell infiltration in brain is regu-
lated by T cells.

It is also of great significance to investigate whether infil-
trating myeloid cells are involved in disease progression of PD 
patients. Interestingly, a recent publication reported that clas-
sical monocytes were enriched in the blood of PD patients 
and demonstrated a pathological hyperactivity, which corre-
lated with disease severity (Grozdanov et al., 2014). Using a 
next-generation sequencing approach, it was found that PD 
monocytes exhibited a dysregulation of inflammatory path-
ways, and CD95 was identified as one of the critical mediators 

CD11b+tdTomato infiltrating monocytes were observed in 
SNpc (Fig. 6 B). More importantly, the monocyte infiltration 
was significantly blocked by APG112 treatment (Fig. 6 C).

Collectively, our findings provide evidence that circulat-
ing myeloid cells are involved in aggravation of neurodegen-
eration in MPTP-intoxicated mice. Importantly, systemic 
neutralization of CD95L prevented destruction of SNpc 
DNs. It remains to be elucidated whether this effect was 
predominantly based on inhibition of peripheral innate or 
adaptive cellular immunity. Although CD95L deletion in 
myeloid cells or APG112 blockade has no obvious impact 
on CD4+ T cells level in blood of MPTP-intoxicated mice 

Figure 5.  Myeloid cell infiltration in SNpc 
demonstrated by staining of microglia marker 
P2Y12 or monocyte marker CD169. (A) Represen-
tative photomicrographs of SNpc sections immuno
stained with anti-P2Y12, anti-TH, and anti-CD11b 
from saline-, MPTP-, and MPTP + APG112–treated 
mice. (B) Representative CD11b single-positive 
(CD11b+/P2Y12

; as indicated with arrows in b1–b3) 
and CD11b P2Y12 double-positive (CD11b+/P2Y12

+; 
as indicated with arrows in b4–b6) cells, which are 
highlighted with dashed rectangles in A. (C) Mosaic 
acquisition of CD11b single-positive (CD11b+/
P2Y12

) area in saline-, MPTP-, and MPTP/APG112-
treated mice. Data are presented as mean ± SEM;  
n = 10. Student’s t test: *, P < 0.05; n.d., not detect-
able. (D and E) Representative photomicrographs of 
SNpc sections immunostained with anti-CD169, 
anti-Iba1, and anti-TH from saline- and MPTP-
treated mice. Infiltrating monocytes are CD169+/
Iba1+ cells and microglia are CD169/Iba1+ cells, as 
arrows indicate in F–H (dashed rectangle in E). Bars: 
(A, D, and E) 100 µm; (B) 30 µm; (F–H) 20 µm.
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MATERIALS AND METHODS
Animals. C57BL/6J mice were purchased from Charles River or  
Harlan Laboratories, Inc. FasL-floxed mice (Karray et al., 2004) were bred 
with LysMcre mice (The Jackson Laboratory). Fas-floxed mice (gift from  
K. Rajewsky, Max-Delbrück-Centrum für Molekulare Medizin, Berlin- 
Buch, Germany) were bred with DATcre mice (The Jackson Laboratory).  
tdTomato-Rosa26-flox mice (The Jackson Laboratory) were bred with  
Cx3cr1creER (Yona et al., 2013) mice. All floxed and Cre mouse lines were 
backcrossed with C57BL/6J for >10 generations. The induction of Cre  
recombinase in tdTomatoR26f/f;Cx3cr1creER mice was performed as previously 
described (Goldmann et al., 2013). tdTomatoR26f/f;Cx3cr1creER mice were used 
for MPTP intoxication 6 wk after tamoxifen induction. Experimental ani-
mals were age matched and used at 8–10 or 10–12 wk of age. All animal ex-
periments were performed in accordance with institutional guidelines of the 
German Cancer Research Center and were approved by the Regierungsprä-
sidium Karlsruhe.

Administration of MPTP. For MPTP intoxication, mice received five i.p. 
injections of 30 mg/kg bodyweight MPTP (free base) dissolved in 0.9% saline 
on five consecutive days. The control mice were injected with saline only.

Pharmacological blockade of CD95. Directly after the first and fifth 
MPTP injection, mice were intravenously injected with 50 µg APG112  
(dissolved in 200 µl sterile PBS; Apogenix). APG112 is a human CD95-Fc 
fusion protein with a point mutation in the CH2 domain deleting the en-
dogenous glycosylation site. Therefore, APG112 can neutralize CD95 activ-
ity by binding to CD95L with the lack of FcR binding capability.

Generation of BM chimeric mice. BM chimeric mice were generated 
according to previously reported studies with modifications (Cui et al., 2002; 
Mildner et al., 2007). Irradiation was carried with a Gammacell 40 Exactor 
Low Dose-Rate Research Irradiator. Under anesthesia, the mouse head was 
covered by two lead stripes to protect the brain from irradiation, and the rest 
of the mouse body was exposed to parallel opposed fields of irradiation with 
a total dose of 13 Gy, which was split into two exposure of 6.5 Gy with a 4-h 
interval. 4 × 106 CD95Lf/f;LysMcre± BM cells were injected into the tail vein of 
recipient mice (C57BL/6, CD45.1, 4–5 wk old) within 24 h after irradia-
tion. BM reconstitution levels were evaluated by FACS analysis of peripheral 
blood 7 wk after transplantation, and mice were used for MPTP intoxication 
8 wk after transplantation.

Tissue preparation. At the described time points, mice were deeply 
anesthetized by i.p. injection of a ketamine/rompun mixture (85 mg/kg 
and 13 mg/kg) for tissue preparation. Blood samples were collected by 
heart puncture for FACS staining. After blood sampling, mice were trans-
cardially perfused with 25 ml HBSS (Invitrogen) and then 25 ml of 4% 
paraformaldehyde (PFA) for fixation. Brains were fixed overnight with 4% 
PFA and then sectioned at 50-µm coronal slices using a VT1200 vibratome 
(Leica). 30 coronal serial sections covering the whole SNpc were obtained 
from each animal. Every fourth section was chosen among the 30 serial 
sections of each animal, and in total, 6 sections were used for staining of 
each animal.

Flow cytometry and cell sorting. Erythrocytes were lysed using lysing 
buffer (BD), and cells were preblocked with anti-CD16/CD32 (Fc Block; 
eBioscience). Cells were stained on ice for 20 min with combinations of 
anti-CD45 (APC-Cy7; eBioscience), anti-Ly6C (PerCP-Cy5.5; eBiosci-
ence), anti-CD11b (APC; BD), biotinylated anti-CD115 (followed by sec-
ondary staining with streptavidin-PE-Cy7; eBioscience), and anti-CD43 
(PE; BD) as positive markers and FITC-conjugated lineage markers (CD4, 
CD19, Ly6G, and Nk1.1; BD) as dump markers for monocytes. For evaluat-
ing the reconstitution of chimeric mice, blood cells were stained with anti-
CD45.1 (FITC; BD) and anti-CD45.2 (PE-Cy7; BD). Flow cytometry was 
performed on a FACSCanto II flow cytometer (BD), and FACS data were 
analyzed with FlowJo Software (Tree Star).

of these pathways. However, whether myeloid cell infiltration 
occurs in the CNS of PD patients remains elusive.

In this study we demonstrate that after MPTP intoxication, 
DNs are not killed through direct CD95-mediated cell death. In 
contrast, specific deletion of CD95L in myeloid cells and phar-
macological neutralization of CD95L in the periphery prevented 
MPTP-induced degeneration of DNs, by interfering with the 
innate immune response. Indeed, this study highlights the im-
portance of the peripheral innate immune response in the pro-
gression of neurodegeneration and identifies the CD95/CD95L 
system as a crucial trigger of this inflammatory response in 
neurodegeneration. Thus, we propose systemic neutralization 
of CD95L as a potential therapy in neurodegeneration.

Figure 6.  Pharmacological neutralization of CD95L reduces  
infiltration of circulating myeloid cells in SNpc. (A) Scheme of  
tdTomatoR26f/f;Cx3cr1creER mice. 4 wk after tamoxifen induction, microglia 
were tdTomato positive and the circulating monocytes were tdTomato 
negative. (B) Representative CD11b single-positive (CD11b+/tdTomato; 
as indicated with arrows in b3 and b4) infiltrating monocytes, which are 
highlighted with the dashed rectangle in b1. Bars: (b1 and b2) 50 µm;  
(b3 and b4) 20 µm. (C) Quantification of infiltrating monocytes (CD11b+/
tdTomato) in SNpc of MPTP- and MPTP/APG112-treated mice. Data are 
presented as dot plot with median; n = 7. Student’s t test: *, P < 0.05.
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Immunohistochemistry staining. Midbrain sections (50 µm) were immuno
stained for anti-TH (EMD Millipore), which was followed by incubation 
with HRP-conjugated secondary antibody, and visualized by diaminobenzi-
dine (DAB) staining. Sections were counterstained with thionin solution 
(Nissl stain).

Midbrain sections (50 µm) were blocked and permeabilized in PBS buf-
fer containing 0.3% horse serum and 0.25% Triton X-100 for 1 h and then 
immunostained for 48 h with a combination of TH (EMD Millipore), 
CD11b (Abcam or eBioscience)/Iba1 (Wako Pure Chemical Industries),  
and P2Y12 (gift from D. Julius, University of California, San Francisco, San 
Francisco, CA)/CD169 (AbD Serotec) or combination of TH and CD11b 
(eBioscience). Adequate Alexa Fluor–conjugated secondary antibodies were 
used for detection by immunofluorescence microscopy. DNs were as-
sessed as TH+. Resident microglia were identified as CD11b+P2Y12

+ or 
Iba1+CD169 and infiltrating monocytes as CD11b+P2Y12

 or Iba1+CD169+. 
In MPTP-injected tdTomatoR26f/f;Cx3cr1creER mice, infiltrating monocytes were 
assessed as CD11b+tdTomato cells.

Analysis of striatal monoamine levels and MPTP metabolism. Mea-
surement of striatal monoamine levels and MPTP metabolism was performed 
as previously described (Frank et al., 2012). In brief, on the day of the assay, 
striata were quickly dissected on ice and homogenized. DA, DOPAC, and 
HVA were quantified by HPLC with electrochemical detection. For mea-
suring the MPTP metabolism, mice were given i.p. injections with 30 mg/kg 
MPTP (free base) and killed 90 min later. Striata were quickly dissected and 
homogenized. Levels of MPP+ were determined by HPLC.

Image and data analysis. DAB-immunostained sections were recorded 
with a DM LB2 wide-field microscope (Leica). Immunofluorescent sections 
were recorded with a TCS SP5 confocal microscope (Leica).

For stereological analysis, investigators were blind for the genetic back-
ground and treatment of the animals. TH+ cells on sections were counted 
manually with the ImageJ Cell Counter Plugin (National Institutes of Health). 
Positive cells were marked and the markers were saved for rechecking. Stained 
DNs within the VTA were not included.

For analysis of CD11b staining, CD11b-positive and CD11b single- 
positive area within the SNpc were measured with the ImageJ Threshold 
Color Plugin. For analysis of CD11b+P2Y12

 area, image channels were 
merged (cyan for TH, green for P2Y12, and red for CD11b), and only the area 
of SNpc with TH+ cells was chosen for analysis. CD11b+P2Y12

 area was 
analyzed with the ImageJ Threshold Color Plugin according to the instruc-
tions. All images were analyzed with the same setting of color threshold.

Statistics. Statistical significance of all endpoints was evaluated by one-way 
ANOVA with Newman–Keuls multi-comparison post-hoc test for analysis 
of multiple groups or Student’s t test for analysis of two groups, unless indi-
cated otherwise. Data are presented as mean ± SEM or dot plot with  
median. Statistical significance was reported by the p-value of the statistical 
test procedures and was, unless otherwise indicated, assessed as significant  
(*, P < 0.05), strongly significant (**, P < 0.01), or highly significant (***, 
P < 0.001). All statistical analyses were performed with Prism software (ver-
sion 5; GraphPad Software).
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