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Obesity and its comorbidities, such as type 2
diabetes, are pressing worldwide health concerns.
Available anti-obesity treatments include weight
loss pharmacotherapies and bariatric surgery.
Whilst surgical interventions typically result in
significant and sustained weight loss, available
pharmacotherapies are far less effective, typically
decreasing body weight by no more than 5–10%.
An emerging class of multi-agonist drugs may
eventually bridge this gap. This new class of
specially tailored drugs hybridizes the amino acid
sequences of key metabolic hormones into one
single entity with enhanced potency and sustained
action. Successful examples of this strategy
include multi-agonist drugs targeting the receptors

for glucagon-like peptide-1 (GLP-1), glucagon and
the glucose-dependent insulinotropic polypeptide
(GIP). Due to the simultaneous activity at several
metabolically relevant receptors, these multi-ago-
nists offer improved body weight loss and glucose
tolerance relative to their constituent monothera-
pies. Further advancing this concept, chimeras
were generated that covalently link nuclear acting
hormones such as oestrogen, thyroid hormone (T3)
or dexamethasone to peptide hormones such as
GLP-1 or glucagon. The benefit of this strategy is to
restrict the nuclear hormone action exclusively to
cells expressing the peptide hormone receptor,
thereby maximizing combinatorial metabolic effi-
cacy of both drug constituents in the target cells
whilst preventing the nuclear hormone cargo from
entering and acting on cells devoid of the peptide
hormone receptor, in which the nuclear hormone
might have unwanted effects. Many of these multi-
agonists are in preclinical and clinical development
and may represent new and effective tools in the
fight against obesity and its comorbidities.

Keywords: diabetes, glucagon, GIP, GLP-1, multi-
agonism, peptides.

Introduction

Obesity is a growing public health problem that
imposes a large economic burden on our society. In
2015, 107.7 million children and 603.7 million
adults worldwide were classified as obese [1].
Obesity is one of the most important and modifi-
able risk factors for the development of metabolic
complications such as type 2 diabetes (T2D),
cardiovascular diseases and certain malignancies
[2, 3]. Prevention and early treatment of excess

body weight therefore serves as an important
strategy to decrease the clinical and economic
consequences of obesity. In line with this notion,
weight loss of even 5–10% significantly improves
impaired glucose tolerance in patients with T2D,
decreases cardiovascular risk factors, lowers intra-
abdominal and hepatic fat accumulation, improves
b-cell function and enhances insulin sensitivity in
liver, muscle and adipose tissue [4–6].

Conventional weight loss strategies built upon
dietary interventions and exercise are failing to
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tackle the global obesity pandemic [7, 8]. In
addition, most historically used weight loss
pharmacotherapies display an unfavourable
imbalance between efficacy and safety. For exam-
ple, several quite effective anti-obesity drugs such
as fenfluramine/phentermine (‘Fen-Phen’) or
rimonabant have been withdrawn from the market
due to unacceptable adverse effects [9, 10]. Cur-
rently approved drugs for weight management,
such as the gastric and pancreatic lipase inhibitor
orlistat [11, 12], the serotonin receptor agonist
lorcaserin [13–15] or the combination of the opioid
antagonist naltrexone with the antidepressant
bupropion [16–18], cause only moderate weight
reductions. So far, the best weight-lowering effect
by pharmacotherapies (approximately 7% body
weight loss from baseline) is achieved by the
injectable glucagon-like peptide-1 mimetic Sax-
enda� (liraglutide, 3 mg) [19], which is discussed
later in this review.

Currently, the most effective anti-obesity therapy
is a group of bariatric surgeries, including Roux-
en-Y gastric bypass (RYGB), vertical sleeve gas-
trectomy (VSG) and biliopancreatic diversion. In
contrast to the existing pharmacotherapies, bar-
iatric surgery causes profound and sustained
weight loss of 13–27% in severely obese patients
(BMI > 35–40 kg m�2), with follow-up for as many
as 15 years [20]. It can further ameliorate the
majority of obesity-related comorbidities, includ-
ing a full remission from T2D in approximately
80% of the patients [21–23]. The antidiabetic
mechanisms are weight independent, which has
prompted considerations of applying these surg-
eries to T2D patients with only mild (stage 1)
obesity (BMI 30–35 kg m�2) [24]. Initial studies
where RYGB surgery was applied to diabetic
patients with stage 1 obesity indeed revealed
significant but inconsistent remission rates
between 25% and 88% [25, 26].

Despite the advantages of bariatric surgery, the
highly invasive and irreversible nature of the surg-
eries, the underlying financial costs and the risk for
severe adverse outcomes such as dumping syn-
drome, postprandial hyperinsulinaemic hypogly-
caemia and the long-term risk of micronutrient
deficiencies prevent the use of bariatric surgery as
a widespread tool to tackle obesity and its comor-
bid sequelae.

Novel pharmacotherapies aim to mimic the com-
plex and multi-target beneficial effects of bariatric

surgery on body weight and glycaemic control.
Extensive research aims to uncover the molecular
mechanisms that are driving the body weight and
blood glucose lowering effects following the surgi-
cal interventions. It is now appreciated that that
the success of bariatric surgery is not solely due to
mechanical aspects such as restriction in food
intake and malabsorption but also involves phys-
iological effects including altered gastrointestinal
hormone secretion [27]. One of the most significant
hormonal changes after bariatric surgery is the
marked postprandial elevation of circulating glu-
cagon-like peptide 1 (GLP-1), a powerful insulino-
tropic and anorectic hormone [28–30]. Although
data from GLP-1 receptor (GLP-1R) knockout mice
suggests that enhanced endogenous GLP-1 action
is not the only driver for the metabolic benefits of
bariatric surgery [31], it has been proposed that
either more potent GLP-1 analogues or the combi-
nation of GLP-1 with other peptide hormones could
serve as putative superior therapeutics for obesity
and T2D. In line with this notion, the pharmaco-
logical inhibition of either GLP-1 or PYY after RYGB
does not affect food intake. However, when both
GLP-1 and PYY are blocked together, food intake is
increased in patients with RYGB by as much as
20% [32]. Together, these data suggest that GLP-1,
when acting in concert with other gut hormones,
may play a causal role in the metabolic effects of
bariatric surgery, and this has inspired the devel-
opment of several GLP-1 analogues and GLP-1
combination therapies, as discussed in this review.

The endogenous GLP-1 system

GLP-1 is a member of the glucagon peptide family.
Together with at least four other bioactive peptides,
including GLP-2, glucagon, oxyntomodulin (OXM)
and glicentin, it is derived from the proglucagon
gene, which is expressed in the alpha-cells of the
endocrine pancreas, the L cells of the intestine and
neurons of the caudal brainstem and hypothala-
mus [33, 34]. The proglucagon mRNA is translated
into a 180 amino acid precursor protein and post-
translationally processed by cell type-specific pro-
hormone convertase enzymes resulting in different
organ-specific peptide profiles [35]. During the
fasting and interprandial state, low levels of bioac-
tive GLP-1(7-37) and GLP-1(7-36) amide are con-
tinuously secreted from the intestinal cells into the
circulation. Following food intake, the secretion is
rapidly increased and circulating GLP-1 levels rise
by several fold [36]. The receptor for GLP-1, a class
B G-protein coupled receptor, was originally cloned
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from pancreatic b-cells [37]. The lack of specific
antibodies against the GLP-1 receptor (GLP-1R)
hampered several attempts to identify the cellular
targets of GLP-1 action. Crossing glp1r-cre mice
and fluorescent reporter strains resulted in an
antibody-independent method for the identification
of GLP-1R expressing organs [38]. This model
revealed major expression sites of GLP-1R expres-
sion in pancreatic b- and d-cells, vascular smooth
muscle, cardiac atrium, gastric antrum/pylorus,
enteric neurons, and vagal and dorsal root ganglia
[38]. In the murine central nervous system, GLP-
1R expression was evident in the circumventricular
organs, amygdala, arcuate nucleus, paraventricu-
lar nucleus, and ventromedial hypothalamus and
the ventrolateral medulla [38, 39].

The best-described target organs for GLP-1 medi-
ated biological actions are the pancreas, the gas-
trointestinal and the central and peripheral
nervous systems [34].

In pancreatic b-cells, GLP-1 receptor agonism
stimulates glucose-dependent insulin secretion
[29, 40–43]. GLP-1 further induces insulin biosyn-
thesis [43] and promotes b-cell proliferation and
survival in rodents [44–47]. GLP-1 also suppresses
glucagon secretion from a-cells [48, 49]. Single-cell
RNA sequencing revealed only very low levels of
GLP-1R expression a-cells [50], suggesting that the
inhibitory effect of GLP-1 on glucagon secretion
occurs indirectly. One possible mechanism
involves the binding of GLP-1 to its receptor on
pancreatic d-cells and the subsequent release of
somatostatin, which in turn inhibits the release of
glucagon from somatostatin receptor 2 (SSTR2)
expressing a-cells. Evidence comes for instance
from an experiment in isolated perfused rat pan-
creas, where co-infusion with a SSTR2 antagonist
(PRL-2903) completely abolished the GLP-1-
induced suppression of glucagon secretion [51].
GLP-1 may inhibit glucagon secretion through b-
cell-derived products, such as insulin, GABA, zinc
or amylin [52].

In the gastrointestinal system, GLP-1 receptor
agonism exhibits a potent inhibitory effect on
gastric emptying that attenuates the meal associ-
ated increase in blood glucose [53, 54].

Besides its glucometabolic effects, additional
observations suggest that GLP-1 is also relevant
for appetite regulation and weight maintenance. In
rats, central administration of GLP-1 analogues

causes a dose-dependent, albeit short-lived reduc-
tion in food intake, independent of the presence of
food in the stomach or gastric emptying [55, 56].
Similarly, peripheral administration of GLP-1
affects the regulation of feeding [57, 58]. These
and other findings suggest a synergistic action of
GLP-1 on both central and peripheral receptors in
the regulation of satiety with the ultimate result of
promoting weight loss. A more recent study inves-
tigated the GLP-1 analogue liraglutide in mice
deficient in GLP-1R expression in either the vagal
afferent/effect nerves or the central nervous sys-
tem [59]. In this study, deletion of GLP-1R sig-
nalling in the central nervous system (CNS) ablates
the action of the peripherally administered liraglu-
tide on food intake and body weight, whereas
deletion of GLP-1R signalling in the peripheral
nervous system does not.

Additional GLP-1-mediated metabolic effects
include the inhibition of hepatic gluconeogenesis
and subsequent glucose output, an effect poten-
tially mediated via GLP-1’s ability to decrease
glucagon secretion [60–62]. In the skeletal muscle,
GLP-1 enhances glucose uptake [63] and glycoge-
nesis [64].

All of these findings support GLP-1-based thera-
pies for the effective treatment of obesity and T2D.
However, the clinical applicability of native GLP-1
as an antidiabetic and anti-obesity therapy is
limited by its short circulating half-life of 1-
2 minutes in humans, which results from its
deactivation by endopeptidase dipeptidyl pepti-
dase-4 (DPP-4) and neutral endopeptidase 24.11
(NEP 24.11), also known as neprilysin [65–68].
Pharmacological inhibitors of DPP-4 have been
developed with the aim to enhance the biological
activity of endogenous GLP-1 [69]. Since 2006,
several DPP-4 inhibitors including sitagliptin,
saxagliptin and linagliptin have been approved for
clinical use. However, when administered as
monotherapies, DPP-4 inhibitors are weight neu-
tral. Moreover, glycated haemoglobin A1C
(HbA1C), a surrogate measure that reflects gly-
caemic exposure over the erythrocyte lifetime and
current gold standard in assessment of metabolic
control [70], is only modestly decreased (typically
between 0.5% and 1%) after DPP-4 inhibitor treat-
ment [71]. This suggests that supraphysiological
levels of active GLP-1 are required to achieve a
body weight-lowering effect and further improve-
ments in glycaemic control. Pharmacological GLP-
1 agonists can overcome this limitation. They are
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chemically modified in order to enhance the sta-
bility and optimize pharmacokinetics to achieve a
prolonged half-life compared to the endogenous
GLP-1. This maximizes efficacy at low concentra-
tions reduces the dosing frequency to improve
patient convenience.

From gila monster venom to GLP-1 analogues

In 1992, a systematic investigation of the compo-
sition of the salivary secretions from the Gila
monster (Heloderma suspectum) by John Eng and
colleagues revealed a 39-amino acid peptide des-
ignated as exendin-4. Exendin-4 only shares 53%
sequence homology with bioactive GLP-1(7-36) and
is therefore considered a GLP-1 paralogue (Fig. 1),
as opposed to a synthetic analogue of the type
discussed throughout this review. Similar to GLP-
1, exendin-4 is a a-helical peptide that interacts
with the GLP-1 receptor, albeit with a much higher
binding affinity [72]. The enhanced stability of
exendin-4 results from a Leu21–Ser39 span, which
builds a compact tertiary structure (‘Trp-cage’) that
protects Trp25, Leu26 and Lys27 from aqueous
solvent exposure and supports stabilization of
secondary structure upon receptor binding [73,
74]. The receptor binding affinity of exendin-4
binding is further enhanced by a nine-residue
extension at the C-terminal extension (CEX) of
exendin-4 [75], Fig. 1.

The discovery of exendin-4 has led to its experi-
mental and clinical evaluation as an antidiabetic
agent. In 2005, the first synthetic version of
exendin-4, exenatide BDI (ByettaTM from Amylin,

now BMS), was approved for distribution and broad
patient use. It has a prolonged half-life of 2.4 h,
which results from the chemical benefits of the C-
terminal Trp-cage and an additional alanine to
glycine exchange at position two of the peptide,
which increases resistance to DPP-4 mediated
degradation [76].

The efficacy and safety of exenatide BDI have been
evaluated in the AMIGO phase III clinical trials,
where metformin, sulfonylurea or a combination of
metformin and sulfonylurea at maximal effective
doses were combined with either 5 lg or 10 lg of
exenatide or placebo treatment. All studies were
multicentre, randomized and triple blinded studies
that enrolled more than 1.400 T2D patients with
inadequate glycaemic control by metformin,
sulphonylurea or the combination thereof. As a
primary outcome, the addition of exenatide to any
of the three conventional treatments resulted in a
more significant reduction of HbA1C from baseline
to week 30 compared to the matching placebo
groups [77, 78]. The most common side effect of
exenatide, nausea, was dose dependent and
resulted in a dropout rate in the study of 1.8–
4.0% [79]. Along with the improvements in gly-
caemic control, exenatide treatment caused a sig-
nificant but moderate body weight reduction
following 26 weeks of treatment with 10 lg exe-
natide twice daily [80].

Lixisenatide (LyxumiaTM/AdlyxinTM, Sanofi/Zeal-
and) is a second synthetic analogue of exendin-4,
which has been modified by extending the C
terminus of native exendin-4 to possess 6 lysine
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Fig. 1 Comparison of amino acid sequences for native human GLP-1 (left sequence) and exendin-4 (right sequence), which
provide the basis for human GLP-1 analogues (liraglutide, semaglutide, dulaglutide and albiglutide) and exendin-4
derivatives (exenatide, lixisenatide).
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residues with deletion of one C-terminal proline.
The additional chemical modification slightly
increased its half-life to 3–4 h allowing for once-
daily subcutaneous administration, and, more
importantly, it results in a four times more potent
GLP-1 receptor binding [81]. Clinical efficacy of
lixisenatide compared to exenatide BDI has been
assessed in the 24-week GetGoal-X trial (Table 1),
a randomized open label actively controlled study
in T2D patients that were inadequately controlled
by metformin therapy [82]. In this study, add-on
lixisenatide (20 lg) demonstrated noninferior
improvements in HbA1c, with slightly lower mean
weight loss, but better gastrointestinal tolerability
and lower incidence of hypoglycaemia compared

with twice-daily exenatide (10 lg). Lixisenatide was
approved by the European Commission in 2013
and received FDA approval in 2016.

Despite the stabilization against DPP-4 mediated
degradation, the half-life of GLP-1 analogues is
still very short, due to its rapid renal clearance.
One strategy to increase the plasma half-life was
the development of slow release preparations,
such as exenatide LAR (BydureonTM, Amylin, now
BMS). In this preparation, exenatide is persistently
and slowly released from poly(D,L-lactide-co-gly-
colide) forming microspheres [83]. This strategy
increases the median plasma half-life from a few
hours to 2 weeks. Approved in 2011, exenatide

Table 1 Head-to-head comparison of different types of glucagon-like peptide 1 receptor agonists

Clinical

trial

program Comparator 1 Comparator 2

Background

therapy

HbA1c reduction

(Comparator 1 vs.

2)

Body weight loss

(Comparator 1 vs. 2) Refs.

GetGoal-X Lixisenatide

(20 lg once

daily)

Exenatide BDI

(10 lg twice

daily)

Metformin �0.80% vs. �0.96%

(95% CI 0.033 to

0.297)

�2.96 kg vs. �3.98 kg

(95% CI 0.45 to 1.58)

[82]

DURATION-

1

Exenatide LAR

(2 mg once

weekly)

Exenatide BDI

(10 lg twice

daily)

Naive, or one or

more oral

antidiabetics

�1.9% vs. �1.5%

(P-value < 0.0023)

�3.7 kg vs. �3.6 kg

(P-value = 0.89)

[84]

LEAD-6 Liraglutide

(1.8 mg once

daily)

Exenatide BDI

(10 lg twice

daily)

Metformin,

Sulfonylurea or

both

�1.12% vs. �0.79%

(P-value < 0.0001)

�3.24 kg vs. �2.84 kg

(P-value = 0.22)

[87]

DURATION-

6

Liraglutide

(1.8 mg once

daily)

Exenatide LAR

(2 mg once

weekly)

Metformin,

Sulfonylurea or

both or

Metformin

and pioglitazone

�1.48% vs. �1.28%

(P-value < 0.02)

�3.57 kg vs. �2.68 kg

(P -value < 0.0005)

[88]

HARMONY-

7

Albiglutide

(50 mg once

weekly)

Liraglutide

(1.8 mg once

daily)

Metformin,

pioglitazone,

sulfonylurea or

any

combination

thereof

�0.78% vs. �0.99%

(P-value < 0.0846)

�0.64 kg vs. �2.16 kg

(P-value < 0.001)

[91]

AWARD-6 Liraglutide

(1.8 mg once

daily)

Dulaglutide

(1.5 mg once

weekly)

Metformin �1.36% vs. �1.42%

(P-value < 0.0001)

�3.61 kg vs. �2.90 kg

(P-value = 0.011)

[92]

SUSTAIN-7 Semaglutide

(1.0 mg once

weekly)

Dulaglutide

(1.5 mg once

weekly)

Metformin �1.8% vs. �1.4%

(P-value < 0.0001)

�6.5 kg vs. 3.0 kg

(P-value < 0.0001)

[95]
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LAR represents the first registered, once-weekly
injectable drug against hyperglycaemia. The
DURATION-1 clinical trial (Table 1) compared the
once-weekly exenatide LAR (2 mg) with the twice-
daily exenatide BDI (10 lg). After 30 weeks of
treatment, the once-weekly formulation resulted
in a significantly greater reduction of the HbA1C
compared to the twice-daily formulation, whilst the
body weight reduction remained similar between
both groups [84].

Other strategies to improve peptide pharmacoki-
netics favoured the conjugation of GLP-1 ana-
logues to long-chain fatty acids in order to
achieve enhanced albumin binding and to hinder
renal clearance. One example is liraglutide (Vic-
tozaTM or SaxendaTM Novo Nordisk). Liraglutide lacks
the alanine to glycine exchange as seen in exendin-
4 based GLP-1 analogues. Instead, an arginine
residue replaces a lysine residue at position 28 and
an additional glycine at position 31. Another lysine
at position 20 is conjugated to a C16 palmitic acid
via a gamma, glutamic acid spacer [85].

These chemical modifications lead to a self-
association of the peptide into a heptameric
structure, which delays the absorption from the
injection site. In the bloodstream, extensive bind-
ing to albumin reduces its susceptibility to DPP-4
and NEP mediated cleavage, resulting in signifi-
cant reduction in renal clearance. Liraglutide has
a plasma half-life of 13 h [86]. In the LEAD-6
clinical trial (Table 1), a head-to-head comparison
of once-daily liraglutide (1.8 mg) and twice-daily
exenatide BDI (10 lg) added to a background
treatment of metformin, sulphonylurea or a com-
bination of both, liraglutide demonstrated a sta-
tistically significantly greater decrease in
haemoglobin HbA1C than exenatide BDI [87].
Similarly, in the DURATION-6 trial, once-weekly
exenatide LAR resulted in improvements in gly-
caemic control, with greater reductions as
achieved with daily liraglutide [88], (Table 1).
Liraglutide is now prescribed under two different
brand names. VictozaTM (FDA approval in 2010) is
available in 1.2 mg and 1.8 mg doses and leads to
an average HbA1c reduction of approximately
1.6% [89]. It is marketed for the treatment of type
2 diabetes but has only a subtle effect on body
weight at these concentrations. SaxendaTM (FDA
approval in 2017) comes in a 3 mg dose and has
been FDA approved for the treatment of obesity. In
a clinical trial, SaxendaTM resulted in average body
weight loss of 8.5 kg over the course of the 56-

week study with mild or moderate nausea and
diarrhoea being the most reported side effect [19].

A similar strategy to prolong the half-life of a
peptide is its direct conjugation to recombinant
albumin. In albiglutide (TanzeumTM, GlaxoSmithK-
line), two copies of the GLP-1(7-37) peptide are
fused as a tandem repeat to the N terminus of
recombinant albumin. A single alanine to glycine
exchange at the DPP-4 cleavage site increased
resistance to DPP-4-mediated cleavage. Albiglutide
has a half-life of 6–8 days [90] and is administered
once weekly at doses of 30–50 mg. However, as
shown by the HARMONY-7 trial (Table 1), the
average HbA1c reduction and weight-lowering
effects of albiglutide were less when compared to
liraglutide, thus not meeting the noninferiority
criteria [91]. In August 2017 and only 3 years after
its FDA approval, GlaxoSmithKline announced
that albiglutide will be withdrawn from market by
July 2018 for economic reasons.

Other recombinant GLP-1 fusion peptides have
been developed. Dulaglutide (TrulicityTM, Eli Lilly
and Company, FDA approval in 2014) is a long-
acting GLP-1 analogue in which a GLP-1(7-37)
analogue has been covalently linked to each Fc arm
of human immunoglobulin G4 (IgG4) to form a
dimeric agonist, with the goal to prolong plasma
circulation. Additional amino acid substitutions
were made to increase resistance to DPP-4-
mediated clearance (alanine to glycine at position
2). An exchange of Gly16 with Glu enhanced the
secondary structure and potency of the peptide
and an Arg30 to Gly exchange further enhances
stability [85]. Overall this led to an increased half-
life of dulaglutide of approximately 4 days. In the
AWARD-6 clinical trial (Table 1), dulaglutide
(1.5 mg once a week) met the predefined noninfe-
riority criteria by causing a significantly greater
reduction of HbA1c compared to liraglutide (1.8 mg
once daily). However, weight reduction was signif-
icantly greater in the liraglutide treatment com-
pared to the dulaglutide group, whilst the adverse
side effects were comparable [92].

At present, liraglutide seems to be one of the most
effective antiglycaemic and weight-lowering GLP-1
analogues. In December 2017, a next-generation
liraglutide variant, named semaglutide (OzempicTM,
NovoNordisk), was approved for commercial distri-
bution. This chemically optimized version of
liraglutide includes two modifications. A glycine
in position 2 is replaced by the non-natural amino
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acid aminoisobutyric acid (Aib) to increase resis-
tance to degradation by DPP-4 and other serine
proteases. The C16 fatty acid side chain conjugated
to lysine at position 20, as present in liraglutide,
has been exchanged with a dicarboxylic-stearic
acid (C18:0) and a lengthier molecular spacer
[85]. Both modifications further increase the
half-life of the peptide in humans to 165 h [93].
Further modifications relative to endogenous
GLP-1 are the lysine to arginine exchange at
position 28 and the addition of a glycine at
position 31.

The efficacy of once-weekly semaglutide has been
assessed in clinical trials. In the SUSTAIN-1 trial,
30 weeks of a once per week semaglutide
monotherapy resulted in a significant reduction of
HbA1c of �1.43% (0.5 mg) and �1.53% (1.0 mg)
compared to the placebo group. Simultaneously, in
these T2D patients, treatment with semaglutide
was associated with a significant weight loss
�3.73 kg (0.5 mg semaglutide group) and
�4.53 kg (1.0 mg group) compared to placebo
[94]. In an additional head-to-head clinical trial
(SUSTAIN-7, Table 1), semaglutide was superior to
dulaglutide in improving glycaemic control and
reducing body weight [95]. Other clinical trials are
currently investigating oral vs. subcutaneous
administration routes of semaglutide for the treat-
ment of T2D.

When comparing all head-to head clinical trials,
daily liraglutide, particularly when used at the
highest doses, still appears to be the best,
verified HbA1C and weight reduction pharma-
cotherapy [96]. Liraglutide remains the clinical
standard for future advances, of which daily
semaglutide therapy has been purported, but
has yet to be peer-reviewed to deliver superior
outcomes. Whilst the GLP-1 analogue field is
continuously growing, there is still a need for
optimization. At present, gastrointestinal side
effects such as nausea and gastrointestinal dis-
comfort limit the tolerability of GLP-1 analogues
and their applicability at higher and maximal
efficient doses. In view of these limitations and
the still unprecedented benefits of bariatric surg-
eries, it was hypothesized that combining GLP-1
with other insulinotropic and/or anorectic pep-
tide hormones could result in an enhanced
efficacy and reduction of the dose-limiting toxic-
ities. Intense efforts have been made to develop
GLP-1 based combination therapies, as discussed
further below.

GLP-1-based combination therapies

Previous studies have investigated GLP-1 ana-
logues in combination with other weight-lowering
drugs, such as PYY (3-36) [97–101], salmon calci-
tonin [102], leptin [103] or with an MC4R agonist
(setmelanotide, RM-493) [104]. Although most
studies demonstrated additive or synergistic effects
of the drug combinations, the clinical application of
these combinations is often challenging due to the
different pharmacokinetic and pharmacodynamic
profiles of the constituents, and the risk of
unwanted drug–drug interactions. More recently,
efforts have been made to combine two or more
peptide hormones into one functional molecule,
exerting only one pharmacokinetic profile and one
targeted site of dual action, ideally resulting in a
synergistic or complementary pharmacological
action. The relative potency at each hormone
receptor (either balanced or preferential) can be
used to leverage efficacy and potency relative to
unwanted dose-dependent side effects. Two differ-
ent strategies have been used for the development
of GLP-1-based unimolecular therapies: (A) fusion
molecules, where GLP-1 is appended with another
mono-agonist to form a bivalent molecule, and (B)
hybrid molecules with comparable size to the
native peptides [105]. The resulting molecules are
summarized below.

GLP-1/Glucagon

Originally, glucagon was discovered as a peptide
hormone with counter-regulatory effects to insulin
[106]. Glucagon is secreted from pancreatic a-cells
in response to hypoglycaemia and stimulates
glycogenolysis and gluconeogenesis in the liver
[85]. Patients with glucagonoma, a rare malignant
tumour of the pancreatic a-cells, experience hyper-
gluconaemia and as a result exhibit diabetes-like
symptoms such as severe hyperglycaemia [107]. In
contrast, postprandial glucose-mediated inhibition
of glucagon secretion is impaired in patients with
diabetes [108, 109]. Later studies demonstrated
that blocking glucagon action through application
of glucagon receptor antagonists or blocking anti-
bodies significantly lowered fasting and postpran-
dial glucose levels in different laboratory animal
species [110–112], healthy subjects and diabetic
patients [113, 114]. Apart from its hyperglycaemic
actions, glucagon has several beneficial effects on
energy and lipid metabolism (Fig. 2). For instance,
administration of glucagon lowers circulating
levels of cholesterol in multiple species [115–118]
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and affects lipid metabolism through the inhibition
of lipogenesis and stimulation of lipolysis [119–
121]. In addition, glucagon is secreted during
meals and acts in the central nervous system as a
satiety signal to reduce food intake in humans
[122–124] and rodents [125, 126]. Glucagon also
stimulates energy expenditure and thermogenesis
[127, 128], likely through the activation of brown
adipose tissue (BAT) [128–130] and other, BAT-
independent pathways [131]. The energy expendi-
ture-stimulatory, hypolipidaemic and satiating
effects suggest glucagon as an attractive therapy
against obesity. Despite the plethora of positive
effects, the acute hyperglycaemic effect of glucagon
argued against the pharmacological application of
glucagon as an anti-obesity drug [52].

Stemming from the same precursor protein, gluca-
gon and GLP-1 exhibit considerable amino acid

similarity. Like the peptides, the GLP-1 and
glucagon receptors are closely related, with an
overall sequence homology of 58% [37, 132].
Structure–function analyses using truncated
GLP-1 and glucagon peptides revealed specific
residues throughout the length of the peptide that
are important for receptor binding and activation.
In 1994, Hjorth et al. [133] investigated a series of
glucagon/GLP-1 chimeric peptides for their ability
to bind and activate both receptors. The study
revealed that residues located at the opposite ends
of both peptides determine the receptor selectivity.
A chimera containing N-terminal residues of glu-
cagon and C-terminal residues of GLP-1 had high
affinity for both receptors, but has not been tested
in vivo.

In 2009, the research groups of Richard DiMarchi
and Matthias Tsch€op engineered a more complex
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dual GLP-1R/GCGR agonist by modifying the
native glucagon sequence [134]. The authors
hypothesized that dual agonism at both receptors
would synergistically lower body weight by reduc-
ing food intake and stimulating energy expendi-
ture, whilst the insulinotropic actions of GLP-1
would counter the hyperglycaemic liability of
glucagon (Fig. 3). Combined agonism was achieved
by a stepwise introduction of GLP-1 residues into
the glucagon backbone to bolster GLP-1R activity.

GCGR activity was further enhanced by introduc-
tion of a lactam bridge between the glutamic acid at
position 16 and the lysine at position 20, which
stabilizes the alpha helix required for GCGR acti-
vation. An aminoisobutyric (Aib) acid at position 2
increased resistance to DPP-4 degradation, and a
40-kDa PEG attached via the cysteine at position
24 enhanced the pharmacokinetics of the molecule
[85]. The result was a soluble and chemically stable
glucagon-based peptide with nearly balanced
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activity at both the GLP-1R and GCGR, and only
slightly diminished potency compared to the nat-
ural ligands [134].

In DIO mice, a single high-dose injection of the
PEGylated co-agonist (325 nmol kg�1) induced a
drop in body weight of 26% over the course of one
week, primarily through the loss of fat mass, with
an observed decrease in food intake. Longer-term
treatment of DIO mice with lower doses
(70 nmol kg�1) of the same GLP-1R/GCGR ago-
nist resulted in a weight loss comparable to the
acute high-dose study. Notably, weight loss was
associated with increased energy expenditure and
thermogenesis, in line with glucagon’s thermo-
genic capabilities, whilst no differences were
observed in food intake or locomotor activity
[134]. The importance of the glucagon moiety for
the body weight loss was demonstrated in mice
lacking the GLP-1R, in which the dual agonist
maintained a significant weight-lowering capacity.
Importantly, the GLP-1R KO mice did not show
the previously observed benefits in glucose toler-
ance, underlining the importance of GLP-1 ago-
nism to regulate glucose metabolism [134]. In
addition to these findings, GLP-1R/GCGR recep-
tor dual agonism provided benefits in lipid meta-
bolism, normalization of liver lipid contents [134]
and restored leptin sensitivity in DIO mice chron-
ically maintained on a 58% HFD [135]. The
beneficial effects of single molecule GLP-1R/
GCGR co-agonism were also demonstrated in
Lepob/ob mice, where the co-agonist enhanced
glucose-stimulated insulin secretion and
improved glucose tolerance [136].

Recently, the efficacy of a similar dual agonist of
the GLP-1 and glucagon receptors (MEDI0382) was
tested in rodents and cynomolgus monkeys. When
compared to matched doses of liraglutide, both
compounds reduced blood glucose to similar
extents. The key differentiator from liraglutide
was the superior weight loss in both species
[137]. MEDI0382 has entered phase II trials, in
which patients with controlled T2D received a
once-daily subcutaneous injection of the dual
agonist (300 lg for 22 days or 200 lg for 41 days)
or a placebo treatment. MEDI0382 treatment
resulted in a significant reduction of the glucose
area under curve (AUC) following a mixed meal
tolerance test. The bodyweight reduction was sig-
nificantly greater with MEDI0382 than with pla-
cebo, suggesting its potential as a disease-
modifying therapy for T2D [138].

Simultaneously to the development of the GLP-1/
glucagon receptor co-agonist by Day et al., the
research group of Pocai et al. [139] developed a
oxyntomodulin (OXM) analogue termed ‘Dual AG’.
Oxyntomodulin is a peptide hormone derived from
proglucagon cleavage by PC1. Oxyntomodulin
binds to both the GLP-1 and glucagon receptors,
albeit with 10- to 100-fold reduction in potency
compared to the native hormones [140–143]. The
OXM analogue ‘Dual AG’ includes an amino acid
exchange at position 2, which increases resistance
to DPP-4 cleavage. A cholesterol moiety is conju-
gated via a cysteine side chain at the C terminus
resulting in longer plasma retention. Daily subcu-
taneous injections of dual AG in diet-induced obese
(DIO) mice for 2 weeks lowered body weight by
25%, primarily through the loss of fat mass and a
fractional decrease in food intake [139]. In addi-
tion, treatment with dual AG also improved glucose
tolerance, reduced plasma cholesterol and triglyc-
erides and decreased hepatic steatosis [139].
Receptor knockout studies show reduced efficacy
when either GLP-1R or GCGR is knocked out,
indicating that both GLP-1R and GCGR agonism
contribute to the metabolic actions of dual AG
[139].

Based on these observations, GLP-1R/GCGR dual
agonists may become effective metabolic therapies.
Several pharmaceutical companies are developing
GLP1-R/GCGR dual agonists to treat diabetes and
obesity, and many of these potential therapeutics
have progressed to clinical trials [144].

GLP-1/Amylin

Amylin (AYM), also known as islet amyloid polypep-
tide (IAPP), is cosecreted with insulin from the
secretory granules of the b-cells. In contrast to
insulin, which stimulates peripheral glucose
uptake, amylin’s glucose lowering effect is primar-
ily mediated by suppressing pancreatic glucagon
secretion. Amylin slows gastric emptying and pro-
motes satiety, thus decreasing food intake [145]
without causing food aversion [146]. Chronic
amylin treatment elicits sustained weight loss in
diet-induced obese rats and mice [147, 148].

Davalintide, a stable amylin analogue with 49%
homology to the native hormone [149], was shown
to cause significantly enhanced weight loss in
rodent models when compared to rat amylin
[149]. To further enhance the weight-lowering
properties, the effects of incretin and amylin
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classes of therapeutic hormones were combined by
ligating davalintide and the GLP-1 analogue exe-
natide 1–28 into a single chemical entity using
either a Gly-Gly-Gly (AC164204) or a b-Ala-b-Ala
(AC164209) spacer, creating two new, so-called
phybrids [150]. In obese and diabetic Lepob/ob

mice, infusion with either phybrid reduced blood
glucose and HbA1c levels to a similar extent as
detected in the exenatide-treated group. However,
both phybrids had a greater body weight-lowering
effect compared to exenatide or davalintide
monotherapies. In DIO rats, both phybrids caused
a dose-dependent reduction of food intake and
body weight [150]. The phybrid effect exceeded the
exenatide or davalintide monotherapies, but was
equal to the co-infusion of both single hormones. In
another approach, the authors linked davalintide
and exenatide 1–28 by a large intervening 40 kD
PEG spacer [151]. This phybrid provides enhanced
glycaemic control and weight loss in DIO rats and
mice, along with a prolonged in vivo half-life of
27 h, compared to a side-chain PEGylated phybrid
[151].

GLP-1/CCK

Cholecystokinin (CCK) and gastrin together con-
stitute a family of structurally and functionally
related peptide hormones. Both hormones share
five terminal amino acids at the active carboxyl
terminus (Gly-Trp-Met-Asp-Phe-NH2). CCK is
released from enteroendocrine I cells in the muco-
sal lining of the duodenum when fatty and amino
acids leave the stomach and enter the small
intestine [152]. There are several different forms
of CCK, with the octapeptide CCK8 being the most
abundant in the brain [152]. This peptide has been
implicated in satiety, as acute administration of
CCK8 reduces meal size in rodents, although this
effect is counterbalanced by an increase in the
number of meals, which mitigates the initial meal
size reduction [152].

There are two CCK receptors, termed CCKA and
CCKB, or more recently, CCK1 and CCK2. CCK1 is
abundantly expressed in the brain areas mediating
satiety, such as the solitary nucleus (NTS), area
postrema (AP) and the dorsal medial hypothalamus
(DMH). CCK1 mediates the inhibitory effects of
CCK on food intake [152]. The CCK2 receptor,
identical to the gastrin receptor, is also present in
the CNS. Both gastrin and the C-terminal amidated
form of CCK bind to this receptor [153]. Recently,
the co-administration of CCK and a GLP-1R

analogue resulted in synergistic weight loss in
rodents [154, 155], paving the way for a stable
(pGlu-Gln)-CCK-8/exendin-4 hybrid in which the
key amino acid sequences of the well-character-
ized, stable and specific CCK-8 and GLP-1 ana-
logues (pGlu-Gln)-CCK-8 and exendin-4 were
ligated through a (2-[2-aminoethoxy]ethoxy)acetic
acid linker [156]. The fusion peptide demonstrated
decreased energy intake and lowering of body
weight in NIH Swiss mice fed a high-fat diet, with
metabolic improvements that were not seen with a
matched dose of exendin-4 alone [156]. Compared
to the monotherapies, the conjugate also improved
glucose tolerance and insulin sensitivity [156]. In a
recent study, another fusion peptide (C2816) com-
prised of a stabilized GLP-1R agonist (AC3174) and
a CCKR1-selective agonist (AC170222) exerted a
superior reduction in body weight compared to co-
administration of AC3174 and AC170222 in DIO
mice [157].

GLP-1/Gastrin

The structural and functional similarity between
CCK-8 and gastrin naturally suggested the combi-
nation of GLP-1R and gastrin. Gastrin is synthe-
sized by the G cells in the stomach and duodenum,
is released in response to meal ingestion and binds
to the CCK2 receptor [153]. A dual agonist of the
GLP-1 and CCK2 receptors, ZP3022, lowers body
weight and improves glucose tolerance in male db/
db mice [158]. ZP3022 also increases pancreatic b-
cell mass, without increasing the number of pan-
creatic islets, whilst simultaneously increasing
insulin levels in these mice [158]. The exact mech-
anism of action remains unknown, but it is spec-
ulated that GLP-1 action on b-cells, in combination
with indirect gastrin action, is responsible for the
observed pancreatic islet expansion. In a more
chronic, 8-week study in ZDF rats, ZP3022 signif-
icantly reduced body weight and blood glucose and
increased the pancreatic b-cell fraction compared
to vehicle-treated controls [159], suggesting that
this peptide has potential as an antidiabetic phar-
macotherapy.

GLP-1/GIP

The glucagon backbone was used as a template to
generate another hybrid peptide with dual agonism
at the receptors for GLP-1 and glucose-dependent
insulinotropic polypeptide (GIP), Fig. 3 [134]. GIP
is another member of the glucagon peptide family.
It is derived from a 153-amino acid proprotein
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encoded by the GIP gene and is secreted from the
intestinal K cells in response to a meal, and
promotes insulin secretion in a glucose-dependent
manner [160, 161]. Beyond its insulinotropic
action, GIP also stimulates the release of glucagon
under conditions of hypoglycaemia [162] (Fig. 2).
Therefore, as a bifunctional hormone, it may be
doubly capable of stabilizing blood glucose levels
[163, 164]. Despite these clear glycaemic benefits,
the application of GIP analogues as pharmacolog-
ical targets against T2D has long been hindered by
its suggested role as an obesogenic, lipogenic and
adipogenic peptide in rodents and humans [165–
169]. However, more recent studies show that
overexpression of GIP as well as GIP agonism
improved glucose metabolism in DIO mice, without
detrimental effects on body weight [170, 171].
Similarly, transgenic pigs expressing a dominant-
negative GIP receptor in pancreatic islets developed
a diabetic phenotype without apparent changes in
body weight [172]. In rats, central delivery of GIP
even decreased the body weight compared to the
vehicle-injected control animals [173].

Since both GLP-1 and GIP are insulinotropic, the
combination of GLP-1R and GIPR agonism was
hypothesized to result in additive or even syner-
gistic effects on insulin secretion and glucose
tolerance (Fig. 3). Moreover, the anorectic effect of
GLP-1 could buffer the alleged obesogenic effect of
GIP. Indeed, the combination of liraglutide and an
acylated GIP was more potent at lowering blood
glucose and stimulating insulin secretion in leptin-
deficient Lepob/ob mice than the single compounds
[174]. Similarly, in healthy human volunteers, co-
infusions of synthetic GLP-1 and GIP analogues
additively increased the insulinotropic action rela-
tive to the monotherapies [175]. Interestingly, in
T2D patients, adding GIP to GLP-1 did not further
enhance the insulinotropic activity of GLP-1 but
antagonized the GLP-1 mediated suppression of
glucagon [176].

Although GLP-1 and GIP only share 37% of their
amino acid sequence, their receptor binding
domains are very similar. Therefore, whilst design-
ing dual agonists with affinity for both incretin
receptors is possible, it is much more challenging
than what was initially achieved with GLP and
glucagon. Recently, a series of unimolecular GLP-
1/GIP peptides has been developed to achieve
potent and balanced co-agonism at both receptors
with negligible cross-reactivity at the glucagon
receptor [177]. In one example, amino acids were

introduced stepwise to the glucagon sequence to
impart GLP-1R and GIPR activity. To extend its
in vivo activity and plasma half-life, an Aib residue
at position 2 increased resistance to DPP-4 degra-
dation, and the nine amino acid CEX extension
provided additional stability and aqueous solubil-
ity. To prevent unwanted GCGR activity, an addi-
tional Aib residue was incorporated at position 20,
which partially stabilizes the secondary structure
of the molecule and minimizes GCGR activity.
Finally, a cysteine at position 24 or lysine at
position 40 was included to serve as unique sites
for subsequent conjugation to fatty acyl, or PEG
polymers. Whilst both peptide versions demon-
strated balanced receptor activities, acetylation at
Lys40 resulted in slightly increased receptor
potency and PEGylation at Cys24 diminished
receptor potencies when compared to the natural
peptide hormones. In DIO and leptin receptor-
deficient db/db mice, the fatty acylated and
PEGylated versions of the co-agonist resulted in
superior antihyperglycaemic and insulinotropic
efficacy, with profound body weight lowering rela-
tive to a pharmacokinetically matched GLP-1
mono-agonist, such as exendin-4 and liraglutide
[177]. Notably, the apparent safety and insulino-
tropic efficacy of the acylated version of the uni-
molecular GLP-1/GIP co-agonist translated from
rodent models of obesity to cynomolgus monkeys
[177]. The same compound (formerly NNC0090-
2746, now RG7697) was also tested in human
patients with type 2 diabetes on a metformin
background therapy using a dose comparable to
liraglutide [178]. Daily subcutaneous injections of
1.8 mg of the co-agonist for 12 weeks decreased
HbA1c by 0.96% and fasting glucose by 38.2%
relative to placebo, and reduced body weight in an
absolute sense by nearly 3% over the twelve-week
trial [178]. Notably, RG7697 significantly
decreased total cholesterol, compared to the pla-
cebo group, whereas liraglutide alone had no effect,
suggesting an additional benefit of the dual GLP-1/
GIP receptor agonist. Other independently derived
GLP-1R/GIPR co-agonists are in development and
are being investigated in preclinical and phase 2
clinical trials [144].

GLP-1/Glucagon/GIP

The success of the incretin co-agonists naturally
led to the hypothesis that a triagonist, with ago-
nism at both incretin hormone receptors and the
glucagon receptor, would result in even more
effective metabolic improvements (Fig. 3).
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Optimally, the glycaemic benefits arising from both
incretin hormones would oppose glucagon’s dia-
betogenic actions, whilst the weight-lowering prop-
erties of GLP-1 and glucagon would synergistically
suppress any potential obesogenic character resid-
ing in GIP agonism.

In 2013, three different peptides with triple ago-
nism at the GLP-1R, GCGR and GIP-R were devel-
oped. The first example replaces the initial 11 N-
terminal residues of OXM with D-Ala-GIP to gen-
erate a GIP-OXM peptide ([DA2]GIP-Oxm) [179]. A
second triagonist, [DA2]GLP-1-glucagon ([DA2]
GLP-1/GcG), was created as a fusion of key amino
acid sequences from GLP-1, GIP, and glucagon
[136]. The third triagonist, YAG-glucagon, was
derived by manipulating the glucagon peptide
sequence [180]. All three peptides stimulated cAMP
production in GIP-R, GCGR and GLP-1R trans-
fected cells to a comparable or lesser extent than
the native peptides, demonstrating triple agonism
in vitro. In vivo, all peptides significantly reduced
glycaemia, whilst only [DA2]GIP-Oxm and [DA2]
GLP-1/GcG significantly decreased body weight.
Since both GLP-1R and GCGR agonism result in
body weight loss, the inability of YAG-glucagon to
lower body weight may be a result of unbalanced
agonism towards the GIP receptor.

Similarly, in 2015, the research groups of Matthias
Tsch€op and Richard DiMarchi developed another
novel triagonist, beginning with a validated GLP-
1R/GIPR co-agonist and introducing amino acids
known to confer GCGR agonism in a stepwise
fashion [181]. Further modifications included an
Aib at position 2 to increase resistance to DPP-4
degradation, a lysine at position 10 (Lys10) as an
attachment site for a palmitic acid, and the CEX
extension to improve the solubility of the peptide
[181]. The triagonist displayed full GLP-1R agonism
inpancreaticmouseb-cells (MIN6), fullGIPRactivity
inmouse 3T3-L1 adipocytes, and full GCGR activity
in rat hepatocytes [181]. In addition, compared to
[DA2]GLP-1/GcG, this triagonist was at least 1000-
fold more potent at all three receptors in vitro [181].
In DIO mice, daily treatment at 3 nmol kg�1 of this
triagonist lowered body weight by 26.6% over a 20-
dayperiod, compared toonly15.7%losswithadose-
matched GLP-1/GIP co-agonist. Body weight loss
wasmainly the result of loss in fatmass andnot lean
mass. The triagonist induced superior glycaemic
control and reduction in hepatic lipid content, all
greater than a matched dose of liraglutide [181].
These effects are not gender-specific, as similar

reductions in body weight and hepatic steatosis
were observed in female DIO mice [181, 182].
Compared to [DA2]GLP-1/GcG, this triagonist
induces body weight loss and metabolic improve-
ments at much lower doses.

Chronic treatment with this triagonist in lean mice
resulted inno reductionof bodyweight, leanmassor
food intake [181], suggesting that the triagonist does
not impair normal metabolism and only acts to
improve metabolic dysregulation. Moreover, there
were no instances of hypoglycaemia in either DIO or
leanmice treatedwith the triagonist, demonstrating
that thehypoglycaemic liability of glucagon receptor
agonism is safelymanaged. The triagonist preserved
pancreatic islet architecture in ZDF rats and db/db
mice, suggesting that the triagonist has potential as
both an anti-obesity and an antidiabetic therapy
[181]. Meanwhile, several triagonist peptides have
entered preclinical trials [144]. First results are
published for the compound HM15211, developed
by Hanmi Pharmaceuticals, a triple agonist based
on a modified glucagon analogue with activity at all
three receptors [183]. This triple agonist is modified
with a human glycosylated Fc fragment to prolong
the half-life. In rodent models, every other day
treatment with HM15211 decreased body weight
and glycaemia, whilst increasing energy expendi-
ture to a significantly greater extent than a daily
administration of liraglutide. In addition, HM15211
reduces hepatic steatosis and plasma cholesterol in
a mouse model of NASH, indicating therapeutic
potential beyond weight loss and glycaemic control
[183]. HM15211 is currently being investigated in
phase 1 clinical trials.

In summary, the triagonists developed so far have
demonstrated unmatched preclinical efficacy in
improving metabolic dysregulation that may reca-
pitulate many benefits of bariatric surgeries. More-
over, based on the multi-organ receptor
expression, the triagonists could have great poten-
tial to treat a number of other diseases. Indeed,
first results have demonstrated that the triagonist
HM15211 exerted neuroprotective effects against
Parkinson’s disease by reducing microglia activa-
tion [184] and is effective against NASH [183].

GLP-1-based nuclear hormone delivery

Similar to the peptide hormones reviewed to this
point, certain nuclear hormones such as oestro-
gen, thyroid hormone (T3) and dexamethasone are
potent and beneficial modulators of energy
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Fig. 4 (a) Schematic for the peptide hormone-mediated delivery of small molecules and nuclear hormones via receptor
internalization. (b) Metabolic effects and major target organs of GLP-1/oestrogen, GLP-1/dexamethasone (GLP-1/Dexa),
and glucagon/T3 hybrid molecules and bypass of established adverse side effects of oestrogen, dexamethasone or T3 by
their targeted delivery to GLP-1 receptor (GLP1-R) or glucagon receptor (GCGR) expressing organs (lower boxes).
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metabolism [185–188]. However, their medical
utility is restricted due to notable unwanted side
effects. A novel approach to avoid an impact on off-
target tissues was to covalently link nuclear hor-
mones to peptide hormones such as GLP-1 and
glucagon. Peptide hormones promote their biolog-
ical action via binding and activation of receptors
located on the cell surface, followed by internaliza-
tion of the ligand–receptor complex and activation
of downstream signalling pathways. In the context
of metabolic therapy, GLP-1 is an ideal nuclear
hormone conjugation partner since GLP-1 targets
mainly the endocrine pancreas and central ner-
vous system, thus potentially delivering nuclear
hormones preferentially to these tissues. So far
GLP-1 has been conjugated to oestrogen [189] and
dexamethasone [190] (Fig. 4). In addition, T3 has
been conjugated to glucagon [191] (Fig. 4). Conju-
gation to GLP-1 has resulted in targeted benefits of
the respective nuclear hormones. Treatment of
male and female DIO mice with a stable GLP-1/
oestrogen conjugate induced synergistic weight
loss and metabolic improvements, which were
dependent on the presence of the GLP-1R in the
central nervous system [189]. The oestrogen effect
of the conjugate was limited to GLP-1R expressing
tissues and did not cause any oestrogen-related
gynaecological or tumour promoting effects in
tumour-bearing mice, nor did it affect bone mineral
density.

A conjugate of GLP-1 and dexamethasone utilizes
the anti-inflammatory properties of dexametha-
sone to target the chronic, low-grade inflammation
that is typically observed under conditions of
obesity [192, 193]. Unaltered dexamethasone
induces hyperglycaemia, hyperphagia and reduces
bone density [190]. In mice, a GLP-1/dexametha-
sone conjugate at a dose of 100 nmol kg�1 for
2 weeks reduced food intake and induced a 25%
body weight loss, relative to baseline, predomi-
nately a result of loss in fat mass. The metabolic
benefits of the conjugate are due in part to an
increase in energy expenditure, since the conjugate
increases oxygen consumption, reduces the respi-
ratory exchange ratio (RER) and induces greater
body weight loss relative to pair-fed controls. In
addition, the anti-inflammatory action of dexam-
ethasone was apparent both in the hypothalamus
and in plasma, where the conjugate reduced
cytokine levels and other markers of inflammation.
The lack of GLP-1 receptors in the liver precluded
dexamethasone related effects on hepatic glucose
output and hyperglycaemia. Nevertheless, the

conjugate improved glucose tolerance and
increased glucose-stimulated insulin secretion,
indicating positive glycaemic effects. In addition,
the conjugate does not appear to affect bone
density, as whole-body and spine bone mineral
density were unaltered by treatment [190].

Another approach for targeted nuclear hormone
delivery was the covalent binding of T3 to glucagon.
Since GCGR expression is largely restricted to the
liver, this hybrid molecule was designed to accen-
tuate the hepatic effects of T3, which include
clearing of circulating LDL via stimulation of
reverse cholesterol transport and enhanced pro-
duction of bile acids. Abnormally high cholesterol
and dyslipidaemia are a major health concern, and
dyslipidaemia is often associated with type 2
diabetes, coronary heart disease and nonalcoholic
steatohepatitis (NASH) [194]. Most dyslipidaemia
drugs, such as statins, lower cholesterol but do not
affect body weight. It was thus hypothesized that
glucagon-directed hepatic T3 action would syner-
gistically improve hepatic lipid and cholesterol
metabolism and simultaneously counteract the
hyperglycaemic actions of glucagon and that tar-
geted delivery to glucagon receptor expressing cells
would assure that T3 does not reach and act on
tissues such as the heart, skeletal muscle and
bone to cause unwanted side effects such as
cardiotoxicity.

Indeed, in DIO mice, the conjugate lowered blood
glucose, improved glucose tolerance and dose
dependently prevented the development of hyper-
glycaemia or glucose intolerance [191]. The gluca-
gon/T3 conjugate moderately lowered body weight
by reducing food intake and increasing energy
expenditure. Moreover, in various mouse models of
dyslipidaemia, the glucagon/T3 conjugate lowered
total plasma cholesterol and decreased circulating
and hepatic levels of LDL. These mice also display
lowered hepatic cholesterol and a decrease in
hepatocellular vacuolation. These effects were lost
in global GCGR knockout mice and in liver-specific
thyroid hormone receptor-b knockout mice [191],
demonstrating the necessity of both the glucagon
receptor and thyroid hormone action in the liver.
The glucagon/T3 conjugate was demonstrably
safer than either of its individual components, with
only limited T3 effects in heart and bone. The full
magnitude of the improvements in the therapeutic
index will nevertheless require more extensive
studies, extension of these initial reports from
rodents to primates, followed by refinement of the

Peptide-based multi-agonists: a new par / S. J. Brandt et al.

ª 2018 The Authors. Journal of Internal Medicine published by John Wiley & Sons Ltd on behalf of Association for Publication of The Journal of Internal Medicine. 595

Journal of Internal Medicine, 2018, 284; 581–602



chemical structure to suit drug development with
completion of preclinical safety studies supportive
of translation to clinical study.

Conclusion

Combining the actions of multiple hormones into
single molecular entities has resulted in multi-
action agonists that display superior efficacy and
safety when compared to the constituent
monotherapies.

Multi-agonism results in enhanced activity through
synergistic agonism at multiple receptors. Many of
these multi-agonists have proven more effective
than either the monotherapies or the co-injection
of the hormones. This enhanced activity allows for
lower dosing strategies, which decreases the risk of
dose-dependent adverse effects. In addition, a mul-
ti-agonist approach can overcome inherent liabili-
ties of individual hormones, by targeting nuclear
hormones to specific tissues and providing counter-
regulatory buffering activity.

The multi-agonist pharmacotherapies in this
review constitute great translational potential and
promising preclinical results are emerging. It is
premature to conclude the magnitude of the phar-
macology that might be achieved in human
patients. However, it feels inevitable that within
this broad set of agonists that function by multiple,
differentiated mechanisms that a meaningful
enhancement to the efficacy rendered by GLP-1
specific pharmacology should emerge through con-
tinued research and refinement of those entities
that prove most effective.
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