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Abstract—The subjective nature of pain makes it a very challenging phenomenon to assess. Most of the current pain assessment
approaches rely on an individual’s ability to recognise and report an observed pain episode. However, pain perception and expression
are affected by numerous factors ranging from personality traits to physical and psychological health state. Hence, several approaches
have been proposed for the automatic recognition of pain intensity, based on measurable physiological and audiovisual parameters. In
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the current paper, an assessment of several fusion architectures for the development of a multi-modal pain intensity classification
system is performed. The contribution of the presented work is two-fold: (1) 3 distinctive modalities consisting of audio, video and
physiological channels are assessed and combined for the classification of several levels of pain elicitation. (2) An extensive
assessment of several fusion strategies is carried out in order to design a classification architecture that improves the performance of
the pain recognition system. The assessment is based on the SenseEmotion Database and experimental validation demonstrates the
relevance of the multi-modal classification approach, which achieves classification rates of respectively 83.39%, 59.53% and 43.89% in a

2-class, 3-class and 4-class pain intensity classification task.

Index Terms—Pain intensity recognition, multiple classifier systems, multi-modal information fusion, signal processing

1 INTRODUCTION

FFECTIVE pain management implies reliable and valid

assessment of pain. However, pain is a complex and
highly subjective phenomenon [1], [2] which is commonly
associated with unpleasant psycho-physiological and phys-
ical experiences. Furthermore, pain is an individually
unique experience which varies from one individual to the
next [3]. This particular aspect further increases the com-
plexity of pain assessment. Hence, self-report is considered
to be the gold standard in pain assessment and has been
successful in providing valuable insights for effective pain
management [4], [5]. However, self-reporting tools such as
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the Visual Analogue Scale (VAS) or the Numerical Rating
Scale (NRS) for pain [6], [7] strongly rely on an individual’s
ability to recognise, assess and communicate an observed
pain episode. Thus, self-report would provide inconsistent
and unreliable information in cases where an individual is
suffering from a form of cognitive impairment which
impedes the individual’s ability to reliably and systemi-
cally perceive, assess and share informative insights about
the experienced pain episode. Hence, relying uniquely on
self-report could lead to unsuitable and inadequate pain
management.

Various studies have investigated the feasibility and rele-
vancy of automatic pain assessment systems based on mea-
surable audiovisual and physiological parameters (see
Section 2). These studies show that such systems are able to
provide valuable insights for the assessment of pain intensi-
ties by automatically analysing non-verbal pain indicators
including pain related facial expressions, paralinguistic
vocalisations, body postures and changes in physiological
parameters. Therefore, the combination of self-reporting
tools with a reliable and automatic pain assessment system
could potentially improve the robustness as well as the
effectiveness of pain management.

Moreover, the huge diversity of pain related expressions
within each specific modality (e.g., frowning (facial expres-
sions), moaning (paralinguistic vocalisations), changes in
body posture (behavioural pain responses), changes in
physiological parameters (autonomic pain responses)) sug-
gests that pain intensity classification should be approached
as a multi-modal pattern recognition problem. Instead of
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relying on the information provided by a single modality, a
well designed fusion approach should be able to appropri-
ately combine complementary information from multiple
sources in order to improve both the robustness of a classifi-
cation system as well as its performance.

In the following work, several fusion approaches are pro-
posed and assessed within the scope of the development of
an automatic pain intensity recognition system. The assess-
ment is performed on the recently recorded SenseEmotion
Database [8], which consists of 45 individuals subjected to a
series of artificially induced pain stimuli, elicited through
temperature elevation. Several modalities were synchro-
nously acquired during the experiments including audio
streams, video streams, respiration (RSP), electrocardiogra-
phy (ECG), electromyography (EMG) and electrodermal
activity (EDA) signals. A broad spectrum of descriptors is
extracted from each involved modality followed by an eval-
uation of an uni-modal pain intensity classification system
based on the set of features extracted from each single
modality. Subsequently, several fusion architectures per-
forming the combination of the extracted descriptors at dif-
ferent levels of abstraction based on various aggregation
rules are evaluated. The goal here is to design an effective
fusion architecture that is able to significantly outperform
the best performing single modality, through an adequate
combination of information extracted from each specific
modality.

The remainder of this work is organised as follows. In
Section 2, an overview of the related research on automatic
pain recognition is provided. In Section 3, the recently
recorded SenseEmotion Database is described. A description
of the sensor system used for the data acquisition, followed
by a description of the recorded data and the features
extracted from each involved modality is provided respec-
tively in Section 4 for the audio modality, Section 5 for the
video modality and Section 6 for each physiological modal-
ity. The proposed fusion architectures are described in
Section 7 and a thorough description of the performed
experiments as well as the yielded results is provided in
Section 8. Finally, the current work is concluded in Section 9
with a discussion about the findings as well as an overview
about potential future works.

2 RELATED WORK

The following section provides an overview of related
research and proposed approaches for the development of
automatic pain assessment and pain intensity recognition
systems.

The recent advancements in the domain of automatic
pain assessment have been possible thanks to the availabil-
ity of a few databases containing specific and representative
pain related data. One of the first and very prominent data-
bases specific to pain made available to the research com-
munity is the UNBC-McMaster Shoulder Pain Expression
Archive Database [9]. It consists of 129 participants suffering
from shoulder pain and performing specific motion exer-
cises with both affected and unaffected limbs. During the
exercises, video sequences of the spontaneous facial expres-
sions of the participants were recorded. Each frame of the
recorded video sequences was subsequently annotated

using Ekman’s Facial Action Unit System (FACS) [10] and
the Prkachin and Solomon Pain Intensity (PSPI) [11] metric.
The recordings were also annotated at the sequence level
based on each participant’s self-report and observer meas-
ures. This database focuses specifically on the analysis of
facial expressions and does not involve any other modality.
No external stimulus was used to trigger the pain episode,
but rather the exercises conducted with the affected limb
triggered genuine pain related facial expressions.

Lately, Walter et al. proposed the BioVid Heat Pain Data-
base [12], which is a multi-modal database consisting of 87
healthy participants submitted to four gradually increasing
levels of artificially induced pain through temperature ele-
vation. During the experiments, several modalities were
synchronously recorded including video streams, EMG,
ECG and EDA data. The labels of the acquired data consist
of the four different levels of pain elicitation. In contrast to
the UNBC-McMaster Shoulder Pain Expression Archive Data-
base, the BioVid Heat Pain Database is multi-modal since the
data acquired stems from at least two different modalities
(video and physiology). Furthermore, pain was elicited arti-
ficially even though the recorded pain related expressions
were genuine.

Most recently, Aung et al. introduced the Multimodal
EmoPain Dataset [13], which is a collection of data specific to
chronic pain. The database consists of 22 individuals suffer-
ing from chronic lower back pain and 28 healthy individu-
als, each performing various physical exercises in a realistic
physical rehabilitation setting. High resolution multi-view
video streams were recorded during the experiments, as
well as multi-directional audio streams, full body three
dimensional motion capturing data and EMG signals of
back muscles. The recorded data was annotated using two
different sets of labels. The first set of labels consists of a
continuous rating of the level of pain perceived by an anno-
tator while observing the participants’ facial expressions.
The assigned rating values ranged between 0 (lowest level
of pain) and 1 (highest level of pain). This specific annota-
tion was conducted by eight different annotators. The sec-
ond set of labels is based on the occurrence of six pain-
related body behaviours (guarding or stiffness, hesitation, brac-
ing or support, abrupt action, limping, rubbing or stimulating)
that was previously defined by six experts in the field of
physical rehabilitation.

Concordantly to the released databases, several
approaches for the automatic recognition of pain related
expressions have been developed, based either on single
modalities or on a combination of several modalities. Many
of the proposed approaches focus uniquely on the facial
area [14], [15], [16], [17], since a huge amount of information
related to an individual's affective state is conveyed
throughout facial expressions. These approaches consist of
manually or automatically defining and extracting several
descriptors from the recorded facial area and performing
the classification of the processed data by using common
classifiers (e.g., Support Vector Machine (SVM), Random
Forests (RF)) or deep learning architectures (e.g., Deep
Belief Networks (DBN) [17]).

Moreover, several approaches based on the analysis of
physiological modalities as EMG, ECG, RSP and EDA have
been proposed [18], [19], [20], [21]. These approaches have
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Fig. 1. (a) Experimental settings. The participants remained seated during the whole experiment with both forearms resting on a desk in front of them.
The picture depicts a session of the experiment during which the thermal simulator is attached to the right forearm. (b) Temperatures (heat stimula-
tion). For each level of pain elicitation, the subjective nature of pain is reflected into the large variance of elicitation temperatures across a set of 40
participants selected for the evaluation of the designed classification approaches (see Section 3). (c) Artificially induced pain stimulation through tem-
perature elevation. Ty: baseline temperature (32 °C); T): pain threshold temperature; T5: intermediate elicitation temperature; T3: pain tolerance tem-
perature. The green dot symbolises the onset starting point in time which is later used in Section 8.1 as a reference point to define the windows from

which features are extracted from each modality.

shown that each modality provides specific insights that can
be used in order to adequately assess pain intensity in a
realistic setting. However, single modality recognition
approaches are known to be inflexible and need extra adjust-
ments in order to deal with missing or erroneous data [22].
Approaches based on the analysis of facial expressions rely
strongly on an accurate localisation of the facial area in each
frame of a video sequence. This task is known to be very diffi-
cult in a natural setting due to unconstrained movements of a
monitored participant. Sensors used to record physiological
modalities are quite sensitive and might sometimes record
unreliable signals due to unconstrained body motion during
the acquisition of the data, with the eventuality that the sen-
sors get completely disconnected from the subject’s skin,
resulting in missing data. This issue can be alleviated by
using several modalities and performing the assessment
based on an appropriate combination of the data provided
by the most reliable ones [23], [24].

Several studies [25], [26], [27], [28] have shown that an ade-
quate combination of information extracted from several
modalities might improve the robustness (against noisy
inputs) as well as the overall performance of a pain classifica-
tion system. The most prominent combination approaches
consist of the early fusion strategy [29], [30] and several late
fusion strategies, which consist of combining the decision of
individual models trained on different sets of features by
using fixed combination rules (e.g., product rule) or trainable
combination rules (e.g., pseudo-inverse) [31], [32]. Further-
more, the combination can occur at different levels of abstrac-
tion [33] and also in a hierarchical manner by using a cascade
of different aggregation strategies [34]. Multiple Kernel
Learning (MKL) [35] and multi-modal deep autoencoders
[36] have also been employed as fusion strategies for emotion
recognition. In [37], the authors combine both audio and
video modalities in order to proceed with pain recognition in
real clinical settings, using early and late fusion strategies.
The labels used for the assessment of the proposed pain recog-
nition system consist of the recorded subjective pain intensi-
ties (defined on the NRS scale), grouped in three pain severity
categories (mild, moderate and severe). The proposed late
fusion strategy consists in fusing the decision scores from
each individual channel using logistic regression.

Analogously to [37], the audio modality is assessed in the
following work, in addition to both video and physiological

modalities. However, the data assessed in the current work
is recorded in an experimental setting and the labels consist
of three levels of artificially induced pain elicitation. More-
over, we investigate multiple classifier architectures for the
combination of paralinguistic descriptors with bio-visual
modalities at different levels of abstraction, and in both user
dependent and independent settings.

3 DATASET DESCRIPTION

The following section provides a short description of the
SenseEmotion Database (the reader is referred to [8] for more
details).

The database consists of 45 healthy participants, each sub-
jected to a series of artificially induced pain stimuli. The pain
stimuli were elicited through moderate temperature elevation
using a Medoc pathway thermal simulator.' The experiments
were conducted in accordance with the ethical guidelines
defined in the Declaration of Helsinki, developed by the
World Medical Association (WMA).? During the experiments,
several modalities were synchronously recorded using sev-
eral sensors integrated within the Social Signal Integration
(SSI) framework [38] including audio streams, high resolution
video streams, trapezius EMG, RSP, ECG and EDA. The
experiments were conducted in two sessions, each of them
lasting approximately 40 minutes, with the pain elicitation
sensor attached throughout each session to a different fore-
arm (left and right). The participants remained seated during
each experiment with the arms resting on a desk in front of
them (see Fig. 1a).

Before the data was recorded, each participant’s specific
pain threshold temperature (7}) and pain tolerance tempera-
ture (73) were calibrated based on the individual’'s self-
reports. The range of calibration of the temperatures was set
to a minimum of 32 °C and a maximum of 50.5 °C. An inter-
mediate elicitation temperature (73) was computed by taking
the average of both temperatures 77 and 73. These tempera-
tures formed the three gradually increasing levels of artificial
pain elicitation used throughout the experiments (see Fig. 1b).
The baseline temperature (1j) corresponding to no pain stim-
ulation was set to 32 °C for all participants. Each temperature

1. http:/ /medoc-weg.com/products/ pathway-model-ats /
2. Ethics Committee Approval: 196/10-UBB/bal
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was applied randomly 30 times with a pause of 8 to 12 sec-
onds (sec) between consecutive stimuli. Each stimulation con-
sisted of a 2sec onset during which the temperature was
gradually elevated starting from the baseline until the target
temperature was attained. Subsequently, the target tempera-
ture was maintained for 4 sec before being gradually dropped
to the baseline (see Fig. 1c for more details).

In the current work, the proposed classification approaches
are evaluated on a subset of the dataset consisting of 40 partic-
ipants (20 male and 20 female). Five of the 45 participants
were not included in the assessment because of missing or
erroneous data due to technical issues during the recordings.
The data specific to each of the remaining 40 participants is
complete for each modality and for each experimental ses-
sion. Moreover, each participant is represented by two sets of
data, each one specific to one experimental session (left fore-
arm and right forearm) and consisting of 120 instances of arti-
ficial pain stimuli (30 elicitations for each Ty, T3, 15, and T3
temperature).

4 AuDIO CHANNEL ASSESSMENT

The following section provides a description of the experi-
mental settings specific to the audio channel. A description
of each single step involved in the assessment of the data is
also provided.

Throughout the conducted experiments, three audio
streams were synchronously recorded using a digital wire-
less headset microphone (Line6 XD-V75HS), a directional
microphone (Rode M3) and the integrated microphone of
the Microsoft Kinect v2. The wireless headset microphone
allowed unconstrained head movements and recorded any
sound emitted by the participants. The directional micro-
phone as well as the integrated Kinect microphone recorded
ambient acoustic sounds. All recordings were performed at
a fixed sample rate of 48 kHz. Since the experiments did not
involve any type of verbal interaction, the recorded audio
data consists mostly of breathing, moaning and sighing
sounds, as well as ambient noises.

Since the headset microphone was located in the vicinity
of the facial nasolabial area, it was capable to appropriately
capture the breathing and moaning sounds emitted by the
participants, thus, its recordings were more suitable for the
task at hand. Therefore, the current assessment of the audio
channel is based uniquely on the recordings from the head-
set microphone. Those from both directional and Kinect
microphones are not further analysed since they were
unable to capture the breathing and moaning noises satis-
factorily (both sensors were placed at a distance of approxi-
mately 1 meter from the participants).

The first step in the processing pipeline of the audio record-
ings consists of the extraction of several low-level descriptors
from the raw audio signal. The resulting signals are further
preprocessed using bandpass-filtering, signal smoothing and
detrending. Subsequently, several high-level descriptors are
extracted from the preprocessed signals. In the following
sections, each single step of the pipeline is described.

4.1 Low-Level Descriptors
The first step of the audio data processing pipeline consists
of the extraction of Low-Level Descriptors (LLDs) from the

raw audio signal. LLDs are parameters computed from
short time frames of a whole signal. Such parameters
describe temporal and spectral properties of the signals,
while significantly reducing the amount of data to be proc-
essed. In the current work, all LLDs are extracted from 25
milliseconds (ms) frames with a 10 ms shift between conse-
cutive frames. The extraction is performed by using the
openSMILE feature extraction toolkit [39].

Commonly used LLDs in speech processing are the Mel
Frequency Cepstral Coefficients (MFCCs) [40]. MFCCs have
proven to be very effective in tasks such as automatic
speech recognition, emotion recognition or speaker identifi-
cation [41], [42], [43]. For the present work, 13 MFCCs were
extracted, each combined with its first and second order
temporal derivatives, resulting in a total of 39 MFCC-based
LLDs. Another set of commonly used LLDs is computed by
using the Relative Spectral Perceptual Linear Predictive Coding
(RASTA-PLP) [44]. RASTA-PLP is an extension of Percep-
tual Linear Predictive (PLP) [45] analysis which improves
the robustness of the computed coefficients against linear
spectral distortions. For the present work, 6 RASTA-PLP
coefficients were extracted, each in combination with its first
and second order temporal derivatives, resulting in a total
of 18 RASTA-PLP-based LLDs.

Finally, a third set of LLDs from the time domain was
extracted, consisting of the root mean square signal energy and
the logarithmic signal energy, in combination with their first
and second order temporal derivatives. Additionally, the
following descriptors were extracted: loudness contour, zero-
crossing rate, mean-crossing rate, maximum absolute sample
value, minimum and maximum sample value and arithmetic
mean of the sample values. This last set represents a total of 13
LLDs.

4.2 Signal Processing

Following the extraction of LLDs, an additional signal proc-
essing step is undertaken in order to substantially reduce
the amount of noise within the signal spawned by each sin-
gle LLD. Much of this noise is related to the recorded ambi-
ent sounds in the room where the experiments were
undertaken, since no precaution was taken to avoid them,
resulting in a more realistic experimental setting. Therefore,
in order to attenuate these noises, a third order Butterworth
bandpass filter with a frequency range of [5,500]Hz is
applied on each individual low-level descriptor signal.
Next, each filtered signal is smoothed using a Gaussian filter
with a 30-point window, and subsequently mean centered.

4.3 High-Level Descriptors and Feature Vectors
Once the LLDs have been extracted and preprocessed, a set
of high-level descriptors (HLDs) is extracted from each sig-
nal within a predefined and specific temporal window. The
preprocessed LLD signals are segmented based on a fixed
window and HLDs are extracted from these specific seg-
ments before being used as feature vectors for the classifica-
tion tasks. In the current work, the following set of 14
statistical functions is applied on the segmented LLD sig-
nals for the extraction of HLDs: mean, median, standard devia-
tion, maximum, minimum, range, skewness, kurtosis, first and
second quartiles, interquartile, 1%-percentile, 99%-percentile,
range from 1%- to 99%-percentile.
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Fig. 2. Multiple view camera set-up. The multiple view camera set-up
consists of one front camera placed at approximately 1 meter from the
participant and two additional cameras placed each in a 45° angle at the
left and right hand-side of the participant. Hence, the facial area can still
be recorded in a frontal view for a maximal angle of head rotation of 45°
to the left or to the right.

Feature Vectors. The MFCC-based feature vectors have a
total dimensionality of 14 x 39 = 546. The RASTA-PLP-
based feature vectors have a total dimensionality of
14 x 18 = 252, and the last set of feature vectors from the
temporal domain has a total dimensionality of
14 x 13 = 182. Subsequently, the HLDs are standardised
individually and per participant using the z-score.

5 VIDEO CHANNEL ASSESSMENT

This section provides a description of each single step
involved in the assessment of the recorded video data. First,
a short description of the camera set-up used to perform the
recordings is provided. Next, the recorded data is
described. Last, a description of the processes undertaken
to extract several descriptors from the recorded data is
provided.

5.1 Camera Set-Up Description

A multiple view camera set-up was constructed in order to
capture the facial expressions of the participants through-
out the experiments. It consisted of three identical high
resolution cameras (iDS UI-3060CP-C-HQ) equipped with
identical lenses (Tevidon 1.8/16). Each camera recorded a
video stream at a resolution of 1600 x 1200 pixels. The
first camera was positioned directly in front of the partici-
pant at a distance of approximately 1 meter. The two
other cameras were placed respectively at the right and
the left hand-side of the participant, each in a 45 Degree
angle (see Fig. 2 for an overview of the set-up). In this
way, the facial area could still be captured frontally in case
it went beyond the scope of the frontal camera, due to rela-
tive large head rotations in both left and right directions.
Sufficient illumination was provided throughout the
experiments by three LED panels mounted respectively
at the front, left and right side of the participant. The three
cameras synchronously recorded facial expressions dis-
played by the participants from three different perspec-
tives and additionally allowed unconstrained natural head
movements. The recordings of the first 24 participants
were performed with a fixed frame rate of 60 frames per
second (fps) and involved all three cameras, while the
recordings of the next 21 participants were performed at
a fixed frame rate of 30fps, and involved uniquely the
frontal camera.
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Fig. 3. Facial area and head pose data. (a) Using the toolkit OpenFace
[47] a set of 23 two-dimensional facial landmarks, which characterises
eyebrows, eyes, nose and mouth, is tracked from one video frame to the
next. (b) The frame level descriptors consist of 17 euclidean distances
computed between specific facial landmarks. These distances capture
the dynamic of the facial expressions at the frame level. (c) The orienta-
tion of the head (head pose) can be described by three angles of rotation
around three orthogonal axis: roll, pitch and yaw.

5.2 Signal Processing

Prior to the assessment of the recorded data, all recordings
were first converted into full color videos using demosaick-
ing [46], since the recordings were performed using a Bayer
pattern color filter array (CFA). Then, the full color videos
were compressed using the codec H.264. Missing frames
were reconstructed using temporal interpolation according
to the cameras’ time stamps. For the current work, the proc-
essed recordings were subsequently converted into a
unique frame rate of 30 fps, in order to involve all recorded
participants in the current assessment. Moreover, the cur-
rent work focuses uniquely on the recordings performed
with the frontal camera.

Based on the processed video recordings, several descrip-
tors of the facial area are extracted from fixed temporal win-
dows in order to discriminate between the different levels of
pain elicitation. Before these descriptors can be computed,
the facial area in each video frame has to be localised, aligned
and normalised. For this work, the facial behaviour analysis
toolkit OpenFace [47] (which uses Constrained Local Neural
Fields (CLNF) [48] for facial landmarks detection and track-
ing) is used for the automatic detection, alignment and nor-
malisation of the facial area. Based on the extracted and
preprocessed facial area, the same tool is used for the extrac-
tion of a set of two-dimensional facial landmarks and for the
estimation of the head pose.

5.3 Feature Extraction

Several descriptors are computed from the two-dimensional
location estimations of the facial landmarks, as well as
from the head pose estimation data and the preprocessed
facial area.

Geometric and Head Pose Descriptors. According to
Prkachin et al. [11], [49], four specific facial movements
are consistently associated with pain and carry most of
the pain related information: brow lowering, tightening of
the eye lids in combination with raising cheeks, closing of the
eyes and nose wrinkling in combination with upper lip raising.
Each of these movements involves one or several of the
following regions of interest: mouth, nose, eyes and eye-
brows. Therefore, a set of 23 two-dimensional facial land-
marks (see Fig. 3a), characterising each of the defined
regions of interest, are detected and tracked from one
video frame to the next. Based on these landmarks, a set
of 17 euclidean distances are computed at the frame level
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Fig. 4. Local binary patterns from three orthogonal planes (LBP-TOP).
Given a fixed size video sequence, a cuboid consisting of a specific
region of interest is extracted. LBP-TOP are subsequently computed
based on the cuboid by combining local binary patterns (LBP) extracted
from the spatial plane XY, with those extracted from both spatio-tempo-
ral planes XT and YT. In this way, motion and appearance are both com-
bined and used for the description of facial expressions.

(see Fig. 3b). Each distance characterises a facial dynamic
specific to each of the four pain related facial movements
described earlier. Hence, each video frame is represented
by a 17 dimensional feature vector. Moreover, pain is not
only associated with specific facial movements. Intense
pain causes sporadic changes of the head orientation and
position [50]. Therefore, a three dimensional estimation of
the head position as well as an estimation of the head ori-
entation described by three angles of orientation (pitch,
raw, roll) (see Fig. 3c), is computed at the frame level.
The resulting 6 dimensional frame level vector is used to
assess the relevance of head motion for the classification
of the different levels of pain elicitation.

Each of these features in the span of a fixed temporal
window yields a specific time series, generated by consider-
ing the corresponding feature values for all frames within
the window. These time series are smoothed by applying a
third order low-pass Butterworth filter with a cut-off fre-
quency of 3Hz. The first and second order derivatives of
the filtered time series are also computed.

Feature Vectors. By applying the same set of statistical
functions defined in Section 4.3 on each signal, a total
of 14 x 17 x 3 = 714 features are extracted from the set of
landmark distances and 14 x 6 x 3 =252 features are
extracted from the head pose estimations. The extracted
features are subsequently standardised per participant
using the z-score.

Appearance-Based Descriptors. Spatio-temporal texture
properties of the aligned and normalised facial areas
are also assessed and dynamic texture descriptors are
extracted using local binary patterns from three orthogonal
planes (LBP-TOP) [51]. LBP-TOP extend the ordinary local
binary patterns (LBP) [52] for static images to the spatio-
temporal domain (see Fig. 4). They incorporate the tem-
poral component into the description of dynamic textures
and therefore combine motion and appearance to describe
facial expressions in video sequences. This is done by
concatenating local binary patterns extracted from the
spatial plane XY and from both spatio-temporal planes
XT and YT. The LBP operator can be further extended by
using uniform patterns. A binary pattern is called uniform
if it contains at most two bitwise transitions from 0 to 1
or vice versa. Subsequently, all non-uniform patterns are
assigned the same and unique label, while each uniform
pattern is assigned a single and specific label. Hence, the
dimensionality of LBP can be substantially reduced by
using uniform patterns without any significant loss of
information.

In this work, each detected facial region within a fixed
temporal window is divided into a 4 x 4 grid of cells with a
25 percent overlap from one cell to the next. Furthermore,
the temporal window is divided in 3 temporal blocks with a
20 percent overlap from one block to the next. This segmen-
tation results in the generation of a total of 4 x 4 x 3 = 48
spatio-temporal cuboids. From each cuboid, uniform LBP-
TOP descriptors are extracted. The number of neighbour-
hood points in each of the three planes (XY, XT, YT) is set to
n = 4. The radius in both spatial directions r, and r, is set to
1, while the radius in the temporal direction r; is set to 2.
This setting results in normalized histograms on each plane
with a fixed dimensionality of 15. After concatenating the
extracted patterns from each plane, the LBP-TOP descriptor
extracted from each cuboid has a dimensionality of
3 x 15 = 45.

Feature Vector. To form the dynamic texture descriptor of
the whole temporal window, the descriptors of all gener-
ated cuboids are concatenated into a final feature vector
with a dimensionality of 48 x 45 = 2160.

6 PHYSIOLOGICAL CHANNELS ASSESSMENT

This section provides a description of each process involved
in the assessment of the recorded physiological data. First, a
description of the sensor system used to acquire the data is
provided, followed by a description of each recorded physi-
ological channel. Next, each step involved in the pre-
processing of the recorded data, as well as in the extraction
of descriptors from each specific physiological channel is
described.

6.1 Sensor System Description
Physiological data was acquired throughout the experi-
ments using the multi-purpose version of the g. MOBIlab-+>
wireless biosignal acquisition system, equipped with sev-
eral sensors. All physiological channels were synchronously
recorded at a fixed sampling rate of 256 Hz.
Electromyography. EMG measures the electrical activity
caused by muscle contractions and propagated through the
skin’s surface. The intensity of the recorded electrical poten-
tial is proportional to the strength of the contractions. For
the current experiments, the electrical activity of the upper
trapezius muscle (located at the upper back of the human
torso) was acquired by using three sintered (Ag/AgCl) elec-
trodes (positive, negative, neutral) attached to the surface of
the skin. In order to improve the robustness of the recorded
signal against noise, a conductive gel was applied on the
electrodes before they were attached to the skin. The con-
ductive gel increases the conductivity between the skin and
the electrodes and therefore improves the quality of the
recorded signals (improved signal to noise ratio). While the
difference of electrical potential is measured between the
positive and negative electrodes placed on the right upper
trapezius muscle, the neutral electrode is used to define a
baseline in order to filter out electrical activities propagated
through the skin which are unrelated to the muscle activity.
Numerous studies [53], [54], [55] report an increase in
muscle activity (in particular in the trapezius muscles)

3. http:/ /www .gtec.at/Products/ Hardware-and-Accessories /
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Fig. 5. Recorded physiological data (preprocessed signals). From top to bottom: series of artificially induced pain elicitation with the corresponding
temperatures (7): baseline temperature, T;: pain threshold temperature, T5: intermediate elicitation temperature, T3: pain tolerance temperature),

EMG (1V), ECG (uV), RSP (nV), EDA (uS).

concordantly with the experience of stress. The current
experiment is based on the assumption that a similar
response is to be observed when the participants are sub-
jected to painful stimuli.

Electrocardiography. ECG data was acquired using three
sintered electrodes attached to the surface of the skin. Analo-
gously to EMG, a conductive gel was applied on the electro-
des prior to their attachment to the skin’s surface, in order to
perform robust recordings of the electrical activity of the
heart muscle. Previous studies [56], [57], [58] have shown
that abrupt changes in electrocardiography patterns corre-
spond to physiological arousal as a response to external stim-
uli, hence the relevance of ECG for the current study.

Respiration (RSP). RSP data was acquired using an elastic
belt system worn over clothing around the thorax. The
embedded piezoelectric sensor reacts to pressure variations
caused by the fluctuation of the thoracic circumference dur-
ing respiration. Thereby, several respiration patterns (e.g.,
inhalation and exhalation) can be acquired and recorded.
Various studies [59], [60], [61] have investigated the rela-
tionship between emotion and respiration, and have shown
the existence of a strong correlation between specific emo-
tional states and respiration patterns. This can be observed
by a change in breathing patterns when an individual tran-
sits from one affective state to another, thus the relevance of
RSP for the current study.

Electrodermal Activity. EDA, also referred to as galvanic
skin response (GSR) or skin conductance (SC), depicts the
change in the electrical resistance of the skin triggered by the
activation of sweat glands. The degree of activation of the
sweat glands is regulated by the sympathetic nervous system
and therefore is sensitive to external stimuli. EDA is consid-
ered as a good indicator of physiological arousal [62], [63],
[64]. EDA data was acquired by applying a very low constant
voltage to the skin through two electrodes fixed respectively
at the index finger and ring finger of a participant’s right
hand. Based on the applied constant voltage and the mea-
sured current that flows through the skin of the participant,
the skin conductance can be measured and recorded.

6.2 Signal Processing

Prior to the extraction of descriptors from each of the
recorded physiological modalities, an individual prepro-
cessing step was undertaken in order to substantially
reduce the amount of noise and artefacts within each
specific signal. Concerning the EMG signal, a third order
bandpass Butterworth filter with a frequency range of
[0.05,25] Hz was applied in order to further isolate the
bursts in the signal which carry potentially useful informa-
tion about the muscles’ activity and thus the induced level
of pain. The resulting signal was subsequently detrended
(by subtracting a least-squares-fit straight line from the fil-
tered signal) in order to focus uniquely on the fluctuations
within the filtered signal. Analogously, the ECG signal was
first filtered using a third order bandpass Butterworth filter
with a frequency range of [0.1,25]Hz followed by signal
detrending. Additionally, the filtered ECG signal was nor-
malised in order to obtain a uniform range of signal values
for all involved participants, since a huge inter-individual
variance of signal values could be observed during the proc-
essing of the recorded ECG data. The RSP signal was
smoothed using a third order low-pass Butterworth filter
with a cut-off frequency of 0.8 Hz. Finally, the EDA signal
was filtered by applying a third order low-pass Butterworth
filter with a cut-off frequency set to 0.2 Hz. A sample of the
preprocessed signals is depicted in Fig. 5.

6.3 Feature Extraction

Several descriptors from both frequency and temporal
domains were extracted from fixed size temporal windows
of the preprocessed physiological signals (see Section 8.1 for
more details about the conducted temporal window analy-
sis). A common set of 65 features was extracted from each
of the involved modalities (EMG, ECG, RSP, EDA). This
common set of features includes amongst others the follow-
ing set of statistical features extracted from the filtered sig-
nal, as well as from its first and second temporal derivatives
[65]: mean value of the signal, mean value of the normalised sig-
nal, mean value of the absolute values of the signal, mean value of
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the absolute values of the normalised signal (3 x 4 =12 fea-
tures). Moreover, the following additional features from the
temporal domain proposed in [18] were extracted uniquely
from the filtered signal: standard deviation of the signal, stan-
dard deviation of the normalised signal, skewness, maximum to
minimum peak value ratio, kurtosis, peak amplitude (maximum
peak value), peak range (difference between maximum and mini-
mum peak values), root mean squared value of the signal, mean
value of local maxima, mean value of local minima, temporal slope
of the signal (11 features). Based on [66], [67], the following
set of features was also extracted uniquely from the filtered
signal: integrated EMG (IEMG), modified mean absolute values
(MMAV1 and MMAV?2), slope of mean absolute wvalue
(MAVSLP), simple square integral (SS1), signal variance, wave-
form length, slope sign change (SSC), Willison amplitude
(WAMP), v — Order = /E{|zi|"}, log-Detector (logDetect =
exp(x >, log(|x;]))) (11 features). Furthermore, normalised
histogram coefficients [66] (8 features) as well as coefficients
resulting from fitting an autoregressive model using the
Burg method [68] (5 features) were also extracted.

From the frequency domain, numerous descriptors were
also computed including low frequency to very low frequency
ratio based on Welch’s power spectrum density estimation,
zero crossing, frequency mode, bandwidth, central frequency,
mean frequency and median frequency (7 features). Addition-
ally, specific features that capture relevant information from
the non-stationary nature of the acquired signals were also
computed. It comprises stationary mean, median, area, variance
and standard deviation (5 features). Finally, several features
were computed in order to capture the irregularities within
the recorded signals. These features consist of the following;:
Shannon entropy [69], approximate entropy (ApEn), sample
entropy (SampEn), fuzzy entropy (FuzzyEn) [70], spectral
entropy and Shannon entropy of the peak frequency shifting
(SEPFS) [71] (6 features).

From the ECG modality, an additional set of 58 features
was extracted. Most of these features are based on the analy-
sis of the PQRST waves of the recorded signals and include
several statistical features (mean, standard deviation, mini-
mum, maximum) computed from the amplitudes and widths of
the P, Q, R, S and T wavelets, the temporal delay between
each couple of peaks, as well as the following angles: /PQR,
/QRS and /RST [72]. Subsequently, based on the detected
R peaks, the heart rate variability was computed and further
features were extracted from the resulting signal, including
the mean and root mean square deviation of the heart rate vari-
ability. Moreover, the slope of a linear regression fitted to the
R peaks occurrences was computed. Additionally, based on
[73], wavelet transform decomposition coefficients were
also extracted, using a Daubechies wavelet of order 8 at
the level 4 applied on the detected and aligned R peaks. The
final feature was generated by computing the mean of the
low frequencies coefficients representing an approximation
of the original ECG signal.

Finally, following the decomposition of the EDA signal
into its phasic and tonic components based on a convex
optimisation algorithm proposed by Greco et al. [74], 7
additional statistical features were extracted from the phasic
component (number of skin conductance responses, mean ampli-
tude of the responses, mean, standard deviation, maximum, range
and area under the curve of the phasic component) and 10

more from the tonic component (mean and standard deviation
of the tonic component and its first and second temporal
derivatives, maximum, minimum, range and area under curve
of the tonic component).

Feature Vectors. Therefore, both RSP and EMG signals are
represented by feature vectors of dimensionality 65. The
ECG feature vector consists of the common set of features
combined with those extracted using the analysis of the
PQRST waves and those produced throughout the wavelet
decomposition of the signal, which results into a feature
vector of dimensionality 654 58 = 123. The EDA feature
vector is generated by concatenating the set of common fea-
tures with those extracted from both phasic and tonic com-
ponents, resulting in a feature vector of dimensionality
65+ 7+ 10 = 82.

7 CLASSIFICATION ARCHITECTURES

This section provides a description of the classification
architectures assessed within the scope of the current work.

Each modality is characterised by specific properties
which provide valuable and distinctive insights about the
level of artificially induced pain. A classification system
based on a single modality should then be able to use these
insights in order to perform its task to a satisfactory extent.
However, the performance of the whole system can be sig-
nificantly improved by appropriately combining the infor-
mation provided by several modalities. Multiple classifier
systems are able to take advantage of the diversity as well
as the complementarity of the information extracted from
each of the involved modalities in order to improve the per-
formance of the system. Moreover, single modality classifi-
cation systems can be unstable due to their reliance on one
unique modality, in particular in case of missing data. Mul-
tiple classifier systems on the other hand can improve the
robustness of the recognition system, since the information
used to perform the classification task stems from a variety
of modalities. Thus, several multiple classifier system archi-
tectures have been designed and assessed. Information
fusion is performed at different levels of abstraction, using
both trainable and fixed mappings.

The designed fusion architectures use Random Forests
classifiers as base classifiers. Proposed by Breiman [75],
Random Forests consist of a committee of bagged decision
trees which are trained using a combination of both random
sub-space and random sub-sampling methods. New sam-
ples are classified by applying majority voting to the deci-
sions of the bagged trees. Random Forests are known to be
efficient and robust against high dimensional data and do
not require lengthy parameter searches for performance
optimization in comparison to commonly used classifiers
as, for example, SVMs.

The first evaluated fusion architecture consists of an
early fusion approach, depicted in Fig. 6a. Early fusion con-
sists of concatenating the descriptors extracted from each of
the available modalities into one single high dimensional
feature vector. A single Random Forests classifier is subse-
quently trained on the resulting high dimensional dataset.
Some of the most prominent advantages of an early fusion
approach are its simplicity and the potential reduction of
the complexity of the classification task resulting from the
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Fig. 6. Fusion Architectures. (a): Early Fusion. (b): Late Fusion A.
(c): Late Fusion B. For both late fusion architectures, two fixed mappings
(Mean and Max) and two trainable mappings (LDA and Pseudo-inverse)
are evaluated. The mappings are applied on the classification scores of
the base classifiers to generate the final label of an unseen sample.

combination of complementary descriptors. Moreover, no
additional training and optimisation phase is needed and
therefore the whole dataset can be used for the optimisation
of the base classifier. However, several drawbacks emerge
from the combination of the descriptors at such an early
phase. First, the resulting recognition system is inflexible
and is unable to deal with missing data, since it relies on the
availability of all involved modalities. Moreover, the result-
ing high dimensional dataset increases the computational
requirements. Last, there is a high probability of running
into a sub-optimal solution for the classification task due to
the so called curse of dimensionality [76].

The next fusion architectures consist of late fusion
approaches. The fusion strategy in Fig. 6b consists of
concatenating the descriptors extracted from the physiologi-
cal modalities into a single input channel. The same proce-
dure is undertaken with the descriptors extracted from
the video modality. Subsequently, a single Random Forests
classifier is trained on each of the three input channels
(audio, video, physiology), followed by the combination of
the resulting scores in an aggregation layer. The last fusion
strategy in Fig. 6¢ consists of training a single Random
Forests classifier on each individual set of descriptors, fol-
lowed by the combination of the base classifiers’ outputs in
an aggregation layer.

In the current work, several aggregation rules consisting of
two fixed mappings (Mean and Max) and two trainable map-
pings (Linear Discriminant Analysis and Pseudo-inverse) are
evaluated. In the following lines, ¢ € N represents the number
of classes while n € N depicts the number of base classifiers.
Moreover, N € N depicts the size of the testing set and 7Tr € N
depicts the size of the training set. The classification output of
each base classifier k € {1,...,n} is represented by the matrix
CF = (df ) <ini<jce With 0 < df; <1, Y(i,j) € [1,N] x [1,¢]
and j* € {1,...,c} denotes the label assigned to an unseen
sample.

Fixed Mappings. Fixed aggregation rules are simple,
straightforward and characterised by the non-existence of
parameters that have to be optimised in order to proceed
with the combination of the base classifiers’ outputs. One of
the most used fixed mappings is the simple average aggre-
gation rule (Mean). It consists of averaging the classification
scores of the base classifiers for each class and subsequently
assigning the label of the class with the maximum averaged
score:
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Another popular fixed mapping is the maximum aggrega-
tion rule (Max). Analogously to the average aggregation
rule, an unseen sample is assigned the label of the class
with the maximum score amongst the outputs of the base
classifiers:

max d¥ .. = max ( max df,j), Vie{l,...,N}. (2)

1<k<n J 1<j<e \ 1<k<n

Trainable Mappings. Trainable combination rules are char-
acterised by a second training step following the training of
the base classifiers intended to optimise the parameters of
the aggregation layer. Therefore, an extra set of data is
required (and set aside) in order to proceed with an effec-
tive training of the aggregation layer. In the current work, a
linear discriminant analysis classifier (LDA) [77] is trained
and applied on the outputs of the base classifiers in order to
assign a label to an unseen sample. The idea behind a LDA
classifier is to consider all involved classes as normally dis-
tributed and sharing an identical covariance matrix. Based
on these assumptions, each class’s conditional probability
density function is estimated. The predictions are subse-
quently undertaken by using the Bayes’s rule, and an
unseen sample is assigned the label of the class with the
maximum conditional probability estimation [78].

A Pseudo-inverse (Pinv) [79] mapping has also been
evaluated. The idea behind the Pseudo-inverse aggregation
rule is to generate a least-squares linear mapping by com-
puting the pseudo-inverse of the base classifiers horizon-
tally concatenated outputs C = [C%,...,C"] € [0,1)7(™
(C* € [0,1)" represents the output of each classifier k for
the whole training set) and multiplying it with the corre-

sponding class labels Y € {0,1}
available in the training set:

Trxe

accordingly to the data

M € R™*° = lim C’T(C’CT + o{[)_ly 3)

o—00

The mapping is subsequently applied to the horizontally
concatenated outputs of the base classifiers for an unseen
sample and the assigned label corresponds to the class with
the maximum estimated score:

mn

[
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= ] ' 1<m<ec¢

k=1 j

ZZ%WQ
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with i = ¢(k — 1) + jand M = (M)

Late fusion architectures offer more flexibility in compar-
ison to an early fusion approach since the modalities are
grouped in several input channels. Moreover, the probabil-
ity of running into a sub-optimal solution due to the size of
the feature sets is reduced. However, the system still relies
on the availability of all recorded modalities and an extra
set of data is needed in order to train the aggregation layer
in case a trainable combination rule is applied. Thus, a sub-
stantial amount of data is needed in order to effectively
train not just the base classifiers, but the aggregation map-
ping as well.

1<i<en,1<m<c
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Fig. 7. Temporal Window Analysis. (a): Left Forearm. (b): Right Forearm. The results depict the median accuracy for each evaluated temporal win-
dow, computed for each modality by applying a 10-fold cross validation evaluation in a user specific setting. The features involved in this evaluation
are specific to each temporal window. These windows have lengths ranging from 4 sec to 6.5 sec and are temporally shifted in steps of 1 sec, starting

from the temperature elevation onset point until a maximum shift of 5 sec.

8 EXPERIMENTS AND RESULTS

In this section, a description of the undertaken experiments
and the corresponding results is given. First, the experi-
ments undertaken to proceed with the segmentation of the
recorded signals consisting of defining adequate windows
for modality specific feature extraction is described. Next,
classification experiments and results in both user specific
and user independent settings are described. Since the tem-
perature calibration was performed individually and itera-
tively at the beginning of each session, the assessment is
performed for each forearm separately in the Sections 8.1,
8.2 and 8.3. Further experiments with the merged data are
performed and described in Section 8.4.

8.1 Temporal Window Analysis

The first experiment consisted of the evaluation of several
temporal windows from which the descriptors were
extracted for each specific modality in order to proceed
with the classification task. This analysis was motivated by
the existence of a temporal latency between the moment in
time at which an artificial pain elicitation is triggered and
the moment at which the reaction of a participant to this
specific elicitation is observable in a given signal. Therefore,
an approximation of this temporal latency could help in
defining the boundaries of the response to the triggered elic-
itation for each signal individually and thus improve the
classification performance of the recognition system.

In [27], the authors show that the level of energy within
an audio signal is low during the elicitation phase before it
shortly and significantly increases within the phase during
which the corresponding temperature is gradually dropped
to the baseline temperature. This observation corresponds
to a typical demeanour of the participants observed during
the experiments and consisting of the participants’ breath
being held during painful phases, subsequently followed
by some deep exhale as soon as the temperatures became

bearable and the pain receded (see Fig. 5). This heavy expi-
ration corresponds to the aforementioned peak of audio sig-
nal energy. This observation also suggests that potentially
valuable insights about the actual level of pain elicitation
could be extracted from temporal windows defined within
the last seconds of an elicitation.

On the other hand, facial movements as response to a
painful stimulation have a lower latency compared to the
audio signal. For most of the participants, observable reac-
tions in the facial area were almost instantaneous as soon as
the targeted tolerance temperature (73) was reached. Fur-
thermore, the response latency in the physiological signals
seems to be the highest amongst all recorded modalities.
Since these physiological modalities are regulated by the
sympathetic nervous system, a certain delay is to be
acknowledged between the acquisition of the relayed infor-
mation (related to an external stimulus) by the central ner-
vous system and the feedback consisting of a specific
response to the stimulus.

The temporal window analysis was conducted by per-
forming a grid search, which consists of performing succes-
sive classification tasks based on descriptors specific to each
modality and extracted from several windows of varying
lengths and positions in time. The lengths of the windows
vary between 4sec and 6.5sec. Each window, was tempo-
rally shifted in steps of 1 sec starting from the onset point in
time when the temperature starts to increase (see Fig. 1a),
with a maximum shift of 5sec. These ranges were selected
in order to avoid extracting ambiguous information from
sections in time which are not related to the current pain
elicitation. From each specific window, the extracted
descriptors were used to perform a 10-fold cross validation
evaluation of a binary classification task (I versus 7%) in a
user specific setting. For the audio modality, the MFCC-
based descriptors are the unique features involved in this
evaluation. For the video modality only the descriptors
based on the tracked landmarks are involved while all
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Fig. 8. Signal segmentation. The video features are extracted from a
window of length 6.5 sec with a temporal shift of 2sec from the onset.

The audio and physiological features are extracted from an identical win-
dow of length 4.5 sec with a temporal shift of 4 sec from the onset.

descriptors extracted from each physiological modality are
used to proceed with this evaluation.

Figs. 7a and 7b depict the results of the performed grid
search for the left forearm and right forearm respectively.
The results displayed correspond to the median of the clas-
sification accuracy of the user specific 10-fold cross valida-
tion evaluation for each specific modality. A first look at
these figures points at the similarity of the results for both
forearms. At a glance, EDA appears to achieve the best clas-
sification performances in comparison to the other modali-
ties. Moreover, both EMG and audio modalities appear to
be the worst performing modalities. Still, most of the modal-
ities achieve low classification rates when the descriptors
are extracted from windows having a lower boundary
located within the first 2 sec of pain elicitation, regardless of
the length of the windows.

Furthermore, a substantial improvement in the classifica-
tion performances can be observed when the temporal win-
dows are starting within a range of 3sec to 5sec following
the temperature elevation onset, for both audio and physio-
logical modalities. On the other hand, the performance
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improvements concerning the video modality appear to
rely more on the length of the window than on the temporal
shift, since relatively good classification performances are
depicted for windows extracted within temporal shifts
ranging from 1sec to 5sec. Thus, the exact combination of
window length and temporal shift in order to achieve the
best classification performance depends on the nature of
each modality which confirms the assumptions stipulated
earlier.

Based on these findings, a modality specific signal seg-
mentation is performed as depicted in Fig. 8. Video descrip-
tors are extracted from temporal windows with a length of
6.5sec and a temporal shift of 2sec from the onset. The
descriptors of the audio and physiological modalities are
extracted from identical windows of length 4.5sec, with a
temporal shift of 4 sec.

8.2 User Specific Binary Classification Results
The next experiment consists of the evaluation of the pain
recognition system in a user specific setting. For this evalua-
tion, the descriptors extracted from the audio modality are
concatenated into a single input channel. The evaluation is
performed as a “No Pain” versus “Pain” binary classifica-
tion problem, consisting of the discrimination between the
baseline temperature (7p) and each of the 3 different tem-
peratures (T3, T3, T3). Therefore, a stratified 10-fold cross
validation evaluation is performed on the dataset specific to
each single participant. Moreover, the evaluation is per-
formed for each modality individually, followed by the
evaluation of the fusion strategies presented in Section 7.
The results, consisting of the average classification accuracy
and the standard deviation over the entire 40 participants,
are depicted in Table 1.

Overall, low pain elicitation temperatures (17 and 75) are
very difficult to discriminate from the baseline temperature
(T). The best performance for the classification task T

TABLE 1

User Specific Classification Results (Mean(in%) + Standard Deviation)
Forearm Left Right
Task Tovs. Ty Tovs. T, Tovs.T3 Tovs.Tq Tovs.T, Tovs. T3
Audio 51.91 + 8.47 52.53 +9.38 66.64 +17.68 51.29 +6.74 52.45 +10.81 66.45 + 16.08
Head Pose 48.08 £+ 8.41 52.52 +10.13 70.58 £14.23 50.60 + 8.76 56.37 £ 10.04 71.18 £13.84
Geometric 49.60 £ 7.31 52.88 £9.25 72.44 £12.97 50.38 = 9.06 57.22£9.29 72.51 £14.72
LBP-TOP 50.36 £ 7.00 53.72£9.79 72.40 £ 15.76 50.32 £ 8.40 57.35 £10.71 75.50 £ 12.41
EMG 48.67 £9.14 52.16 £9.29 60.15 £+ 14.35 48.26 £7.94 52.09 £8.28 61.53 £15.90
ECG 50.37 = 7.90 53.39 +9.08 68.41 £ 13.61 49.23 £ 7.41 53.98 £ 8.22 68.81 £+ 15.60
RSP 50.44 +9.23 53.94 £ 10.95 70.29 £ 13.16 50.25 + 8.08 55.32 £8.19 70.22 £14.02
EDA 52.74 +7.64 59.96 + 12.86 80.24 +13.51 48.84 £ 8.62 59.16 + 14.31 79.78 +16.03
Early Fusion 51.46 £ 7.89 57.40 £ 9.52 81.56 £ 12.12 50.88 £ 8.28 59.45 £11.75 82.63 £ 11.56
Late Fusion A (Mean) 50.59 + 8.94 59.02 + 10.81 83.13 +£12.00 51.61 + 7.87 60.91 +12.69 84.67 £11.01
Late Fusion A (Max) 51.06 £9.04 59.82 £10.08 82.53 £12.20 50.67 £ 8.46 60.65 £ 12.24 84.72 +11.09*
Late Fusion A (LDA) 50.90 &+ 7.53 58.60 + 10.53 81.02 £ 12.68 50.00 + 7.47 56.94 + 10.15 81.24 +£12.53
Late Fusion A (Pinv) 50.24 £ 7.43 58.27 £10.42 82.16 £12.85 49.83 £7.04 56.99 £ 10.48 82.30 £ 12.49
Late Fusion B (Mean) 51.36 £8.72 58.30 £ 10.60 82.16 £ 12.81 50.94 + 8.30 59.88 £ 12.42 83.36 £ 11.52
Late Fusion B (Max) 50.19 £8.72 5847+ 11.74 83.13 +£12.85 52.64 + 8.06 59.71 + 13.46 83.19+12.49
Late Fusion B (LDA) 50.11 £ 6.38 57.62 £ 9.83 80.46 £ 13.04 50.14 £ 6.77 57.14 £12.15 81.16 £ 14.37
Late Fusion B (Pinv) 49.36 £ 6.61 57.79 + 9.58 80.42 +13.07 51.04 + 7.46 57.39 +£12.10 81.33 £ 14.63

The best performance achieved by a single modality is underlined and the best overall performance is depicted in bold. An asterisk (*) indicates a significant perfor-
mance improvement between the best performing fusion architecture and the best performing single modality. The test has been conducted using a Wilcoxon

signed rank test with a significance level of 5%.



754

TABLE 2

User Independent Classification Results (Mean(in%) + Standard Deviation)
Forearm Left Right
Task Tovs. Ty Tovs.T, Tovs.Ts Tovs. Ty Tovs.T, Tovs.Ts
Audio 50.80 4+ 5.50 52.25 +6.24 63.40 + 15.63 51.04 £ 7.01 49.73 +5.84 65.04 +13.99
Head Pose 50.42 +6.71 50.09 + 7.08 61.07 + 15.58 52.55 + 5.67 51.84 +6.75 63.78 +16.28
Geometric 51.06 + 5.36 52.19+6.95 65.84 +15.44 52.46 + 5.09 54.61 +6.85 65.39 +17.16
LBP-TOP 51.69 +6.79 51.34 +6.21 60.82 4+ 13.30 51.43 +5.63 51.89 +6.11 63.74 +13.27
EMG 48.96 + 6.37 48.00 +4.83 56.23 +9.30 49.65 + 5.76 48.46 +6.03 62.00 + 14.01
ECG 51.16 +5.91 51.29 +5.45 65.04 +13.24 49.57 +5.73 51.57 + 6.67 67.26 + 14.01
RSP 51.35 +6.43 50.68 + 5.49 65.86 + 15.53 49.24 +6.88 49.84 +5.47 66.90 + 14.58
EDA 48.93 +5.84 62.34 +10.50 80.43 +13.18 53.13 +5.82 62.87 +12.10 82.16 + 13.40
Early Fusion 51.88 4+ 5.81 59.91 +8.13 80.79 4+ 12.27 53.86 4+ 5.70 62.37 +10.85 80.61 4+ 12.33
Late Fusion A (Mean) 50.75 +5.28 61.05+9.70 80.86 + 12.23 52.65 + 6.83 61.88 +10.04 81.58 +£12.18
Late Fusion A (Max) 51.03 £5.71 60.46 +9.41 80.70 +12.14 52.15 4+ 7.04 61.89 + 10.50 81.58 +12.10
Late Fusion A (LDA) 49.88 +6.90 58.72 +10.96 70.57 £12.63 50.87 £ 7.11 62.36 4+ 10.88 82.21 +13.18
Late Fusion A (Pinv) 49.93 £ 6.51 58.62 + 10.85 81.04 +11.76 49.42 + 6.63 62.83 + 11.09 82.81 +12.21
Late Fusion B (Mean) 48.91 +5.26 58.25 + 8.52 77.84 +£14.25 53.20 4+ 7.00 61.89 +10.16 80.01 +13.27
Late Fusion B (Max) 49.74 +£5.72 58.72 +9.33 81.08 +12.99 51.73 £6.47 61.97 +9.64 81.31 +11.71
Late Fusion B (LDA) 50.75 + 7.60 59.40 +10.87 81.46 +11.95 51.71 +£6.04 62.33 +12.01 83.36 £ 12.75
Late Fusion B (Pinv) 51.00 4+ 6.89 59.44 +10.28 81.76 +12.08 51.45 +5.74 62.88 +11.02 83.95 + 12.65*

A leave one user out (LOUO) cross validation evaluation is performed. The best performance achieved by a single modality is underlined and the best overall per-
formance is depicted in bold. An asterisk (*) indicates a significant performance improvement between the best performing fusion architecture and the best per-
forming single modality. The test has been conducted using a Wilcoxon signed rank test with a significance level of 5%.

versus T} is achieved by the EDA with a performance of
52.74 percent for the left forearm and by the second late
fusion architecture in combination with the maximum
aggregation rule for the right forearm, with an average
accuracy of 52.64 percent. Concerning the classification task
T, versus T5, both the EDA and the first late fusion architec-
ture in combination with the average aggregation rule
achieve the best performances for the left and right forearm,
with average accuracies of 59.96 and 60.91 percent respec-
tively. Although these values are significantly above chance
level, only the classification system based on EDA is able to
discriminate between those low levels of pain elicitation to
an acceptable extent. Meanwhile, each single modality
achieves relatively good classification performance for the
classification problem 7 versus 73. This can be explained
by the fact that the stimuli induced with the pain tolerance
temperature (73) resulted in more observable reactions in
each modality. EDA is once again the best performing single
modality and significantly outperforms all the other modali-
ties, while the worst performing single modality consists of
the trapezius EMG with an average classification accuracy
of 60.15 percent and 61.53 percent for the left and right fore-
arm respectively.

Moreover, the best performing fusion architecture is the
first late fusion architecture (Late Fusion A) in combination
with fixed mappings. The performances of the fixed fusion
mappings are quite similar, with the average combination
rule performing best in case of the left forearm with an aver-
age accuracy of 83.13 percent, and the maximum aggrega-
tion rule performing best in case of the right forearm with
an average accuracy of 84.72 percent. Additionally, fixed
mappings perform significantly better than trainable map-
pings, regardless of the applied late fusion architecture.
This can be explained by the fact that in a user specific set-
ting, the amount of training data is insufficient in order to
effectively train the base classifiers and optimise a trainable
aggregation layer.

8.3 User Independent Binary Classification Results
The following experiment consists of the evaluation of the
generalisation capabilities of the different classification
models to unseen users by performing a leave one user out
(LOUO) cross validation evaluation with the same binary
classification settings as in Section 8.2. The results of the
evaluation are depicted in Table 2.

At a glance, there is a significant drop of performance for
the video modality in comparison to the results computed
in a user specific setting (see Table 1). This can be explained
by the diversity of expressiveness of pain perception due to
user specific attributes. This drop of performance can also
be seen in the other modalities, except for the EDA which
seems not to be affected by individual characteristics. As a
matter of fact, the performances of the EDA are quite simi-
lar, and in some cases better than those yielded in a user
specific setting. Analogously to the user specific results,
EDA significantly outperforms the other modalities.

The second late fusion architecture (Late Fusion B) per-
forms in most cases better than the first late fusion architec-
ture (Late Fusion A) in this setting. Moreover, in contrast to
the results yielded in a user specific setting, trainable map-
pings perform in most cases better than fixed mappings.
The amount of training data available in a LOUO cross vali-
dation seems to be sufficient to effectively train the base
classifiers and the trainable fusion layer. The best classifica-
tion performances are yielded for the classification task 7j
versus T3 and for each forearm by the second late fusion
architecture in combination with the pseudo-inverse fusion
layer, with performances of 81.76 and 83.95 percent for the
left and right forearm respectively.

For some further assessment of the proposed fusion
approaches, an additional experiment is carried out using
all previously described channels except the EDA. This
experiment is motivated by the previous results (see Tables 1
and 2) which depict a very high correlation between the per-
formance of the fusion architectures and the performance of
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Fig. 9. Ty versus T3 Results Comparison. (a): User Specific (10-fold cross validation). (b): User Independent (LOUO cross validation). An asterisk (*)
indicates a significant performance improvement between the fusion architecture and the corresponding best performing single modality. The test
has been conducted using a Wilcoxon signed rank test with a significance level of 5 percent. Within each box plot, the mean and median classification
accuracy across all 40 participants are depicted respectively with a dot and a horizontal line.

EDA. Although the fusion approaches outperform the best
performing single modality, the benefit of the combination
of the information stemming from different sources is over-
shadowed by the performance of EDA. Therefore, the best
performing fusion architectures in each evaluation setting
(Late Fusion A with the average aggregation rule for a user
specific evaluation and Late Fusion B with the pseudo-
inverse aggregation rule for a user independent evaluation)
are used to perform the fusion of all involved channels
except EDA. A summary of the results for the classification
problem Tj versus T3 is depicted in Fig. 9.

In the absence of EDA, the best performing modality in a
user specific evaluation setting is the video modality. The
best performing single channel consists of the geometric
and LBP-TOP features with classification rates of 72.44 and
75.50 percent for the left and the right forearm respectively.
The fusion approach (Late Fusion A (Mean)) significantly
outperforms the video modality for both sessions with clas-
sification rates of 77.46 and 79.54 percent for the left and the
right forearm respectively. In a user independent setting,
both RSP and ECG modalities perform best with similar
classification performances. RSP performs slightly better
with an average accuracy of 65.86 percent for the left fore-
arm, and ECG performs better with a performance of 67.26
percent for the right forearm. The fusion approach (Late
Fusion B (Pinv)) significantly outperforms both channels
with classification performances of 70.71 percent for the left
forearm, and 71.66 percent for the right forearm. In both
evaluation settings and for both forearms, there is a

significant drop of performance when the information
stemming from EDA is excluded. However, the fusion
approaches are still able to significantly outperform the best
performing single modality in all cases by combining the
information provided by the remaining sources.

Altogether, in both user specific and user independent
settings, the discrimination between the different levels of
pain becomes more challenging the lower the level of pain
elicitation gets. Each single modality provides valuable
insights for the recognition of the different pain intensities,
whereby some of them seem to be more appropriate for the
current experimental settings (thermal pain elicitation).
Although the recorded audio material comprises substan-
tially paralinguistic vocalisations, the performance of the
audio modality is significantly better than chance for the
classification task 7Tj versus 73 in both user specific and user
independent settings. The audio channel also outperforms
the trapezius EMG in all classification tasks and settings.
Moreover, the sensor used to perform the audio recordings
is less invasive than physiological sensors and audio data is
also much cheaper to acquire. Furthermore, the recorded
audio signal does not require any substantial processing
step (except for the usual signal filtering and denoising
steps) like the localisation of the facial area for the video sig-
nal as an example. Finally, the audio channel is less affected
than the video channel by the inter-individual differences in
pain perception and pain expressions (see Fig. 9). Therefore,
the audio signal is a promising and relevant modality for
the development of a pain intensity recognition system.
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TABLE 3
Multi-Class Classification Results
(Mean(in%) + Standard Deviation)

Dataset Left Forearm Right Forearm Both Forearms
Audio 31.994+7.66 31.87+£7.65 32.35%6.87
Head Pose 30.75+£7.53 33.31£7.87 32.06%7.08
Geometric 33.76 £7.61 34.37+£9.57 34.22+£7.54
LBP-TOP 30.97+6.34 31.80£7.94 30.87%5.99
EMG 28.344+4.99 30.82+£7.67 29.7345.30
ECG 31.83+6.76 33.62+£7.17 33.58£6.85
RSP 33.16 £7.83 33.62+£7.61 33.8945.90
EDA 42174+9.11 41.63+9.89 4292+ 7.07
Late Fusion B (Pinv) 42.48 +-8.35 43.11+7.93 43.89+7.61

The results correspond to a 4-class classification task (Tj) versus Ty versus T

versus Ts). The random performance for a 4-class classification task is 25%. The
evaluation is performed in a LOUO setting. The best performance achieved by a
single modality is underlined and the best overall performance is depicted in bold.

The significant drop of performance of the video modality
in a user independent evaluation points to the negative effect
of generalisation on a recognition system based uniquely on
the video modality. A personalisation scheme is needed in
this case in order to improve the classification performance
of the system. The worst performing modality so far has
been the EMG of the trapezius muscle. While both RSP and
ECG perform similarly in both user specific and user inde-
pendent settings, EDA has proven to be the best performing
single modality in all evaluated settings. EDA not only sig-
nificantly outperforms all the other modalities but also does
not seem to be affected by the variety of inter-individual
responses to pain. However, this observation is susceptible
to be biased by the current experimental settings which con-
sist of an isolated and controlled laboratory environment
combined with pain elicitation through thermal stimuli. Fur-
ther evaluations with diverse experiments covering different
types of pain (chronic and acute pain) in both experimental
and clinical settings, have to be carried out in order to better
assess the relevance of EDA for pain assessment.

Finally, for the task 1 versus T3 in both user specific and
independent settings, the proposed fusion architectures are
able to improve the performance of the recognition system
by combining the insights provided by each specific modal-
ity. The performance of each fusion approach depends sub-
stantially on the amount of data available for the training
phase. Given enough training data, trainable mappings are
able to outperform fixed mappings.

8.4 Multi-Class Classification Experiments in a User
Independent Setting

In the previous experiments, the data specific to each forearm
was assessed separately. This was motivated by the fact that
the calibration of the temperatures was performed individu-
ally at the beginning of each session, resulting in different
ranges of temperature for each forearm. However, the results
depicted so far are quite similar, which hints at the similarity
of the responses, regardless of the forearm on which the elici-
tations are performed. Based on this observation, further
experiments, involving the merged data of both sessions, are
conducted.

In Table 3, the results of a 4-class classification task in
a user independent setting are depicted. A comparison

Accuracy: 42.48

Accuracy: 43.11 Accuracy: 43.89
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Fig. 10. 4-class Classification Task Confusion Matrices (Late Fusion B
(Pinv) in a LOUO setting). (a): Left Forearm. (b): Right Forearm. (c):
Both Forearms. The rows correspond to the ground truth, while the col-
umns correspond to the predictions.

k] 0.07 0.04 0.14 V&)

between the performance of the pain intensity classification
system is addressed when the data specific to each session
is assessed separately and when it is combined in a single
dataset. Similarly to the results depicted so far, EDA signifi-
cantly outperforms the other modalities and the overall per-
formance of the classification system is improved by the
fusion architecture. The yielded classification rates are quite
similar in all three cases. This can also be seen in the corre-
sponding confusion matrices of the late fusion classification
approach depicted in Fig. 10. The lower temperatures 7;
and 75 are mostly confused with the baseline temperature
Ty, while the pain tolerance temperature can be effectively
classified.

Furthermore, an experiment is performed by training the
classification architecture on either datasets separately and
also on the combined dataset, and subsequently performing
the evaluation on the data specific to either the left or the
right forearm. The results of the evaluation are depicted in
Fig. 11. The similarity of the depicted results regardless of
the data used to train the classification architecture suggests
that there is no significant difference between the data spe-
cific to both forearms.

Therefore, the previously conducted experiments (see
Section 8.3) are reiterated, but this time based on the com-
bined data of both sessions. Additionally, a 3-class classifi-
cation task involving the baseline temperature, and both
temperatures 7, and 73 is conducted. This is motivated by
the fact that 77 is mostly confused to 7j and can not be con-
sidered as an effective pain elicitation temperature. The elic-
itations performed with this specific temperature could not
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Fig. 11. 4-class Classification Task Results Comparison (Late Fusion B
(Pinv)) in a LOUO setting. (a): The test evaluation is performed on the
data specific to the left forearm. (b): The test evaluation is performed on
the data specific to the right forearm.
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TABLE 4
Classification Results (Mean(in%) + Standard Deviation)

Task Random Audio Head Pose  Geometric LBP-TOP EMG ECG RSP EDA Late Fusion B (Pinv)
Ty vs. Ty 50.00 49.23 +4.37 51.73+4.71 52.58 £4.00 51.50+4.34 49.97 548 50.39 +3.58 50.21 £4.75 52.14 + 3.95 51.39 +4.18

To vs. Th 50.00 50.19 £5.47 51.68 £5.10 52.87+4.49 51.73+4.23 50.50+4.99 51.69+5.16 52.04+561 62.96+9.02 62.28 4+ 8.98

Ty vs. Ty 50.00 64.75 4+ 14.27 63.05 + 14.28 66.22 + 14.48 62.42 £ 12.18 59.33 £ 10.18 66.28 & 12.59 67.27 £ 11.17 82.23 £ 10.57  83.39 10.23"
Tovs. Ty vs. Ty 3333  42.80 £8.77 42.944+9.48 45.154+10.10 41.78 £8.12 39.39 +6.43 44.42+8.41 45.18 £8.19 57.84 4+ 10.51 59.53 + 9.94"

Ty vs. Ty vs. 25.00 32.35+6.87 32.06 +£7.08 34.22+7.54 30.87+5.99 29.73+5.30 33.58+6.85 33.890+5.90 42.92+7.07 43.89 +7.61

Ty vs. Ty

These results have been achieved by merging the data specific to each forearms into a single set and performing a LOUO cross validation evaluation. The best per-
formance achieved by a single modality is underlined and the best overall performance is depicted in bold. An asterisk (*) indicates a significant performance
improvement between the fusion architecture and the corresponding best performing single modality. The test has been conducted using a Wilcoxon signed rank

test with a significance level of 5%.

trigger any significant reaction in any of the recorded
modalities. The results of the evaluation are depicted in
Table 4. The depicted results are in conformity with the pre-
vious findings, derived from individual forearms. The
fusion architecture outperforms the best performing modal-
ity in both multi-class classification tasks and for the binary
classification task 7 versus 73. The improvement is signifi-
cant with classification rates of 83.39% (p-value: 1.1%) and
59.53% (p-value: 2.2%) for both Tj versus T3 and T versus
T, versus Ty classification tasks respectively. By taking into
account that the class labels are ordinal scaled, the average
deviation in absolute value of the predicted class from the
true one (MAE) [80], [81] for both classification tasks are
respectively 0.468 and 0.811. The observed agreement based
on linear (respectively quadratic) weights [82] is respec-
tively 0.750 (0.826) and 0.728 (0.844) for each of both classifi-
cation tasks.

9 CONCLUSION

In this work, several classifier fusion strategies have been
evaluated within the scope of the development of a multi-
modal pain recognition system. The assessment of the pro-
posed approaches is performed on the recently recorded
SenseEmotion Database, which consists of several individuals
subjected to three gradually increasing levels of artificially
induced pain stimuli. The authors suggest for the first time
a combination of three distinctive modalities (Audio, Video,
Physiology) for the recognition of artificially induced pain
intensities. The fusion approaches consist of a combination
of modality specific descriptors at several levels of abstrac-
tion with different aggregation rules (fixed and trainable
mappings). EDA has proven to be the best performing sin-
gle modality regardless of the classification setting, and
seems not to be affected by the individual characteristics of
each participant.

Furthermore, the experimental results have proven the
effectiveness of the proposed fusion approaches for these spe-
cific experimental settings. Late fusion architectures in combi-
nation with fixed mappings are able to outperform the best
performing single modality in a user specific classification set-
ting. Moreover, late fusion architectures combined with train-
able mappings perform better than those combined with
fixed mappings in a user independent setting, and improve
the performance of a classification system based uniquely on
the best performing single modality. These findings suggest

that the amount of data available at the training phase plays a
crucial role in the selection of an appropriate fusion strategy
which can substantially improve the performance of a pain
recognition system.

Still, the assessment and recognition of pain intensities
remains very challenging. Furthermore, the data used for
the current assessment stems from an experimental setting
in a controlled environment. Therefore, the current assess-
ment does not reflect the conditions of a clinical setting. In
order to realise a reliable online pain recognition system,
more realistic data are to be gathered and evaluated. Several
challenges have to be addressed, beginning with the sensor
system to be used in a realistic context in order to reliably
record the data. This also concerns the actual real time
implementation of several data pre-processing steps as well
as the design and implementation of the classification archi-
tectures. In the future iterations of the current work, fusion
approaches which are robust against missing and erroneous
data as well as feature selection for dimensionality reduc-
tion should be addressed. Also, deep learning fusion archi-
tectures have shown promising results in different fields of
application and are therefore believed to be able to signifi-
cantly improve the performance as well as the robustness of
a pain recognition system. Furthermore, the extent to which
the designed approaches can be applied for the discrimi-
nation between pain intensities and different types of
emotional states resulting from the combination of different
levels of arousal and valence (e.g., stress, disgust, anger)
has not been addressed and therefore constitutes an inter-
esting extension of the current work.
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