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1. Introduction

In 1974, Penrose [10,11] introduced a class of tilings of Euclidean plane which
was based on the geometry of the regular pentagon. These tilings are aperiodic:
They are not invariant under any translation. Yet there is another strong
order, some self similarity with respect to a certain decomposition of the tiles
(“inflation”). De Bruijn [2] gave a different description of Penrose tilings as
orthogonal projections of subsets (“strips”) of the regular 5-grid Z

5 ⊂ R
5

onto a certain 2-plane E ⊂ R
5 (“cut and project method” or “projection

method”). Such tilings will be called “projection type”. De Bruijn has also
used an equivalent construction, the “pentagrid method” (see Sect. 7).
The complete cartwheel tiling is a Penrose tiling of the entire plane introduced
first by Gardner [5], see also [6]. It has no exact pentagonal symmetry but in
the large it looks like a cartwheel with decagonal symmetry. It can be easily
generated from a finite tiling which is self-similar under inflation: A decagon
occurring frequently in every Penrose tiling.
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The dotted inner domain with its subdivision is (after a 180◦ turn) homothetic
to the whole decagon with its subdivision by the fat lines. Subdividing again
and again and enlarging the figure in every step by the golden ratio, we obtain
a tiling of the whole plane which we call the complete cartwheel tiling. Our
main theorem (Sect. 3) states that this is not a projection tiling.
We start with an elementary geometric definition of Penrose tilings which
extend to the whole plane. It is not sufficient to prescribe tiles and matching
rules stating which pairs of oriented edges may be adjacent to each other,
such as in [10,14]. We show that there are traps: Finite tilings which obey all
matching rules and yet cannot be extended over certain edges. In Sect. 3 we
describe the complete cartwheel tiling and show in Sect. 6 that it cannot be
obtained from the projection method. Before, in Sects. 4 and 5, we recall the
geometry of projection tilings.

It is our pleasure to thank Rui Pacheco for hints and discussion.

2. Penrose tilings of the full plane

To construct all Penrose tilings which extend to the full plane, we may start
with a regular pentagon with two diagonals enclosing one side. Draw a line
segment parallel to the enclosed side through the intersection point of the
diagonals. This bounds two narrow triangles, which are colored as in the sub-
sequent figure. Now the two diagonals cut off two isosceles triangles, a broad
one and a narrow one which come with a subdivision by similar triangles,
scaled down by the inverse golden ratio 1/τ with τ = 1

2 (1 +
√

5).
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Since the narrow triangle is a subset of the broad one, we only consider the
broad triangle with its subdivision. This is our initial (finite) Penrose tiling
To, where the tiles are the small triangles.
We may subdivide the small triangles in the same way as before. There are
always two mirror symmetric ways to do this. But insisting that along each
edge the subdivisions from both sides agree, we get uniqueness. In fact, the
narrow tile in the middle may have one of the following two subdivisions:

However, only the left subdivision can be extended over the right edge of the
narrow tile since both acute angles of the broad tile are uncolored. Hence the
subdivisions of the neighboring broad tiles are already fixed by the subdivision
of the edge adjacent to the narrow tile:

Call Tn+1 the tiling which arises from Tn by subdividing all tiles and enlarging
by the factor τ ; then the tiles in Tn+1 have the same size as the tiles in Tn.
The tiling T1 is in the figure above, and T2 looks as follows.

Definition. An extensible Penrose tiling is a tiling composed of the two isosceles
triangles (broad and narrow) in the regular pentagon, in such a way that any
finite subset of tiles is isometric to a subset of some Tn.

Since the third edge of any of the two isosceles triangles can be adjacent only
to the third edge of a mirror symmetric copy of itself, the triangles in the
interior of a Penrose tiling always compose to rhombs.
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Using this doubling, our third Penrose tiling T3 looks as follows.

We have marked two decagons in the tiling where the right one is pentagon-
symmetric while the left one is only reflection symmetric.

Repeatedly subdividing the right decagon which we call symmetric decagon,
we construct the two Penrose tilings with full decagonal symmetry. The other
decagon, on the left, will be called cartwheel decagon. It turns out that the
interior part of its first subdivision is similar to the original tiling, see Fig. 1
below. Thus considering the union of all iterated subdivisions, each one scaled
by τ and reflected at the vertical axis, we obtain a tiling of the full plane as
explained in the next section. We will show that this tiling cannot be obtained
by the projection method.
We still need to explain why matching rules never give sufficient conditions
for unlimited extensibility. The following figure shows the simplest situation
which is build legally in terms of matching rules but cannot be extended.
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The right figure which is the subdivision of T2 (fat lines) shows why the left
figure is legal with respect to any matching rules: The broad tile 2 is symmetric
and bounded by the narrow tiles 1 and 3, hence 1 and 3 could be also adjacent
to each other as shown in the left figure. But the left figure cannot be extended
over the left boundary since the colored vertices of the two tiles do not fit into
the gap. Of course, the same problem may arise after an arbitrary number of
subdivisions of the two tiles.

3. The cartwheel tiling C

Subdivision of the cartwheel decagon gives the pattern shown in Fig. 1 below.
It is remarkable that a copy of the original cartwheel decagon also occurs in
the center of the subdivided pattern. Therefore, by successively subdividing
and rescaling we get a tiling of the entire plane that is invariant under subdi-
vision. In fact, we start with the cartwheel decagon C1, subdivide, reflect at
the vertical axis through the center and rescale by the golden ratio τ ; then the

Figure 1 Subdivision of the cartwheel decagon
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points k, l, m, n in Fig. 1 are mapped onto K, L, M, N . Thus we obtain a new
tiling C2 of a τ -times larger decagon which contains C1. It is clear that we
can repeat this process arbitrarily: Given Ck, we obtain Ck+1 by subdividing,
reflecting and enlarging by τ , and Ck+1 ⊃ Ck. The complete cartwheel tiling is
the union of all Ck,

C =
⋃

k∈N

Ck,

which certainly satisfies our definition since any finite subset lies in some Ck

which in turn is a subset of some Tn; recall C1 ⊂ T3.

Theorem. The complete cartwheel tiling C is not of projection type.
The rest of this article is devoted to the proof of this theorem.

4. Projection tilings

The tilings produced by the projection method [2] arise as follows. We consider
the cyclic permutation A = (12345) as an orthogonal matrix permuting the 5
coordinates of R5. It decomposes R

5 orthogonally as R
5 = Rd+ E + F where

d = (1, 1, 1, 1, 1)T is a fixed vector of A and E, F are two invariant planes on
which A acts by rotations of 72 and 144 degrees, respectively.
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Let a ∈ R
5 such that a := 〈a,d〉 is an integer and such that no point of

E + a has more than 2 integer coordinates; this property of a is called general
position. Then the E-projection of the set

Σa =
(
(0, 1)5 + E + a

) ∩ Z
5

is the vertex set of a tiling Ta on E, and this is a Penrose tiling in the sense of
our definition [2,3,13]. The elements of Σa ⊂ Z

5 are called admissible for the
tiling Ta.

Remark. By using an open hypercube, our definition seems to differ from for
example Baake and Grimm who use a closed hypercube, see [1] page 278.
However, that difference is irrelevant since the cut and project method require
that the E + a must be in general position or what [1] calls generic.
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This condition can be transformed into planar geometry. Note first that any
grid point x ∈ Z

5 lies on one of the hyperplanes

Hk = {x ∈ R
5 : 〈x,d〉 = k}

for some k ∈ Z. The admissibility of a point x ∈ Z
5 ∩ Hk is decided by the so

called window [2]

Vk = πF

(
(0, 1)5 ∩ Hk

)
, (1)

which is nonempty only for k ∈ {1, 2, 3, 4}; the subsequent figure shows V1.
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More precisely, for any point x ∈ Z
n ∩ Hk and for a = 〈a,d〉 we have

x ∈ Σa ⇐⇒ πF (x) ∈ πF (a) + Vk−a . (2)

In fact, note that x ∈ Σa ⇐⇒ x ∈ (
(0, 1)5 + E + a

) ∩ Hk ⇐⇒

πF (x) ∈ πF

((
(0, 1)5 + a

) ∩ Hk

)
= πF (a) + Vk−a,

since x = xo + a ∈ Hk ⇐⇒ xo ∈ Hk − a = Hk−a. For any x ∈ Σa we denote

indx := 〈x − a,d〉 = 〈x,d〉 − a

the index of x and πE(x). In particular, when a = a
5d for a ∈ {1, 2, 3, 4}, the

tiling has the full pentagonal symmetry. Then d ∈ Σ a
5d

, and the symmetry
center πE(d) ∈ T a

5d
has index 5 − a. Note that −I maps the cases a = 1, 3

isometric onto a = 4, 2, respectively. Figure 2 below shows the case a = 1
5d

where the symmetry center has index 4.
We have marked a cartwheel decagon in this tiling. Its center is located at
πE(c) with c = e2 + e3 − e0; its mirror image πE(−e2 − e3 + e0) is a vertex of
the tiling. The next figure shows the subdivision which forms the other tiling
with full pentagonal symmetry.
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c

On the right margin we see the vectors πE(ei). Advancing by each of these
vectors increases the index by one. Since the index can move only between 1
and 4, the symmetry center in the right decagon must have index 4 for the
coarse tiling (long arrows) and index 2 for the fine tiling (short arrows). We
see again the small cartwheel decagon in the fine tiling inside the large one in
the coarse tiling. However, after blowing up the subdivision by the factor τ ,
the center of the cartwheel decagon is moved to the right. Therefore we change
the origin to πE(c) by translating Td/5 to T−c+d/5 = Td/5 − πE(c).

5. Subdivision of projection tilings

The subdivision of a projection tiling can be obtained from a linear map S on
R

5 with eigenspaces E, F and Rd which contracts on E and expands on F ,

Figure 2 A cartwheel decagon located in T 1
5d
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thus broadening the strip and making more integer grid points admissible, see
[4] for details. We use the A-invariant linear maps

Sk : ej �→ ej+k + ej−k

for k = 1, 2 where the indices are computed modulo 5. We have Skd = 2d, and
E, F are eigenspaces for S1, S2 with eigenvalues 1/τ, −τ on E and −τ, 1/τ on
F , respectively, as can be read from the following figure:
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The maps S = −S1 and R = S2 are inverse to each other modulo d since
SR(e0) = S(e3 +e2) = −(e2 +e4 +e1 +e3) = −d+e0, and similar SR(ej) =
−d+ej . Moreover, each integer grid point x ∈ Z

5 lies on one of the hyperplanes
Hk = {x ∈ R

5 : 〈x,d〉 = k} for some k ∈ Z, and S maps Hk ∩ Z
5 bijectively

onto H−2k ∩ Z
5. Since S expands on F by the factor τ , we have S(Vk) ⊃ Vk′

for k′ ≡ −2k mod 5 (see (1)) and hence S(Σa ∩ Hk) ⊃ ΣSa ∩ Hk′ and

πES(Σa ∩ Hk) ⊃ πE(ΣSa ∩ Hk′) . (3)

This shows that the vertex set of the tiling S(Ta) (which is Ta, scaled down
by the factor −1/τ) contains the vertex set of the tiling TSa; in fact S(Ta) is
the first subdivision of TSa.
In particular, S( 15d) = − 2

5d ≡ 3
5d mod d, and S( 35d) = − 6

5d ≡ 4
5d mod d,

hence S maps each of the two symmetric tilings Td/5 and T3d/5 onto the first
subdivision of the other, up to sign. The same is true for the translated tilings
P = T−c+d/5 and Q = T−c+3d/3: If we let P0 = P and Q0 = Q and define
recursively Pk+1, Qk+1 as the first subdivision of Pk, Qk, respectively, then

Pk+1 = S(Qk), Qk+1 = −S(Pk). (4)

We will also consider the inverse map R = S2, which expands on E by the
factor −τ and maps Pk+1 onto Qk and Qk+1 onto −Pk. In particular, the
cartwheel decagon Ck ⊂ Pk (centered at the origin) is mapped onto the en-
larged cartwheel decagon Ck+1 ⊃ Ck.

6. The complete cartwheel tiling does not fit into the window

In Fig. 3, a path inside the third subdivision C3 of the cartwheel ball C0 ⊂ P0

is marked. Both of its end point B, F have index 1, as the following figure
shows.
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We obtain the broken line DE by applying three times the mapping R to the
small broken line AB, and we reach the final point F by adding −(e2 + e3).
Hence we may describe the transition from the initial point B = πE(e0) to the
final point F by the affine map T (x) = R3x+b with b = −(e2 +e3)−d (The
meaning of the additional term −d which projects to 0 on E will become clear
below). Then we have F = T (B). We iterate this process by putting x0 = e0
and xj+1 = T (xj), then πE(x0) = B and πE(x1) = F . In every step the path
is prolongated, see Fig. 4 for x2 = T 2x0 = R6e0+R3b+b. Note that all points
πExj lie on the horizontal line and have index 1.
Now we want to show that the F -projection of the path x0,x1,x2, . . . does not
fit into the window V1 since its length limj→∞ |πF (xj) − πF (x0)| is precisely
the diameter of V1 along the horizontal axis, L = | 12 (eF1 + eF4 ) − eF0 | (which
is (1 + 1

2τ)|eF0 |), see the figure after (1). If C were a projection tiling, πF (x0)
would have to lie somewhere in the open window V1, thus for some ε > 0,
every point πF (xj) must have distance ≤ L − ε from πF (e0), a contradiction.

Figure 3 A path in C3
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Figure 4 A path in C6

To compute the length of the path on F we show first that

f := 1
2 (e1 + e4) = 1

2S1e0

is a fixed vector for the affine map T = S3
2 + b on R

5. In fact,

S3
2 f + b = 1

2S3
2S1e0 + b

= 1
2S2

2(d − e0) − S2e0 − d

= 1
2 (2I + S1)(d − e0) − (S2 + S1)e0 + S1e0 − d

= d − e0 + 1
2S1(d − e0) − d + e0 + S1e0 − d

= 1
2S1e0 = f

using S2S1e0 = (S2 + S1)e0 = d − e0 and S2
2 = 2I + S1 and S1d = 2d.

Hence the affine map TF := πF ◦ T |F has the fixed point πF (f). The linear
part S3

2 of T has eigenvalue 1/τ3 < 1 on F , hence TF is a strong contraction.
Thus the sequence πF (xj) = πF (T j(x0)) = T j

F (πF (x0) converges to the fixed
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point of TF , which is πF (f) = 1
2 (eF1 + eF4 ). The initial point of the sequence

is πF (x0) = eF0 . Thus the difference vectors πF (xj) − πF (x0) converge for
j → ∞ to the diameter vector 1

2 (eF1 +eF4 )−eF0 of the window V1, and therefore
|πF (xj) − πF (x0)| → L. This finishes the proof that the decagonal tiling C is
not of projection type.

7. The pentagrid

Pentagrids introduced by de Bruijn [2] consist of five families of equidistant
parallel lines in the plane. The lines point into the five pentagonal directions
and only two of them intersect in a common point.

2
3

4

1

5

Pentagrids are in one-to-one correspondence to Penrose tilings of projection
type (see Sect. 4). The vertex set of the projection tiling corresponding to an
affine plane Ea = E+a ⊂ R

5 arises by projecting Σa =
(
(0, 1)5 + Ea

)∩Z5 onto
E. The related pentagrid on the plane Ea is the intersection of Ea with the
coordinate hyperplanes Hik = {x ∈ R

5 : xi = k} for i = 1, . . . , 5 and k ∈ Z.
Vice versa, from a pentagrid and the intersection point of two of its lines
(say, taken from the last two families), we obtain three numbers ai ∈ (0, 1),
i = 1, 2, 3, which are the signed distances to the nearest hyperplane Hik (the
lengths of the arrows in the figure above). The point a = (a1, a2, a3, 0, 0) ∈ R

5

determines an affine plane Ea = E + a ⊂ R
5 whose intersection with all

hyperplanes Hik is a pentagrid isometric to the given one.
In [2, p. 9, figure 14], a part of a pentagrid is shown, which corresponds to
a cartwheel decagon. The intersections in the pentagrid correspond to tiles
whose edges meet the pentagrid lines perpendicularly. In the figure below, we
have marked the intersection points of the pentagrid and the corresponding
tiles by the same number. The figure still depends on two parameters u, v,
which reduce to one if we obey the condition

∑
i ai ∈ Z. But as a consequence

of our Theorem 3, none of these pentagrids represent the complete cartwheel
tiling.
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8. A link to traditional Islamic art

In 2005, Li and Steinhard [7] (see also [8,12]) observed that Penrose tilings
are closely related to certain seventeenth century patterns in Islamic art. The
subsequent figure shows an example from one of the entrance gates (called
“The Master”) into the courtyard of the Friday Mosque at Isfahan, Iran.

There is self similarity, and there are regular pentagons, like in Penrose tilings.
However, the Isfahan pattern shows an exact decagonal symmetry which is im-
possible for Penrose tilings. Therefore the link between the two patterns is not
completely obvious. It is revealed when we consider the pattern formed by the
set of cartwheel decagons in a Penrose tiling, and when we look for a Penrose
tiling with a quasi-decagonal symmetry. In our complete cartwheel tiling C
there is such quasi-symmetry which becomes the more exact the farther we
move away from the center. Thus we think that the Penrose pattern C is the
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closest one to the Isfahan pattern, see figure below which shows the eightfold
subdivided cartwheel decagon C8. The similarity between the Isfahan pattern
and the cartwheel tiling has also been pointed out by Makovicky [9, p. 183].

The decagons which correspond to the white circles in the Isfahan pattern
have been marked dark. Other decagons which are marked white correspond
to the following figure composed of black and white stones.

The whole complicated arrangement is part of the geometry of the complete
cartwheel tiling. Centuries ago it has been discovered by Iranian artists.
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