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H. Hopf has 1n1‘=rod.uood the use of holomorphic quadratic forms to
study surfaces with constant mean curvature in R3- The same techniques have
besn used to study surfaces immersed in spsces forms, complex projective spaces
and also tc atudy barmonic maps.

Pollowing Hopf'e idems we consider holomorphic type forms,ihat is,
forms whose zerpes behave like seross of holomorphic forms, to study surfaces
such that the morm of the mean curvature weotor or of its covariant derivative

satisfies some inequality. We also apply the mame techniques to study maps whose

tension field satisfies similar property.
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Q. Introduction

A famous theorem of H. Hopf states that the round sphere is=s
the ony compact surface of genus zero which is immersed with
constant mean curvafure in euclidean 3-space [H]. The idea of the
procf was to construct a certaln holomorphic form on the surface,
whose zeros are precisely the umbilic points. Such forms must
vanish identically 1f the surface has genus zero, and so the
inmersed surface must be a totally umbilic sphere. The
holomorphicity of this form 1s precisely equivalent to the
constant mean curvature condition. Since then, this idea with some
improvement has been used repeatedly by ssveral authors to study
constant mean curvature and minimal surfaces and harmonic maps
(cf, [Ch],IChG},[¥).[EM), (ChW}, (EGT], (ET].[B2]).

However, holomorphicity is not really used in this argument.
The form vanishes since otherwise 1ts zerce would have negative
index which is impossible if the surface has genus i, In fact this
was Hopf's original argument. So we only need a "holomorphic type®
behaviour near the zeros. This is satisfied already under much
weaker geometric assumptions and leads to new results about
mappings of surfaces under very general assumptions. The kesy point
in the proofs is to establish a Cauchy-Rlemann type differentlal

inequality which implies the desired bebaviour at the zeros.
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l. Statement of the resulis

Let M denote a Riemann surface with a compatible metric
ds® of GauR curvature K . Let (P, ¢, 2) be a Riemannian
manifold and £ : M -> P a smooth mapping. Let § always denote
a local LP-function on M, where p > 2 . Throughout the paper,
pointwise norms will be denoted by | | in order to avoild confuslion
with function norms. The first theorem is local and extends a

result of Gulliver et al. [GOR]:

THEOREM 1 Let £ : M - P be weakly confbrnal with conformal
factor n and tension field v . If
(1 Tl € §-u

then £ is2 a branched Immersion.

From now on, we psuppose that M 1is compact, Let I =
£%(¢ , >} . This is a gquadratic form on M, called 1=* fundamental
form. Let I<=-°> denote its (2,0)-part, i.e. the dzZ-part of I
for any holomorphic chart z of M . The following result

generalizes a theorem of Chern and Goldberg [CG]:

THEQOREM 2 If M has genus 0 and £ : M ->P 1is a map with
{2) 1Tl s g 115222

then £ is conformal and harmonic, hence a branched minimal

immersion.

The next theorem generalizes the classical theorem of Hopf [H]

mentioned in the lntroduction.
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IHEOREM 3 Let M be of genus 0 and P a I-space of constant
curvature c , and let £ : M -) P be an isometric immersion such
that the mean curvature H satisfies

(3) IdH] s g.-(H* - K + ¢)2r72 |

Then M is isometric to a round sphere and £ is totally

umbilic.

This result remains true also for generalized surfaces of mean
curvature H (cf. [HHI, [ET)). Note that the condition (3) is valld
for a large number of immersions, e¢.g. for all those without
umblilic points,

The next resalt was proved by S.T.Yau [Y] in the case of
parallel mean curvature vector. Denote by D+ the connection in
the normal bundle Nf and by A : THM @ TH -> Nf the 27¢ funda-
mental form. Then <A,A> 1s a symmetric 4-form whose (4,0)-part

we denote by (A A><%ro>

THEOREM 4 Let M be of genus 0 and P be an n-manifold of
constant sectional curvature c . Let £ : M -> P be an lsometiric
immersion with 27< fundamental form A and mean curvature vector
field H satisfying
(4) ID*HI $ g 1CA AY <22

Then elther M i5 isomstric to a round spheres and £(M) is
totally umbilic in some 3—dimensional totalily geodesic
submanifold, or £ is a superminimal immersion in some totally

umbilic hypersuarface.

alim

Here, superminimality means that the ellipse of curvature

e = {A(x,x); 2 € ToM , (x| = 1}

1s a circle centered at 0 for any p e M (cf. [BL]).

REMARK, If Aim P = &4 , it follows from GauB and Riccl equation
that: ' '
1<A,AY>*"2*| = (([HI® =K + c - Kn){IHI* - K + © + Ku))'"=™
where Xn 1is the curvature of the pormal connection (cf. [IG1).
The formula remains valid in higher codimension If At =

A - H.ds= spans a 2-dimensional subbundle of the normal bundle.

Then Kw 15 the normal curvature in this plane.

Next, we generalize a result of Webster [W) for Iimmersions
into a K&ihler manifold. There we have another invarlant: the so

called Kihler angle glven by the pull-back of the Kihler form (see

section 3).

THEQCREM S Let M have Euler number X . Let P be a Kihler
manifold and £ : K -> P a conformal smoothly branched 1mm§rsion
wvith mean curvature vector H and Kihler angle « such that
{(5) IH| ¢ §-8in &« .
Then either £ is holomorphic or anti-holomorphic, or the complex
tangant planes are isolated. If P has real dimension 4, thelir
pumber 3 (counted with multiplicities) is given by
j=x +xu+b
where X~ i3 the Euler number of the normal! bundle and b the

number of branch points {counted with multiplicities).



Here, the multiplicity of a complex tangent plane is the index as

defined by Webster (W], see section 3.

Our last theorems generalize results of Eells - Wood [EW] and
Chern - Wolfson (ChW] on conformal maps £ : M -> P where P is
a Kihler manlfold of constant holomorphlc sectional curvature. On
F , we have the hermitean form ( , ) glven by

(v, W) = (v, wd + i1 <y, Jw> ,
(DAEf,.af)

Using this, we conslder the complex valued cubic form

and its (3,0)-part (DAE,df)<=.o>

IHEOREM € ILet P be a Kibler manifold of constant holomorphic

sectional curvature and £ : M -> P a conformal map such that
(B) IHl, ID*HI < §-|(DAf,AE)c=r2>)
If N has genus 0 then £ is a totally lsotropic branched

mininal immersion.

REMARK. If P has real dimension & (Kihler surface) and £ is
an lisometric Jlmmersion, then it follows from GauB and Rlicci
eguation that

I (DAf,df)®+°>| = (5ln a)-(|HI®* - X + Kn + 20)2/2
where 40 is the holomorphic sectlonal curvature of P . A
similar formula doea not hold in higher codimension since 1in
general, the plane spanned by A' = A — H.ds® does not ly in the

complex closure of dE(TM) .

W e M

W R o

THEQREM 7 Let P be a Xihler surface of conpstant holomorphic
sectional curvature 40 and £ : M -> P an isometric immersion
of degres & .
(a) If (5) holds then
X + % § —-134)

unless £ is holomorphic of anti-holomorphic.

tb) If £ satisfies
{(6') IHI, ID*HI s g-(8in ). (IHI* = K + K + 20)*7% ,
than either £ 1s an isotropic minimal immersion or

X s -lal .

For the notion of degree, see section 4. The theorem generalizes
to conformal smoothly branched immersions 1f x 1e repaced with
X + b where b denotes the number of branch polnts (counted with

multiplicitlies.)

In section 3, we prove the theorems 1.2.5 while the thecrems

3,4,6,7 are proved in section 4.

2. _Cauchy-Rlemann inegualities
Let ¥ be a Riemann surface and E -> M a complex vector

bundle wlth fibre @~
holosmorphic type 1f near any zero p of s we have

5 = Bolz-z(p))*

A smooth section s of E {s called gf

for some positive integer k and some continuous section 5o

with so{p) # 0 , where 2z 15 any holomorphic chart in a



neighborhood of p. Anti-holomorphic type is defined analogously. A
secti - K
7 on s 1s of anti-holomorphic type L£f it is of ¢polomorph1c

type in E , where E 15 the real vector bundle E with reversed

multiplication by 1 = v(-1)

If E is a line bundle, this number k = k(s,p) also gives
the index of s at the zero p. Thus by the Poincaré-Hopf index

theorem (e.g. cf. [GHV]) we have

PROPOSITION 2.1 Let M be a compact Riemann surface and L a
complex line bundle over M . If s is a holomorphic type section
of L, then the Euler number (1** Chern number) of L is
x{L) = N(®) := E kis,p)
mcprme

In particular, x(L) 2 0
We will glve a ;uificient condition for a section to be of
holomorphic type. We say that a section s of E satisfies a
Cauchv-Riemann jpeguality if locally
1884, /0Z1 s §- syl
for some Le-function gy with p > 2, where z : U -> T 1is a
holomorphic chart and su : U -> ¢ a local expression of 5 In
bundle coordinates over an open =mubset U of M. Apparently, this
condition is independent of the cholce of the holomorphic chart z
and the bundle chart. If D is any complex linear connectlon on
E, the above lnegquality is eguivalent to
1D8/dZ1 € §-Isl
for some other Le-function §, where we put (as usual)

D/dz = %(D/dx - iD/dy) , D/dZ = %(D/dx + 1D/By)

8-

1f z = x + iy. This 15 because we have Ds/BZ = B8L/DE + Au-Su

for some matrix valued function Au on U.

&

! i
PROPOSITION 2.2 If a smooth section = of E satisfies a

Cauchy-Rliemann inequality, it is either jdentically zero or of

holomorphic type.

This 1is an immediate consequence of the following lemma:

LEMMA 2.3 Let U c ¢ be an open domalin containing 0 and £ : U
-> ¢~ a smooth functlon satisfying

(*) |DEsBZ| § g+ 1£]
for some Le-function § with p>2 . Then near the origin, we

have either £ = 0 or
£(z) = z*.fo(2)

for some nonnegative integer k and a continuous function fo

with fo(0) # 0

The proof 1s an adaptation of an idea of Chern [Ch]l. We need

another lemma:

LEMMA 2.4 Let g9 : U\O -) O~ be a smooth function which 1s

bounded near 0 and satisfies |8q/3%| < §-19| for some Le -

function § on U with p>2 . Then 1lim g(z) exists, and for a
=0

suitably small closed disk D <= U of radius R centered at 0

the Le-porms en D and its boundary 0D are related by

fgta,o / fgiq,eo0 3 C.-R*7"®

with a constant C depending only on Igls , where g iepTr =1



PROOF OF LEMMA 2.4, Let 0 # %t € Int{(D). Conzider the l-form n =
qlz)dz on D< :=D \ (Ba(3) U B.(0)) , where

q(z) = (g{2) --g(S)JI(z -3 .
If we apply Stokes' theorem to n and let £ -> 0 , we get the
Cauchy formula

(C) 2xl.g(s) = f g(z)(z=§)~t dz - [ ga(z)(z-3)"' AZadz
[=]0] D

for all § € Int(D)\(0} , where g := 0g/3Z (cf.{FL1}). Moreover,
since h := gz 18 L=, the limit of the right hand side of (C) for
§ -> 0 exists (c£. [Al, p. B85/88). Thus by (C), g(z) takes a

limit as =z -> 0 ,

Now let us estimate the L9-norm. Since q ¢ 2 , the function
Z => g(z){(z-})~* is L® on D. Thus, by H3lder's inequality, the
second term to the right of (C) is absolutely bounded by

150 - {f 1g{z)i® |z-}|~= |dZrdz{)*’ =
D

Taking the q*" power {(which is a convex operation since q > 1),
we get from (C)

(2x)= Ig(s)i® < A . Ro= . f |g(z}|= {z=t|~= |dz|
(=103
+ B . [ lg(z)I|® 1z-3179 1dZadz|
D

where A = {4x)2~* apnd B = 29~ *.(lgi)* . Integraticon over D
with respect to § ylelds

(2n)2{1gla,n)® £ A-a-Ro°i(lIgla, ec)}® + B-a:.(lgla.o)"
where

« = sup (f lz=3|-= |A§adsl) .
D

B

Note that « -> Q0 as R -> 0 . Hence (2x)® - B.a 1ls positive

for small R, and we get the result.

PROQF OF LEMMA 2.3, Ve show first that £ has a nonzero Taylor

expansion around Q0 unless £ a 0 near 0. In fact, suppose that
£(z) = ol(lzI*) for all k 2 0 , but that there exists zo with
f(zo) #0 and r := |2el ¢ R for sufficiently small R . Let D
be the disk of radius R centered at 0. Put g = £/z% . Since
|£(Zzo)! > O , we have

Igula,p r a.r"- ,
but on the other hand

Igubg,en £ b.R™™
for suitable constants a, b Independent of k . Thus

Igufa.p / Ngulg, o0 2 (a/b)(R/r)*" ,

and this goes to » as k -> e , a contradictlon to Lemma 2.4.

Now let k be the degres= of the first nonzero Taylor
polynomial of f at 6. Put g = f/z% . Then g has a limit
a#s0 as z -> 0 , by the first part of Lemma 2.4. Thus

£(z) = a-z% + 0{lzI***)

which finishes the proof,

REMARK. In general, the function fc in Lemma 2.3 18 not

smooth, e.g. take £(2z) = z™ & Z-*t However, 1f the 1linear

inequality (*) in Lemma 2.3 is replaced with a linear equality
0f/0Z = A-£

for some smooth matrix value function A on U, then fo 1is smooth

{cf. Lemma 2.1 and 2.2 in [ET]).

= g T S i T RN
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Let M be a Riemann surface, Let ds® pbe an admissible
metric on M, {.e. for any holomorphic chart z =x + iy : U - @
on some open subset U c M we have

dg® = A= gz dF
for some positive function X called gconformal factor of z . let
us put
Ou = %(X - 1Y) , B0 = %(X + i¥) ,
where X = 3/0x , Y = 3/0y , and for any complex vector bundle E
over M with complex linear connection D we let

Da = V:(Dx - iDy} ., Da = !HDx + 1DY)

Y
Let T*M denote the bundle of real valued 1-forms and T*M <
™M @ C the bundle of (1,0)-forms; those are C-linear with

respect to the almost complex structure (90°-rotation) 1 on M.

Let (P, ¢, )>) be a Riemannian manifold and £ : M -> P a
smooth mapping. The canonical connectlions on TM and £*TP and
all related bundles will be denoted by D . The differential daf
i1s a l-form with values in the pull back bundle £*TP , 1l.e, a
section of ™M @ £*TP . If (P, ¢, N carries a Kihler
structure J, we consider E := £*TP as a complex vector bundle.
Otherwise, we put E = £*TP ¢ € . In both cases, the canonical
connection on E 18 complex linear. We have

df = d.f.dz + Oaf-AF

and 8,f, d:f are leocal sections of E .

-12-

The 2~¢ derivative DAf Is a symmetric 2-form (hessean form)
with values in f*TP . Let Tt be its trace with respect to the
metric, ds=. This {5 called the tension fleld of £ . By con-
formality of Z we have D.0z = D3d. = 0 for the Levi-Civita

connection on M and therefore we get:

LEMMA 3,1 Let £ : M -> P be a smooth mapping with tension field
T and z a holomorphic chart. Then

Dadzf = Dalzf = % 3*F 1 .,

Let us suppose first that we have no K&hler structure on
(P,¢ , >) . We consider the 1=* fundamental form
I = £*{¢ , >) = (df.af>
on M . Its {2,0)-part (the dz®-part) is a section of the complex
line bundle L = T*M @ T*M which is locally given by
I<*r®> = (J E,0.E> dz= ,

where the metric ¢ , > is complex bilinearly extended to E =

TP e C . Let 5 always denote an L®-function for some p>2.

BPROPOSITION 3,2 Let £ : M -> P be a smooth mapping with
(2) 1T] s g 1I<=-°>}

Then I<2:®> |is of holomorphic type.

PROQF. Using Lemma 3.1 we have for b = O£
12z¢b,b>| = 21<Dzb, b>1
¢ 2 IDzbllbl = % X* |rllibl
< gibl1<b, b

gince |I<=:°?{ = 2|<b,b¥1/A* . This finishes the proof by 2.2.



COROLLARY 3.3 If M is compact under the assumptions of 3.2,
then
X(M) 5§ -2.N(I*=-2?)

unless f Is a comformal harmonic map.

PROOF . Since x(L) = -2 x(M) , this follows from 3.2 using 2.1.
If I*2.2* £ 0 , then f is conformal, and the harmonicity follows

from (2) in 3.2,
Now Theorem 2 1s aleo proved since it is a speclal case of 23.3.

Next suppose that £ : M -> P is a (weakly) conformal smocth
map, i.e. I = uy= ds* for some function u 2 0 , the conformal
factor of £ with respect to ds® , and (J.£,0a.f> = § . Outside
the zero set of df, the mapping f is a conformal immersion., and

t/u® = trace(A} = 2H
where A denotes the 2® fundamental form and H the mean
curvature vector. Since 10.f| = pui/v2 , we get from 2.2 for the

(1,0)-part of df:

LEMMA 3.4 Let £ : M -> P be a conformal map with conformal
factor u and tension field < . If
(1) Tl £ §-u

then df<i-°* is of holomorphic type.

From the latter property it follows easily that £ 1s a branched
immersion (c£. [GOR), [ET)). In fact, {f 3.f = k.z*"t.g , choose
coordinates u on P such that &/3u® = Re g{0) , 3/du* = Im g(0)

(these are linearly Independent because of the conformality

~1ho
P et o5 i - thcsione

property <g,g> =0 and g(0) ¥ 0 ) and put
hi(z) = u(£(0)) + (2 Re z+ , 2 Im 2z~ , 0,....0)
Then b := uof - h 1s real with b(0) =0 , &b = 0(iz(*} , thus

b = 0(lzl***) . This proves Theorem 1.

If f :+ M ->P is a branched immerslion, the plane bundle
AE(TH) extends continuously to the aritical polints of £ . It
thi= extension (called T£ } 1= a smooth subbundle of £=TP
then £ 1s called a gpoothly brapched immersjiopn (cf. (ET1),

Row we suppose that a XKéhler structure J is given on

(P, ¢, 2>) and that € : ¥ —> P is a conformal immersion. Recall
that now b.:= 3£/0z and b- := Jf/dZ are sections of E = £*TP.
Outside the zero sets of these sections we have I1nvariantly
defined complex 1line bundles L. := €-bs ¢ E with L. 1 L_
Further, 1b«!® = % %X® (1 ¢ cos a) . Here, X denotes the conformal
factor with respect to the induced metric ds® =1 , and o €
[0,x] the so called KAhler angle {(cf. (ChW], [EGT]). The latter
is invariantly defined by

f*a = (cos a).dv
where dv is the volume form of ds* and 4 the Kihler form on
P glven by filv,w) = (Jv,w> . In fact we have

cos & = {(Je;, ezd
for any oriented orthonormal frame (e.,e2) of df(TM) . Thus we

get from Lemma 3.1:



EROPOSITION 3.5 ILet P be a K&hler manifold and £ : M - P a

conformal mapping with conformal factor M , tension field t and

K&hler angle o« . If

(5} vl $ g+u®: Ein «
then f Is a conformal branched immersion and b. = 3f/0z is of
holomorphic and b- = ?df/dx of anti-holomorphic type. In
particular, the =zeros of b. and b. are isclated, and the

invariant line bundles L. = C.b. can be continuously extended to

these points.

REMARK. 1 If f is an immersion, we may replace b. with

852 = hiey 7 J e&z)
for any oriented orthonormal frame (e..ex) of Af(TM). We still
have T-52 = C:by = L. . This is still possible for conformal

smoothly branched immersions. Here, we must replace Jdf(TM) by Tf.

REMARK 2 The sections s. and s~ cannot vanish at the same
point since Is. + 5.1 =1 . Thus, if P has real dimension 4,
the bundles L. = (L-)* and L~ = (L.)+ are globally defined and

smooth.

EEMARK 3 If the dimension of P is arbitrary and £ 1is harmonic.
l.e. t =0, then b. and b- sati=fy Cauchy-Riemann equalities, by

3.1. Hence L+ and L- are globally defined and smooth alsc in this

case,

-16-

Now suppose that £: M ->P is a conformal smoothly
branched immersion where P is a Kibhler surface (l.e. real dimen-
sion 4). We consider the bundle map & : Tf - Nf ,

#{x) = (Jx)™
which was introduced by Webster (W). Here, Nf = (Tf)* denotes the
normal bhundle and ™~ the normal component. For any orlented
orthonormal frame (e,,ez) of Tf we have (Je.)T = (cos a)-.ea
where T denotes the component in Tf£. Therefore,
1#(x)} = (sin «)-Ix|
for any x ¢ TE ., and hence ¢ preserves angles. Wherever & # 0,
the 4-vector
B A ez A #les) A $(ez) = &3 A &2 A Je, A Jea
defines the negative orientation on P. (Apply 2 A a !) So ¢ s
a section of the line hundle
L = Home(TE,NE) = (TE)™ @« Nf
where Nf denotes Nf with reversed orlentation. Thus in the

compact case we have -x(L) = x(Tf) + x(Nf} , and we get from 2.1

and [(ET), Theorem 4:

LEMMA 3.6 If M is compact and & of holomorphic type, then
-N(#) = x(M) + x(NE£) + b

where b iz the number of branch points, counted with multi-

plicities.

To derive a Cauchy-Riemann inequality for &, let us choose
local unit vector flelds E, of L. and Ez of L- (cf. {EGT]).

These constitute a unitary frame of f£*TP, i.e. (E.,JE.,Ea,JEx) is

- = wv-Ea for

an otrthonormal "frame. Then g+« = u-E, ,

-17-



sultable C-valued functions u,v . Consequently, we have
€: = uEa + V.Ea, ea = i(u.E, - ¥-Ea) ,
and
ex := i(V.-Ey +u-Ea) , es := —v.E, + u.Ea

is an oriented orthonormal frame of Nf (as one easlly checks when
u and v are real posjitive). If we identify tangent and normnal
plane with ¢ using these bases, ¢ hecomes the multiplication with
2uv . Thus ¢ is of holoworphic type if =, is of holomorphic and s-

of antiholomorphic type. Thus we get from 3.5:

PROPOSITION 3.7 Let P be a Kihler surface and £ : M -> P a
conformal smoothly branchad immersion satisfying
(5) [HI € g-8in a

Then & is of holomorphlic type.

Now Theorem 5 follows from 3.6 and 3.7.

4, _The second Qerjvative

From now on, let £ : M -> P be a weakly conformal map. As
above, we consider df as a section of T*"K @ E where E = £%TP
If P 1is Kihler and E = £*TP @ ¢ otherwise. Let z = x + iy be
a holomorphic chart on M . Then

Di{Dudaf) = Du(¥% X* 1) + (DI,DplOuf

On M we have Didx = 0 and Du.d: = p-0x , where o = Bd.{log A%)

-18- S
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So the left hand side gives
De{Da0s£f) = D(DAE(D,,0a)) + % A¥.p.7T mod d.f .
Moreover,
De(0Z.7) = A®(Dat + p- 1)
If P is a Riemannlan manifold of constant sectional curvature or
a Kihler manifold of constant holomorphic curvature, then

(D=,Da]daf = (1/21).R(D.£,2,£)0f = 0 mod O.f .

Thus we gat:

LEMMA 4.1 Let £ : M -> P be weakly conformal where P is a
Riemannian manifold of constant sectional curvature or a Kihler
manifold of constant holomorphic curvature. Then

D (DA£(8a,Ba)) = % A®. Dt mod O.f

for any holomorphic chart z on MW .

CORQLLARY 3.2 Under the same assumptions, suppose that N is a
parallel section of E with N 1 O.f Let A be the (2,0)-part
of the quadratic form <DAf, N> Suppose

(3t) 14<T N> 1 ¢ §- 1Al

Then A is of holomorphic type.

ERQOF, We have A = (v,N)>dz* , where v = DAf(d.,8.) . Then
BZ<v, N> = (Dgv,.N> = % %™ B <T,N> ,
10z<v, N> | < (v2/43% 8. |<v, N> ,

hence by (3'), which proves the

statement.

REMARK,. The proof shows that the statement remains valid if v
and N ly in a subbundle F of E with DN L F .

-19-
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BROPOSITION 4,3 Let P be 2 Riemannian manifold of constant

sectional curvature and £ : M -> P a weakly conformal map. Let

A be the (4,0)-part of the symmetric 4-form <DJf,DAE> . Assume
(4) 1Drl s #-1AI .

Then A 15 of holomorphic type.

PROOF, We have A = (v,v>dz* , where v = DAf(d.,8.) , and
dzdv,v> = 2 {Dav,v) = % A= (Dat, V)
by 4.1; note that
{BuE,v) = (O E,Dalufd — p:(DeE,0af> = 0
Since 1Al = 4 (v,v>/)* , we get from (4) a Cauchy-Riemann

inequality for (v,v> which proves the result by 2.2.

REMARK., The argument shows: If v lies in a subbundle F < (*TP
with orthogonal projection wr , then it is sufficient to assume

(4%) Ixe(DT)I S g+ 1Al .

Now let P be a Kihler manifold. Recall that on P we have the
hermitean form ( , ) defined by

(v,w) = (v, w> + 1{v,Jw

BROPOSITION 4.4 Let P be a Kabhler manifold of constant holomor-
phic sectional curvature and £ : M -) P a weakly conformal map.
Let A be the (3,0)-part of the cublic form (D4&f,df) . Assuﬁe

(6) Itl, I1DTl S §-1Ad

Then A is of holomorphic type.

PROOF, We have A = (v,d7f)dz® where Vv = DAE(Da,Bx) , and

dz(v,dzf) = (Dzv,dzf) + (v,Ded-f) = % M. ((Dav,df) + (v,1))
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by 4.1. Since I[Al = 8. 1{v,0sE)1/23 , we get from (6) a Cauchy-

Riemann inequallity for (v.,dzf) and the result follows from 2.2.

Now =suppose that £ : M -> P is an isometric immersion. Then
Daf = A is the 27° faundamental form which has values in the
normal bundle Nf < £*TP . Putting e, = Ou/h . &2 = d,/% , and
a = %iA(es,es) - Alez,ea)) . b = Ales,ez) .

we have

v = A(da,Ba) = % X=(a - ib)

First, let P be 3-dimensional and of constant sactional
curvature ¢ , and N a unit normal field along £ . Then we get
Theorem 3 from 4.2 and the following remark using 2.1 since for
the 2-form A = (v,N>dz® we have

IA1Z = 1<a,N> - L<b, > I= = 1al® + 1b1*
= HZ - dat <A,N> = H®= - X + © .

where H = % trace <A,N> is the mean curvature,

In the case of arbitrary dimension, Theorem 4 and 6 follow
from 4,3 and 4.4: By 2.1 we are reduced to the case A = 0 "which
implies that £ ig harmonic (Thm.6) or has parallel mean
curvature vector (Thm.4). Now we may apply the work of Yau 1Y) and

Eells-Wood [EW], Chern-Wolfson [CW] to get our resultse.

It remains to consider the case where P is a Kdhler surface

of constant holomorphic sectional curvature 40 . Se have the

complex line bundles L., L_ € E as lntroduced in section 3, and

as in [EGT], p. 592, we get
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x(Le) = % (3d + X - xn) &

X(L-) = % (3d - x + xn)
where X and xw~ denote the Euler numbers of M and its normal
bundle, and

4 = (o/x) J £*a = c,(E)/3
]

the dJegree, where o denotes the Kihler form of P and c. the
first Chern number. Let df<¢'+°> : TM -> L. , df<®1> ; TH -} L-
be the (1,0)- and (0.1)-part of Aaf We consider those as
sections of the line bundles T*H @z L. and T*N @c L- . In 3.4
we saw that these sectlons are of holomorphic type 1f (5) holds.
Then we get
N(df<i-2?) = x(L.) =~ x = 3d - (x + xn) »
N{A£2r22) = —x(L-) ~ x = =-3d - (x + xn) .,
in partlcular
(*) X + X~ $ —13d1

unless £ 1s holomorphlc or antl-holomorphic, which proves Theorem
7 (a).

To prove part (b)., we consider the complex trilinear map u.:
™ @z L~ @c L- ~-> €,

wix,a,b) = %W((D,a,bj - 1(Djxa.b})
where a, b are local sections of L. and .- , and 3} denotes the
almost complex structure (90°-rotation) on M. This i3 related to
the cubic form A used above by
Alx) = wix, A7 (x),dE°*2 (X)) .,

It follows that w 1is of holomorphlc type if df<2.e* | Jdf<®.1>

and A are of holomcrphic type. This 1s the case 1f (6') holds

since it implies (5}). So we get

N(w) = —(x + x(Le) = x(L-)} = =2X + xm .

unless w x 0 . Together with (*) we get x s ~|d|l unless A = 0

which proves Theorem 7 (b}. If we allow smooth branch pointe,

have to replace TM with Tf and therefore x with x + b,

Theorem 4 of [(ET].
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