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H. Hopf hw introduood the use of holomorphic quadr*tio forma to

rtudy Burfooen with ootmtaat aemn ourvstura in B • The s«me t»ohniqu»B have

bean usad -to study aurfacaa iiBaarsad in spices forma, ooaplez projeotiv* apa.cns

and alao -to study haraonic nape.

Fallowing HopfB ideas wo oonsidor holomorphio type forma,that i s ,

form whoae zaroaa b«h»ve like Eeroaa of holoawrphio fom», to atudy BUT faces

euch that the norm of the mean curvature vector or of ita oorariant derivative

•atiafies *ome inequality. We alao apply the ease -teohniquoa to study aajw whose

tenaion field satisf ies similar property.
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0. Introduction

A famous theorem of H. Hopf states that the round sphere is
the on\y compact surface of genus zero which is Immersed with
constant mean curvature in euclidean 3-space [H]. The idea of the
proof was to construct a certain holomorphic form on the surface,
whose zeros are precisely the unbilic points. Such forms must
vanish identically If the surface has genus zero, and so the
immersed surface must be a totally umblllc sphere. The
holomorphicity of this form is precisely equivalent to the
constant mean curvature condition. Since then, this idea with some
improvement has been used repeatedly by several authors to study
constant mean curvature and minimal surfaces and harmonic maps
(cf, [Ch],{ChG],t V],(EH].tChM1,t EGT],[ET], [B2]) .

However, holomorphicity is not really used in this argument.
The form vanishes since otherwise its zeros would have negative
index which is impossible if the surface has genus 0. In fact this
was Hopf'a original argument. So we only need a "holomorphic type"
behaviour near the zeros. This is satisfied already under much
weaker geometric assumptions and leads to new results about
mappings of surfaces under very general assumptions. The key point
in the proofs is to establish a Cauchy-Rlemann type differential
inequality which implies the desired behaviour at the zeros.
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1- Statement of tt)e. rfsuits

Let H denote a Riemann surface with a compatible metric
da* of GauB curvature K . Let (P,< , >) be a Hiemannian
manifold and f : H -> P a smooth mapping. Let J always denote
a local Lp-£unction on H, where p > 2 . Throughout the paper,
pointwise norms will be denoted by I I in order to avoid confusion
with function norms. The first theorem is local and extends a
result of Gulliver et al. [GORJ:

THEOREM 1 Let f : M -> P be weakly conformal with conforms!
factor u and tension field r . If

(1) iTl 4 B-U
then f Is j branched Immersion.

From now on, we suppose that M is compact, Let I =
f*C< , >) . This is a quadratic form on H, called 1"* fundamental
form. Let i<".«" denote its (2,0)-part, i.e. the dz=-part of I
for any holomorphic chart z of H . The following result
generalizes a theorem of Chern and Goldberg [CGI:

THEOREM 2 If K has genus 0 and f : H -> P is a map with
(2) ITI S B-IIca'°'I

then f is conformal and harmonic, hence a branched minimal

Immersion,

The next theorem generalizes the classical theorem of Hopf [HJ
mentioned in the Introduction.
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a Let M be of genus 0 and P a 3-space of Constant

curvature c , and let f : H -> P be an isometric immersion such
that the mean curvature H satisfies

( 3 ) IdHI S ».(H* - K + c ) 1 ' * .
Then M is isometric to a round sphere and £ ^s totally

ambilic.

This result remains true also for generalized surfaces of mean
curvature H <c£. [HHI, tET]). Note that the condition (3) is valid
for a large number of immersions, e.g. for all those without
urobilic points,

The next result was proved by S.T.Yau m in the case of
parallel mean curvature vector. Denote by D̂ - the connection in
the normal bundle »f and by A : TM • TH -> Nf the 2"a funda-
mental form. Then <A,ft> is a symmetric 4-form whose (4,0)-part
we denote by <A,A>«*>°> .

THEOREM A Let H be o f genus 0 and P be an n-manifold o f

constant sectional curvature c . Let f : H -> P be an Isometric

immersion with 2"" fundamental form A and mean curvature vector

field K satisfying

(4) ID-Mil S f \<A.A><*-oy\ •

Then either H is isometric to a round sphere and f(H> is
totally umbiiic in some 3-dlmenslonal totally geodesic

submanlfold, or f is a superminimal immersion in some totally

umbillc hyper surface.

Here, superminimal1ty means that the ellipse of curvature
ER := (Ad,i); x e TPM , til = 1)

Is a circle centered at 0 for any p e H Ccf. [Bin.
REMARK. If dim P = 1 . it follows from GauB and Ricci equation
that' '

I<A,A>"»"°»I = <<|H|» - K + c - K N M I H I * - K + c + K M ) ) 1 ' "
where KN Is the curvature of the normal connection (cf. [TGI),
The formula remains valid In higher codlmension if A' :»
A - H>dsa spans a 2-dlmensional subbundle of the normal bundle.
Then KN Is the normal curvature In this plane.

Next, we generalize a result of Webster [W] for immersions
into a K&hler manifold. There we have another invariant: the so
called KShler angle given by the pull-back of the K&hler form (see
section 3).

THEOREM 5 Let H have Euler number x • Let P be a KShler

manifold and t : M -> P a conformal smoothly branched immersion

vlth mean curvature vector H and Kihler angle « such that
(5) IHI S j.sin « .

Then either f is holomorpnic or antl-holomorphlcr or the complex

tangent planes are Isolated, If P has real dimension 4, their

number j fcounted with multiplicities; Is given by
1 = X + XN + b

where x« i» t h« Euler number of the normal bundle and b the
number of branch points (counted with multiplicities).
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Here, the multiplicity of a complex tangent plane Is the Index as
defined by Webster [W], see section 3.

Our last theorems generalize results of Eells - Hood [EH] and
Chern - Hoifson [ChH] on conformal maps f : M -> P where P Is
a K&hler manifold of constant holomorphlc sectional curvature. On
P , He have the hermitean form ( , ) given by

(v,w) = <v,w> + i <v,Jw> .
Using this, we consider the complex valued cubic form (Ddf.df)
and its (3,0)-part (Ddf,df) <=•<<>> .

THEOREM 6 Let P be a Kihler manifold of constant holomorphic

sectional curvature and f : H -> P a conformal map sucjj that
(6) IHI, ID̂ -HI i ff-I CDdf,df) e»'t" I .

It H has genus 0 then t is a totally Isotropic branched

minimal immersion.

REMARK. If P has real dimension 4 (Kihler surface) and f is
an isometric immersion, then it follows from GauR and Rlcci
equation that

I (Ddf,df)e!»-O> I - (sin aJ-UHl* - K + KM + 2o)>'»
where 4c Is the holoaorphlc sectional curvature of P . A
similar formula does not hold in higher codimeno Ion since in
general, the plane spanned by A1 - A - H-ds* does not ly in the
complex closure of df(TM) .

THEOREM 7 Let P be a X&hlttr surface of constant holomorphlc

sectional curvature 4a and f : M -> P an Isometric Immersion

of degree d .
(a) If (5) holds then

X + x~ S -I 3d I
unless f is holomorphic of antl-holomorphic.

(b) If i satisfies

<6') IHI, ID-̂ HI s j.(sin «).(IHI* - K + )(„ + 2 o ) " * ,
then either f is an isotropic minimal Immersion or

X * "Idl •

For the notion of degree, see section 4. The theorem generalizes
to conformal smoothly branched immersions If x 1B repaced with
X + b where b denotes the number of branch points (counted with
multiplicities.)

In section 3, we prove the theorems 1,2,5 while the theorems
3,4,6,7 are proved in section 4.

2. Cauchv-Bt^n^nn inequalities

Let M be a Rlemann surface and E -> H a complex vector
bundle with fibre C" . A smooth section s of E Is called Q_£
holoiiiorphin type If near any zero p o£ s we have

S = BolZ-Z(p))"
for some positive integer k and some continuous section so

with So(p) # 0 , where z is any holomorphlc chart in a



neighborhood of p. Antl-holpmorphlc type is defined analogously. A
section s Is o£ anti-holomorphie type 1£ It Is o£ jholomorphlc
type in E , where E is the real vector bundle E with reversed
multiplication by 1 = /-(-I) .

If E is a line bundle, this number k « k(s,p) also gives
the index of s at the zero p. Thus by the Poinear*-Hop£ index
theorem (e.g. cf. [GHV]) we have

PROPOSITION 2.; Let H be a compact Rlemann surface and h a

complex line bundle over H . If s Is a holomorphic type section

of L , then the Euler number (1" Chern number; of L Is

X<L) = N(s) := z kts.p) .
In particular, x(L) i 0 .

He will give a sufficient condition for a section to be of
holomorphic type. He say that a section s of E satisfies a
Cauchv-Rlemann Inequality if locally

I9su/9zl s (•Isul
for some Lp-£unction 5 with p ) 2 , where z : 0 -) (T Is a
holomorphic chart and Su : U -> <E" a local expression of s in
bundle coordinates over an open subset U o£ K. Apparently, this
condition Is independent of the choice of the holomorphic chart 2
and the bundle chart. If D is any complex linear connection on
E, the above inequality is equivalent to

IDs/dzl i j-Isl
for some other [/"-function j. where we put (as usual)

D/oz = H(D/ax - iD/oy) , D/oz = KCD/ox + lD/oy) .

if z » x + iy. This is because we have Ds/Bz = Osu/Oz + Au-Su
for some matrix valued function Au on U.

' 0
PRQPQ3ITI0M 2.2 If a smooth section s of E satisfies a
Cauchy-Rlemann Inequality, It is either Identically zero or of

holomorphic type.

This is an immediate consequence of the following lemma:

LBHHA 2 T 3 Let U c <t be an open domain containing 0 and f : U
-> C" a smooth function satisfying

(*) lOf/ozl i j.If I
for some W-function s with p>2 . Then near the origin, we

have either f * 0 or
£(z) = z".fo(z)

for some nonnegatlve integer k and a continuous function to

with fo(0) * 0 .

The proof is an adaptation of an idea of Chern [Ch], He need
another lemma:

2.4 Let g : U\0 -> (E" be a smooth function which 1B

bounded near 0 and satisfies log/azl S S-lgl for some L"-
fand Ion 5 on U with p>2 . Then llm g(z) exists, and for a
suitably small closed disk D = U of radius R centered at 0 ,
the L"-norm* on D and Its boundary OD are related by

fgi-.o / flgH.,,»D s C-R1'-
with a constant C depending only on IjU , where q^+p-* = 1 .
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PROOF OF LEMMA 2.4. Let 0 * 5 £ Int<D). Consider the 1-form J\ *
q(z)dz on D« :- D \ (B.(S) u B«(0)) , where

q(z) = (g{z) - g<j))/(z - S) •
If «e apply Stokes' theorem to n ant) let £ -> 0 , we get the
Cauchy formula

(C) 2 * l - g ( 5 ) - / g d l l H I " 1 dz - J
3D D

H I " 1 dz*dz

for all S e Int(D)\(0) , where g« :- og/oz (cf.[FL]) . Moreover,
since h := g: Is V, the limit of the right hand Bide of (C) for
5 -> 0 exists (cf. [A], p. 85/86). Thus by (C), g(z) takes a
limit as z -> 0 .

Now let us estimate the L"-norm. Since q < 2 , the function
z -> g(z)(z-5>"1 is L" on D. Thus, by Haider's inequality, the
second term to the right of (C) is absolutely bounded by

I z - i l — " ldz*dz | )»•"< .

Tailing the q** power (which is a convex operation since q > 1).
we get from (C)

(2*)1* lgU)l" i A • R""1 • / lgU)l" (z-5 \~" Idzl
oD

+ B • J IgCzJI" Iz-SI—' IdzAdzl
D

where A * (4*)""-1 and B = 2""1•(IB
with respect to 5 yields

(2*)c'<lgU,D)fl i A.••If-Mlgl,,.

where

« = sup </ lz-5 I-"

• Integration over D

Igl,.

I) .

Note that a -> 0 as R -> 0 . Hence C2«)" - B-« Is positive
for small R, and we get the result.

PROOF OF LEMMA 2.3. We show first that f has a nonzero Taylor
expansion around 0 unless f a 0 near 0. In fact, suppose that
f(z) = o(lzl") for all k i 0 , but that there exists z o with
f(Zo) * 0 and r := IZoI < R for sufficiently small R . Let D
be the disk of radius R centered at 0. Put g* = f/zk . Since
If(Zo)I > 0 , we have

lg>.U.L> t a-r"" ,
but on the other hand

l9kl*.»D i b-R""
for suitable constants a, b independent of k . Thus

lgwl,.D / lg hU.» s i (a/b)(R/r)" ,
and this goes to • as k -> • , a contradiction to Lemma 2.4.

Now let k be the degree of the first nonzero Taylor
polynomial of f at 0. Put g » f/z" . Then g has a limit
a # 0 as z -> 0 , by the first part of Lemma 2.4. Thus

f(z) = a z " + 0(Izl"*1)
which finishes the proof.

REMARK. In general, the function fo in Lemma 2.3 is not
smooth, e.g. take f(z) » z" + z"*1 . However, if the linear
Inequality (*) in Lemma 2.3 is replaced with a linear equality

Of/oz = A-f
for some smooth matrix value function A on U, then fo is smooth
(cf. Lemma 2.1 and 2.2 in [ETM.



3. The differential at nf „ Ri,, ^ — » » Tff nUBWHil • • • • • • • • ji

Let M be a Rlemann surface. Let dsa be an admissible
metric on M, i,e. for any holomorphic chart z = x + iy : U -> 5
on some open subset U e M we have

ds" » X* dz dz"
for some positive function X. called conformal factor of z . let
us put

0. = M X - iY) , 8f = M X + iY) ,
where X * 9/ox , Y = 0/oy , and for any complex vector bundle E
over H with complex linear connection D we let

Let T*M denote the bundle of real valued 1-forms and T*M =
T*H 9 T the bundle of (1,0)-forms; those are t-linear with
respect to the almost complex structure (90»-rotation) j on M.

Let (P, < , >) be a Riemannlan manifold and f : M -> P a
smooth mapping. The canonical connections on TH and f*TP and
all related bundles will be denoted by D . The differential df
is a 1-form with values in the pull back bundle f*TP , i.e, a
section of T*M « f*TP . If (P, < , >) carries a X&hler
structure J, we consider E := f'TP as a complex vector bundle.
Otherwise, we put E = £*TP • (t . In both cases, the canonical
connection on E Is complex linear. Ne have

df = O.f-dz + O^f-dz
and Out, 8;f are local sections of E .

.-12-

The 2"" derivative Ddf Is a symmetric 2~form (hessean form)
with values in f*TP . Let T be its trace with respect to the
metric^ d s a . This Is called the tension field of £ . By con-
formality of z we have D.O^ - Dr8. = 0 for the Levi-Civita
connection on H and therefore we get:

LEMMA 3•1 Let f : H -> P be a smooth mapping with tension field

T ami z a holomorphic chart. Then

D.O^f = DlO.f - X X.* T .

Let us suppose first that we have no Kihler structure on
(P,< , >) . Ke consider the l-« fundamental form

I = f*t< , >) - <df,df>
on H . Its (2,0)-part (the dz s-part) is a section of the complex
line bundle L * T~H fee T*M which Is locally given by

I<*,o> = <a«f,8.f> d z a ,
where the metric < , > is complex bilinearly extended to E =
f*TP • ft . Let i always denote an L"-function for some p>2.

PROPOSITIOH 3.2 Let f : M -> P be a smooth napping with

(2) IT! i f II*"'"'I •
Then I<*'o> is of holomorphic type.

PROOF. Using Lemma 3.1 we have for b = ft.f

i 2 ID:rbl Ibl = IT I Ibl

since = 2 K b , b > l / k a . This finishes the proof by 2.2.
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COROLLARY 3.3 If H is compact under the assumptions of 3.2,

then
X<H) s -2B(I t*- O J)

uniess f is a comformal harmonic map.

PROOF. Since x<L) = -2 j(K) , this follows from 3.2 using 2.1.
If i"*,o> s o , then £ Is conformal, and the harmonlclty follows
from (2) in 3.2.

Now Theorem 2 Is also proved since It is a special case of 3.3.

Next suppose that £ : H -> P Is a (weakly) conformal smooth
map. I.e. I = M 3 ds 3 for some function u i 0 , the conformal
factor of f with respect to dsa , and (9.£,0.f> » 0 . Outside
the zero set of df, the mapping f Is a conformal Immersion, and

x/jia - trace(A) = 2H
where A denotes the 2 n d fundamental form and H the mean
curvature vector. Since 10.£ I - jiX/v2 , we get from 2.2 for the
(l,D)-part of df:

LEMMA 3.4 Let f : M -> P be a conformal map with conformal

factor p. and tension field T . If
(1) IT! S »-U

then df*1-0' is of holomorphlc type.

From the latter property it follows easily that f is a branched
Immersion (c£. [GOR], [ET]). In fact, i£ o.f = lt.z"-'-g , choose
coordinates u on P such that o/ou1 * Re g(0) , o/ou* • Im g(0)
(these are linearly Independent because of the conformalIty

property <g,g> * 0 and g(0) t 0 ) and put
hCz) = uCftOH + (2 Re z* , 2 Im zh , 0 0) .

Then b :•* uof - h is real with b(0) = 0 , o,b = OCIzl") , thus
b = Otlil"*1) . This proves Theorem 1.

If t • M -> p is a branched immersion, the plane bundle
df(TK) extends continuously to the critical points of f . If
this extension (called Tf ) Is a smooth subbundle of f*TP ,
then £ is called a smoothly branched Immersion (cf, [ET]).

How we suppose that a X&hler structure J is given on
(P, < , >) and that f : H -> P Is a conformal Immersion. Recall
that now b»:= o£/oz and b_ i= Of/oz" are sections of E = f*TP.
Outside the zero sets of these sections we have invariantly
defined complex line bundles L* := l-b* c E with L, j. L-
Further, lb*1" = H X.* (1 ± cos «) . Here, X. denotes the conformal
factor with respect to the induced metric dsa « I , and « e
[0,K] the so called K&hler angle <cf. [ChH], tEGTl). The latter
is lnvariantly defined by

f*» » (cos a)-dv
where dv is the volume form of ds* and ft the Kihler form on
P given by fl(v,w) = <Jv,w> . In fact we have

cos a *= <Jei,e3>
for any oriented orthonarmal frame (ei,ea) of dfCTH) . Thus we
get from Lemma 3.1:
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PROPOSITION Let P be a XShler manifold and f : M -> P
eonformai mapping with eonformai factor M , tension fieJd T and
Niftier angrle « . If

( 5 ) IT I i J-ua- sin «
then f is a con£ormal branched immersion and b- = 8f/0z is of
holomorphlc and b- = of/Sz of ant 1-holomorphlc type. In

particular, the zeros of b» and b- are Isolated, and thm

Invariant line bandies L» - <T-b« can be continuously extended to

these points.

If f is an immersion, we may replace b* withREMARK, .1

for any oriented orthonormal frame (et,es) of df(TH). He still
have (t-s* = j.b. = U . This is still possible for eonformai
smoothly branched immersions. Here, we must replace df(TH) by Tf.

REMARK 2 The sections a* and s- cannot vanish at the same
point since Is* + s-l = 1 . Thus, if P has real dimension 4,
the bundles L* = (L.-)^ and L- = (L*)-1- are globally defined and
smooth.

REMARK 3 If the dimension of P is arbitrary and f is harmonic.
I.e. T = 0 , then b- and b- satisfy Cauchy-Rlemann equalities, by
3.1. Hence L* and L- are globally defined and smooth also in this
case.

-16-

Mow suppose that f : M -> P is a eonformai smoothly
branched immersion where P is a K&hler surface (i.e. real dimen-
sion 4). He consider the bundle map • : Tf -> Nf ,

• Cx) - (Jjt)'g

which was Introduced by Webster [«]. Here, Nf * (TfK denotes the
normal bundle and N the normal component. For any oriented
orthonormal frame (ei.es) of Tf we have (Je,)T = (cos <x)-ea
where T denotes the component in Tf. Therefore,

l»(x)t = (sin a)-[xl
for any x E Tf , and hence 4 preserves angles. Wherever • * 0,
the 4-vector

defines the negative orientation on P. (Apply ft * ft !) So * Is
a section of the line bundle

L = Hom«(Tf,iJf") = (Tf)* »c N?
where Nf denotes Nf with reversed orientation. Thus in the
compact case we have -x(D = xCTf) + x£Nf) , and we get from 2.1
and [ET], Theorem 4:

LEMMA 3.6 If H is compact and • of holomorphlc type, then

where b is the number of branch points, counted with multi-

plicities.

To derive a Cauchy-Riemann inequality for •, let us choose
local unit vector fields Ei of L~ and E= of L- (c£. (EGT1).
These constitute a unitary frame of f*TP, i.e. (E\,JEi,Ea,JEa) is
an orthonormal frame. Then s». = u-Ei , s- = v-E3 for

-17-
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suitable C-valued functions u,v . Consequently, we have
ei - a-Ei + V-Ea , ti » i(u-Ei - v-Ea) ,

and
d» :•= i(v-Ei +u-Ea) , e 4 :« -v-Ei + u-E*

is an oriented orthonormal frame of Hf (as one easily checks when
u and v are real positive). If we Identify tangent and normal
plane with <T using these bases, • becomes the multiplication with
2uv . Thus • Is of holomorphic type if s*. is of holomorphic and s-
of antlholomorphie type. Thus we get from 3.5:

PROPOSITIOH 3.7 Let P be a KShler surface and f : M -> P a

conformal smoothly branched immersion satisfying

(5) IHI S t-sln a .
Then * is of holomorphic type.

Now Theorem 5 follows from 3.6 and 3.7.

4. The second

From nov on, let £ : H -> P be a weakly conformal nap. As
above, we consider At as & section of T"K • E where E = f*TP
if P is K&hler and E - f T P • d otherwise. Let z - x + iy be
a holomorphic chart on H . Then

Dj(D.8.f) = D»(* Va T) + [D^,D.3o.f .
On H we have D;8. = 0 and D.9. = p-8, , where p = 3.(log \") .

-18-

So the left hand side gives
Ds<D.O.f) s D^(Ddf(o. ,8.)) + X X.*.p-T mod 8«f .

Moreover,
D . U * - T ) - X*(D.T + p.T) .

If P is a Riemannian manifold of constant sectional curvature or
a Kihler manifold of constant holomorphic curvature, then

[D?,D.]o.f = <l/2i).R(OHf,ovf)o.f s 0 mod O.f .
Thus we get:

LEHWft 1.1 Let t i M -> P be weakly conformal where P is a
Riemannian manifold of constant sectional curvature or a KShler

manifold of constant holomorphic curvature. Then
D;(Ddf(8.,0.)) = X X*.D,T mod S«f

for any holomorphic chart z on M .

COROLLARY 4•2 Under tie same assumptions, suppose that N is a
parallel section of E with K i d.f . Let A be the <2,0)-part
of the quadratic form <Ddf,N> . Suppose

( 3 ( ) ld<T,N>l i f IAI
Then A is of holomorphic type.

PROOF. He have A = <v,N>dz* , where v = Ddf(o.,o,) . Then
0:<v,N> = <D»v,N> - * X* O.<T,N> ,

hence by (3'), lo:<v,N>| i (v2/4)X>g-|<v,N>I , which proves the
statement.

REMARK. The proof shows that the statement remains valid if v
and S ly in a subbundle F of E with DM i F .

-19-



EBPPQSITIflH li_3_ Let P be a Piemannian manifold of constant

sectional curvature and f : H -> P a tteakly conformal map. Let

A be the (4,0)-part of the symmetric 4-form <Dd£,Dd£> . Assume
(4) IDTI 4 ».|AI .

Then A is of holomorphic type.

PROOF. He have A = <v,v>dz* , where v - DdfO.,8. ) , and
o^<v,v> = 2 <D«v,v> - X X * <D,T,v>

by 4,1; note that
<d.f,v> = <».f,D.9_£> - p-<a«f,8.f> - 0 .

Since IA| = 4 <v,v>/X* , we get from (4) a Cauehy-Riemann
inequality for <v,v> which proves the result by 2.2.

REMftRK. The argument shows: If v lies in a subbundle F e £*TP
with orthogonal projection Ttr , then it is sufficient to assume

(4') iKr(DT) I i J- IAI .

Now let P be a K&hler manifold. Recall that on P we have the
hermitean form ( , ) defined by

(v,w) = <v,w> + i<v,Jw> .

PRQPQ5ITION 4.4 Let P be a Kihler manifold of constant holomor-

phic sectional curvature and f : M -> P a weakly conformal map.

Let A be the (3,0)-part of the cubic form <Ddf,df) - Assume
(6) ITI, IDTI S f!AI .

Then A is of holomorphic type.

PROOF. Be have A = (v^fJdz 3 1 where v = Ddf(o,,8.) , and
0^(v,fl^f) - <D?v,8^f) + (v,D.8^f) = * Xa-(CD,T,8^f) + C V , T ) )
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by 4,1. Since IAI = *-8. I (v,0^f) I /X.3 , we get from (6) a Cauehy-
Riemann inequality for [v^o^f) and the result follows from 2.2.

How suppose that £ : M -> P Is an isometric immersion. Then
Ddf = ft is the 2"d fundamental form which has values in the
normal bundle Nf c f*TP . Putting e, - e*/X , e, = 5,/X , and

a = «(A(e,,ei) - ACea,e=)) , b - A(et,ez) ,
we have

v - RC8-,8.) •= X X=ta - lb) .

First, let P be 3-dimensional and of constant sectional
curvature c , and N a unit normal field along f . Then we get
Theorem 3 from 4.2 and the following remark using 2.1 since for
the 2-form A = <v,N>dz2 we have

IAI= = |<a,S> - i<b,N>la = lal* + Ibl*
= H* - det <A,N> = H* - K + c .

where H = % trace <A,N> is the mean curvature,

In the case of arbitrary dimension. Theorem 4 and 6 follow
from 4,3 and 4.4; By 2.1 we are reduced to the case A = 0 which
implies that f 1B harmonic (Thm.6) or has parallel mean
curvature vector (Thm.4). Now we may apply the work o£ Vau [Y] and
Eells-Wood [EH], Chern-Bolfson [C«] to get our results.

It remains to consider the case where P is a Kihler surface
of constant holomorphic sectional curvature 4o . He have the
complex line bundles L-, L- = E as introduced In section 3, and
as in tEGTJ, p. 592, we get
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where x and

bundle, and

X<1~) = K (3d + x " XM) ,

XtL-) » H (3d - x + XM) ,

denote the Euler numbers of N and i t s normal

(o/n) X f*n - c x ( E ) / 3
H

the degree, where n denotes the Xfihler form of P and d the
first Chern number. Let d£ t l» o ) : TH -> L* , df"3-11 : TM -> L-
be the (1,0)- and (0,l)-part of df . t)e consider those as
sections of the line bundles T*H ate L» and T~M « E L- . In 3.4
we saw that these sections are of holomorphic type If (5) holds.
Then we get

L_) - x = -3d - tx + X«) r
in particular

(*) X + XN i -13dI
unless f is holomorphic or anti-holomorphlc, which proves Theorem
7 (a).

To prove part (b), we consider the complex trilinear map w :
TM •* L- «c L_ -> <T ,

w(x,a,b) » *((Dxa
where a, b are local sections o£ L» and L- , and j denotes the
almost complex structure (90*-rotatlon) on H. This is related to
the cubic form A used above by

- i(Djxa,b))

It follows that w is at holomorphic type if df*1-01 , df*0-1*
and A are of holomorphic type. This is the case if (61) holds
since it implies (5). So we get

unless » • 0 . Together with (*> we get x S -IdI unless A s 0

which proves Theorem 7 (b ) . If we allow smooth branch p o i n t s , we

have to replace TM with Tf and therefore x with x + ° - by

Theorem 4 of [ET] .
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