
Universität Augsburg

KABCROMUNGSHO0

Avoiding Irreducible CSC Conflicts by

Internal Communication

Mark Schaefer

Walter Vogler

Dominic Wist

Ralf Wollowski

Report 2008-02 February 2008

Institut für Informatik

D-86135 Augsburg

Copyright c© Mark Schaefer, Walter Vogler, Dominic Wist and Ralf Wollowski
Institut für Informatik
Universität Augsburg
D–86135 Augsburg, Germany
http://www.Informatik.Uni-Augsburg.DE
— all rights reserved —

Avoiding Irreducible CSC Conflicts by Internal

Communication∗

Mark Schaefer1, Walter Vogler1, Dominic Wist2 and Ralf Wollowski2

1Institute of Computer Science

University of Augsburg, Germany

schaefer@informatik.uni-augsburg.de

vogler@informatik.uni-augsburg.de

2Hasso-Plattner-Institut

University of Potsdam, Germany

dominic.wist@hpi.uni-potsdam.de

ralf.wollowski@hpi.uni-potsdam.de

Abstract

Resynthesis of handshake specifications obtained e.g. from Balsa or Tangram with
speed-independent logic synthesis from STGs is a promising approach [CC06]. To deal with
state-space-explosion, we suggested STG decomposition; a problem is that decomposition
can lead to irreducible CSC conflicts.

Here, we present a new approach to solve such conflicts by introducing internal commu-
nication between the components. We give some first, very encouraging results for very large
STGs concerning synthesis time and circuit area.
Keywords: STG, decomposition, state-space-explosion, CSC, handshake, resynthesis

1 Introduction

Asynchronous circuits are a promising type of digital circuits with several well-known advantages
compared to their synchronous counterparts (e.g. [vBJN99,SY05]). During the last decade, first
entirely asynchronous ICs have already appeared on the market (e.g. [vGvBP+98,KNE+05]).

In order to support asynchronous system design, CAD tools were developed e.g. following
syntax-directed translation from a high level HDL such as Balsa [BE00] or based on logic
synthesis using graph based specifications such as Signal Transition Graphs (STGs) [Chu87,
CKK+02]; the latter are widely used for modelling the behaviour of asynchronous circuits. So
far the most successful initiatives are the syntax-directed translation based approaches since
they support the designers with a programming language design entry and guarantee a robust
implementation of complex specifications. However, the efficiency of the resulting circuits is
not satisfactory since the power of boolean minimisation techniques cannot be exploited. To
overcome this drawback we are aiming at the incorporation of speed independent (SI) logic
synthesis into a design flow based on syntax-directed translation by resynthesis of the system’s
control path using STGs; see e.g. [CC06] and [WW07b].

With increasing complexity, STG logic synthesis suffers from the state explosion problem. To
cope with it, we will apply STG decomposition as in [VW02,VK06].1 Instead of synthesising an
entire overall STG (so-called specification), it will be decomposed into several smaller ones – the
component STGs; then for each of them logic synthesis will be applied yielding one circuit per
component STG. These interacting component circuits together form the desired asynchronous
system. The only disadvantage of the STG decomposition according to Vogler et al. is that
it can lead to component STGs which are not SI implementable since they can have so-called

∗This research was supported by DFG-projects ’STG-Dekomposition’ Vo615/8-2 and Wo814/1-3.
1There exist further decomposition approaches [CC03,YOM04], but the one used here is proven correct and

can be applied to more specifications, in particular to ones without CSC.

1

irreducible CSC conflicts even if the overall STG has none. In [KS07], it was already attempted
to avoid such situations by controlling the signal contraction during the decomposition in such
a way that the component STGs satisfy CSC. However, on the one hand this does not always
lead to a solution and on the other this could lead to an uncontrollable growth of the component
STGs.

Here a new solution to this problem is proposed. After decomposition, we try to ‘repair’
the irreducible CSC conflicts by introducing internal communication between the components in
such a way that an uncontrollable growth is avoided and the overall behaviour of the resulting
asynchronous system is preserved.

We have successfully applied the new approach to benchmark examples derived from Balsa

components. Although the presented contribution is just a first attempt, we obtained much
better results in terms of synthesis time, circuit area and complexity compared to [CC06] (where
CSC conflicts are solved in the overall specification using integer linear programming (ILP)).

The next section contains some definitions regarding STGs and their decomposition. The
following section introduces some new decomposition operations and related theorems which will
be used in the following sections. In Section 4, we present the basic idea for the introduction
of internal communication in order to avoid irreducible CSC conflicts in component STGs. An
improved algorithmic solution as well as its correctness proof is given in Section 5 and first
benchmark results are presented in Section 6. Finally, we give our conclusions in Section 7.

2 Basic Definitions

This section provides the basic notions for Petri nets and STGs, for a more detailed explanation
cf. e.g. [CKK+02]. We write A + B instead of A ∪ B if A ∩ B = ∅, and A − B instead of A \ B
if B ⊆ A.

2.1 Petri Nets and STGs

A (labelled) Petri net is a 6-tuple N = (P, T, W, MN , Σ, l) where P and T are disjoint and finite
sets of places and transitions. W : P × T ∪ T × P → N0 is the weight function and MN the
initial marking, where a marking is a multiset of places, i.e. a function P → N0 which assigns
a number of tokens to each place. The marking of a set of places is defined as the sum of all
individual markings. Σ is a set of actions, and l : T → Σ + {λ} is the labelling function where
λ denotes the empty word. For A ⊆ T , we define the A-labelling lA by lA(t) = t if t ∈ A and
lA(t) = λ otherwise.

A Petri net can be considered as a bipartite graph with weighted and directed edges between
places and transitions. If necessary, we write PN etc. for the components of N or P ′ (Pi) etc.
for the net N ′ (Ni) etc. Analogous conventions apply later on. For a place p, N−p denotes
the net in which p and all dependent elements are deleted; for a marking M , M |P ′ denotes its
restriction to P ′ ⊆ P , and M |−p is shorthand for M |P−{p}.

The preset of a place or transition x is denoted as •x and defined by •x = {y ∈ P ∪
T | W (y, x) > 0}, the postset of x is denoted as x• and defined by x• = {y ∈ P∪T | W (x, y) > 0}.
These notions are extended to sets as usual. We say that there is an arc from each y ∈ •x to x.
A place p is called marked graph place or MG-place if

∑
t∈T W (t, p) = 1 =

∑
t∈T W (p, t).

A nonempty sequence w = x1x2 . . . xn of places and transitions without duplicates is a path
(of N) if W (xi, xi+1) > 0 for 1 ≤ i < n. Obviously, places and transitions have to alternate in
a path. With an abuse of notation we often consider a path as the set containing its elements,
writing for example p ∈ w. A path w is a marked graph path or MG-path if every place of w
is an MG-place. For a marking M , the marking M(w) of a path w is defined as M(w ∩ P). A
path w is called non-joining, non-forking resp. if for every transition t ∈ w, |•t| ≤ 1, |t•| ≤ 1

2

resp. When joining two paths w1 and w2 to w1 w2, a possible duplicate element ‘in the middle’
is deleted implicitly.

A transition t is enabled under a marking M if ∀p ∈ •t : M(p) ≥ W (p, t), which is denoted by
M [t〉. An enabled transition can fire or occur yielding a new marking M ′, written as M [t〉M ′,
if M [t〉 and M ′(p) = M(p) − W (p, t) + W (t, p), for all p ∈ P .

A transition sequence v = t1 . . . tn is enabled under a marking M (yielding M ′) if M [t1〉
M1[t2〉 . . . Mn−1[tn〉Mn = M ′, and we write M [v〉, M [v〉M ′ resp.; v is called firing sequence if
MN [v〉. The empty transition sequence λ is enabled under every marking. M is called reachable
if a transition sequence v with MN [v〉M exists, and [MN 〉 is the set of all reachable markings.
A transition is 2-live if there is a firing sequence for every n ≥ 0 which contains t n times; a
transition is live if every reachable marking activates a firing sequence containing t. A net is
2-live, live resp. if each transition is 2-live, live resp.

N is called bounded if for every reachable marking M and every place p, M(p) ≤ k for some
constant k ∈ N; if k = 1, N is called safe. N is bounded if and only if the set [MN 〉 of reachable
markings is finite. In this paper, we are only concerned with bounded nets.

We lift the notion of enabledness to transition labels: we write M [l(t)〉〉M ′ if M [t〉M ′. This
is extended to sequences as usual – deleting λ-labels automatically since λ is the empty word;
i.e. M [a〉〉M ′ means that a sequence of transitions fires, where one of them is labelled with a
while the others (if any) are λ-labelled.

A net has a dynamic conflict if there are different transitions t1 and t2 such that for some
reachable marking M : M [t1〉 and M [t2〉, but ∃p ∈ P : M(p) < W (p, t1) + W (p, t2). A dynamic
conflict implies a structural conflict, i.e. •t1 ∩

•t2 6= ∅. The conflict is called an auto-conflict if
l(t1) = l(t2) 6= λ.

Definition 2.1 ((Transition-)Simulation)
A simulation from N1 to N2 is a relation S between markings of N1 and N2 such that
(MN1

, MN2
) ∈ S and for all (M1, M2) ∈ S and M1[t〉M

′
1 there is some M ′

2 with M2[l1(t)〉〉M
′
2

and (M ′
1, M

′
2) ∈ S. A simulation is a transition-simulation if it is a simulation when using the

labelling lT1
for both N1 and N2 in case T1 ⊆ T2, the labelling lT2

in case T2 ⊆ T1 resp.
A relation B is a bisimulation between N1 and N2 if it is a simulation from N1 to N2 and

B−1 is a simulation from N2 to N1. If such a bisimulation exists, we call the nets bisimilar.
Transition-bisimulations are defined analogously. △

If a simulation exists between N1 and N2, then N2 can go on simulating all actions of N1

forever; if a bisimulation exists, the nets can work side by side such that in each stage each net
can simulate the signals of the other.

Lemma 2.2
Let S be a transition-(bi)simulation between N1 and N2 for the common labelling l′. If l′ = lT1

,
S is a simulation for any labellings l1 and l2 of N1 and N2 with l1(t) = l2(t) if t ∈ T1 and
l2(t) = λ otherwise. Analogously for l′ = lT2

.

Proof. Clearly, (MN1
, MN2

) ∈ S. So let (M, M ′) ∈ S. Since S is a transition simulation, M [t〉M1

implies M ′[t〉〉M ′
1 via M ′[vtv′〉M ′

1 with l′(v) = l′(v′) = λ and (M1, M
′
1) ∈ S. By definition,

l2(vtv) = l2(v)l2(t)l2(v
′) = λl1(t)λ = l1(t). M ′[t〉M ′

1 implies M [lT1
(t)〉〉M1 with (M1, M

′
1) ∈ S.

If t ∈ T1, M [t〉〉M1 via M [t〉M1 with l1(t) = l2(t) since N1 has no λ-transitions; otherwise,
M [λ〉M1 = M .

The reachability graph RGN of a Petri net N is an edge-labelled directed graph on the reach-
able markings with MN as root; there is an edge from M to M ′ labelled l(t) whenever M [t〉M ′.
RGN can be seen as a finite automaton (where all states are accepting). N is deterministic if
its reachability graph is a deterministic automaton, i.e. if it contains no λ-labelled transitions

3

dtack− dsr+ lds+

d− lds− ldtack− ldtack+

dsr− dtack+ d+

01/011

01/001 01/010

11/001 01/000 00/010

11/000 00/000

10/000 10/001 11/001

11/101

11/11101/111

dtack
−

lds
−

dsr
+

lds
−

dtack
−

ldtack
−

lds
−

dsr
+

ldatck
−

dtack
−

ldtack
−

dsr
+

lds
+

ldtack
+

d
+

dtack
+

dsr
−

d
−

Figure 1: An STG modelling a simplified VME bus controller (top) and its state graph with a
CSC conflict between the shaded states (bottom). The signal order in the binary encodings is:
dsr, ldtack, dtack, lds, d.

and if for each reachable marking M and label a ∈ Σ there is at most one M ′ with M [a〉〉M ′.
For deterministic nets, language equivalence and bisimulation coincide.

2.2 Signal Transition Graphs

An STG is a tuple N = (P, T, W, MN , In, Out, Int, l), where (P, T, W, MN , Sig±, l) is a Petri net,
In, Out and Int are disjoint sets of input, output and internal signals, and Sig = In+Out+ Int
is the set of all signals; signature refers to this partition of the signals. Sig± = Sig × {+,−} is
the set of signal edges or signal transitions; its elements are denoted as s+, s− resp. instead of
(s,+), (s,−) resp. A plus sign denotes that a signal value changes from logical low (written as
0) to logical high (written as 1), and a minus sign denotes the opposite direction. We write s±

if it is not important or unknown which direction takes place; if such a term appears more than
once in the same context, it always denotes the same direction. An internal signal is an output
of the STGs which cannot be observed by the environment.

To keep the notation short, input/output/internal signal edges are just called input/out-
put/internal edges. Transitions labelled with λ do not correspond to any signal change (cf. state
assignment below) and they are also called dummy-transitions.

An example of an STG is shown in Fig. 1 (cf. [CKK+02]). Places are drawn as circles
containing a number of tokens corresponding to their marking. Unmarked MG-places are not
drawn if the incident arcs have the weight 1; they are implicitly given by an arc between the
respective transitions. Transitions are drawn as rectangles together with their labelling (input
transitions with a thick border), and the weight function is drawn as directed arcs xy whenever
W (x, y) 6= 0 (and labelled with W (x, y) if W (x, y) > 1).

STGs are widely used for specifying the behaviour of asynchronous circuits. The idea is as
follows: the reachable markings of the STG roughly correspond to the states of the intended

4

p1

a+t1

p2

q1 q2

a+t2

q3

q4

a+t3

q5 q6

(⋆, q1) (⋆, q2) (p1, ⋆) (⋆, q4)

a+(t1, t2)

a+ (t1, t3)

(⋆, q3) (p2, ⋆) (⋆, q5) (⋆, q6)

Figure 2: Parallel composition example. The two net fragments in the top line share the signal
a, as an output in the left one and as input in the right one. Hence, in their parallel composition
(bottom) a is an output.

circuit (viz. the state of all its signals). If some marking activates an output (or internal) signal
edge, the circuit must produce the same edge if it is in a corresponding state and the environment
of the circuit must be ready to receive it; if some marking activates an input, the environment
is allowed to produce it and the circuit must be ready to receive it.

For the first step from markings to circuit states, one defines the notion of state assignement :
for an STG N , a state vector is a function sv : Sig → {0, 1} where ‘0’ means logical low and ‘1’
logical high. A state assignment assigns a state vector svM to each marking M of [MN 〉.

A state assignment must satisfy for every signal x ∈ Sig and every pair of markings M, M ′ ∈
[MN 〉:

M [x+〉〉M ′ implies svM (x) = 0, svM ′(x) = 1

M [x−〉〉M ′ implies svM (x) = 1, svM ′(x) = 0

M [y±〉〉M ′ for y 6= x implies svM (x) = svM ′(x)

M [λ〉〉M ′ implies svM = svM ′

If such an assignment exists, it is uniquely defined by these properties2, and the reachability
graph and the underlying STG are consistent. From an inconsistent STG, one cannot synthesise
a circuit, and in this paper we assume that all STGs are consistent. Fig. 1(bottom) shows the
reachability graph of the STG in Fig. 1(top); every marking is annotated with its state vector.

We now explain the important concept of Complete State Coding (CSC). If there is a state
assignment, N has CSC if any two reachable markings M1 and M2 with the same state vector (i.e.
svM1

= svM2
,) enable the same output and internal signals. Otherwise, N has a CSC conflict,

cf. e.g. Fig. 1(bottom), and no circuit can be synthesised directly. If CSC is violated, one tries
to achieve it by the insertion of internal signals, without changing the external behaviour of the
STG (cf. also Definition 2.7 below).

2At least for every signal s ∈ Sig which actually occurs, i.e. M [s±〉〉 for some reachable marking M .

5

Lambdarising a signal, means to change the labelling function such that all transitions cor-
responding to this signal are labelled with λ and to remove this signal from the signature;
delambdarising a signal means to restore the former labelling and signature. These operations
are important for the decomposition algorithm described below. By contrast, hiding a signal
set H ⊆ Out from an STG N results in the STG N/H = (P, T, W, MN , In, Out−H, Int + H, l),
i.e. some output signals are now considered to be internal signals.

In the following definition of parallel composition ‖, we will have to consider the distinction
between input and output signals. The idea of parallel composition is that the composed systems
run in parallel and synchronise on common signals – corresponding to circuits that are connected
on the wires corresponding to the signals. Since a system controls its outputs, we cannot allow
a signal to be an output of more than one component; input signals, on the other hand, can
be shared. An output signal of a component may be an input of other components, and in any
case it is an output of the composition. Internal signals of one system must not be used by the
other; this is no serious restriction and can always be achieved by a suitable renaming of the
respective signals.

A composition can also be ill-defined due to what e.g. Ebergen [Ebe92] calls computation
interference; this is a semantic problem, and we will not consider it here but later in the definition
of correctness.

The parallel composition of STGs N1 and N2 is defined if Out1 ∩ Out2 = Int1 ∩ Sig2 =
Int2 ∩ Sig1 = ∅. The place set of the composition is the disjoint union of the place sets of the
components; therefore, we can consider markings of the composition (regarded as multisets) as
the disjoint union of markings of the components. To define the transitions, let A = Sig1 ∩Sig2

be the set of common signals. If e.g. s is an output of N1 and an input of N2, then an occurrence
of an edge s± in N1 is ‘seen’ by N2, i.e. it must be accompanied by an occurrence of s± in N2.
Since we do not know a priori which s±-labelled transition of N2 will occur together with some
s±-labelled transition of N1, we have to allow for each possible pairing. Thus, the parallel
composition N = N1 ‖ N2 is obtained from the disjoint union of N1 and N2 by combining
each s±-labelled transition t1 of N1 with each s±-labelled transition t2 from N2 if s ∈ A. Such
transitions are pairs and the firing (M1, M2)[(t1, t2)〉(M

′
1, M

′
2) of N corresponds to the firings

Mi[ti〉M
′
i in Ni, i = 1, 2; for an example of a parallel composition, see Fig. 2. More generally, we

have (M1, M2)[w〉〉(M ′
1, M

′
2) iff Mi[w|Ni

〉〉M ′
i for i ∈ {1, 2}, where w|Ni

denotes the projection of
the trace w onto the signals of the STG Ni.

It is easy to see that N is deterministic if N1 and N2 are. However, as illustrated in Fig. 2,
N might have structural auto-conflicts even if none of the Ni has them.

Obviously, we can define the parallel composition of a finite family (or collection) (Ci)i∈I of
STGs as ‖i∈I Ci, provided that no signal is an output signal of more than one of the Ci.

We now introduce transition contraction (see e.g. [And83] for an early reference), which will
be most important in our decomposition procedure. We essentially repeat from [VK06], where
further discussions can be found.

Definition 2.3 (Transition Contraction)
Let N be a Petri net and t ∈ T with l(t) = λ, •t ∩ t• = ∅ and W (p, t), W (t, p) ≤ 1 for all p ∈ P .
We define the t-contraction N ′ of N by

P ′ = {(p, ⋆) | p ∈ P − (•t ∪ t•)}
∪ {(p, p′) | p ∈ •t, p′ ∈ t•}

T ′ = T − {t}
W ′((p, p′), t1) = W (p, t1) + W (p′, t1)
W ′(t1, (p, p′)) = W (t1, p) + W (t1, p

′)
l′ = l T ′

MN ′((p, p′)) = MN (p) + MN (p′)

6

a+

p1

b−

p2 p3

c+ x−

⇒

a+

(p1, p2) (p1, p3)

c+ b− x−

Figure 3: Example of a transition contraction in an STG.

In′ = In Out′ = Out Int′ = Int

In this definition, ⋆ 6∈ P ∪T is a dummy element; we assume W (⋆, t1) = W (t1, ⋆) = MN (⋆) = 0.
We say that the markings M of N and M ′ of N ′ satisfy the marking equality if for all

(p, p′) ∈ P ′

M ′((p, p′)) = M(p) + M(p′).

For two different transitions t1, t2 with t1 6= t 6= t2, we call the unordered pair {t1, t2} a new
conflict pair whenever •t ∩ •t1 6= ∅ and t• ∩ •t2 6= ∅ in N (or vice versa); if l(t1) = l(t2) 6= λ, we
speak of a new structural auto-conflict.

A transition contraction is called secure if either (•t)• ⊆ {t} (type-1 secure) or •(t•) = {t}
and MN (p) = 0 for some p ∈ t• (type-2 secure). △

Note that, in general, N ′ might fail to be consistent, even if N is; but secure contractions
preserve consistency (see [VK06]).

Fig. 3 shows a part of a net and the result of contracting the λ-transition, where the b−- and
the c+-labelled transition form a new conflict pair; note that this is also true, if they already
had a common place (not drawn) in their presets in N – they now have a new such place.

We conclude this section by defining redundant transitions and implicit places; the deletion
of such a transition, place resp., (including the incident arcs) is another transformation that can
be used in our decomposition algorithm.

A transition t is redundant if either it is a λ-transition with W (p, t) = W (t, p) for each place
p (i.e. t is a loop-only transition), or there is another transition t′ with the same label such that
W (p, t) = W (p, t′) and W (t, p) = W (t′, p) for each place p (i.e. t is a duplicate transition).

A place p is implicit if it can be deleted from the net without changing the set of firing
sequences. However, detecting implicit places is NP-hard and during decomposition only redun-
dant places [Ber87] are deleted. Redundant places are implicit (but in general not vice versa);
they are defined on the structure of the net and there are LP techniques to find them. However,
these techniques are actually not efficient enough and only the subset of shortcut places [SVJ05]
is deleted. An MG-place p is a shortcut place if there is an MG-path w between t ∈ •p and
t′ ∈ p• with MN (p) ≥ MN (w). In [SVJ05] it was shown that shortcut places are indeed redun-
dant. They will be used in the correctness proofs below. The following proposition is essentially
from [VK06,KS07].

Proposition 2.4
A place p of N is implicit if and only if for all reachable markings M of N , M |−p[t〉 ⇒ M [t〉.
If N ′ is obtained from N by deleting p, then B = {(M, M |−p) | M ∈ [MN 〉} is a (transition-
)bisimulation between N and N ′.

7

Proposition 2.5
Let N ′ be obtained from N by insertion of an implicit place p′ (i.e. p′ is implicit in N ′). If p is
implicit in N , then

(1) p is implicit in N ′ and
(2) p′ is implicit in N ′−p.
If a transition t is redundant in N and not adjacent to p in N ′, then
(3) p is implicit in N ′−t and
(4) t is redundant in N ′.

Proof. We check the condition of Proposition 2.4.
(1) If M ′ ∈ [MN ′〉, then M ′|−p[t〉 ⇒ M ′|−p,p′ [t〉 for t ∈ T . Since p is implicit in N = N ′−p′

and p′ in N ′, this implies M ′[t〉.
(2) Each reachable marking of N ′−p has the form M ′|−p for M ′ ∈ [MN ′〉, which follows with

(1) from the transition bisimulation of Proposition 2.4. If M ′|−p,p′ [t〉 in N ′−p, then M ′[t′〉 as
above and thus M ′|−p[t〉.

(3) By Proposition 2.4, deleting transitions does not affect the implicitness of a place.
(4) Redundancy is structurally defined and the new place p does not change the neighbour-

hood of t, hence the claim follows.

Lemma 2.6
In a net N , let p be an implicit MG-graph place with •p = {t1} and p• = {t2}. If t2 is 2-live,
there is a path from t1 to t2 in N−p.

Proof. (Sketch) Assume otherwise. Consider a firing sequence w in N−p containing t2 MN (p)+1
times (since t2 is 2-live such a sequence exists); consider the corresponding Petri net process π
(cf. e.g. [Rei85]). We can remove from π all events (with their postsets) that do not have a path
(in π) to a t2-labelled event, resulting in a new process π′ and a corresponding firing sequence
w′ which also contain t2 MN (p)+1 times.

Since paths in π correspond to paths in N−p (via the labelling of π), neither π′ nor w′ do
contain t1. Hence, t2 can fire MN (p)+1 times in N−p without firing t1. This is not possible in
N , a contradiction.

2.3 STG Decomposition

Now, the STG decomposition algorithm from [VW02,VK06] is roughly described; most impor-
tant are transition contractions and (dynamic) auto-conflicts.

Synthesis with STG decomposition works roughly as follows: a partition of the output signals
of the given specification STG N is chosen, and the decomposition algorithm decomposes N into
component STGs, one for each set in this partition. Then, from each component equations for
the corresponding outputs are derived from the respective reachability graph, instead of deriving
the equations from N itself.

Very often, adding up the sizes of these graphs gives a number much smaller than the size of
the reachability graph of N , in which case the decomposition can be seen as successful. Actually,
it might already be beneficial if each reachability graph is smaller than the one of N , in particular
for reducing peak memory.

Of course, the behaviour of the specification should be preserved in some sense; this is
captured by a variety of bisimulation, tailored to the specific needs of asynchronous circuits:

Definition 2.7 (Correct Decomposition)
A collection of deterministic components (Ci)i∈I is a correct decomposition of (or simply correct
w.r.t.) a deterministic STG N – also called specification – when hiding H, if C = (||i∈ICi)/H is

8

defined, InC ⊆ InN , OutC ⊆ OutN and there is an STG-bisimulation B between the markings
of N and those of C with the following properties:

(MN , MC) ∈ B and for all (M, M ′) ∈ B, we have:

(N1) If a ∈ InN and M [a±〉〉M1, then either a ∈ InC , M ′[a±〉〉M ′
1 and (M1, M

′
1) ∈ B for some

M ′
1 or a 6∈ InC and (M1, M

′) ∈ B.

(N2) If x ∈ OutN and M [x±〉〉M1, then M ′[vx±〉〉M ′
1 and (M1, M

′
1) ∈ B for some M ′

1 with
v ∈ (IntC±)∗ .

(N3) If u ∈ IntN and M [u±〉〉M1, then M ′[v〉〉M ′
1 and (M1, M

′
1) ∈ B for some M ′

1 and v ∈
(IntC±)∗.

(C1) If x ∈ OutC and M ′[x±〉〉M ′
1, then M [vx±〉〉M1 and (M1, M

′
1) ∈ B for some M1 with

v ∈ (IntN±)∗.

(C2) If x ∈ Outi for some i ∈ I and M ′
Pi

[x±〉〉, then M ′[x±〉〉. (no computation interference)

(C3) If u ∈ IntC and M ′[u±〉〉M ′
1, then M [v〉〉M1 and (M1, M

′
1) ∈ B for some M1 and v ∈

(IntN±)∗.
Here, and whenever we have a collection (Ci)i∈I , Pi stands for PCi

, Outi for OutCi
etc. △

In a simple case, (Ci)i∈I consists of just one component C1 (immediately implying (C2)).

(C2) ensures that no computation interference occurs, i.e. if a component produces an output
(which is under the control of this component), then the other components expect this signal if
it belongs to their inputs, and no malfunction of these other components must be feared. (C2)
is actually also satisfied for x ∈ Inti, since internal signals of one component are by definition
unknown to the other components.

For STGs the notion of speed-independence (SI) [CKK+02] is important: an STG is speed-
independent if the intended circuit works correctly under arbitrary delays of the gates (while
the signal propagation is considered instantaneous). As a consequence, an STG has to be input
proper, i.e. no input becomes enabled by an internal signal, since otherwise the environment
might produce the input before the internal signal is produced by the circuit. Alternativly, one
could drop the SI requirement by making timing assumptions, e.g. that an internal signal is
always faster than an input. In this alternative, the enabling of an output by an internal signal
should not be interpreted as a causal but a temporal relation.3

In [SV07] it was shown that the above correctness notion implies that the implementation
is input proper; in particular, if the solution of a CSC-conflict inserts an internal signal in front
of an input, it is not correct in the sense of Defintion 2.7.

The following theorem repeats from [SV07].

Theorem 2.8 (Hierarchical Decomposition)
Let N be an STG and (Ci)i∈I a correct decomposition of N when hiding HC .

(1) If (Ck)k∈K is a correct decomposition of some Cj when hiding HK (j ∈ I, I ∩K = ∅), then
(Ci)i∈I′ with I ′ := I + K − {j} is a correct decomposition of N when hiding HC ∪ HK if⋃

k∈K OutCk
\ HK = OutCj

and (
⋃

k∈K IntCk
∪ HK) ∩

⋃
i∈I\{j} SigCi

= ∅.

(2) (Ci)i∈I is a correct decomposition of N/H when hiding HC ∪ H.

We now discuss our decomposition algorithm in more detail. In the following, we assume
that we are given a deterministic, consistent specification N without internal signals.4

First, one chooses a feasible partition, i.e. a family (Ini, Outi)i∈I for some set I such that the
sets Outi are a partition of Out, Ini ⊆ Sig \ Outi for each i and furthermore:

3This can be modelled by a so-called tcb-concurrency [WB00].
4For the decomposition algorithm, internal signals can be considered as outputs; see [SV07] for more details.

9

• If two output signals x1, x2 are in structural conflict in N , then they have to be in the
same Outi.

• If there are t, t′ ∈ T with t′ ∈ (t•)• (t is called syntactical trigger of t′), then l(t′) ∈ Outi
implies l(t) ∈ Ini ∪ Outi.

If we have a feasible partition, we can build another feasible one by adding additional input
signals to one of the members.

For each member (Ini, Outi) of the partition, an initial component is generated from N : in
a copy of the original STG N , every signal not in Ini ∪ Outi is lambdarised and the signals
in Ini are considered as inputs of this component – even if they are outputs of N . Then the
following three reduction operations are applied to an initial component until no more λ-labelled
transitions remain:

• secure contraction of a λ-labelled transition

• deletion of an implicit place

• deletion of a redundant transition

Unfortunately, it is not always possible to contract all λ-transitions. Besides the technical
cases where the the contraction is not defined or not secure (possibly leading to an incorrect
decomposition), the contraction might also generate a new auto-conflict. The latter reveals non-
determinism which is present in the respective initial component but not in the specification.
This indicates that the component has not enough information to properly produce its outputs.
Such a contraction is disallowed and consequently a new signal is added as follows.

If λ-transitions remain, backtracking is applied, i.e. a new input is added to the component.
Technically, this input is added to the initial partition and the new corresponding initial compo-
nent is derived and reduced from the beginning. The new input signal is taken from the former
label of a non-contractible λ-transition. As discussed above, the new partition is feasible again.
This cycle of reduction and backtracking is repeated till all λ-transitions of the initial component
can be contracted.

In principle every so-called totally admissible operation [VK06] can be used for reduction.
The next proposition taken from [VK06] gives a sufficient condition for an operation to be totally
admissible, and in the next section a new operation fulfilling this condition is presented.

Proposition 2.9 (Totally Admissible Operation)
An operation is admissible if, whenever applied to an STG satisfying (a) and (b) below, it results
in a bisimilar STG satisfying these properties again:

(a) There is no structural λ/output conflict, i.e. between a λ-transition and one labelled with an
output.

(b) No λ-transition is a syntactical trigger of an output-transition.

The operation is totally admissible if additionally it decreases the termination function (sc, tc, pc)
(with lexicographical order), where sc is the number of lambdarised signals (w.r.t some STG N),
tc and pc are the numbers of transitions and places.

3 Place Refinement and

Subnet Contraction

In this section, we introduce some new operations, which are shown to be compatible with
decomposition, reduction resp. In particular, gyroscope insertion inserts essentially what is
known as toggle-transition.

10

t

t′

w

t

p

t′

w

t

pin

g1 g2

p2

p1

pout

t′

w

Figure 4: Gyroscope insertion between t and t′ with initial marking (2, 1) via place insertion
(here: a shortcut place due to w) and place refinement.

Definition 3.1 (Place-refinement, subnet-contraction and gyroscope insertion)

Let N be an STG.
(1) For a place p ∈ P , consider a net N ′ with:

• P ′ = P − {p} + {pin, pout, p1, p2}

• T ′ = T + {g1, g2}

• W ′(x, y) = W (x, y) if x, y ∈ P − {p} + T
W ′(t, pin) = W (t, p) for t ∈ T
W ′(pout, t) = W (p, t) for t ∈ T
W ′(pi, gi) = 1 = W ′(gi, p3−i), i = 1, 2
W ′(pin, gi) = 1 = W ′(gi, pout), i = 1, 2

• MN ′(p′) = MN (p′) for p′ ∈ P − {p}
MN ′(p1) = 1, MN ′(p2) = 0
(MN ′(pin), MN ′(pout)) = (in, out) with in + out = MN (p)

Starting from N , N ′ is called a place-refinement of p with initial marking (in, out); the labelling
of the new transitions and the signature of N ′ can be chosen arbitrarily. Starting from N ′, N is
called a subnet-contraction if g1 and g2 are λ-transitions.
(2) A gyroscope insertion with initial marking (in, out) inserts a new implicit place p 6∈ P with
in + out tokens into N (giving the intermediate N ′′) and applies place refinement with initial
marking (in, out) to it (giving N ′). A gyroscope insertion between t and t′ (t, t′ ∈ T) with initial
marking (in, out) inserts p between t and t′ (i.e. •p = {t} and p• = {t′} with arc weights 1).

A gyroscope insertion is called an input/output/internal gyroscope insertion if g1 and g2 are
labelled in N ′ with s+, s− resp. and s is a fresh input, output or internal signal resp.; it is called
a dummy gyroscope insertion if g1 and g2 are labelled with λ. △

Subnet-contraction is used for the correctness proofs below and not really intended as reduc-
tion operation. But in principle, one could try to apply it if only backtracking is the alternative,
though the odds for this to succeed seem to be low.

11

Proposition 3.2
Let N ′ be a place refinement of N as in Definition 3.1.

(1) N and N ′ are transition-bisimilar.

(2) Subnet-contraction is a totally admissible operation.

(3) If p′ 6= p is implicit in N , then p′ is implicit in N ′. If additionally l′(g1) = l′(g2) = λ, N−p′

is the subnet contraction of N ′−p′ as in Definition 3.1.

Proof. (1) Obviously, B = {(M, M ′) | M ′({p1, p2}) = 1, M |−p = M ′|−p, M(p) = M ′({pin, pout})}
is a transition bisimulation between N and N ′. Observe that to match a firing M [t〉M1 of N , it
might be necessary to fire g1 or g2 in N ′ first if p ∈ •t.

(2) Clearly, subnet contraction decreases the termination function; no new structural λ/out-
put conflicts are created since the same transitions are in structural conflict and only the tran-
sitions in p•out get new triggers (•pin), but since they have the dummy-transitions g1 and g2 as
triggers in N ′, also 2.9(b) is preserved. (1) and Lemma 2.2 imply bisimilarity.

(3) The latter claim is obviously true. Regarding the first one, let M ′ ∈ [MN ′〉 and let M be
the unique marking with (M, M ′) ∈ B from (1), and M ′|−p′ [t〉. Since p′ 6∈ •g1∪

•g2, we have M ′[t〉
for t ∈ {g1, g2}. Otherwise, •t coincides in N and N ′ except that possibly p has to be exchanged
with pout if t ∈ p• in N . Hence, M |−p′ [t〉 in N (since (∗) M(p) ≥ M ′(pout) ≥ W ′(pout, t)), M [t〉
by assumption and thus M ′[t〉 due to bisimilarity. Observe that in this case, neither g1 nor g2

has to fire due to (∗) and W ′(pout, t) = W (p, t).

Proposition 3.3
Let N ′ be obtained from N by a gyroscope insertion with initial marking (in, out) as in Defini-
tion 3.1.

(1) N and N ′ are transition-bisimilar.

(2) If p′ 6= p is implicit in N , then p′ is implicit in N ′. N ′−p′ is the gyroscope insertion of N−p′,
in particular p is a new implicit place for N−p′.

(3) If the insertion is internal and for all t′ ∈ p•out we have l′(t′) ∈ (Out ∪ Int)±, then N is
correct w.r.t. N ′ and vice versa.

Proof. (1) Let N ′′ be the result of the insertion of the new implicit place p, and let B1 be the
transition-bisimulation between N and N ′′ as implied by Proposition 2.4. Proposition 3.2(1)
implies that there is a transition-bisimulation B2 between N ′′ and N ′. Transitivity of transition-
bisimulations (cf. [KS07] for a slightly different version) implies that B = B1 ◦ B2 is a transition
bisimulation between N and N ′ (for the common labelling lT).

(2) The first claim follows from Propositions 2.5(1) and 3.2(3), the second from Proposi-
tions 2.5(2) and 3.2(3).

(3) Consider B from (1). One easily checks the condition of Definition 2.7: in general, a
transition firing in N is matched by the same firing in N ′ and vice versa, except that firings of
g1 and g2 in N ′ are ignored in N and a firing of a t′ ∈ p•out might be preceeded by firings of g1

and/or g2.

In particular, (3) is true for a gyroscope insertion with initial marking (in, out) between two
transitions t and t′, if these transitions are connected by an MG-path w with MN (w) = in+out;
in this case, the new place is a shortcut-place and hence implicit.

12

Figure 5: Block diagram of the desired system

a+

x+

a−

y+

axy
000

100

110

010

001

ic

deco.
−→

a+

a−

y+

ay
00

10

10

00

01

ic

a
+

x
+

a
−

ax

00

10

11

01

ic

Figure 6: Avoidance of self-triggering by internal communication. left : specification (N)
middle: crictical component (Cr) right : delay component (Cd)

4 Avoiding Self-Triggering

As mentioned above, the contraction based decomposition of [VW02,VK06] can lead to com-
ponents having irreducible CSC conflicts: considering Figure 5, the desired overall circuit OC
which is modelled by the overall STG N (see Figure 6 on the left) will be implemented using
two smaller component circuits CC1 for output y and CC2 for output x that are acting in the
same overall environment. CC1 and CC2 result from the logic synthesis of the component STGs
Cr and Cd partially shown in the middle and on the right of Figure 6, accompanied by parts
of their state graphs; the clouds should be ignored for now. Cr and Cd are the outcome of N ’s
decomposition. As one can see, Cr has a CSC conflict between the highlighted states, since both
have the same state vector (a, y) = (0, 0) and in only one of them output y is enabled.

This conflict describes a so-called (dynamic) self-trigger, i.e. a firing sequence of two input
transitions labelled with the same signal and complementary edges returning to the same state
vector. The insertion of an internal signal transition ic+ (at the position of the cloud) to solve
this CSC-conflict is not possible, since it would not be input proper, cf. the discussion after
Definition 2.7; hence, the conflict is irreducible.

In this context, we call the component having the self-trigger critical. Since such self-triggers
are conflicts which arise in our benchmarks quite often we concentrate on them in this paper. To
find them with a structural method, we define a structural self-trigger as two transitions t and
t′ which are labelled with complementary edges of the same input signal and satisfy t ∈ •(•t′);
a structural self-trigger is called MG-self-trigger if the place between t and t′ is an MG-place.
A structural self-trigger is necessary for a dynamic one.

Since there is a signal between a+ and a− in N , one can tune the decomposition not to
contract the respective transition; instead, backtracking is performed and x is added as an input
for Cr. Although this does help in some cases, in our experience an irreducible CSC conflict very
often remains. Another possibility is to add output x to Cr; in this case, Cd will not be generated
anymore and instead Cr is responsible for x and y and consequently larger. Note that this can
be done easily only if the transition between a+ and a− that is contracted last is an output.

13

Input specification N — critical component Cr with structural self-trigger t2, t4
delay component Cd with t3 ‘between’ t2 and t4 in N , l(t3) ∈ Out±d

Output modified specification N ′ — modified critical component C ′
r — modified delay

component C ′
d

1 in N , perform an output gyroscope insertion for a fresh signal ic via an implicit
place p and intermediate N ′′ such that in N ′′, t2 ∈ •p, t3 ∈ p•, l(p•) ⊆ Out±d and
l(•p) ⊆ In±

r ; this gives N ′

2 C ′
r is obtained from reduction of N ′ with partition member (Inr, Outr + {ic})

3 C ′
d is obtained from reduction of N ′ with partition member (Ind + {ic}, Outd)

Figure 7: Algorithm AVOID-0 for inserting internal communication between two components.

Hence, this method can only be used in some cases; and if it is applied repeatedly, it easily
results in an uncontrollable growth of the remaining components, destroying the advantage of
decomposition.

In this paper, we return to the idea to insert the internal signal ic between a+ and a−. The
problem is that this requires the circuit environment to wait with lowering a for the occurrence
of ic, although it does not even know about ic. The new idea is to achieve the desired causal
relationship by making ic a communication signal between the components: we identify an
output between a+ and a− in N (here x+) and the respective so-called delay component Cd;
then, we insert ic as an output in Cr and as an input in front of x+ in Cd. This way, a− waits
for x+, which in turn waits for ic. To view the situation from the point of Cr: its environment
consists of all other components (including Cd) and the circuit environment, and this combined
environment now indeed waits with lowering a for the occurrence of ic (i.e. Cd delays the overall
environment such that a− cannot arrive too fast causing malfunction of the circuit).

Finally, we hide ic (cf. set H in Definition 2.7) such that, from the point of view of N , we
have inserted internal signal ic at the position of the cloud, and this is correct. This view is the
key to prove the new method correct: first insert ic into N preserving correctness; since we can
only decompose nets without internal signals, we regard the result as N ′/{ic} where ic is an
output of N ′. Second, we decompose N ′ with the same initial partition as before, except that
ic is added to the outputs of Cr and the inputs of Cd. And indeed, in the reduction of Cr, x+

is contracted putting ic into the right position.
Furthermore, it should be possible to avoid recomputation of the other components: for such

a component, ic is lambdarised initially, so it should be possible to remove it immediately since
it can even be removed when representing an internal signal. Then, reduction can proceed as in
the case of N .

For an implementation of our idea, some problems remain to be solved. First, to ensure the
practically important consistency, one cannot only insert ic+ between a+ and a−, but one has to
introduce a suitable ic−-transition somewhere else, too. This is problematic since it is unclear
how to find a proper insertion point. Instead, the cloud is replaced by a gyroscope (simulating
a toggle-transition). Another possibility is to replace it with a 4-phase handshake between the
critical and the delay component; this approach will be investigated in future work.

Second, it is in no way obvious how to insert ic into a general N while preserving its
behaviour, since the usual methods for event insertion would build the reachability graph of N ,
which we must avoid.5

The above considerations are formalised in the algorithm AVOID-0 in Figure 7. If there

5Unfolding based methods are more competitive but also not suited for very large specifications. Note that
deciding whether a place is implicit is ExpSpace-hard.

14

are several components with irreducible CSC-conflicts, step 1 can be executed for each of them
with respect to the modified specification, and afterwards every affected component is newly
generated in a single second reduction pass. The following theorem and its proof can be easily
adjusted for this scenario.

Proposition 4.1
The algorithm AVOID-0 is correct: if (Ci)i∈I is correct w.r.t. N when hiding H then
((Ci)i∈I′ , C

′
r, C

′
d) with I ′ = I \ {r, d} is correct w.r.t. N ′ when hiding H + {ic}.

Proof. Proposition 3.3(3) implies that N ′/{ic} is correct w.r.t. N . In the following, we will
show that the components ((Ci)i∈I′ , C

′
r, C

′
d) can be constructed from N ′ by the decomposition

algorithm for some feasible initial partition. Then, ((Ci)i∈I′ , C
′
r, C

′
d) is a correct decomposition

of N ′ and due to Theorem 2.8(2) a correct decomposition of N when hiding H + {ic}.

Let the gyroscope be defined as in Definition 3.1. First, the new partition is the original one
exchanging the partition members for r and d as in Figure 7. This is feasible since

• the new output transitions g1 and g2 are in structural conflict only with each other and
s ∈ Out′r;

• g1 and g2 are only triggered by transitions with label in In′
r; they only trigger transitions

with label in Out′d (and each other) and s ∈ In′
d.

Now, consider a component Cj with j ∈ I ′ and the corresponding initial component N ′
j derived

from N ′. In N ′
j , ic is lambdarised, which is feasible since ic only triggers outputs of Cd and

Cr; hence l′j(g1) = l′j(g2) = λ. Then, Proposition 3.2 allows to apply subnet contraction to
the inserted gyroscope yielding the STG N ′′

j . Clearly, in N ′′
j , the resulting place is implicit

by definition of gyroscope insertion and can be deleted resulting in the STG Nj , which can be
reduced to the final component Cj with the same sequence of operations applied to Nj to derived
from N .

Observe that the resulting decomposition is correct in the sense of Definition 2.7, but it is
not even guaranteed that the structural self-trigger actually disappears. Also, the algorithm
has to recalculate the affected components; instead we would like to apply gyroscope insertions
directly on the calculated components. The next section presents an algorithmic solution for a
(practically important) special case where this is possible.

5 Avoiding Recalculation

In this section, we will consider a very simple case of self-triggering where the specification is
essentially an MG-path in the relevant part. We assume we are given a deterministic and live
net N ; also the latter is a common and sensible assumption on STGs, and in fact the proofs
below only presuppose 2-liveness.

Let (C)i∈I be correct w.r.t. N when hiding H. In the critical component Cr, let there be
an MG-self-trigger due to two input transitions t2 and t4 labelled with a+ and a− for a ∈ InN .
These transitions, the specification N and all components are inputs to the algorithm AVOID-
1 in Figure 8, which returns with a modified specification and a modified critical and delay
component; the critical component is always generated without a second decomposition pass,
the delay component if possible.

In general, the algorithm returns FAIL whenever the structural conditions in line 1 for the
specification are not fulfilled. A path between t2 and t4 (line 1) is guaranteed to exist since such
a path exists in Cr and the reduction does not generate new paths, and usually (but not always)
there will be an MG-path. However, the path might fail to be non-forking or there might be no

15

s± t1

a+

t2

x±

t3

a−t4

w1

w2

w3

Input specification N — all components (Ci)i∈I — index r of critical
component
MG-self-trigger place ps in Cr with •ps = {t2} and p•s = {t4}

Output modified specification N ′ with new output ic
modified critical component C ′

r — modified delay component
C ′

d

1 in N , find an MG-path w from t2 to t4 with the following
properties

return FAIL if no such w exists
MN (w) = MCr

(ps) and l(w ∩ T − {t2, t4}) ∩ Sig±r = ∅
a transition t3 of w is labelled with an output edge x±

w2, w3 are the subpaths of w from t2 to t3, from t3 to t4 resp.
no transition of w − {t4} has more than one outgoing arc

2 choose d such that x ∈ Outd, choose a fresh signal ic 6∈ SigN

3 in N , perform an output gyroscope insertion between t2 and
t3 for ic with the initial marking (MN (w2), 0), giving N ′

4 in Cr, perform an output gyroscope insertion between t2 and
t4 for ic with the initial marking (MN (w2), MN (w3)), delete
ps; this gives C ′

r

5 in N , find an MG-path w1 from some transition t1 to t2 with
the following properties (t1 = t2 is possible):
l(t1) ∈ Sig±d and l(w1 ∩ T − {t1}) ∩ Sig±d = ∅
no transition of w1−{t1}∪w2 has more than one incoming arc
if no such w1 exists, return with C ′

d obtained from N ′ and the
respective partition member (Ind + {ic}, Outd) by reduction

6 in Cd, perform an input gyroscope insertion between t1 and t3
for ic with the initial marking (MN (w1 ∪ w2), 0), giving C ′

d

Figure 8: Algorithm AVOID-1 for inserting internal communication without recalculation of the
components.

16

proper output which can help to destroy the self-triggering. In this case, the self-triggering might
be avoided by adding additional inputs to Cr as discussed in the previous section. Otherwise,
a possible output x and the delay component Cd producing it are chosen. In the rest of the
algorithm, the corresponding gyroscope insertions into N and the components Cr and Cd take
place where for Cd a proper starting transition t1 has to be found (line 5). If the latter is not
possible, C ′

d can be recalculated from the modified specification N ′.
A concrete implementation has some freedom since there might be more than one suitable

ouput on w. In such a case, one might choose the output x and the corresponding delay
component Cd such that a path w1 exists at all or is better suited than others. If a ∈ Sigd, we
have t1 = t2 and the conditions for w1 are trivially fulfilled. In this case, t2 might additionally
be a syntactical trigger of t3 in Cd; then, it is possible that the signal a is no longer necessary
and might lambdarised in C ′

d and contracted, resulting in a correct decomposition as implied by
Theorem 2.8(1).

Theorem 5.1
The algorithm AVOID-1 is correct in the sense of Proposition 4.1. The self-trigger in Cr is not
present in C ′

r anymore.

Proof. Regarding termination, observe that N is finite and therefore the path searching termi-
nates. In the rest of the proof, we show that C ′

r and C ′
d can be derived via a correct reduction

from N ′, and the claim then follows from Proposition 4.1.
Consider the component C ′

r. Let (Rm)0≤m≤n be the intermediate STGs encountered during
the generation of Cr. We will now show that the same sequence of reduction operations can be
applied to the initial component N ′

r, resulting in a sequence (R′
m)0≤m≤n of intermediate STGs

with R′
n = C ′

r and the following properties: in every R′
m

(1) there is exactly one transition tm ∈ p•out with tm 6= t2.
(2) there are non-forking paths vm

1 from t2 to tm and vm
2 from tm to t4 (t4 can have more

than one place in its postset)
(3) R′

m can be derived from Rm by an input gyroscope insertion between t2 and tm with
initial marking (MN (w2), MN (w3) − MR′

m
(vm

2))
Clearly, this is initially true: for R0 and R′

0 choose t0 = t3, v0
1 = w2 and v0

2 = w3. So let the
claim be fulfilled for some Rm and R′

m and let Rm+1 be obtained from Rm by some reduction
operation.

Deletion of an implicit place p′ Observe that no place q of vm
1 or vm

2 is implicit since
Lemma 2.6 implies in this case that there is another path between •q and q•, a contradiction to
vm
i being non-forking. Then, Proposition 3.3(2) implies that N ′−p′ is the gyroscope insertion of

N−p′. Choose vm+1

i = vm
i (i = 1, 2) and tm+1 = tm.

Deletion of a redundant transition t Observe that a transition on vm
1 vm

2 is adjacent to
an MG-place on vm

1 vm
2 that is also adjacent to another transition, since vm

1 vm
2 leads from

t2 to t4 6= t2; hence these transitions are not redundant. Also, t is not adjacent to p, and
Proposition 2.5(4) then implies that t is also redundant in R′

m, and R′
m+1 is obtained from the

gyroscope insertion in Rm+1 due to Proposition 2.5(3).

Contraction of a transition t Confer Figure 9.
(1) t 6∈ vm

1 , vm
2 : claim obviously fulfilled, because in the intermediate R′′

m and hence also in
R′′

m+1, p is a shortcut place w.r.t vm
1 . In all other cases, the path vm

1 vm
2 is modified. Here, it is

important that all transitions on vm
1 vm

2 (except t4) are non-forking; this property also holds for
the modified path.

17

t2

pin

gyroscope

pout

tm

p′1

t

p′2

p′1

p′2

t′′

vm

1

t2

pin

gyroscope

(pout, p
′

2)

tm+1 = t′′

(p′1, p
′

2)

(p′1, p
′

2)

v
m+1
1

Figure 9: For the proof of Theorem 5.1. Cases (2) and (3) of transition contraction.

(2) t = tm: by assumption, there is only one place p′2 in the postset of tm (t = t4 is not
possible since t4 is not λ-labelled). The contraction of tm is possible in R′

m since the additional
place pout ∈

•tm does not render the contraction insecure. Let vm
1 = t2vp′1t

m for some path v
and vm

2 = tmp′2v
′ for some path v′. The places p′1, p′2 and pout are replaced in R′

m+1 by the
places (p′1, p

′
2), (pout, p

′
2); for simplicity we identify the latter with pout. Then, tm+1 is the single

transition in p′•2 and vm+1
1

= t2v(p′1, p
′
2)tm+1, vm+1

2
= v′ and furthermore:

MR′
m+1

((pout, p
′
2))

(definition) = MR′
m

(pout) + MR′
m

(p′2)

(induction) = MN (w3) − MR′
m

(vm
2) + MR′

m
(p′2)

= MN (w3) − (MR′
m

(tmp′2v
′) − MR′

m
(p′2))

= MN (w3) − MR′
m

(v′)

= MN (w3) − MR′
m

(vm+1
2

)

pin is not touched by the contraction and therefore (3) follows. Observe that the initial marking
of {pin, pout} increases by MR′

m
(p′2) and so does the marking of vm+1

1
compared to that of vm

1 ;
hence, the gyroscope insertion leading to R′

m+1 is indeed based on a shortcut place p.
(3) t ∈ vm

1 − {tm}: let vm
1 = t2v

′p′1tp
′
2v

′′tm for some paths v′ and v′′. Since t is not adjacent
to the inserted gyroscope, the contraction is also possible in the intermediate R′′

m leaving p being
a shortcut place, and also in R′

m.
In R′

m+1, choose vm+1
1

= t2v
′(p1, p2)v

′′tm, vm+1
2

= vm
2 and tm+1 = tm.

(4) t ∈ vm
2 − {tm}: similar to (3)

In R′
n, tn = t4, vn

1 = t2pst4 and vn
2 = t4 since all transitions of w3−{t4} have been contracted.

Hence, MR′
n
(pin) = MN (w2) and MR′

n
(pout) = MN (w3). The gyroscope insertion first inserts

a place p resulting in an intermediate STG R′′
n such that MR′′

n
(p) = MR′

n
(pin) + MR′

n
(pout) =

MN (w2 ∪ w3) = MN (w) = MN (ps). Therefore, ps is implicit in R′′
n and due to Proposition 3.2

also implicit in R′
n. Deleting it there results in the final component C ′

r returned by the algorithm.

If C ′
d is recalculated from N ′, it is obviously correct. Otherwise, the proof is analogous to

the previous one. Observe that this time pout stays untouched while pin is combined with places
from w1; in particular, w1 has to be non-joining to avoid the ‘duplication’ of pin.

18

The theorem above shows that we have inserted into the self-trigger an output that records
the occurrence of a+. This removes the original irreducible CSC conflict, but it could very well
be the case that there still is some CSC conflict: the first a+ is recorded by ic+, the second
one by ic−; so the state vector before the first a+ could easily be the same as the one after the
second a−. What we achieved is that this CSC conflict can now be solved by inserting internal
signals into Cr alone as described in [CKK+02] and proven correct in the sense of Definition 2.7
in [SV07].

In fact, the irreducible CSC conflict can also vanish completely if the two state vectors just
mentioned differ in other signals; see [WW07a] for a small example. In the experiments reported
in the next section, this is actually always the case; here, the reason is that always at least two
gyroscopes are inserted ‘non-concurrently’.

6 Experimental Results

The approach of the previous section was implemented as part of our existing decomposition
tool DesiJ [Sch07]. In this section we compare it with standard logic synthesis by Pet-

rify [CKK+02] and Mpsat [KKY04] and syntax-directed translations of handshake circuits.
In the latter, a circuit behaviour is specified e.g. by a Balsa program [EB02]; following

its syntax, this is translated into a ‘netlist’ of predefined handshake components (HCs), which
have (handmade) standard implementations. To build the final circuit, these are connected
with handshake channels (usually using the 4-phase protocol) as specified by the netlist. This
approach is very fast and results in robust (i.e. delay insensitive) implementations of very large
specifications. However, due to the extensive use of handshake communication, the resulting
circuits are heavily overencoded and therefore large and slow.

We aim at resynthesis of such HC netlists in order to remove unnecessary handshake signals
as follows: each HC is specified by a (usually small) STG, and these are composed in parallel
according to the netlist to get one overall STG. In this STG, we lambdarise and contract the
intercomponent handshake signals such that only the external behaviour remains. The result is
then used as input specification for our approach.

The SeqParTree (SPT) benchmarks examples used here were first used in [CC06] and consist
of two types of handshake components with one passive and two active ports each. A sequencer
(;) waits for a handshake on its passive port and performs one handshake each on its both active
ports in sequence, while a paralleliser (||) performs them in parallel. The SPT benchmarks
are trees of sequencer and paralleliser components such that the root is a sequencer which has
two parallelisers as children and each paralleliser can have two sequencers as children again etc.
SPT-n is such a tree with n levels (consisting of 2n−1 components); Fig. 11 shows SPT-3.

All benchmarks were performed on a Pentium 4 HT with 3 GHz and 2GB RAM. The DesiJ

part of the table in Figure 10 reports the results of the decomposition based synthesis of SPT-2 to
SPT-7 by applying the new approach using Petrify for logic synthesis of the components. The
columns report the number of places, transitions and input/output signals of the corresponding
specification. CPU times are given in seconds for the decomposition (deco), the insertion of
internal communication (int) and the synthesis of the components with Petrify (syn). The
sig column reports the number of added internal communication signals, and in column lit,
the number of literals for a complex gate implementation is shown. This applies also for the
Petrify, Mpsat and Balsa parts; note that for the first two, int denotes the number of
internal signals which are introduced during synthesis.

In our examples, the new approach was able to turn components with irreducible CSC-
conflicts directly to components with CSC, i.e. no additional internal signals had to be introduced
during synthesis; cf. the discussion in the previous section.

19

DesiJ (+ Petrify) Petrify Mpsat HDL
CPU

SPT |P | / |T | |In| / |Out| (deco/int/syn/Σ) sig lit sig CPU lit sig CPU lit lit

2 23 / 20 5 / 5 0 / 0 / 1 / 1 8 29 4 10 14 4 0 37 54
3 39 / 36 9 / 9 0 / 0 / 1 / 1 12 47 5 59 36 7 26 59 86
4 91 / 68 17 / 17 0 / 0 / 8 / 8 40 123 9 9631 70 11 741 134 270
5 155 / 132 33 / 33 1 / 0 / 9 / 10 56 195 mem. overflow mem. overflow 398
6 403 / 260 65 / 65 8 / 12 / 1297 / 1317 208 579 mem. overflow mem. overflow 1134
7 659 / 516 129 / 129 29 / 27 / 1372 / 1428 272 867 mem. overflow mem. overflow 1646

F
igu

re
10:

R
esu

lts
of

n
ew

ap
p
roach

com
p
ared

to
p
u
re

logic
sy

n
th

esis
an

d
sy

n
tax

d
irected

tran
s-

lation
.

T
h
e

C
P

U
tim

es
are

giv
en

in
secon

d
s.

20

||

; ;

||

; ;

;

Figure 11: SPT-03. Black dots are active handshake ports, white ones are passive. They are
connected by handshake channels consisting of two signals, one output per port. The dotted
channels are lambdarised in the specification.

To the best of our knowledge, none of the existing STG synthesis techniques is able to
synthesise such large specifications. With the method of [CC06], resynthesis of SPT-5 takes 132
seconds and yields an implementation with 269 literals. In contrast, we are able to synthesise
SPT-5 in 10 seconds yielding a much smaller implementation with 195 literals. Moreover, our
new approach can even synthesise SPT-6 and SPT-7, in less than 25 minutes. Observe that e.g.
SPT-7 is not much harder to resynthesise than SPT-6: intuitively, parallelisers add concurrent
behaviour to a specification, increasing the state space drastically; since SPT-7 is derived from
SPT-6 by adding only additional sequencers, this effect does not occur.

The new approach is also successful regarding the goal of resynthesis, i.e. the size of the
resulting circuit was decreased when compared to the direct translation. As one can see, each
implementation resulting from a Balsa translation leads to larger circuits (in terms of literals6)
than the synthesis according to our approach. On average, we reached a reduction of 50%. The
impact on the circuit’s performance will be investigated in future work.

Compared to pure logic synthesis with Petrify or Mpsat our circuit area is slightly better
than that of Mpsat, but twice as large as that of Petrify. However, we are not only able to
synthesise circuits by orders of magnitude faster, but we can even synthesise SPTs with more
than 4 levels, which is impossible with pure logic synthesis due to memory overflows.

7 Conclusions and Outlook

Summing up, irreducible CSC-conflicts resulting from STG decomposition as in [VW02,VK06]
can often be solved by introducing internal communication between the components. Since this
approach is purely structural, we consider it as a breakthrough in decomposition based logic
synthesis. In particular, the resynthesis of handshake specifications of a size never reached before
is now possible.

Furthermore, this method also contributes to the CSC solving problem of large specifications
such that CSC is not solved for the overall STG (as in [CC06]), but it is broken down to the
CSC solving of the smaller components which is a well-known and optimised technique.

There are several open problems which will be investigated in the future: a gyroscope inser-
tion is easy but potentially doubles the state space of the respective component (since the state
of the new signal is independent of all other signals), which can prevent synthesis. Alternatives
are:

• the insertion of a two-way communication according to a 4-phase handshake protocol: the
critical component sends ic+

req to the delay component, which answers with ic+

ack and then

6These costs are calculated by summing up the costs of each handshake component. According to [vB93], the
costs of a sequencer and a paralleliser are 8 and 23 literals resp.

21

a+

ic

x+ y+

b+ c+

a−

Figure 12: Specififcation with branching and merging resulting in two delay components Cx and
Cy.

ic−req and ic−ack follow. This doubles the number of inserted signals but could keep the state
space small, and thus might be needed for the synthesis of larger specifications.7.

• the insertion of a single signal edge ic+, and the insertion of ic− somewhere else such that
consistency is preserved.8 In particular, if two gyroscopes are inserted into one component
as in our examples, one could be replaced by ic+ and the other by ic−. However, this
might require a state space analysis of the component, since the respective signa edges
must not be enabled concurrently to guarantee consistency. Hence, this might only be
suitable for small components.

Furthermore, detection of irreducible CSC conflicts has to be improved, i.e. we will consider
more general (i.e. longer) input sequences between two conflicting markings than self-triggers;
such sequences often have the form a+b+a−b−. There can also be irreducible CSC-conflicts
without an input sequence leading from one marking to the other; e.g. the two markings could
be reached from the same marking with a+b+, b+a+ resp.

Also, we have to deal with MG-self-triggers that do not arise from an MG-path of the
specification, which will involve more than one delay component. For the STG in Figure 12,
there might be an MG-self-trigger for input a, which can be resolved with the depicted internal
communication resulting in two delay components Cx and Cy.

7Probably icack can be implemented very simple.
8This is quite similar to ordinary CSC solving, except that the constraints differ somehow. Hence, the same

techniques used there might be helpful.

22

References

[And83] C. André. Structural transformations giving B-equivalent PT-nets. In Pagnoni and
Rozenberg, editors, Applications and Theory of Petri Nets, Informatik-Fachber. 66,
14–28. Springer, 1983.

[BE00] A. Bardsley and D. A. Edwards. The Balsa asynchronous circuit synthesis system.
In FDL2000: Forum on Design Languages. European Electronic Chips and Systems
Design Initiative (ECSI), 2000.

[Ber87] G. Berthelot. Transformations and decompositions of nets. In W. Brauer et al.,
editors, Petri Nets: Central Models and Their Properties, Lect. Notes Comp. Sci.
254, 359–376. Springer, 1987.

[CC03] J. Carmona and J. Cortadella. ILP models for the synthesis of asynchronous
control circuits. In Proc. IEEE/ACM Int. Conf. on Computer Aided Design, pages
818–825, 2003.

[CC06] J. Carmona and J. Cortadella. State Encoding of Large Asynchronous Controllers.
In Proc. DAC’06, pages 939–944. IEEE, 2006.

[Chu87] T.-A. Chu. Synthesis of Self-Timed VLSI Circuits from Graph-Theoretic Specifi-
cations. PhD thesis, MIT, 1987.

[CKK+02] J. Cortadella, M. Kishinevsky, A. Kondratyev, L. Lavagno, and A. Yakovlev. Logic
Synthesis of Asynchronous Controllers and Interfaces. Springer, 2002.

[EB02] D. Edwards and A. Bardsley. Balsa: an Asynchronous Hardware Synthesis Lan-
guage. The Computer Journal, 45(1):12–18, 2002.

[Ebe92] J. Ebergen. Arbiters: an exercise in specifying and decomposing asynchronously
communicating components. Sci. of Computer Programming, 18:223–245, 1992.

[KKY04] V. Khomenko, M. Koutny, and A. Yakovlev. Logic synthesis for asynchronous
circuits based on Petri net unfoldings and incremental sat. In Kishinevsky M. and
Ph. Darondeau, editors, ACSD 2004, pages 16–25. IEEE, 2004.

[KNE+05] N. Karaki, T. Nanmoto, H. Ebihara, S. Utsunomiya, S. Inoue, and T. Shimoda.
A flexible 8b asynchronous microprocessor based on low-temperature poly-silicon
TFT technology. In ISSCC ’05: Proceedings of the Solid-State Circuits Conference,
2005, pages 272–598. Seiko Epson Corp., Nagano, Japan, 2005.

[KS07] V. Khomenko and M. Schaefer. Combining decomposition and unfolding for STG
synthesis. In ATPN ’07: Applications and Theory of Petri Nets and Other Models
of Concurrency, Lect. Notes Comp. Sci. 4024, pages Springer, 223–243, 2007.

[Rei85] W. Reisig. Petri Nets. EATCS Monographs on Theoretical Computer Science 4.
Springer, 1985.

[Sch07] M. Schaefer. DesiJ - a tool for decomposition. Technical Report 2007-11, Univer-
sity of Augsburg, http://www.informatik.uni-augsburg.de/de/forschung/reports/,
2007.

[SV07] M. Schaefer and W. Vogler. Component refinement and CSC solving for STG
decomposition. Theoret. Comput. Sci., 388(1–3):243–266, 2007.

23

[SVJ05] M. Schaefer, W. Vogler, and P. Jančar. Determinate STG decomposition of marked
graphs. In G. Ciardo and P. Darondeau, editors, ATPN 05, Lect. Notes Comp.
Sci. 3536, 365–384. Springer, 2005.

[SY05] D. Sokolov and A. Yakovlev. Clockless circuits and system synthesis. In IEE
Proceedings – Computers Digital Techniques, volume 152, pages 298 – 316, 2005.

[vB93] Kees van Berkel. Handshake circuits: an asynchronous architecture for VLSI pro-
gramming. Cambridge University Press, New York, NY, USA, 1993.

[vBJN99] C. H. Kees van Berkel, Mark B. Josephs, and Steven M. Nowick. Scanning the
technology: Applications of asynchronous circuits. In Proceedings of the IEEE,
volume 87, pages 223–233, 1999.

[vGvBP+98] H. van Gageldonk, K. van Berkel, A. Peeters, D. Baumann, D. Gloor, and
G. Stegmann. An asynchronous low-power 80c51 microcontroller. In ASYNC
’98, pages 96–107. IEEE, 1998.

[VK06] W. Vogler and B. Kangsah. Improved decomposition of signal transition graphs.
Fundamenta Informaticae, 76:161–197, 2006.

[VW02] W. Vogler and R. Wollowski. Decomposition in asynchronous circuit design. In
J. Cortadella et al., editors, Concurrency and Hardware Design, Lect. Notes Comp.
Sci. 2549, 152 – 190. Springer, 2002.

[WB00] R. Wollowski and J. Beister. Comprehensive causal specification of asynchronous
controller and arbiter behaviour. In A. Yakovlev, L. Gomes, and L. Lavagno,
editors, Hardware Design and Petri Nets, pages 3–32. Kluwer Academic Publishers,
2000.

[WW07a] D. Wist and R. Wollowski. Avoiding irreducible CSC conflicts in component STGs.
In Proceedings of the 19th UK Asynchronous Forum. Imperial College London,
2007.

[WW07b] D. Wist and R. Wollowski. STG decomposition: Avoiding irreducible CSC conflicts
by internal communication. Technical Report 20, HPI, University of Potsdam,
2007. ISBN 978-3-940793-02-7, ISSN 1613-5652.

[YOM04] T. Yoneda, H. Onda, and C. Myers. Synthesis of speed independent circuits based
on decomposition. In ASYNC 2004, pages 135–145. IEEE, 2004.

24

