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Abstract
Every year, respiratory diseases affect millions of people world-
wide, becoming one of the main causes of death in nowadays
society. Currently, the COVID-19—known as a novel respira-
tory illness—has triggered a global health crisis, which has been
identified as the greatest challenge of our time since the Second
World War. COVID-19 and many other respiratory diseases
present often common symptoms, which impairs their early di-
agnosis; thus, restricting their prevention and treatment. In this
regard, in order to encourage a faster and more accurate detec-
tion of these kinds of diseases, the automatic identification of
respiratory illness through the application of machine learning
methods is a very promising area of research aimed to support
clinicians. With this in mind, we apply attention-based Con-
volutional Neural Networks for the recognition of adventitious
respiratory cycles on the International Conference on Biomedi-
cal Health Informatics 2017 challenge database. Experimental
results indicate that the architecture of residual networks with
attention mechanism achieves a significant improvement w. r. t.
the baseline models.
Index Terms: deep learning, adventitious respiratory classifica-
tion, residual neural network, attention mechanism

1. Introduction
Respiratory diseases affect more and more people all around the
world. For instance, the COVID-19, a new disease identified
firstly in Wuhan (China) in 2019 [1], has caused, according to the
World Health Organisation (WHO) 1, more than 4 000 000 infec-
tions and 290 000 deaths. Respiratory diseases, such as COVID-
19, Bronchial Asthma, or Chronic Obstructive Pulmonary Dis-
ease, are characterised by very similar symptoms, e. g. , the ad-
ventitious breathing, which could be a confounding factor during
diagnosis [2]. Due to their serious consequences—particularly
in the case of COVID-19, which according to the WHO is a
global pandemic—an early and accurate diagnosis of this type
of diseases has become crucial.

In this regard, the automatic identification of respiratory
diseases, for instance through the classification of adventi-
tious breathing via machine learning, has been successfully
performed [3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14]. Neverthe-
less, considering that solutions to prevent and treat diseases as
COVID-19 are more urgent than ever, quicker, more accurate,
and more convenient solutions for adventitious breathing recog-
nition are still needed. To this end, we present a novel machine
learning-based model for respiratory recognition, performed on
the International Conference on Biomedical Health Informat-
ics (ICBHI) 2017 challenge database. Our model, focused on

1https://www.who.int/emergencies/diseases/
novel-coronavirus-2019

a Residual Network (ResNet), i. e. an advanced Convolutional
Neural Network (CNN) model optimised with four attention
mechanisms, achieves significant improvements w. r. t. the base-
line results.

The rest of the manuscript is laid out as follows: in Section 2,
the related work is introduced; in Section 3, the methodology
is outlined; in Section 4, the experimental setup is described;
finally, in Section 5 and Section 6, the results, discussion, and
conclusions are given.

2. Related Work
2.1. Respiratory Sound Analysis: ICBHI 2017

Although machine learning methods have been recently applied
to automatically identify respiratory diseases, this area of in-
vestigation is still impaired by the limited publicly available
databases [4]. In this regard, the ICBHI 2017 Database [3], i. e. ,
a respiratory sound database specially tailored for the automatic
identification of respiratory diseases, was presented. The ob-
jective of the ICBHI 2017 challenge was the classification of
adventitious respiratory cycles in four classes: Normal, Crackle,
Wheeze, and Both (Crackle and Wheeze) [3]. The best results
were achieved by the SUK and JL teams. The SUK team [4, 6]
applied non-dynamic Tunable Q-Factor Wavelet Transform to
decompose the input signal into three channels: low resonance,
high resonance, and the residue part; then, the fusion of the fea-
tures extracted through Short Time Fourier Transform (STFT)
and through Tunable Wavelet Transform from the three chan-
nels, was fed into a Support Vector Machine (SVM) classifier,
achieving 49.86 % of the official score (the average of sensitivity
and specificity). The JL team [4, 5] utilised two methods of spec-
tral subtraction in order to suppress the stationary noise in the
background—thus, decreasing the influence of noise in the signal.
After signal preprocessing, Mel-frequency Cepstral Coefficients
(MFCCs) were extracted as features and the combination of a
Hidden Markov Model (HMM) and a Gaussian Mixture Model
(GMM) was considered for classification, achieving 39.56 % of
the score.

After the challenge, further work on the same task was per-
formed, showing that MFCCs and spectral low-level features
with a boosted decision tree with one leave per class were partic-
ularly suitable, achieving 49.43 % of the score [8]. However, the
best performance so far was achieved through a model based on
ResNet [15], which has considered, instead of the classic ResNet
structure, a bi-ResNet model, i. e. two individual ResNet models
were trained by STFT and wavelet features, respectively, before
being concatenated into one dense layer. The performance of
this approach achieved 50.16 % of the score [12].

Additionally, although originally a four-class classification
task was presented by the challenge, other researches on the
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ICBHI 2017 Database have also been proposed. For instance,
a three-class classification problem, considering adventitious
respiratory cycles: Normal, Crackle, and Wheeze [7]; or the
classification of respiratory diseases: Healthy, Chronic, and
Non-chronic [10, 13].

In addition, other works exist in a more broader context of
breathing analysis such as featured in this year’s Interspeech
2020 Computational Paralinguistic Challenge’s Breathing Sub-
Challenge [16].

2.2. Attention Mechanisms

The efficiency of CNNs has been proven during the last years [17,
18, 19, 20, 21], showing a particularly accurate performance in
image recognition [22]. In order to improve CNN performance,
a novel mechanism called ‘attention’, which emulates the way
humans understand images, was proposed. At first sight, humans
tend to focus on areas with salient features e. g. , a house, rather
than processing the whole scene, e. g. , the whole painting [22].
Similarly, the attention mechanism leads CNN models to focus
on the most relevant areas of an image—by this increasing their
understanding—which usually optimises CNN performance [23].
Several attention-based modules have been proposed, showing
that this mechanism can optimise the abilities of neural networks
on feature recognition [24, 25, 26, 27].

The Squeeze-and-Excitation (SE) [28, 29] block is a classic
channel-wised attention mechanism. The SE block ‘squeezes’
feature maps to acquire the channel descriptor, then applies
‘excitation’ on the descriptor to learn the relation among all
channels and obtains the weights of every channel, where the
more important channel gets a larger weight. The SE block can
enhance the sensitivity of the model on features by suppressing
the contribution of less useful channels [28].

Another attention mechanism is the spatial attention
block [22, 30], which in order to reduce the number of channels
to 1, applies max pooling or average pooling on the original fea-
ture map, and generates the spatial weights. As its name has it,
the spatial attention module makes efforts on the spatial relation
to localise the most important area of the image.

Finally, another attention mechanism called component at-
tention has also been proposed [31], showing an excellent perfor-
mance, e. g. , on affective computing tasks [32]. Differently to
other attention mechanisms, the component attention module ex-
tracts component-wise attention vectors from the original feature
map instead of channel-wise or spatial attention vectors. There-
fore, the component attention mechanism focuses on observing
the relation among all components of the input vector.

3. Methodology
3.1. Feature Sets

After evaluating a variety of feature extraction methods from the
literature, such as MFCCs, STFT, or wavelet features [5, 6, 8, 12],
the STFT and wavelet features showed to be those with the best
performance. Furthermore, since one of the advantages of a
CNN is its excellent ability to focus on the adjacent area of every
unit in the time-frequency domain [33], CNN based models
especially benefit from the spectrogram. With this in mind,
we consider that the STFT spectrogram is the most appropriate
feature to be taken into account. Concerning the parameters of
the STFT, n fft was set to 100, and the window length was
determined to be 100ms with a 40ms hop length.

3.2. Residual Network (ResNet-18)

The proposed model is based on ResNet-18 [15, 34], since the
result of model selection shows that a deeper ResNet (such
as ResNet-50) caused severe overfitting. ResNet-18 contains
4 residual blocks, and every residual block has two residual
modules. A residual module includes three main components:
two convolutional layers and an identity x one. Before the input
is fed into the residual module, the input is saved and marked as
the identity x. At the end of the module, the sum of the original
output and x is regarded as the output and propagated in the
network [15]. ResNet-18 was applied in experiments with and
without different attention mechanisms.

3.3. Attention Blocks

As pointed out in Section 2.2, both the SE block and the spatial
attention block, were adopted separately in every residual block.
In addition, the SE block and the spatial attention block consid-
ered together, as well as the component attention block, were
also taken into account. The structure of the four considered
attention blocks is shown in Fig. 1.

3.3.1. Squeeze-and-Excitation Block

The Squeeze-and-Excitation (SE) block includes two parts of
processing: Squeeze and Excitation. In the Squeeze procedure,
spatial information of the output vector is squeezed into a chan-
nel descriptor with the size of 1 × 1 × C, where C stands for
the number of channels [28]. Afterwards, the channel descriptor
is sent to the Excitation module, including one dense layer with
C/r hidden units and another dense layer with C hidden units,
in which r represents reduction ratio. After applying a sigmoid
activation function, the channel-wise attention vector is obtained.
An SE block is defined as follows:

FSE = ASE(F)
⊗

F, (1)

where F represents its input feature maps. The attention ASE is
learnt via an average pooling layer across all locations (time and
frequency axes) and two dense layers:

ASE(F) = σ(fC→C
r
→C(avg pool(F))), (2)

where fC→C
r
→C indicates the process of converting the average-

pooled output from the length of C to C/r first, and back to C
again. σ stands for the sigmoid function, which limits the learnt
attention values to the range of 0 and 1.

3.3.2. Spatial Attention Block

Unlike the SE block, the spatial attention block generates a
spatial descriptor rather than a channel descriptor. The size of
the output vector is compressed from H × W × C into the
spatial-wise attention vector, with the size of H ×W × 1 [22].
In the end, the output vector is multiplied by the attention vector,
and the final output is sent to the following network components.
The spatial attention is computed as:

FSP = ASP(F)
⊗

F, (3)

where ASP stands for the spatial attention, and

ASP(F) = σ(Conv1×1×1(F)), (4)

in which Conv1×1×1 reveals the 1× 1 convolutional layer with
a single output channel.
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Figure 1: Structure of the considered attention mechanisms: the Squeeze-and-Excitation (SE) block, the spatial attention block, the SE +
spatial attention block, and the component attention block.

3.3.3. SE + Spatial Attention Block

Besides, in order to explore the performance of the attention on
both channel and spatial domain at the same time, the ResNet
model with the SE and the spatial attention blocks together, was
also tested. Attentions on channel and spatial were computed
and multiplied by the output vector together to generate the final
output. The computation is:

FSP = ASE(F)
⊗

ASP(F)
⊗

F, (5)

where ASE(F) and ASP(F) were defined in Eq. 2 and 4.

3.3.4. Component Attention Block

Additionally, the component attention block, which is given
by a slight modification of the spatial attention block, i. e. , the
output of the convolutional layer was modified from 1 to C, was
adopted in ResNet-18. In other words, an attention with a size
of H ×W × C was generated instead of H ×W × 1. The
computation of the component attention is defined as:

FCO = ACO(F)
⊗

F, (6)

where ACO represnts the component attention,

ACO(F) = σ(Conv1×1×C(F)), (7)

where Conv1×1×C means the 1× 1 convolutional layer with C
output channels.

4. Experimental Setup
4.1. Database

To investigate the performance of attention mechanisms on res-
piratory sound classification, we considered the ICBHI 2017
Database [3]. The ICBHI 2017 Database contains 920 recordings
obtained from seven chest locations. In total, 6 898 respiratory
cycles were recorded: 3 642 for Normal, 1 864 for Crackle, 886
for Wheeze, and 506 for Both, i. e. Crackle plus Wheeze. Four
different devices, i. e. three stethoscopes and one microphone,
were used to gather the data—a process, in which two medical
centres were involved. A subject-independent partitioning into
a training set (60 %) and a test set (40 %), performed according
to a fixed distribution given by the organiser of the challenge,
was considered (cf. Table 1). From a statistical perspective,
the duration of every respiratory cycle varies from a minimum
of 0.20 sec. to a maximum of 16.16 sec. (mean = 2.70 sec.,
median = 2.54 sec., std = 1.17 sec.).

Table 1: Details of the distribution of ICBHI 2017 Database

# Training Set # Test Set # Σ

participants 79 49 128
recordings 539 381 920

normal 2 063 1 579 3 642
crackle 1 215 649 1 864
wheeze 501 385 886
both 363 143 506
Σ 4 142 2 756 6 898

4.2. Preprocessing

Before to train the model, several preprocessing procedures were
carried out. Due to the variety of devices taken into account for
the recording process [3], the sample rate for some recordings
was 4 kHz while for others it was 44.1 kHz; thus, the sample
rate of all recordings was down-sampled to 4 kHz. And a 5-
th Butterworth bandpass filter (100 - 2000 Hz) was applied to
prevent meaningless information [5, 12]. Additionally, due to
the unbalanced length of the instances, to keep all spectrograms
at the same size, a duration of 2.5 sec. was set for every instance.
For this, the spectrograms of instances longer than 2.5 sec. were
trimmed into the same duration, while for short instances, the
missing part was padded with 0. In the training set, instances
were randomly trimmed, while in the test set—to guarantee
comparability across the considered approaches—instances were
trimmed according to a fixed start position.

Moreover, in order to achieve more convincing results, an-
other subject-independently partitioning, considering 70 % of
the samples for the training set and 30 % for the validation set,
was taken into account from the original training set, while the
original test set was only used for evaluation.

4.3. Evaluation Metric

In this paper, the evaluation metric of the ICBHI 2017 challenge
was applied for a better comparison with other works. According
to the challenge [3], the metric Average Score (AS) was defined
as the average of Sensitivity (SE) and Specificity (SP). SE, SP,
and AS are computed as:

SE =
CT +WT +BT

C +W +B
, (8)

where CT , WT , BT stand for the number of correctly classified
Crackle, Wheeze, Both instances, and C, W , B stand for the
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Table 2: Experimental results. At the top, outcomes from previous work; at the bottom, outcomes from the baseline and attentive
ResNet-18 models as proposed here. The evaluation metrics average score (AS), sensitivity (SE), and specificity (SP), are considered.

Validation Set (%) Test Set (%)

AS SE SP AS

MFCCs + HMM + GMM [5] —– —– —– 39.56
STFT + wavelet features + SVM [6] —– —– —– 49.86
MFCCs + low-level features + Boosted Decision Tree [8] —– 20.81 78.05 49.43
STFT + wavelet features + bi-ResNet [12] —– 31.12 69.20 50.16

ResNet-18 51.19 19.46 77.96 48.71
ResNet-18 + Squeeze-and-Excitation (SE) Block 53.28 15.04 78.85 46.94
ResNet-18 + Spatial Attention Block 54.99 11.38 82.23 46.86
ResNet-18 + SE Block + Spatial Attention Block 54.14 17.84 81.25 49.55
ResNet-18 + Component Attention Block 54.24 20.65 77.83 49.24

total number of Crackle, Wheeze, Both instances, respectively,

SP =
NT

N
, (9)

where NT and N stand for the number of correctly classified
and all Normal instances, respectively, and

AS =
SE + SP

2
. (10)

5. Results and Discussion
The experimental results, including those methods presented
in previous works (cf. Section 2.1), and those proposed by us,
are given in Table 2. For the considered models, i. e. , ResNet-
18 without attention block (our baseline), ResNet-18 with the
Squeeze-and-Excitation (SE) block, ResNet-18 with the spatial
attention block, ResNet-18 with the SE and the spatial attention
blocks, and ResNet-18 with the component attention Block (cf.
Section 3.3). Results on the validation and the test sets are
presented; for the previous work, since results on the validation
set are not available, only those for the test set are given.

For all the considered approaches, our results for the test
set (AS ≤ 49.55%) display a detriment with respect to the val-
idation set (AS ≥ 51.19%); cf. Table 2. Although this cannot
be observed in the Table 2 for the previous research—no con-
crete results for the validation set were reported in the evaluated
works—it has been indicated in those works, in any case, that
the scores achieved on the validation set (although not reported),
were much lower than those from the test set [4]. This tendency
might be explained on the one side by the fact that four de-
vices, i. e. three stethoscopes and one microphone, as well as
seven chest locations, were utilised in data recording, which
introduced a variety of noises of diverse intensity all over the
database. On the other side, this tendency might be also due
to the unbalanced original distribution of the training and the
test sets. Indeed, although the organisers of the ICBHI 2017
challenge performed a subject-independent partitioning, for the
training set, instances collected by all the devices were consid-
ered, while for the test set, only those collected by three devices
were taken into account [3].

Our baseline, i. e. , the results from the ResNet-18 without
any attention mechanism, was outweighed by all the considered
attentive models on both the validation and test sets, which in-
dicates that attention mechanisms truly optimise ResNet-18 on
adventitious respiratory classification. On the validation set, the
best score was achieved by the spatial attentive model, which

achieved AS = 54.99% w. r. t. AS = 51.19% given by the base-
line. Differently, on the test set, the baseline (AS = 48.71%),
was only outperformed by the ResNet-18 with SE and Spatial
Attention blocks (AS = 49.55%), which reached the level of the
state-of-art. This might be due to the fact that using SE and the
spatial attention in a unified CNN enables its retrieval of salient
acoustic characteristics across channels and locations, concur-
rently. The reason why attentive models perform better than the
baseline is probably that each evaluated class presents specific
acoustic characteristics on the frequency and time domains, i. e. ,
Wheeze is always longer than 100ms, while Crackle is always
shorter than 20ms. In this regard, attention blocks give larger
weights to these particular characteristics; thus, encouraging the
classification performance of the model.

Although our best result was slightly outperformed by the
approaches based on a bi-Resnet with STFT and wavelet fea-
tures [12], our models replace a complex and deep network
architecture, i. e. two 34-layers ResNet [12], by utilising atten-
tion mechanisms with an 18-layers ResNet, which alleviates the
request on computational complexity, reducing also time and
storage resources. Finally, all models, i. e. those proposed by
us as well as those considered in previous research, achieved
excellent results on SP but very low on SE, which might be due
to a not sufficiently clear discrimination of the spectrograms
among the three adventitious respiratory classes.

6. Conclusion
The application of attention mechanisms on adventitious respira-
tory classification was investigated, showing that these can con-
tribute to improve the performance of residual neural networks.
Performance was elevated from 51.19 % to 54.14 % average
score on the validation set, and from 48.71 % to 49.55 % on the
official test set. A Resnet-18 with Squeeze-and-Excitation and
spatial attention blocks achieved the best results, being equiva-
lent to other state-of-art works. In the future, we plan to utilise
different feature sets, such as wavelet or Mel-spectrograms, and
data augmentation as a strategy to deal with the unbalanced
database. Our work indicates that attention mechanisms are very
promising for adventitious respiratory classification.
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