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Abstract
Generative adversarial networks (GANs) have shown potential
in learning emotional attributes and generating new data samples.
However, their performance is usually hindered by the unavail-
ability of larger speech emotion recognition (SER) data. In this
work, we propose a framework that utilises the mixup data aug-
mentation scheme to augment the GAN in feature learning and
generation. To show the effectiveness of the proposed frame-
work, we present results for SER on (i) synthetic feature vectors,
(ii) augmentation of the training data with synthetic features, (iii)
encoded features in compressed representation. Our results show
that the proposed framework can effectively learn compressed
emotional representations as well as it can generate synthetic
samples that help improve performance in within-corpus and
cross-corpus evaluation.
Index Terms: speech emotion recognition, mixup, data aug-
mentation, generative adversarial networks, feature learning,
synthetic feature generation.

1. Introduction
Speech emotion recognition (SER) is an active area of research
with potential applications in healthcare [1], call centres [2], and
designing naturalistic voice-based human-computer interfaces
[3]. Despite significant progress in machine learning, the perfor-
mance of state-of-the-art SER systems is quite low. Data scarcity
is one of the major reasons in this field [4]. Available SER
datasets are relatively small in size compared to other speech-
related applications such as speaker identification and speech
recognition [3]. This limits the performance of SER systems by
causing the curse of the dimensionality problem [5]. Dimension-
ality reduction techniques are considered as a popular solution
to resolve this issue [6]. However, features extracted in low
dimension using these techniques are not always guaranteed to
provide the best performance in SER [7].

Another promising approach is to generate synthetic sam-
ples using generative models for augmentation of training data.
Generative adversarial networks (GANs) [8] have gained a lot of
attention in the machine learning (ML) community due to their
ability to learn and mimic data distributions. They have shown
great performance in image generation [9], image translation
[10], and enhancement [11], and also in speech generation [12]
and conversion [13]. However, the lack of availability of larger
labelled datasets causes convergence issues in vanilla GANs

while generating the synthetic feature vector to augment SER
systems [14]. To solve this issue, we propose to use a data
augmentation technique combined with a GAN to improve the
generation of synthetic samples. Particularly, we utilise a re-
cently proposed data augmentation technique called “mixup”
[15] to train a GAN for synthetic emotional feature generation
and also for learning compressed emotional representation. To
the best of our knowledge, this paper is the first to investigate
mixup to augment GANs.

The key contribution of this paper is the proposed frame-
work that can effectively utilise mixup while training a GAN,
which augments the representation learning as well as synthetic
feature vector generation by a GAN. We present a detailed anal-
ysis by evaluating the SER performance on (i) a compressed
representation, (ii) synthetic samples, and (iii) augmented train-
ing data with synthetic samples. Results for within-corpus and
cross-corpus setting using two emotional datasets show that the
proposed framework performs better compared to recent studies.

2. Related Work
GANs have already successfully been applied in SER. Bao et
al. [16] utilised larger unlabelled data in a Cycle consistent ad-
versarial networks (CycleGANs) [17] based model to generate
synthetic features by transferring an emotion feature vector from
an unlabelled speech corpus. They were able to improve the
SER performance by utilising synthetic data. Sahu et al. [14]
investigated two networks including vanilla GAN and a condi-
tional GAN to generate a high-dimensional (1582-d) emotional
feature vectors from a low-dimensional (2-d) space. They used
support vector machines (SVMs) for emotion classification on
real and synthetic data. It was shown in [14], that the vanilla
GAN could not achieve convergence due to the limited size of
data. They were able to generate synthetic feature vectors by
conditioning a GAN on class labels. However, the performance
on synthetic features vector was quite low. To address this issue,
we are using the mixup strategy on the training data to augment
generating abilities in the GAN.

Some studies also utilised generative models for emotional
representation learning [18]. Chang and Scherer [19] utilised
a deep convolutional GAN in a multi-task setting to learn the
emotional representation from speech. They utilised unlabelled
data in a semi-supervised way to improve the performance of
the system. In [20], the authors utilised the GAN based frame-
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work for multi-lingual emotion recognition. Based on the results,
they showed that a GAN can help in learning language invari-
ant features. To learn emotional features in lower dimensions,
the authors in [7] utilised adversarial autoencoders (AAEs) in
SER. Based on their results, the authors showed that AAEs
can efficiently encode emotional attributes in lower dimensions.
Similarly, the authors in [6] explored different low-rank repre-
sentations learning algorithms for SER. They showed that low
dimensional emotional representations can achieve comparable
performance to the high dimensional features. To further im-
prove performance on compressed features, we utilise a GAN
based framework to learn emotional representation from aug-
mented data. Beyond, GANs have in SER also been used on
audio-level for augmentation, e. g., by emotional voice conver-
sion [21]. An overview on GANs in SER is further found in
[22].

The mixup data augmentation strategy has been applied in
various vision-related tasks and also in speech-related studies.
In [23], the authors use mixup strategies in a deep neural net-
work (DNN)-based text-independent speaker verification system.
They were able to significantly improve performance while using
mixup. Tomashenko et al. [24] utilised mixup for regularisation
of DNN-based acoustic models in automatic speech recognition
(ASR). They found that mixup provides an additional gain in
ASR performance. However, no study has utilised mixup in con-
junction with GANs to augment feature learning and generation.

3. Proposed Framework
Our proposed framework consists of two components: mixup
and GANs. We briefly explain both components first, and then
present the details of the proposed technique.

3.1. Mixup Augmentation

Mixup [15] is a simple data augmentation technique which trains
a neural network on convex combinations of pairs of examples
and their labels. In this way, it regularises the neural network to
favour simple linear behaviour in-between training examples. It
constructs virtual training examples as follows:

x̃ = λxi + (1− λ)xj (1)

ỹ = λyi + (1− λ)yj , (2)

where (xi, yi) and (xj , yj) are randomly selected two examples
from training data, and λ ∈ [0, 1]. Therefore, mixup extends
the training distribution by augmenting the data with linear in-
terpolations of training samples and their targets. Despite the
simplicity of mixup, it can improve the performance of various
state-of-the-art systems in computer vision and the audio domain
[23]. As outlined, mixup is an essential part of our proposed
framework, and it is used to augment the training data.

3.2. Generative Adversarial Networks (GANs)

Generative adversarial networks (GANs) [8] include two neu-
ral networks—a generator, G, and a discriminator, D, which
play a min-max adversarial game to contest each other. Given a
random sample z from some known prior, pz (e. g., Gaussian),
G is responsible for generating a fake or synthetic data point
G(z). The discriminator, D, attempts to differentiate between
generated samples, G(z), and real data samples, x, (drawn from
data distribution, pdata). The objective of a GAN is to train gen-
erator network, G(z) that can mimic real data such that the
discriminator becomes incapable of discriminating between real

Figure 1: Block diagram of the proposed framework. Mixup is
only applied to the training data. The blue doted line shows that
De is only updated for real samples (λ = 0, 1).

and synthetic samples. This makes the GANs very powerful
in feature learning [3] and generation [25]. In SER, their per-
formance is hindered by the de facto unavailability of larger
datasets. We aim to address this issue by proposing a framework
that can utilise mixup in an effective way to augment GANs both
in feature learning as well as in feature generation.

3.3. Augmenting GANs

As outlined, our model combines mixup with GAN to augment
feature learning and generation in SER. The model is shown
in Figure 1. We use mixup to linearly interpolate the input
samples before providing them to the proposed GAN network.
The samples (xn, yn) and (xm, ym) are randomly selected from
the training data to create mixup samples xin and their labels
using the equations 1 and 2. Due to the unsupervised nature
of our proposed framework, only xin samples are given to the
encoder (Ee) network. Here, we modified the GAN architecture
and use an encoder (Ee) network along with a generator (Ge)
and a discriminator (De). The encoder network Ee generates
the compressed encoded feature vector ze. Instead of a random
sample, the generator (Ge) uses encoded features ze to generate
synthetic (or fake) samples (Ge(ze)). The generator (Ge) also
acts as the decoder of the autoencoder network. The parameters
of the encoder and decoder are optimised by minimising the
following cost function:

L(xin, Ge(Ee(xin))) = ‖xin − x̂in‖22. (3)

The discriminator (De) is tasked to classify between real and
synthetic (Ge(ze)) samples using a binary cross-entropy loss
function. Here, we consider real samples with λ = 0, 1 . There-
fore, the discriminator (De) network is tasked to classify the
real sample with λ = 0, 1, and the synthetic one. This enables
the generator (Ge) to generate samples close to real samples
(λ = 0, 1) instead of confusions arising from augmented sam-
ples with mixup. It also helps the encoder network to encode
important emotional attributes that can help Ge in synthetic fea-
ture generation. Overall, the proposed model is trained using the
following optimisation:

min
Ge

max
De

Exin [log(De(xin))] + Exin [log(1−De(Ge(Ee(xin))))].

(4)
The generator (Ge) attempts to minimise the optimisation in
Equation 4 by generating a synthetic sample that can fool the
discriminator in the classification of real samples (λ= 0, 1) and
generated ones. We train the overall model iteratively. First, we
update the autoencoder network. Then, the generator network
is updated. Finally, the discriminator network is updated for
samples with λ = 0, 1.
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(a) real features (b) synthetic features (c) real+synthetic (d) synthetic features Bao et al. [16]

Figure 2: Results on the IEMOCAP data using: (2a) real features, (2b) synthetic features, and (2c) real+synthetic. 2d shows the results
of [16] on synthetic features.

4. Experimental Setup
4.1. Dataset

We use the following datasets for evaluations.
IEMOCAP: Interactive Emotional Dyadic Motion Cap-
ture (IEMOCAP) [26] is a multimodal corpus that contains
English dyadic conversations of ten actors over five ses-
sions. Each session has recordings from one male and
one female speaker. Overall, utterances in IEMOCAP are
annotated in 10 emotions by 3-4 assessors based on both
video and audio streams. To be consistent with previous
studies [27, 28], we use four emotions including angry, happy,
neutral, and sad, where the excitement class is merged into
the happiness class. This results in a total of 5 531 samples.
MSP-IMPROV: For cross-corpus evaluation, we select the
MSP-IMPROV [29] dataset as target data. This corpus also
contains the recordings of English dyadic interactions between
actors. There are six sessions, where each session has the
utterances from two speakers (one male, and one female).
Overall, 7 798 utterances from 12 speakers are annotated across
four emotions: angry, neutral, sad, happy. We use all utterances
of this corpus.

4.2. Features

We use the openSMILE toolkit [30] for extracting features from
speech utterances. We use ‘emobase2010’ as reference feature
set which consists of 1 582 features. This feature set is based
on the Interspeech 2010 Paralinguistics Challenge feature set
(IS10) [31] and contains the combination of prosody, spectral,
and energy-based features. We use these features as real samples
in our experiments. Mixup is applied directly on these features
of training samples and their labels.

4.3. Model Configuration and Training

We implement our model using feed-forward neural network lay-
ers. Our encoder and decoder network consist of two layers with
hidden units of 1 000 and 500 each. We vary the dimension of
the encoder feature vectors to compare the results with different
studies. Our discriminator consists of two hidden layers with
1 000 neurons each. The autoencoder network is regularised by a
dropout layer with a value of 0.5 for between two feed-forward
layers. Leaky Rectified Linear Units (leaky ReLUs) [32] are
selected as activation function in all hidden layers.

As described, we employ mixup on the IS10 features vectors

and their respective labels of training data. Augmented train-
ing data is then given to the proposed model. We pre-train the
autoencoder network before initialising the generator. The gener-
ator is updated for all input samples, however, the discriminator
is only updated for input samples with λ = 0, 1. It is important
to note that we only use mixup on training data. After training
the proposed model, we use it to compute the encoded feature
vectors and synthetic data for training as well as the testing set.
We consider utterance-level speaker-independent SER for our
experiments. Specifically, we use leave-one-session-out cross-
validation to be consistent with previous studies. We use the
unweighted average recall (UAR) as the performance metric.
We repeat all experiments five times and mean and standard
deviation are reported. We apply min-max normalisation in the
synthetic features generation experiments. For cross-corpus eval-
uation, we apply z-normalisation separately, as it provides better
results compared to min-max normalisation for cross-corpus
classification [33].

5. Experiments and Results
We perform two types of experiments to evaluate the perfor-
mance of the proposed framework: (1) a within-corpus exper-
iment, and (2) a cross-corpus experiment. Each experiment is
presented separately below.

5.1. Within-corpus experiments

In this experiment, we evaluate the proposed model on both
synthetic and encoded features.

5.1.1. Synthetic features

In this experiment, we perform analysis on synthetic features.
We build DNN classifiers for emotion classification using: (i)
only real features, (ii) only synthetic features, and (iii) both real
and synthetic features. Here, real features show the openSMILE
ones with the mixup scheme. Our classifiers consist of two
hidden layers with 400 hidden units for the experiments (i) and
(ii), and 1000 hidden units for the experiment (iii). We use the
dropout layer with a dropout value of 0.5. We use a learning rate
of 10−5 in all these experiments. Results are reported in Table
1.

We perform a comparison of our results to recent studies
[16] and [14]. In [14], Sahu et al. investigated GAN architec-
tures to generate the synthetic feature vectors (1582-d) using a
low dimensional (2-d) representation for SER and to improve
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Table 1: Results for cross-validation evaluation on IEMOCAP

Studies Real Syn. Real+Syn.
Sahu et al. [14] 59.42 34.09 60.29
Bao et al. [16] 59.48 ± 0.71 46.59 ± 0.75 60.37 ±0.70
Ours 60.51±0.57 45.75 ± 0.81 61.05 ±0.68

the performance in exploiting both real and synthetic features.
Similar to [14], we also select ze = 2 and generate a synthetic
vector (1582-d). We are achieving better results compared to this
study for the classification of real, synthetic, and real+synthetic
settings. Bao et al. [16] apply a CycleGAN based model to
augment SER by transferring feature vectors extracted from a
large unlabelled speech data into synthetic features for the given
target emotions. We compare their best results for real+synthetic
features when they used the classification loss in Table 1. In
contrast to [16], we are achieving better results for real and
real+synthetic features. However, our classification results on
synthetic features are slightly lower. To gain a deeper under-
standing of the performance differences, we analyse prediction
errors in Figure 2a-2c. We also plot the prediction results on
synthetic data achieved by [16] in Figure 2d.

It can be noted from the confusion matrices that the pre-
diction performance is improved using real+synthetic features
compared to using only real features (see Figure 2a and 2c). Our
results on synthetic data (Figure 2b) are comparable to the results
achieved using real data (Figure 2a) for the angry and sad classes.
However, we are achieving lower results for the classes happy
and neutral. We also compare the prediction errors on synthetic
data with Bao et al. [16]. The proposed model in [16] improved
the prediction on the sad class, however, performed poor on
happy and neutral (see Figure 2d). In contrast, we are achiev-
ing results closer to Figure 2a for all classes, which shows that
the proposed framework is generating synthetic feature vectors
similar to real samples.

5.1.2. Encoded Features

To evaluate the performance of encoded features by our pro-
posed model, we use encoded features (ze = Ee(xin)) from the
autoencoder component as the input to the classifier for classifi-
cation. In this experiment, we compare our results with a recent
study [6] in which the authors used different non-linear dimen-
sionality reduction algorithms for extracting low-rank feature
representations for SER. We select three top-performing dimen-
sionality reduction algorithms in [6]. These methods include
SMACOF multidimensional scaling (MDS) [34], Principal Com-
ponent Analysis (PCA) [35], and an autoencoder [36]. Results
are presented in Table 2.

Table 2: Comparison of results using different dimensionality
reduction algorithms on IEMOCAP.

Method UAR (%)
SMACOF MDS [6] 58.5
PCA [6] 57.7
Autoencoder [6] 57.8

with mixup
SMACOF MDS 58.9
PCA 58.3
Autoencoder 58.5
Proposed 59.6

In [6], the authors used SVMs for classification on the fea-

tures learnt by each dimensionality reduction algorithm. How-
ever, they did not use any data augmentation technique. There-
fore, we also implemented these dimensionality reduction meth-
ods with mixup to have a fair comparison with our proposed
model. To be consistent with [6], we reduce the dimension of
the IS10 features from 1 582 to 25 dimensions and compute the
results. In our proposed model, we use ze = Ee(xin) features
for classification with SVMs. We select an RBF kernel and
perform a grid search on validation data to select the optimal
hyper-parameters for classification. The standard autoencoder
applied in this experiment is trained with 3 fully connected
encoder layers, 3 decoder layers and 1 hidden layer. ReLU acti-
vation is chosen in these layers. It can be noted from Table 2 that
the proposed model performs better than the other non-linear
dimension reduction techniques. This shows that the proposed
model efficiently encodes features in lower dimension while
keeping emotional information.

5.2. Cross-corpus evaluation

To investigate the proposed model in a cross-corpus setting, we
also perform the same experiments (as in Section 5.1.1) using
real, synthetic, and real+ synthetic data. Here, we have MSP-
IMPROV as the target data. Therefore, we randomly select 30 %
of the samples from MSP-IMPROV as the development set for
hyper-parameter selection and the remaining 70 % as test data,
as done in [16]. We keep the class proportions equal in both
sets. For classification, we choose a DNN model with two fully
connected layers with 400 hidden units in each layer. The values
for the learning rate and dropout are 10−5 and 0.8, respectively.

Table 3: Results for cross-corpus evaluation.

Studies Real Syn. Real+Syn.
Sahu et al. [14] 45.14 33.96 45.40
Bao et al. [16] 45.58 ± 0.40 41.58 ± 1.29 46.52±0.43
Ours 46.0±0.57 42.15 ± 1.12 46.60 ±0.45

The results are compared with [14] and [16] in Table 3.
Both of these studies augmented the training data with synthetic
samples to help SER in a cross-corpus setting. Compared to
these studies, we are achieving improved results. This shows
that the proposed model improves the performance of SER in a
cross-corpus setting using synthetic data and also when training
data is augmented with these synthetic samples.

6. Conclusions

A major challenge in speech emotion recognition (SER) is the
lack of availability of larger datasets. This limits the performance
of representation learning algorithms and generative models.
We address this issue by proposing a framework that utilises a
data augmentation technique called mixup to augment GANs
in representation learning as well as synthetic feature vector
generation. Compared to recent studies, our proposed framework
was able to learn better emotional representations in compressed
form and also to generate synthetic features vectors that can
be effectively utilised to augment the training size of SER for
performance improvement. In future efforts, we aim to design
an extended version of the proposed framework for domain
adaptation in cross-lingual SER.
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tive training and mixup regularization for neural network acoustic
models in automatic speech recognition.” in Interspeech, 2018, pp.
2414–2418.

[25] A. Duarte, F. Roldan, M. Tubau, J. Escur, S. Pascual, A. Salvador,
E. Mohedano, K. McGuinness, J. Torres, and X. Giro-i Nieto,
“Wav2pix: speech-conditioned face generation using generative
adversarial networks,” in IEEE International Conference on Acous-
tics, Speech and Signal Processing (ICASSP), vol. 3, 2019.

[26] C. Busso, M. Bulut, C.-C. Lee, A. Kazemzadeh, E. Mower, S. Kim,
J. N. Chang, S. Lee, and S. S. Narayanan, “Iemocap: Interactive
emotional dyadic motion capture database,” Language resources
and evaluation, vol. 42, no. 4, p. 335, 2008.

[27] S. Latif, R. Rana, J. Qadir, and J. Epps, “Variational autoencoders
for learning latent representations of speech emotion: A prelimi-
nary study,” in Proc. Interspeech 2018, 2018, pp. 3107–3111.

[28] S. Latif, R. Rana, S. Younis, J. Qadir, and J. Epps, “Transfer
learning for improving speech emotion classification accuracy,”
Proc. Interspeech 2018, pp. 257–261, 2018.

[29] C. Busso, S. Parthasarathy, A. Burmania, M. AbdelWahab,
N. Sadoughi, and E. M. Provost, “Msp-improv: An acted cor-
pus of dyadic interactions to study emotion perception,” IEEE
Transactions on Affective Computing, vol. 8, no. 1, pp. 67–80,
2017.

[30] F. Eyben, F. Weninger, F. Gross, and B. Schuller, “Recent develop-
ments in opensmile, the munich open-source multimedia feature
extractor,” in Proceedings of the 21st ACM international confer-
ence on Multimedia. ACM, 2013, pp. 835–838.

[31] B. Schuller, S. Steidl, A. Batliner, F. Burkhardt, L. Devillers,
C. Müller, and S. S. Narayanan, “The interspeech 2010 paralinguis-
tic challenge,” in Eleventh Annual Conference of the International
Speech Communication Association, 2010.

[32] B. Xu, N. Wang, T. Chen, and M. Li, “Empirical evaluation of
rectified activations in convolutional network,” arXiv preprint
arXiv:1505.00853, 2015.

[33] Z. Zhang, F. Weninger, M. Wöllmer, and B. Schuller, “Unsuper-
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