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Abstract. Preventable or undiagnosed visual impairment and blindness affect 
billion of people worldwide. Automated multi-disease detection models offer great 
potential to address this problem via clinical decision support in diagnosis. In this 
work, we proposed an innovative multi-disease detection pipeline for retinal 
imaging which utilizes ensemble learning to combine the predictive capabilities of 
several heterogeneous deep convolutional neural network models. Our pipeline 
includes state-of-the-art strategies like transfer learning, class weighting, real-time 
image augmentation and Focal loss utilization. Furthermore, we integrated ensemble 
learning techniques like heterogeneous deep learning models, bagging via 5-fold 
cross-validation and stacked logistic regression models. Through internal and 
external evaluation, we were able to validate and demonstrate high accuracy and 
reliability of our pipeline, as well as the comparability with other state-of-the-art 
pipelines for retinal disease prediction. 
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1. Introduction 

Even if the medical progress in the last 30 years made it possible to successfully treat the 
majority of diseases causing visual impairment, growing and aging populations lead to 
an increasing challenge in retinal disease diagnosis [1]. The World Health Organization 
(WHO) estimates the prevalence of blindness and visual impairment to 2.2 billion people 
worldwide, of whom at least 1 billion affections could have been prevented or is yet to 
be addressed [2]. Early detection and correct diagnosis are essential to forestall disease 
course and prevent blindness. 

The use of clinical decision support (CDS) systems for diagnosis has been increasing 
over the past decade [3]. Recently, modern deep learning models allow automated and 
reliable classification of medical images with remarkable accuracy comparable to 
physicians [4]. Nevertheless, these models often lack capabilities to detect rare 
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pathologies such as central retinal artery occlusion or anterior ischemic optic neuropathy 

[5,6]. 

In this study we push towards creating a highly accurate and reliable multi-disease 

detection pipeline based on ensemble, transfer and deep learning techniques. 

Furthermore, we utilize the new Retinal Fundus Multi-Disease Image Dataset (RFMiD) 

containing various rare and challenging conditions to demonstrate our detection 

capabilities for uncommon diseases. 

2. Methods 

The implemented medical image classification pipeline can be summarized in multiple 

core steps, which are illustrated in Figure 1. 

2.1.  Retinal Imaging Dataset 

The RFMiD dataset consists of 3,200 retinal images for which 1,920 images were used 

as training dataset [7]. The fundus images were captured by three different fundus 

cameras having a resolution of 4288x2848 (277 images), 2048x1536 (150 images) and 

2144x1424 (1,493 images), respectively. 

The images were annotated with 46 conditions, including various rare and 

challenging diseases, through adjudicated consensus of two senior retinal experts. These 

46 conditions are represented by the following classes, which are also listed in Table 1: 

An overall normal/abnormal class, 27 specific condition classes and 1 ‘OTHER’ class 

consisting of the remaining extremely rare conditions. Besides the training dataset, the 

organizers of the RIADD challenge hold 1,280 images back for external validation and 

testing datasets to ensure robust evaluation [7,8]. 

2.2.  Preprocessing and Image Augmentation 

In order to simplify the pattern finding process of the deep learning model, as well as to 

increase data variability, we applied several preprocessing methods.  

Figure 1. Flowchart diagram, which is of the implemented retinal disease detection pipeline starting with the

retinal imaging dataset (RFMiD) and ends with computed predictions for novel images. 
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We utilized extensive image augmentation for up-sampling to balance class 
distribution and real-time augmentation during training to obtain novel and unique 
images in each epoch. The augmentation techniques consisted of rotation, flipping, and 
altering in brightness, saturation, contrast and hue. Through the up-sampling, it was 
ensured that each label occurred at least 100 times in the dataset which increased the total 
number of training images from 1,920 to 3,354.  

Afterwards, all images were square padded in order to avoid aspect ratio loss during 
posterior resizing. The retinal images were also cropped to ensure that the fundus is 
center located in the image. The cropping was performed individually for each 
microscope resolution and resulted in the following image shapes: 1424x1424, 
1536x1536 and 3464x3464 pixels. The images were then resized to model input sizes 
according to the neural network architecture, which was 380x380 for EfficientNetB4, 
299x299 for InceptionV3 and 244x244 for all remaining architectures [9-12]. 

Before feeding the image to the deep convolutional neural network, we applied value 
intensity normalization as last preprocessing step. The intensities were zero-centered via 
the Z-Score normalization approach based on the mean and standard deviation computed 
on the ImageNet dataset [13]. 

2.3.  Deep Learning Models 

The state-of-the-art for medical image classification are the unmatched deep 
convolutional neural network models [4,14]. Nevertheless, the hyper parameter 
configuration and architecture selection are highly dependent on the required computer 
vision task [4,15]. Thus, our pipeline combines two different types of image 
classification models: The disease risk detector for binary classifying normal/abnormal 
images and the disease label classifier for multi-label annotation of abnormal images. 

Both model types were pretrained on the ImageNet dataset [13]. For the fitting 
process, we applied a transfer learning training, with frozen architecture layers except 
for the classification head, and a fine-tuning strategy with unfrozen layers. Whereas the 
transfer learning fitting was performed for 10 epochs using the Adam optimization with 
an initial learning rate of 1-E04, the fine-tuning had a maximal training time of 290 
epochs and using a dynamic learning rate for the Adam optimization starting from 1-E05 
to a maximum decrease to 1-E07 (decreasing factor of 0.1 after 8 epochs without 
improvement on the monitored validation loss) [16]. Furthermore, an early stopping and 
model checkpoint technique was utilized for the fine-tuning process, stopping after 20 
epochs without improvement (after epoch 60) and saving the best model measured 
according to the validation loss. Instead of defining an epoch as a cycle through the full 

Table 1. Annotation frequency for each class in the dataset. Full disease names of all class acronyms in the
RFMiD dataset can be found in the appendix. 

Disease Samples Disease Samples Disease Samples 

D. Risk 1,519 DR 376 ARMD 100 
MH 317 DN 138 MYA 101 

BRVO 73 TSLN 186 ERM 14 
LS 47 MS 15 CSR 37 

ODC 282 CRVO 28 TV 6 
AH 16 ODP 65 ST 5 

AION 17 PT 11 RT 14 
RS 43 CRS 32 EDN 15 

RPEC 22 MHL 11 RP 6 
OTHER 34  
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training dataset, we establish an epoch to have 250 iterations. The images for a batch 
were randomly drawn, considering that as many samples as possible are used based on 
the number of iterations. This allowed to increase the number of seen batches and, thus, 
to increase the information given to the model during the fitting process of an epoch. As 
training loss function, we utilized the weighted Focal loss from Lin et al. [17].  

FL���� = −���1 − ���
� log (��) (1) 

In the above formula, pt is the probability for the correct ground truth class t, γ a tunable 
focusing parameter (which we set to 2.0) and αt the associated weight for class t. 

2.3.1.  Disease Risk Detector 

The disease risk detector was established as a binary classifier of the disease risk class 
for general categorizing between normal and abnormal retinal images. Thus, this model 
type was trained using only the disease risk class and ignoring all multi-label annotations. 
Rather than using a single model architecture, we trained multiple models based on the 
DenseNet201 and EfficientNetB4 architecture [9,10]. For class weight computation, we 
divided the number of samples by the multiplication of the number of classes (2 for a 
binary classification) with the number of class occurrences in the dataset. 

2.3.2.  Disease Label Classifier 

In contrast, the disease label classifier was established as multi-label classifier of all 28 
remaining classes (excluding disease risk) and was trained on the one hot encoded array 
of the disease labels. Furthermore, we utilized four different architectures for this model 
type: ResNet152, InceptionV3, DenseNet201 and EfficientNetB4 [9-12]. Identical to 
class weight computation of the disease risk detector, we computed the weights 
individually as binary classification for each class. Even if this classifier is provided with 
all classes, the binary weights balance the decision for each label individually. 

2.4.  Ensemble Learning Strategy 

2.4.1. Bagging 

Next to the utilization of multiple architecture, we also applied a 5-fold cross-validation 
based as a bagging approach for ensemble learning. Our aim was to create a large variety 
of models which were trained on different subsets of the training data. This approach not 
only allowed a more efficient usage of the available training data, but also increased the 
reliability of a prediction. This strategy resulted in an ensemble of 10 disease risk detector 
models (2 architectures with each 5 folds) and 20 disease label classifier models (4 
architectures with each 5 folds). 

2.4.2. Stacking 

For combining the predictions of our, in total, 30 models, we integrated a stacking setup. 
On top of all deep convolutional neural networks, we applied a binary logistic regression 
algorithm for each class, individually. Thus, the predictions of all models were utilized 
as input for computing the classification of a single class. This approach allowed 
combining the information of all other class predictions to derive an inference for one 
single class. Overall, this strategy resulted in 29 distinct logistic regression models (1 for 
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disease risk and 28 for each disease-label including the ‘other’ class). The individual 

predicted class probabilities are then concatenated to the final prediction.  

The logistic regression models were also trained with the same 5-fold cross-

validation sampling on a heavily augmented version of the training dataset to avoid 

overfitting as well as avoiding training the logistic regression models on already seen 

images from the neural network models. As logistic regression solver, we utilized the 

large-scale bound-constrained optimization (short: ‘LBFGS’) from Zhu et al. [18]. 

3. Results and Discussion 

The sequential training took 13.5 hours with 63 epochs on average for each deep 

convolutional neural network model. Logistic Regression training required less than 30 

minutes for all class models combined. No signs of overfitting were observed for the 

disease label classifiers through validation monitoring, as it can be seen in Figure 2. 

However, the disease risk detectors showed a strong trend to overfit. A reason for this is 

that the binary classification results into a too low inductive bias of the model. Due to 

the transfer learning, high correlation of ImageNet features with strong visual disease 

features are plausible resulting in neglecting minor disease features. Especially, the 

DenseNet architecture reveals a high risk of re-using these starting features resulting in 

distinct overfitting. However, through our strategy to use the earlier models based on 

validation loss monitoring, it was still possible to obtain powerful models for detection.  

3.1.  Internal Performance Evaluation  

For estimating the performance of our pipeline, we utilized the validation subsets of the 

5-fold cross-validation models from the heavily augmented version of our dataset. This 

approach allowed to obtain testing samples which were never seen in the training process 

for reliable performance evaluation. For the complex multi-label evaluation, we 

computed the popular area under the receiver operating characteristic (AUROC) curve, 

as well as the mean average precision (mAP). Both scores were macro-averaged over 

classes and cross-validation folds to reduce complexity. 

Our multi-disease detection pipeline revealed a strong and robust classification 

performance with the capability to also detect rare conditions accurately in retinal 

 
Figure 2. Loss course during the training process for training and validation data. The lines were computed

via locally estimated scatterplot smoothing and represent the average loss across all folds. The gray areas

around the lines represent the confidence intervals. 
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images. Whereas the disease label classifier models separately only achieved an AUROC 

of around 0.97 and a mAP of 0.93, the disease risk detectors demonstrated to have a 

really strong predictive power of 0.98 up to 0.99 AUROC and mAP. However, for the 

classifiers the InceptionV3 architecture indicated to have the worst performance 

compared to the other architectures with only 0.93 AUROC and 0.66 mAP. The 

associated receiver operating characteristics of the models are illustrated in Figure 3. 

Training a strong multi-label classifier is in general a complex task, however, the 

extreme class imbalance between the conditions revealed a hard challenge for building a 

reliable model [19,20]. Our applied up-sampling and class weighting technique 

demonstrated to have a critical boost on the predictive capabilities of the classifier 

models. We base this critical boost on a synergy effect between the weighted focal loss, 

by handicapping samples with very high model confidence or high class frequency, and 

the up-sampling augmentation, by increasing the probability of a minority class to be 

present in a randomly drawn batch from the dataset. 

Nearly all labels were able to be accurately detected, including the ‘OTHER’ class 

consisting of various extremely rare conditions. Nevertheless, the two classes ‘EDN’ and 

‘CRS’ were the most challenging conditions for all classifier models. Both classes belong 

to very rare conditions, combined with 47 occurrences (1.2%) in the original and 209 

occurrences (2.5%) in the up-sampled dataset. Still, our stacked logistic regression 

algorithm was able to balance this issue and infer the correct ‘EDN’ and ‘CRS’ 

classifications through context. Overall, our applied ensemble learning strategies 

resulted in a significant performance improvement compared to the individual deep 

Figure 3. Receiver operating characteristic (ROC) curves for each model type applied in our pipeline. The

ROC curves showing the individual model performance measured by the true positive and false positive rate.

The cross-validation models were macro-averaged for each model type to reduce illustration complexity. 

Table 2. Achieved results of the internal performance evaluation showing the average AUROC and mAP score

for each model utilized in our pipeline. The scores were macro-averaged across all cross-validation folds and 

classes. 
 

Model Type Architecture AUROC mAP 

Classifier DenseNet201 0.973 0.931 

Classifier EfficientNetB4 0.969 0.929 

Classifier ResNet151 0.970 0.930 

Classifier InceptionV3 0.932 0.663 

Detector DenseNet201 0.980 0.997 

Detector EfficientNetB4 0.993 0.999 

Ensembler Logistic Regression 0.999 0.999 
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convolutional neural network models. More details on the internal performance 
evaluation are listed in Table 2.  

3.2. External Evaluation through the RIADD Challenge 

Furthermore, we participated at the RIADD challenge which was organized by the 
authors of the RFMiD dataset [7,8]. The challenge participation allowed not only an 
independent evaluation of the predictive power of our pipeline on an unseen and 
unpublished testing set, but also the comparison with the currently best retinal disease 
classifiers in the world.  

In our participation, we were able to reach rank 19 from a total of 59 teams in the 
first evaluation phase and rank 8 in the final phase. In the independent evaluation from 
the challenge organizers, we achieved an AUROC of 0.95 for the disease risk 
classification. For multi-label scoring, they computed the average between the macro-
averaged AUROC and the mAP, for which we reached the score 0.70. The top 
performing ranks shared only a marginal scoring difference which is why we had only a 
final score difference of 0.05 to the first ranked team.  

4. Conclusions 

In this study, we introduced a powerful multi-disease detection pipeline for retinal 
imaging which exploits ensemble learning techniques to combine the predictions of 
various deep convolutional neural network models. Next to state-of-the-art strategies, 
such as transfer learning, class weighting, extensive real-time image augmentation and 
Focal loss utilization, we applied 5-fold cross-validation as bagging technique and used 
multiple convolutional neural network architectures to create an ensemble of models. 
With a stacking approach of class-wise distinct logistic regression models, we combined 
the knowledge of all neural network models to compute highly accurate and reliable 
retinal condition predictions. Next to an internal performance evaluation, we also proved 
the precision and comparability of our pipeline through the participation at the RIADD 
challenge. As future work, we are interested in validating the medical gain of our pipeline 
for automated multi-disease detection in retinal imaging as clinical decision support 
through a clinical study. 
 
Appendix 

In order to ensure full reproducibility and to create a base for further research, the 
complete code of this study, including extensive documentation, is available in the 
following public Git repository:  https://github.com/frankkramer-lab/riadd.aucmedi 
Furthermore, the trained models, evaluation results and metadata are available in the 
following public Zenodo repository: https://doi.org/10.5281/zenodo.4573990 
 
Acronym list of class names in the RFMiD dataset (all classes which are not represented 
in table 1 had less than 10 samples in the public as well as hidden/hold-out dataset and 
were merged as “OTHER”):  
Disease Risk (D. Risk), diabetic retinopathy (DR), age-related macular degeneration 
(ARMD), media haze (MZ), drusen (DN), myopia (MYA), branch retinal vein occlusion 
(BRVO), tessellation (TSLN), epiretinal membrane (ERM), laser scar (LS), macular scar 
(MS), central serous retinopathy (CSR), optic disc cupping (ODC), central retinal vein 
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occlusion (CRVO), tortuous vessels (TV), asteroid hyalosis (AH), optic disc pallor 
(ODP), optic disc edema (ODE), shunt (ST), anterior ischemic optic neuropathy (AION), 
parafoveal telangiectasia (PT), retinal traction (RT), retinitis (RS), chorioretinitis (CRS), 
exudation (EDN), retinal pigment epithelium changes (RPEC), macular hole (MHL), 
retinitis pigmentosa (RP), cotton wool spots (CWS), coloboma (CB), optic disc pit 
maculopathy (ODPM), preretinal hemorrhage (PRH), myelinated nerve fibers (MNF), 
hemorrhagic retinopathy (HR), central retinal artery occlusion (CRAO), tilted disc (TD), 
cystoid macular edema (CME), post traumatic choroidal rupture (PTCR), choroidal folds 
(CF), vitreous hemorrhage (VH), macroaneurysm (MCA), vasculitis (VS), branch retinal 
artery occlusion (BRAO), plaque (PLQ), hemorrhagic pigment epithelial detachment 
(HPED) and collateral (CL) 
For more information and details on the dataset, we refer to Pachade et al. [7,8]. 
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