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Abstract—In many industrial manufacturing processes, human
operators play a central role when it comes to parameterizing
the involved machinery and dealing with errors in the process.
However, large parts of the acquired process knowledge are tacit,
leading to difficulties sharing the knowledge between operators.
Therefore, knowledge extraction is a necessary but time and cost
intensive process, requiring both specially trained personnel and
experienced operators. In contrast, we propose that by gathering
insights into what influenced operators’ actual parameter choices,
tacit process knowledge can be extracted during production
in an example-based manner. This decentralized knowledge—
decentralized in regards to who holds knowledge and where it was
extracted—is then aggregated to a coherent knowledge graph. We
showcase our methodology on a real-world dataset in the domain
of fused deposition modeling (FDM), which is generated by
operators providing their insights without additional assistance
using extended human machine interfaces. Furthermore, we
compare rules extracted from the aggregated knowledge graph
against an established FDM knowledge base showing the viability
of our approach even with limited amounts of data.

[. INTRODUCTION

Autonomous processes for machines or production lines is
of increased interest for the manufacturing industry [1]. In
many cases, either the details of the manufacturing proess
are not fully understood which prevents precise mathemat-
ical modeling or explicit model creation is not possible or
cost effective. This necessitates addressing the task of (re-)
parameterization, i.e. finding a parameterization for which the
manufacturing process produces satisfactory results. Parame-
terization is currently mostly done by experienced operators
following an iterative time and resource intensive workflow,
which is similar among different manufacturing processes
(cf. Figure 1). At first, the manufacturing process, which is
influenced by environmental influences, is executed with a
standard parameterization. Then, the quality of produced parts
is evaluated in regard to specific target criteria by the operator
or specific quality assurance personnel. Based on the quality,
the operator decides whether to accept the current parame-
terization or continue the cycle. If the operator decides to
continue the parameterization process, a new parameterization
is chosen, which is suitable to address quality defects of
the previously produced part. This workflow is repeated until
a successful parameterization is chosen or other underlying
hindrances, such as identified hardware problems, have to
be addressed. In the latter case, the parameterization process
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Fig. 1. Current parameterization workflow (grey) consisting of a process
that is controlled by a parameterization, which is chosen iteratively by an
operator to minimize quality defects of the produced part in regards to target
criteria. Proposed integration (red) into the workflow to gather tacit process
knowledge in an example-based manner.

needs to be restarted after underlying hindrances have been
mitigated.

Data-based approaches to facilitate parameterization have
been previously proposed [2], [3]. Parameterization processes,
however, are rarely executed during a machines lifetime and
are hard to simulate due to complex physical interactions.
Therefore, current supervised and reinforcement learning ap-
proaches are difficult to implement in practice. We envi-
sion an approach that includes semantic process knowledge
represented in a knowledge graph to supplement the data
that is being gathered. If the knowledge graph includes the
experts’ tacit knowledge of which factors influence their pa-
rameterization decision, we anticipate that the learning process
can be guided accordingly [4]. To extract tacit knowledge,
a process called knowledge extraction or elicitation needs to
be performed by knowledge engineers and experts. Knowl-
edge extraction of tacit knowledge constitutes the knowledge



acquisition bottleneck [5] since, even with modern methods,
it remains a time intensive process [6]. Also, difficulties
appearing during knowledge extraction have to be addressed,
such as the knowledge engineering paradox, which states that
the more competent the experts, the less they are able to
describe their solutions [7].

In this paper, we present an approach to gather semantic
process knowledge and construct a corresponding knowl-
edge graph, which includes tacit expert knowledge through
crowdsourcing the experts during the manufacturing process.
We show that information contained in the knowledge can
be extracted into easily understandable rules. To facilitate
the knowledge aggregation, we propose to integrate human-
machine-interfaces (HMIs) to enable experts to provide in-
sights into their reasoning as to why a certain parameterization
is chosen. This has the benefit that vertices and edges in
the knowledge graph automatically have a semantic that is
directly related to the one present in the data, facilitating its
application. Our approach has two benefits over existing work
in knowledge extraction: (1) we assume that it is less intrusive
than separate interviews, which are often a necessary part of
expert knowledge extraction [6], leading to fewer requirements
of specially trained personnel and (2) it is more time efficient
since in many manufacturing processes experts have a lower
workload between launching the process execution and eval-
uating the product. This time can be used by the experts to
share their insights with our approach.

While the presented approach requires a certain amount of
time, we assume that it is less intrusive. Furthermore, our
approach addresses the knowledge engineering paradox, since
it is example based, does not suffer from group dynamics that
can occur if several experts are interviewed together, and is
able to function without a knowledge engineer.

The remainder of this work is structured as follows: Sec-
tion II gives an overview of related approaches to knowledge
extraction. A formalization of the parameterization process and
our methodology are presented in Section III. We describe the
case study of fused-deposition-modeling on which we evaluate
our approach in Section IV. The evaluation is presented in
Section V. An outlook and a conclusion is given in Sections VI
and VII, respectively.

II. RELATED WORK

Knowledge extraction can be classified into two categories,
human-centered and data-based knowledge extraction. In this
section we will provide an overview over both and describe
the special case of human-in-the-loop systems.

a) Human-Centered Knowledge Extraction: Tradition-
ally, knowledge extraction or elicitation is performed by a
knowledge engineer and one to several experts. The engi-
neer chooses from an array of different techniques such as
(semi-) structured or unstructured interviews, observations,
protocol analysis or sorting and rating [8]. In the context of
manufacturing scenarios, Deslanders et al. explored structured
interviews to extract production rules for parameters that
directly influence part quality [9]. Combinations of the above
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mentioned techniques have been successfully applied to the
extraction of tacit procedural knowledge as mixed method
approaches [6].

Seymoens et al. describe a different approach that aims to
extract tacit knowledge by integrating domain experts during
algorithm creation [10]. However, the experts’ knowledge is
only implicitly contained in the resulting algorithms. There-
fore, it is not available explicitly for onboarding purposes or
similar purposes.

Gebus et al. propose a factory-wide knowledge-based de-
cision support system for remedying faults. They argue for
an approach limiting the knowledge engineer’s interactions
with domain experts, instead enabling experts through systems
that interview them on a case based basis [7]. Kharlamov
et al. proposed ontologies to represent industrial information
models in manufacturing scenarios. In Addition, they pre-
sented a tool which allows engineers to build these ontologics,
without deep knowledge on semantic technologies or ontology
creation [11]. We follow their approach to move ontology or
knowledge formalization towards people that are closer to the
process as opposed to external ontology engineers. However,
our approach requires no previous knowledge of semantic
technologies and is more suited for operators, which usually
have a lower level of education compared to engineers.

A crowdsourcing approach to knowledge extraction and
decentralized knowledge graph construction is pursued by
Wang et al. [12]. By voting on proposed triples, coworkers
create a knowledge graph of techniques and rate a worker’s
perceived technical skill for a certain technique. While we
also pursue a crowdsourcing approach, we are focused on
tacit procedural and conceptual knowledge rather than factual
knowledge.

b) Data-Based Knowledge Extraction: Logical analysis
of data can be used to extract if-then rules as shown for
parameters and influences in a fault diagnosis scenario by Bai
et al. [13].

In addition, several natural language processing [14]-[17]
based approaches exist for various domains, such as oil and gas
or health care [18]. A different approach is described by Katti,
which allows ontologies to be generated from annotated source
code of manufacturing execution systems [19]. However, both
kinds of approaches are not directly applicable to our scenario
since they are limited to factual knowledge. An approach that
is specific to procedural knowledge is presented by Pareti et
al. [20]. However, it would still require textual descriptions
of the operators’ thought processes during parameterization
which rarely exists for manufacturing processes, possibly due
to the knowledge engineering paradox.

¢) Human-in-the-Loop Learning Systems: In human-in-
the-loop or interactive learning systems, an expert gives
feedback to the suitability of a learning system’s prediction,
see for example [21]. This, like our approach, constitutes a
data-based knowledge extraction. However, this knowledge is
usually fed directly into the learning system and therefore
remains implicit as opposed to our approach which makes it
explicit. Additionally, in our case, the externalized knowledge



originates from the same operator that defined the specific
parameterization, leading us to the assumption that it is of
higher quality. Furthermore, interactive systems are at risk of
influencing the expert by the data that is shown to them [22],
which is not the case in our approach.

I1I. METHODOLOGY

In this section, we present a formalization of the parame-
terization process found in many manufacturing processes and
introduce our approach to decentralized knowledge extraction.

A. Formalizing Parameterization of Manufacturing Processes

Our approach is suited to manufacturing processes where
the quality of the produced part is influenced by a multitude of
factors. This section provides a formalized view of the param-
eterization process practiced in such processes. Influential fac-
tors can be divided into factors the machine operator can adjust
during production and those that are considered nonadjustable
(e.g. environmental conditions). Adjustable parameters are
referred to as process parameters, a concrete instance of which
is referred to as a parameterization. Parameterization choices
are made on the basis of nonadjustable factors A = OUCUT,
where the multi-dimensional expressions of part or object
characteristics O, target criteria C and environmental factors
T are dependent on the manufacturing process.

Based on our observations of parameterization processes in
different manufacturing domains, we propose that operators
choose the parameterization according to a complex internal
mental model that is based on prior knowledge, education and
experience:

Pi = f({ov C,T}, {p07 O 7pi—1}? {QO7 oo 7qi—1}7M) (1)

with:

« object characteristics o € O,

o target criteria ¢ € C (e.g. optimal quality or minimal cycle
times),

o current environmental parameters 7 € 7 that are de-
pendent on the process e.g. environment temperature,
material used or machine health,

e process parameters p € P for previous iterations,

e quality ¢ € Q achieved at previous iterations under
process parameters p and

o tacit declarative, procedural and conceptual knowledge
available to the machine operator that has been gained
through e.g. instruction, training or education M.

M is assumed to be relatively constant during the optimization
process, since the optimization process is of short duration
compared to the time the operator has spent learning and
building M.

Initially, a production process is parameterized by a standard
parameterization ps of default values, which is, for example,
determined during initial setup of the production process. To
evaluate pg = ps, the operators execute the manufacturing
process resulting in a part with the quality go. Operators then
try to iteratively—the current iteration is denoted as i—find
a (pseudo-) optimal parameterization fulfilling the constraints
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given by {o,c,7}. Just as with the initial parameterization,
the current parameterization p; is evaluated by executing the
manufacturing process and subsequently evaluating the quality
of the produced part by quality assurance, leading to new
q;- Based on ¢; and additional constraints, such as a set
budget for parameterization, the operator decides whether to
conclude the iterative process or to continue in hopes of
finding a parameterization that returns a quality better fulfilling
the target criteria. In the latter case, f(-) is evaluated anew.
Usually, however, the iterative search concludes when a good
parameterization is satisfactory in regard to the target criteria
and can not be improved upon within a few iterations. After the
iterative search has concluded, selecting p* = arg max,{g,}
for production completes the parameterization process and
allows production to commence.

B. Decentralized Knowledge Extraction

To extract tacit procedural as well as conceptual knowledge
of the operators’ mental model M, we propose a system based
on recording individual parameterizations returned by f(-) and
the influences used as inputs. For each evaluation of their
respective function faq(-), operators are asked to provide the
set

a; ={xjzr€e AU PUQ and
a influences the choice of values for p;)}

of the most influential values from fx’s inputs for the param-
eterization p;. These influences are selectable in an extension
of their familiar human machine interface (HMI). Furthermore,
they are asked to provide their confidence ¢; € [0, 1], that the
chosen influences are correctly identified.

We then construct a knowledge graph k; defined by the
vertices v; = p; U «; and the edges e; = p; X «;. Note that,
since the experts are not asked to establish direct links between
individual influences and parameters, we are not able to
differentiate which influences o resulted in which parameters
p. Therefore, we have to treat all edges as a candidate for
an influenced-by relation. This, however, decreases the task
complexity for operators considerably, since they do not have
to decide which parameter relations actually exist. Choosing
a knowledge graph as a data structure to contain the infor-
mation makes it easy to combine multiple knowledge graphs
describing different aspects of the manufacturing process [23].
Since we assume that the parameterization process starts with
a standard parameterization p,, only the vertices and edges
are included where p; diverges from p,. This leads to a
considerably more compact representation of the relevant seg-
ments of the operators’ knowledge. When generating the full
knowledge graph by aggregating k = |J, k;, we additionally
weigh individual edges with (;, where the final weight is the
mean of all aggregated weights.

To lower the amount of parameterization iterations required
until a satisfactory parameterization is achieved for a task
w = {o,¢, 7}, we propose to integrate the information con-
tained in the knowledge graph into a decision support system
for part and target criteria specific parameterizations. If o and



¢ are fixed, we can analyze («,p",q) relationships for all
encountered tasks w € €2, where (2 encompasses all tasks and
closely relates to A in that w C A. In this work, we assume
that p* is not yet well known due to a strong limitation of
exccuted parameterizations and thus operate on («, p, ¢) triples
for operator support.

A knowledge graph is bound by the task w observed
during knowledge extraction, in that it is only possible to
interpret it reliably for a new w if one has a notion of how it
relates to the one observed originally. Given this information,
parameterization suggestions p,,, can be calculated based on
the similarity of w;, the task the operator is currently faced
with, to previously encountered tasks, e.g. by taking the mean
of good parameterizations for similar tasks. Similarity can
either be directly calculated on characteristics of w, or, if these
are not observable in raw data, through cluster detection of
(a,p,q) triples and an operator’s input, which cluster might
be best suited to wj, e.g. because it contains ws with visually
similar parts o.

IV. CASE STUDY: FUSED-DEPOSITION-MODELLING

To evaluate the proposed methodology, we apply our ap-
proach to plastics based Fused-Deposition-Modelling (FDM),
an additive manufacturing technique and adjust the formal-
ization accordingly. In FDM, parts, described by 3D CAD
models, are printed layer-wise by a nozzle which melts and de-
posits raw material on a printbed [24]. To transform 3D models
into specific instructions for the printer, a slicing software
is used that generates necessary support structures, computes
infill structures and calculates the tool path. Therefore, FDM
contains not only process parameters pertaining to temper-
atures and motor actuation but also a multitude of higher-
level process parameters that are configured in the slicing
software and thereby have an indirect effect on instructions
for the printer. Consequently, the process parameters for FDM
are defined by the slicing software’s parameters. Both slicing
software and process parameters can slightly vary between
machine manufacturers.

As a slicing software that acts as our HMI, we use Cura!
which offers approx. 540 parameters for the printers we use,
of which approx. 50 are regularly adjusted by operators, e.g.
print_bed_temperature and material_print_temperature. We
treat the respective printers’ default configuration in Cura as
the default parameterization ps as those are usually derived
from at least some experience and constitute a good starting
point for operators. Objects O consist of all 3D model files,
with dimensions fitting the printers’ capacity. Q is defined
by eleven visually detectable quality metrics such as warping
or stringing. Quality assurance is carried out by at least one
trained operator after a part is produced. The operator rates up
to eleven quality characteristics per part on a discrete scale of
0 to 5 using a web-frontend.

While a number of target criteria can be formulated, for
this case study, we limit them to the optimal quality in

Uhttps://ultimaker.com/software/ultimaker-cura
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regards to metrics contained in Q. Since c is constant, we
can simplify f(-) accordingly. While environmental factors 7°
can be plentiful, for this case study, we narrow them down to:
humidity, temperature, printer and the raw material, separated
by producer, type and color. We do not treat P as an influential
factor since dependencies between process parameters are
automatically calculated by Cura.
Our experimental evaluation is therefore based on

2 :fFDM({O:T}y{psv" 7qi—1}sM)
and

dPM = [z ]2 € APM U Q and

2

--pi—l}:{qu~- (2)

2 influences the choice of values for p;)},

with A™™M — O T, We equipped the printers with humidity
and temperature sensors and extended Cura’s user interface
via a plugin. Figure 2 shows the extended user interface.
After process parameters have been adjusted in the right-
side window, the operators are now able to view and select
influential environmental parameters, quality characteristics of
previously produced parts in the dialog shown on the left. Also,
they are able to share insights via a text field and give an
indication of their confidence for the chosen parameterization.

The information gained through the HMI is aggregated as
described in Section III and can be utilized as part of a decision
support system. Based on the knowledge graph, the operator
is able to do two things: Firstly, given the current task w;,
the operator is able to check against known connections, i.e.
edges in the graph, between Q and process parameters P,
which gives him an overview of a suitable set of process
parameters to adjust. By selecting an edge, the operator
is able to visualize the underlying data. After ascertaining
the degree of similarity between w; and previously recorded
ones, similarities in recorded parameterizations are visible.
Secondly, if confronted with a specific problem regarding a
quality characteristic ¢;—1;,j € {1,...,11}, the operator
is able to filter the graph for process parameters which are
influenced by the same quality characteristic, thus, showing
recorded changes in parameterization able to remedy this
specific quality deficit.

A. Dataset

The dataset we use for evaluation, was intermittently gath-
ered by five operators of differing experience levels on three
machines over the course of several months. Before the data
was recorded, operators were instructed with the target criteria.
They were then given the respective 3D object file and
information about the environmental factors, as well as access
to the HMI.

The dataset contains 65 examples distributed over 25 param-
eterization processes. The mean of iterations per parameteriza-
tion was 2.6 with a standard deviation of 3.2619. 17 processes
contain only a single example, thus, implying that the initially
derived configuration was creating a part of sufficient quality.
In contrast, the longest parameterization process took 15
iterations.
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Operators usually varied zero to four parameters with the
majority being either a single parameter or three. The number
of parameters adjusted declined over the parameterization pro-
cess, implying that seemingly optimal configurations for some
were found while others had to be additionally fine tuned for
the task at hand. The most commonly named influential factors
pertained to the material or previous ratings. Interestingly,
operators seemed not to be able to discern whether producer,
chemical mixture (and thus the colour) or the raw material,
was important and tended to ascribe changes to all three.
Typically, one to three influences from a previous rating,
describing the critical shortcomings of the part, were deemed
influential. Rating categories where the rating was optimal,
were not named as influential, thus operators seem to be
confident that those will not suffer from the change at hand.
Operator confidence for parameter choices varied during the
process. Both 0% and 100% were named. Interestingly, in
one instance a 100% confidence in the identified influential
factors was still followed by four additional parameterization
tests with decreasing confidences (75%, 50%, 25% and 25%,
respectively). We assume that there could be two possible
explanations for such a pattern: (1) initial overconfidence
which was lowered after the parameterization did not have
the desired effect or (2) after achieving a certain quality, the
operator tries out different parameterizations to see if the
quality can be boosted further in a trial-and-error manner.
In one instance, where the initial parameterization had a
confidence of 0%, the operator showed 100% confidence in
his attribution of influences for the last iteration and was able
to conclude the process.
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V. EXPERIMENTAL EVALUATION

To evaluate whether our approach constitutes a benefit to
knowledge extraction, we conducted two experiments. The
first assesses the effect of the influences provided by the
experts compared to a purely data driven knowledge graph ag-
gregation approach based on all available factors. The second
evaluates whether it is possible to extract rules from the knowl-
edge graph and accompanying influence visualizations. Both
experiments were conducted on knowledge graphs aggregated
on the dataset described in Section IV. Direct comparison to
other approaches is compounded by two factors: (1) to our
knowledge there exist no directly comparable algorithmic ap-
proaches and (2) our approach requires a specific data structure
(the influential parameters highlighted by the operator) that are
absent from any public dataset we know of.

A. Effect of Provided Influences

To evaluate whether the influences «, that were highlighted
by the experts, offer a benefit, we compare the knowledge
graph based on the experts’ opinion of influential parameters
KG, (cf. Figure 3) to a knowledge graph that takes every
observed combination of « and adjusted process parameters
{pz | Pz,i € po and p,; differs in value value in from p, ;}
into account KG 4., (cf. Figure 4). Comparing their respec-
tive visualizations, it is directly discernible that K G 4,0 may
theoretically contain knowledge, however, it is not obvious
without tedious inspection of all 260 edges. In contrast,
KG, constitutes a dimensionality reduction, leading to a
concise overview of which parameters are dependent on which
influences. Looking at the amount of vertices and edges
this is evident as well. While KG 4, contains 33 vertices
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Fig. 3.  Knowledge graph K G, constructed taking into account only
influences marked by experts. Yellow, brown and blue nodes are process
parameters p, environmental factors and influential quality characteristics,
respectively.

Fig. 4. Knowledge graph KG 4., constructed taking all influences
into account. Yellow, brown and blue nodes are process parameters p,
environmental factors and influential quality characteristics, respectively.

and 260 edges, KG, contains 21 vertices and 46 edges.
Overall, investigating 46 edges, some of which can be instantly
discarded because they do not contain similar data to w, is a
task that can be performed by a non-expert to gain a highlevel
understanding of the FDM process.

B. Evaluation of Data in Knowledge Graph

To evaluate whether we are able to extract meaningful
rules from the knowledge graph, we compare them to rules
existing in a natural language knowledge base for FDM.
For Simplify3D [25], an alternative slicing software, such
a knowledge base exists. It contains rules that are based
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on practical experiences, in depth know-how of slicer func-
tionality as well as process knowledge regarding physical
relationships. Exemplarily, we focus on rules pertaining to a
quality characteristic called stringing, which is visible through
fine strands of filament erroneously connecting pieces of the
part. We manually extracted all corresponding rules out of
Simplify3D’s knowledge base, selected the ones pertaining
to process parameters and transferred Simplify3D-specific
settings to their Cura equivalent. This results in the following
rule set:

1) If stringing is present, then increase retraction_amount
in Imm increments up to 15mm or until stringing is not
present anymore

2) If stringing is present, then adjust retraction_speed be-
tween 20 and 100mm/s
3) If stringing is present, then lower mate-

rial_print_temperature by 5 to 10°C

4) If stringing is present, then set combing to true

5) If stringing is present, then increase speed_print

To extract rules out of the knowledge graph, we first filter
it by the influential quality characteristic stringing, which
results in the subgraph displaying the process parameters
that have been adjusted to minimize stringing. The result is
shown in Figure 5. After filtering, we have eight process
parameters that are candidates influencing stringing. They
were collected through a total of six tasks for which eleven
parameterization iterations were completed. To visualize the
relationship between the influential quality characteristic and
the process parameters, we plotted cach («, p, q) triple rela-
tively, i.e. relative quality improvements av—gq on the y axis and
relative parameter changes p — p, on the x axis, respectively.
An example is shown in Figure 6, where retraction_amount
changes are plotted against improvements in stringing quality.

Analyzing similar visualizations for all parameter candi-



dates led to the following rules:

1) If stringing is present, then reduce retrac-
tion_extrusion_window by up to 3mm
2) If stringing is present, then increase retrac-

tion_count_max by 50

3) If stringing is present, then increase retraction_amount
by 2mm

4) If stringing is present, then moderately decreasing
speed_print could have a positive effect

5) If  stringing is  present, then  increasing
material_print_temperature could have a positive
effect

layer_height is not present in the rule set since it seems to be
an outlier, either caused by accidental incorrect operation or
an incorrect understanding of the HMI.

Comparing the results at an influence level, we observe
that there is an overlap of 37.5% regarding influential factors
between Simplify3D’s knowledge base and our knowledge
graph. Furthermore, 60% of Simplify3D’s influential factors
were also present in the knowledge graph. Comparing the
results at a rule level, we can see an overlap of 14.28% in
recommendations between Simplify3D’s and our rule base.
We agree with 20% of Simplify3D’s rules, disagree with 40%
and do not cover an additional 40%. For the contradicting
rules, our value recommendations are based on contradictory
data present in the iterations. This implies a high level of
uncertainty and leads to their cautious phrasing. Possible
reasons for the contradictory data are the parallel adjustment
of other process parameters, printer or material characteristics,
or erroneous information provided by the experts. However,
our approach discovered two rules that are not present in
Simplify3D’s knowledge base. This might be the case since
the knowledge could be specific to Cura and not be directly
transferable to Simplify3D. Additionally, they might be very
specific to both the printers used as well as the environment
in which production took place, while the Simplify3D guide
obviously aims at great generality. Our rules were generated
based on data of only eleven iterations and might not be
representative for all cases, as a multitude of other factors
could have affected the production process apart from the
one process parameter analysed for each rule. We assume that
with more samples, the results will exhibit a greater level of
confidence. However, especially at the influence level, they
can be considered satisfactory. The effectiveness regarding the
extra time spent by operators cannot be compared between
the two approaches since Simplify3D provides no meltrics
regarding time spent on creating their knowledge base. Since
our approach is very effective in regards to the amount of
data required, we are inclined to view the cost/benefit ratio as
positive.

VI. OUTLOOK

We observed different patterns in the data we gathered (cf.

Section IV). Since this increases the difficulty of interpreting

the results in a standardized way, we plan to enhance the
HMI to motivate a more consistent operator behavior. If the
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Fig. 6. Changes in retraction_amount (in mm) relative to the default
parameterization ps and corresponding relative changes in quality (higher
is better, 5 is the maximum) to the iteration that was selected as influential.

operators are unable to highlight influences, the data is likely
to be negatively affected. Consequently, we provided a text
input as fallback. Analyzing the entries with natural language
processing methods, applying ontology learning methodolo-
gies and fusing the results with the knowledge graph created
based on the directly selectable influences is likely to be a key
factor to increasing robustness of the approach. Furthermore,
more advanced weighting strategies have to be evaluated to
better filter out outliers or erroneous information.

For potential industrial applications, it is necessary to estab-
lish trustworthiness of experts or the information they provide.
Apart from technical aspects that have to be researched in that
regard, the resulting ethical aspects have to be addressed. To
increase usability of the approach as a decision support system,
similarity metrics for o, i.e. parts that should be produced, have
to be researched. Also, automatically extracting rules based on
relative changes of (a, p, ¢) triples would constitute a benefit
in usability. Transferring the presented approach to different
domains and validating its assumed domain independence at
an abstract level as well as a broader field study, which
validates the operators’ acceptance and the compatibility of the
presented approach with their specific workflows, is planned.
We also intend to conduct this study on a process where
traditional ontology extraction methodology has already been
applied. Therefore, it would be particularly interesting to com-
pare results after a certain data foundation has been gathered
quantifying the respective effectiveness.

Integrating the proposed approach with knowledge graphs
describing manufacturing systems at a different level of ab-
straction and therefore containing knowledge of a different
kind also presents itself as an interesting research field. Dif-
ferences in semantic notation are bound to appear in this case,
placing a focus on the alignment of knowledge graphs.

Additionally, we want to investigate whether knowledge
collected with the presented approach can be utilized to in-
crease performance of supervised learning systems through the
ability to present not only label but also additional information
pertaining to the decision processes involved [4].



VII. CONCLUSION

In this paper, we formalized the parameterization process
found in many manufacturing scenarios. Building on that, we
presented an abstract methodology for knowledge extraction:
while actively parameterizing machinery in a production envi-
ronment, operators highlight exemplary values that influenced
their decision making. The methodology is designed to be able
to be applied during production without additional personnel
and without causing delays. We described a decision support
system building on the knowledge graph constructed by the
proposed methodology. This can be used to decrease onboard-
ing times as well as provide assistance when confronted with
a concrete problem.

Mlustrating our approach, we conducted a case study demon-
strating that the abstract methodology can be applied to
a fused-deposition-modeling (FDM) process. In the domain
of FDM, we collected a real-world dataset on which we
conducted an experimental evaluation of the proposed ap-
proach. We showed that 20% of rules existing in a third-party
knowledge base regarding a specific quality characteristic
can be approximated with the help of our approach requir-
ing only eleven examples pertaining to this specific quality
characteristic. Therefore, we are confident that the described
methodology can form the foundation for the application of a
combination between knowledge based and learning systems
in manufacturing.
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