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ABSTRACT

Human-robot collaboration in industrial settings is an expanding
research field in robotics. When working together, robot mistakes
are an important factor to decrease trust and therefore interferes
with cooperation. It is unclear whether explanations help to restore
human-robot trust after a mistake. In our study, we investigate
whether system explanations as a trust-repairing action after a
robot makes a mistake in a collaborative task is helpful. Our pilot
study revealed that users are more interested in solutions to errors
than they are in just why the error happened. Therefore, in our
main study, we evaluated three levels of mistake explanations (no
explanation, explanation, and explanation with solution) after a
robot in VR made a mistake in executing a shared objective. Af-
ter testing with 30 participants we found that the robot making
a mistake significantly affects trust toward the robot, compared
to it completing the task successfully. While participants found
the explanations helpful to trust or distrust the robot, the levels
of the explanation did not lead to an increase in trust towards the
robot after a mistake. In addition, we found no significant impact of
explanations on self-efficacy and the emotional state of the partici-
pants. Our results show that explanations alone are not sufficient
to increase human-computer trust after robot mistakes.
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1 INTRODUCTION

The collaboration between humans and machines in the industrial
setting is becoming more and more realised due to the enormous
progress in the fields of robotics and machine learning. Introducing
collaborative robots in the manual production can potentially help
relieve the workers of strenuous and repetitive tasks. Through the
use of machine learning methods like Deep Reinforcement Learn-
ing, it is possible for robots to interact autonomously in industry
tasks and to adapt dynamically to the demands placed on them.
In addition, an intuitive usage and interaction by humans become
more and more common. However, the more natural the handling
of robots in industry becomes, the more demands humans place
on them. If these demands are not met, human-robot collaboration
(HRC) can be disrupted. In addition to reduced trust and frustration,
this can have serious consequences such as accidents and produc-
tion losses [7, 12]. To enable successful HRC it is important that
we maintain human-robot trust (HRT), especially when working
with a robot at close proximity. To this end, we investigate the
capabilities of system communication with the human collaborator
to perform trust-repair through explanation in cases where the
robot makes a mistake during the execution of a shared objective.
We base the research on the context of a shared task where the
human and robot have to move a collection of objects within a
shared tabletop work space. To integrate system communication
with non-obstructive output modalities we base the design of the
communication system on projection-based augmented reality (AR),
so that messages can be displayed directly on the work surface. To
sum up, we investigate how we can use mistake explanations after
arobot mistake as a trust-repairing action in order to maintain trust
during close-proximity collaboration. Rather than implementing
the robots’ communication system using real hardware, we test
our prototype iterations using computer-generated demonstrations
and virtual reality (VR) testing environments'. With our work, we

make the following contributions:
e With our pilot study we give novel insights about require-
ments and expectations of end-users towards robot explana-

tions after mistakes.

! The presented studies in this paper as well as the gathered data have been collected
with respect of the GDPR regulations
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o We present a VR setup to research robot-mistakes in close-
proximity collaboration-tasks.

o Our results about the impact of different levels of explana-
tions after robot-mistakes on trust, explanation satisfaction,
self-efficacy, and emotional state of end-users gain new in-
sights regarding explainable AI (XAI) in HRC.

o We discuss the challenges using explanations in HRC and
how our findings are useful for researchers to design XAl in
HRC.

2 STATE OF THE ART

2.1 Human-Robot Trust & Robot Mistakes

De Visser et al. [7] use a definition of trust in the context of HRC
as the human’s willingness to engage in a situation characterized
by vulnerability with another party based on their expectation to-
ward that party. In this context the other party is the robot. In a
meta-analysis Hancock et al. [12] categorized the constructs that
affect the operator’s perception of the robot into human-related,
robot-related, and environmental factors. The robot-related factors
are further split into performance-based and attribute-based factors,
covering how the robot performs or behaves and how the robot
looks or where it is, respectively. Looking at performance-based
robot-related factors, reliability, dependability, and predictability
have significant effect HRT. They also outline the importance of
appropriate trust levels toward the robot in HRC, as too much trust
may lead to dangerous situation as a result of misuse, whereas
too little trust may lead to the robot not being utilized optimally.
Schaefer [33] developed two HRT scales based on the operator’s
perception of the robot’s characteristics, performance, predictabil-
ity, and more. The long scale has 40 questions while the shorter
version has 14 questions. Kessler et al. [21] compared these scales to
a standardised scale of trust in automation with conflicting results,
suggesting that the two scales evaluated different factors, making
them not interchangeable.

In testing robot dependability and its effects on trust, Salem et al.
[32] found that a home companion robot would be perceived as
less trustworthy after making a mistake, even though the mistake
did not significantly affect participants’ willingness to follow the
robot’s instruction. In addition to the factors outlined by Hancock
et al. [12], HRT has also been shown to be affected by the general
transparency of the system controlling the robot. Boyce et al. [5]
compared three transparency conditions in a simulation. Higher lev-
els of transparency yielded higher trust measured using a modified
automation trust scale. Due to the scale used one has to consider
whether the trust pertains to the simulated robot or the commu-
nication system. Comparing decision explanations for a robot in
a simulated reconnaissance mission, Wang et al. [38] found that
low-ability robots gained more trust from explanation, as opposed
to no explanation, whereas high-ability robots did not gain trust
from them. When testing a robot that would assign blame after a
mistake occurred, Kaniarasu and Steinfeld [20] found that people
would be annoyed when the robot blamed them, but they trusted
the robot less if it kept blaming itself.

On the importance of the presence of the robot, as we are testing
using VR simulations, both Wainer et al. [36] and Bainbridge et al.
[2] compared a co-located robot with a remote robot presented on
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a screen, and both found that the co-located robot was significantly
favoured. However, Duguleana et al. [9] found, when comparing
HRI with a real robot and with one presented in immersive VR,
participants reported high engagement toward the virtual robot
and rated it at 7.8 out of 10 in realism, relative to the real robot.

2.2 Explanations in Human-Robot Interactions

Evidence suggests that a lack of transparency, with respect to the
decisions of an autonomous agent, might have a negative impact on
the trustworthiness of a system, which in return hurts the overall
user experience [16, 35].

The reemerging research field of explainable artificial intelli-
gence (XAI) [11] investigates approaches to address this problem.
Current research on XAl is mainly dealing with methods to ex-
plain the decisions of deep neural networks (e.g., [15, 19, 39]). Var-
ious promising approaches have meanwhile been developed for
these use-cases (the interested reader is referred here to works of
e.g., [1, 30]). In the field of human-robot interaction, different XAI
approaches are discussed to gain insights in behaviour and goals of
robots (e.g., the work of [34]).

Alongside the question of how explanations can be generated,
the research field of XAl is also concerned with the question of
how explanations can be communicated to users. In particular,
communicating explanations to end-users is a challenge here, as
they need to interact with the system (e.g., a robot) but have no
knowledge how the system works. The work of Wang et al. [37]
shows that explanations to end-users about a well working robot
increases transparency, trust, and performance in human-robot
interactions. But robots also make mistakes and are not free of
errors. When an error occurs, without an explanation end-users
are often unable to understand how the error arose, how to fix it,
and how to avoid it in the future. This leads to performance losses
as well as distrust [18]. But even with explanations, less accurate
autonomous systems lead to a decrease of trust in robots abilities,
and success of the task [37]. Therefore it is critical to investigate,
whether it is possible to repair trust in the system and if so, which
aspects of an explanation are relevant to increase trust.

3 PILOT STUDY

The scope of our work is to investigate HRT in an interaction
scenario in which the robot makes a mistake. In the pilot study
we conducted, we first wanted to investigate whether different
explanation modalities (i.e., textual or auditory) are preferred by
participants. We presented the participants with videos of a virtual
robot performing a task of sorting bottles of different shapes at
either side of a table. The setup is illustrated in Figure 1. In addition,
we varied the type of error:

o Colour vision error: To illustrate the colour vision error, the
robot shown is moving a bottle of incorrect shape. The ex-
planation given was:“A computer vision error occurred. The
system did not successfully distinguish the shapes in the
current lighting conditions.”

Calibration error: Here the robot knocked over one of the
bottle while moving them. The explanation given was: “A cal-
ibration error occurred. The motion planner did not properly
compensate for the robot’s momentum.”
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The pilot study was conducted to guarantee, that the differ-
ent explanation modalities and types of error did not significantly
differ in their impact on trust. Furthermore, we wanted to gain
insights whether the given explanations were sufficient enough
and whether/which additional information participant find helpful.
In more detail, we formulated the following hypotheses:

o H1: Robot Performance & Likeability: The rating of ro-
bot performance and likeability will differ between the no-
error and the two error conditions, where the ratings for the
no-error robot will be higher.

H2: Explanation Quality: After being presented with a ro-

bot mistake in videos of a virtual robot and a given modality

of explaining the mistake, the user can describe the mistake
accurately.

o H3: Modality of Explanation: There will be no difference
between the modality of explanation (i.e., textual and au-
ditory) regarding likeability, performance, trustworthiness,
and understanding of the robot.

o H4: Type of Robot Error: There will be no difference be-
tween the types of mistake (i.e., calibration error and colour
vision error) regarding likeability, performance, trustworthi-
ness, and understanding of the robot.

To answer these hypotheses, we used a between-subjects design
for the modality of explanation (i.e., textual or auditory), meaning
that every participant saw one of the explanation modalities. For the
two different robot mistakes (i.e., colour vision error and calibration
error), we used a within-subjects design. Here, every participant
saw both types of errors during the study?.

3.1 Procedure

The pilot study took place as an online questionnaire. Within this
questionnaire, the participants were shown a series of videos of a
virtual robot modeled after the Rethink Robotics Sawyer® model.
This robot had the task of sorting bottles at either end of a table
based on their shape.

e First video: The first video showed the robot successfully
completing the sorting task, switching the positions of two
bottles, so that two round-based bottles are on the left side
of table and two square-based bottles are on the right. Then,
the participants rated the performance of the robot and their
impression of the robot. They were then asked to briefly
describe the robot, its behaviour, and the task it was per-
forming.

Second video: The second video showed the robot perform-
ing the same task again, but making a mistake (i.e., computer
vision or calibration error). The participants then answered
the same questions about the robot’s performance and their
impression. After that, they were asked to briefly describe
what the difference was from the previous video.

First Explanation: Subsequently, they were shown an ex-
planation of the previously seen mistake (i.e., textual or au-
ditory explanation). The textual explanation modality being
shown in Figure 1. Next, the participants had to answer
several questions about the explanation shown.

2We randomized the order of the presented errors to control for sequence effects
3https://www.rethinkrobotics.com/sawyer/
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e Third video: After answering these questions, they were
shown a third video, of the robot making the other type of
mistake.

¢ Second explanation: Here, again, an explanation was shown
to them afterwards and the participants had to evaluate it.

At the end of the online study, participants had to provide some
personal information about themselves.

3.2 Evaluation Methods

To gain insights of the user’s impressions regarding the robot errors
and the explanation modalities, we used different scales.

Performance. To evaluate the perceived robot performance, we
asked the participants after every video to rate the performance of
the robot, using a 7-point Likert scale (1= not good, 7= very good).

Likeability. Similar to the measurement of the perceived robot
performance, we asked the participants after the no-error video as
well as after each explanation, how much they liked the robot and
if they wanted to work with the robot* (7-point Likert scale; 1= not
at all, 7= totally).

Explanation Quality. To measure the quality of the presented
explanations, we used two items of the Explanation Satisfaction
Scale (ESS)[17]. Here we asked the participants (1) whether the
explanations helped to trust the robot and (2) whether they helped
to understand how the robot worked (5-point Likert scale; 1= 1
disagree strongly, 5= I agree strongly). In addition, we asked two
general yes / no questions regarding the explanations, i.e., “Have
you learned anything because of the explanation?” and “Was the
explanation easy to understand?”. We also asked for free-form feed-
back. Here we wanted to know from the participants which parts
of the explanation were easy/not easy to understand, whether they
would have needed more/additional information and which one
and why the explanation was not helpful (i.e., when participants
answered the “Have you learned anything because of the explana-
tion?”question with “no”).

In addition, at the end of the pilot study we collected personal
information (e.g., age, gender) from participants as well as their
knowledge and attitudes toward Al and XAL

3.3 Participants

In our pilot study, 20 people between 21 and 54 years (M = 29.3,
SD = 7.47) participated. 11 of them were male, 9 were female. All
participants had heard about the term AI but only 9 of them had
heard about XAL

3.4 Results

3.4.1 Rating of Robot Performance & Likeability. To answer H1, we
compared the variables likeability and performance between the
no-error robot and the two error conditions. For this, we conducted
paired t-tests. Here, the performance of the no-error robot was
perceived significantly higher compared to the calibration error
robot, #(19) = 9.20, p = < .001, d = 2.06 (large effect) as well as the
colour vision error robot, #(19) = 9.11, p = < .001, d = 2.04 (large
effect). Similar results were found for the likeability. The no-error

'We calculated a mean value from both ratings
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A calibration error occurred
The motion planner did not

properly compensate for

the robot's momentum

Calibration error explanation
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m?‘
- ©

A computer vision error occurred
The system did not successtully
distinguish the shapes in the
current lighting conditions.

Colour vision error explanation

Figure 1: Textual explanation modality. Two robot errors were explained during the pilot study: a calibration error (left) and

a computer vision error (right).

robot was liked significantly more compared to the calibration error
robot, #(19) = 4.27, p < .001, d = 0.95 (large effect) as well as the
colour vision error robot, #(19) = 6.06, p < .001, d = 1.35 (large effect).
These results are shown in Figure 2. Therefore, the results support
our H1 that ratings for the the no-error robot were higher.

Average Rating Score
.

=]
|

Calibration error Colour vision error
Condition

Ma error

Categories . Likeability . Performance

Figure 2: Rating of the robot in the no-error and the two er-
ror conditions. The ratings for the no-error condition were
significantly higher than for the two error conditions.
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3.4.2  Rating of Explanation Quality. To answer H2, we asked the
participants whether they had learned something because of the
explanation and whether the explanation was helpful or not to
get a general impression of the explanation quality. Overall, we
found evidence to support H2. 14 participants stated that they
had learned something from the calibration error explanation. 17
participants stated they had learned something from the computer
vision error explanation. Besides the quantitative feedback of the
participants, we also analysed the qualitative free-form feedback.
Here, participants mentioned for computer vision error, that it
would be helpful to add information how to solve the error (e.g.,
information whether the error occurred because the environment
was too dark or too bright). For the calibration error, participants
mentioned that the explanation was too technical and they would
have needed more information how to fix the error or how to
calibrate the robot correctly to avoid similar errors in future.

To evaluate the explanation quality in more detail, we used two
items (“help to trust or distrust the robot” and “help to understand
how the robot works”) proposed by Hoffman et al. [17]. Analyses
on these scales will be reported in the next sections.

3.4.3 Comparison of Explanation Modalities. For answering H3, we
used independent samples t-tests to analyse the impression of the
two different explanation modalities (textual vs. auditory) regarding
explanation quality, likeability, and performance of the participants
towards the robot. We found no significant differences between
the conditions (see Table 1), supporting our H3 that explanation
modalities do not differ.

3.4.4 Comparison of Robot-Error Types. For H4, the conducted
paired t-tests regarding explanation quality (i.e., trustworthiness
& understandability), performance, and likeability. The analyses
revealed (see Table 2) that the computer vision error explanation
helped more to trust or distrust the robot compared to the cali-
bration error explanation (d = 0.62 - medium effect). In addition,
we found that participants rated the robots performance better in
the calibration error condition (d = 0.49 - medium effect). This re-
sults does not support our H4 as we found differences between the
error-types regarding performance and trustworthiness ratings.
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Table 1: No significant differences in explanation qual-
ity (trustworthiness & understandability), performance and
likeability between the two different explanation modalities
(textual vs. auditory) for both types of robot error. Trustwor-
thy refers to “help to trust or distrust the robot”, Understand-
able refers to “helps to understand how the robot works”.

Explanation Modalities Measurement df t p

trustworthiness 18 -0.94 .36
understandability 18 -1.40 .18
performance 18 30 .77
likeability 18 -0.60 .55
trustworthiness 18 -0.87 .39
understandability 18 -0.50 .62
performance 18 74 47
likeability 18 -0.70 .49

calibration error
text vs. audio

computer vision error
text vs. audio

Table 2: Significant differences in performance and trustwor-
thiness between the two different error types (calibration vs.
computer vision error).

Measurement df t p d
trustworthiness 19 -2.77  .012*  0.62
understandability 19  -0.89 .38 -
performance 19 218  .042*  0.49
likeability 19 1.78 .09 -
*p<.05

3.5 Discussion

From the pilot study, it became apparent that people rated the robot
significantly worse in terms of its performance and likeability when
it made a mistake. The general study design in terms of trust repair
(comparing trust of a correct working robot and a robot who makes
an error) was therefore maintained for the final study.

Based on the pilot study, it appeared that the explanation for the
calibration error was too technical for end-users without experi-
ence in robotics. These resulted in significant lower trust rating
and was mentioned by participants in the free-form feedback. This
reflects the argument of Gerlings et al. [10] saying that there is no
generalised user to address with explanations. Instead, explanations
have to fit to the abilities and preferences of different stakeholders.
To fit end-users needs, we therefore decided to use only the com-
puter vision error in the final study and to generate explanations
for it. The free-form revealed that users are not satisfied with just
getting an explanation of the error that happened, but also want a
solution to prevent the error in the future. This finding extends the
work of Das et al. [6], who stated that explanations should include
environmental context and a history of successful actions of the
robot in the past to support non-expert users in robot-recovery
assistance. Inspired by the free-form feedback, we decided to refine
the problem statement for the study and compare 3 different levels
of error explanation: (1) no explanation, (2) explanation of error
source and (3) explanation of error source and a possible solution.
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Since we did not find any significant differences regarding the
modality of explanation (i.e., textual and auditory), we decided not
to compare these factors in the final study. Due to better compara-
bility, we decided to use only textual explanations.

4 EXPERIMENT

To ensure high fidelity of system communication to the participants
we opted to test HRC and mistake explanation using VR, rather
than implementing and testing with a real robot and projection-
based AR overlays. This also increased the test rate, as we could
test with multiple participants at once, the only limit being the
number of VR hardware setups. Based on the results from the pilot
study, where the participants asked for more solution-oriented
explanations rather than technical ones, we decided to define and
test different explanation levels. The first level is an explanation to
why the robot made the error, while the second level, in addition,
explains how to solve the problem causing the error. We compare
these two levels as trust-repairing actions after a robot mistake
along with a control condition, where no explanation is provided,
the user is only told that the robot failed the task. The trust-repair
is evaluated in terms of both trust in the robot as well as perceived
quality of the explanations. Our hypotheses are as follows:

e H1: Providing an explanation after a robot makes a mis-
take will yield higher levels of trust toward the robot than
providing no explanation.

e H2: Providing different levels of explanation after a robot
makes a mistake will yield different levels of trust toward
the robot.

e H3: Adding solution-oriented details to robot mistake expla-
nations will yield higher operator trust than explanations
without them.

4.1 Virtual Environment

The experiment was performed using HTC Vive VR headsets and
Vive Wand 6 degrees-of-freedom controllers. The virtual environ-
ment consisted of an office environment with desks and office chairs
with participants being situated in an isolated corner of the room.
Within reach of the participant was a desk with the robot mounted
on top. The robot was modeled after the Rethink Robotics Sawyer
robot. On the table was also a white square platform at either side
of the robot with a little copy of the bottles involved in the test
shown next to them, indicating which shapes of bottles have to be
put where. The task involved sorting bottles by whether they had a
round base or a square base. At startup, there were four bottles on
each of the platforms, two red and two blue on each, and both have
one bottle of each color that does not match the shape. This means
that when the test started both the participant and the robot had to
switch two bottles between the platforms to complete the shared
objective. Between the two platforms was room to display text to
convey instructions and explanations to the participants. The text
was displayed on the surface, similar to a projected AR overlay. The
participants were able to pick up the red bottles by moving a con-
troller within 20 cm of their center and pressing the trigger. Letting
go of the trigger released the bottle, and they dropped straight down
as they cannot be thrown. In the case that a bottle was dropped on
the floor, rather than requiring the participant to pick it back up, it
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will be moved back to its initial position. The test setup and robot
in the virtual environment is shown in Figure 3.

Your team failed at sortin

S
the cones. Please take off the
virtual reality headset and

and call the test conductor.

d

Figure 3: The virtual test setup featuring the robot, bottles,
their platforms and indicators, and the display text on the
desk surface.

4.2 Procedure

After reading the experiment information and signing a consent
form, the participant was given instructions to how to complete the
test by the test conductor. The participant was informed that they
would perform a collaborative task with a virtual robot and that
they would be given instructions via the text displayed on the table.
It was emphasized that they should read the instructions carefully,
before they were told to put on the VR headset. The participant
was introduced to the task by the text display. They were told that
robot was their teammate and that they were only supposed to
move the red bottles while the robot moved the blue ones as they
sorted the bottles according to the small white bottles shown next
to their white platforms. The participants proceeded through the
text instruction using the Menu button at the top of the Vive wands.
Before starting the task the participants were told how to move the
bottles and they were told to try it.

When the participant was told to press the Menu button to start
the task and they proceeded to press it, the robot would start mov-
ing the blue bottles. If the participant moved the bottles before they
started the task, the bottles were moved to their starting position
when the task began. The task was completed when the participant
had sorted their bottles and the robot was done moving its bottles.
In the first task the robot moved the bottles successfully, and the
participant was presented with this message on the table: “Your
team succeeded at sorting the bottles. Please take off the virtual reality
headset and and call the test conductor”. When they took off the
headset, they were presented with the 14-item version of the Schae-
fer HRT questionnaire [33]. Once the participant had completed
the questionnaire, they were instructed to put the headset back on
and follow the instructions.

Once they had put the headset on again, the display told them
to start the task again by pressing the Menu button. In the second
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test the robot would make a mistake. Rather than switching a
round-base and square-base bottles between their platforms, sorting
them correctly, it would switch two round-base bottles, leaving two
blue bottles in their wrong positions. The task ended once the
participant had completed their part of the task correctly and the
robot had stopped moving. The participant was then presented with
this message displayed on the table: “Your team failed at sorting
the bottles”. If the participant was testing the condition with no
explanation of the mistake they were immediately presented with
the text, “Please take off the virtual reality headset and and call the test
conductor”. If the participant was testing the condition where they
were given an explanation, they were presented with the message,
“A computer vision error occurred. The system did not successfully
distinguish the bottles”, before being told to take the headset off.
Lastly, if the participant was in the condition with solution-oriented
details, in addition to the previously mentioned explanation they
were presented with the message, “Better lighting conditions will
help with successful sorting”, before being told to take the headset off.
The lighting conditions were the same in the virtual environment
between the two tasks. Once they had taken the headset off the
participants was presented with another HRT questionnaire as
well as additional post-test questionnaire, which they were told
to fill out outside the laboratory. The approach of only doing two
tasks was chosen due to the time required to answer the post-test
questionnaires as well as to not have the participants put the VR
headsets on and off too many times.

4.3 Evaluation Methods

To evaluate the participants’ impression during and after the VR
task, we used the following scales.

Trust. During and after the VR task, we presented the 14-item
version of the Schaefer HRT questionnaire [33] at the end of each
task. In the post-test questionnaire, we used the item “This expla-
nation lets me judge when I should trust and not trust the robot”
from the EES [17] to calculate an additional trust score reflecting
the explanation quality.

Explanation Satisfaction. We used the ESS [17] to measure the
participants’ subjective satisfaction with the kind of information
(no explanation, explanation, or explanation with solution) that we
presented after the robot mistake.

Emotions. We used items for the sub-scales anger, happiness,
anxiety, and relaxation of the Discrete Emotions Questionnaire
(DEQ)[13] to evaluate the participants feelings after the VR task.

Self-efficacy. We used two items to measure the self-efficacy
towards the robot. For this, we used a variation of the item proposed
by Bernacki et al. [4] (i.e., “How confident are you that you would
successfully interact with a robot like this one in the study in the
future” and “How confident are you that you could solve a robot
error like this one in the study in the future?”).

4.4 Participants

30 participants between 21 and 31 years (M = 24.0, SD = 2.30) took
part in our experiment. Of these 11 were female and 19 male. 29 of
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the participants had heard of the term Al but only 4 had heard of
the term XAL

5 RESULTS
5.1 Trust Scores

The participants answered an HRT questionnaire after completing
each sorting task with the robot, the first one being successful,
while in the second task the robot would make a mistake. With all
data groups being parametric, performing a pair-wise t-test showed
significant difference in HRT scores between the first and second
task, whether no explanation (#(15) = 5.3, p < .001), the base ex-
planation (#(18) = 7.0, p < .001) or solution-oriented explanations
(#(17) = 4.7, p < .001) were provided. However, when comparing
the levels of explanation provided to the participants, performing a
one-way ANOVA showed no significant effects of the explanations
nor the type of explanation on the HRT scores after the mistake
(F=1(2,27) = .23, p=.79), nor on the delta of HRT scores between
tasks (F(2, 27) = .17, p = .84). The average trust scores with confi-
dence intervals are shown in Figure 4.
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Figure 4: The average HRT scores and confidence intervals
for the first and second HRC task between explanation con-
ditions.

5.2 Post-Test Questionnaire

5.2.1 Explanation Satisfaction, Trust, and Self-efficacy. After the VR
experiment, all participants answered the post questionnaire includ-
ing questions about their explanation satisfaction and their trust in
the explanation®, their general impression of the robot and their
self-efficacy towards the robot. To evaluate these variables between
the three conditions, we conducted a one-way MANOVA. Here
we found a significant statistical difference, Wilks’ Lambda = 0.59,
F(10, 42) = 2.86, p = .008. The following ANOVA revealed that only

5We calculated an overall explanation satisfaction value and used in addition the item
for the helpfulness of explanation to trust or distrust the robot as a single variable. For
details, see section 4.3
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the variable trust showed a significant differences between the
conditions, F(2, 25) = 5.92, p = .008.

To determine the direction of this difference between the three
conditions, we used post-hoc comparisons®. We found the following
differences:

o The participants’ impression of helpfulness of the explana-
tion to trust / distrust the system were significantly higher
in the explanation & solution condition compared to the
no explanation condition ¢ = -3.73, p = .002, d = 1.67 (large
effect).

The participants’ impression of helpfulness of the explana-
tion to trust / distrust the system were significantly higher
in the explanation condition compared to the no explanation
condition t = 2.49, p = .04, d = 1.13 (large effect).

5.2.2  Emotional state. To evaluate possible differences in the emo-
tional state of participants between the three conditions, we con-
ducted a one-way MANOVA for the emotion categories happiness,
anger, anxiety, and relaxation. Here we found no significant statis-
tical difference, Wilks’ Lambda = 0.84, F(8, 46) = 0.50, p = .84.

6 DISCUSSION
6.1 Main Findings

Based on the analyses of the trust scores we have to reject all three
hypotheses. While all three conditions yielded significant decreases
on reported HRT based on the scales, providing explanations to the
error, with or without suggested solutions, showed no significant
difference in trust, suggesting no trust-repairing effect.

6.1.1 Explanations alone are not sufficient to recover trust after
robot-mistakes. While the ESS trust score showed that participants
found the given explanations helpful to decide whether to trust or
distrust the robot, this subjective impression of the participants was
not reflected in their trust ratings during the VR task. Nevertheless,
the ESS trust score can be seen as a first indicator that explanations
might support trust-recovery in HRC, but that an explanation alone
is not enough to recover trust after a robot-mistake, even when
participants retrospectively rate the explanation as helpful. Despite
the effect of the helpfulness of the explanations to trust or distrust
the robot, this trust can not be assumed to be transferable to trust
in the robot itself, especially as scales for trust in automation and
HRT are not interchangeable [21].

The effectiveness of explanations seems to depend on various
aspects. Researchers like Gerlings et al. [10] state that explanations
have to fit different stakeholders and not to “the user” in general.
We extend this view by saying that it is important to differentiate
between the perception of an explanation given in an actual HRC
situation and the rating of an explanation afterward. Our work con-
tributes to the operationalization of the taxonomy of interpretability
proposed by Doshi-Velez and Kim [8]. Here the authors state that
the evaluation of explanations should not be done by using only
proxy-tasks (i.e., studies without humans) but also include users
by conducting human-grounded evaluations (for simple tasks) as
we did in our study. The next step in their taxonomy is to use the

®We used the Holm correction for multiple testing to adjust the p-values for all post-hoc
tests we calculated.
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insights from these simple-task experiments to conduct application-
grounded evaluations using real-world tasks with domain experts.
Our results, therefore, build a baseline for real-world applications.
Another important variable is the scenario of the task. Compared to
our VR task, Nikolaidis et al. [27] found out that in their study (i.e.,
a physical human-robot collaboration task), explanations greatly
increased human trust to take robot’s suggestions. Another impor-
tant variable is the emotional presentation of the explanation. The
affect in how an explanation is presented to the user plays a role
in the effectiveness of the explanation [22, 29]. Affective feedback
given by a robot leads to a more positive user impression [14, 24].
The work of Robinette et al. [31] propose that the apology of a
robot after an error increases trust in the user.

To make the explanations for HRC more effective and improve
robot trustworthiness, the recommendations of Kunkel et al. [23]
and Weld and Bansal [40], among others, should be considered
for further studies. Kunkel et al. [23] point out that richer expla-
nations are preferred by users. In addition, Weld and Bansal [40]
recommend interactive explanations. Here, the robot could be pro-
vide answers to follow-up questions and actions (e.g., giving more
details, changing the vocabulary, attempting to correct the error),
leading to a more social process of explanation.

6.1.2 Include variables such as emotions and self-efficacy to get
a complete view of explanations’ impact. The explanations in our
study did not increase participants’ self-efficacy, meaning that they
did not feel more confident to interact with the robot in the future.
In addition, the emotional state of the participants in the three
conditions did not differ. As Mertes et al. [26] stated, it is important
to measure the emotional state and the self-efficacy of users during
human-computer interactions as they are relevant to get a complete
view of the impact of XAI They found that successful explanations
(i.e. helping the user to perform better in a task and to understand
the Al better) leading to more positive and less negative emotions
and increase self-efficacy and trust. In our study, we showed that
participants were not emotionally affected by the explanations
neither did the explanations change the self-efficacy of users. This
is in line with the fact that the explanations did not increase trust
in the robot after a mistake and indicates that there could be a
connection between the emotional state of users and the trust they
have in robots.

For future studies, it would be valuable to explicitly ask par-
ticipants about how their perception of the system communica-
tion affects their perception of the robot. In addition, investigating
whether there is a separation between the robot and its operat-
ing system and communications in the participant’s mental model
could gain deeper insights into how users perceive the given expla-
nations of a robot. Considering participants showed higher trust
toward the explanations relative to the robot, they may consider
the robot and the communication system as two separate entities.

6.2 Limitations

We conducted a VR-based instead of a real-world HRC task. This,
in fact, likewise represents a limitation of the current work, but as
Petrak et al. [28] stated, VR can be a helpful tool for prototyping
scenarios where humans and robots interact. We are convinced
that our setup used and the associated results may prove helpful in
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designing real-life interaction HRC studies and might be developed
further and in more detail in future work.

The results of our study may have been affected by the partici-
pants’ understanding of the collaborative task. Some participants
seemed to have difficulty with the task, as they would often move a
bottle matching the shape of the bottle moved by the robot, rather
than following the instructions and sorting bottles according to
the indicators on the table. The difficulty understanding the task
may affect the participants’ perception of the robot’s mistake and
the explanation by extension. If the participants do not understand
the task, when told that the team failed the task, they may not
think to inspect the robot’s work and recognize its mistake, which
can affect their perception of the explanations. Lastly, having the
participants perform tasks simultaneously with the robot may af-
fect how attentive they can be toward the robot and whether they
can critically inspect the robot’s work during the task. In future
experiments the instructions should be clearer or the bottles should
be distinguishable by more factors than their shapes while still
indicating which should be moved by the robot or the participant.
In addition, future studies could include physiological measures (1)
as emotional indicators (see [3] for an overview) and (2) for a more
reliable measurement of trust (e.g., eye tracking [25]).

7 CONCLUSION

We set out to investigate whether system explanations as a trust-
repairing action after a robot makes a mistake in a collaborative
task is helpful. In our conducted pilot study we found that end-users
preferred less technical explanations with a greater emphasis on
how to solve the error. Using a VR testing environment for our
main study, we evaluated three levels of explanations after the ro-
bot made a mistake in executing a shared objective (i.e., sorting a
set of bottles by shape) in collaboration with our participants. After
comparing the conditions (no explanation, explanation of robot
error, and explanation of error with solution-oriented details) with
30 participants we found no significant effects on their trust toward
the robot. While participants found the explanations helpful to trust
or distrust the system, we can not assume this trust to be transfer-
able to the robot. Future studies should consider the participants’
understanding of the shared task with the robot, ensuring that they
recognize the nature of the robot’s mistake and gain the most from
the explanations. In addition, special consideration should be put
into investigating the participants’ mental model, emotional state,
and self-efficacy when interacting with a robot supported by an ex-
planation system to gain understanding regarding which construct
the trust is placed in.
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