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1. Introduction

Polycrystallization of thin films is a dynamic process that can be described by a phase field model featuring a free
energy in two or three phase field variables, namely the local degree of crystallinity, the orientation angle, and the local
concentration. The model includes isotropic and anisotropic growth of the crystals and the structure of the orientational
free energy may allow for crystalline branching in the form of spherulites due to misorientations at low grain boundaries.
Due to their low surface roughness at the nanoscale and their thermodynamic stability, polycrystalline thin films are of
particular interest for diffraction gratings, photonic band gap structures, and coatings based on structural colors instead
of pigments. We refer to the survey articles [1,2] and the references therein.

From a mathematical point of view, the orientational free energy is related to the total variation of the orientation angle
and thus has to be considered in the Banach space of functions of bounded variation as has been done in [3,4] for a two-
field and in [5] for a three-field phase field model for polycrystalline growth in binary mixtures. The numerical solution of
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he phase field models in [3–5] was based on a splitting scheme featuring an implicit discretization in time with adaptive
ime stepping and a discretization in space by standard finite elements with respect to a shape-regular triangulation
f the computational domain. However, adaptivity in space has not been considered despite the fact that the solution
xhibits very narrow interior transition regions with extremely steep slopes. Therefore, this contribution is devoted to
space–time adaptive splitting method where the adaptivity in space is taken care of by equilibrated a posteriori error
stimators. As far as the theory of equilibrated a posteriori error estimators is concerned, we refer to [6–11].
The paper is organized as follows: In Section 2, we provide basic notations and results with emphasis on the Banach

pace BV of functions of bounded variation. Section 3 is devoted to the phase field model in the local degree of crystallinity
and the orientation angle Θ as phase field variables. In particular, we consider both an orientational free energy density
s in the classical Kobayashi–Warren–Carter model [12] (cf. also [3,5]) and an orientational free energy density with a
isorientation of the orientation angle as has been dealt with in [4]. In the following Section 4 we suggest a splitting
cheme based on an implicit discretization in time which decouples the evolutionary problems such that at each time
tep minimization problems for φ in the Sobolev space W 1,2 and for Θ in the space BV of functions of bounded variation
ave to be solved successively. Both problems admit a solution as can be shown by tools from the calculus of variations.
ection 5 deals with a further discretization in space by standard finite elements for the problem in φ and by an IPDG
pproximation for the problem in Θ . Section 6 addresses the construction of equilibrated a posteriori error estimators
or the spatial discretization errors in φ and Θ which amounts to the proper specification of flux functions in the space
(div; Ω). In Section 7, the nonlinear algebraic system in Θ , resulting from the IPDG approximation, is numerically solved
y a predictor–corrector continuation strategy featuring constant continuation as a predictor and a semismooth Newton
ethod as a corrector allowing for an adaptive choice of the time steps. Finally, in Section 8 we provide a documentation
f numerical results for two illustrative polycrystallization processes.

. Notations and basic results

For an open or closed set A ⊂ Rd, d ∈ N, we denote by Cm
0 (A;Rd), 0 ≤ m < ∞, the Banach space of m-times

ontinuously differentiable vector-valued functions q = (q1, . . . , qd) with compact support in A. In case m = 0 we write
0(A;Rd) instead of C0

0 (A;Rd) and in case d = 1 we write Cm
0 (A) instead of Cm

0 (A;R1). We further refer to C∞

0 (A) as the
inear space of infinitely smooth (scalar) functions with compact support in A and to D(A) as its dual space of distributional
erivatives.
By M(A;Rd), d ∈ N, we denote the Banach space of vector-valued bounded Radon measures µ = (µ1, . . . , µd)

quipped with the total variation norm

|µ|(A) := sup {

∞∑
n=1

|µ(An)| | A =

∞⋃
n=1

An, An ∩ Am = ∅ for n ̸= m}, (2.1)

here {An}N is a sequence of mutually disjoint subsets of A such that A =
⋃

∞

n=1 An, and we refer to M+(A;Rd) as the set
f positive Radon measures.
In view of the Riesz representation theorem M(A;Rd) is the dual space of C0(A;Rd) with the duality pairing

⟨µ, q⟩M,C0 :=

∫
Ω

q dµ =

d∑
i=1

∫
A
qi dµi. (2.2)

sequence {µn}N of Radon measures µn ∈ M(A;Rd), n ∈ N, is said to converge weakly* to µ ∈ M(A;Rd) (µn ⇀∗ µ (n →

)) if

⟨µn, q⟩M,C0 → ⟨µ, q⟩M,C0 (n → ∞) for all q ∈ C∞

0 (A;Rd). (2.3)

or a bounded Lipschitz domain Ω ⊂ Rd, d ∈ N, with boundary Γ = ∂Ω we refer to Lp(Ω;Rd), 1 ≤ p < ∞, as the
anach space of pth power Lebesgue integrable vector-valued functions on Ω with norm ∥ · ∥Lp(Ω;Rd) and to L∞(Ω;Rd)
s the Banach space of essentially bounded vector-valued functions on Ω with norm ∥ · ∥L∞(Ω;Rd). In case d = 1 we will
rite Lp(Ω) instead of Lp(Ω;R1). Further, we denote by W 1,p(Ω), 1 ≤ p ≤ ∞, the Sobolev spaces with norms ∥ · ∥W1,p(Ω)

nd by W 1,p
0 (Ω), 1 < p < ∞, the closure of C∞

0 (Ω) with respect to the ∥ · ∥W1,p norm. We note that for 1 < p < ∞ the
obolev space W 1,p(Ω) is reflexive with dual space W 1,q(Ω), 1/p+1/q = 1. For p = 1 the dual space of the Sobolev space
1,1(Ω) is W 1,∞(Ω). However, the Sobolev space W 1,1(Ω) is not reflexive. We further note that for p = 2 the spaces

2(Ω;Rd) and W 1,2(Ω) = H1(Ω) are Hilbert spaces with inner products (·, ·)L2(Ω;Rd) and (·, ·)W1,2(Ω).
A sequence {un}N of functions un ∈ W 1,p(Ω), n ∈ N, 1 < p < ∞, is said to converge weakly to u ∈ W 1,p(Ω)

un ⇀ u (n → ∞)), if it holds

⟨v, un⟩W1,q,W1,p → ⟨v, u⟩W1,q,W1,p (n → ∞) for all v ∈ W 1,q(Ω), 1/p + 1/q = 1.

emma 2.1. Let {un}N be a bounded sequence of functions un ∈ W 1,p(Ω), n ∈ N, 1 < p < ∞. Then there exist a subsequence
′
⊂ N and a function u ∈ W 1,p(Ω) such that

un ⇀ u (N′
∋ n → ∞) in W 1,p(Ω). (2.4)
2
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roof. We refer to [13].

A functional F : W 1,p(Ω) → R, 1 < p < ∞, is said to be weakly sequential lower semicontinuous in W 1,p(Ω) if for
very sequence {un}N of functions un ∈ W 1,p(Ω), n ∈ N, such that un ⇀ u (n → ∞) in W 1,p(Ω) for some u ∈ W 1,p(Ω) it
olds

F (u) ≤ lim inf
n→∞

F (un). (2.5)

function u ∈ L1(Ω) is said to be of bounded variation if its distributional derivative Du satisfies Du ∈ M(Ω;Rd), i.e., for
ll q ∈ C1

0 (Ω;Rd) we have

−

∫
Ω

∇ · qu dx =

∫
Ω

q · dDu.

he total variation of u is defined as follows

|Du|(Ω) := sup {−

∫
Ω

∇ · q u dx | q ∈ C1
0 (Ω;Rd), |q| ≤ 1 in Ω}. (2.6)

e denote by BV (Ω) the Banach space of functions u ∈ L1(Ω) such that |Du|(Ω) < ∞ equipped with the norm

∥u∥BV (Ω) := ∥u∥L1(Ω) + |Du|(Ω). (2.7)

learly, we have W 1,1(Ω) ⊂ BV (Ω) and u ∈ W 1,1(Ω) iff u ∈ L1(Ω) and Du is absolutely continuous with respect to the
ebesgue measure. In particular, we have the Lebesgue–Radon–Nikodym decomposition

Du = ∇u + Dsu, (2.8)

here ∇u ∈ L1(Ω;Rd) is called the approximate gradient of u and Dsu ∈ M(Ω;Rd) is said to be the singular part of the
erivative.
Functions u ∈ BV (Ω) have a trace u|Γ ∈ L1(Γ ). The trace mapping T : BV (Ω) → L1(Γ ) is linear, continuous from

V (Ω) endowed with the strict topology to L1(Γ ) equipped with the strong topology (cf., e.g., Theorem 10.2.2 in [14]).
he subspace BV0(Ω) of BV (Ω) is the kernel of the trace mapping T . It is a Banach space equipped with the induced norm.
or uD ∈ L1(Γ ) we further set BVuD,Γ (Ω) := {u ∈ BV (Ω) | Tu = uD}.
A sequence {un}N of functions un ∈ BV (Ω), n ∈ N, is said to converge weakly* to u ∈ BV (Ω) if un → u in L1(Ω) and

un ⇀∗ Du in M(Ω;Rd) as N ∋ n → ∞.

emma 2.2. Let {un}N be a uniformly bounded sequence of functions un ∈ BV (Ω), n ∈ N, i.e.,

∥un∥BV (Ω) ≤ C , n ∈ N,

or some C > 0. Then there exist a subsequence N′
⊂ N and u ∈ BV (Ω) such that

un ⇀∗ u in BV (Ω) as N′
∋ n → ∞.

roof. We refer to [15].

A functional F : BV (Ω) → R is said to be weakly* sequential lower semicontinuous in BV (Ω) if for every sequence
un}N of functions un ∈ BV (Ω), n ∈ N, such that un ⇀∗ u (n → ∞) in BV (Ω) for some u ∈ BV (Ω) it holds

F (u) ≤ lim inf
n→∞

F (un). (2.9)

. The phase field model

As a mathematical model for crystal growth in polycrystalline binary mixtures we use a phase field model where
he free energy depends on two phase field variables. These are a structural order parameter φ measuring the local
egree of crystallinity (volume fraction of the crystalline phase) and an orientation field Θ which locally describes the
rystallographic orientation. Such phase field models have been widely suggested in the literature (we refer to the survey
rticles [1,2] and the references therein). We consider polycrystallization with and without orientational mismatch. The
resence of orientational mismatch gives rise to the formation of spherulites (cf., e.g., [4,16]).
For a bounded domain Ω ⊂ R2 with boundary Γ = ∂Ω the free energy reads as follows:

F (φ, Θ) =

∫
Ω

1
2
s(∇φ, Θ)2 |∇φ|

2
+ g(φ) +

H
2ξ0

fori(ω(φ), ∇Θ) dx. (3.1)

Here, the functions s = s(∇φ, Θ), g(φ), and fori(ω(φ), ∇Θ) refer to an anisotropy function, a double well potential, and
n orientational free energy density. The function ω is a continuously differentiable interpolation function given by

ω(η) =

⎧⎨⎩ εr , η ≤ 0
εr + 2(2 − 3εr )η2

− 4(1 − εr )η3
+ η4 , 0 ≤ η ≤ 1 , η ∈ R, (3.2)
1 − εr , η ≥ 1

3
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Fig. 1. The convexified orientational free energy density fori(ω(φ), ∇Θ) in case of polycrystallization with orientational mismatch.

here 0 < εr ≪ 1. The function ω has the property

0 < εr ≤ ω(η) ≤ 1 − εr , η ∈ R. (3.3)

oreover, the anisotropy function s(η, γ ), η = (η1, η2)T ∈ R2, γ ∈ R, is given by

s(η, γ ) = 1 + s0 cos(mSϑ − 2πγ ), (3.4)

here ϑ := arctan(η2/η1), 0 ≤ s0 < 1 denotes the amplitude of the anisotropy of the interfacial free energy, and mS is
he symmetry index. We note that ϑ is related to the inclination of the normal vector of the interface in the laboratory
rame. The function g(η) is the quartic double-well function

g(η) =
1
4

η2 (1 − η)2, η ∈ R, (3.5)

For polycrystallization without orientational mismatch the orientational free energy density is given by

fori(ω(φ), ∇Θ) = 2πξ0ω(φ)|∇Θ|, (3.6)

here ξ0 > 0 stands for the correlation length of the orientational field. Moreover, H > 0 in (3.1) refers to the free energy
f the low-grain boundaries.
In case of polycrystallization with orientational mismatch we use an orientational free energy from [16] which is given

y (cf. Fig. 1)

fori(ω(φ), ∇Θ) = (3.7)⎧⎪⎪⎨⎪⎪⎩
b1 |∇Θ| , ξ0|∇Θ| ≤

1
2r1

,

a2 + b2 (|∇Θ −
1
2r1

ξ−1
0 ) , 1

2r1
≤ ξ0|∇Θ| ≤

δ+1/2
2(δr1+(1−δ)r2)

,

a3 + b3(|∇Θ| −
δ+1/2

2(δr1+(1−δ)r2)
ξ−1
0 ) , ξ0|∇Θ| ≥

δ+1/2
2(δr1+(1−δ)r2)

,

here δ ∈ (0, 1), 0 < r2 < r1, and

b1 := 2(1 − δ)πξ0ω(φ)r2,

a2 := (1 − δ)πω(φ)
r2
r1

, b2 := 2πξ0ω(φ)
(1/2 − (1 − δ)r2/r1)r1(δr1 + (1 − δ)r2)

r1/2 − (1 − δ)r2
,

a3 := πω(φ)/2, b3 := 2πr1ξ0ω(φ).

For a derivation of (3.7) we refer to [4].
The orientational free energy density fori(ω(φ), ∇Θ) is not differentiable in the classical sense, but admits a subdiffer-

ntial

∂∇Θfori(ω(φ), ∇Θ) = (∂∂Θ/∂x1 fori(ω(φ), ∇Θ), ∂∂Θ/∂x2 fori(ω(φ), ∇Θ))T . (3.8)

or fori given by (3.6) the subdifferential reads as follows:

∂∂Θ/∂xi fori(ω(φ), ∇Θ) =
[−b, +b] , ∇Θ = 0

sgn(∂Θ/∂xi) b , ∇Θ ̸= 0 , 1 ≤ i ≤ 2, (3.9)

here b := 2πξ ω(φ).
0

4



                                                                                           

∂

r

w

t

On the other hand, if fori is defined by (3.7), the components ∂∂Θ/∂xi fori(ω(φ), ∇Θ), 1 ≤ i ≤ 2, of the subdifferential
∇Θfori(ω(φ), ∇Θ) are given by

∂∂Θ/∂xi fori(ω(φ), ∇Θ) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

[−b1, +b1] , ∇Θ = 0
sgn(∂Θ/∂xi) b1 , 0 < |∇Θ| < 1

2r1
ξ−1
0

sgn(∂Θ/∂xi) [b1, b2] , |∇Θ| =
1
2r1

ξ−1
0

sgn(∂Θ/∂xi) b2 , 1
2r1

ξ−1
0 < |∇Θ| < 1

2r1
ξ−1
0

sgn(∂Θ/∂xi) [b2, b3] , |∇Θ| =
1

r1+r2
ξ−1
0

sgn(∂Θ/∂xi) b3 , 1
r1+r2

ξ−1
0 < |∇Θ|

. (3.10)

Likewise, the associated free energy F (φ, Θ) is not Gâteaux differentiable in Θ . We set

F (φ, Θ) := F1(φ, Θ) + F2(φ, Θ), (3.11)

F1(φ, Θ) :=
1
2

∫
Ω

s(∇φ, Θ)2 |∇φ|
2 dx +

∫
Ω

g(φ) dx,

F2(φ, Θ) :=
H
2ξ0

∫
Ω

fori(ω(φ), ∇Θ) dx. (3.12)

The functional F2(φ, Θ) admits a subdifferential ∂ΘF2(φ, Θ) given by

∂ΘF2(φ, Θ) =
H
2ξ0

{
−∇ · q | q ∈ ∂∇Θ fori(ω(φ), ∇Θ)

∇Θ

|∇Θ|

}
. (3.13)

The functional F1(φ, Θ) is Gâteaux differentiable in Θ with Gâteaux derivative

δF1(φ, Θ)
δΘ

= s(∇φ, Θ)
∂s(∇φ, Θ)

∂Θ
|∇φ|

2. (3.14)

For practical purposes we replace ∂∇Θ fori(ω(φ), ∇Θ) by its Moreau–Yosida approximation ∂∇Θ,λfori(ω(φ), ∇Θ) with
egularization parameter 0 < λ ≪ 1 (cf., e.g., [17]). Then F2(φ, Θ) is Gâteaux differentiable in Θ with Gâteaux derivative

δF2(φ, Θ)
δΘ

=
H
2ξ0

{
−∇ · ∂∇Θ,λfori(ω(φ), ∇Θ)

∇Θ

|∇Θ|

}
. (3.15)

The functionals Fi(Θ, φ), 1 ≤ i ≤ 2, are Gâteaux differentiable in φ with Gâteaux derivatives

δF1(φ, Θ)
δφ

= −∇ · (A(∇φ, Θ)∇φ), (3.16)

δF2(φ, Θ)
δφ

=
H
2ξ0

∂ fori(ω(φ), ∇Θ)
∂ω(φ)

ωφ(φ) + gφ(φ),

here the 2 × 2 matrix A(η, γ ) = (aij(η, γ ))2i,j=1, η ∈ R2, γ ∈ R, is given by

a11(η, γ ) = a22(η, γ ) = s(η, γ )2, (3.17)

a12(η, γ ) = −a21(η, γ ) = −s(η, γ )
∂s(η, γ )

∂ϑ
,

and gφ(φ) and ωφ(φ) stand for the derivatives of g(φ) and ω(φ) with respect to φ.
Denoting byMφ > 0 andMΘ > 0 the mobilities with respect to Θ and φ and specifying initial and boundary conditions,

he dynamics of the spherulitic growth are described by the coupled system of evolutionary processes

∂φ

∂t
= Mφ −

δF2(φ, Θ)
δφ

+
δF1(φ, Θ)

δφ
in Q := Ω × (0, T ), (3.18a)

φ = φD on Σ := Γ × (0, T ), (3.18b)

φ(0) = φ0 in Ω, (3.18c)

and
∂Θ

∂t
= MΘ −

δF1(φ, Θ)
δΘ

+
δF2(φ, Θ)

δΘ
, in Q := Ω × (0, T ), (3.19a)

Θ = ΘD on Σ := Γ × (0, T ), (3.19b)

Θ(0) = Θ0 in Ω, (3.19c)
5
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here ΘD, φD are given Dirichlet data on Γ and φ0, Θ0 are given initial configurations. We assume that

Γ =

ℓ⋃
i=1

Γ i, Γi ∩ Γj = ∅, i ̸= j, (3.20)

and

φD|Γi = const., ΘD|Γi = const., 1 ≤ i ≤ ℓ. (3.21)

4. Discretization in time: the splitting scheme

We consider a discretization in time with respect to a partition of the time interval [0, T ] into subintervals [tm−1, tm],

≤ m ≤ M,M ∈ N, of length τm := tm − tm−1. We denote by Θm and φm approximations of Θ and φ at time
m and discretize the time derivatives in (3.18a) and (3.19a) by the backward difference quotient: Given Θm−1 and
m−1, 1 ≤ m < M , compute Θm and φm such that

φm
− φm−1

= τmMφ

(
−

δF1(φm, Θm)
δφ

+
δF2(φm, Θm)

δφ
in Ω, (4.1a)

φm
= φD on Γ , (4.1b)

and

Θm
− Θm−1

= τmMΘ

(
−

δF2(φm, Θm)
δΘ

+
δF1(φm, Θm)

δΘ
in Ω, (4.2a)

Θm
= ΘD on Γ . (4.2b)

As far as the first step of the splitting scheme is concerned, we consider the minimization problem

J (1)P (φm) = inf
φ∈V1

J (1)P (φ), (4.3a)

where V1 := W 1,2
φD,Γ (Ω) and the objective functional J (1)P is given by

J (1)P (φ) =
1
2
∥φ − φm−1

h ∥
2
L2(Ω) + (4.3b)

τmMφ

∫
Ω

s(∇φm−1
h , Θm−1

h )2|∇φ|
2 dx + τmMφℓm1 (φ),

where

ℓm1 (φ) :=

∫
Ω

f mh,1φ dx, f mh,1 :=
δF2(φm−1

h , Θm−1
h )

δφ
, (4.3c)

and φm−1
h , Θm−1

h are some approximation of φm−1 and Θm−1 which will be specified in Section 5.

Theorem 4.1. The minimization problem (4.3) has a unique solution φm
∈ V1.

Proof. Let {φm
n }N, φm

n ∈ V1, n ∈ N, be a minimizing sequence, i.e.,

lim
N∋n→∞

J (1)P (φm
n ) = inf

φ∈V1
J (1)P (φ). (4.4)

An application of Young’s inequality

ab ≤ εa2 +
1
4ε

b2, a, b ∈ R+, ε > 0, (4.5)

with ε = 1/8 yields

1
2
∥φ − φm−1

h ∥
2
L2(Ω) ≥

1
2
∥φ∥

2
L2(Ω) +

1
2
∥φm−1

h ∥
2
L2(Ω) − (4.6)

∥φ∥L2(Ω)∥φ
m−1
h ∥L2(Ω) ≥

3
8
∥φ∥

2
L2(Ω) −

3
2
∥φm−1

h ∥
2
L2(Ω).

By another application of Young’s inequality (4.5) with ε = 1/(8τMφ) we obtain

|τMφℓm1 (φ)| ≤
1
∥φ∥

2
L2(Ω) + 2τmMφ

∫
|f mh,1|

2 dx. (4.7)

8 Ω

6
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bserving (3.4) and (4.6), (4.7) it follows that

J (1)P (φ) ≥
1
4

∥φ∥
2
L2(Ω) + (1 − s0)2τmMφ∥∇φ∥

2
L2(Ω) −

3
2
∥φm−1

h ∥
2
L2(Ω) − 2τmMφ

∫
Ω

|f mh,1|
2 dx,

rom which we deduce the coercivity of J (1)P . It follows that the minimizing sequence {φm
n }N is uniformly bounded.

onsequently, there exist a subsequence N′
⊂ N and a function φm

∈ V1 such that

φm
n ⇀ φm (N′

∋ n → ∞) in W 1,2(Ω).

ince J (1)P is convex and lower semicontinuous, it is weakly lower semicontinuous. We thus have

J (1)P (φm) ≤ lim inf
N′∋n→∞

J (1)P (φm
n ),

nd hence, in view of (4.9) we obtain

J (1)P (φm) = inf
φ∈V1

J (1)P (φ).

he uniqueness of φm follows from the strict convexity of J (1)P .

In the second step of the splitting scheme, we compute Θm
∈ V2 := BVΘD,Γ (Ω) as the solution of the minimization

roblem

J (2)P (Θm) = inf
Θ∈V2

J (2)P (Θ), (4.8a)

here the objective functional J (2)P is given by

J (2)P (Θ) =
1
2
∥Θ − Θm−1

h ∥
2
L2(Ω) + (4.8b)

τmMΘH
2ξ0

∫
Ω

fori(ω(φm−1
h ),DΘ) dx + τmMΘℓm2 (Θ),

where

ℓm2 (Θ) :=

∫
Ω

f mh,2Θ dx, f mh,2 :=
δF1(φm

h , Θm−1
h )

δΘ
Θ dx. (4.8c)

Theorem 4.2. The minimization problem (4.8) has a solution Θm
∈ V2.

Proof. Let {Θm
n }N, Θm

n ∈ V2, n ∈ N, be a minimizing sequence, i.e.,

lim
N∋n→∞

J (2)P (Θm
n ) = inf

Θ∈V2
J (2)P (Θ). (4.9)

As in the proof of Theorem 4.1, an application of Young’s inequality yields

1
2
∥Θ − Θm−1

h ∥
2
L2(Ω) ≥

3
8
∥Θ∥

2
L2(Ω) −

3
2
∥Θm−1

h ∥
2
L2(Ω). (4.10)

and

|τMΘℓm2 (Θ)| ≤
1
8
∥Θ∥

2
L2(Ω) + 2τmMΘ

∫
Ω

|f mh,2|
2 dx. (4.11)

Observing (3.3), (3.6), (3.7), and (4.10), (4.11) it follows that

J (2)P (Θ) ≥
1
4

∥Θ∥
2
L2(Ω) + τmMΘβ |DΘ|(Ω) −

3
2
∥Θm−1

∥
2
L2(Ω) − 2τmMΘ

∫
Ω

|f mh,2|
2 dx,

here β := εr , if fori is given by (3.6), and β := (1 − δ)πr2εr in case fori is given by (3.7). This implies the coercivity of
(2)
P on V2. Hence, the minimizing sequence {Θm

n }N is uniformly bounded. Consequently, there exist a subsequence N′
⊂ N

nd a function Θm
∈ V2 such that

Θm ⇀∗ Θm (N′
∋ n → ∞) in BV (Ω).
n
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he objective functional J (2)P is weakly∗ lower semicontinuous in BV (Ω). We thus have

J (2)P (Θm) ≤ lim inf
N′∋n→∞

J (2)P (Θm
n ),

nd hence, in view of (4.9) we obtain

J (2)P (Θm) = inf
Θ∈V2

J (2)P (Θ).

emark 4.1. We note that the splitting scheme (4.3), (4.8) is different from those used in [3–5] where the first
inimization problem is in Θ and the second one in φ. The reason for the reverse order is that for space adaptivity

t is more advantageous to perform the adaptivity with respect to φ before the one for Θ . A more detailed explanation
ill be given in Section 6.

. Discretization in space

Let Th be a geometrically conforming, locally quasi-uniform, simplicial triangulation of the computational domain Ω .
iven D ⊂ Ω̄ , we denote by Nh(D) and Eh(D) the set of vertices and edges of Th in D, and we refer to Pk(D), k ∈ N, as the
et of polynomials of degree ≤ k on D. Moreover, hK , K ∈ Th, and hE, E ∈ Eh, stand for the diameter of K and the length
f E, respectively. We define h := min {hK | K ∈ Th}. Due to the local quasi-uniformity of the triangulation there exist
onstants 0 < cR ≤ CR such that for all K ∈ Th it holds

cRhK ≤ hE ≤ CRhK , E ∈ Eh(∂K ). (5.1)

or two quantities a, b ∈ R we will write a ≲ b, if there exists a constant C > 0, independent of h, such that a ≤ Cb.
We will further use the following trace inequality (cf., e.g., [18]): There exists a constant CT > 0, only depending on

he polynomial degree k and the local geometry of the triangulation, such that for vh ∈ Pk(K ) and K ∈ Th it holds

∥vh∥L2(∂K ) ≤ CTh
−1/2
K ∥vh∥L2(K ). (5.2)

or E ∈ Eh(Ω), E = K+ ∩ K−, K± ∈ Th(Ω), and vh ∈ Vh, we denote the average and jump of vh across E by {vh}E and [vh]E ,
.e.,

{vh}E :=
1
2

vh|E∩K+
+ vh|E∩K−

, [vh]E := vh|E∩K+
− vh|E∩K−

,

whereas for E ∈ Eh(Γ ) we set

{vh}E := vh|E, [vh]E := vh|E .

The averages {∇vh}E, {τh}E and jumps [∇vh]E, [τh]E of vector-valued functions ∇vh and τh are defined analogously. For
∈ Eh(Ω) it holds∫

E
uh vh ds =

∫
E

{uh}E [vh]E + [uh]E {vh}E ds. (5.3)

e further denote by nE, E ∈ Eh(Ω), with E = K+ ∩K− the unit normal on E pointing from K+ to K− and by nE, E ∈ Eh(Γ ),
he exterior unit normal on E.

We consider the finite element approximation with the DG spaces

V (1)
h,φD,Γ := {vh ∈ C(Ω̄) → R | vh|K ∈ P1(K ), K ∈ Th, vh|E = φD, E ∈ Eh(Γ )}, (5.4a)

V (1)
h,0,Γ := {vh ∈ C(Ω̄) → R | vh|K ∈ P1(K ), K ∈ Th, vh|E = 0, E ∈ Eh(Γ )}, (5.4b)

V (2)
h,ΘD,Γ := {vh : Ω̄ → R | vh|K ∈ P1(K ), K ∈ Th, vh|E = ΘD, E ∈ Eh(Γ )}, (5.4c)

V (2)
h,0,Γ := {vh : Ω̄ → R | vh|K ∈ P1(K ), K ∈ Th, vh|E = 0, E ∈ Eh(Γ )}, (5.4d)

RT0(Ω; Th) := {q
h

∈ H(div; Ω) | q
h
|K ∈ RT0(K ), K ∈ Th}, (5.4e)

Vh := {q
h

: Ω̄ → R2
| q

h
|K ∈ RT0(K ), K ∈ Th}, (5.4f)

where RT0(K ) := P0(K )2 + xP0(K ) stands for the lowest order Raviart–Thomas element. We note that V (1)
h,φD,Γ ⊂ W 1,2

φd,Γ
(Ω)

and V (1)
h,0,Γ ⊂ W 1,2

0,Γ (Ω). Moreover, for q
h

∈ Vh, we have (∇ · q
h
)|K ∈ P0(K ), K ∈ Th, and nE · q

h
|E ∈ P0(E), E ∈ Eh(Γ ).

For uh ∈ V (2)
h,ΘD,Γ and uh ∈ V (2)

h,0,Γ we define the broken gradient ∇huh by means of

∇huh|K := ∇uh|K , K ∈ Th. (5.5)

ollowing [19,20], we define a recovery operator Rh : V (2)
h,ΘD,Γ → Vh resp. Rh : V (2)

h,0,Γ → Vh according to∫
Ω

Rh(uh) · q
h
dx =

∑ ∫
E
[uh]E nE · {q

h
}E ds, q

h
∈ Vh. (5.6)
E∈Eh(Ω)
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e define the broken DG gradient ∇DGuh as follows:

∇DGuh := ∇huh − Rh(uh). (5.7)

The following auxiliary result from [19] will enable us to estimate the L1 norm of Rh(uh) for uh ∈ V (2)
h,ΘD,Γ resp.

h ∈ V (2)
h,0,Γ (cf. Lemma A2 in [19]).

emma 5.1. There exists a constant CIS > 0, independent of h, such that for uh ∈ V (2)
h (V (2)

h = V (2)
h,ΘD,Γ or V (2)

h = V (2)
h,0,Γ ) it

olds

inf
uh∈V

(2)
h

sup
qh∈V

(2)
h

∫
Ω
Rh(uh) · q

h
dx

∥uh∥L1(Ω)∥qh
∥L∞(Ω;R2)

≥ CIS . (5.8)

Theorem 5.1. Under the assumptions of Lemma 5.1 there exists a constant Crec > 0, independent of h, such that for uh ∈ V (2)
h

t holds

∥Rh(uh)∥L1(Ω;R2) ≤ Crec

∑
E∈Eh(Ω)

∫
E
|[uh]E | ds. (5.9)

roof. We have

∥Rh(uh)∥L1(Ω;R2) = sup
q∈L∞(Ω;R2)

∫
Ω
Rh(uh) · q dx

∥q∥L∞(Ω;R2)
(5.10)

≥ sup
qh∈Vh

∫
Ω
Rh(uh) · q

h
dx

∥q
h
∥L∞(Ω;R2)

.

The inf-sup property (5.8) implies

∥Rh(uh)∥L1(Ω;R2) ≤ C−1
IS sup

qh∈Vh

∫
Ω
Rh(uh) · q

h
dx

∥q
h
∥L∞(Ω;R2)

. (5.11)

Now, observing (5.6), for E ∈ Eh(Ω) we obtain∫
Ω

Rh(uh) · q
h
dx ≤ (5.12)∑

E∈Eh(Ω)

∫
E
|[uh]E | |{q

h
}E | ds ≤

1
2

∑
E∈Eh(Ω)

∫
E
|[uh]E | |q

h
|E+

+ q
h
|E−

|
q ds ≤

∥q
h
∥L∞(Ω;R2)

∑
E∈Eh(Ω)

∫
E
|[uh]E | ds.

Using (5.12) in (5.11) gives (5.9).

The fully discrete splitting scheme reads as follows:
Given (φm−1

h , Θm−1
h ) ∈ V (1)

h,φD,Γ × V (2)
h,ΘD,Γ , first find φm

h ∈ V (1)
h,φD,Γ as the solution of the minimization problem

J (1)P (φm
h ) = inf

φh∈V
(1)
h,φD,Γ

J (1)P (φh). (5.13)

ince V (1)
h,φD,Γ is a closed subspace of W 1,2

φD,Γ (Ω), the existence and uniqueness of a solution of (5.13) follows as in
heorem 4.1.
In the second step of the splitting scheme, we compute Θm

h ∈ V (2)
h,ΘD,Γ as the solution of the minimization problem

J (2)h,P (Θ
m
h ) = inf

Θh∈V
(2)
h,Θ ,Γ

J (2)h,P (Θh), (5.14a)

D
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here the objective functional J (2)h,P is given by

J (2)h,P (Θh) =
1
2
∥Θh − Θm−1

h ∥
2
L2(Ω) +

τmMΘH
2ξ0

∫
Ω

fori(ω(φm
h ), ∇DGΘh) dx + (5.14b)

τmMΘℓm2 (Θh) + α1

∑
E∈Eh(Ω)

∫
E
|[Θh]E | ds,

and α1 > 0 is a penalty parameter.

Theorem 5.2. For sufficiently large penalty parameter α1 > 0, the minimization (5.14) has a solution Θm
h ∈ V (2)

h,ΘD,Γ .

Proof. We show that the objective functional J (2)h,P is coercive on V (2)
h,ΘD,Γ equipped with the norm of W 1,1(Ω; Th). As in

the proof of Theorem 4.2 we have

1
2
∥Θh − Θm−1

h ∥
2
L2(Ω) ≥

3
8
∥Θh∥

2
L2(Ω) −

3
2
∥Θm−1

h ∥
2
L2(Ω), (5.15a)

|τMΘhℓ
m
2 (Θ)| ≤

1
8
∥Θh∥

2
L2(Ω) + 2τmMΘ

∫
Ω

|f mh,2|
2 dx. (5.15b)

Observing (3.3), (3.6), (3.7), and (5.7), (5.9), as well as (5.15), it follows that

J (2)h,P (Θh) ≥
1
4

∥Θ∥
2
L2(Ω) + τmMΘHβ |∇Θh|(Ω) +

(α1 −
τmMΘH

2ξ0
γ )

∑
E∈Eh(Ω)

∫
E
|[Θh]E | ds −

3
2
∥Θm−1

h ∥
2
L2(Ω) − 2τmMΘ

∫
Ω

|f mh,2|
2 dx,

here β as in the proof of Theorem 4.2 and γ := 2πξ0(1− εr ), if fori is given by (3.6), and γ := 2πr1ξ0(1− εr )Crec in case
ori is given by (3.7). This implies coercivity for sufficiently large α1.

In view of J (2)h,P being continuous, convex, and coercive and V (2)
h,ΘD,Γ being finite dimensional, the assertion follows from

standard minimizing sequence argument.

The necessary and sufficient optimality condition for (5.13) amounts to the computation of φm
h ∈ V (1)

h,φD,Γ such that for
ll vh ∈ V (1)

h,0,Γ it holds∫
Ω

φm
h vh dx + τmMφ

∫
Ω

s(∇φm−1
h , Θm−1

h )2∇φm
h · ∇vh dx = (5.16)∫

Ω

φm−1
h vh dx + τmMφℓm1 (vh).

or the construction of the equilibrated a posteriori error estimator in Section 6 we consider the mixed formulation of
5.16): Find (φ̃m

h , pm
h,1

) ∈ V (1)
h,φD,Γ × RT0(Ω; Th) such that for all (vh, qh

) ∈ V (1)
h,0,Γ × RT0(Ω; Th) it holds∫

Ω

s(∇φm−1
h , Θm−1

h )pm
h,1

· q
h
dx = −

∫
Ω

φ̃m
h ∇ · (s(∇φm−1

h , Θm−1
h )q

h
) dx + (5.17a)∫

Γ

φDnΓ · s(∇φm−1
h , Θm−1

h )2q
h
ds,∫

Ω

φ̃m
h vh dx − τmMφ

∫
Ω

∇ · (s(∇φm−1
h , Θm−1

h )pm
h,1

)vh dx = (5.17b)∫
Ω

φm−1
h vh dx + τmMφ

∫
Ω

f mh,1vh dx. (5.17c)

On the other hand, replacing ∂∇Θ fori(ω(φm
h ), ∇Θm

h ) by its Moreau–Yosida approximation a(φm, Θm) := ∂∇Θ,λfori(ω(φm
h ),

Θm
h ), the necessary and sufficient optimality condition for (5.14) leads to an IPDG approximation, namely the compu-

ation of Θm
h ∈ V (2)

h,ΘD,Γ such that for all vh ∈ V (2)
h,0,Γ it holds∫

Θm
h vh dx + aDGh (Θm

h , vh) =

∫
Θm−1

h vh dx + τMΘℓm2 (vh), (5.18a)

Ω Ω
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here the semilinear form aDGh (·, ·) is given by

aDGh (Θm
h , vh) :=

τmMΘH
2ξ0

∑
K∈Th

∫
K
a(φm, Θm)

∇DGΘ
m
h

|∇DGΘ
m
h |

· ∇DGvh dx + (5.18b)

α1

∑
E∈Eh(Ω)

∫
E

[Θm
h ]E

|[Θm
h ]E |

[vh]E ds.

In view of (5.6) and (5.7) we obtain

aDGh (Θm
h , vh) := τMφ

∑
K∈Th

∫
K
a(φm, Θm)|∇DGΘ

m
h |

−1
∇DGΘ

m
h · (5.19)

(∇vh − Rh(vh)) dx + α1

∑
E∈Eh(Ω)

∫
E

[Θm
h ]E

|[Θm
h ]E |

[vh]E ds =

τMφ

∑
K∈Th

∫
K
a(φm, Θm)|∇DGΘ

m
h |

−1
∇DGΘ

m
h · ∇vh dx −

∑
E∈Eh(Ω)

∫
E
[vh]E nE · {a(φm, Θm)|∇DGΘ

m
h |

−1
∇DGΘ

m
h }E ds +

α1

∑
E∈Eh(Ω)

∫
E

[Θm
h ]E

|[Θm
h ]E |

[vh]E ds.

We will consider a two-field formulation of the IPDG approximation (5.18). To this end we set

pm
h,2

= a(φm, Θm)|∇DGΘ
m
h |

−1
∇DGΘ

m
h , (5.20a)

Θm
h −

τmMΘH
2ξ0

∇ · pm
h,2

= Θm−1
h + τmMΘ f mh,2. (5.20b)

Multiplying (5.20a) by q
h

∈ Vh, integrating over K ∈ Th, and summing over all K yields∑
K∈Th

∫
K
pm
h,2

· q
h
dx =

∑
K∈Th

∫
K
a(φm, Θm)|∇DGΘ

m
h |

−1
∇DGΘ

m
h · q

h
dx. (5.21a)

Moreover, multiplying (5.20b) by vh ∈ V (2)
h,0,Γ , integrating over K ∈ Th, summing over all K , and applying Green’s formula

lementwise, we get∑
K∈Th

∫
K

Θm
h vh dx −

τmMΘH
2ξ0

∑
K∈Th

∫
K

∇ · pm
h,2

vh dx =

∑
K∈Th

∫
K

Θm
h vh dx + (5.21b)

τmMΘH
2ξ0

∑
K∈Th

∫
K
pm
h,2

· ∇vh dx −
τmMΘH

2ξ0

∑
K∈Th

∫
∂K

n∂K · pm
h,2

vh ds =

∑
K∈Th

∫
K

Θm−1
h vh dx + τmMΘ

∑
K∈Th

∫
K
f mh,2vh dx.

Replacing pm
h,2

|∂K with some numerical flux function p̂m
∂K

, we obtain the following two-field formulation of a general DG

pproximation of the Θ-equation: Find (Θm
h , pm

h,2
) ∈ V (2)

h,ΘD,Γ × Vh such that for all (vh, qh
) ∈ V (2)

h,0,Γ × Vh it holds∑
K∈Th

∫
K
pm
h,2

· q
h
dx =

∑
K∈Th

∫
K
a(φm, Θm)|∇DGΘ

m
h |

−1
∇DGΘ

m
h · q

h
dx, (5.22a)

∑
K∈Th

∫
K

Θm
h vh dx +

τmMΘH
2ξ0

∑
K∈Th

∫
K
pm
h,2

· ∇vh dx − (5.22b)

τmMΘH
2ξ0

∑
K∈Th

∫
∂K

n∂K · p̂m
∂K

vh ds =

∑
K∈Th

∫
K

Θm−1
h vh dx +

τmMΘ

∑
K∈Th

∫
K
f mh,2vh dx.
11
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n particular, if the numerical flux function p̂m
∂K

|E, E ∈ Eh(Ω̄) is chosen according to

p̂m
∂K

|E := {a(φm, Θm
h )|∇Θm

h |
−1

∇Θm
h }E − α1|[Θ

m
h ]E |

−1
[Θm

h ]E nE, (5.23)

we recover the IPDG approximation (5.18) by eliminating pm
h,2

from (5.22).

6. Equilibrated a posteriori error estimators

Given Banach spaces V ,Q with norms ∥ ·∥V , ∥ ·∥Q , a convex and coercive objective functional JP : V → R, we consider
he minimization problems

inf
u∈V

JP (u) (6.1)

nd

inf
q∈Q

JD(q), (6.2)

here JD : Q → R is the Fenchel conjugate of JP . An abstract approach to the a posteriori error control for (6.1) has been
rovided in [21] (cf. also [22]):
Given some approximation v ∈ V of the minimizer u of (6.1), the a posteriori error estimate from [21] states that for

ny admissible function q ∈ Q it holds

∥u − v∥
2
V ≲ JP (v) + JD(q). (6.3)

.1. A posteriori error estimator for the φ-equation

We apply (6.3) with V = W 1,2
φD,Γ (Ω),Q = H(div; Ω), JP = J (1)P , and v = φm

h , q = pm
h,1

. Following Example 3.2 in [22], for
the Fenchel dual we obtain

J (1)D (pm
h,1

) =
1
2
τMφ

∫
Ω

|pm
h,1

|
2 dx − τMφ

∫
Γ

φDnΓ · (s(∇φm−1
h , Θm−1

h )pm
h,1

) ds + (6.4)

1
2
∥τmMφ∇ · (s(∇φm−1

h , Θm−1
h )pm

h,1
) + φm−1

h + τmMφ f mh,1∥
2
L2(Ω) −

1
2
∥φm−1

h ∥
2
L2(Ω).

We thus obtain

∥φm
− φm

h ∥
2
W1,2(Ω) ≲ J (1)P (φm

h ) + J (1)D (pm
h,1

). (6.5)

Referring to Π
(0)
h as the L2 projection onto V (0)

h := {vh : Ω̄ → R | vh|K ∈ P0(K ), K ∈ Th}, we note that the flux function
pm
h,1

is equilibrated in the sense that

Π
(0)
h (φm

h ) − τmMφΠ
(0)
h (∇(s(∇φm−1

h , Θm−1
h )pm

h,1
)) = (6.6)

Π
(0)
h (φm−1

h ) + τmMφΠ
(0)
h (f mh,1) in each K ∈ Th,

as follows from (5.17b) with vh|K = p0 ∈ P0(K ) and vh|K ′ = 0, K ′
̸= K .

Moreover, taking (6.6) into account, we have
1
2
∥φm

h − φm−1
h ∥

2
L2(Ω) +

1
2

∥ τmMφ∇ · (s(∇φm−1
h , Θm−1

h )pm
h,1

) + φm−1
h + (6.7)

τmMφ f mh,1 ∥
2
L2(Ω) −

1
2
∥φm−1

h ∥
2
L2(Ω) − τmMφ

∫
Ω

f mh,1φ
m
h dx =

τmMφ

∫
Ω

φm
h ∇ · (s(∇φm−1

h , Θm−1
h )pm

h,1
) dx +

1
2

∥ τmMφ(∇ · (s(∇φm−1
h , Θm−1

h )pm
h,1

) − Π
(0)
h (∇ · (s(∇φm−1

h , Θm−1
h )pm

h,1
))) +

Π
(0)
h (φm

h ) − φm
h + φm−1

h − Π
(0)
h (φm−1

h ) − τmMφΠ
(0)
h f mh,1 ∥

2
L2(Ω) .

sing (6.7) in (6.5) it follows that

∥φm
− φm

h ∥
2
W1,2(Ω) ≲ (η(1)

h )2, (6.8a)

here the equilibrated a posteriori error estimator η
(1)
h is given by

(η(1)
h )2 :=

∑
(η(1)

K )2, (6.8b)

K∈Th

12
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c

(

e

t

(η(1)
K )2 :=

1
2
τmMφ

∫
K
s(∇φm−1

h , Θm−1
h )2|∇φm

h |
2 dx +

∫
K

|pm
h,1

|
2 dx

)
− (6.8c)

τmMφ

∫
K
s(∇φm−1

h , Θm−1
h )pm

h,1
· ∇φm

h dx +
1
2

∥ τmMφ(∇ · (s(∇φm−1
h , Θm−1

h )pm
h,1

) −

Π
(0)
h (∇ · (s(∇φm−1

h , Θm−1
h )pm

h,1
))) + Π

(0)
h (φm

h ) − φm
h + φm−1

h − Π
(0)
h (φm−1

h ) −

τmMφΠ
(0)
h f mh ∥

2
L2(K ) .

6.2. A posteriori error estimator for the Θ-equation

The situation is more complicated for the Θ-equation. If we choose V = W 1,1
ΘD,Γ (Ω) and JP = J (2)P , it has been shown

n [22] that

J (2)D (q) =
1
2
∥
τmMΘH

2ξ0
∇ · q + Θm−1

h + τmMΘ f mh,2∥
2
L2(Ω) − (6.9)

1
2
∥φm−1

h ∥
2
L2(Ω) + IK (q), q ∈ Q = H(div; Ω),

is the predual of J (2)P , i.e., J (2)P is the dual of J (2)D , and

∥Θm
− Θm

h ∥
2
L2(Ω) ≲ J (2)P (vm) + J (2)D (qm) (6.10)

for some approximation vm of Θm and some qm
∈ H(div; Ω). In (6.9) IK stands for the indicator function of the closed

onvex set

K := {q ∈ H(div; Ω) | |q| ≤ 1 a.e. in Ω}. (6.11)

Natural candidates for vm and qm are the IPDG approximation Θm
h and the flux function pm

h,2
from the two-field formulation

5.22) with the numerical flux p̂m
∂K

given by (5.23). However, Θm
h /∈ W 1,1(Ω) and pm

h,2
/∈ H(div; Ω). Since J (2)h,P is the natural

xtension of J (2)P to W 1,1(Ω; Th), i.e., J
(2)
h,P (Θ) = J (2)P (Θ) for Θ ∈ W 1,1(Ω), we may use J (2)h,P (Θ

m
h ) in (6.13). On the other hand,

we define an equilibrated flux function pm,eq
h,2

∈ RT0(Ω; Th) by specifying the degrees of freedom on each K ∈ Th according
o ∫

E
nE · pm,eq

h,2
p0 ds =

∫
E
nE · p̂

∂K
|E p0 ds, p0 ∈ P0(E), E ∈ Eh(∂K ). (6.12)

Then, following subsection 4.1 from [22] we have

∥Θm
− Θm

h ∥
2
L2(Ω) ≲ J (2)h,P (Θ

m
h ) + J (2)D (pm,eq

h,2
). (6.13)

Theorem 6.1. The flux function pm,eq
h,2

∈ RT0(Ω; Th) is equilibrated in the sense that it satisfies

Θ
(0)
h (φm

h ) −
τmMΘH

2ξ0
∇pm,eq

h,2
= Π

(0)
h (Θm−1

h ) + τmMΘΠ
(0)
h (f mh,2) in each K ∈ Th. (6.14)

Proof. By Gauss’ theorem and using (6.12) as well as (5.22b) with vh|K = p0 ∈ P0(K ), vh|K ′ = 0, K ′
̸= K , we find

τmMΘH
2ξ0

∫
K

∇ · pm,eq
h,2

p0 dx =
τmMΘH

2ξ0

∫
∂K

n∂K · pm,eq
h,2

p0 ds =

τmMΘH
2ξ0

∫
∂K

n∂K · p̂m
∂K

p0 ds = −

∫
K

Θm
h p0 dx +

∫
K

Θm−1
h p0 dx +

τmMΘ

∫
K
f mh,2p0 dx,

from which we deduce that (6.14) holds true.

For practical purposes, we further replace IK (pm,eq
h,2

) by the penalty term

α2

∑ ∫
K
(|pm,eq

h,2
| − 1)+ dx (6.15)
K∈Th

13
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ith a penalty parameter α2 ≫ 1. Moreover, as in Section 5 we have

1
2
∥Θm

h − Θm−1
h ∥

2
L2(Ω) +

1
2

∑
K∈Th

∥
τmMΘH

2ξ0
∇ · pm,eq

h,2
+ Θm−1

h + τmMΘ f mh,2∥
2
L2(K ) − (6.16)

1
2
∥Θm−1

h ∥
2
L2(Ω) − τmMΘ

∑
K∈Th

∫
K
f mh,1Θ

m
h dx =

τmMΘH
2ξ0

∑
K∈Th

∫
K

Θm
h ∇ · pm,eq

h,2
dx +

1
2
∥Π

(0)
h (Θm

h ) − Θm
h + Θm−1

h − Π
(0)
h (Θm−1

h ) − τmMΘΠ
(0)
h f mh,2∥

2
L2(Ω).

Using (6.15) and (6.16) in (6.13) we obtain

∥Θm
− Θm

h ∥
2
L2(Ω) ≲ (η(2)

h )2, (6.17a)

where the equilibrated a posteriori error estimator η
(2)
h is given by

(η(2)
h )2 :=

∑
K∈Th

(η(2)
K )2, (6.17b)

(η(2)
K )2 :=

τmMΘH
2ξ0

∫
K
fori(ω(φm

h ), ∇DGΘ
m
h ) dx +

α1

2

∑
E∈∂K\(K∩Γ )

|[Θm
h ]E | ds + (6.17c)

τmMΘ

∫
K

Θm
h ∇ · pm,eq

h,2
dx +

1
2

∥ Π
(0)
h (Θm

h ) − Θm
h + Θm−1

h − Π
(0)
h (Θm−1

h ) −

τmMΘΠ
(0)
h f mh,2 ∥

2
L2(K ) +α2

∫
K
(|pm,eq

h,2
| − 1)+ dx.

he realization of the adaptivity in space is done by Dörfler marking [23] with bulk parameter 0 < κ < 1 and longest
dge bisection. At each time step, we start from an initial coarse triangulation Th0 and apply the equilibrated a posteriori
rror estimator η

(1)
h first resulting in a final triangulation Thf . This triangulation Thf is then used as an initial mesh for the

daptivity in Θ based on the equilibrated a posteriori error estimator η
(2)
h . The reason for this strategy is that there are

ocal regions of steep gradients for both φ and Θ at the interfaces between areas of full and zero crystallinity, whereas
or Θ there are additional regions of steep gradients within the areas of full crystallinity due to changes in the orientation
ngle.

. Adaptive time stepping

The time adaptivity used in this paper is dictated by the convergence of a semismooth Newton method for the
umerical solution of the nonlinear IPDG approximation (5.18) and not by an upper bound for the discretization error in
ime, because the time steps predicted by the latter are much larger than those by the former.

Setting Θm
:= (Θm

1 , . . . , Θm
Nh
)T ,Nh := dim V 2

h,0,Γ , the algebraic formulation of (5.18) leads to a nonlinear system of the
orm

F(Θm, tm) = 0, (7.1)

ith a nonlinear mapping F : RNh × R+ → RNh that is not differentiable in Θm in the classical sense, but admits a
eneralized Jacobian ∂ΘF in the sense of Clarke [24]. Hence, the nonlinear system (7.1) can be solved by a semismooth
ewton method (cf., e.g., [25]). The problem is the appropriate choice of the time step sizes τm, 1 ≤ m ≤ M , in order
o guarantee convergence. In fact, a uniform choice τm = T/M only works, if M is chosen sufficiently large which would
equire an unnecessary huge amount of time steps. An appropriate way to overcome this difficulty is to consider (7.1) as
parameter dependent nonlinear system with the time as a parameter and to apply a predictor–corrector continuation
trategy with an adaptive choice of the time steps (cf., e.g., [3,5,26,27]). Given Θm−1, the time step size τm−1,0 = τm−1,
nd setting k = 0, where k is a counter for the predictor–corrector steps, the predictor step for (7.1) consists of constant
ontinuation leading to the initial guesses

Θ(m,k)
= Θm−1, tm = tm−1 + τm−1,k. (7.2)

etting ν1 = 0 and Θ(m,k,ν1) = Θ(m,k), for ν1 ≤ νmax, where νmax > 0 is a pre-specified maximal number, the semismooth
ewton iteration

∂ΘF(Θ(m,k,ν1),Φm−1, tm)∆Θ(m,k,ν1) ∋ − F(Θ(m,k,ν1),Φm−1, tm), (7.3)

Θ(m,k,ν1+1)
= Θ(m,k,ν1) + ∆Θ(m,k,ν1), ν1 ≥ 0,
14
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Table 1
Physical data: Mobilities MΘ ,Mφ , parameter εr in the interpolation function ω, modulus of anisotropy
s0 , symmetry index ms .
Mφ MΘ εr s0 ms

Ex. 1 Ex. 2 Ex. 1 Ex. 2

1.5 · 102 1.1 · 101 1.0 · 10−3 0.0 0.2 – 2

serves as a corrector whose convergence is monitored by the contraction factor

Λ
(m,k,ν1)
Θ =

∥∆Θ(m,k,ν1)∥

∥∆Θ(m,k,ν1)∥
, (7.4)

where ∆Θ(m,k,ν1) is the solution of the auxiliary Newton step

∂ΘF(Θ(m,k,ν1),Φm−1, tm)∆Θ(m,k,ν1) ∋ −F(Θ(m,k,ν1+1),Φm−1, tm). (7.5)

If the contraction factor satisfies

Λ
(m,k,ν1)
Θ <

1
2
, (7.6)

we set ν1 = ν1 + 1. If ν1 > νmax, both the Newton iteration and the predictor–corrector continuation strategy are
erminated indicating non-convergence. Otherwise, we continue the semismooth Newton iteration (7.3). If (7.6) does
ot hold true, we set k = k + 1 and the time step is reduced according to

τm,k = max(

√
2 − 1√

4Λ(m,k,ν1)
Θ + 1 − 1

τm,k−1, τmin), (7.7)

where τmin > 0 is some pre-specified minimal time step. If τm,k > τmin, we go back to the prediction step (7.2). Otherwise,
he predictor–corrector strategy is stopped indicating non-convergence. The semismooth Newton iteration is terminated
uccessfully, if for some ν∗

1 > 0 the relative error of two subsequent semismooth Newton iterates satisfies

∥Θ(m,k,ν∗
1 ) − Θ(m,k,ν∗

1−1)
∥

∥Θ(m,k,ν∗
1 )∥

< εT (7.8)

for some pre-specified accuracy εT > 0.
In this case, we set

Θm
= Θ(m,k,ν∗

1 ) (7.9)

and predict a new time step according to

τm =
(
√
2 − 1) ∥∆Θ(m,k,0)

∥

2Λ(m,k,0)
Θ ∥Θ(m,k,0) − Θm∥

τm,k, (7.10)

where amp > 1 is a pre-specified amplification factor for the time step sizes. We set m = m + 1 and begin new
redictor–corrector iterations for the time interval [tm, tm+1].
In principle, we could include the same strategy for the φ-iterates as has been done in [3,5]. However, as it turned out,

nce the time-step τm is accepted for the Θ-iterate, it is also accepted for the φ-iterate. Therefore, we decided to restrict
urselves to the predictor–corrector continuation strategy for the Θ-iterates.

. Numerical results

We have applied the space–time adaptive splitting method to two illustrative examples. The first example is about the
rowth of four crystals of different orientation angles initially located at the four corners of the computational domain (cf.
ig. 3), whereas the second example deals with the spherulitic growth of a single crystal initially located at the center of the
omputational domain (cf. Fig. 5). The physical data we have used are depicted in Tables 1 and 2. In particular, in Example 2
he constants r1 and r2 for the orientational free energy density are chosen such that the angle of misorientation is 30o

eading to six preferred orientations. The computational domain is Ω = (0µm, 6µm)2. Table 3 contains the computational
ata for the spatial discretization and the predictor–corrector continuation strategy.

xample 1. We consider the isotropic growth (i.e., s0 = 0) of four single crystals with different orientation angles. The
nitial orientation angles Θ0, the initial local degree of crystallinity φ0, and the boundary data φD are given as follows (cf.
ig. 3):

φ0 =
1.0 (red) around the four corners,

0.0 (white) elsewhere.
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Table 2
Physical data: Free energy H of low grain boundaries, correlation length ξ0 of the orientational field,
constants r1, r2, δ determining the orientational free energy density fori .
H ξ0 r1 r2 δ

Ex. 1 Ex. 2 Ex. 1 Ex. 2 Ex. 1 Ex. 2

1.0 · 10−3 2.1 · 10−4 – 3.0 – 0.5 – 0.2

Table 3
Computational data for the spatial discretization and the predictor–corrector continuation strategy: reg-
ularization parameter λ for the Moreau–Yosida approximation of the subdifferential of the orientational
free energy density, mesh width h for the initial triangulation of the computational domain, maximum
number νmax of semismooth Newton iterations, minimum time step size τmin , relative accuracy εT of
semismooth Newton iterations, and amplification factor amp for new time step size.
λ h νmax τmin εT amp

Ex. 1 Ex. 2

1.0 · 10−3 0.75 µm 1.5 µm 50 1.0 · 10−6 1.0 · 10−3 1.2

Fig. 2. Example 1: Adaptively generated meshes at time t = 2.3 · 10−4 s. Left: Local degree of crystallinity. Right: Orientation angle.

Θ0 =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
1.2π (red) around the right upper corner,
1.0π (yellow) around the right lower corner,
0.8π (blue) around the left lower corner,
0.6π (green) around the left upper corner,
0.9 ± 0.05π randomly chosen elsewhere.

he boundary data are φD = φ0|Γ , ΘD = Θ0|Γ .

The four crystals grow along the curvature and start to impinge on each other with the star-shaped area of local degree
f crystallinity φ = 0 shrinking (cf. Figs. 3 and Fig. 4). For better visibility we have suppressed the values of Θ as well as
he refinements with respect to Θ in the areas of zero crystallinity.

Fig. 2 displays the adaptively generated meshes for the local degree of crystallinity φ (left) and for the angle of
rientation Θ (right) and Fig. 3 shows the local degree of crystallinity φ (left) and the angle of orientation Θ (right) at
ime t = 2.3 ·10−4 shortly after the onset of the isotropic growth of the four crystals. We observe significant refinements
round the interfaces between the area of full crystallinity (φ = 1) and the area of zero crystallinity (φ = 0). Since at
hat time the impingement of the four crystals is small, the adaptively generated mesh for the angle of orientation Θ is
lmost the same as the mesh for the local degree of crystallinity φ.
Likewise, in Fig. 4 the adaptively generated meshes are shown for the local degree of crystallinity φ (left) and for the

ngle of orientation Θ (right) at the advanced time t = 7.5 · 10−3, whereas Fig. 5 displays the local degree of crystallinity
(left) and the angle of orientation Θ (right) at that time. We see that the four crystals have substantially grown in radial
irection. As far as the adaptive refinement in space is concerned, for φ there are only refinements around the interfaces
etween the area of full crystallinity (φ = 1) and the area of zero crystallinity (φ = 0) (Fig. 4 (left)), whereas for Θ we
ave additional refinements at the interfaces between regions of different orientation angles (Fig. 4 (right)).

xample 2. We consider the formation of a Category 1 spherulite from a nucleation site which is initially occupying a
ubdomain Ω around the center of the computational domain Ω . The initial data are given by φ = 1.0 in Ω and
0 0 0

16
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Fig. 3. Example 1: Local degree of crystallinity (left) and orientation angle (right) at time t = 2.3 · 10−4 .

Fig. 4. Example 1: Adaptively generated meshes at time t = 7.5 · 10−3 s. Left: Local degree of crystallinity. Right: Orientation angle.

Fig. 5. Example 1: Local degree of crystallinity (left) and orientation angle (right) at time t = 7.5 · 10−3 .

= 0.0 elsewhere and by Θ0 varying between 0.7π and 1.2π in Ω0 and chosen randomly around 0.95π elsewhere.
n particular, the assignment of the colors in Figs. 7 and 9 is as follows: Blue (1.2π ), Brown (1.0π ), Cyan (0.9π ), Green
0.8π ), Red (1.1π ), and Yellow (0.7π ). The boundary data are φD = ΘD = 0.

Again, for better visibility we have suppressed the values of Θ as well as the refinements with respect to Θ in the
reas of zero crystallinity.
Fig. 6 displays the adaptively generated meshes for the local degree of crystallinity φ (left) and for the angle of

rientation Θ (right) at time t = 1.1·10−4 shortly after the beginning of the spherulitic growth. Due to the initial smallness
f the crystal, the two meshes do not differ significantly. The associated Fig. 7 shows the local degree of crystallinity φ
left) and the angle of orientation Θ (right) at that time. Likewise, Fig. 8 contains the adaptively generated meshes for
he local degree of crystallinity φ (left) and for the angle of orientation Θ (right) at time t = 4.7 · 10−3 when crystalline
17
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Fig. 6. Example 2: Adaptively generated meshes at time t = 1.1 · 10−4 s. Left: Local degree of crystallinity. Right: Orientation angle.

Fig. 7. Example 2: Local degree of crystallinity (left) and orientation angle (right) at time t = 1.1 · 10−4 .

Fig. 8. Example 2: Adaptively generated meshes at time t = 4.7 · 10−3 s. Left: Local degree of crystallinity. Right: Orientation angle.

ranching has already set in. As in Example 1, there is a pronounced refinement of the mesh for the local degree of
rystallinity at the interface between the area of full crystallinity (φ = 1) and the area of zero crystallinity (φ = 0) where
teep gradients occur. On the other hand, there is additional refinement of the mesh for the angle of orientation at the
nterfaces between areas of different orientation angles which are located around the center of the computational domain.
ig. 9 displays the local degree of crystallinity φ (left) and the angle of orientation Θ (right) at that time.
Finally, Figs. 10 and 11 show the history of the predictor–corrector strategy where the adaptively chosen time steps are

hown as a function of the number of iterations for Example 1 and Example 2. We observe large fluctuations in the time
teps which are due the occurrence of very steep gradients at the growing front, particularly when crystalline branching
akes place.
18



                                                                                           

R

Fig. 9. Example 2: Local degree of crystallinity (left) and orientation angle (right) at time t = 4.7 · 10−3 .

Fig. 10. Performance of the predictor–corrector continuation strategy. Adaptive choice of time steps τm: Example 1.

Fig. 11. Performance of the predictor–corrector continuation strategy. Adaptive choice of time steps τm: Example 2 (right).
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