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1. Introduction

Polycrystallization of thin films is a dynamic process that can be described by a phase field model featuring a free
energy in two or three phase field variables, namely the local degree of crystallinity, the orientation angle, and the local
concentration. The model includes isotropic and anisotropic growth of the crystals and the structure of the orientational
free energy may allow for crystalline branching in the form of spherulites due to misorientations at low grain boundaries.
Due to their low surface roughness at the nanoscale and their thermodynamic stability, polycrystalline thin films are of
particular interest for diffraction gratings, photonic band gap structures, and coatings based on structural colors instead
of pigments. We refer to the survey articles [1,2] and the references therein.

From a mathematical point of view, the orientational free energy is related to the total variation of the orientation angle
and thus has to be considered in the Banach space of functions of bounded variation as has been done in [3,4] for a two-
field and in [5] for a three-field phase field model for polycrystalline growth in binary mixtures. The numerical solution of
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the phase field models in [3-5] was based on a splitting scheme featuring an implicit discretization in time with adaptive
time stepping and a discretization in space by standard finite elements with respect to a shape-regular triangulation
of the computational domain. However, adaptivity in space has not been considered despite the fact that the solution
exhibits very narrow interior transition regions with extremely steep slopes. Therefore, this contribution is devoted to
a space-time adaptive splitting method where the adaptivity in space is taken care of by equilibrated a posteriori error
estimators. As far as the theory of equilibrated a posteriori error estimators is concerned, we refer to [6-11].

The paper is organized as follows: In Section 2, we provide basic notations and results with emphasis on the Banach
space BV of functions of bounded variation. Section 3 is devoted to the phase field model in the local degree of crystallinity
¢ and the orientation angle ® as phase field variables. In particular, we consider both an orientational free energy density
as in the classical Kobayashi-Warren-Carter model [12] (cf. also [3,5]) and an orientational free energy density with a
misorientation of the orientation angle as has been dealt with in [4]. In the following Section 4 we suggest a splitting
scheme based on an implicit discretization in time which decouples the evolutionary problems such that at each time
step minimization problems for ¢ in the Sobolev space W2 and for @ in the space BV of functions of bounded variation
have to be solved successively. Both problems admit a solution as can be shown by tools from the calculus of variations.
Section 5 deals with a further discretization in space by standard finite elements for the problem in ¢ and by an IPDG
approximation for the problem in . Section 6 addresses the construction of equilibrated a posteriori error estimators
for the spatial discretization errors in ¢ and ® which amounts to the proper specification of flux functions in the space
H(div; £2). In Section 7, the nonlinear algebraic system in @, resulting from the IPDG approximation, is numerically solved
by a predictor-corrector continuation strategy featuring constant continuation as a predictor and a semismooth Newton
method as a corrector allowing for an adaptive choice of the time steps. Finally, in Section 8 we provide a documentation
of numerical results for two illustrative polycrystallization processes.

2. Notations and basic results

For an open or closed set A ¢ R? d € N, we denote by CJ(A; RY),0 < m < oo, the Banach space of m-times
continuously differentiable vector-valued functions q = (q1, . .., q¢) with compact support in A. In case m = 0 we write
Co(A; RY) instead of CJ(A; R?) and in case d = 1 we write CJ'(A) instead of C['(A; R!). We further refer to C5°(A) as the
linear space of infinitely smooth (scalar) functions with compact support in A and to D(A) as its dual space of distributional
derivatives.

By M(A; RY),d € N, we denote the Banach space of vector-valued bounded Radon measures g = (i1, ..., ftq)
equipped with the total variation norm
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where {A,}y is a sequence of mutually disjoint subsets of A such that A = Un“;l An, and we refer to MT(A; RY) as the set
of positive Radon measures.
In view of the Riesz representation theorem M(A; R?) is the dual space of Co(A; RY) with the duality pairing
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A sequence {p,}x of Radon measures s, € M(A; R%), n € N, is said to converge weakly* to st € M(A; RY) (u,, ~* p (n —
00)) if

(s @ rco = (R Q) ancy (1 — 00)  for all g € C3°(A; RY). (2.3)

For a bounded Lipschitz domain 2 C R? d € N, with boundary I = 352 we refer to [?(£2; RY),1 < p < oo, as the
Banach space of pth power Lebesgue integrable vector-valued functions on £2 with norm || - || p.¢) and to L°(£2; RY)
as the Banach space of essentially bounded vector-valued functions on £ with norm || - [|;e0.gdy. In case d = 1 we will
write [P(£2) instead of L?(£2; R"). Further, we denote by W'?(£2), 1 < p < oo, the Sobolev spaces with norms | - |y 1.p(o)
and by WOL”(Q), 1 < p < oo, the closure of C§°(£2) with respect to the | - ||,1, norm. We note that for 1 < p < oo the
Sobolev space W1P(£2) is reflexive with dual space W'9(£2), 1/p+1/q = 1. For p = 1 the dual space of the Sobolev space
WL1(£2) is W°(£2). However, the Sobolev space W11(£2) is not reflexive. We further note that for p = 2 the spaces
[2(2; RY) and W"%(2) = H'(£2) are Hilbert spaces with inner products (-, -);2g.p¢y and (-, Jy1.2¢0)-

A sequence {u,}y of functions u, € W'P(22),n € N,1 < p < oo, is said to converge weakly to u € W'P(£2)
(up — u (n — o0)), if it holds

(v Un)wrawis = (U, Uyrgwip (N — 00) forallve WHI(R), 1/p+1/q=1.
Lemma 2.1. Let {u,}y be a bounded sequence of functions u, € W'"P(£2),n € N, 1 < p < oo. Then there exist a subsequence
N C N and a function u € WP(£2) such that

U, — u (N 2n— o0) in WHP(R2). (2.4)



Proof. We refer to [13].

A functional F : WP(2) — R, 1 < p < oo, is said to be weakly sequential lower semicontinuous in W'P(£2) if for
every sequence {u,}y of functions u, € W'P(£2), n € N, such that u, — u (n — o0) in WP(£2) for some u € WP(R) it
holds

F(u) < lim inf F(uy,). (2.5)

n—oo

A function u € L'(£2) is said to be of bounded variation if its distributional derivative Du satisfies Du € M(£2; R?), i.e., for
all q € C}(£2; RY) we have

—/ V-qudx:/q-dDu.
2 2

The total variation of u is defined as follows

|Du|(£2) := sup {—f V.-qudx|qeCl(2;RY, |ql < 1in 2). (2.6)
2

We denote by BV(£2) the Banach space of functions u e L'(§2) such that |Du|(£2) < oo equipped with the norm
lullsvie) = lullp(q) + 1Dul($2). (2.7)

Clearly, we have W1(£2) ¢ BV(£2) and u € W'1(£2) iff u € L'(£2) and Du is absolutely continuous with respect to the
Lebesgue measure. In particular, we have the Lebesgue-Radon-Nikodym decomposition

Du = Vu + Du, (2.8)

where Vu € L'(£2; RY) is called the approximate gradient of u and D’u € M(£2; RY) is said to be the singular part of the
derivative.

Functions u € BV(£2) have a trace u| € L'(I"). The trace mapping T : BV(£2) — L!(I") is linear, continuous from
BV(£2) endowed with the strict topology to L'(I") equipped with the strong topology (cf., e.g., Theorem 10.2.2 in [14]).
The subspace BVy(£2) of BV(£2) is the kernel of the trace mapping T. It is a Banach space equipped with the induced norm.
For up € L'(I") we further set BV, r(£2) .= {u € BV(2) | Tu = up}.

A sequence {u,}y of functions u, € BV(£2),n € N, is said to converge weakly* to u € BV(£2) if u, — u in L'(£2) and
Du, —* Duin M(£2;R%) as N> n — oo.

Lemma 2.2. Let {u,}y be a uniformly bounded sequence of functions u, € BV(£2),n € N, i.e,
luallpviey < C ,neN,
for some C > 0. Then there exist a subsequence N' C N and u € BV(£2) such that

u, ~*u inBV(R2)asN >n— oo.

Proof. We refer to [15].

A functional F : BV(£2) — R is said to be weakly* sequential lower semicontinuous in BV(£2) if for every sequence
{u,}y of functions u, € BV(£2), n € N, such that u,, =* u (n — 00) in BV(£2) for some u € BV(£2) it holds

F(u) < lim inf F(uy,). (2.9)
n—oo
3. The phase field model

As a mathematical model for crystal growth in polycrystalline binary mixtures we use a phase field model where
the free energy depends on two phase field variables. These are a structural order parameter ¢ measuring the local
degree of crystallinity (volume fraction of the crystalline phase) and an orientation field ® which locally describes the
crystallographic orientation. Such phase field models have been widely suggested in the literature (we refer to the survey
articles [1,2] and the references therein). We consider polycrystallization with and without orientational mismatch. The
presence of orientational mismatch gives rise to the formation of spherulites (cf., e.g., [4,16]).

For a bounded domain £2 C R? with boundary I = 342 the free energy reads as follows:

1 H
F(¢,@)=/ =s(Vo, O [V|> +£(d) + ——for(w(#), VO) dx. (3.1)
o 2 2§

Here, the functions s = s(V¢, ®), g(¢), and fyi(w(¢), VO) refer to an anisotropy function, a double well potential, and
an orientational free energy density. The function w is a continuously differentiable interpolation function given by

& ,n=0
o) =1 &+22-3e)* 41—’ +n*,0<n<1 , neR, (32)
1—&,n>1
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Fig. 1. The convexified orientational free energy density fyi(w(¢), VO) in case of polycrystallization with orientational mismatch.

where 0 < ¢, < 1. The function w has the property

O<e <wn)<1l—¢g, neRr. (3.3)
Moreover, the anisotropy function s(y, ¥), n = (11, 12)" € R?, y € R, is given by

s(p, y) =14 so cos(ims® — 2my), (3.4)

where ¥ := arctan(n,/n1), 0 < sg < 1 denotes the amplitude of the anisotropy of the interfacial free energy, and ms is
the symmetry index. We note that ¥ is related to the inclination of the normal vector of the interface in the laboratory
frame. The function g(n) is the quartic double-well function

1

g = ” (1-=nf, neRr, (3.5)
For polycrystallization without orientational mismatch the orientational free energy density is given by
forilw(9), VO) = 2n&0($)I VO], (3.6)

where & > 0 stands for the correlation length of the orientational field. Moreover, H > 0 in (3.1) refers to the free energy
of the low-grain boundaries.

In case of polycrystallization with orientational mismatch we use an orientational free energy from [16] which is given
by (cf. Fig. 1)

Jorilw(9), VO) = (3.7)
by V| | &I|VO| < 5,

1 g1 1 8+1/2
ay + by (IVO — 5-87) . 5- = &IVO| < 5570500y

O — B2 g1 e
a3 +b3(IVO| — 35t mmbo ) » S0IVOI 2 55760 5y

where § € (0,1),0 <1, < 1y, and
by ==2(1 = 8)m&ow(d)ra,
1/2—-(1-6 8 1-6
b= (1— Sro(@)2. by = Znéow(qﬁ)( /2 —( ra/r)r(8r1 +( )r2)
r r/2—(1=28)r,
a3 = ww(9)/2, bz = 2nnr1&w(d).
For a derivation of (3.7) we refer to [4].
The orientational free energy density f,i(w(¢), VO) is not differentiable in the classical sense, but admits a subdiffer-
ential
IV Ofpi(w(g), VO) = (386)/8x1fori(w(¢)a Vo), 83@/8x2fori(w(¢)v V@))T- (3.8)
For f,; given by (3.6) the subdifferential reads as follows:

[-b,+b] ,VO =0
8(’9@/8x,-fori(w(¢)v V@) = sgn(a@/axi) b ,Ve # 0

where b .= 2n & ().

)

, 1<i<2, (3.9)



On the other hand, if for is defined by (3.7), the components 9y /axfori((¢). VO), 1 < i < 2, of the subdifferential
VO foi(w(¢), VO) are given by
[=by,+b1] , VO =0
sgn(0®/ox;) by , 0 < |VO| < ié—o—l

sgn(d0/dx;) [b1, by] , VO] = 55,

3( O [ 0X;. (w( )7 V@) = — — (310)
0 fiifori( (¢ sgn(d® /dx;) by | i‘%] < |VO| < iéol
sgn(30 /0x;) [bz, b3l , VO] = ;"
sgn(00/0x) by , =& < VO

Likewise, the associated free energy F(¢, @) is not Gateaux differentiable in ®. We set
F(¢, ©) = Fi(¢, ©) + F2(¢, O), (3.11)
1
F(9.0)i= 5 [ sv0.07 Vo ax+ [ sto)ax.
2 2 2

(9.0 =5 [ futolo). 7O) dx. (312)
o Jo
The functional F»(¢, @) admits a subdifferential dgF,(¢, ®) given by
BoF9. 0) = o[~V -a | a € dvofulwle). VO) Zo -] (313
2§ VO]
The functional F,(¢, @) is Gateaux differentiable in ® with Gateaux derivative
SF1(¢, ©) s(Ve, ©)
—o = s(Vo, @)quﬂz. (3.14)

For practical purposes we replace dvefori(w(¢), VO) by its Moreau-Yosida approximation dve ;fori(w(¢), VO) with
regularization parameter 0 < A < 1 (cf,, e.g.,, [17]). Then F,(¢, @) is Gateaux differentiable in ® with Gateaux derivative

éh(¢,0) H { Vo
T2 T _ DV dye sfoil@(¢), VO } 3.15
50 2% ve.fori(w($) )|V@| (3.15)
The functionals Fi(®, ¢), 1 < i < 2, are Gateaux differentiable in ¢ with Gateaux derivatives
SF(¢, ®
71(;; )= v (u(v9. 0)V9). (3.16)
0F (¢, ©)  H dfori(w(¢), VO)
——— = ——wy(P) + g(9),
8¢ 26  dw(@) ¢
where the 2 x 2 matrix A(y, y) = (a;(n, y))fj:1, 7 € R%, y € R, is given by
an(n. y) = an(. y) =sm. v’ (3.17)
as(n, v)
an(n, )= —ax(n,y)=—s(n,y) S

and g,(¢) and wy(¢) stand for the derivatives of g(¢) and w(¢) with respect to ¢.
Denoting by My > 0 and My > 0 the mobilities with respect to ® and ¢ and specifying initial and boundary conditions,
the dynamics of the spherulitic growth are described by the coupled system of evolutionary processes

9 _ ., _3R(9.0) n 8Fi(¢, ©)

i =2 T 1
ot P 5% 5% inQ x (0, T), (3.18a)
¢=¢p onX =TI x(0,T), (3.18b)
¢(0) = ¢ in £2, (3.18¢)

and
e SFi(¢, ©) | F(¢, O) .

= 0 — = 2 T 1
P o 50 50 , InQ x (0, T), (3.19a)
®=6p onX =TI x(0,T), (3.19b)
®0) =06y in £, (3.19¢)



where ©®p, ¢p are given Dirichlet data on I" and ¢g, ®¢ are given initial configurations. We assume that

=\ I, LNG=0,i#] (3.20)

-

i=1

and

¢plr, = const., Op|r; =const., 1<i<¢. (3.21)
4. Discretization in time: the splitting scheme

We consider a discretization in time with respect to a partition of the time interval [0, T] into subintervals [t;_1, tn],
1 <m< MM € N, of length t, := t, — tn—1. We denote by @™ and ¢™ approximations of ® and ¢ at time
tm and discretize the time derivatives in (3.18a) and (3.19a) by the backward difference quotient: Given ®™ ! and
¢™ 1,1 <m < M, compute ®™ and ¢™ such that

- SF(9™, ©™) SK(¢™, OM) .
" — " 1=TmM¢(— ! 50 + =2 5% in £, (4.1a)
¢"=¢p onTr, (4.1b)
and
_ SFR(¢™, O™)  SFi(9™, 0M) .
O —en1 = TmM@(— 2 R ! = in 2, (4.2a)
" =6p onl. (4.2b)
As far as the first step of the splitting scheme is concerned, we consider the minimization problem
I = inf (@), (4.32)
peVq

where Vy := W¢f), ~(£2) and the objective functional ],(31) is given by
1 _
B@#)= 516 = 60 gy + (4.3b)

My / S(VoR—", O ' |V|* dx + tnMyplT(¢),
2

where
SEx(g 1, O
dx, =—=rh *h 4.3c
/ furd S 50 (4.3¢)
and ¢y m-1 @,’1”_1 are some approximation of ™! and ®™! which will be specified in Section 5.
Theorem 4.1. The minimization problem (4.3) has a unique solution ¢™ € V.
Proof. Let {¢'}n, ¢ € Vi, n € N, be a minimizing sequence, i.e.,
Dy omy _ s (1)
Jim Jp(n') = J?vf] Jp (@) (44)
An application of Young’s inequality
1
ab < ed® + 4—b2, a,beR,, >0, (4.5)
&
with ¢ = 1/8 yields
1 1
E “d) - ¢h ||L2 _(2) ||¢||L2(Q 5”¢h ”LZ(.Q (4'6)
1612yl 2y = ||¢||Lz(m ||¢h R,
By another application of Young's mequality (4.5) with ¢ = 1/(87M,) we obtain
[TMyE7(9)] < ||¢||L2(m + 2t M, / i 12 dx. (4.7)



Observing (3.4) and (4.6), (4.7) it follows that
O ||¢||L2(Q +(1 = 5oV tmMy I V1% ) —
3 _
5“¢]T ”LZ(Q) - 2‘[71‘11\'/[(1)‘/!‘2 |fhr71|2 dxv

from which we deduce the coercivity of ],()”. It follows that the minimizing sequence {¢;'}y is uniformly bounded.

Consequently, there exist a subsequence N’ C N and a function ¢™ € V; such that
¢™ — ¢™ (N 31— oo)in WH(£2).
Since J{" is convex and lower semicontinuous, it is weakly lower semicontinuous. We thus have
1 . . 1
J(e™ <lim_inf JiV(gm),
N'3n—o00
and hence, in view of (4.9) we obtain
() m : (1)
= inf .
USCOES R

The uniqueness of ™ follows from the strict convexity of ],(,U.

In the second step of the splitting scheme, we compute ®™ € V, := BV, r(£2) as the solution of the minimization

problem

JP©™ = inf jP(0),
eV,

where the objective functional ](2) is given by

o) = ||o—o,2" g +

TmMeH _
e f fori(w(gb[rln )1 D®) dx + ‘CmM@E?(@),
25 Jao

where

SFieR, O
80

124D ffhz() dx, fiy = O dx.

Theorem 4.2. The minimization problem (4.8) has a solution ®™ € V5.

Proof. Let {®]'}y, O € Vo, n € N, be a minimizing sequence, i.e.,

lim JP(Om) = inf ](2)(0)

Nan—oo

As in the proof of Theorem 4.1, an application of Young’s inequality yields

||@|I |I@1T_1 :

1
5“@ - @ ”LZ(Q)'

”LZ(.Q) o 8 LZ(Q)

and
1
TMo5(O)] < Z110y g, + 2tnMeo /Q i dx.
Observing (3.3), (3.6), (3.7), and (4.10), (4.11) it follows that
1
2 IIOII o) T Mo |DO|(£2) —
Eu@m-1 12, ) — 2TmMo / fim? dx,
Q

Je) =

(4.8a)

(4.8b)

(4.8¢)

(4.9)

(4.10)

(4.11)

where B = ¢, if f,; is given by (3.6), and B := (1 — §)mrye, in case fy; is given by (3.7). This implies the coercivity of
1(2) on V5. Hence, the minimizing sequence {©®,"}y is uniformly bounded. Consequently, there exist a subsequence N’ C N

and a function ®™ € V, such that

O =~* O™ (N 3n— o00)in BV(£2).



The objective functional ],(,2) is weakly* lower semicontinuous in BV(£2). We thus have
JP©™ <lim_inf jPom,
N'sn—o0
and hence, in view of (4.9) we obtain
JPe™ = inf J;7(0).
[CI%)

Remark 4.1. We note that the splitting scheme (4.3), (4.8) is different from those used in [3-5] where the first
minimization problem is in ® and the second one in ¢. The reason for the reverse order is that for space adaptivity
it is more advantageous to perform the adaptivity with respect to ¢ before the one for ®. A more detailed explanation
will be given in Section 6.

5. Discretization in space

Let 7, be a geometrically conforming, locally quasi-uniform, simplicial triangulation of the computational domain £2.
Given D C £2, we denote by NV,(D) and &,(D) the set of vertices and edges of 7, in D, and we refer to Py(D), k € N, as the
set of polynomials of degree < k on D. Moreover, hg, K € Ty, and hg, E € &, stand for the diameter of K and the length
of E, respectively. We define h := min {hx | K € 73}. Due to the local quasi-uniformity of the triangulation there exist
constants 0 < cg < Cy such that for all K € 7, it holds

CRhK < hE < CRhK, E e Sh(BK) (51)

For two quantities a, b € R we will write a < b, if there exists a constant C > 0, independent of h, such that a < Cb.
We will further use the following trace inequality (cf., e.g., [18]): There exists a constant Ct > 0, only depending on
the polynomial degree k and the local geometry of the triangulation, such that for v, € P,(K) and K € 7, it holds

—-1/2
lvallzery < Crh " onllage)- (5.2)

ForE € &(82),E =K. NK_, K+ € Ty(£2), and v, € Vi, we denote the average and jump of vy, across E by {vp}r and [vy]E,
ie.,

1
{on}e = 5 Vnlenky + Vnlenk. » [vnle == vnlenk, — nlenk_,

whereas for E € &,(I") we set
{vn}e == vnle, [vnle == vnlE.

The averages {Vup)g, {z;,}r and jumps [Vuglg, [T, ]e of vector-valued functions Vv, and z;, are defined analogously. For
E € &,(£2) it holds

/Uh vy ds =/ {un}e [onle + [urle {vn}e  ds. (5.3)
E E

We further denote by ng, E € &,(£2), with E = K, NK_ the unit normal on E pointing from K, to K_ and by ng, E € &,(I"),
the exterior unit normal on E.
We consider the finite element approximation with the DG spaces

Vi = {vn € C(2) > R | vhlk € Py(K). K € Th. vhle = ¢p. E € &(I)}, (5.4a)
Vi = {vn € C(2) = R | vlx € P1(K), K € Tp, vnlg =0, E € &(I')}, (5.4b)
Voo = 1{vn: 2 > R | valg € Pi(K). K € Th, vhle = Op, E € &(I)}, (5.4¢)
Vi3 = {vn 0 2 = R | wplg € Py(K), K € T, vple =0, E € &(I)}, (5.4d)
RTo(2; Th) := {q, € H(div; 2) | g, |k € RTo(K), K € T}, (5.4e)
V,:=1{q,: 2 - R®* | q,lx € RTo(K), K € Ty}, (5.4f)

where RTy(K) := Po(K)? + xPo(K) stands for the lowest order Raviart-Thomas element. We note that V,E};Dq r C W;;?F(Q)
and V,E,]&F - Wg”ﬁ(fz). Moreover, for q, € V,, we have (V- gh)|K € Py(K), K € Ty, and ng ~gh|E € Py(E), E € &(T).
For uy € V,EYZ(E)D‘F and uy, € V,EYZ&F we define the broken gradient V,u, by means of
Viplk == Vuplg, K € Tp. (5.5)

Following [19,20], we define a recovery operator R;, : V,S’Z(Z)D. r— V,resp. R, : V,E’z& r — V, according to

[ Riw g = Y [unkene-tq)eds q v, (56)
2 E

Ee&p(R2)
8



We define the broken DG gradient Vpcuy, as follows:
Voclp == Vit — Ry (up). (5.7)
The following auxiliary result from [19] will enable us to estimate the L' norm of R,(u;) for uy € V)L(;,Z(Z)D,r resp.

uy € V,E,Z&r (cf. Lemma A2 in [19]).

Lemma 5.1. There exists a constant C;s > 0, independent of h, such that for u, € V,EZ) (V,Sz) = ,522_)‘) ror Vh h 0 r) it

holds
R (up)-q, dx
inf fg e S

uhEVﬁz)gheyf) Nunllre) g, lie(2:r2)

> Cs. (5.8)

Theorem 5.1. Under the assumptions of Lemma 5.1 there exists a constant Cr. > 0, independent of h, such that for uy € V,Sz)
it holds

”Rh(uh)”Ll :R2) = Crec Z /|[uh]E| ds. (59)

Ee&p(R2)

Proof. We have

Jo Ri(un) - q dx
IR, (ue)llpir2y =  sup e = (5.10)
EGLM(Q;RZ) ”g”LOO(Q;JRZ)

q, €V ||gh||LOO(Q;R2)
The inf-sup property (5.8) implies

_ f R, (up)-q, dx
IR, (u)ll 12y < Cig' sup =2t

(5.11)
q,€Vy ||gh||Lw(g;R2)

Now, observing (5.6), for E € £,(§2) we obtain

/Rh(uh) q, dx < (5.12)

> f|[uh]E| l{a, el ds <

EeSh(Q)

Z /|[uh15| 19, le, +,lr |4 ds <

Eegh(:z)

g, gy Y / \[un]e| ds.

Ec&p(£2)

Using (5.12) in (5.11) gives (5.9).

The fully discrete spllttmg scheme reads as follows:
Given (¢f ', 0" ) e Vh ) X V,EZ()) o first find ¢! € Vf(z}ép,r as the solution of the minimization problem

Jem = inf J,P(¢ ). (5.13)
‘f’hEVlS(z);Dr

Since th> is a closed subspace of W;[’fp(ﬂ), the existence and uniqueness of a solution of (5.13) follows as in
Theorem 4. 1

In the second step of the splitting scheme, we compute &' € V,Ez())D  as the solution of the minimization problem

Jem = 1r(1f I(6n), (5.14a)

(),,th Op.T"



where the objective functional ],1 » is given by

TmMOH

1
1200 = 5100 = 07 gy + T [ fo o), Vooon) b + (5.14b)

Mo (3(On) + a1 Y / [©nle| ds,

E€ER(R)

and o > 0 is a penalty parameter.

Theorem 5.2. For sufficiently large penalty parameter oy > 0, the minimization (5.14) has a solution O} € Vh oI

Proof. We show that the objective functional ],%1 is coercive on V,(IZ())D - equipped with the norm of W1(£2; 75,). As in
the proof of Theorem 4.2 we have

1 3 _

10 — 05 ‘||L2(Q > 8||@h|| )= 5168 Mgy, (5.15a)

|tMo, £2(0)] < §||@h||Lz(m+2rmM@ f i 2 d. (5.15b)
2

Observing (3.3), (3.6), (3.7), and (5.7), (5.9), as well as (5.15), it follows that

R ChE ||@||Lz(m + tuMoHB |VOLI(2) +

T M.;H

(@ — =° f|[@h15|ds—
ZEO Eeég

n(82)

3 — 2
5 ”@]1111 1”,%2((_)) - Zth@ / |fhr72| dxv
2

where 8 as in the proof of Theorem 4.2 and y := 27&y(1 — &;), if fo,; is given by (3.6), and y := 27r1£0(1 — &;)Crec in case
fori is given by (3.7). This implies coercivity for sufficiently large a1

In view of ]hzl), being continuous, convex, and coercive and Vh op,r being finite dimensional, the assertion follows from
a standard minimizing sequence argument.

The necessary and sufficient optimality condition for (5.13) amounts to the computation of ¢} € V,(l bp.T" such that for
all v, € V,EB,F it holds

/¢,§"vh dx+th¢/ s(Vor—', O 12V - Vuy dx = (5.16)
2 2

/ ¢>£"7]vh dx + ‘L’mM(pET(Uh).

For the construction of the equ111brated a posteriori error estimator in Sectlon 6 we consider the mixed formulation of
(5.16): Find (q)h ,p, ]) € Vh ool X RTo($2; T5) such that for all (vp, gh) € Vh,o,r x RTo($2; 7y) it holds

/s(v¢ “Lem 1)ph1 q, dx=— quh (s(Vop" ‘,@,T-‘)gh)dx + (5.17a)
qupnp s(Vor~', OF 'Y, ds,

/Q¢>,Tuh dx—rmM¢/Qv-(s(v¢,T—‘,@,T—1)BZ1)uh dx = (5.17b)
f o oy dx + My / Sl vn dx. (5.17¢)
2 2

On the other hand, replacing dvefori(w(¢y'), VO;') by its Moreau-Yosida approximation a(¢™, ©®™) := 9ve fori(w(dp'),
V"), the necessary and sufficient optimality condition for (5.14) leads to an IPDG approximation, namely the compu-
tation of @) € V,EZ())D r such that for all v, € V,E‘Z& it holds

/ OMvy dx + al“(O, vy) = f O oy dx + T €5 (vh), (5.18a)
2 2

10



where the semilinear form a}(-, -) is given by

'L'mM()H VDG@h
Deem, vy) == E / em - Vpeuy dx + (5.18b
)= & "Wocop] V" )
[/
“@ 2 /u@ e ¢
Eeéy( E

In view of (5.6) and (5.7) we obtain

a,, (()h s Uh) = 'L'M¢ Z/ ¢ ()'")|VDG()h |7 VDG()h (519)
KeTh
®
(Vo — Rh vp)) dx + aq Z / [ h]E [vh]E ds =
Ec&p(2) l
™™y Z/ (@™, ©™)| VO~ VocO - Vo, dx —
KeTp
> f [onle 0 - {a(@™, O™ VpcOy| ™ VocOf'l ds +
Eegn(2)
(O]
“ 2 / o ¢
Ee&p( h 1E

We will consider a two-field formulation of the IPDG approximation (5.18). To this end we set

Py, = al¢", O™ Voo | Vg Oy (5.20a)
tTmMeH
or — mZ; Vopr =00 + tuMofl. (5.20b)
) ,

Multiplying (5.20a) by q, €V, integrating over K € Ty, and summing over all K yields
> /ph2 q, dx = Z/a(qu O™ VocOR | Voo - g, dx. (5.21a)
KeTh KeTy

Moreover, multiplying (5.20b) by v;, € V,(l‘z& r» integrating over K € 7, summing over all K, and applying Green’s formula
elementwise, we get

MeH
Z/Oh Uhd _Tm < va phzvh dX—Z\/O,TUth + (521]3)

KeTh, KeTh, KeTh

TmM()H TmM@H m
SN LA N A
KeTh KeTp, VK

Z‘/‘@;;n 1Uh dX+TmMO Z/fhzvh dx.

KeTp KeTp

Replacing ma2|3K with some numerical flux function Q;"K we obtain the following two-field formulation of a general DG

approximation of the ®-equation: Find (®}", Emz) € V,E’Z(Z)D,r x V,, such that for all (vy, qh) € V,.E,Z&F x V, it holds

Z/l’hz q, dx= Z/ ¢", O™ Vo' VncOy - g, dx, (5.22a)

KeTh KeTh
TmMe

Z/@hvhd—i—m“ Z/IZVv,,dx— (5.22b)

KeTy VK KeTh

tmMeH R

TS [ e huds= Y [ oo acs

§o KeTh KeTh
‘EmM() Z fﬁ12vh dx.
KeTy

11



In particular, if the numerical flux function p |E, E € £,(£2) is chosen according to
Pl = {a(@™. OMIVOR| T VoIl — om[@,',"]frl[@,;"k ng. (5.23)

we recover the IPDG approximation (5.18) by eliminating ma2 from (5.22).

6. Equilibrated a posteriori error estimators

Given Banach spaces V, Q with norms || - ||y, || - |lo, @ convex and coercive objective functional Jp : V — R, we consider
the minimization problems
inf Jp(u) (6.1)
ueV
and
inf Jp(q), (6.2)
qeQ

where Jp : Q — R is the Fenchel conjugate of Jp. An abstract approach to the a posteriori error control for (6.1) has been
provided in [21] (cf. also [22]):

Given some approximation v € V of the minimizer u of (6.1), the a posteriori error estimate from [21] states that for
any admissible function q € Q it holds

lu— vl < Jp(v) +J(q)- (6.3)

6.1. A posteriori error estimator for the ¢-equation

We apply (6.3) with V = W;DZ (£2),Q = H(div; £2), Jp = ) andv = o q= ph . Following Example 3.2 in [22], for
the Fenchel dual we obtain
1 _ _
)= 3™Ms / p]" I* dx — T™, / gonr - (s(Vey ', O pl ) ds + (6.4)
, , r ,

1 B 1 B
Sy V - (Vo O IR )+ A+ M ) — S I e
We thus obtain
1™ = S 7120y SIS (SR + 15 (). (6.5)

Referring to 1‘[(0) as the L? projection onto V( = {vy : 2 > R | vyl € Po(K),K € Ty}, we note that the flux function
ph is equ111brated in the sense that

) = ML (V(S(V " 67 ey ) = (6.6)
mP ")+ TmM¢H,(,O)(f,T1) in each K € 7y,

as follows from (5.17b) with vy|x = po € Po(K) and vy|x = 0, K" # K.
Moreover, taking (6.6) into account, we have

1 _ 1 _ _ _

SI08 = & agay + 5 1 TMg V- (s(V ™, O Ny ) + T + (6.7)
1 _

me¢th1 ||Zz(9 _*||¢;’,n ]||52(Q)_TMM¢/th1¢'rln dx =

rmM¢/ OV - (s(Vo !, O 1)ph])dx+

5 | 7MY - (V" O ) = IV - (s(Vg ", O e ) +

MG = + 7" = (7 = M IS gy

Using (6.7) in (6.5) it follows that

o™ — &' ||W12 (@) = (’Ih ) ) (6.8a)
where the equilibrated a posteriori error estimator nﬁ” is given by
(77511))2 — Z(ng)) , (68b)
KeTh

12



1
(1) = 5 M /K (Ve O IV de+ /K B, dx) — (6.8¢)
1
th¢/ (VR OF Ry, - Ve dx+ o Il TaMy(V - (s(Ve O DR,) —

MV - (s(Ver ", O IR ) + TG — o + ¢ — I (") —
TqujH,SO)fhm ”fZ(K)

6.2. A posteriori error estimator for the ®-equation

The situation is more complicated for the ®-equation. If we choose V = W(fj’Dl’F(.Q) and Jp = ](2), it has been shown
in [22] that
) 1 TmM@H

b @=3 IIT&V A+ O+ TaMofil 1% o) — (6.9)

1 .
5l "2y + k@), g € Q = H(div; 2),
is the predual of]f,z), i.e.,](z) is the dual of](z), and

”Om_oh ”LZ(Q ~ P ( )+.] (7 ) (6.10)

for some approximation v™ of ®™ and some q™ € H(div; £2). In (6.9) Ix stands for the indicator function of the closed
convex set

K :={q € H(div; 2) | |q] < 1 ae.in 2}. (6.11)

Natural candidates for v™ and g™ are the IPDG approximation @} and the flux function B}rl” 5 from the two-field formulation
(5.22) with the numerical flux f);"K given by (5.23). However, ©" ¢ W1(£2) and 3212 ¢ H(div; §2). Since ],(12,1 is the natural

extension of J5” to W' 1(2; 7y), i.e.,],(f,l(@) =J2(©) for © € W1(2), we may uséj,g,z,l(@,'f) in (6.13). On the other hand,
we define an equilibrated flux function ma*zeq € RTy($2; 7n) by specifying the degrees of freedom on each K € 7, according
to '

/nE Py po ds = /nE P, |e Po ds, po € Po(E), E € &y(3K). (6.12)
E ’ E
Then, following subsection 4.1 from [22] we have

0™ = O a0y SIH O + 5 (B]5). (6.13)

Theorem 6.1. The flux function B;"fq € RTy($2; Ty) is equilibrated in the sense that it satisfies

TmM@H
280

0\ (em — vpst = = 12O ") + taMo IO in each K € T, (6.14)

Proof. By Gauss’ theorem and using (6.12) as well as (5.22b) with v|x = po € Po(K), vplxr = 0, K’ # K, we find

‘EmM@H / ‘L'mM(..)H
V.-pipo dx = Ny - P) s 'po ds =
2& K —h.2 2& K —h.2
‘EmM@H

A m m—1
Ngg - P pods:—/@ podx+/(~) po dx +
2&o fQK —oK K " K "

Mo | filapo dx,
K
from which we deduce that (6.14) holds true.

For practical purposes, we further replace IK(pm "’q) by the penalty term

azZ/ B — 1) dx (6.15)

KeTy
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with a penalty parameter oy >> 1. Moreover, as in Section 5 we have

1 tmMoH
108 = O iy + 5 Z I ng VR O Mol - (6.16)
KeT 0
1 T M()H
IO gy — Mo Y [ Ao dx= RN S / OV -t dx +
KeTy VK KeTh
1 (0)y m m m— 0)r om—1
5””}1 (&) — 6y +@h —I1,7(®, )_TmMOH fh2||,_2(9)
Using (6.15) and (6.16) in (6.13) we obtain
o™ — OFI ) < (7). (6.17a)

where the equilibrated a posteriori error estimator 77512) is given by

PP = (6.17b)
KeTy
tTmMpH o
(PP = ’“2; for(@(@]1). VO de+ = D 10Tl ds + (6.17¢)
0 K EedK\(KNTI")

rmM@/ﬁOhV ngdx+4—nn“koh) or+or ! —m%er -
K

Mo 1T, f HfZ(K) +op /(|Pm S = 1)4 dx.
K

The realization of the adaptivity in space is done by Dorfler marking [23] with bulk parameter 0 < ¥ < 1 and longest
edge bisection. At each time step, we start from an initial coarse triangulation 75, and apply the equilibrated a posteriori
error estimator 7, () first resulting in a final triangulation Ty - This trlangulatlon Ty is then used as an initial mesh for the

adaptivity in ® based on the equilibrated a posteriori error estimator nh ) The reason for this strategy is that there are
local regions of steep gradients for both ¢ and ® at the interfaces between areas of full and zero crystallinity, whereas
for © there are additional regions of steep gradients within the areas of full crystallinity due to changes in the orientation
angle.

7. Adaptive time stepping

The time adaptivity used in this paper is dictated by the convergence of a semismooth Newton method for the
numerical solution of the nonlinear IPDG approximation (5.18) and not by an upper bound for the discretization error in
time, because the time steps predicted by the latter are much larger than those by the former.

Setting @™ = (O7, ..., @11‘1!1;1 )T, Np := dim Vrio,r- the algebraic formulation of (5.18) leads to a nonlinear system of the
form

Fe", t,)= 0, (7.1)

with a nonlinear mapping F : R¥ x R, — RNt that is not differentiable in ®™ in the classical sense, but admits a
generalized Jacobian dgF in the sense of Clarke [24]. Hence, the nonlinear system (7.1) can be solved by a semismooth
Newton method (cf,, e.g., [25]). The problem is the appropriate choice of the time step sizes t,, 1 < m < M, in order
to guarantee convergence. In fact, a uniform choice t,, = T/M only works, if M is chosen sufficiently large which would
require an unnecessary huge amount of time steps. An appropriate way to overcome this difficulty is to consider (7.1) as
a parameter dependent nonlinear system with the time as a parameter and to apply a predictor-corrector continuation
strategy with an adaptive choice of the time steps (cf, e.g., [3,5,26,27]). Given ©™~!, the time step size Ty_1.0 = Tm_1,
and setting k = 0, where k is a counter for the predictor-corrector steps, the predictor step for (7.1) consists of constant
continuation leading to the initial guesses

O = @™ty = tm_1 + Ttk (7.2)

Setting v; = 0 and ©™k1) = @MK) for v < Vg, Where Vg > 0 is a pre-specified maximal number, the semismooth
Newton iteration

dgF@m™k) gm-1 t ya@mkv) 5 _ Femkv) om-1 t (7.3)
Q(m,k,v1+1) — e(m,k,u]) + AG)(m’k’”]), v > 0,
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Table 1
Physical data: Mobilities Mg, My, parameter ¢, in the interpolation function w, modulus of anisotropy
So, symmetry index m;.

My Mg Er So mg
Ex. 1 Ex. 2 Ex. 1 Ex. 2
1.5 - 10? 1.1-10! 1.0-1073 0.0 0.2 - 2

serves as a corrector whose convergence is monitored by the contraction factor

A@(m,k,vl)
A((;n,k.vl) _ I Il ’ (7.4)
laetmkn|

where A®(mkv1) js the solution of the auxiliary Newton step

doF@M™k ) em=1 t yA@mkv) 5 _F@mkvith gm-1 ¢ ) (7.5)
If the contraction factor satisfies

A((,T‘k’”‘) < %! (7.6)
we set v; = vy + 1. If v > vy, both the Newton iteration and the predictor-corrector continuation strategy are

terminated indicating non-convergence. Otherwise, we continue the semismooth Newton iteration (7.3). If (7.6) does
not hold true, we set k = k 4+ 1 and the time step is reduced according to

V2-1

P Tm,k—1» Tmin)s
J4alre 1

where ;i > 0 is some pre-specified minimal time step. If 7, x > Tjin, we go back to the prediction step (7.2). Otherwise,
the predictor-corrector strategy is stopped indicating non-convergence. The semismooth Newton iteration is terminated
successfully, if for some v} > 0 the relative error of two subsequent semismooth Newton iterates satisfies

T,k = Max(

(7.7)

” @(m,k, v;‘) _ e(m,k.vffl) ”

- <€ 7.8
jemkj ' 78

for some pre-specified accuracy er > 0.
In this case, we set

oM — @mkv) (7.9)
and predict a new time step according to
__(V2-1) aemk0)
T 245 etk — omj

where amp > 1 is a pre-specified amplification factor for the time step sizes. We set m = m + 1 and begin new
predictor-corrector iterations for the time interval [t;, tpi1].

In principle, we could include the same strategy for the ¢-iterates as has been done in [3,5]. However, as it turned out,
once the time-step t,, is accepted for the @-iterate, it is also accepted for the ¢-iterate. Therefore, we decided to restrict
ourselves to the predictor—corrector continuation strategy for the ®-iterates.

Tm,k> (7.10)

8. Numerical results

We have applied the space-time adaptive splitting method to two illustrative examples. The first example is about the
growth of four crystals of different orientation angles initially located at the four corners of the computational domain (cf.
Fig. 3), whereas the second example deals with the spherulitic growth of a single crystal initially located at the center of the
computational domain (cf. Fig. 5). The physical data we have used are depicted in Tables 1 and 2. In particular, in Example 2
the constants ry and r, for the orientational free energy density are chosen such that the angle of misorientation is 30°
leading to six preferred orientations. The computational domain is £2 = (Oum, 6um)?. Table 3 contains the computational
data for the spatial discretization and the predictor-corrector continuation strategy.

Example 1. We consider the isotropic growth (i.e., so = 0) of four single crystals with different orientation angles. The
initial orientation angles ®, the initial local degree of crystallinity ¢o, and the boundary data ¢p are given as follows (cf.
Fig. 3):

1.0 (red) around the four corners,
0.0 (white) elsewhere.

$o =
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Table 2
Physical data: Free energy H of low grain boundaries, correlation length &, of the orientational field,
constants rq, 2, § determining the orientational free energy density fo.

H o r r 3
Ex. 1 Ex. 2 Ex. 1 Ex. 2 Ex. 1 Ex. 2
1.0-1073 2.1-107* - 3.0 - 0.5 - 0.2
Table 3

Computational data for the spatial discretization and the predictor-corrector continuation strategy: reg-
ularization parameter A for the Moreau-Yosida approximation of the subdifferential of the orientational
free energy density, mesh width h for the initial triangulation of the computational domain, maximum
number vy of semismooth Newton iterations, minimum time step size t,, relative accuracy er of
semismooth Newton iterations, and amplification factor amp for new time step size.

A h Vmax Tmin er amp
Ex. 1 Ex. 2
1.0-1073 0.75 pm 1.5 pm 50 1.0-1076 1.0-1073 1.2

Fig. 2. Example 1: Adaptively generated meshes at time t = 2.3- 10~ s. Left: Local degree of crystallinity. Right: Orientation angle.

127
1.0

red) around the right upper corner,

yellow) around the right lower corner,

®9 = { 0.87 (blue) around the left lower corner,
0.6 (green) around the left upper corner,
0.9 + 0.057 randomly chosen elsewhere.

—~ e~

The boundary data are ¢p = ¢g|r, @p = Og|r.

The four crystals grow along the curvature and start to impinge on each other with the star-shaped area of local degree
of crystallinity ¢ = 0 shrinking (cf. Figs. 3 and Fig. 4). For better visibility we have suppressed the values of ® as well as
the refinements with respect to ® in the areas of zero crystallinity.

Fig. 2 displays the adaptively generated meshes for the local degree of crystallinity ¢ (left) and for the angle of
orientation @ (right) and Fig. 3 shows the local degree of crystallinity ¢ (left) and the angle of orientation @ (right) at
time t = 2.3 10~* shortly after the onset of the isotropic growth of the four crystals. We observe significant refinements
around the interfaces between the area of full crystallinity (¢ = 1) and the area of zero crystallinity (¢ = 0). Since at
that time the impingement of the four crystals is small, the adaptively generated mesh for the angle of orientation ® is
almost the same as the mesh for the local degree of crystallinity ¢.

Likewise, in Fig. 4 the adaptively generated meshes are shown for the local degree of crystallinity ¢ (left) and for the
angle of orientation @ (right) at the advanced time t = 7.5- 1073, whereas Fig. 5 displays the local degree of crystallinity
¢ (left) and the angle of orientation ® (right) at that time. We see that the four crystals have substantially grown in radial
direction. As far as the adaptive refinement in space is concerned, for ¢ there are only refinements around the interfaces
between the area of full crystallinity (¢ = 1) and the area of zero crystallinity (¢ = 0) (Fig. 4 (left)), whereas for ® we
have additional refinements at the interfaces between regions of different orientation angles (Fig. 4 (right)).

Example 2. We consider the formation of a Category 1 spherulite from a nucleation site which is initially occupying a
subdomain £2y around the center of the computational domain £2. The initial data are given by ¢ = 1.0 in §2p and
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Fig. 3. Example 1: Local degree of crystallinity (left) and orientation angle (right) at time t = 2.3 - 107,

Fig. 4. Example 1: Adaptively generated meshes at time t = 7.5 - 1073 s. Left: Local degree of crystallinity. Right: Orientation angle.

Fig. 5. Example 1: Local degree of crystallinity (left) and orientation angle (right) at time t = 7.5- 1073,

¢ = 0.0 elsewhere and by ©®, varying between 0.77 and 1.27 in £29 and chosen randomly around 0.957 elsewhere.
In particular, the assignment of the colors in Figs. 7 and 9 is as follows: Blue (1.27), Brown (1.0 ), Cyan (0.9 ), Green
(0.87), Red (1.17), and Yellow (0.77). The boundary data are ¢p = ®@p = 0.

Again, for better visibility we have suppressed the values of ® as well as the refinements with respect to @ in the
areas of zero crystallinity.

Fig. 6 displays the adaptively generated meshes for the local degree of crystallinity ¢ (left) and for the angle of
orientation @ (right) at time t = 1.1-10~ shortly after the beginning of the spherulitic growth. Due to the initial smallness
of the crystal, the two meshes do not differ significantly. The associated Fig. 7 shows the local degree of crystallinity ¢
(left) and the angle of orientation ® (right) at that time. Likewise, Fig. 8 contains the adaptively generated meshes for
the local degree of crystallinity ¢ (left) and for the angle of orientation @ (right) at time t = 4.7 - 10~ when crystalline
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Fig. 6. Example 2: Adaptively generated meshes at time t = 1.1- 10~* s. Left: Local degree of crystallinity. Right: Orientation angle.

Fig. 7. Example 2: Local degree of crystallinity (left) and orientation angle (right) at time t = 1.1- 1074,

Fig. 8. Example 2: Adaptively generated meshes at time t = 4.7 - 1073 s. Left: Local degree of crystallinity. Right: Orientation angle.

branching has already set in. As in Example 1, there is a pronounced refinement of the mesh for the local degree of
crystallinity at the interface between the area of full crystallinity (¢ = 1) and the area of zero crystallinity (¢ = 0) where
steep gradients occur. On the other hand, there is additional refinement of the mesh for the angle of orientation at the
interfaces between areas of different orientation angles which are located around the center of the computational domain.
Fig. 9 displays the local degree of crystallinity ¢ (left) and the angle of orientation @ (right) at that time.

Finally, Figs. 10 and 11 show the history of the predictor-corrector strategy where the adaptively chosen time steps are
shown as a function of the number of iterations for Example 1 and Example 2. We observe large fluctuations in the time
steps which are due the occurrence of very steep gradients at the growing front, particularly when crystalline branching
takes place.

18



Fig. 9. Example 2: Local degree of crystallinity (left) and orientation angle (right) at time t = 4.7 - 1073,

Fig. 10. Performance of the predictor-corrector continuation strategy. Adaptive choice of time steps t,: Example 1.

Fig. 11. Performance of the predictor-corrector continuation strategy. Adaptive choice of time steps t,: Example 2 (right).
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