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Mental health plays a key role in everyone’s day-to-day lives, 
impacting our thoughts, behaviors, and emotions. Also, 
over the past years, given their ubiquitous and affordable 

characteristics, the use of smartphones and wearable devices 
has grown rapidly and provided support within all aspects of 
mental health research and care—from screening and diagnosis 
to treatment and monitoring—and attained significant progress 
in improving remote mental health interventions. While there 
are still many challenges to be tackled in this emerging cross-
disciplinary research field, such as data scarcity, lack of person-
alization, and privacy concerns, it is of primary importance that 
innovative signal processing and deep learning (DL) techniques 
are exploited. In particular, recent advances in DL can help pro-
vide a key enabling technology for the development of next-gen-
eration user-centric mobile mental health applications. In this 
article, we briefly introduce the basic principles associated with 
mobile device-based mental health analysis, review the main 
system components, and highlight the conventional technologies 
involved. We also describe several major challenges and various 
DL technologies that have potential for strongly contributing to 
dealing with these issues, and we discuss other problems to be 
addressed via research collaboration across multiple disciplines.

Introduction
Mental health is the state of an individual’s own ability to con-
trol his or her thoughts, feelings, and behaviors, and it helps 
one determine how to cope with stresses, relationships with 
others, and challenges in life [1]. It is important to maintain 
good mental health at every stage of life, from childhood and 
adolescence through adulthood and old age. It has been report-
ed that 25–50% cases of adult mental illness may be prevented 
through early intervention in childhood and adolescence [2]. 
Moreover, graduate students have an eight times higher rate of 
severe depression and anxiety and are reluctant to seek treat-
ment [3]. Hence, mental well-being is too important to delay 
trying to improve it. Despite the considerable progress that 
has been made to promote mental health, much more effort is 
still required to address the current unmet and underestimated 
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mental health needs [1]. In particular, the Lancet Commission 
on Global Mental Health and Sustainable Development calls 
for actions to promote mental health for all, to prevent mental 
disorders among people at high risk, and to reduce the treat-
ment and care gap for people affected by mental disorders [1].

In the last decade, digital techniques have provided new 
opportunities to reframe the mental health system and alter 
face-to-face services in a variety of ways, such as delivering 
prevention messages to educate the public, building online 
communities to support people with mental health issues, and 
facilitating remote screening and diagnosis of mental disorders 
[1]. In particular, the capabilities and functionalities of mobile 
and wearable technologies to support health care have led to 
the development of the new interdisciplinary field of mobile 
health (mHealth). In the following, the term mobile mental 
health (M2Health) is used to indicate mHealth systems specifi-
cally tailored for mental health.

M2Health has a huge potential to lead the mental health 
revolution, and it has four key strengths. First, remote mea-
surement technologies (RMTs) based on mobile devices offer 
M2Health new possibilities for long-term data collection (e.g., 
heart rate and respiration rate) and continu-
ous monitoring (e.g., sleep duration and sleep 
quality). In general, traditional assessment 
largely relies on memory because of a lack 
of clear and objective biobehavioral mark-
ers. By contrast, M2Health can add value 
to the formal clinical assessment of mental 
illness by providing clinicians with summa-
ries of the RMT data of the patient collected 
for a short period before an appointment [4]. Second, a variety 
of M2health applications has been targeted at different stages, 
from prevention and assessment to intervention and treatment 
[5], [6]. Therefore, M2health has a good chance of being inte-
grated with traditional mental health care across entire mental 
health pathways [1]. Third, the ubiquitous and affordable char-
acter of mobile and wearable devices can provide cost-effective 
M2Health solutions. Currently, 45% percent of the worldwide 
population lives in countries with fewer than one psychiatrist 
per 100,000 people [7]. Also, national surveys from China and 
India revealed that more than 80% of individuals with mental 
illness did not seek help, for varied reasons, such as being afraid 
of discrimination and experiencing stigma [1]. M2Health, in 
this context, can help narrow the treatment and care gaps and 
reduce inequalities for mental health service. It also offers an 
alternative choice for users and therefore may encourage higher 
levels of engagement of those with mental health problems. 
Fourth, M2Health can use the full capabilities of digital tech-
nology to be more effective to meet varied individual needs. 
As mental health problems can be very complex, even diverse 
within the same individuals over time, conventional mental 
health services are not always sufficiently effective, and they 
largely neglect user experience [1]. Recently, increasing discus-
sions have focused on precision psychiatry and precision mental 
health care [8]. In this context, M2Health has a better chance 
to exploit more personal data, enabling it to obtain a better un-

derstanding of the problems, provide more accurate diagnoses, 
and deliver more personalized and user-friendly intervention 
and treatment. In short, M2Health has a tremendous potential 
to provide continuous, affordable, and adaptive mental health 
services and to be involved in clinical pathways.

However, as a science in its infancy, there are still barriers and 
limitations of M2Health that hinder its development and must be 
addressed [9], such as extracting meaningful features from large-
scale heterogeneous data, “green” computing on wearable and 
mobile devices, the interpretability of the decisions, and data 
security and privacy issues. In addition, there are other 
challenges, such as the lack of validation by clinical trials in large 
cohorts, the public trust of digital devices and tools, the risks of 
being harmful to mental health, and legal and ethical problems, 
among others.

In recent years, intelligent signal processing and DL techniques 
have brought breakthroughs in processing data such as audio, 
speech, text, and images and video [10]. In particular, by trans-
forming data through multiple layers of nonlinear computational 
processing units, DL models provide a new paradigm to model 
complex data [10]. For M2Health systems, DL can be exploited to 

handle complex data, such as vocal and visual 
expression and social media data. Moreover, 
DL can be leveraged to be positioned in vary-
ing stages of the care pathways. Take psychi-
atric counseling as one example. Researchers 
presented an emotional chatbot, where DL 
approaches are applied for natural language 
understanding and continuous emotion moni-
toring [11]. The aim of this chatbot is to pro-

vide sympathetic psychotherapy and treatment services for people 
with emotional disorders [11].

With all that said, DL techniques are primed to have a major 
impact on increasing the efficacy and efficiency of mental health 
applications on mobile devices by tackling some of the afore-
mentioned barriers. Consequently, the aim of this contribution 
is to discuss recent advances in DL that can help provide a key 
enabling technology for the development of next-generation user-
centric M2Health applications. This article is unique, differing 
from some previous studies that focused on M2Health but not 
opportunities for DL [6] and from others that are not centered 
on mobile health [12], [13]. Another recent work [5] provides a 
survey through research works related to new techniques (DL 
advances included) that might be utilized to improve mental well-
being. However, the potentials and challenges of DL advances 
for mobile mental health have not been thoroughly discussed. 
In the next sections, we provide a systematic introduction of this 
topic, including a brief overview of a typical M2Health system as 
well as recent DL technological advances, which may enable new 
opportunities and possibilities.

A typical mobile mental health analysis system

A mental health spectrum and an intervention spectrum
Mental health is not merely about the absence of mental dis-
orders and illnesses. One may occasionally experience poor 
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mental health without a mental illness. We all inevitably have 
days where we feel “little down,” anxious, or stressed. These 
are negative emotional and mental states, while good mental 
health and well-being is about living and coping well with 
these challenges and stresses. In particular, similar to physical 
health, mental health exists on a spectrum [see Figure 1(a)], 
spanning a continuum ranging from healthy to stressed, to in-
jured/ill, or experiencing a crisis.

Moreover, surrounding the ultimate goal of promoting men-
tal health, mental health-care service should meet a range of 
needs of individuals, including, but not limited to, the need for 
assessment and monitoring of general mental well-being, pre-
vention efforts for mental illness development, detection and 
diagnosis of mental health conditions, and provision of treat-
ment and support for people with mental illness. A variety of 
mental health interventions is presented in Figure 1(b). It is 
important to note that M2Health applications can vary widely; 
some applications might be designed for a general purpose, 
while others might be devised to support one specific mental 
health issue.

A typical M2Health system
In general, a typical pipeline to construct an M2Health analysis 
system (e.g., an automatic depression-detection system) involves 
gathering raw data, transforming the data into time-sequential 
feature representations, and feeding the features into neural 
networks, which then supply a variety of mental health-care ap-
plications (see Figure 2). Specifically, first, a wide range of raw 
data is collected from mobile devices. For instance, these data 
can be  physiological signals via wearable sensors, the current 
location via smartphones, or the content of users’ social media 

posts. Then, these heterogeneous raw data need to pass through 
a pipeline of processes to attain representative features in which 
mental state-related information is extracted. Normally, the col-
lected data are filtered, enhanced, transformed, and integrated 
into high-level representations. For instance, the tone of voice 
can be extracted from speech signals during conversation for 
depression assessment. Likewise, in an interaction therapy for 
autistic children, the eye-contact frequency can be captured 
from video signals. 

Once these representative features are obtained, DL mod-
els are applied to perform learning and inference, aimed at 
mapping input features to output predictions associated with 
mental states. Finally, the obtained outputs can be exploited 
at different stages of the medical-care process (e.g., screen-
ing, diagnosis, prevention, treatment, and follow-up). It is 
worth noting that training a DL model often demands a large 
amount of data and computing power, and it is generally 
performed off device (on-device training is out of the scope 
of this article). Once trained, the inference task of such DL-
powered mobile applications can be implemented either on 
a server where the trained model is stored (also known as 
cloud-based deep inference) or locally on the mobile device 
(also known as on-device deep inference) [14]. These two 
designs have different pros and cons; cloud-based inference 
keeps the mobile app simple but requires network access, 
while on-device inference can be faster; however, it becomes 
more difficult to update.

Opportunities for DL for M2Health
It can be seen that to develop a good M2Health analysis sys-
tem, signal processing and DL techniques are both key compo-

nents as well as challenges in mapping 
low-level noisy signals to high-level 
representative features and, further, 
in obtaining final predictions based 
on those features. In recent years, DL 
models have achieved remarkable 
successes, and the importance of the 
models has grown to be central in the 
field of affective and mental health re-
search [13]. One such example is the 
convolutional neural network, which 
was originally devised for data-driven 
extraction of high-level representations 
from visual data (e.g., facial-expression 
images). Likewise, the recurrent neural 
network was designed to make use 
of contextual information when pro-
cessing sequence data (e.g., text and 
speech). These networks have achieved 
promising performances for solving a 
range of mental health-related tasks, 
such as detecting stress from social 
media posts or predicting mood disor-
ders from speech. Other successful use 
cases are discussed in [13].

Positive/
Healthy

Stressed/
Coping

Injured/
Struggling

Unwell/
Crisis

Early Intervention

Recovery

Treatment

Pr
ev

en
tio

n

M
aintenance

Universal
(General)

Selective
(At Risk)

Indicated

(High Risk)

Illness

Identification

E
arly T

reatm
ent

S
ta

nd
ar

d
Tr

ea
tm

en
t

Long-Term
 Treatm

ent

(Relapse Prevention)

Long-Term Care
(Rehabilitation)

Mental Health Promotion

(a)

(b)

FIGURE 1. (a) The mental health spectrum and (b) its intervention spectrum.
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Taking depression and anxiety disorders (affecting more 
than 10% of the global population [15]) as an example, 
DL might be applied in different M2Health applications to 
address a variety of technical issues. First, in the prevention 
stage, DL may deal with large-scale RMT data collected 
via mobile devices as it is helpful to sort out usually occur-
ring asynchronous and heterogeneous data issues [16]. In 
particular, DL could uncover the changes in the biological, 
psychological, or social data to predict the mental health 
status of a person, remotely and around the clock, and thus 
may facilitate rapid detection and intervention even without 
the person visiting a hospital. In addition, in the treatment 
stage, DL may help associate the symptoms and causes 
of disorders through continuous monitoring over long time 
periods, and in this manner, caregivers can gain a bet-
ter understanding and phenotyping of the illness for each 
patient. As a consequence, rather than one-size-fits-all 
treatment, individual variability can be considered to select 
more effective and appropriate treatments, either varied 
psychological therapies, some specific antidepressant medi-
cations, or a combination of the two [8]. Moreover, DL can 
be useful in responding to individual preferences for mental 
health service delivery. For instance, DL-based recommen-
dation models can be employed to advocate more personal-
ized emotional improvement services, such as music therapy 
(music recommended to the user to relax), exercise therapy 
(exercise guidance given to the user to release stress), and 
interpersonal talk treatment (status of the user released to 

close family members or friends) [17]. This tutorial assumes 
that the readers have a preliminary knowledge of DL and 
focuses on how to harness the most recent and promising 
DL algorithms for some arising challenges (see Figure 3) 
and opportunities in M2Health.
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Limited, heterogeneous, and asynchronous data 
versus efficient data exploitation

Challenges
Unlike physical illnesses, which can be identified mainly 
by biomedical markers, mental disorders also closely link to 
patients’ expressive behaviors, such as facial and vocal ex-
pressions, head movements and body gestures, and also the 
reaction of social networks. To determine these behavioral 
markers, various mobile devices are needed to capture corre-
sponding audio, biological, textual, and video cues. However, 
efficiently making use of these data is not trivial, and there 
are several key challenges related to the data. First, it is not 
sufficiently clear how to explore the complementary seman-
tic information across multiple modalities while discarding 
individual redundant information. The heterogeneity of multi-
modal data makes it challenging to construct salient represen-
tations and make decisions associated with 
the mental disorder of interest. For example, 
texts are often discrete symbols, while au-
dio and video modalities are usually repre-
sented as continuous signals. Second, the 
severe asynchronicity of the data makes it 
more difficult to identify a direct relationship across modali-
ties. For example, one may want to align patient questionnaire 
replies with occasionally recorded biological and speech data 
before and after one week for depression detection. To deal 
with this, similarity measures are required to determine the 
possible long-term dependencies and ambiguities. Third, in 
mental health research, collecting sufficiently fine-grained 
data with accurate annotations is quite challenging and rare 
in the real world. In addition to the requirements of data quan-
tity and quality, time-dependent data are also demanding when 
tracking patient trajectories such as relapse prediction. Last but 
not least, even if a good outcome can be obtained on the col-
lected data to model the problem, there are other typical is-
sues that need to be addressed for M2Health applications in 
daily use, such as incomplete data, signal artifacts, and the data 
mismatch caused by varied hardware and software versions. 
In consequence, finding ways to efficiently exploit a limited 
amount of data are of importance in M2Health analysis.

Opportunities
Despite the heterogeneity and asynchronicity of collected data, 
previous studies consistently emphasized the benefit of multi-
modal exploration for mental health analysis due to the comple-
mentary information [13]. For M2Health, there are cases such as 
a health condition being more perceptible in one specific data 
type, a complementary modality providing additional knowl-
edge of a health problem, or data of one type missing for a period 
of time. Therefore, it is necessary to take multiple modalities 
into account to provide a complete and comprehensive profile.

When integrating multiple data sources, learning the salient 
representations shared across different modalities holds a key 
position, and this research can be categorized into joint or coordi-
nated representation learning frameworks. Joint representation 

learning aims to project the heterogeneous data into a shared 
latent subspace, in which the data in different modalities, but 
with similar semantics, will be represented by similar vectors. 
That is, the model is designed to obtain modality-agnostic and 
semantic-salient properties and simultaneously discard any irrel-
evant properties. By contrast, coordinated representation learn-
ing intends to distill separated but coordinated representations 
for each modality under some constraints. It is assumed that the 
separated representations will be helpful in preserving the exclu-
sive and useful modality-specific  properties. For   example, the 
learning framework shown in [18] takes two separate networks 
to extract audio and video representations, which are simultane-
ously regularized by a similarity loss to learn modality-invariant 
representations for emotion recognition.

Alternatively, methodologies aiming at integrating mul-
tiple data sources could be useful in M2Health. Some typi-
cal fusion technologies include 1) feature-level (early) fusion, 

which simply concatenates the low-level 
descriptors of each modality into a long 
vector as network inputs; 2) decision-level 
(late) fusion, which merges the decisions 
from each modality-specific model via a 
fusion mechanism such as averaging; and 

3) using an attention mechanism, which automatically con-
trols the contributions from each data source and has the 
potential to dynamically force-align the asynchronous mul-
timodal data. For instance, by integrating data gathered from 
smartphone sensors and wearable devices, such as accelerom-
eters, communication logs, and screen interactions, changes in 
sleep, communication patterns, and activity patterns could be 
identified, with the ultimate goal of predicting major depres-
sive relapse.

Furthermore, to cope with the data-scarcity issues in 
M2Health, plenty of existing and emerging DL algorithms can 
be leveraged, and they can be divided into the following cate-
gories: 1) data augmentation, which is a straightforward way to 
enrich the variety and the size of data based on available anno-
tated data; 2) weakly supervised learning, where incomplete, 
noisy, or weakly labeled data are efficiently exploited during 
training rather than being discarded; 3) semisupervised learn-
ing, where large-scale unlabeled data are employed to make 
use of the knowledge from unlabeled data; 4) self-supervised 
learning, where efficient high-level representations are learned 
via pretext tasks and then used in downstream tasks; and 5) 
transfer learning, where knowledge gained from out-of-domain 
data can be transferred to the task at hand. For instance, a suc-
cessful example to leverage transfer learning for M2Health is to 
improve the prediction performance of speech-based depres-
sion detection by pretraining the model on a large-scale data 
set for the speech recognition task.

Generic modeling versus personalized modeling

Challenges
Another challenge of M2Health is the need for precision 
mental health services. Currently, diagnoses of most  mental 
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disorders are based on clinical symptoms only, and it 
is impossible to carry out biological tests, like a simple 
blood test, to accurately diagnose different mental health 
conditions. One main reason is that clinicians and re-
searchers still lack knowledge of the underlying biological 
mechanisms of mental health diseases. In addition, signs 
of a mental health condition may vary from one individual 
to another. For instance, there is a wide range of manifes-
tations of disorganized speech (one of the core symptoms 
of schizophrenia), such as a decrease in 
the amount of speech, empty speech that 
conveys little information, odd usage 
of words, and illogical reasoning [19]. 
Hence, developing methods for personal-
ized diagnosis and monitoring remains a 
challenging task to date. Besides, individ-
ual differences and individual needs and 
preferences should also be met, especially 
when health-care providers need to decide 
which treatment should be given to ensure 
personalization and precision. In the con-
text of M2Health, signal processing and 
DL techniques can be exploited to detect subtle anomalies 
from the wearable sensor data for a specific individual. 
Innovative methods may enable a future of personalized 
M2Health, providing an accurate understanding of mental 
health problems and also delivering individually tailored 
treatments and interventions.

Opportunities
First, and most importantly, for practical use, individual-level 
information (e.g., demographics, social and cultural variables, 
and personality traits) should be taken into account. Multiple 
previous studies have demonstrated that a personalized sub-
ject-level model can result in a better performance than a gen-
eral-purpose model, by utilizing knowledge of personal data 
or learning personalized features [8]. Additionally, contextual 
data, i.e., the physical and logical environment of the user, are 
also necessary to better understand external factors that affect 
the user. The reason is that many mental disorders and cor-
responding consequences are highly related to the context of 
the patients. To achieve more personalized and self-adaptive 
M2Health modeling, four of the most promising, yet not widely 
implemented, techniques can be investigated: multitask learn-
ing, continual learning, reinforcement learning, and zero-/few-
shot learning. However, note that deploying these data-driven 
approaches for successful subject-level outcomes would de-
mand data with rich and fine-grained individual and context 
information. These types of data are extremely rare; thus, these 
techniques require further investigation. 

Second, another promising avenue is to make use of struc-
tured or semistructured data for M2Health. Structured data 
are ubiquitous, including, but not limited to, electronic health 
records, location information of the GPS tracker for patients 
with Alzheimer’s disease and the elderly, and online social net-
works for patients with severe mental illness. However, how to 

explore the structured and heterogeneous health-care data is 
still an open, and understudied, question. One possible solu-
tion is to make use of graph structures to model the relation-
ship among different data [20]. By using that method, one can 
also encode the human expert knowledge in the loop of model 
design. We expect that future research in this direction will 
lead to more precise decisions for mental health care.

Third, DL may also open up the possibility of deconstruct-
ing the traditional symptom-based diagnostic categories into 

data-derived subgroups that can better pre-
dict treatment outcomes [8]. On the one 
hand, many symptoms are shared among, 
rather than being unique to, varied mental 
disorders; on the other hand, the symptom-
based diagnostic categories are frequently 
revised to align with new behavior or biolog-
ical discoveries [8]. In contrast, data-driven 
algorithms like  autoencoders and cluster-
ing methods have the capability to uncover 
hidden components from the complex data 
and assign a patient to each of the clusters to 
different degrees [8]. It is believed that these 

techniques may reveal and exploit currently unknown interindi-
vidual variation and thus improve the effectiveness of precision 
mental health predictions.

Unexplained decision making versus 
explainable and trustworthy inference

Challenges
Interpreting how and why the M2Health outcome is achieved in 
an understandable way for users or caregivers is critical. Hence, 
for M2Health applications, a trustworthy system has to be 
transparent and explainable. Such a system needs to maintain 
capabilities such as pointing out disease signatures from input 
signals, providing a quantifiable confidence level, associating 
an unseen case with other similar cases for which decisions are 
already available, or imitating the inference chain of the physi-
cians. Only with these capabilities will patients and physicians 
be more likely to accept the involvement of intelligent systems 
in daily practice. However, efforts toward that direction in men-
tal health-care applications are very limited. Hence, it is crucial 
to invite signal processing researchers to develop explainable 
algorithms with the hope of stepping into a new era of respon-
sible systems for mental health.

Opportunities
Although interpretable models, such as linear regression, logis-
tic regression, or decision trees, exist, it is critical to enhance 
the model interpretability of DL-based M2Health applications. 
However, most, if not all, DL models are black boxes, the pa-
rameters of which are of high complexity and of extremely large 
scale. This makes the decisions from such models quite difficult 
to directly explain. Here, we focus on three of the most advanced 
interpretation approaches: model-agnostic methods, attention 
mechanisms, and Bayesian neural networks (BNNs) [21].

Data-driven algorithms 
like autoencoders and 
clustering methods have 
the capability to uncover 
hidden components from 
the complex data and 
assign a patient to each 
of the clusters to different 
degrees.
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Model-agnostic methods are flexible enough to be applied 
to any DL model after it has been trained. In particular, 
three promising model-agnostic techniques discussed here 
are individual conditional expectation (ICE), feature impor-
tance, and local surrogate models, specifically, local inter-
pretable model-agnostic explanations (LIME). With ICE, a 
plot is obtained to reveal how the prediction changes when a 
feature changes. The importance of a feature is measured by 
calculating the increase of the model error after  permuting 
the feature. Taking detecting depressive 
symptoms via geolocation data as an 
example [22], staying at home and vis-
iting fewer locations are identified as 
the two most important features to indi-
cate depression in bipolar disorder. With 
LIME, an additional interpretable model 
(e.g., a linear model) is further trained to 
understand the deep model by exploring 
a new data set consisting of permuted 
samples and the corresponding predictions from the deep 
model. This approach also demonstrates that traditional sta-
tistical methods can be interleaved with DL to enhance the 
interpretability for M2Health.

Attention-based models pay more importance and greater 
attention to the most task-relevant parts from input signals when 
processing the data. Attention mechanisms in DL can thus en-
hance interpretability and often deliver better performance. 
For instance, a hierarchical attention transfer mechanism was 
proposed in [23], aiming at assigning the right amount of atten-
tion to each frame-level data item toward a higher-level clinical 
depression score. This might offer novel insights into the as-
sociation between artificial attention and human attention for 
the same task.

Moreover, to obtain uncertainty information from deep 
models, BNNs were constructed, based on the theoretical 
foundations of probability theory and Bayesian modeling [24]. 
In BNNs, model uncertainty can be incorporated by plac-
ing distributions over each weight, and the posterior over the 
weights given one data item can then be deemed as the uncer-
tainty [24]. The posterior, however, is intractable; hence, vari-
ous approximation methods have been investigated, such as 
Monte Carlo estimators. Recently, Monte Carlo dropout was 
proposed to estimate model uncertainty, simply by implement-
ing dropout during inference and analyzing the variance from 
multiple stochastic forward passes, without changing anything 
from the existing deep models [24]. For example, this method 
was applied to obtain the model uncertainty of emotional state 
predictions [25], and the authors demonstrated how a deep 
framework improved the interpretability by introducing a con-
fidence threshold.

If an M2Health system can provide human-understand-
able justifications and explanations along with its predic-
tions, it can disclose the model’s inner logic while revealing 
its strengths and limitations. This will render the diagnostics 
and intervention outcomes more traceable, transparent, 
and trustworthy.

Hardware constraints versus mobile 
device-friendly models

Challenges
Although the users are willing to use M2Health products, the 
underlying issues associated with the hardware resource con-
straints remain unresolved [5]. Such issues include power con-
sumption, computational capability, storage and memory size, 
and transmission bandwidth. Besides, M2Health systems often 

demand a real-time inference with low laten-
cy for reminding patients to take a relevant 
action or on-device learning for model adap-
tation and users’ privacy protection. These 
demands further increase the hardware re-
quirement. Therefore, reducing the model 
size, computational cost, memory footprint, 
and bandwidth requirement becomes criti-
cal. Without addressing the corresponding 
hardware resource constraints, it will remain 

impractical to use M2Health to infer and improve mental well-
being in real life [5].

Opportunities
Despite the widespread usage of DL in mental health analysis, 
making corresponding models friendly on mobile devices is 
still at an early research stage. Reaching this goal will require 
joint solutions from different disciplines, such as computer 
architecture, signal processing, and DL. Here, we discuss exist-
ing technologies for compressing and accelerating deep neural 
networks while also retaining their performance. Such technolo-
gies include compact network design, parameter sharing and 
pruning, low-rank decomposition, model quantization, and 
knowledge distillation, and these solutions can be implemented 
individually or collaboratively [26].

Compact network design rebuilds part of the conventional 
network components by replacing them with slimming and 
compact ones. Such an architecture redesign, however, largely 
relies on experts’ experience and knowledge. To overcome this 
issue, research projects have increasingly started to employ 
network architecture search technologies to automatically 
search for compact network structures, by defining the search 
space and taking the network size and computational cost as 
regularization terms.

Parameter pruning removes redundant and noninforma-
tive parameters through the evaluation of the importance of 
model parameters, whereas parameter sharing tends to share 
weights across different layers to meet the model size demand. 
It is noted that both parameter pruning and parameter sharing 
are used for model size reduction; however, the efficiency in 
inference time may not be improved [26].

Low-rank factorization uses matrix or tensor decompo-
sition to estimate parameters. The decomposition process, 
however, is often computationally expensive. Moreover, low-
rank factorization is normally performed layer by layer and 
fine-tuned based on a reconstruction error criterion. There-
fore, even though the low-rank factorization approaches are 

Without addressing the 
corresponding hardware 
resource constraints, it 
will remain impractical to 
use M2Health to infer and 
improve mental well-being 
in real life.

                                                                                                                                               



103                                                       

straightforward for model compression, they hardly achieve an 
optimal compression rate.

Model quantization aims to compress deep models by reduc-
ing the number of bits required to represent each model weight, 
for example, by using a binary neural network, which signifi-
cantly cuts down the computational cost. To quantify the weights, 
k-means or fixed-point quantization with an optimized bit width 
can be employed. However, it is worth noting that directly reduc-
ing the data precision gives rise to unacceptable performance 
degradation. Hence, an additional retraining process is often 
required to maintain the effectiveness of the models.

Knowledge distillation trains a compact neural network (stu-
dent) by exploiting another larger network (teacher) that has a 
similar or dissimilar structure. It is supposed that the knowledge 
learned by the teacher can be distilled to the lighter student net-
work. Recent studies show that a student model trained with the 
soft labels from a teacher model can achieve much better perfor-
mance for mental state classification by microexpression [27].

With a compressed DL model implemented on mobile devic-
es, once the streaming data of the user are obtained, the infer-
ence can be performed locally in real time. There is less demand 
for data storage and transfer; thus one can avoid the particular 
risks that external data handling brings about.

Privacy infringement versus 
privacy-preserving learning

Challenges
When using smartphone applications for mental health care, 
user privacy has been a persistent concern, as the gathered data 
are personal and sensitive [5]. It is a prerequisite to collect and 
explore users’ daily mental and behavioral information with 
mobile systems for mental health analysis. Nevertheless, this 
privacy information is exceptionally sensitive. The largest 
adverse consequence of a data breach is the violation of user/
patient privacy. In addition, it often results in other negative 
consequences, such as ethical and legal issues and an increase 
in user reluctance. Given these risks, regulating sensitive data 
acquisition, management, and usage to secure user privacy is 
highly needed in M2Health.

Opportunities
Privacy-preserving deep modeling attempts to bridge the gap 
between personal data protection and data usage for clinical 
routine and research. The privacy-preserving mechanisms can 
be applied to the whole deep modeling chain, from data aggre-
gation, through model training, to model inference [28]. Typical 
approaches include deidentification, differential privacy (DP), 
homomorphic encryption, and secure multiparty computation.

A deidentification mechanism is used to collect and cre-
ate data sets while protecting the personal information of data 
contributors. Typical solutions include anonymization and 
pseudonymization, where anonymization straightforwardly 
removes the private information from the recorded data, and 
pseudonymization replaces the sensitive entries with artificial-
ly synthesized ones.

Furthermore, DP retains the global statistical distribution 
of a data set while reducing the individually recognized infor-
mation [28]. For example, a data set is differentially private if 
an outside observer is unable to infer whether a specific indi-
vidual was used for obtaining results from the data set [28]. 
DP can be implemented together with model inputs, objec-
tive functions, gradient updates, and outputs, as well as labels. 
However, for DP, a tradeoff occurs between the model accu-
racy and privacy.

Homomorphic encryption allows computation over encrypt-
ed data directly. That is, mobile devices send user data in an 
encrypted way to a server, where data can be utilized without 
decryption for training or inference. In spite of its promise, this 
method is computationally intensive. 

Secure multiparty computation distributes a computation 
process across multiple parties, where each single party can 
access only an encrypted part of the data rather than the entire 
data. However, the reliability and scalability to a large number 
of computing parties is a concern.

Apart from these direct privacy-preserving mechanisms, 
an encouraging execution learning paradigm is federated 
learning (FL), which can work together with the aforemen-
tioned  privacy-preserving mechanisms like DP. FL trains 
a model across multiple decentralized edge devices where 
data remain locally without disclosing them to other edge 
devices or the cloud. Specifically, the client downloads the 
model, updates it by learning the local data, and then sends 
the updates to a shared model in the cloud using encrypted 
communication. The shared model averages the updates 
together with other client updates to improve itself. In FL, 
all of the training data remain on the edge devices, and no 
individual information is stored in the cloud [29]. FL as a 
decentralized learning strategy cannot only boost the effi-
ciency of data utilization by removing data barriers, but, 
more importantly, can alleviate the privacy risks. FL has 
become an active research topic today in M2Health because 
of its promising application potential [30]. For example, an 
FL framework called FedHealth was proposed, aiming at 
personalizing health care without compromising privacy and 
security by aggregating heterogeneous data collected from 
multiple parties [30].

Other outstanding issues, discussions, 
and conclusions
Although we have covered multiple challenges that provide re-
search opportunities to deploy DL algorithms to address issues 
in M2Health systems, many other questions and challenges still 
remain. For instance, note that the reliability and validity of 
M2Health applications are considerably difficult to verify. Re-
cently, there have been many discussions on the reproducibility 
issue, raising concerns and questions, such as how to assess the 
reproducibility of results techniques achieved on small-scale 
studies when reaching larger populations [5], [6],  [9]. In gen-
eral health care, new treatments are often validated by multiple 
large-scale randomized clinical trials, but these trials are very 
limited in mental health. Therefore, it would be worthwhile to 
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find ways to evaluate the usefulness of new applications in a 
fast, effective, and pragmatic manner.

Alongside the potential of digital technologies to favor men-
tal health, it is also important to recognize some harms or risks 
that M2Health might create. For example, the use of mobile 
devices might lead to or intensify other mental health condi-
tions such as gaming disorders. Also, there are concerns that 
mobile-based services might lower the effectiveness of mental 
health care as genuine human interaction is lacking [1]. In addi-
tion, M2Health might introduce further inequalities between 
those who have or do not have access to mobile devices [1]. 
Moreover, it remains unclear who should be held accountable 
for the decisions automatically made—in particular, the faults 
when utilizing M2Health applications.

All of these challenges and barriers need to be overcome 
before M2Health is more widely applied. Also, a critical step 
is to promote collaborations among multiple partners, such as 
clinical professionals; researchers in cognitive science, neuro-
science, psychology, psychiatry, signal processing, and com-
puter science; as well as policy makers.

To conclude, in this article, we provided an exploration of 
the current state of signal processing and DL techniques, with 
a focus on mental health analysis on mobile devices. We first 
presented the fundamentals of this research topic, followed by 
a comprehensive discussion about the most critical challenges 
and the advanced techniques to tackle them.

Mental health and well-being are important in our day-to-
day lives, and DL technologies have been shown to improve or 
innovate the treatment of mental health care on mobile devic-
es. While the field is still in its early development, there are 
many open issues to be investigated that could be of interest 
to the signal processing community. We hope that this article 
can encourage and inspire researchers to further enhance the 
analysis of deep mental health and deliver high-impact mobile 
applications for practical use.
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