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Abstract. We present a refinement method for Java programs which
is motivated by the challenge of verifying security protocol implementa-
tions. The method can be used for stepwise refinement of abstract spec-
ifications down to the level of code running in the real application. The
approach is based on a calculus for the verification of Java programs for
the concrete level and Abstract State Machines for the abstract level. In
this paper we illustrate our method by the verification of a M-Commerce
application for buying movie tickets using a mobile phone written in
J2ME. For verification we use KIV, our interactive theorem prover [1].

1 Introduction

Refinement is an established method for proving algorithms correct. A concrete
specification is a refinement of a more abstract specification if every state change
that can be performed on the concrete level is also possible on the abstract level.
State based refinement methods (e.g. [8] [30] [3]) have been used in numerous
case studies for the verification of algorithmic correctness. The underlying theory
and the methods for applying those approaches, also on the level of tool support,
are elaborated and widely used.

Much less work has been done on refinement methods for the verification of
Java implementations. Although there are many examples of Java [17] program
verification, e.g. [16] [5] [6] [22] [15], the authors are not aware of a larger case
study of interactive verification using a refinement framework for proving full
functional correctness of a Java program respecting an abstract specification.

In the field of security protocol implementations the past has shown that
implementation flaws are very common and can be very subtle. In this paper, we
present a general refinement method for Java programs inspired by the challenge
of verifying security protocol implementations. The method is illustrated by
the verification of a Java M-Commerce application, the Cindy' case study. The
refinement approach is not limited to the field of security protocols. Using the
mechanisms described below we can prove functional correctness for all kinds of
programs with input, output and state change.

! Cinema Handy (Handy is the German word for mobile phone).
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The paper is organized as follows: Section 2 presents the case study,
Section 3 illustrates the specifications for refinement and proof obligations. Sec-
tion 4 describes the mapping of abstract data types to Java classes. Section 5
presents some difficulties the refinement method has to solve stemming from
this mapping and Section 6 gives some details on the verification of the case
study. Finally, Section 7 compares the approach to related work and Section 8
concludes.

2 The Cindy Case Study

With Cindy wusers can

buy cinema tickets using

mobile phones. A wuser

can order a ticket using a

Java application running

on the device. Payment

can be done using the

usual phone bill. After

having ordered a tic-

ket it is sent to the

mobile phone as a MMS

(Multimedia Messaging

Service) message. The Fig. 1. The Cindy Application

ticket contains the movie

data and an additional unique identifier for the ticket. It can be displayed on
the phone using a two-dimensional data matrix barcode and is scanned at the
entrance to the cinema directly from the display using a barcode scanner. This
kind of application exists e.g. in the Netherlands [2]. Additionally, the German
railway company, Deutsche Bahn, has recently implemented a similar service for
buying train tickets using a mobile phone.

One important question for the cinema is, of course, how to avoid fraud. The
idea is simple: Every ticket contains a nonce, a unique random number that is
too long to guess. Therefore it is virtually impossible to ‘forge’ a ticket.

Full details on the abstract model of Cindy as well as the details on the
verification of security properties on this abstract level (which follows our ap-
proach for the verification of security protocols called PROSECCO) can be found
in [10]. The next section describes the approach for verifying an implementation
of Cindy running on a mobile phone written in J2ME.

3 Abstract and Concrete Specification Levels

We assume the reader is roughly familiar with data refinement theory, which in

this section we will adopt to Java programs using the notation based on [9].
The abstract level is given as a data type ADT = (GS, AS, AINIT, {AOP;}; 1,

AFIN) consisting of a set of global states GS and a set of (local) states AS. Total
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relations AINIT C GS x AS and AFIN C AS x GS initialize and finalize the data
type. AOP; C AS x AS (using an index i € |) are the operations possible on the
data type. In the specification of the Cindy example different agents are involved
modelling the different protocol participants. Every agent has a type type(agent)
(the type can be cellphone, cinema, user or attacker). The index set | of AOP; now
consists of the different agents, where e.g. AOP ciiphone(n) denotes the protocol
steps of the cellphone agent with number n.

On the conrete level, one agent in the protocol model is replaced by his Java
implementation. So the concrete level is given similarly as CDT = (GS, CS, CINIT,
{COP;}; 1, CFIN), where one COP; is a Java implementation. Details will be given
later in Sect. 3.2.

Our operations are total so we use the approach of [13] and a forward sim-
ulation R C AS x CS leading to the following proof obligations for refinement
correctness:

...CINIT C AINIT g R (“initialization”)
...Yiel. RgCOP; C AOP; g R (“correctness”)
...R g CFIN C AFIN (“finalization”)

3.1 The Abstract Level

The state as: AS consists of a function astate : agent — Aype(agenty that maps
each agent to its internal state in Aype(agenty For an agent of type cellphone
this is e.g. the list of current tickets stored on a phone and its phone number.
Additionally, as contains the current context actxt : context of the communica-
tion infrastructure (connections and inputs for every agent that represent the
messages that are currently in transit). Together as = astate x actxt. The global
state GS contains only the list of tickets of the phones, since we want to show
that this list is the same on both levels. GS is ignored in AINIT, AFIN extracts
the list of tickets sold so far from GS.

The abstract specification of the functionality of the protocol in Cindy is given
as an Abstract State Machine (ASM) [4] consisting of models for all the different
agents in the scenario. Although not being used directly by the refinement theory,
we use the different rules of this ASM to define the operations AOP,gene. The
ASM for Cindy is described in [10], so we only give a slight introduction here.

The interesting part of the abstract ASM specification for this paper is the
step of an agent of type cellphone because this is the agent that will be refined
to Java. An excerpt of the according ASM rule for the cellphone agent which
actually loads a ticket on the mobile phone is:

APROGceliphone (agent, tickets, inputs){

let indoc = first(inputs(agent)) in
inputs(agent) := rest(inputs(agent))
if is load message(indoc) A #tickets(agent) < MAXTICKETS
then tickets(agent) := tickets(agent) + getPart(2, indoc)
else... // other protocol steps }
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In this example, astate for the cellphone agent is given by the state function
tickets, which stores the list of tickets of every agent. The context actxt is given by
the inputs state function, which maps every agent to his current input messages.
First an input message indoc is taken from the input (APROGceiiphone is only
called when the input is non-empty) and the list of input messages is shortened.
If the input message has the correct structure of a message to load a ticket
(is load message(indoc)) and there is space in the list of tickets of the actual
agent (Ftickets(agent) < MAXTICKETS) then the ticket contained in the input
document (getPart(2, indoc)) is added to the list of tickets. For the refinement
theory presented in this paper it is sufficient to know that the specification
of Cindy consists of ASM rules APROG,gent for every agent, which define the
input/output behavior and the state changes of agent for every protocol step.

We use the Theorem Prover KIV [1] for our approach. In KIV, Abstract State
Machines are modeled using Dynamic Logic (DL). In DL, the formula {(a) ¢
states, that ¢ holds after the execution of program a. APROG,gent is in fact a
DL procedure. To integrate this into the data refinement theory presented above
we define the operation AOP,gent of ADT using APROG,gent:

AOP ,gent (astate, actxt, astate , actxt ) <
(APROG,gent (astate, actxt)) (astate = astate A actxt = actxt )

3.2 The Concrete Level

We now refine our abstract agent specification to Java. This works by step-
wise replacement of an agent type and its abstract protocol step specification
AOP gent by a Java implementation for agent, preserving every other part of the
specification. In this paper, this is illustrated by the refinement of the cellphone
agent type. Accordingly, the concrete level is a mixture of steps of agents, that
are already replaced by a Java program (cellphone agent here) and other agents
(the cinema server or the attacker), that are still preserved as on the concrete
level. So the concrete state cs and the concrete operations COPygent are a mixture
of Java implementation and abstract specification.

A concrete state cs: CS is defined as cs = cstate x cctxt with cctxt : context
and cstate : agent — Biype(agent)- Lhe context needs to be preserved like in the
abstract level because the communication infrastructure is not implementable
(it is a model of messages currently in transit). The state of a Java program is
stored in an algebraic data type called store in KIV. A store can be seen as the
equivalent of the heap of a Java virtual machine (in our case the JVM running
on a mobile phone). All the runtime information about pointer structures is
contained inside the store. Full details on the store and on the Java Calculus
implemented in KIV can be found in [27] [26]. On the concrete level the state of a
refined agent is now replaced by a store st : store. The state of non-refined agents
remains the same as on the abstract level. This means that Bceliphone = store and
Bagenttype = Aagenttype fOr agenttype # cellphone. Because we now integrate a Java
implementation of an agent in our model, we have to do a data transformation
step from the abstract data types specifying input and output of the agent into
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the Java store and vice versa. The inputs of the cellphone agent (given by actxt
on the abstract level) need to be mapped to Java data types representing the
same input on the programming language level. This is done by a ASM rule
called TOSTORE. The reverse transformation has to be done for the output,
called FROMSTORE. More details on this transformation will be discussed later
in section 4.

The Java method step() is the protocol implementation of the cellphone agent.
For the sake of understandability the implementation itself will be presented
later in Sect. 6. Java method calls are written in the Java calculus in KIV as
(st; step()) ¢, which states that formula ¢ holds after the execution of method
step() in the context of store st. Together with TOSTORE and FROMSTORE,
we now define COP,gent as:

COPgent(cstate, cctxt, cstate , cctxt ) <
if —is refined(agent) then
AOP ,gent (cstate, cctxt, cstate , cctxt )
else (Ist, st . st = TOSTORE(cctxt, cstate(agent)) A
(st; step()) (st =st) A
cstate = cstate[agent — st ] A
cctxt = FROMSTORE(st , cctxt))

COPygent is defined to be the same operation as on the abstract level (AOPgent)
for all agents, that are not refined (= is refined(agent), for example the cinema).
When agent is one of the agents, that are refined (is refined(agent), here the
cellphone), the COPagent is defined using a Java implementation and TOSTORE
and FROMSTORE operations: the inputs are transformed into Java objects in
the store (TOSTORE(cctxt, cstate(agent))). Then a Java method call step() im-
plementing the protocol and starting in this store st must result in a store st
which is given by cstate (cstate = cstate[agent — st ]). The output of the Java
program is extracted from the store using FROMSTORE and this output forms
the new concrete context cctxt .

3.3 Proof Obligations for the Example

Fig. 2 gives an overview of the refinement proof obligations in Cindy for initial-
ization, finalization and for the steps of the cinema agent (that is not refined in
the example) and of the cellphone agent (which is refined to Java). The circle-like
arrows illustrate the refinement proof obligations of commutating sub-diagrams.
Fig. 2 also shows the operations TOSTORE and FROMSTORE before and after
the Java method step() of the cellphone implementation is executed.

All together the main proof obligation for the refinement of the cellphone
agent now is:

R(astate, actxt, cstate, cctxt)
A st = TOSTORE(cctxt, cstate(agent))
A (st; step()) (st =st)
A cstate = cstate[agent — st |
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ABSTRACT LEVEL
as a2 AOP(cinema) a3 a4 AOP(cellphone) a5  asb

AINIT AFIN
4 Q R R U R |R U R RU g

CFIN

s c2 COPcinema) cs3 cs4 | b s o
TOSTORE Y » | FROMSTORE

new Protocol(j K

CINIT

CONCRETE LEVEL

COP(cellphone)

Fig. 2. Refinement diagram

A cctxt = FROMSTORE(st , cctxt) —
Jastate , actxt . AOP,gent (astate, actxt, astate , actxt )
A R(astate , actxt , cstate , cctxt )

If the retrieve relation holds for two states and the concrete level performs
a sequence of TOSTORE, the actual protocol step step() and FROMSTORE,
resulting in state cstate X cctxt , then there must be the possibility to perform a
similar step on the abstract level (AOP) which leads to a state astate x actxt in
which the retrieve relation holds again. More details on the proof of this property
will be given in Sect. 6.

Fig. 2 also shows the constructor call of the Java class implementing the
protocol (new Protocol()), which is called during CINIT. We have to prove that
the constructor call of the Java implementation performs the same initializa-
tion steps as AINIT for the refined agent type. This proof obligation is omitted
here because it is very similar to the main proof obligation above (excepting
TOSTORE and FROMSTORE because there is no input or output for the con-
structor).

One important point for the proof of our obligations is the definition of the
retrieve relation R. It has to express how the state of the Java program and
the abstract state of the protocol ASM relate to each other. Since we focus on
security protocols, we can give a generic template for this relation. It is:

R(astate, actxt, cstate, cctxt) «

actxt = cctxt A AINV(astate, actxt) A CINV(cstate, cctxt) A

(V agent.if is refined(agent) then extract(cstate(agent)) = astate(agent)
else cstate(agent) = astate(agent))

The relation states the following: The extract function gets the state of the agent
from the store (more precisely it looks at the fields of the classes implementing the
protocol and converts those fields back into an abstract state). The state on the
abstract level (astate(agent)) must be equal to the corresponding value in the store
(extract(cstate(agent))), if agent is one of the agents that have a Java implemen-
tation. For the other agents the state on the concrete level must be exactly equal
to the abstract level. The context (like the inputs of the agents) must be equal in
every case. Additionally we need an invariant on the abstract state (AINV) and
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an invariant on the concrete state (CINV) that is preserved by every step. The
invariants basically state that everything is well-formed and reasonable for our
application, e.g. the list of tickets contains only tickets, not other entries.

By proving the refinement, security properties of the abstract ASM specifi-
cation level now can be transfered to the implementation level via the retrieve
relation R. If a property is e.g. invariant for astate(agent) it is also invariant for
extract(cstate(agent)) because of the refinement. In general, it is known that not
all security properties are preserved under refinement (see e.g. [19]), but those
problems arise only when the granularity changes during refinement. This is not
the case in our refinement approach, because in our model both the abstract
ASM rules and the concrete implementation steps are atomic operations of the
same granularity, which last from the receiving of input to the sending of out-
put for every agent. We do not consider attacks on the implementation which
take place during the execution of a protocol step. This would mean changing
of memory contents of the devices during execution and would of course allow
a lot more attacks. Also we do not consider problems like power failures of the
mobile phone in the middle of a protocol step execution.

4 Data Type Mapping to the Concrete Level

Java programs and Abstract State Machines use different internal types. On the
one hand we have the Java class hierarchy (consisting of interfaces and classes)
and primitive types, on the other hand we have algebraically specified abstract
data types and state functions for the abstract specification level.

For our M-Commerce example same external behavior means sending of the
same output messages in reply to the same input messages. On the abstract
level input and output are specified using an abstract data type called document.
This data type is quite similar to the messages used in [23] or [7]. It is specified
algebraically as follows:

document = intdoc(.int : int)
| keydoc(.key : key)
| noncedoc(.nonce : nonce)
| secretdoc(.secret : secret)
| hashdoc(.doc : document)
| encdoc(.key : key; .doc : document)
| sigdoc(.key : key; .doc : document)
| doclist(.list : documentlist)

A document can contain an arbitrary large integer (intdoc). The intdoc type
is also used to model arbitrary data since every data can be represented as
an integer. Documents can also contain a key (keydoc), a nonce (noncedoc) or
a secret (secretdoc). Furthermore a document can be the result of a crypto-
graphic hashing operation (hashdoc) or can be an encrypted document with a
certain key (encdoc) or a signature of a document with a certain key (sigdoc).
To model composition of messages our document type also contains a type
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doclist containing a list of other documents. In our ASM model the inputs of all
agents are represented as an ASM state function inputs : agent — documentlist
(which is a part of the context described in section 3).

On the concrete level a natural representation of the abstract document data
type is a class hierarchy which is directly implementing our abstract data type.
The Cindy application relies on the security of GSM communication which al-
ready supports encryption of all sent messages. Therefore the protocol of Cindy
only uses the type intdoc for modelling the ticket data or concepts like phone
numbers, and noncedoc for modelling the unique identifier of the ticket. Addi-
tionally, the doclist type is used for composing those basic documents to MMS

messages.
The class hierarchy we use

in the implementation of Cin- Dodig [y <<abract>

dy is shown in Figure 3. We Document]] docs|*

implement every constructor

of the abstract data type doc- / T

ument by a separate Java Do R |

class type for exactly that

type of document. For our value: byte(] nonce : Nonce value: byte[]

general refinement approach
to security protocols the
other document types are im-
plemented as well but omit-
ted here. In addition to input/output behavior we furthermore have to prove
that the same state changes are performed on both levels. In the Cindy example
the state of the mobile phone consists of a list of documents representing tickets
which are currently stored on the phone. This list is specified using the doclist
abstract type on the abstract level, respectively implemented by the Doclist class
for the concrete state. The state function tickets : agent — documentlist specifies
this for the abstract level (part of astate(cellphone) as explained in Section 3).
In addition the state function inputs : agent — documentlist is relevant for the
refinement because it contains the input messages of each agent. Those two func-
tions have to be taken into account for the refinement and have to be transformed
to Java data types. Using the abstract data types and the store we define map-
ping functions for the transformation of the abstract data type into the concrete
pointer structure inside the store and vice versa. The store defines a mapping
of keys to values. Store keys are a combination of a reference (a memory ad-
dress) and a class field or a array index. Getting the value for the field f of the
instance at reference r is written as st[r.f]. The lookup for static fields can be
written as st[.f]. The value can be a primitive value or a reference to another
class instance or an array. The operations for the transformation of documents
are called addDoc : document x store — reference x store and getDoc : reference
xstore — document (all operations below are specified algebraically). addDoc
for e.g. the IntDoc class type works as follows:

Fig. 3. Document Classes
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addDoc-intdoc:
[r1, r2] = newrefs(2,st) —
addDoc(intdoc(i), st) =
r1 x addobj(ry, IntDoc, .value x rp,
addarray(ro, byte type, int2bytes(i), st))

Adding an Intdoc with value i to the store works by adding an object of class
IntDoc via the operation addobj : reference X type x fieldvaluesx store — store.
The reference r; of this new object must not be already contained in the store
([r1,r2] = newrefs(2,st)). The actual value i of the Intdoc is encoded as an ar-
ray of bytes. This array must also be added to the store via the operation
addarray : reference x type X arrayvalues x store — store. The reference r, of this
array must also be a new reference in the store (... = newrefs(2,st)). The ar-
ray values are obtained by transforming the integer i to a sequence of bytes
(int2bytes(i)). The function addDoc additionally returns the reference r; of the
IntDoc instance as well as the store because we have to know where the new
instance is placed inside the store.

The getDoc function for the IntDoc type works the other way:

getDoc-intdoc:
r # null A st[r.type] = IntDoc —
getDoc(r, st) = intdoc(bytes2int(getbytearray(st[r.value], st)))

Getting the document of type IntDoc (st[r.type] = IntDoc, where .type is a
special field containing the type information of a reference) back from the store
is done by first getting the byte array representing the value from the store
(getbytearray(st[r.value]). The resulting byte sequence is transformed to an integer
using the operation bytes2int and the resulting integer value is used to construct
the Intdoc.

The operations TOSTORE and FROMSTORE basically use addDoc and getDoc
to transform the input messages of the agents into the Java store. Additionally
getDoc implements the extract function described in Section 3 in the retrieve
relation of the refinement for the list of tickets of an agent. This works because in
Cindy both input/output messages and the state are specified using documents.

5 Additional Attacks on the Concrete Level

An interesting observation is the fact that when implementing the data types
by pointer structures there are more possible values on the concrete level than
on the abstract level. The reason is that on the concrete level there can be
pointer structures that do not have any abstract counterpart. One example for
this fact are instances of class IntDoc which contain a null pointer in their value
field. Since the value field is the counterpart of the abstract value of the integer
contained in the IntDoc and since null does not represent a number this document
has no counterpart. In the following we will call those additional inputs invalid.
A refinement respecting only valid inputs would not be correct because in the
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real world other inputs than the abstract ones may be sent by an attacker and
may cause implementation errors or security leaks.

The solution for this problem is to consider the invalid inputs on the concrete
level by implementing a check on the input which checks whether the concrete
input has an abstract counterpart. We add an additional document type L (rep-
resenting all the invalid inputs) and specify that the abstract level performs an
error treatment (e.g. a reset operation on the internal state) when receiving L.
Then the concrete step which receives an invalid input (and discovers this using
the input check) has to be a refinement of the abstract error treatment step. With
such a refinement nothing bad can happen on the concrete level when receiving
invalid inputs. The TOSTORE operation now relates L to all invalid documents.
An attacker sending L on the abstract level is now able to send any invalid doc-
ument on the concrete level. Formally, the predicate validDoc : reference x store
specifies whether a pointer structure represents an abstract document. The re-
sult r x st of addDoc always satisfies validDoc(r, st). The check for valid inputs is
done in the receive() method in the Java implementation. Therefore the imple-
mentation of receive() must satisfy:

Receive-correct:
...11 reference r is a valid communication interface in st
N st =stg —
(st; ro = r.receive(); )
st = sto[.input, null] A
((validDoc(stol[.input], stg) — ro = sto[.input]) A
(= validDoc(sto[.input], stg) — ro = null))

If the input is a valid representation (validDoc(...)) of an abstract document,
the return value rqg of receive is the reference which was added in the TOSTORE
operation (sto[.input]). Otherwise null is returned. Additionally receive sets the
input buffer to null (st[.input, null]).

It is not desirable to verify the correctness of a concrete input/output checker
again for every single application. E.g. all our security protocol implementations
use the document class type as the input type. We have used this type for the
implementation of Cindy and also e.g. for the implementation of the Mondex [28]
application. Also, a real implementation would not directly send pointer struc-
tures but do some kind of encoding (e.g. to byte arrays or XML, which is then
sent by MMS). The data checker can be integrated in such a transformation func-
tion. We provide an implementation for such a transformation and data check
layer which can be verified separately. This enables us to split the refinement
proof into two layers. In the first layer the refinement of an abstract specification
of the protocol into an implementation working on the document class type is
shown using receive-correct as an assumption. The second refinement adds the
transformation and data check layer. Then TOSTORE has to add an encoding
of the input document instead of a pointer structure to the store. The receive
method has to check this input and transform it into a pointer structure. Then
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the property of receive above can be proven using correctness properties of the
check and transformation layer.

6 Details on the Cindy Refinement and Implementation

Sect. 3 showed an excerpt of the ASM specification for the cellphone agent, which
covers storing of new tickets on the cell phone. The J2ME implementation? of
this protocol step is:
public class Protocol {

private Doclist tickets; // bought tickets

public void step(){
if (comm.available()){
Document inmsg = comm.receive();
phoneStep (inmsg) ;}}

private void phoneStep(Document inmsg) {
Document originator = inmsg.getPart(1);
inmsg = inmsg.getPart(2);
Doclist ticket = getTicket(inmsg);
if (ticket != null && tickets.len() < MAXTICKETLEN){
tickets = tickets.attach(ticket);}
. //other protocol steps}

private Doclist getTicket(Document indoc) {
if (indoc !'= null && indoc.is_comdoc()){
byte[] ins = indoc.getPart(1).getValue();
if(ins.length == 1 && ins[0] == LOADTICKET){
Document indoc2 = indoc.getPart(2);
if (indoc2 != null && indoc2.len() == 2){
Document indoc21 = indoc2.getPart(1);
Document indoc22 = indoc2.getPart(2);
if (indoc21 '= null && indoc21.is_intdoc() &&
indoc22 != null && indoc22.is_noncedoc()){
return indoc2;}}}}
return null;}}

The method step() is the top-level method for executing a protocol step. First
it tests whether input is available. If there is an input available the receive
method is executed and phonestep() is called with the input. This method now
tests the structure of the input using getTicket() method. getTicket() returns
the data part of the input document if it was a valid representation of a ticket
and null otherwise. phonestep() then adds the returned data to the list of actual
tickets if the input was valid.

2 This source code is running on any J2ME mobile phone. We have tested it on Nokia
3250 and Sony Ericsson W550i. The receive operation uses the J2ME API to access
the MMS messages of the mobile phone.
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The proof structure now is the following: Starting with the proof obligation
given by the refinement theory in Sect. 3 we first symbolically execute the ab-
stract and the concrete level. The cases for the non-refined agents (such as the
attacker) are trivial because they are the same in both specifications. For the re-
fined agent we come to the proof obligation shown in Sect. 3.3. We then formulate
theorems for each Java method which relate the behavior of the method to the
abstract counterpart of its input. The corresponding theorem for the load-ticket
protocol step is for example:

is load message(first(inputs(agent))) A st; = store(agent) A
st = TOSTORE(inputs, st;) A INV(sty) A ...
— (st; Protocol.step(); )
(getDoc(st[Protocol.tickets], st) =
tickets(agent) + first(inputs(agent))
A st[.input] = null A INV(st))

If the actual input document (first(inputs(agent))) is a correct load message
(is load message) on the abstract level and if this document is added to the
store via TOSTORE then the step method performs the correct state change: It
computes the correct ticket list (the new ticket attached to the old tickets). Also
the input was deleted (st[.input] = null). Additionally an invariant that holds
before the execution of the method (INV(st)) holds again afterwards.

With such theorems the refinement proof obligation is divisible in different
proof obligations for every protocol step. After applying those theorems we sym-
bolically execute the corresponding abstract ASM step. This results in an up-
dated abstract state which has to be proven to relate to the Java store which is
given by the theorem above via retrieve relation R. Using this technique the whole
proof becomes feasible. The whole case study consists of around 1000 lines of code.
The implementation of Cindy itself consists of around 350 lines of code. The rest
is the implementation of the document classes and some utility classes (e.g. for
handling byte arrays). The verification of the refinement starting with the cre-
ation of the concrete and abstract specification of the protocol and ending with
the refinement proof took around one and a half man months with KIV. The case
study consists of 329 theorems which took 11408 proof steps. 4655 of those steps
were done by the user. The degree of automation thereby is nearly 60 %. We ex-
pect a much higher degree of automation for upcoming case studies because of the
high re-usability of the Document implementation and the corresponding library.

7 Related Work

Related work concerning the verification of Java programs was already men-
tioned in Section 1. Here we focus on related work concerning refinement ap-
proaches for security protocols:

[20] describes a similar approach for Java Smart Cards. The authors specify
protocols using a high level specification language for proving security properties
and a more concrete one which works on the level of byte arrays. They specify
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lengths and contents of messages using byte arrays and then use static program
analysis on the JavaCard implementation to decide whether the implementation
is correct. This approach is limited to the very specific class of protocols the
specification language allows while our approach allows any abstract specification
using all the possibilities of algebraic specifications on KIV [18]. Additionally,
because of the automated analysis and the fact that implementation correctness
is undecidable this approach cannot give reliable answers in every case.

[29] uses the Spi Calculus for specifying security protocols and a code gener-
ation engine to transform this specification to an implementation, also mapping
abstract messages to Java objects. Code generation yields large implementations
that are less readable than our code and cannot be optimized without losing cor-
rectness guarantess. Their mapping to concrete data types is not formally verified
and does not address the problem of invalid inputs on the concrete level.

[14] presents an approach to verify that a JavaCard implementation respects
a protocol specification given by a finite state machine. This approach cannot
directly transfer security proofs from the abstract specification to the implemen-
tation level, because they basically show that the Java program sends certain
message types in the right order but do not show that those messages and the
internal state of the implementation have the right contents.

The Mondex [21] case study has recently received a lot of attention because its
tool supported verification has been set up as a challenge for today’s verification
tools [31]. The original refinement proofs using Z have been done on a very de-
tailed level by hand [28]. In [25] and [24] we show that the same verification can
be done with good tool support and in a short period of time using KIV. An exten-
sion of Mondex using our PROSECCO approach can be found in [12]. The Mondex
refinement basically splits a world view of an application into components imple-
menting a protocol. But even the lowest level of the Mondex case study is a only an
abstract specification of the communication protocol of the involved parties that
does not contain cryptographic operations. The approach presented here can be
used to do an additional refinement for Mondex adding a real implementation.
Details on our implementations of Mondex can be found in [11].

8 Conclusion

We presented a refinement method for Java programs instantiating data refine-
ment. The method is based on a calculus for Java verification and Abstract State
Machines using the interactive theorem prover KIV. While the approach is not
bounded to KIV only and the method itself could be transfered to other Java
verification systems, KIV’s strong support for ASM verification, Java verifica-
tion and algebraic specifications as well as its large library for security protocol
verification makes it an efficient tool for this approach.

As discussed in Sect. 3 our approach transfers security properties for the
abstract specification down to running Java code. Furthermore, we have shown
how to handle invalid inputs that only exist on the concrete level of Java pointer
structures. We have demonstrated that the method is suitable for handling case



234

studies of relevant size. Further work includes the incorporation of the method
into further verification case studies like Mondex.
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