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Abstract. We study the existence and long-time asymptotics of weak solutions to a system of
two nonlinear drift-diffusion equations that has a gradient flow structure in the Wasserstein distance.
The two equations are coupled through a cross-diffusion term that is scaled by a parameter \varepsilon \geq 0. The
nonlinearities and potentials are chosen such that in the decoupled system for \varepsilon = 0, the evolution
is metrically contractive, with a global rate \Lambda > 0\Lambda > 0. The coupling is a singular perturbation
in the sense that for any \varepsilon > 0, contractivity of the system is lost. Our main result is that for all
sufficiently small \varepsilon > 0, the global attraction to a unique steady state persists, with an exponential
rate \Lambda \varepsilon = \Lambda  - K\varepsilon for some k > 0. The proof combines results from the theory of metric gradient
flows with further variational methods and functional inequalities.
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convergence
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1. Introduction. In this paper, we analyze existence and long-time asymptotics
of nonnegative unit-mass solutions u and v of the following coupled system of two
degenerate nonlinear drift-diffusion equations on \BbbR d:

\partial tu=div
\bigl( 
u\nabla [F \prime (u) + \varepsilon \partial uh(u, v) +\Phi ]

\bigr) 
,

\partial tv=div
\bigl( 
v\nabla [G\prime (v) + \varepsilon \partial vh(u, v) +\Psi ]

\bigr) 
.

(1.1)

Notice that the diffusive contributions div(u\nabla F \prime (u)) and div(v\nabla G\prime (v)) of the system
(1.1) can also be expressed as \Delta f(u) and \Delta g(v), respectively, by introducing functions
f and g via the relations f \prime (r) = rF \prime \prime (r) and g\prime (r) = rG\prime \prime (r) for r > 0. The precise
hypotheses on the various functions are formulated in Section 1.3 below. Briefly,
the nonlinearities F , G for the individual components are smooth convex functions
that degenerate at zero, i.e., with F \prime (0) = G\prime (0) = 0; the coupling is moderated by
a nonlinear function h with quantified bounds on derivatives; the coupling strength
\varepsilon > 0 is small and the potentials \Phi , \Psi are \Lambda -convex, with some \Lambda > 0. We prove
the global existence of transient solutions (u\varepsilon (t), v\varepsilon (t))t\geq 0 to (1.1) for initial data of
finite energy. We show existence and uniqueness of a stationary solution (\=u\varepsilon , \=v\varepsilon ), and
analyze its regularity. Finally, we obtain convergence of (u\varepsilon (t), v\varepsilon (t)) to (\=u\varepsilon , \=v\varepsilon ) in
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EXPONENTIAL CONVERGENCE FOR COUPLED SYSTEMS 1767

L1(\BbbR d) as t\rightarrow \infty , with an exponential rate of the form \Lambda  - K\varepsilon , with a constant K > 0
independent of the solution.

1.1. Key ideas. Our approach is a variational one: we consider, at least for-
mally, the system (1.1) as a metric gradient flow of the energy functional

E\varepsilon (u, v) =

\int 
\BbbR d

\bigl[ 
F (u) +G(v) + u\Phi + v\Psi + \varepsilon h(u, v)

\bigr] 
dx(1.2)

on the cross product of two copies of the space \scrP r
2 (\BbbR d) of probability densities of

finite second moment, endowed with the L2-Wasserstein distance; the definitions are
recalled in section 2 below.

In the decoupled limit \varepsilon = 0, the evolution of u and that of v are independent in
(1.1), and the energy is the sum of two functionals, E0(u, v) - E0(\=u0, \=v0) = L1(u) +
L2(v), depending only on u and v, respectively:

L1(u) =

\int 
\BbbR d

\bigl[ 
F (u) - F (\=u0) + (u - u0)\Phi 

\bigr] 
dx,

L2(v) =

\int 
\BbbR d

\bigl[ 
G(v) - G(\=v0) + (v - v0)\Psi 

\bigr] 
dx.

Our hypotheses on F , G and \Phi , \Psi imply that L1 and L2 are uniformly displacement
convex of modulus \Lambda . By the general theory of L2-Wasserstein gradient flows, the
flow defined by (1.1) is \Lambda -contractive. For any solution pair (u(t), v(t)), this implies
convergence of L1(u(t)) and L2(v(t)) to zero at an exponential rate exp( - 2\Lambda t), and
a posteriori also convergence of the solutions to their respective stationary states \=u0
and \=v0 in L1 at half that rate exp( - \Lambda t).

In the following, we are concerned with the long-time asymptotics of (1.1) with a
small but positive coupling strength \varepsilon > 0. The aforementioned behavior at \varepsilon = 0 calls
for a perturbative approach. Unfortunately, the perturbation induced by means of the
coupling is singular: our first result (see Proposition 2.4) is that (unless \partial uvh\equiv 0) the
functional E\varepsilon loses uniform displacement convexity for any \varepsilon > 0. In fact,1 E\varepsilon is not
even uniformly displacement semiconvex of some negative modulus \lambda < 0. For this
reason, the general machinery of metric gradient flows does not provide any result on
exponential convergence anymore.

To make the long-time asymptotics accessible to perturbative methods, we blend
the strong but elegant methods from gradient flow theory with more robust estimates
related to the energy method. Our ansatz is to split E\varepsilon in a particular way:

E\varepsilon (u, v) - E\varepsilon (\=u\varepsilon , \=v\varepsilon ) =L\varepsilon (u, v) + \varepsilon A\varepsilon (u, v).(1.3)

Here L\varepsilon (u, v) =L1,\varepsilon (u)+L2,\varepsilon (v) is the sum of two ``good"" functionals, each depending
on one density only,

L1,\varepsilon (u) =

\int 
\BbbR d

\bigl[ 
F (u) - F (\=u\varepsilon ) + (u - \=u\varepsilon )\Phi \varepsilon 

\bigr] 
dx,(1.4)

L2,\varepsilon (v) =

\int 
\BbbR d

\bigl[ 
G(v) - G(\=v\varepsilon ) + (v - \=v\varepsilon )\Psi \varepsilon 

\bigr] 
dx,

1To avoid confusion, thanks to our hypotheses, E\varepsilon remains convex in the usual flat sense for
sufficiently small \varepsilon > 0---it is the (lack of) displacement convexity that is significant for the long-time
asymptotics.
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1768 LISA BECK, DANIEL MATTHES, AND MARTINA ZIZZA

with perturbed potentials obtained from the stationary solution (\=u\varepsilon , \=v\varepsilon ) as follows:

\Phi \varepsilon =\Phi + \varepsilon \partial uh(\=u\varepsilon , \=v\varepsilon ), \Phi \varepsilon =\Psi + \varepsilon \partial vh(\=u\varepsilon , \=v\varepsilon ),

chosen such that the nonnegative functionals L1,\varepsilon and L2,\varepsilon are zero precisely for \=u\varepsilon 
and \=v\varepsilon , respectively, while A\varepsilon is the ``bad"" functional that contains the coupling,

A\varepsilon (u, v) =

\int 
\BbbR d

\bigl[ 
h(u, v) - h(\=u\varepsilon , \=v\varepsilon ) - (u - \=u\varepsilon )\partial uh(\=u\varepsilon , \=v\varepsilon ) - (v - \=v\varepsilon )\partial vh(\=u\varepsilon , \=v\varepsilon )

\bigr] 
dx.

From a detailed analysis of the stationary solution (\=u\varepsilon , \=v\varepsilon ) by means of variational
methods, we obtain bounds on \partial uh(\=u\varepsilon , \=v\varepsilon ) and \partial vh(\=u\varepsilon , \=v\varepsilon ) in C2(\BbbR d), uniformly for
small \varepsilon \geq 0; see Theorem 1.3 and Corollary 3.9. This implies that \Phi \varepsilon and \Psi \varepsilon above
are still uniformly convex, with a diminished modulus \Lambda  - K0\varepsilon for some K0 \geq 0. By
the general theory, L1,\varepsilon and L2,\varepsilon are uniformly displacement convex with the same
modulus \Lambda  - K0\varepsilon , and so is their sum L\varepsilon (u, v) on the product space.

The central step in the proof of our main result on the asymptotic behavior (see
Theorem 1.5) is to show that L\varepsilon is a Lyapunov functional that decays to zero at rate
exp( - 2[\Lambda  - K\varepsilon ]t), with some K > K0. The dissipation of L\varepsilon along the flow of E\varepsilon 

consists of two contributions: the first is the auto-dissipation of L\varepsilon by its own flow,
that provides a Gronwall-type estimate thanks to uniform displacement convexity;
see, e.g., [15],

| \partial L\varepsilon | 2 =
\int 
\BbbR d

\Bigl( 
u
\bigm| \bigm| \nabla \bigl[ F \prime (u) +\Phi \varepsilon 

\bigr] \bigm| \bigm| 2 + v
\bigm| \bigm| \nabla \bigl[ G\prime (v) +\Psi \varepsilon 

\bigr] \bigm| \bigm| 2\Bigr) dx\geq (1 - K0\varepsilon )L\varepsilon (u, v).

(1.5)

The second contribution is the variation of L\varepsilon along the flow of \varepsilon A\varepsilon . It is not of definite
sign, in general, but can be controlled by an \varepsilon -amount of the integral expression for
| \partial L\varepsilon | 2 above, at the price of reducing the rate of decay from \Lambda  - K0\varepsilon to \Lambda  - K\varepsilon .
Obtaining the aforementioned control is a main technical challenge in the proof. It
rests on a variety of elementary and functional analytic estimates that are established
throughout sections 4.5 and 4.6.

The smallness of \varepsilon > 0 plays a role at various points of our considerations. Note
that a result on global equilibration in the style of Theorem 1.5 cannot hold without
any size restriction on \varepsilon , since for a generic choice of h, even the usual (flat) convexity
is destroyed for sufficiently large values of \varepsilon , which could produce, e.g., multiple critical
points. The threshold \varepsilon \ast that we use is presumably significant smaller than the onset
of flat nonconvexity: it is chosen to facilitate a variety of perturbative estimates, the
main one being the aforementioned control of L\varepsilon 's variation along the flow of A\varepsilon in
terms of the integral expression in (1.5) above. Optimizing the admissible range of \varepsilon 
is a subject of future research.

We emphasize that the novelty of our result does not lie in the proof of convergence
to equilibrium as such---a qualitative result could be obtained at almost no cost, e.g.,
from the LaSalle principle---but in the quantitative estimate on the convergence to
equilibrium, with the exponential rate \Lambda  - K\varepsilon . It is further significant that (1.1) is
considered on \BbbR d, and that the steady state (\=u\varepsilon , \=v\varepsilon ) is compactly supported; hence,
there is no standard inequality like Poincar\'e or log-Sobolev to conclude exponential
convergence, not even at some smaller rate.

1.2. Positioning of our results. Coupled systems of nonlinear drift-diffusion
equations are ubiquitous. They are used in the modeling of chemical reactions [39],
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EXPONENTIAL CONVERGENCE FOR COUPLED SYSTEMS 1769

flows in porous media [11], semiconductor devices [35], population dynamics [8], rival
gangs in a city [4], segregation of species [9], just to name a few of the countless
applications. The literature concerning the very natural question about long-time
asymptotics is huge, albeit mostly focused on such systems with a particular rigid
algebraic structure of the diffusion (being diagonal, or even linear) but with additional
source terms, describing, e.g., reactions.

We briefly recall the situation for scalar drift-diffusion equations. The first proofs
of exponential convergence to equilibrium in degenerate parabolic equations of the
type \partial tu=\Delta f(u)+div(u\nabla \Phi ) has been given in the case f(u) = um and \Phi (x) = 1

2 | x| 
2

on \BbbR d by a nonlinear extension of the Bakry--Emery method [14], by a variational proof
of the entropy-dissipation inequality [18], and by virtue of gradient flows in the L2-
Wasserstein metric [36]. These methods have been extended later on to more general
f 's and \Phi 's, and also to bounded domains \Omega \subset \BbbR d; see, e.g., [13, 15]. The common
fundamental result is that if f satisfies the McCann condition, and if \Phi is uniformly
convex of modulus \Lambda > 0, then solutions u converge to the unique equilibrium in L1

at exponential rate \Lambda .
There appears to be no result of comparable simplicity and generality for coupled

systems of parabolic equations. All of the aforementioned methods of proof break
down as soon as multicomponent densities are considered, except in some particular
systems with a very special algebraic structure; see, e.g., [30, 45]. There are numerous
other applications of gradient flow methods for systems, like for studying the shape or
qualitative stability of steady states; see, for instance, [29]. But that approach does
not provide equilibration at exponential rates any longer.

Limited generalizations of the scalar theory have been developed for reaction-
diffusion systems, and recently also for cross-diffusion systems (with or without re-
actions). Although many of these systems still bear a gradient flow structure [33],
the more robust energy method has proven better adapted to study long-time asymp-
totics. In reaction-diffusion systems, the substantial challenge is in the control of
the growth induced by the reactions, while the diffusion itself is typically decoupled,
and frequently just linear. Prototypical results on exponential equilibration have been
obtained in [19, 22, 34, 25] for systems with linear diffusion, and in [23] for component-
wise nonlinear diffusion. In (reaction-)cross-diffusion systems, the diffusion matrix is
nondiagonal, but usually subject to restrictive structural conditions. Recent results
on exponential convergence to equilibrium have been obtained, e.g., for systems with
volume filling [42], of Maxwell-Stefan type [16], or with SKT-structure [17].

None of the above results covers the exponential equilibration presented in Theo-
rem 1.5 below, i.e., for a system which is fully nonlinear with a general (albeit small)
coupling. Nonlinear diffusion on \BbbR d with inhomogeneous, compactly supported steady
states is apparently inaccessible by the commonly used methods, but calls for a differ-
ent angle of attack, and adapted functional inequalities like (1.5). For comparison, we
mention the recent result from [2] that is close in spirit to our approach: the authors
treat a system with a small nonlinear coupling like (1.1); however, there, linearity of
F and G, a bounded spatial domain, and an a priori L\infty -bound are assumed, which
allows one to perform the estimates in a much simpler way, using Poincar\'e's inequal-
ity. We further mention two related results for the parabolic-parabolic Keller--Segel
model [44] and the Nernst--Planck system [43]. There, the coupling is between a
Wasserstein and an L2-gradient flow, not between two Wasserstein gradient flows as
here. A variant of the above has been explored in [46].

Finally, we briefly comment on the positioning of Theorem 1.4 on existence, which,
as mentioned before, merely is an intermediate result on our route to the long-time

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.
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1770 LISA BECK, DANIEL MATTHES, AND MARTINA ZIZZA

asymptotics. We use the celebrated JKO scheme [26] to obtain solutions by a varia-
tional time-discrete approximation. This scheme has been used for proving the exis-
tence of various nonlinear parabolic equations like doubly degenerate parabolic PDEs
[37], including the p-Laplace equation [1]; in nonlinear diffusion-aggregation equations
[12], including the parabolic-elliptic Keller--Segel model [6], in fourth order quantum
and thin film equations [24, 32, 31]; and in many further instances. Applications to
coupled systems are numerous as well, including, for instance, systems with nonlocal
aggregation [21, 20] and cross-diffusion [5, 10], and also combinations of Wasserstein
and L2-gradient flows, like the parabolic-parabolic Keller--Segel [44, 7] or the Nernst--
Planck system [28]. In several of these cases, the existence proof could have also been
obtained by more elementary methods. Also for (1.1), the boundedness-by-entropy
method [27], albeit not directly applicable, would have paved an alternate way. For
us, the time-discrete approximation via a minimizing movement with respect to the
L2-Wasserstein distance is crucial for making the long-time asymptotics fully rigor-
ous. A closely related approach to existence for a system similar to (1.1), augmented
with additional nonlocal interaction term, has been used in [20]. The hypotheses are
complementary to ours, being more flexible on the coupling h, but more restrictive
on F and G.

1.3. General hypotheses. Throughout this paper, we work under the following
hypotheses. Several of them could be weakened, e.g., C\infty -regularity and normalization
of \Phi and \Psi are required for convenience only in (1.10), the limit could be replaced by
bilateral bounds on lim inf and limsup, etc.

\bullet Potentials: For \Phi ,\Psi \in C\infty (\BbbR d), we assume that:
-- there are positive constants \Lambda and M such that

\Lambda 1\leq \nabla 2\Phi \leq M1, \Lambda 1\leq \nabla 2\Psi \leq M1;(1.6)

-- \Phi and \Psi vanish at their respective minima x\Phi , x\Psi \in \BbbR d, i.e.,

0 = inf
\BbbR d

\Phi =\Phi 
\bigl( 
x\Phi 
\bigr) 
, 0 = inf

\BbbR d
\Psi =\Psi 

\bigl( 
x\Psi 
\bigr) 
.(1.7)

\bullet Nonlinearities: We assume F, G\in C\infty (\BbbR >0)\cap C1(\BbbR \geq 0) such that
-- F \prime \prime (r)> 0 and G\prime \prime (r)> 0 for all r > 0, and

lim inf
r\rightarrow \infty 

F \prime \prime (r)> 0, lim inf
r\rightarrow \infty 

G\prime \prime (r)> 0;(1.8)

-- they degenerate at zero to first order, i.e.,

F (0) =G(0) = 0, F \prime (0) =G\prime (0) = 0;(1.9)

-- there are exponents m,n\geq 2 such that

lim
r\downarrow 0

r - (m - 2)F \prime \prime (r)\in (0,\infty ), lim
r\downarrow 0

r - (n - 2)G\prime \prime (r)\in (0,\infty );(1.10)

-- they satisfy the (dimension-free) McCann condition, i.e., for all r > 0,

rF \prime (r)\leq F (r) + r2F \prime \prime (r), rG\prime (r)\leq G(r) + r2G\prime \prime (r);(1.11)

-- they satisfy the doubling condition, i.e., there is a constant D such that
for all r, s > 0,

F (r+ s)\leq D(1 + F (r) + F (s)), G(r+ s)\leq D(1 +G(r) +G(s)).
(1.12)
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EXPONENTIAL CONVERGENCE FOR COUPLED SYSTEMS 1771

\bullet Coupling: Concerning h\in C\infty (\BbbR 2
>0)\cap C1(\BbbR 2

\geq 0), we assume that
-- h vanishes to first order on \partial \BbbR 2

\geq 0,

h= \partial uh= \partial vh\equiv 0 on \partial \BbbR 2
\geq 0;(1.13)

-- there is an \varepsilon \ast > 0 such that

(u, v) \mapsto \rightarrow F (u) +G(v) + 2\varepsilon \ast h(u, v) is convex;(1.14)

-- with the same \varepsilon \ast , there holds, for all u, v > 0,

2\varepsilon \ast | h(u, v)| \leq F (u) +G(v).(1.15)

\bullet Degeneracy, boundedness, and swap condition: Define \theta u, \theta v :\BbbR 2
\geq 0 \rightarrow \BbbR 

by

\theta u(\rho , \eta ) : = \partial uh
\bigl( 
(F \prime ) - 1(\rho ), (G\prime ) - 1(\eta )

\bigr) 
, \theta u(\rho , \eta ) : = \partial uh

\bigl( 
(F \prime ) - 1(\rho ), (G\prime ) - 1(\eta )

\bigr) 
.

(1.16)

We say that the triple (F,G,h) . . .
-- . . . satisfies the swap condition if there is some constant W such that,

for all u, v > 0,

\bigm| \bigm| \partial \eta \theta u\bigl( F \prime (u),G\prime (v)
\bigr) \bigm| \bigm| \leq W

\sqrt{} 
v/u,

\bigm| \bigm| \partial \rho \theta v\bigl( F \prime (u),G\prime (v)
\bigr) \bigm| \bigm| \leq W

\sqrt{} 
u/v;

(1.17)

-- . . . is k-bounded for some k \in \BbbN if \theta u, \theta v \in Ck(\BbbR 2
\geq 0), and if all partial

derivatives of total order \ell = 1, . . . , k are bounded on \BbbR 2
\geq 0;

-- . . . is k-degenerate for some k \in \BbbN if \theta u, \theta v \in Ck(\BbbR 2
\geq 0), and if all partial

derivatives of total order \ell = 0,1, . . . , k vanish on \partial \BbbR 2
\geq 0.

Remark 1.1.
(1) Hypotheses (1.6) and (1.7) imply that \Phi and \Psi are bounded from above and

from below by parabolas:

\Lambda 

2
| x - x\Phi | 2 \leq \Phi (x)\leq M

2
| x - x\Phi | 2,

\Lambda 

2
| x - x\Psi | 2 \leq \Psi (x)\leq M

2
| x - x\Psi | 2.

(1.18)

These estimates are directly obtained by Taylor expansion about the respec-
tive minima. Similarly, one bounds the norm of the gradients and thus obtains
in combination with (1.18)

2\Lambda 2

M
\Phi (x)\leq | \nabla \Phi (x)| 2 \leq 2M2

\Lambda 
\Phi (x),

2\Lambda 2

M
\Psi (x)\leq | \nabla \Psi (x)| 2 \leq 2M2

\Lambda 
\Psi (x).

(1.19)

(2) A consequence of the hypotheses on F and G is that both are uniformly
convex on each interval of the form [r,\infty ) with r > 0. Further, in combination
with the doubling condition, it follows that for all r > 0,

rF \prime (r)\leq D(1 + 2F (r)), rG\prime (r)\leq D(1 + 2G(r)).(1.20)

Indeed, convexity implies F (2r)\geq F (r) + rF \prime (r), and (1.20) now follows via
(1.12) for s= r.
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1772 LISA BECK, DANIEL MATTHES, AND MARTINA ZIZZA

(3) If (F,G,h) is 2-bounded and 2-degenerate, there exists a constant A\geq 0 such
that

(1.21) | \theta u(\rho , \eta )| , | \theta v(\rho , \eta )| \leq Amin\{ \rho , \eta \} , | \omega (\rho , \eta )| \leq Amin\{ 1, \rho , \eta \} ,

where \omega :\BbbR 2
\geq 0 \rightarrow \BbbR is any of the functions \partial \rho \theta u, \partial \eta \theta u, \partial \rho \theta v, or \partial \eta \theta v.

Example 1.2. Consider F , G, and h of the form

F (u) =
um

m
, G(v) =

vn

n
, h(u, v) = upvq\~u\alpha \~v\beta with \~u :=

u

1 + u+ v
, \~v :=

v

1 + u+ v

for nonnegative exponents m,n,p, q, and \alpha ,\beta . We claim that F , G and h satisfy their
respective hypotheses (1.8)--(1.15) plus the swap condition (1.17), provided that

m,n\geq 2, p+ q\leq min\{ m,n\} , \alpha \geq m - p, \beta \geq n - q.(1.22)

Moreover, given k \in \BbbN , we claim that (F,G,h) is k-bounded and k-degenerate, if,
additionally,

\alpha > k - p - 1

m - 1
, \beta > k - q - 1

n - 1
.(1.23)

An admissible choice with a 2-bounded and 2-degenerate h is given, in particular, by
m= n= 2, p= q= 1, and \alpha = \beta = 3.

Note that, independently of the choice of \alpha ,\beta > 0, the function h behaves for large
and comparable values of u and v very similar to upvq. For small values of u, v, and
also for ratios u/v that are very small or very large, h(u, v) is significantly ``flatter""
than upvq; that flatness is needed to guarantee k-boundedness, k-degeneracy, and the
swap condition.

The verification of these claims is deferred to Appendix A.

1.4. Results. Our first result concerns the existence of stationary solutions to
(1.1), characterized as minimizers of E\varepsilon in the space [L2(\BbbR d)]2\cap [\scrP r

2 (\BbbR d)]2 (see section
2 for the notation).

Theorem 1.3. For each \varepsilon \in [0, \varepsilon \ast ], there is a unique minimizer (\=u\varepsilon , \=v\varepsilon ) of E\varepsilon in
[L2(\BbbR d)]2 \cap [\scrP r

2 (\BbbR d)]2. The densities \=u\varepsilon and \=v\varepsilon are continuous functions of compact
support that are sublevels of \Phi and \Psi , respectively, and satisfy, for suitable constants
U\varepsilon , V\varepsilon > 0,

F \prime (\=u\varepsilon ) + \varepsilon \partial uh(\=u\varepsilon , \=v\varepsilon ) = (U\varepsilon  - \Phi )+ ,

G\prime (\=v\varepsilon ) + \varepsilon \partial vh(\=u\varepsilon , \=v\varepsilon ) = (V\varepsilon  - \Psi )+ .
(1.24)

Further, if h degenerates to order k \in \BbbN , then the restrictions of F \prime (\=u\varepsilon ) and G
\prime (\=v\varepsilon ) to

their respective supports are bounded in Ck, uniformly with respect to \varepsilon \in [0, \varepsilon \ast ].

A point of crucial importance is that for degeneracy of order two, the functions
\partial uh(\=u\varepsilon , \=v\varepsilon ) and \partial vh(\=u\varepsilon , \=v\varepsilon ) are in C2(\BbbR d), with a global bound on second deriva-
tives that is independent of \varepsilon \in [0, \varepsilon \ast ]. This is needed to establish the functional
inequalities (1.5), which are essential for our proofs of the following results. Under
an additional smallness assumption on \varepsilon (see (4.1)), we obtain the following result
concerning existence of transient solutions.
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EXPONENTIAL CONVERGENCE FOR COUPLED SYSTEMS 1773

Theorem 1.4. Assume, in addition, that (F,G,h) is 2-bounded and 2-degenerate,
and that the swap condition holds. There is some \=\varepsilon > 0, such that for each \varepsilon \in [0, \=\varepsilon ]
and any initial data (u0, v0) \in [\scrP r

2 (\BbbR d)]2 of finite energy E\varepsilon (u0, v0)<\infty , there exists
a transient weak solution (u\varepsilon (t), v\varepsilon (t))t\geq 0 to the initial value problem for (1.1), i.e.,
for arbitrary test functions \xi \in C\infty 

c ((0,\infty )\times \BbbR d) there holds

0 =

\int \infty 

0

\int 
\BbbR d

\bigl( 
u\varepsilon \partial t\xi  - u\varepsilon \nabla 

\bigl[ 
F \prime (u\varepsilon ) +\Phi + \varepsilon \partial uh(u\varepsilon , v\varepsilon )

\bigr] 
\cdot \nabla \xi 

\bigr) 
dxdt,

0 =

\int \infty 

0

\int 
\BbbR d

\bigl( 
v\varepsilon \partial t\xi  - v\varepsilon \nabla 

\bigl[ 
G\prime (v\varepsilon ) +\Psi + \varepsilon \partial vh(u\varepsilon , v\varepsilon )

\bigr] 
\cdot \nabla \xi 

\bigr) 
dxdt.

(1.25)

The initial data are attained in the L2-Wasserstein sense, i.e., as t \downarrow 0, one has weak-
\ast -convergence of u\varepsilon (t) to u0, and convergence of u\varepsilon (t)'s second moment to that of v0,
and similarly for v\varepsilon .

Here the most significant point is not the mere existence but the way of construc-
tion, namely via the minimizing movement scheme for E\varepsilon (starting from the given
initial data) in the combined L2-Wasserstein distances.

Finally, the main result of this paper is about the long-time asymptotics of tran-
sient solutions.

Theorem 1.5. Under the same conditions as in Theorem 1.4 above, there exist
constants K > 0 and C \geq 1 such that the following is true for all \varepsilon \in [0, \=\varepsilon ]: the transient
solution (u\varepsilon (t), v\varepsilon (t))t\geq 0 constructed in the proof of Theorem 1.4 converges to the
unique global minimizer (\=u\varepsilon , \=v\varepsilon ) from Theorem 1.3 at exponential rate \Lambda \varepsilon = \Lambda  - K\varepsilon .
More precisely, with L\varepsilon being the Lyapunov functional defined in (1.3), there holds

L\varepsilon 

\bigl( 
u\varepsilon (t), v\varepsilon (t)

\bigr) 
\leq L\varepsilon (u0, v0) exp

\bigl( 
 - 2\Lambda \varepsilon t

\bigr) 
,(1.26)

and in particular, u\varepsilon (t) and v\varepsilon (t) converge in L1(\BbbR d) to \=u\varepsilon and \=v\varepsilon , respectively, with

\| u\varepsilon (t) - \=u\varepsilon \| 2L1 + \| v\varepsilon (t) - \=v\varepsilon \| 2L1 \leq C
\bigl( 
1 +E\varepsilon (u0, v0)

\bigr) 
exp

\bigl( 
 - 2\Lambda \varepsilon t

\bigr) 
.(1.27)

2. Preliminaries.

2.1. Wasserstein distance. \BbbB R : = \{ x \in \BbbR d : | x| < R\} is the ball of radius
R> 0. \scrL d denotes the standard Lebesgue measure on \BbbR d. For a probability measure
\mu on \BbbR d and a measurable map T : \BbbR d \rightarrow \BbbR d, the push-forward of \mu under T is the
uniquely determined probability measure T\#\mu such that\int 

\BbbR d

\omega (y)d
\bigl( 
T\#\mu 

\bigr) 
(y) =

\int 
\BbbR d

\omega \circ T (x)d\mu (x)(2.1)

for any test function \omega \in C(\BbbR d). If both \mu = u\scrL d and T\#\mu = \^u\scrL d are absolutely
continuous, then we write T\#u= \^u for brevity.

\scrP r
2 (\BbbR d) denotes the space of probability densities u :\BbbR d \rightarrow \BbbR \geq 0 of finite second

moment. The natural notion of convergence on \scrP r
2 (\BbbR d) is the narrow one, i.e., weak

convergence in duality with bounded continuous functions. By Prokhorov's and by
Alaoglu's theorem, subsets of densities with uniformly bounded second moment and
Lp-norm (for some p > 1) are sequentially compact in \scrP r

2 (\BbbR d); boundedness of the
Lp-norm is just needed to avoid concentrations.

The L2-Wasserstein distance W2 is a metric on \scrP r
2 (\BbbR d), see [40, Chapters 1

and 5] or [41, Chapters 1, 2, and 7] for an introduction. Convergence in W2 is
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1774 LISA BECK, DANIEL MATTHES, AND MARTINA ZIZZA

equivalent to weak convergence and convergence of the second moments. Among the
various possible definitions of W2 the following---known as the (pre-)dual Kantorovich
formulation---is the most suitable one for our needs: for u, \^u\in \scrP r

2 (\BbbR d),

1

2
W2(u, \^u)

2 : = sup

\biggl\{ \int 
\BbbR d

\varphi (x)u(x)dx+

\int 
\BbbR d

\psi (y)\^u(y)dy :\varphi (x) + \psi (y)\leq 1

2
| x - y| 2

\biggr\} 
.

(2.2)

(Note the square and the factor 1/2 on the left-hand side.) A priori, the maximization
above is carried out over all \varphi \in L1(\BbbR d;u\scrL d) and \psi \in L1(\BbbR d; \^u\scrL d). However, it suffices
to consider pairs (\varphi ,\psi ) from the class of c-conjugate2 potentials . The latter means
that the auxiliary potentials \~\varphi , \~\psi :\BbbR d \rightarrow \BbbR \cup \{ +\infty \} given by

\~\varphi (x) =
1

2
| x| 2  - \varphi (x), \~\psi (y) =

1

2
| y| 2  - \psi (y)

are proper, lower semicontinuous, convex, and Legendre-dual to each other, \~\varphi \ast = \~\psi 
and \~\psi \ast = \~\varphi . Note that knowledge of either \varphi or \psi determines the respective other.
Further, note that \varphi (x)+\psi (y)\leq 1

2 | x - y| 
2 is automatically satisfied since \~\varphi (x)+ \~\psi (y)\geq 

x \cdot y.
The supremum in (2.2) is attained by an optimal pair (\varphi opt,\psi opt) of c-conjugate

potentials. Uniqueness of optimal pairs---beyond the global gauge invariance (\varphi ,\psi );
(\varphi + C,\psi  - C)---is delicate, in general. Fortunately, in the setting of absolutely
continuous measures under consideration, Brenier's theorem (see [40, Theorem 1.22]
or [41, Theorem 2.12]), implies that \nabla \~\varphi opt is unique u\scrL d-a.e., and that \nabla \~\psi opt is
unique \^u-a.e. In section 4, the following consequence of this will be important if \^u has
a uniform positive lower bound \scrL d-a.e. on a ball \BbbB R \subset \BbbR d, and is zero outside, then
the proper convex lower-semicontinuous function \~\psi opt is unique on \BbbB R up to a global
constant and its Legendre-dual \~\varphi opt is then unique up to a global constant on \BbbB R's
image under \nabla \~\psi opt, which is convex and has full u\scrL d-measure.

For an optimal pair (\varphi opt,\psi opt), the optimal transport map T :\BbbR d \rightarrow \BbbR d from u
to \^u is given by

T (x) : = x - \nabla \varphi opt(x),(2.3)

which is well-defined u\scrL d-a.e. It satisfies

\^u= T\#u(2.4)

and

W2(u, \^u)
2 =

\int 
\BbbR d

| T (x) - x| 2u(x)dx.(2.5)

By Brenier's theorem, T is u\scrL d-a.e. unique for a given pair (u, \^u), which implies the
following converse: if T =\nabla \~\varphi :\BbbR d \rightarrow \BbbR d is the u\scrL d-a.e. defined gradient of a proper,
lower semi-continuous, and convex function \~\varphi :\BbbR d \rightarrow \BbbR , and satisfies (2.4), then T also
satisfies (2.5), and \varphi opt(x) :=

1
2 | x| 

2 - \~\varphi (x) gives rise to an optimal pair (\varphi opt,\psi opt) of
c-conjugate potentials.

Finally, we recall a characterization of geodesics: define the interpolating maps
Ts :\BbbR d \rightarrow \BbbR d for all s \in [0,1] by Ts(x) : = (1 - s)x+ sT (x) = x - s\nabla \varphi u(x). Then the

2The c refers to the cost function, which is the standard one here, c(x, y) = 1
2
| x - y| 2.
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EXPONENTIAL CONVERGENCE FOR COUPLED SYSTEMS 1775

curve (us)s\in [0,1] in \scrP r
2 (\BbbR d) given by us := Ts\#\rho is a geodesic joining u= u0 to \^u= u1,

that is,

W2(u,us) = sW2(u, \^u), W2(us, \^u) = (1 - s)W2(u, \^u).

The natural space for solutions (u, v) to (1.1) is the cross product [\scrP r
2 (\BbbR d)]2. We

endow it with a metric \widetilde W2 in the straightforward way:\widetilde W2

\bigl( 
(u, v), (\^u, \^v)

\bigr) 
: =

\sqrt{} 
W2(u, \^u)2 +W2(v, \^v)2.

The following is easily seen.

Lemma 2.1. A curve (us, vs)0\leq s\leq 1 in [\scrP r
2 (\BbbR d)]2 is a geodesic in [\scrP r

2 (\BbbR d)]2 between
(u0, v0) and (u1, v1) if and only if (us)s\in [0,1] and (vs)s\in [0,1] are geodesics in \scrP r

2 (\BbbR d)
between u0, u1, and between v0, v1, respectively.

2.2. Displacement convexity. See [40, Chapter 7] and [41, Chapter 5] for an
introduction.

Definition 2.2. A functional F on \scrP r
2 (\BbbR d) is \lambda -uniformly displacement convex

with some modulus \lambda \in \BbbR if the real function

[0,1]\ni s \mapsto \rightarrow F
\bigl( 
Ts\#u) - 

\lambda 

2
s(1 - s)W2(u, \^u)

2

is convex for any family (Ts)s\in [0,1] realizing the geodesic between u and \^u= T1\#u.

Displacement convex functionals are rare. An important class of examples is given
by the sum of internal and potential energy:

F(u) =

\int 
\BbbR d

\bigl[ 
e(u) + V u

\bigr] 
dx.(2.6)

In this case F is \lambda -uniformly displacement convex provided that the convex function
e :\BbbR \geq 0 \rightarrow \BbbR satisfies McCann's condition, and that V :\BbbR d \rightarrow \BbbR is \lambda -convex in the usual
sense. A consequence of that property is the validity of a functional inequality; see,
e.g., [15, Theorem 2.1].

Lemma 2.3. Assume that the functional F of the type (2.6) is such that the
convex function e :\BbbR \geq 0 \rightarrow \BbbR satisfies McCann's condition, and such that V :\BbbR d \rightarrow \BbbR 
is \lambda -convex for \lambda > 0. Then F possesses a unique minimizer u\ast \in \scrP r

2 (\BbbR d), and for all
u\in \scrP r

2 (\BbbR d), there holds

2\lambda 
\bigl[ 
F(u) - F(u\ast )

\bigr] 
\leq 
\int 
\BbbR d

u
\bigm| \bigm| \nabla \bigl[ e\prime (u) + V

\bigr] \bigm| \bigm| dx.(2.7)

Functionals of the type (2.6) with \lambda \geq 0 actually even enjoy the stronger property
of being convex along generalized geodesics, which has a variety of consequences. The
only consequence needed below is for the special case h(u) = u logu and V \equiv 0, when
F=H is the entropy functional,

H(u) =

\int 
\BbbR d

u logudx.(2.8)

The metric gradient flow of H is the heat equation \partial sUs = \Delta Us, and (thanks to
convexity along generalized geodesics) it satisfies the so-called evolution variational
inequality (EVI0) (see [3, Theorem 4.0.4]), which is

1

2

d+

ds

\bigm| \bigm| \bigm| \bigm| 
s=0+

W2

\bigl( 
Us,w

\bigr) 2 \leq H(w) - H(U0)(2.9)

for all w \in \scrP r
2 (\BbbR d) and all solutions to \partial sUs =\Delta Us.
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1776 LISA BECK, DANIEL MATTHES, AND MARTINA ZIZZA

2.3. Loss of displacement convexity for mixtures. We indicate why the
aforementioned general theory of \lambda -uniformly displacement convex functionals does
not apply to the energy functional E\varepsilon for proving exponential convergence to equi-
librium in (1.1). Specifically, we show that (the two-component analogue of) dis-
placement convexity cannot be expected for a functional of the form E\varepsilon on the space
[\scrP r

2 (\BbbR d)]2.

Proposition 2.4. Assume that h is not identically zero, and that \varepsilon > 0. Then,
there is no \lambda \in \BbbR such that E\varepsilon is \lambda -convex along geodesics in [\scrP r

2 (\BbbR d)]2. More specif-
ically, for each \omega \in \BbbR >0, there are functions u\omega , v\omega \in \scrP r

2 (\BbbR d)\cap C\infty (\BbbR d) such that

d2

ds2

\bigm| \bigm| \bigm| \bigm| 
s=0

\int 
\BbbR d

H\varepsilon (Ts\#u
\omega , v\omega )dx\leq  - C(\omega  - 1),(2.10)

where C is a positive constant, Ts is the translation by s \geq 0 in x1-direction, i.e.,
Ts(x) = x+ se1, and H\varepsilon is the function defined in (3.1).

Note that, by Lemma 2.1, the curve (Ts\#u
\omega , v\omega )0\leq s\leq 1 is a geodesic in [\scrP r

2 (\BbbR d)]2.

Remark 2.5. With a little technical effort, the construction in the proof below
can be used to show that such pairs (u\omega , v\omega ) are actually dense in [\scrP r

2 (\BbbR d)]2. For the
sake of clarity, we only give the construction for one such pair.

Proof. We first notice that there exists some (U,V ) \in \BbbR 2
>0 with \partial uvh(U,V ) \not = 0,

as h is not identically zero by assumption and satisfies h\equiv 0 on \partial \BbbR 2
\geq 0 in view of the

degeneracy condition (1.13). For the construction below, we assume \partial uvh(U,V )> 0,
and we comment on the other case at the end of the proof. Choose u0, v0 \in \scrP r

2 (\BbbR d)\cap 
C\infty 

c (\BbbR d) such that u0(x) = U and v0(x) = V for all | x| < r, with some sufficiently
small r > 0. For all sufficiently large \omega > 0, define u\omega , v\omega \in \scrP r

2 (\BbbR d)\cap C\infty 
c (\BbbR d) by

u\omega (x) = u0(x) + \omega  - 1/2\delta r(x) sin(\omega x1), v\omega (x) = v0(x) + \omega  - 1/2\delta r(x) sin(\omega x1),(2.11)

where \delta r \in C\infty 
c (\BbbR d) is radially symmetric about the origin, with \delta r(x) = 1 for | x| < r/2

and \delta r(x) = 0 for | x| > r. For the integral in (2.10), we obtain via an integration by
parts:

d2

ds2

\bigm| \bigm| \bigm| \bigm| 
s=0

\int 
\BbbR d

H\varepsilon (Ts\#u
\omega , v\omega )dx

=

\int 
\BbbR d

\bigl[ 
\partial uH\varepsilon (u

\omega , v\omega )\partial x1x1
u\omega + \partial uuH\varepsilon (u

\omega , v\omega )
\bigl( 
\partial x1

u\omega 
\bigr) 2\bigr] 

dx

= - 
\int 
\BbbR d

\partial uvH\varepsilon (u
\omega , v\omega )\partial x1u

\omega \partial x1v
\omega dx.

By construction, the contribution of this integral over | x| < r is roughly proportional
to \omega , with a negative sign since \partial uvH\varepsilon (U,V ) > 0. The contribution on | x| > r has
some finite value, independent of \omega .

Now if \partial uvh(U,V ) is negative instead of positive, we only change the definition
of v\omega in (2.11) above into

v\omega (x) = v0(x) - \omega  - 1/2\delta r(x) sin(\omega x1),

which makes the product \partial x1
u\omega \partial x1

v\omega negative instead of positive for | x| < r/2.
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EXPONENTIAL CONVERGENCE FOR COUPLED SYSTEMS 1777

3. Stationary solutions. In this section, Theorem 1.3 is proven. It is a conse-
quence of the (more detailed) results stated in Propositions 3.2 and 3.5 below. For
brevity, define H\varepsilon :\BbbR 2

\geq 0 \rightarrow \BbbR by

(3.1) H\varepsilon (u, v) : = F (u) +G(v) + \varepsilon h(u, v),

which allows one to write

E\varepsilon (u, v) =

\int 
\BbbR d

\bigl[ 
H\varepsilon (u, v) + u\Phi + v\Psi 

\bigr] 
dx.

Remark 3.1. We notice some important properties of the function H\varepsilon and the
energy E\varepsilon for \varepsilon \in [0, \varepsilon \ast ], which are used in this section.

(1) By hypothesis (1.14), H\varepsilon is nonnegative, strictly convex., and satisfies the
explicit convexity estimate

(3.2) D2H\varepsilon (u, v)\geq 
1

2

\biggl( 
F \prime \prime (u) 0

0 G\prime \prime (v)

\biggr) 
for all (u, v)\in \BbbR 2

>0.

(2) As a consequence of the strict convexity of H\varepsilon , its differential DH\varepsilon is a strictly
monotone continuous map on the cone \BbbR 2

\geq 0, i.e., it satisfies (DH\varepsilon (u, v)  - 
DH\varepsilon (\~u, \~v)) \cdot (u - \~u, v - \~v)> 0 for all (u, v), (\~u, \~v)\in \BbbR 2

\geq 0 with (u, v) \not = (\~u, \~v). In
view of the identities DH\varepsilon (u,0) = (F \prime (u),0) and DH\varepsilon (0, v) = (0,G\prime (v)), and
since F \prime and G\prime are monotone and unbounded with F \prime (0) = G\prime (0) = 0, the
image of DH\varepsilon is \BbbR 2

\geq 0. Hence, DH\varepsilon is a homeomorphism of \BbbR 2
\geq 0 onto itself,

and also a homeomorphism of \BbbR 2
>0 onto itself.

(3) The qualified convexity (3.2), combined with the at least quadratic growth of
F and G, and the \Lambda -convexity of \Phi , \Psi imply

E\varepsilon (u, v)\geq c

\int 
\BbbR d

(u2 + v2)dx+
\Lambda 

2

\int 
\BbbR d

| x| 2(u+ v)dx - C

for all (u, v)\in [L2(\BbbR d)]2 \cap [\scrP r
2 (\BbbR d)]2, with some constants C and c > 0.

In the following, \=U \geq 2 denotes the smallest number such that, with M from
(1.6), there hold

1

2
F \prime ( \=U)\geq F \prime (2) + dM + \varepsilon \ast sup

u,v\leq 2
\partial uh(u, v) + 1,

1

2
G\prime ( \=U)\geq G\prime (2) + dM + \varepsilon \ast sup

u,v\leq 2
\partial vh(u, v) + 1.

(3.3)

Proposition 3.2. Let \varepsilon \in [0, \varepsilon \ast ]. There exists a unique global minimizer (\=u\varepsilon , \=v\varepsilon )
of E\varepsilon in [L2(\BbbR d)]2 \cap [\scrP r

2 (\BbbR d)]2. The components \=u\varepsilon , \=v\varepsilon are continuous functions of
compact support, bounded by \=U from (3.3). Moreover, there are constants U\varepsilon , V\varepsilon > 0
such that \=u\varepsilon , \=v\varepsilon satisfy the Euler--Lagrange equations in (1.24). The supports of \=u\varepsilon 
and \=v\varepsilon are convex and given by the closures of the sublevel sets

\Omega u
\varepsilon : = \{ \Phi <U\varepsilon \} , \Omega v

\varepsilon : = \{ \Psi <V\varepsilon \} ,(3.4)

respectively. Finally, there is an upper bound on U\varepsilon and V\varepsilon , and also on the diameters
of \Omega u

\varepsilon and \Omega v
\varepsilon , uniformly for 0\leq \varepsilon \leq \varepsilon \ast .
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1778 LISA BECK, DANIEL MATTHES, AND MARTINA ZIZZA

Remark 3.3. Thanks to hypothesis (1.13), we have \partial uh(u,0) = \partial vh(0, v) = 0,
and thus the system (1.24) can be made a bit more explicit: On \Omega u

\varepsilon \setminus \Omega v
\varepsilon , one has

\=u\varepsilon = (F \prime ) - 1(U\varepsilon  - \Phi ), on \Omega v
\varepsilon \setminus \Omega u

\varepsilon , one has \=v\varepsilon = (G\prime ) - 1(V\varepsilon  - \Psi ). Finally, on \Omega u
\varepsilon \cap \Omega v

\varepsilon ,
the values of \=u\varepsilon and \=v\varepsilon are obtained as pointwise solution of (1.24), with right-hand
sides U\varepsilon  - \Phi > 0 and V\varepsilon  - \Psi > 0.

Remark 3.4. The explicit representation (3.4) of the supports is related to hy-
pothesis (1.13), specifically to

\partial uh(0, v) = \partial vh(v,0) = 0.(3.5)

If just the part (3.5) of our set of hypotheses was removed, then the conclusions of
Proposition 3.2 are essentially still valid, but the supports of \=u\varepsilon and \=v\varepsilon are only subsets
of the respective sublevel sets of \Phi and \Psi , in general.

For an illustration of this situation, consider the choices F (u) = u2

2 , G(v) = v2

2 ,
and h(u, v) = uv, for which (3.5) is false. Proceeding as in the proof of Proposition
3.2 below, one obtains existence and uniqueness of a minimizer with densities (\=u\varepsilon , \=v\varepsilon ),
and (1.24) turns into a linear system for the values of \=u\varepsilon and \=v\varepsilon on the intersection
of their supports. Thereon, the explicit solution is given by

(1 - \varepsilon 2)\=u\varepsilon = (U\varepsilon  - \Phi )+  - \varepsilon (V\varepsilon  - \Psi )+, (1 - \varepsilon 2)\=v\varepsilon = (V\varepsilon  - \Psi )+  - \varepsilon (U\varepsilon  - \Phi )+.

From this representation it is clear that if the respective sublevel sets of \Phi and \Psi 
overlap, then the supports of \=u\varepsilon and \=v\varepsilon are genuinely smaller.

Proof of Proposition 3.2. By Remark 3.1 (3), the sublevel sets of E\varepsilon are compact
in [\scrP r

2 (\BbbR d)]2, and weakly compact in [L2(\BbbR d)]2. Further, strict convexity of H\varepsilon (see
Remark 3.1 (1)) and nonnegativity of \Phi and \Psi imply strict convexity of E\varepsilon , as well as
its lower semicontinuity with respect to convergence in [\scrP r

2 (\BbbR d)]2. Therefore, existence
and uniqueness of the global minimizer (\=u\varepsilon , \=v\varepsilon )\in [L2(\BbbR d)]2 \cap [\scrP r

2 (\BbbR d)]2 follow via the
direct method from the calculus of variations.

Next, we verify that \=U is an upper bound by showing that if \=u\varepsilon or \=v\varepsilon would exceed
\=U , then there is a competitor (\~u\varepsilon , \~v\varepsilon ), bounded by \=U , of a lower E\varepsilon -energy. Assume
that \=u\varepsilon > \=U on a set P \subset \BbbR d of positive Lebesgue measure. If \=u\varepsilon \leq \=U a.e. but \=v\varepsilon > \=U ,
the argument is analogous. Define

\sigma : =

\int 
P

(\=u\varepsilon  - \=U)dx\in (0,1).(3.6)

Consider the cube Q\subset \BbbR d of volume V = 3 (i.e., of side length 31/d), centered around
the minimum point x\Phi of \Phi . Since \=u\varepsilon and \=v\varepsilon are of unit mass, the subsets of Q on
which \=u\varepsilon \geq 1 or \=v\varepsilon \geq 1, respectively, are of measure at most one. Hence, there is a
set S \subset Q of unit Lebesgue measure on which \=u\varepsilon \leq 1 and \=v\varepsilon \leq 1. Since \=U \geq 2, the
sets P and S are disjoint. We define \~u\varepsilon as a modification of \=u\varepsilon as follows: we set
\~u\varepsilon := \=U on P , we set \~u\varepsilon := \=u\varepsilon + \sigma on S, and we set \~u\varepsilon := \=u\varepsilon otherwise. By definition
of \sigma , and since S is of unit measure, \~u\varepsilon is a probability density, and thus (\~u\varepsilon , \=v\varepsilon ) is
an admissible competitor. On the one hand, a.e. on P , where \~u\varepsilon = \=U \leq \=u\varepsilon ,

H\varepsilon (\=u\varepsilon , \=v\varepsilon ) - H\varepsilon (\~u\varepsilon , \=v\varepsilon )\geq (\=u\varepsilon  - \~u\varepsilon )\partial uH\varepsilon (\~u\varepsilon , \=v\varepsilon )\geq 
1

2
(\=u\varepsilon  - \=U)F \prime ( \=U),

using the convexity estimate (3.2), the degeneracy (1.9) of F , and (1.13) of h. Hence,
recalling the definition (3.6) of \sigma and the nonnegativity of \Phi ,\int 

P

\bigl( 
H\varepsilon (\=u\varepsilon , \=v\varepsilon ) + \=u\varepsilon \Phi + \=v\varepsilon \Psi 

\bigr) 
dx\geq 

\int 
P

\bigl( 
H\varepsilon (\~u\varepsilon , \=v\varepsilon ) + \~u\varepsilon \Phi + \=v\varepsilon \Psi 

\bigr) 
dx+

1

2
F \prime ( \=U)\sigma .
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EXPONENTIAL CONVERGENCE FOR COUPLED SYSTEMS 1779

On the other hand, a.e. on S, where \~u\varepsilon = \=u\varepsilon + \sigma \leq 2,

H\varepsilon (\=u\varepsilon , \=v\varepsilon ) - H\varepsilon (\~u\varepsilon , \=v\varepsilon )\geq 
\bigl( 
\=u\varepsilon  - \~u\varepsilon 

\bigr) 
\partial uH\varepsilon (\~u\varepsilon , \=v\varepsilon )\geq  - 

\Bigl[ 
F \prime (2) + \varepsilon \ast sup

a,b\leq 2
\partial uh(a, b)

\Bigr] 
\sigma .

With S being of unit measure, and recalling that 0\leq \Phi (x)\leq M
2 | x - x\Phi | 2 \leq (3/2)2/ddM/2\leq 

dM for all x\in S thanks to (1.18), it follows that\int 
S

\bigl( 
H\varepsilon (\=u\varepsilon , \=v\varepsilon ) + \=u\varepsilon \Phi + \=v\varepsilon \Psi 

\bigr) 
dx\geq 

\int 
S

\bigl( 
H\varepsilon (\~u\varepsilon , \=v\varepsilon ) + \~u\varepsilon \Phi + \=v\varepsilon \Psi 

\bigr) 
dx

 - 
\Bigl[ 
dM + F \prime (2) + \varepsilon \ast sup

a,b\leq 2
\partial uh(a, b)

\Bigr] 
\sigma .

In summary, recalling the implicit definition (3.3) of \=U , we find

E\varepsilon (\=u\varepsilon , \=v\varepsilon )\geq E\varepsilon (\~u\varepsilon , \=v\varepsilon ) + \sigma .

This contradicts the minimality of (\=u\varepsilon , \=v\varepsilon ). Consequently, a.e. on \BbbR d we have \=u\varepsilon \leq \=U
and \=v\varepsilon \leq \=U .

To characterize the minimizer, we perform variations of the form

\=us\varepsilon = (1 - \alpha s)\=u\varepsilon + s\xi , \=vs\varepsilon = (1 - \beta s)\=v\varepsilon + s\eta ,

with appropriate functions \xi , \eta \in L\infty (\BbbR d) of compact support, and parameters

\alpha =

\int 
\BbbR d

\xi dx, \beta =

\int 
\BbbR d

\eta dx.

We define

U\varepsilon : =

\int 
\BbbR d

\bigl[ 
\partial uH\varepsilon (\=u\varepsilon , \=v\varepsilon ) +\Phi 

\bigr] 
\=u\varepsilon dx, V\varepsilon : =

\int 
\BbbR d

\bigl[ 
\partial vH\varepsilon (\=u\varepsilon , \=v\varepsilon ) +\Psi 

\bigr] 
\=v\varepsilon dx.

First, let \xi , \eta \in Cc(\BbbR d) be nonnegative. Then \=us\varepsilon , \=v
s
\varepsilon \in \scrP r

2 (\BbbR d) for all s\geq 0 sufficiently
small, and

0\leq lim
s\downarrow 0

E\varepsilon (\=u
s
\varepsilon , \=v

s
\varepsilon ) - E\varepsilon (\=u\varepsilon , \=v\varepsilon )

s

=

\int 
\BbbR d

\bigl[ 
\partial uH\varepsilon (\=u\varepsilon , \=v\varepsilon ) +\Phi 

\bigr] 
\xi dx+

\int 
\BbbR d

\bigl[ 
\partial vH\varepsilon (\=u\varepsilon , \=v\varepsilon ) +\Psi 

\bigr] 
\eta dx - \alpha U\varepsilon  - \beta V\varepsilon .

This shows that, a.e. on \BbbR d,

F \prime (\=u\varepsilon ) + \varepsilon \partial uh(\=u\varepsilon , \=v\varepsilon ) +\Phi \geq U\varepsilon ,

G\prime (\=v\varepsilon ) + \varepsilon \partial vh(\=u\varepsilon , \=v\varepsilon ) +\Psi \geq V\varepsilon .
(3.7)

Consequently, with \partial uh(0, v) = 0 for all v \geq 0 by hypothesis (1.13) and the fact that
F is degenerate at zero to first order by hypothesis (1.9), we necessarily have \=u\varepsilon > 0
a.e. on \{ U\varepsilon >\Phi \} , and similarly \=v\varepsilon > 0 a.e. on \{ V\varepsilon >\Psi \} .

Next, let \xi , \eta \in Cc(\BbbR d) be arbitrary. For any \delta > 0, we may perform the afore-
mentioned variations with

\xi \delta : =

\Biggl\{ 
\xi where \=u\varepsilon > \delta ,

0 otherwise,
\eta \delta : =

\Biggl\{ 
\eta where \=v\varepsilon > \delta ,

0 otherwise
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1780 LISA BECK, DANIEL MATTHES, AND MARTINA ZIZZA

even for all  - s\geq 0 sufficiently small, and can thus conclude the opposite inequalities
in (3.7). This means that equality holds in the first inequality in (3.7) a.e. on \{ \=u\varepsilon > 0\} ,
and in the second inequality a.e. on \{ \=v\varepsilon > 0\} .

We next consider the case that \=u\varepsilon > 0 and \=v\varepsilon = 0. Then F \prime (\=u\varepsilon ) > 0, and since
\partial uh(\=u\varepsilon , \=v\varepsilon ) = 0 by hypothesis (1.13), it follows that \Phi <U\varepsilon . Analogously, \=v\varepsilon > 0 and
\=u\varepsilon = 0 implies \Psi < V\varepsilon . Finally, suppose \=u\varepsilon > 0 and \=v\varepsilon > 0, so that (3.7) becomes
a system of two equations. Recalling the definition of H\varepsilon above, that system can be
written as a single vectorial equation as follows:

DH\varepsilon (\=u\varepsilon , \=v\varepsilon ) =

\biggl( 
U\varepsilon  - \Phi 
V\varepsilon  - \Psi 

\biggr) 
.

By Remark 3.1 (2), the positive cone \BbbR 2
>0 is mapped into itself under DH\varepsilon . Therefore,

\=u\varepsilon > 0 and \=v\varepsilon > 0 implies that \Phi < U\varepsilon and \Psi < U\varepsilon , respectively. Consequently, the
positivity sets of \=u\varepsilon and \=v\varepsilon are indeed given by the sublevel sets \Omega u

\varepsilon and \Omega v
\varepsilon from (3.4),

respectively.
To sum up: a.e. on \{ \Phi <U\varepsilon \} , we have \=u\varepsilon > 0 and equality in the first inequality

of (3.7), and a.e. on the complement \{ \Phi \geq U\varepsilon \} , we have u\varepsilon = 0, which, thanks to
F \prime (0) = 0 and \partial uh(0, \=v\varepsilon ) = 0, can be written as

F \prime (\=u\varepsilon ) + \varepsilon \partial uh(\=u\varepsilon , \=v\varepsilon ) = 0.

This (and an analogous argument for \=v\varepsilon ) implies (1.24).
Next, concerning the uniform boundedness of U\varepsilon and V\varepsilon , it suffices to observe

that, in view of \=u\varepsilon , \=v\varepsilon \leq \=U ,

\partial uH\varepsilon 

\bigl( 
\=u\varepsilon , \=v\varepsilon )\leq C := F \prime ( \=U) + \varepsilon \ast sup

a,b\leq \=U

h(a, b),

and further that at x= x\Phi ,

U\varepsilon =U\varepsilon  - \Phi (x\Phi ) = \partial uH\varepsilon 

\bigl( 
\=u\varepsilon (x\Phi ), \=v\varepsilon (x\Phi )

\bigr) 
.

In combination, this yields U\varepsilon \leq C, and we can argue analogously for V\varepsilon . We further
notice that the uniform boundedness of the sets \Omega u

\varepsilon and \Omega v
\varepsilon is a direct consequence of

the estimates in (1.18) and the uniform bound on the constants U\varepsilon and V\varepsilon .
Finally, we verify that the L2-representatives of \=u\varepsilon and \=v\varepsilon that are given as

pointwise solution of (1.24) are continuous. To that end, we write (1.24) as

DH\varepsilon (u\varepsilon , v\varepsilon ) =

\biggl( 
(U\varepsilon  - \Phi )+
(V\varepsilon  - \Psi )+

\biggr) 
.(3.8)

Since DH\varepsilon has a continuous inverse (cf. Remark 3.1 (2)), and since the functions on
the right-hand side of (3.8) are continuous on \BbbR d, so are the solutions \=u\varepsilon and \=v\varepsilon .

Proposition 3.5. In addition to the general hypotheses, assume that (F,G,h)
is k-degenerate for some k \in \BbbN . Then F \prime (\=u\varepsilon ) and G\prime (\=v\varepsilon ) are k times continuously
differentiable in \Omega u

\varepsilon and in \Omega v
\varepsilon , respectively. Moreover, all partial derivatives \partial \alpha F \prime (\=u\varepsilon )

and \partial \alpha G\prime (\=v\varepsilon ) of order | \alpha | \leq k are bounded on \Omega u
\varepsilon and \Omega v

\varepsilon , respectively, uniformly in
\varepsilon \in [0, \varepsilon \ast ].

Remark 3.6. The essential point of Proposition 3.5 is that F \prime (\=u\varepsilon ) is k times
continuously differentiable across the boundary of the support \partial \Omega v

\varepsilon of the other com-
ponent \=v\varepsilon , and vice versa. Across the boundary of its own support \partial \Omega u

\varepsilon , the function
F \prime (\=u\varepsilon ) is generally Lipschitz but no better; see Remark 3.7 after the proof. This
translates into mere H\"older continuity for \=u\varepsilon , and in particular, one cannot expect
the derivatives of \=u\varepsilon itself to be bounded on \Omega u

\varepsilon .
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EXPONENTIAL CONVERGENCE FOR COUPLED SYSTEMS 1781

Proof. The claim will follow by an application of the inverse function theorem.
To that end, define the map \Gamma \varepsilon :\BbbR 2 \rightarrow \BbbR 2 by

\Gamma \varepsilon (\rho , \eta ) =DH\varepsilon 

\bigl( 
(F \prime ) - 1(\rho ), (G\prime ) - 1(\eta )

\bigr) 
=

\biggl( 
\rho + \varepsilon \theta u(\rho , \eta )
\eta + \varepsilon \theta v(\rho , \eta )

\biggr) 
,

with \theta u, \theta v from (1.16), and the convention that \theta u(\rho , \eta ) = \theta v(\rho , \eta ) = 0 if \rho \leq 0 or
\eta \leq 0. By k-degeneracy, \Gamma \varepsilon is Ck-regular.

Recall from Remark 3.1 (2) that DH\varepsilon is a homeomorphism of \BbbR 2
\geq 0. Since F \prime 

and G\prime are continuous and strictly monotone on \BbbR \geq 0, the restriction of \Gamma \varepsilon to \BbbR 2
\geq 0

possesses a continuous inverse as well. Moreover, on \BbbR 2 \setminus \BbbR 2
>0, the inverse of \Gamma \varepsilon is

simply the identity. In conclusion, \Gamma \varepsilon has a global continuous inverse \Gamma  - 1
\varepsilon :\BbbR 2 \rightarrow \BbbR 2

that is the identity on \BbbR 2 \setminus \BbbR 2
>0.

Next, we show that the inverses of the derivative matrices

D\Gamma \varepsilon =

\biggl( 
1 + \varepsilon \partial \rho \theta u \varepsilon \partial \eta \theta u
\varepsilon \partial \rho \theta v 1 + \varepsilon \partial \eta \theta v

\biggr) 
(3.9)

are locally bounded. On \BbbR 2 \setminus \BbbR 2
>0, this is trivial since

D\Gamma \varepsilon (\rho , \eta ) =

\biggl( 
1 0
0 1

\biggr) 
if \rho \leq 0 or \eta \leq 0.(3.10)

On \BbbR 2
>0, we use the alternative representation

D\Gamma \varepsilon (\rho , \eta ) =D2H\varepsilon (u, v)

\Biggl( 1

F
\prime \prime 
(u)

0

0 1

G
\prime \prime 
(v)

\Biggr) 
, with u= (F \prime ) - 1(\rho ), v= (G\prime ) - 1(\eta ).

Since u, v > 0, the Hessian matrix D2H\varepsilon (u, v) is positive definite. Since R \geq M for
symmetric, positive definite matrices implies detR \geq detM > 0, the estimate (3.2)
shows that

detD\Gamma \varepsilon (\rho , \eta )\geq 
1

4
F \prime \prime (u)G\prime \prime (u) \cdot 1

F \prime \prime (u)G\prime \prime (v)
=

1

4
.(3.11)

It follows that the inverses

(D\Gamma \varepsilon )
 - 1 =

1

detD\Gamma \varepsilon 

\biggl( 
1 + \varepsilon \partial \eta \theta v  - \varepsilon \partial \eta \theta u
 - \varepsilon \partial \rho \theta v 1 + \varepsilon \partial \rho \theta u

\biggr) 
are bounded on any compact subset of \BbbR 2

\geq 0, uniformly with respect to \varepsilon \in [0, \varepsilon \ast ].

The inverse function theorem is applicable and shows that \Gamma  - 1
\varepsilon is of class Ck, with

derivatives up to kth order \varepsilon -uniformly bounded on each compact set of \BbbR 2.
To conclude regularity of F \prime (\=u\varepsilon ) and G

\prime (\=v\varepsilon ) from here, we perform the following
change of variables:

\rho (x) = F \prime (u(x)), \eta (x) =G\prime (v(x)).

Written in terms of \=\rho \varepsilon := F \prime (\=u\varepsilon ) and \=\eta \varepsilon :=G\prime (\=v\varepsilon ), the system (1.24) of Euler--Lagrange
equations becomes

\Gamma \varepsilon (\=\rho \varepsilon , \=\eta \varepsilon ) =

\biggl( 
(U\varepsilon  - \Phi )+
(V\varepsilon  - \Psi )+

\biggr) 
,(3.12)
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1782 LISA BECK, DANIEL MATTHES, AND MARTINA ZIZZA

and its solution is given by\biggl( 
\=\rho \varepsilon 
\=\eta \varepsilon 

\biggr) 
= (\Gamma \varepsilon )

 - 1

\biggl( \biggl( 
(U\varepsilon  - \Phi )+
(V\varepsilon  - \Psi )+

\biggr) \biggr) 
.(3.13)

On \Omega u
\varepsilon \cap \Omega v

\varepsilon , where we have

(U\varepsilon  - \Phi )+ =U\varepsilon  - \Phi , (V\varepsilon  - \Psi )+ = V\varepsilon  - \Psi ,

it now follows directly from (3.13) that \=\rho \varepsilon and \=\eta \varepsilon inherit the Ck-regularity of \Phi and
\Psi . Recalling that \=u\varepsilon , \=v\varepsilon \leq \=U , we conclude from the \varepsilon -uniform local boundedness of
the derivatives of \Gamma  - 1

\varepsilon that also the partial derivatives of \=\rho \varepsilon and \=\eta \varepsilon of order \leq k are
bounded, uniformly in \varepsilon \in [0, \varepsilon \ast ] on \Omega u

\varepsilon \cap \Omega v
\varepsilon .

Next, recalling that \Gamma \varepsilon (\rho ,0) = (\rho ,0), we observe that on \Omega u
\varepsilon \setminus \Omega v

\varepsilon ,

\=\rho \varepsilon =U\varepsilon  - \Phi .(3.14)

Therefore, \=\rho \varepsilon inherits the C
k-regularity and bounds from \Phi . The analogous statement

holds for \=\eta \varepsilon on \Omega v
\varepsilon \setminus \Omega u

\varepsilon .
It remains to verify the existence and continuity of all partial derivatives \partial \alpha \=\rho \varepsilon 

of order | \alpha | \leq k across the interfaces \Omega u
\varepsilon \cap \partial \Omega v

\varepsilon . We will do this by showing that at
any point x\ast \in \Omega u

\varepsilon \cap \partial \Omega v
\varepsilon , the limits of \partial \alpha \=\rho \varepsilon from the inside and from the outside of

\Omega v
\varepsilon agree. Since, according to (3.14), the outside limit amounts to  - \partial \alpha \Phi , which is

smooth on \partial \Omega v
\varepsilon , this also proves continuity of \=\rho \varepsilon across the boundary \Omega u

\varepsilon \cap \partial \Omega v
\varepsilon .

Thus, let x\ast \in \Omega u
\varepsilon \cap \partial \Omega v

\varepsilon be fixed. At points x\in \Omega u
\varepsilon \cap \Omega v

\varepsilon , (3.13) simplifies to\biggl( 
\=\rho \varepsilon (x)
\=\eta \varepsilon (x)

\biggr) 
=\Gamma  - 1

\varepsilon 

\biggl( \biggl( 
U\varepsilon  - \Phi (x)
V\varepsilon  - \Psi (x)

\biggr) \biggr) 
.

We start by considering first derivatives. Since

D
\bigl( 
\Gamma  - 1
\varepsilon 

\bigr) 
= (D\Gamma \varepsilon )

 - 1 \circ \Gamma  - 1
\varepsilon =

\biggl[ 
1

detD\Gamma \varepsilon 

\biggl( 
1 + \varepsilon \partial \eta \theta v  - \varepsilon \partial \eta \theta u
 - \varepsilon \partial \rho \theta v 1 + \varepsilon \partial \rho \theta u

\biggr) \biggr] 
\circ \Gamma  - 1

\varepsilon ,

it follows that

\partial xk
\=\rho \varepsilon =

1

detD\Gamma \varepsilon (\=\rho \varepsilon , \=\eta \varepsilon )

\bigl[ 
 - 
\bigl( 
1 + \varepsilon \partial \eta \theta v(\=\rho \varepsilon , \=\eta \varepsilon )

\bigr) 
\partial xk

\Phi  - \varepsilon \partial \eta \theta u(\=\rho \varepsilon , \=\eta \varepsilon )\partial xk
\Psi 
\bigr] 
.(3.15)

Since \=\rho \varepsilon and \=\eta \varepsilon are continuous at x\ast with \=\eta \varepsilon (x
\ast ) = 0, by k-degeneracy we ob-

tain \partial \rho \theta u(\=\rho \varepsilon , \=\eta \varepsilon ) \rightarrow 0 and \partial \eta \theta u(\=\rho \varepsilon , \=\eta \varepsilon ) \rightarrow 0 as x \rightarrow x\ast , which via (3.15) implies
\partial xk

\=\rho \varepsilon (x) \rightarrow  - \partial xk
\Phi (x\ast ), as desired. Higher-order partial derivatives can now be ob-

tained by induction on the degree of differentiability. Assume that for \ell < k, uniform
boundedness of all partial derivatives of order \leq \ell has been shown; note that the proof

for \ell = 1 is above. Application of \partial \alpha 
\prime 
with | \alpha \prime | = \ell to (3.15) yields

\partial \alpha 
\prime 
\partial xk

\=\rho \varepsilon =
\sum 

\beta ,\beta 
\prime 
,\beta 

\prime \prime \geq 0

\beta +\beta 
\prime 
+\beta 

\prime \prime 
=\alpha 

\prime 

C
\beta ,\beta 

\prime 
,\beta 

\prime \prime \partial \beta 
\biggl( 

1

detD\Gamma \varepsilon (\=\rho \varepsilon , \=\eta \varepsilon )

\biggr) 

\times 
\bigl[ 
 - \partial \beta 

\prime \bigl( 
1 + \varepsilon \partial \eta \theta v(\=\rho \varepsilon , \=\eta \varepsilon )

\bigr) 
\partial \beta 

\prime \prime 
\partial xk

\Phi  - \varepsilon \partial \beta 
\prime 
\partial \eta \theta u(\=\rho \varepsilon , \=\eta \varepsilon )\partial 

\beta 
\prime \prime 
\partial xk

\Psi 
\bigr] 
,

with certain combinatorial coefficients C
\beta ,\beta 

\prime 
,\beta 

\prime \prime . The partial derivatives of \Phi and \Psi 

remain uniformly bounded as x \rightarrow x\ast . The same is true for the partial derivatives
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EXPONENTIAL CONVERGENCE FOR COUPLED SYSTEMS 1783

of 1/detD\Gamma \varepsilon ; the entries in D\Gamma \varepsilon are Ck - 1-regular functions by the k-degeneracy
condition, and detD\Gamma \varepsilon is bounded below by virtue of (3.11). Further, observe that

\partial \beta 
\prime 
\partial \eta \theta u(\=\rho \varepsilon , \=\eta \varepsilon ) can be written as a finite weighted sum, where each term is a partial

derivative (with respect to (\rho , \eta )) of order \leq \ell +1= k of \theta u at (\=\rho \varepsilon (x), \=\eta \varepsilon (x))---and hence
continuous---multiplied by a product of partial derivatives (with respect to x) of \=\rho \varepsilon 
and \=\eta \varepsilon of order \leq \ell ---and hence uniformly bounded by induction hypothesis. As above,

using that \=\eta \varepsilon (x)\rightarrow 0 as x\rightarrow x\ast , by k-degeneracy we obtain \partial \beta 
\prime 
\partial \eta \theta u(\=\rho \varepsilon (x), \=\eta \varepsilon (x))\rightarrow 0

and \partial \beta 
\prime 
\partial \eta \theta v(\=\rho \varepsilon (x), \=\eta \varepsilon (x))\rightarrow 0 as x\rightarrow x\ast , which implies \partial \alpha 

\prime 
\partial xk

\=\rho \varepsilon (x)\rightarrow  - \partial \alpha 
\prime 
\partial xk

\Phi (x\ast )
and thus finishes the proof.

Remark 3.7. If (F,G,h) is 1-degenerate, then (3.10) implies that \Gamma  - 1
\varepsilon is a differ-

entiable perturbation of the identity near any point (0, z) with z \in \BbbR . Thus, the first
component \=\rho \varepsilon in (3.13) is of the form (U\varepsilon  - \Phi )+ plus some differentiable perturbation
near the boundary \partial \Omega u

\varepsilon . This confirms Remark 3.6 that, in general, only Lipschitz
regularity can be expected from F \prime (\=u\varepsilon ) across the boundary of its own support.

Example 3.8. The following example illustrates that without the hypothesis of
2-degeneracy, one cannot expect C2-regularity of F \prime (\=u\varepsilon ) and G

\prime (\=v\varepsilon ). We consider

F (u) =
u2

2
, G(v) =

v2

2
, h(u, v) = (uv)2,

which is 1-degenerate, but not 2-degenerate. The system (1.24) attains the form

\=u\varepsilon (1 + 2\varepsilon \=v2\varepsilon ) = (U\varepsilon  - \Phi )+, \=v\varepsilon (1 + 2\varepsilon \=u2\varepsilon ) = (V\varepsilon  - \Psi )+ .

If x\ast \in \Omega u
\varepsilon \cap \partial \Omega v

\varepsilon , then \=v\varepsilon \approx (V\varepsilon  - \Psi )+ is Lipschitz but not differentiable at x\ast ; see
Remark 3.7 above. Thus \=v2\varepsilon is once continuously differentiable, but fails to be twice
differentiable at x\ast . Consequently,

F \prime (\=u\varepsilon ) = \=u\varepsilon =
U\varepsilon  - \Phi 

1+ 2\varepsilon \=v2\varepsilon 

fails to be twice differentiable at x\ast .

Corollary 3.9. Assume that (F,G,h) is 2-degenerate. Then \partial uh(\=u\varepsilon , \=v\varepsilon ) and
\partial vh(\=u\varepsilon , \=v\varepsilon ) are \varepsilon -uniformly semiconvex, that is, there is a K0 \geq 0 such that

\nabla 2\partial uh(\=u\varepsilon , \=v\varepsilon )\geq  - K01, \nabla 2\partial vh(\=u\varepsilon , \=v\varepsilon )\geq  - K01(3.16)

on \BbbR d for all \varepsilon \in [0, \varepsilon \ast ].

Proof. By Proposition 3.5 above, it follows that the gradients and the Hessians
of F \prime (\=u\varepsilon ) and G

\prime (\=u\varepsilon ) are \varepsilon -uniformly bounded on the respective supports \Omega u
\varepsilon and \Omega v

\varepsilon .
With

\partial uh(\=u\varepsilon , \=v\varepsilon ) = \theta u
\bigl( 
F \prime (\=u\varepsilon ),G

\prime (\=v\varepsilon )
\bigr) 
,

and with \theta u \in C2(\BbbR 2
\geq 0), the first and second order derivatives of \partial uh(\=u\varepsilon , \=v\varepsilon ) are

\varepsilon -independently bounded on \Omega u
\varepsilon . In fact, omitting the arguments, we have the repre-

sentation

\nabla 2\partial uh= \partial \rho \theta u\nabla 2F \prime + \partial \eta \theta u\nabla 2G\prime 

+ \partial \rho \rho \theta u\nabla F \prime \otimes \nabla F \prime + \partial \eta \eta \theta u\nabla G\prime \otimes \nabla G\prime + \partial \rho \eta \theta u
\bigl( 
\nabla F \prime \otimes \nabla G\prime +\nabla G\prime \otimes \nabla F \prime \bigr) .
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1784 LISA BECK, DANIEL MATTHES, AND MARTINA ZIZZA

Fix some x\ast at the boundary of the support \Omega u
\varepsilon , and consider the expression above

for x approaching x\ast from inside \Omega u
\varepsilon . The gradients and Hessians of F \prime and G\prime 

remain bounded, whereas the partial derivatives of \theta u converge to zero because of 2-
degeneracy, and because their argument F \prime (\=u\varepsilon ) converges to zero. Thus \nabla 2\partial uh(\=u\varepsilon , \=v\varepsilon )
is continuous across the boundary of the support \Omega u

\varepsilon . This implies an \varepsilon -uniform bound
on the second derivatives of \partial uh(\=u\varepsilon , \=v\varepsilon ), and in particular, the semiconvexity estimate
(3.16).

4. Time-discrete variational approximation. In this section, we assume all
hypotheses on \Phi , \Psi , F , G and h from section 1.3, and further that (F,G,h) is 2-
bounded, 2-degenerate, and satisfies the swap condition. It will turn out that it is of
crucial importance that \varepsilon is sufficiently small. To this end, we assume that \varepsilon \in [0, \=\varepsilon ]
is fixed, where \=\varepsilon \in (0, \varepsilon \ast ] is chosen such that

(4.1) 12\=\varepsilon 2(A2 +W 2)\leq 1 and 2K0\=\varepsilon \leq \Lambda ,

with \varepsilon \ast from hypothesis (1.14), A the constant from Remark 1.1 related to the 2-
boundedness and 2-degeneracy of (F,G,h), W the constant from the swap condition
(1.17), K0 the constant determined in Corollary 3.9, and \Lambda the lower ellipticity bound
of \Phi ,\Psi from hypothesis (1.6). Note that this choice of \=\varepsilon , in particular, implies non-
negativity and strict convexity of E\varepsilon .

4.1. Yosida-regularization and results. The fundamental object that we use
for proving the results on existence and long-time asymptotics of solutions is the
following Yosida-type regularization E\varepsilon ,\tau of E\varepsilon with a time step \tau > 0:

E\varepsilon ,\tau 

\bigl( 
(u, v)

\bigm| \bigm| (\=u, \=v)\bigr) : = 1

2\tau 
\widetilde W2

\bigl( 
(u, v), (\=u, \=v)

\bigr) 2
+E\varepsilon (u, v).

A time-discrete approximation of solutions to (1.1) will be obtained in JKO-style [26]
by means of inductive minimization of E\varepsilon ,\tau . The following certifies well-posedness of
that induction.

Lemma 4.1. Given any pair (\^u, \^v)\in [\scrP r
2 (\BbbR d)]2 of finite energy E\varepsilon (\^u, \^v)<\infty with

\varepsilon \in [0, \varepsilon \ast ], there is a unique minimizing pair (u\ast , v\ast ) \in [\scrP r
2 (\BbbR d)]2 of E\varepsilon ,\tau (\cdot | (\^u, \^v)).

Moreover, one has

E\varepsilon (u
\ast , v\ast ) +

\tau 

2

\biggl( \widetilde W2

\bigl( 
(u\ast , v\ast ), (\^u, \^v)

\bigr) 
\tau 

\biggr) 2

\leq E\varepsilon (\^u, \^v).(4.2)

In particular, E\varepsilon (u
\ast , v\ast )\leq E\varepsilon (\^u, \^v).

Proof. Existence and uniqueness of the minimizing pair (u\ast , v\ast ) \in [\scrP r
2 (\BbbR d)]2 fol-

lows from the direct methods in the calculus of variations, applied to the functional
E\varepsilon ,\tau in [\scrP r

2 (\BbbR d)]2. All three components W2(u, \^u)
2, W2(v, \^v)

2, and E\varepsilon ,\tau are non-
negative (as \varepsilon \in [0, \varepsilon \ast ]), and are lower semicontinuous with respect to convergence
in [\scrP r

2 (\BbbR d)]2. Coercivity on [\scrP r
2 (\BbbR d)]2 follows thanks to the control on the second

moments of u and v by E\varepsilon (u, v). This yields existence. For uniqueness, notice that
W2(u, \^u)

2 is convex in u, that W2(v, \^v)
2 is convex in v, and that E\varepsilon ,\tau is strictly

jointly convex in (u, v), again because of \varepsilon \in [0, \varepsilon \ast ].
Inequality (4.2) now follows from (u\ast , v\ast ) being a minimizer, which means that

E\varepsilon (u
\ast , v\ast )+

\widetilde W2

\bigl( 
(u\ast , v\ast ), (\^u, \^v)

\bigr) 2
2\tau 

=E\varepsilon ,\tau 

\bigl( 
(u\ast , v\ast )

\bigm| \bigm| (\^u, \^v)\bigr) \leq E\varepsilon ,\tau 

\bigl( 
(\^u, \^v)

\bigm| \bigm| (\^u, \^v)\bigr) =E\varepsilon (\^u, \^v).
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EXPONENTIAL CONVERGENCE FOR COUPLED SYSTEMS 1785

The goal of this section is to prove the three results in Propositions 4.2, 4.3, and
4.4 below on the minimizing pairs (u\ast , v\ast ). In the statements of the propositions, it
is understood that \varepsilon \in [0, \=\varepsilon ] is fixed, that (\^u, \^v) \in [\scrP r

2 (\BbbR d)]2 is a given datum of finite
energy E\varepsilon (\^u, \^v)<\infty , and that (u\ast , v\ast ) is the associated minimizer of E\varepsilon ,\tau (\cdot | (\^u, \^v)) in
[\scrP r

2 (\BbbR d)]2.
The first result shows that (u\ast , v\ast ) satisfies a time-discrete weak formulation of

the evolution equations (1.1).

Proposition 4.2. For each \zeta \in C\infty 
c (\BbbR d) there holds\int 

\BbbR d

u\ast  - \^u

\tau 
\zeta dx=

\int 
\BbbR d

u\ast \nabla 
\bigl[ 
F \prime (u\ast ) + \varepsilon \partial uh(u

\ast , v\ast ) +\Phi 
\bigr] 
\cdot \nabla \zeta dx+Ru,\int 

\BbbR d

v\ast  - \^v

\tau 
\zeta dx=

\int 
\BbbR d

v\ast \nabla 
\bigl[ 
G\prime (v\ast ) + \varepsilon \partial vh(u

\ast , v\ast ) +\Psi 
\bigr] 
\cdot \nabla \zeta dx+Rv,

(4.3)

with remainder terms Ru and Rv satisfying

| Ru| + | Rv| \leq \| \zeta \| C2

\bigl( 
E\varepsilon (\^u, \^v) - E\varepsilon (u

\ast , v\ast )
\bigr) 
.(4.4)

The second result , which is the key ingredient for our proof of Theorem 1.4, is
an estimate on F \prime (u\ast ) and G\prime (v\ast ) in H1. It is formulated with help of the entropy
functional H, introduced in (2.8). For brevity, we also define \widetilde H on [\scrP r

2 (\BbbR d)]2 by\widetilde H(u, v) :=H(u) +H(v). By Lemma B.1 from Appendix A, \widetilde H(u, v)> - \infty .

Proposition 4.3. There is a constant C independent of (\^u, \^v) such that\int 
\BbbR d

\bigl( 
| \nabla F \prime (u\ast )| 2 + | \nabla G\prime (v\ast )| 2

\bigr) 
dx

\leq C

\biggl[ 
1 +E\varepsilon (\^u, \^v) +

E\varepsilon (\^u, \^v) - E\varepsilon (u
\ast , v\ast )

\tau 
+
\widetilde H(\^u, \^v) - \widetilde H(u\ast , v\ast )

\tau 

\biggr] 
.

(4.5)

The third result , which contains the essence of the proof of Theorem 1.5, is con-
cerned with proximity of u\ast and v\ast to the respective stationary solutions \=u\varepsilon and \=v\varepsilon .
Recall for a given strictly convex function J :\BbbR \geq 0 \rightarrow \BbbR the definition of the Bregman
divergence dJ(\cdot | \cdot ) :\BbbR \geq 0 \times \BbbR \geq 0 \rightarrow \BbbR \geq 0 as

dJ(s| \=s) : = J(s) - 
\bigl[ 
J(\=s) + (s - \=s)J \prime (\=s)

\bigr] 
.(4.6)

By strict convexity of J , dJ(s| \=s) is always nonnegative, and is zero if and only if s= \=s.
Next, introduce the relative entropy functionals L1 and L2 on \scrP r

2 (\BbbR d) by

L1(u) : =

\int 
\BbbR d

\bigl[ 
dF (u| \=u\varepsilon ) + u(\Phi  - U\varepsilon )+

\bigr] 
dx, L2(v) : =

\int 
\BbbR d

\bigl[ 
dG(v| \=v\varepsilon ) + v(\Psi  - V\varepsilon )+

\bigr] 
dx,

(4.7)

which are clearly nonnegative (as sums of nonnegative parts), and zero if and only if
u= \=u\varepsilon and v= \=v\varepsilon , respectively. Finally, define L on [\scrP r

2 (\BbbR d)]2 by

L(u, v) =L1(u) +L2(v).(4.8)

The equivalence of these definitions of L and L1, L2 to the ones in (1.4) is shown in
section 4.4.
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1786 LISA BECK, DANIEL MATTHES, AND MARTINA ZIZZA

Proposition 4.4. There is a constant K > 0 independent of (\^u, \^v) such that

L(\^u, \^v) - L(u\ast , v\ast )\geq 2\tau (\Lambda  - K\varepsilon )L(u\ast , v\ast ).(4.9)

Our strategy for proving Propositions 4.2, 4.3, and 4.4 is the following. First, we
prove these results under the additional hypothesis on (\^u, \^v):

\^u, \^v are positive a.e. on a ball \BbbB R of some radius R> 0, and vanish a.e. outside.
(4.10)

In section 4.7, we remove this additional hypothesis and generalize the propositions
to arbitrary data (\^u, \^v) of finite energy.

In sections 4.2--4.6 below, the datum (\^u, \^v) is fixed and satisfies (4.10). Accord-
ingly, (u\ast , v\ast ) is the minimizer of E\varepsilon ,\tau (\cdot | (\^u, \^v)) in [\scrP r

2 (\BbbR d)]2. To fix notations, denote
by (\varphi u,\psi u) and by (\varphi v,\psi v) the optimal pairs of c-conjugate potentials for the trans-
ports from u\ast to \^u, and from v\ast to \^v, respectively. By section 2.1, these potentials
are u\ast \scrL d-a.e. uniquely determined, up to a global constant; we fix points \=xu and \=xv
in the support of u and of v, respectively, and normalize \varphi u(\=xu) = 0 and \varphi v(\=xv) = 0.

4.2. Euler--Lagrange equation. In this section, we prove Proposition 4.2 un-
der the additional hypothesis (4.10).

Lemma 4.5. There are constants Cu,Cv \in \BbbR such that

Cu  - \varphi u

\tau 
= F \prime (u\ast ) + \varepsilon \partial uh(u

\ast , v\ast ) +\Phi , u\ast \scrL d-a.e.,

Cv  - 
\varphi v

\tau 
=G\prime (v\ast ) + \varepsilon \partial vh(u

\ast , v\ast ) +\Psi , v\ast \scrL d-a.e.
(4.11)

Proof. We only consider the u-component. Let \rho \in L\infty (\BbbR d) be given, which
vanishes outside of some open set \Omega \subset \BbbR d with compact closure. We assume that\int 

\BbbR d

\rho u\ast dx= 0,(4.12)

which can always be achieved by addition of a suitable multiple of the indicator
function of \Omega to \rho . For \delta \in \BbbR such that 0 < | \delta | \| \rho \| L\infty < 1, let u\delta : = (1 + \delta \rho )u\ast , and
note that u\delta \in \scrP r

2 (\BbbR d) thanks to identity (4.12). Next, let (\varphi \delta 
u,\psi 

\delta 
u) be an optimal

pair of c-conjugate potentials for the transport from u\delta to \^u with the normalization
\varphi \delta 
u(\=xu) = 0. Recalling that \^u satisfies the additional hypothesis (4.10), \varphi \delta 

u is uniquely
determined u\ast \scrL d-a.e. (note that u\delta \scrL d and u\ast \scrL d have the same negligible sets), up to
a global constant. Since \=xu is in support of u\delta , we can normalize \varphi \delta 

u by \varphi \delta 
u(\=xu) = 0.

For later reference, recall that the auxiliary potential \~\varphi \delta 
u(x) :=

1
2 | x| 

2  - \varphi \delta 
u(x) is a

proper, lower semicontinuous, and convex function. Moreover, as the associated op-
timal transport map T \delta 

u =\nabla \~\varphi \delta 
u maps u\ast \scrL d-almost surely onto the support of \^u, i.e.,

into \BbbB R, it follows that | \nabla \~\varphi \delta 
u| \leq R u\ast \scrL d-a.e. For convenience and without loss of gen-

erality, we may actually assume that on u\ast \scrL d-negligible sets, \varphi \delta 
u is defined such that

| \nabla \~\varphi \delta 
u| \leq R a.e. on \BbbR d.(4.13)

Clearly, (\varphi \delta 
u,\psi 

\delta 
u) is a (in general, suboptimal) pair of c-conjugate potentials for the

transport from u\ast to \^u. Recalling further the definition of (u\ast , v\ast ) as the minimizer
of E\varepsilon ,\tau (\cdot | (\^u, \^v)), we conclude the following chain of inequalities:
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EXPONENTIAL CONVERGENCE FOR COUPLED SYSTEMS 1787

1

\tau 

\biggl( \int 
\BbbR d

\varphi \delta 
u(x)u

\ast (x)dx+

\int 
\BbbR d

\psi \delta 
u(y)\^u(y)dy+

1

2
W2(v

\ast , \^v)2
\biggr) 
+E\varepsilon (u

\ast , v\ast )

\leq E\varepsilon ,\tau 

\bigl( 
(u\ast , v\ast )

\bigm| \bigm| (\^u, \^v)\bigr) 
\leq E\varepsilon ,\tau 

\bigl( 
(u\delta , v\ast )

\bigm| \bigm| (\^u, \^v)\bigr) 
=

1

\tau 

\biggl( \int 
\BbbR d

\varphi \delta 
u(x)u

\delta (x)dx+

\int 
\BbbR d

\psi \delta 
u(y)\^u(y)dy+

1

2
W2(v

\ast , \^v)2
\biggr) 
+E\varepsilon (u

\delta , v\ast ).

It thus follows that

0\leq 
\int 
\BbbR d

\varphi \delta 
u

\tau 

u\delta  - u\ast 

\delta 
dx+

1

\delta 

\bigl( 
E\varepsilon (u

\delta , v\ast ) - E\varepsilon (u
\ast , v\ast )

\bigr) 
.(4.14)

We shall now pass to the limit \delta \downarrow 0. Since \~\varphi \delta 
u(\=xu) = 0 is fixed, and since (4.13) gives a

uniform Lipschitz bound, the Arzel\`a--Ascoli theorem yields local uniform convergence
of \~\varphi \delta k

u to a limit \~\varphi 0
u along a suitable sequence \delta k \downarrow 0. We wish to show that

\~\varphi 0
u(x) = \~\varphi u(x) :=

1

2
| x| 2  - \varphi u(x) for u\ast \scrL d-a.e. x.(4.15)

By convexity of the \~\varphi \delta k
u , local uniform convergence of the function values implies

\scrL d-a.e. convergence of the gradients. So, in particular, T \delta k
u \rightarrow T 0

u := \nabla \~\varphi 0
u u

\ast \scrL d-a.e.
But T 0

u\#u
\ast = \^u, since for every \omega \in Cc(\BbbR d)\int 

\BbbR d

\omega \^udy=

\int 
\BbbR d

\omega T \delta k
u \#u\delta dy=

\int 
\BbbR d

\omega \circ T \delta k
u u\delta dx

\rightarrow 
\int 
\BbbR d

\omega \circ T 0
u u

\ast dx=

\int 
\BbbR d

\omega T 0
u\#u

\ast dx.

The limit in the chain above is justified by the dominated convergence theorem, since
\omega \circ T \delta k

u \rightarrow \omega \circ T 0
u u

\ast \scrL d-a.e., since \omega is bounded, and since u\delta  - u\ast = \delta \rho u\ast by construction.
This means that \~\varphi 0

u is an auxiliary optimal potential for the transport from u\ast to \^u.
Using again u\ast \scrL d-a.e. uniqueness of such an optimal potential up to a global constant
thanks to (4.10), and observing that \~\varphi 0

u(\=xu) = 0 by local uniform convergence, we
conclude (4.15). Now, since (u\delta  - u\ast )/\delta = u\ast \rho with \rho bounded, it follows that

lim
k\rightarrow \infty 

\int 
\BbbR d

\varphi \delta k
u

\tau 

u\delta k  - u\ast 

\delta k
dx=

\int 
\BbbR d

\varphi u

\tau 
u\ast \rho dx.

Note that local uniform convergence has been sufficient here since \rho vanishes outside
the compact set \=\Omega .

Further, since H\varepsilon (u
\ast , v\ast ) is integrable on \BbbR d, so is H\varepsilon ((1 + \delta \rho )u\ast , v\ast ) thanks to

the doubling condition (1.12) and to (1.15), and the variational derivative of E\varepsilon in
direction \rho u\ast is readily computed by standard methods. With (4.14), this leads to

0\leq 
\int 
\BbbR d

\Bigl[ \varphi u

\tau 
+ F \prime (u\ast ) +\Phi + \varepsilon \partial uh(u

\ast , v\ast )
\Bigr] 
u\ast \rho dx.(4.16)

The same argument applies for 0 > \delta >  - 1/\| \rho \| L\infty , when the relation in (4.14) is
reversed. Consequently, (4.16) holds with the reversed relation as well, i.e., it is an
equality. Since \rho has been an arbitrary bounded function of compact support, only
subject to the normalization (4.12), the term in square parenthesis above equals to a
global constant Cu. The value of Cu is determined by our normalization \varphi u(\=xu) = 0.
This finishes the proof of the lemma.
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1788 LISA BECK, DANIEL MATTHES, AND MARTINA ZIZZA

Proof of Proposition 4.2 under the additional hypothesis (4.10). Let T (x) = x - 
\nabla \varphi u(x) be the optimal transport map from u\ast to u, recalling that \^u= T\#u\ast and the
definition (2.1) of the push-forward, we obtain\int 

\BbbR d

u\ast  - \^u

\tau 
\zeta dx

=
1

\tau 

\biggl( \int 
\BbbR d

\zeta (x)u\ast (x)dx - 
\int 
\BbbR d

\zeta \circ T (x)u\ast (x)dx
\biggr) 

=
1

\tau 

\int 
\BbbR d

\bigl( 
\zeta  - \zeta \circ T

\bigr) 
u\ast dx

=
1

\tau 

\int 
\BbbR d

\Bigl[ 
\nabla \zeta (x) \cdot 

\bigl( 
x - T (x)

\bigr) 
 - 1

2

\bigl( 
x - T (x)

\bigr) T\nabla 2\zeta (mx)
\bigl( 
x - T (x)

\bigr) \Bigr] 
u\ast (x)dx,

where mx is a suitable intermediate point on the line connecting x to T (x). In
summary, \int 

\BbbR d

u\ast  - \^u

\tau 
\zeta dx=

\int 
\BbbR d

u\ast \nabla 
\Bigl( \varphi u

\tau 

\Bigr) 
\cdot \nabla \zeta dx+Ru,(4.17)

where, thanks to (2.5),

| Ru| \leq 
1

2\tau 
\| \nabla 2\zeta \| \infty 

\int 
\BbbR d

| \nabla \varphi u| 2u\ast dx\leq 
\| \zeta \| C2

2\tau 
W2(u

\ast , \^u)2.(4.18)

Substitution of (4.11)---which is relying on the additional hypothesis (4.10)---into
(4.17) above produces the first equation in (4.3).

The v-component is treated in a similar way, leading to the second equation in
(4.3). Adding the two estimates of the form (4.18) and using (4.2) we obtain

| Ru| + | Rv| \leq 
\| \zeta \| C2

2\tau 

\bigl[ 
W2(u

\ast , \^u)2 +W2(v
\ast , \^v)2

\bigr] 
\leq \| \zeta \| C2

\bigl[ 
E\varepsilon (\^u, \^v) - E\varepsilon (u

\ast , v\ast )
\bigr] 
.

4.3. Regularity estimates. In this section, we prove Proposition 4.3, subject
to (4.10). The proof follows from Lemmas 4.6 and 4.7 below, where the first condition
in (4.1) concerning the smallness of \=\varepsilon becomes relevant. The additional hypothesis
(4.10) only enters indirectly, via Lemma 4.5.

Lemma 4.6. With a constant C independent of (\^u, \^v), there holds

\int 
\BbbR d

\bigl[ 
u\ast | \nabla F \prime (u\ast )| 2 + v\ast | \nabla G\prime (v\ast )| 2

\bigr] 
dx\leq C

\biggl( 
E\varepsilon (\^u, \^v) +

E\varepsilon (\^u, \^v) - E\varepsilon (u
\ast , v\ast )

\tau 

\biggr) 
.

(4.19)

In particular, \nabla F \prime (u\ast )\in L2(\BbbR d;u\ast \scrL d) and \nabla G\prime (v\ast )\in L2(\BbbR d;v\ast \scrL d).

Proof. Thanks to Lemma 4.5 and the properties of c-conjugate potentials, the sum
F \prime (u\ast ) + \varepsilon \partial uh(u

\ast , v\ast ) + \Phi is differentiable u\ast \scrL d-a.e. We apply the binomial theorem
to the first equation in (4.11) and use (1.19), obtaining

1

3
| \nabla F \prime (u\ast )| 2 \leq 

\bigm| \bigm| \nabla \bigl[ F \prime (u\ast ) + \varepsilon \partial uh(u
\ast , v\ast ) +\Phi 

\bigr] \bigm| \bigm| 2 + \varepsilon 2| \nabla \partial uh(u\ast , v\ast )| 2 + | \nabla \Phi | 2

\leq 
\bigm| \bigm| \bigm|  - \nabla \varphi u

\tau 

\bigm| \bigm| \bigm| 2 + 2\varepsilon 2
\bigl( 
\partial \rho \theta u

\bigr) 2| \nabla F \prime (u\ast )| 2 + 2\varepsilon 2
\bigl( 
\partial \eta \theta u

\bigr) 2| \nabla G\prime (v\ast )| 2 + 2M2

\Lambda 
\Phi .
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EXPONENTIAL CONVERGENCE FOR COUPLED SYSTEMS 1789

By means of (2.5), the bound (1.21) thanks to 2-boundedness and 2-degeneracy of
(F,G,h), and the swap condition (1.17), it follows that

1

3

\int 
\BbbR d

u\ast | \nabla F \prime (u\ast )| 2 dx\leq 
\biggl( 
W2(u

\ast , \^u)

\tau 

\biggr) 2

+ 2\varepsilon 2A2

\int 
\BbbR d

u\ast | \nabla F \prime (u\ast )| 2 dx

+ 2\varepsilon 2W 2

\int 
\BbbR d

v\ast | \nabla G\prime (v\ast )| 2 dx+ 2M2

\Lambda 

\int 
\BbbR d

\Phi u\ast dx.

In combination with the analogous estimate for v\ast in place of u\ast , and observing that
H\varepsilon \geq 0, we obtain that\biggl( 

1

3
 - 2\varepsilon 2(A2 +W 2)

\biggr) \biggl( \int 
\BbbR d

u\ast | \nabla F \prime (u\ast )| 2 dx+
\int 
\BbbR d

v\ast | \nabla G\prime (v\ast )| 2 dx
\biggr) 

\leq 
\biggl( 
W2(u

\ast , \^u)

\tau 

\biggr) 2

+

\biggl( 
W2(v

\ast , \^v)

\tau 

\biggr) 2

+
2M2

\Lambda 
E\varepsilon (u

\ast , v\ast ).

The result now follows using (4.2) and the choice of \=\varepsilon in (4.1).

Lemma 4.7. With a constant C independent of (\^u, \^v), there holds

\int 
\BbbR d

\bigl( \bigm| \bigm| \nabla [F \prime (u\ast )]
F
\prime 
(1)

\bigm| \bigm| 2 + \bigm| \bigm| \nabla [G\prime (v\ast )]
G
\prime 
(1)

\bigm| \bigm| 2\bigr) dx\leq C

\biggl( 
1 +

\widetilde H(\^u, \^v) - \widetilde H(u\ast , v\ast )

\tau 

\biggr) 
,

(4.20)

where [z]k :=min\{ k, z\} is the cut-off at the value k.

Proof. The proof uses the method of flow interchange, which estimates the effect
of variations of a Yosida-regularized nonconvex functional along the gradient flow of
an auxiliary convex functional. The method has been introduced in [32], unifying
several similar ideas from the literature; see, e.g., [26, 24].

For all s > 0, define perturbations (Us, Vs) \in [\scrP r
2 (\BbbR d)]2 of (U0, V0) := (u\ast , v\ast ) as

follows:

Us : =\scrK s \ast u\ast , Vs : =\scrK s \ast v\ast with \scrK s(z) = (4\pi s) - d/2 exp( - (4s) - 1| z| 2).

Since \scrK s(z) is the fundamental solution of the heat equation, it is well known that
(s,x) \mapsto \rightarrow Us(x) and (s,x) \mapsto \rightarrow Vs(x) are C

\infty -smooth on (0,\infty )\times \BbbR d, with

\partial sUs =\Delta Us, \partial sVs =\Delta Vs(4.21)

in the classical sense, and that Us \rightarrow u\ast and Vs \rightarrow v\ast in L1(\BbbR d). Moreover, (Us)s>0

and (Vs)s>0---considered as flows on \scrP r
2 (\BbbR d)---satisfy the (EVI0); see (2.9).

We perform a detailed comparison of the E\varepsilon ,\tau -scores of (Us, Vs) and of (u\ast , v\ast ).
By minimality, we know that E\varepsilon ,\tau ((u

\ast , v\ast )| (\^u, \^v))\leq E\varepsilon ,\tau ((Ur, Vr)| (\^u, \^v)); consequently,
for each \sigma > 0,

E\varepsilon (u
\ast , v\ast ) - E\varepsilon (U\sigma , V\sigma )

\sigma 
(4.22)

\leq 1

2\tau 

\biggl( 
W2(U\sigma , \^u)

2  - W2(u
\ast , \^u)2

\sigma 
+

W2(V\sigma , \^v)
2  - W2(v

\ast , \^v)2

\sigma 

\biggr) 
.
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1790 LISA BECK, DANIEL MATTHES, AND MARTINA ZIZZA

We consider the limes superior as \sigma \downarrow 0 on both sides. On the right-hand side, the
(EVI0) from (2.9) is applicable and yields

limsup
\sigma \downarrow 0

E\varepsilon (u
\ast , v\ast ) - E\varepsilon (U\sigma , V\sigma )

\sigma 
(4.23)

\leq H(\^u) - H(u\ast )

\tau 
+

H(\^v) - H(v\ast )

\tau 
=
\widetilde H(\^u, \^v) - \widetilde H(u\ast , v\ast )

\tau 
.

For estimation on the left-hand side, we use the heat equation (4.21). By regularity
and convexity of H\varepsilon , it easily follows that s \mapsto \rightarrow E\varepsilon (Us, Vs) is continuous at \sigma = 0+.
Thanks to smoothness for \sigma > 0, we can now write

E\varepsilon (u
\ast , v\ast ) - E\varepsilon (U\sigma , V\sigma )

\sigma 
= - 1

\sigma 

\int \sigma 

0

\partial sE\varepsilon (Us, Vs)ds

by means of the fundamental theorem of calculus. Next, using also smoothness in x
and the convexity estimate (3.2), we obtain

 - \partial sE\varepsilon (Us, Vs)

= - 
\int 
\BbbR d

\bigl( 
[\partial uH\varepsilon (Us, Vs) +\Phi ]\Delta Us + [\partial vH\varepsilon (Us, Vs) +\Psi ]\Delta Vs

\bigr) 
dx

=

\int 
\BbbR d

\bigl( 
\nabla \partial uH\varepsilon (Us, Vs) \cdot \nabla Us +\nabla \partial vH\varepsilon (Us, Vs) \cdot \nabla Vs  - \Delta \Phi Us  - \Delta \Psi Vs

\bigr) 
dx

\geq 
\int 
\BbbR d

d\sum 
j=1

\biggl( 
\partial xjUs

\partial xjVs

\biggr) 
\cdot D2H\varepsilon (Us, Vs) \cdot 

\biggl( 
\partial xjUs

\partial xjVs

\biggr) 
 - dM

\int 
\BbbR d

(Us + Vs)dx

\geq 1

2

d\sum 
j=1

\int 
\BbbR d

\biggl( 
\partial xj

Us

\partial xj
Vs

\biggr) 
\cdot 
\biggl( 
F \prime \prime (Us) 0

0 G\prime \prime (Vs)

\biggr) 
\cdot 
\biggl( 
\partial xj

Us

\partial xj
Vs

\biggr) 
 - 2dM

\geq 1

2B

\int 
\BbbR d

\bigl[ \bigm| \bigm| \nabla [F \prime (Us)]F \prime 
(1)

\bigm| \bigm| 2 + \bigm| \bigm| \nabla [G\prime (Vs)]G\prime 
(1)

\bigm| \bigm| 2\bigr] dx - 2dM,

where B =max0\leq r\leq 1F
\prime \prime (r), since by monotonicity of F \prime , we have a.e.

\bigm| \bigm| \nabla [F \prime (Us)]F \prime 
(1)

\bigm| \bigm| 2 =\Biggl\{ F \prime \prime (Us)
2| \nabla Us| 2 if 0\leq Us < 1,

0 if Us \geq 1

\leq BF \prime \prime (Us)| \nabla Us| 2.

In combination with (4.23), we have

limsup
\sigma \downarrow 0

1

2B\sigma 

\int \sigma 

0

\int 
\BbbR d

\bigl[ \bigm| \bigm| \nabla [F \prime (Us)]F \prime 
(1)

\bigm| \bigm| 2 + \bigm| \bigm| \nabla [G\prime (Vs)]G\prime 
(1)

\bigm| \bigm| 2\bigr] dxd\sigma (4.24)

\leq 
\widetilde H(\^u, \^v) - \widetilde H(u\ast , v\ast )

\tau 
+ 2dM.

In addition, observe that, thanks to the at-most linear growth of F \prime near zero,
[F \prime (Us)]F \prime 

(1)
is uniformly controlled in L2(\BbbR d) by the L1-norm of Us, which is one.

With (4.24) it now follows that [F \prime (U\sigma )]F \prime 
(1)

is uniformly bounded in H1(\BbbR d) at least

along some sequence with \sigma \downarrow 0. By Rellich's lemma, one may assume strong conver-
gence of that sequence in L2(\BbbR d), and thus identify the limit as [F \prime (u\ast )]

F
\prime 
(1)

, since
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EXPONENTIAL CONVERGENCE FOR COUPLED SYSTEMS 1791

Us \rightarrow u\ast strongly in L1(\BbbR d) for s \downarrow 0. By Alaoglu's theorem, F \prime (U\sigma ) converges weakly
in H1(\BbbR d) to F \prime (u\ast ), and by lower semicontinuity of norms, we finally obtain from
(4.24)

1

2B

\int 
\BbbR d

\bigl[ \bigm| \bigm| \nabla [F \prime (u\ast )]
F
\prime 
(1)

\bigm| \bigm| 2 + \bigm| \bigm| \nabla [G\prime (v\ast )]
G
\prime 
(1)

\bigm| \bigm| 2\bigr] dx\leq \widetilde H(\^u, \^v) - \widetilde H(u\ast , v\ast )

\tau 
+ 2dM,

which immediately yields the claim (4.20).

Proof of Proposition 4.3 under the additional hypothesis (4.10). Combine (4.19)
and (4.20), using that

| \nabla F \prime (u\ast )| 2 \leq | \nabla [F \prime (u\ast )]
F
\prime 
(1)

| 2 + u\ast | \nabla F \prime (u\ast )| 2

because \nabla F \prime (u\ast ) = \nabla [F \prime (u\ast )]
F
\prime 
(1)

if u\ast < 1, and | \nabla F \prime (u\ast )| 2 \leq u\ast | \nabla F \prime (u\ast )| 2 if

u\ast \geq 1.

4.4. Definition of auxiliary functionals. In this section and the next, we lay
the basis for the proof of Proposition 4.4 in section 4.6. With (\=u\varepsilon , \=v\varepsilon ) \in [\scrP r

2 (\BbbR d)]2

denoting the unique stationary pair of densities and \theta u and \theta v introduced in (1.16),
we shall use the abbreviation

\=\Theta u := \theta u
\bigl( 
F \prime (\=u\varepsilon ),G

\prime (\=v\varepsilon )
\bigr) 
= \partial uh(\=u\varepsilon , \=v\varepsilon ), \=\Theta v := \theta v

\bigl( 
F \prime (\=u\varepsilon ),G

\prime (\=v\varepsilon )
\bigr) 
= \partial vh(\=u\varepsilon , \=v\varepsilon ).

(4.25)

This allows for an alternative representation of the functionals L1 and L2 defined in
(4.7). As indicated in the introduction (see (1.4)),

L1(u) =

\int 
\BbbR d

\bigl[ 
F (u) + (\Phi + \varepsilon \=\Theta u)u

\bigr] 
dx - 

\int 
\BbbR d

\bigl[ 
F (\=u\varepsilon ) + (\Phi + \varepsilon \=\Theta u)\=u\varepsilon 

\bigr] 
dx,

L2(v) =

\int 
\BbbR d

\bigl[ 
G(v) + (\Psi + \varepsilon \=\Theta v)v

\bigr] 
dx - 

\int 
\BbbR d

\bigl[ 
G(\=v\varepsilon ) + (\Psi + \varepsilon \=\Theta v)\=v\varepsilon 

\bigr] 
dx

(4.26)

for u, v \in \scrP r
2 (\BbbR d). Notice that in both lines, the second integral is simply a normal-

ization depending on \varepsilon but not on u or v. The equivalence of the first formula above
to the definition of L1 in (4.7) is obtained by using, in that order, the fact that \=u\varepsilon = 0
on \{ \Phi \geq U\varepsilon \} , then the definition of dF , next the first Euler--Lagrange equation from
(1.24) in combination with the identity \Phi  - U\varepsilon = (\Phi  - U\varepsilon )+ - (U\varepsilon  - \Phi )+, which yields
F \prime (\=u\varepsilon )+\varepsilon \=\Theta u = (\Phi  - U\varepsilon )+ - (\Phi  - U\varepsilon ), and finally equality of mass of u and \=u\varepsilon . In this
way, we find

L1(u) =

\int 
\BbbR d

\bigl[ 
dF (u| \=u\varepsilon ) + (u - \=u\varepsilon )(\Phi  - U\varepsilon )+

\bigr] 
dx

=

\int 
\BbbR d

\bigl[ 
F (u) - F (\=u\varepsilon ) + (u - \=u\varepsilon )

\bigl( 
(\Phi  - U\varepsilon )+  - F \prime (\=u\varepsilon )

\bigr) \bigr] 
dx

=

\int 
\BbbR d

\bigl[ 
F (u) - F (\=u\varepsilon ) + (u - \=u\varepsilon )

\bigl( 
\Phi  - U\varepsilon + \varepsilon \=\Theta u

\bigr) \bigr] 
dx

=

\int 
\BbbR d

\bigl[ 
F (u) - F (\=u\varepsilon ) + (u - \=u\varepsilon )

\bigl( 
\Phi + \varepsilon \=\Theta u

\bigr) \bigr] 
dx.

The second formula in (4.26) is justified analogously. Note that in view of (4.26), the
relation between E\varepsilon and L is simply

E\varepsilon (u, v) - E\varepsilon (\=u\varepsilon , \=v\varepsilon )(4.27)

=L(u, v) + \varepsilon 

\int 
\BbbR d

\bigl[ 
h(u, v) - h(\=u\varepsilon , \=v\varepsilon ) - 

\bigl( 
u - \=u\varepsilon ) \=\Theta u  - (v - \=v\varepsilon ) \=\Theta v

\bigr] 
dx.
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1792 LISA BECK, DANIEL MATTHES, AND MARTINA ZIZZA

For later reference, observe that thanks to the general hypotheses---in particular
(1.15)---and to the \varepsilon -uniform estimates on the constants U\varepsilon and V\varepsilon from section 3,
there is a constant C independent of \varepsilon \in [0, \varepsilon \ast ] such that\int 

\BbbR d

\Phi udx\leq L1(u) +C,

\int 
\BbbR d

\Psi v dx\leq L2(v) +C,(4.28)

and

(4.29) L(u, v)\leq 2E\varepsilon (u, v) +C, E\varepsilon (u, v)\leq 2L(u, v) +C.

Next, we introduce dissipation functionals that accompany L1 and L2:

D1(u) =

\int 
\BbbR d

u
\bigm| \bigm| \nabla \bigl[ F \prime (u) +\Phi + \varepsilon \=\Theta u

\bigr] \bigm| \bigm| 2 dx, D2(v) =

\int 
\BbbR d

v
\bigm| \bigm| \nabla \bigl[ G\prime (v) +\Psi + \varepsilon \=\Theta v

\bigr] \bigm| \bigm| 2 dx.(4.30)

In the language of subdifferential calculus in the L2-Wasserstein metric (see, e.g.,
[3, Chapter 10]) and in view of the representation (4.26) above, one can character-
ize the functionals above as D1 = | \partial L1| 2 and D2 = | \partial L2| 2. Our method of proof
does not require the full machinery of metric subdifferentials, but only the following
consequence.

Lemma 4.8. There is a constant K0 such that for all \varepsilon \in [0, \varepsilon \ast ] with K0\varepsilon < \Lambda ,
the functionals L1 and L2 are uniformly displacement convex of modulus \Lambda  - K0\varepsilon . In
particular, for all u, v \in \scrP r

2 (\BbbR d) with D1(u)<\infty and D2(v)<\infty , there hold

(4.31) 2(\Lambda  - K0\varepsilon )L1(u)\leq D1(u), 2(\Lambda  - K0\varepsilon )L2(v)\leq D2(v).

Proof. By Corollary 3.9 (see (3.16)), the function \=\Theta u = \partial uh(\=u\varepsilon , \=v\varepsilon ) is \varepsilon -uniformly
semiconvex with some modulus  - K0. Recalling the \Lambda -uniform convexity of \Phi , we
conclude that the sum \Phi + \varepsilon \=\Theta u is uniformly convex of modulus \Lambda  - K0\varepsilon as long
as K0\varepsilon < \Lambda . By assumption, F satisfies McCann's condition (1.11). The result
now follows from the general theory of displacement convexity; see Lemma 2.3. The
argument for L2 is completely analogous.

Notice that by the second condition in (4.1) for the choice of \=\varepsilon > 0, we are able to
bound for every \varepsilon \in [0, \=\varepsilon ] the dissipation functionals D1 and D2 from below by some
positive multiple of the relative entropy functionals L1 and L2, respectively.

4.5. An estimate by Bregman distances. The sole purpose of this section
is to show Lemma 4.9 below, which becomes essential for the estimate of ``garbage
terms"" in the proof of Proposition 4.4. The (technical) proof of the lemma heavily
uses 2-degeneracy and 2-boundedness of (F,G,h).

Lemma 4.9. There is a constant \kappa independent of \varepsilon \in [0, \varepsilon \ast ] such that the estimate\int 
\BbbR d

(u+ v)
\bigl[ 
\omega 
\bigl( 
F \prime (u),G\prime (v)

\bigr) 
 - \omega 

\bigl( 
F \prime (\=u\varepsilon ),G

\prime (\=v\varepsilon )
\bigr) \bigr] 2

dx\leq \kappa L(u, v)(4.32)

holds for all (u, v)\in [\scrP r
2 (\BbbR d)]2 with L(u, v)<\infty and for \omega :\BbbR 2

\geq 0 \rightarrow \BbbR being any of the
following four functions: \partial \rho \theta u, \partial \eta \theta u, \partial \rho \theta v, or \partial \eta \theta v.
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EXPONENTIAL CONVERGENCE FOR COUPLED SYSTEMS 1793

Proof. We shall derive (4.32) as a consequence of a pointwise estimate on the
integrand, namely

(u+ v)
\bigl[ 
\omega 
\bigl( 
F \prime (u),G\prime (v)

\bigr) 
 - \omega 

\bigl( 
F \prime (\=u\varepsilon ),G

\prime (\=v\varepsilon )
\bigr) \bigr] 2 \leq \kappa 

\bigl( 
dF (u| \=u\varepsilon ) + dG(v| \=v\varepsilon )

\bigr) 
,(4.33)

where dF and dG were introduced in (4.6). In view of the definition of L in (4.7)--(4.8),
an integration in x yields the claim (4.32).

We now prove (4.33), only with u instead of (u+v) (as the case with v instead of
(u+ v) is analogous). Let \=U be such that \=u\varepsilon , \=v\varepsilon \leq \=U for all \varepsilon \in [0, \varepsilon \ast ]. We distinguish
three cases.

Case 1: u> 3 \=U . By 2-boundedness and 2-degeneracy of (F,G,h), we have

u
\bigl[ 
\omega 
\bigl( 
F \prime (u),G\prime (v)

\bigr) 
 - \omega 

\bigl( 
F \prime (\=u\varepsilon ),G

\prime (\=v\varepsilon )
\bigr) \bigr] 2 \leq 4A2u;

see Remark 1.1 (3). The multiple of u on the right-hand side can be estimated by a
multiple of dF (u| \=u) as follows: thanks to convexity of F ,

dF (u| \=u\varepsilon )\geq F (2 \=U) + (u - 2 \=U)F \prime (2 \=U) - 
\bigl[ 
F (\=u\varepsilon ) + (u - \=u\varepsilon )F

\prime (\=u\varepsilon )
\bigr] 

\geq (u - 2 \=U)F \prime (2 \=U) + (2 \=U  - \=u\varepsilon )F
\prime (\=u\varepsilon ) - (u - \=u\varepsilon )F

\prime (\=u\varepsilon )

= (u - 2 \=U)
\bigl[ 
F \prime (2 \=U) - F \prime (\=u\varepsilon )

\bigr] 
\geq (u - 2 \=U)

\bigl[ 
F \prime (2 \=U) - F \prime ( \=U)

\bigr] 
.(4.34)

By strict convexity, F \prime (2 \=U) - F \prime ( \=U) > 0, and with u > 3 \=U , we clearly have 4A2u \leq 
\kappa dF (u| \=u\varepsilon ) for an appropriate constant \kappa independent of u and \varepsilon .

Case 2: 0\leq u\leq 3 \=U and v > 3 \=U . Using again the global bound A on \omega , we obtain

u
\bigl[ 
\omega 
\bigl( 
F \prime (u),G\prime (v)

\bigr) 
 - \omega 

\bigl( 
F \prime (\=u\varepsilon ),G

\prime (\=v\varepsilon )
\bigr) \bigr] 2 \leq 4A2 \=U,

i.e., the left-hand side is bounded by an expression that is independent of u, v, and \varepsilon .
Clearly, this expression is estimated by \kappa dG(v| \=v\varepsilon ) with an appropriate \kappa independent
of v; this follows in analogy to the estimate in the first case above.

Case 3: 0\leq u, v\leq 3 \=U . As a first step, we show that, for an appropriate constant
L independent of \varepsilon , we have

[F \prime (u) - F \prime (\=u\varepsilon )]
2 \leq LdF (u| \=u\varepsilon )(4.35)

and correspondingly

[G\prime (v) - G\prime (\=v\varepsilon )]
2 \leq LdG(v| \=v\varepsilon ).

Considering both sides of (4.35) as functions in the variable u, we obviously have
equality in the case u= \=u\varepsilon . Using the definition of dF , we find that

d

du
[F \prime (u) - F \prime (\=u\varepsilon )]

2 = 2[F \prime (u) - F \prime (\=u\varepsilon )]F
\prime \prime (u) = 2F \prime \prime (u)

d

du
dF (u| \=u\varepsilon )

for all u > 0. Notice that this expression, by convexity of F , is negative for u < \=u\varepsilon 
and positive for u > \=u\varepsilon . With the help of hypothesis (1.10) and the convexity of F ,
there exists a positive constant C such that

F \prime \prime (r)\leq C for all r \in [0,3 \=U ].

Hence, with the choice L : = 2C, we conclude that the left-hand side of (4.35) decreases
faster on (0, \=u\varepsilon ) and increases slower on (\=u\varepsilon ,3 \=U) than the right-hand side. This suffices
to have the validity of inequality (4.35) for all u\in [0,3 \=U ].
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1794 LISA BECK, DANIEL MATTHES, AND MARTINA ZIZZA

Next, define \rho s := sF \prime (u) + (1  - s)F \prime (\=u\varepsilon ) and \eta s := sG\prime (v) + (1  - s)G\prime (\=v\varepsilon ) for
s\in [0,1]. Then\bigl[ 

\omega 
\bigl( 
F \prime (u),G\prime (v)

\bigr) 
 - \omega 

\bigl( 
F \prime (\=u\varepsilon ),G

\prime (\=v\varepsilon )
\bigr) \bigr] 2

\leq 
\int 1

0

\bigl[ \bigl( 
F \prime (u) - F \prime (\=u\varepsilon )

\bigr) 
\partial \rho \omega (\rho s, \eta s) +

\bigl( 
G\prime (v) - G\prime (\=v\varepsilon )

\bigr) 
\partial \eta \omega (\rho s, \eta s)

\bigr] 2
ds

\leq 2

\biggl( 
sup

0\leq \mu ,\nu \leq 3 \=U

\bigm| \bigm| D\omega \bigm| \bigm| \biggr) 2\bigl[ \bigl( 
F \prime (u) - F \prime (\=u\varepsilon )

\bigr) 2
+
\bigl( 
G\prime (v) - G\prime (\=v\varepsilon )

\bigr) 2\bigr] 
.

The supremum above is a finite quantity B, thanks to 2-boundedness of (F,G,h).
Therefore, with L from (4.35), we find

u
\bigl[ 
\omega 
\bigl( 
F \prime (u),G\prime (v)

\bigr) 
 - \omega 

\bigl( 
F \prime (\=u\varepsilon ),G

\prime (\=v\varepsilon )
\bigr) \bigr] 2 \leq 6 \=UBL

\bigl( 
dF (u| \=u\varepsilon ) + dG(v| \=v\varepsilon )

\bigr) 
,

proving the pointwise estimate (4.33) also in the final case.

4.6. Proof of the core inequality. Finally, we prove Proposition 4.4. Again,
the additional hypothesis (4.10) enters only indirectly via Lemma 4.5.

Proof of Proposition 4.4 under the additional hypothesis (4.10). Let PF (r) =
rF \prime (r)  - F (r) for r \geq 0. Recall that (\varphi u,\psi u) is the optimal pair of c-conjugate
potentials for the transport from u\ast to \^u. Since L1 is displacement convex, the
following ``above tangent formula"" holds; see, e.g., [41, Proposition 5.29 and Theorem
5.30],

L1(\^u) - L1(u
\ast )\geq 

\int 
\BbbR d

PF (u
\ast )\Delta ac\varphi u dx - 

\int 
\BbbR d

u\ast \nabla [\Phi + \varepsilon \=\Theta u] \cdot \nabla \varphi u dx,

where \Delta ac\varphi u is the absolutely continuous part of the signed measure defined by the
distributional Laplacian \Delta \varphi u. Thanks to the regularity of u\ast , we may re-write the
first integral on the right-hand side using integration by parts. Indeed, observe that

\nabla PF (u
\ast ) \cdot \nabla \varphi u = u\ast \nabla F \prime (u\ast ) \cdot \nabla \varphi u \in L1(\BbbR d)

since \nabla F \prime (u\ast )\in L2(\BbbR d;u\ast \scrL d) by Lemma 4.6 and \nabla \varphi u \in L2(\BbbR d;u\ast \scrL d) in view of (2.5).
Now, since PF \geq 0 by convexity of F , and since \Delta ac\varphi u \geq \Delta \varphi u (as measures) because
\varphi u is semiconcave, we have

L1(\^u) - L1(u
\ast )\geq  - 

\int 
\BbbR d

u\ast \nabla 
\bigl[ 
F \prime (u\ast ) +\Phi + \varepsilon \=\Theta u

\bigr] 
\cdot \nabla \varphi u dx= \tau Z1(u

\ast , v\ast ),(4.36)

where Z1 can be made more explicit by substitution of the potential \varphi u from (4.11):

Z1(u, v) : =

\int 
\BbbR d

u\nabla 
\bigl[ 
F \prime (u) +\Phi + \varepsilon \=\Theta u

\bigr] 
\cdot \nabla 
\bigl[ 
F \prime (u) +\Phi + \varepsilon \partial uh(u, v)

\bigr] 
dx.

We estimate Z1(u, v) using a combination of the previously shown results. For brevity,
we use---only in the calculations below---in addition to \=\Theta u and \=\Theta v introduced in (4.25)
the notations

\Theta u := \theta u
\bigl( 
F \prime (u),G\prime (v)

\bigr) 
= \partial uh(u, v),

\Theta u,\rho := \partial \rho \theta u
\bigl( 
F \prime (u),G\prime (v)

\bigr) 
=
\partial uuh(u, v)

F \prime \prime (u)
,
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EXPONENTIAL CONVERGENCE FOR COUPLED SYSTEMS 1795

and so on. First, the Cauchy--Schwarz inequality yields

Z1(u, v) =

\int 
\BbbR d

u
\bigm| \bigm| \nabla \bigl[ F \prime (u) +\Phi + \varepsilon \=\Theta u

\bigr] \bigm| \bigm| 2 dx

+ \varepsilon 

\int 
\BbbR d

u\nabla 
\bigl[ 
F \prime (u) +\Phi + \varepsilon \=\Theta u

\bigr] 
\cdot \nabla 
\bigl[ 
\Theta u  - \=\Theta u

\bigr] 
dx

\geq 
\Bigl( 
1 - \varepsilon 

2

\Bigr) 
D1(u) - 

\varepsilon 

2

\int 
\BbbR d

u
\bigm| \bigm| \nabla \bigl[ \Theta u  - \=\Theta u

\bigr] \bigm| \bigm| 2 dx.

Inside the last integral, we have

\nabla 
\bigl[ 
\Theta u  - \=\Theta u

\bigr] 
=\Theta u,\rho \nabla F \prime (u) +\Theta u,\eta \nabla G\prime (v) - \=\Theta u,\rho \nabla F \prime (\=u\varepsilon ) - \=\Theta u,\eta \nabla G\prime (\=v\varepsilon )

=\Theta u,\rho \nabla 
\bigl[ 
F \prime (u) +\Phi + \varepsilon \=\Theta u

\bigr] 
+\Theta u,\eta \nabla 

\bigl[ 
G\prime (v) +\Psi + \varepsilon \=\Theta v

\bigr] 
 - \Theta u,\rho \nabla 

\bigl[ 
F \prime (\=u\varepsilon ) +\Phi + \varepsilon \=\Theta u

\bigr] 
 - \Theta u,\eta \nabla 

\bigl[ 
G\prime (\=v\varepsilon ) +\Psi + \varepsilon \=\Theta v

\bigr] 
+
\bigl( 
\Theta u,\rho  - \=\Theta u,\rho 

\bigr) 
\nabla F \prime (\=u\varepsilon ) +

\bigl( 
\Theta u,\eta  - \=\Theta u,\eta 

\bigr) 
\nabla G\prime (\=v\varepsilon ).

The third and the fourth term above can be simplified using that by combination of
the Euler--Lagrange system (1.24) with the identity \Phi  - U\varepsilon = (\Phi  - U\varepsilon )+  - (U\varepsilon  - \Phi )+,
one has

\nabla 
\bigl[ 
F \prime (\=u\varepsilon ) +\Phi + \varepsilon \=\Theta u

\bigr] 
= - \nabla (\Phi  - U\varepsilon )+, \nabla 

\bigl[ 
G\prime (\=v\varepsilon ) +\Psi + \varepsilon \=\Theta v

\bigr] 
= - \nabla (\Psi  - V\varepsilon )+.

This yields\int 
\BbbR d

u
\bigm| \bigm| \nabla \bigl[ \Theta u  - \=\Theta u

\bigr] \bigm| \bigm| 2 dx
\leq 6

\int 
\BbbR d

u\Theta 2
u,\rho 

\bigm| \bigm| \nabla \bigl[ F \prime (u) +\Phi + \varepsilon \=\Theta u

\bigr] \bigm| \bigm| 2 dx+ 6

\int 
\BbbR d

u\Theta 2
u,\eta 

\bigm| \bigm| \nabla \bigl[ G\prime (v) +\Psi + \varepsilon \=\Theta v

\bigr] \bigm| \bigm| 2 dx(4.37)

+ 6

\int 
\BbbR d

u\Theta 2
u,\rho 

\bigm| \bigm| \nabla (\Phi  - U\varepsilon )+
\bigm| \bigm| 2 dx+ 6

\int 
\BbbR d

u\Theta 2
u,\eta 

\bigm| \bigm| \nabla (\Psi  - V\varepsilon )+
\bigm| \bigm| 2 dx(4.38)

+ 6

\int 
\BbbR d

u
\bigl( 
\Theta u,\rho  - \=\Theta u,\rho 

\bigr) 2| \nabla F \prime (\=u\varepsilon )| 2 dx+ 6

\int 
\BbbR d

u
\bigl( 
\Theta u,\eta  - \=\Theta u,\eta 

\bigr) 2| \nabla G\prime (\=v\varepsilon )| 2 dx.

(4.39)

For further estimation, we observe that 2-boundedness and 2-degeneracy of (F,G,h)
imply

| \Theta u,\rho | \leq Amin
\bigl\{ 
1, F \prime (u),G\prime (v)

\bigr\} 
, | \Theta u,\eta | \leq Amin

\bigl\{ 
1, F \prime (u),G\prime (v)

\bigr\} 
;(4.40)

see (1.21). The first integral in (4.37) is now easily estimated using that thanks to
(4.40), \int 

\BbbR d

u\Theta 2
u,\rho 

\bigm| \bigm| \nabla \bigl[ F \prime (u) +\Phi + \varepsilon \=\Theta u

\bigr] \bigm| \bigm| 2 dx\leq A2D1(u).

For estimation of the second integral in (4.37), we use instead that (F,G,h) satisfies
the swap condition (1.17): thus u\Theta 2

u,\eta \leq W 2v, and consequently,\int 
\BbbR d

u\Theta 2
v,\eta 

\bigm| \bigm| \nabla \bigl[ G\prime (v) +\Psi + \varepsilon \=\Theta v

\bigr] \bigm| \bigm| 2 dx\leq W 2D2(v).
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1796 LISA BECK, DANIEL MATTHES, AND MARTINA ZIZZA

For estimation of the first integral in (4.38), two ingredients are needed. First, recall

that | \nabla \Phi | 2 \leq 2M2

\Lambda \Phi by (1.19), and conclude that on \{ \Phi >U\varepsilon \} ,\bigm| \bigm| \nabla (\Phi  - U\varepsilon )+
\bigm| \bigm| 2 = | \nabla \Phi | 2 \leq 2M2

\Lambda 
\Phi =

2M2

\Lambda 
U\varepsilon +

2M2

\Lambda 
(\Phi  - U\varepsilon )+ .

Second, we claim that there is a constant B such that

u\Theta 2
u,\rho \leq BF (u).

For u \geq 1 this is a trivial consequence of the convexity of F . For 0 < u < 1, we use
that in view of hypotheses (1.9) and (1.10), there are constants c0 and C0 such that
F \prime (u)\leq C0u

m - 1 and F (u)\geq c0u
m are satisfied. Therefore, employing also (4.40), we

have

u\Theta 2
u,\rho \leq uA2F \prime (u)\leq C0A

2

c0
F (u).

Now we combine these ingredients, recalling again (4.40) and bearing in mind that
the integral is actually an integral on \{ \Phi > U\varepsilon \} only, where dF (u| \=u\varepsilon ) = F (u) thanks
to (1.9):\int 
\BbbR d

u\Theta 2
u,\rho 

\bigm| \bigm| \nabla (\Phi  - U\varepsilon )+
\bigm| \bigm| 2 dx\leq 2M2BU\varepsilon 

\Lambda 

\int 
\BbbR d

dF (u| \=u\varepsilon )dx+
2M2A2

\Lambda 

\int 
\BbbR d

u(\Phi  - U\varepsilon )+ dx

\leq 2M2

\Lambda 
max

\bigl\{ 
BU\varepsilon ,A

2
\bigr\} 
L1(u).

The second integral in (4.38) is estimated in a completely analogous manner.
Finally, the integrals in (4.39) are both estimated by means of Lemma 4.9. We

combine this with the boundedness of | \nabla F \prime (\=u\varepsilon )| and | \nabla G\prime (\=v\varepsilon )| , respectively: by
Proposition 3.5, we have that F \prime (\=u\varepsilon ),G

\prime (\=u\varepsilon )\in W 1,\infty (\BbbR d), and that

| \nabla F \prime (\=u\varepsilon )| \leq \~B, | \nabla G\prime (\=v\varepsilon )| \leq \~B

a.e. on \BbbR d, with \~B independent of \varepsilon . We thus obtain\int 
\BbbR d

u
\bigl( 
\Theta u,\rho  - \=\Theta u,\rho 

\bigr) 2\bigm| \bigm| \nabla F \prime (\=u\varepsilon )
\bigm| \bigm| 2 dx+ \int 

\BbbR d

u
\bigl( 
\Theta u,\eta  - \=\Theta u,\eta 

\bigr) 2\bigm| \bigm| \nabla G\prime (\=v\varepsilon )
\bigm| \bigm| 2 dx\leq 2 \~B2\kappa L(u, v).

To summarize so far, we have shown that, with a suitable constant C,

Z1(u, v)\geq 
\Bigl( 
1 - \varepsilon 

2

\bigl[ 
1 +A2

\bigr] \Bigr) 
D1(u) - 

\varepsilon 

2
W 2D2(v) - 

\varepsilon 

2
CL(u, v).

This finishes our estimate on Z1. The pendant of (4.36) for v in place of u is

L2(\^v) - L2(v
\ast )\geq Z2(u

\ast , v\ast )

with

Z2(u, v) : =

\int 
\BbbR d

v\nabla 
\bigl[ 
G\prime (u) +\Psi + \varepsilon \=\Theta v

\bigr] 
\cdot \nabla 
\bigl[ 
G\prime (v) +\Psi + \varepsilon \partial vh(u, v)

\bigr] 
dx.

Estimating Z2 in analogy to Z1 as above leads to

Z1(u, v) +Z2(u, v)\geq 
\Bigl( 
1 - \varepsilon 

2

\bigl[ 
1 +A2 +W 2

\bigr] \Bigr) 
(D1(u) +D2(v)) - \varepsilon CL(u, v).

With an application of (4.31) and an appropriate choice of K > 0, the claim (4.9) has
been shown.
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EXPONENTIAL CONVERGENCE FOR COUPLED SYSTEMS 1797

4.7. Removal of the additional hypothesis on the datum. Below, Propo-
sitions 4.2, 4.3 and 4.4 are proven without the additional hypothesis (4.10) on (\^u, \^v).

Given an arbitrary (\^u, \^v) \in [\scrP r
2 (\BbbR d)]2 with E\varepsilon (\^u, \^v) <\infty , let (u\ast , v\ast ) \in [\scrP r

2 (\BbbR d)]2

be the unique minimizer of the Yosida-regularized energy, according to Lemma 4.1.
We consider a sequence of radii R \rightarrow \infty and corresponding approximating pairs
(\^uR, \^vR) \in [\scrP r

2 (\BbbR d)]2 that satisfy (4.10) for the corresponding R, and are such that
\^uR, F (\^uR), and | x| 2\^uR converge to \^u, F (\^u) and | x| 2\^u in L1(\BbbR d), respectively, and
likewise for \^vR. An immediate consequence is

E\varepsilon (\^uR, \^vR)\rightarrow E\varepsilon (\^u, \^v), L(\^uR, \^vR)\rightarrow L(\^u, \^v), \widetilde H(\^uR, \^vR)\rightarrow \widetilde H(\^u, \^v).(4.41)

By Lemma 4.1, there is a unique minimizer (u\ast R, v
\ast 
R) for each functional E\varepsilon ,\tau (\cdot | (\^uR, \^vR)).

Since the minimizers satisfy E\varepsilon (u
\ast 
R, v

\ast 
R) \leq E\varepsilon (\^uR, \^vR), and the right-hand side con-

verges as R \rightarrow \infty , we have an R-uniform bound on second moments and L2-norms
and may conclude that (u\ast R, v

\ast 
R) converges to some limit (\v u, \v v) in [\scrP r

2 (\BbbR d)]2, at least
along a subsequence R \rightarrow \infty . We verify that (\v u, \v v) is a minimizer of E\varepsilon ,\tau (\cdot | (\^u, \^v)):
first, for any fixed pair (u, v) \in [\scrP r

2 (\BbbR d)]2 with E\varepsilon (u, v) <\infty , it immediately follows
that E\varepsilon ,\tau ((u, v)| (\^uR, \^vR)) \rightarrow E\varepsilon ,\tau ((u, v)| (\^u, \^v)). And second, by lower semicontinuity
of E\varepsilon and continuity of W2 with respect to convergence in [\scrP r

2 (\BbbR d)]2, one obtains
that

E\varepsilon ,\tau 

\bigl( 
(\v u, \v v)

\bigm| \bigm| (\^u, \^v)\bigr) \leq lim inf
R\rightarrow \infty 

E\varepsilon ,\tau 

\bigl( 
(u\ast R, v

\ast 
R)
\bigm| \bigm| (\^uR, \^vR)\bigr) .

In combination, this proves the desired minimality of (\v u, \v v). By uniqueness of the
minimizer (see again Lemma 4.1), we may identify (\v u, \v v) = (u\ast , v\ast ).

Proof of Proposition 4.4. Since the pair (\^uR, \^vR) satisfies the additional hypothesis
(4.10), inequality (4.9) is valid for (u\ast R, v

\ast 
R) and (\^uR, \^vR) in place of (u\ast , v\ast ) and (\^u, \^v),

i.e.,

L(\^uR, \^vR)\geq 
\bigl[ 
1 + 2\tau (\Lambda  - K\varepsilon )

\bigr] 
L(u\ast R, v

\ast 
R).

By (4.41), the left-hand side converges to L(\^u, \^v), while we use lower semicontinuity
of L with respect to narrow convergence on the right-hand side. This yields (4.9), as
desired.

For the remaining proof, additional information on the convergence (u\ast R, v
\ast 
R) \rightarrow 

(u\ast , v\ast ) is needed. Specifically,

F \prime (u\ast R)\rightarrow F \prime (u\ast ), G\prime (v\ast R)\rightarrow G\prime (v\ast ) weakly in H1(\BbbR d), strongly in L2(\BbbR d).

(4.42)

To see this (just for the u-component), first observe that F \prime (s) \leq C(s + F (s)) with
some constant C, which is true for small and for large values of s \geq 0, respectively,
because of (1.9) and (1.20). This implies an R-uniform L1-bound on F \prime (u\ast R) since\int 

\BbbR d

F \prime (u\ast R)dx\leq C

\biggl( \int 
\BbbR d

u\ast R dx+

\int 
\BbbR d

F (u\ast R)dx

\biggr) 
\leq C

\bigl( 
1 + 2E\varepsilon (u

\ast 
R, v

\ast 
R)
\bigr) 
.

Further, estimate (4.5) holds with (u\ast R, v
\ast 
R) and (\^uR, \^vR) in place of (u\ast , v\ast ) and (\^u, \^v),

respectively, since (\^uR, \^vR) satisfies hypothesis (4.10), that is

E\varepsilon (u
\ast 
R, v

\ast 
R) +

\widetilde H(u\ast R, v
\ast 
R) +

\tau 

C

\int 
\BbbR d

\bigl[ 
| \nabla F \prime (u\ast R)| 2 + | \nabla G\prime (v\ast R)| 2

\bigr] 
dx

\leq \tau + (1+ \tau )E\varepsilon (\^uR, \^vR) + \widetilde H(\^uR, \^vR).

(4.43)
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1798 LISA BECK, DANIEL MATTHES, AND MARTINA ZIZZA

By (4.41), the terms E\varepsilon (\^uR, \^vR) and \widetilde H(\^uR, \^vR) are R-uniformly bounded from above,
and by Lemma B.1, \widetilde H(u\ast R, v

\ast 
R) is R-uniformly bounded from below. Together, this

implies an R-uniform bound on \nabla F \prime (u\ast R) in L
2(\BbbR d). By interpolation with the bound

in L1(\BbbR d) above, we obtain R-uniform boundedness of F \prime (u\ast R) in H
1(\BbbR d). The claim

now follows by Alaoglu's theorem, and by Rellich's theorem, bearing in mind that
F \prime (u\ast R) converges narrowly to F \prime (u\ast ).

Proof of Proposition 4.3. By means of (4.41), we can pass to the limit on the right-
hand side of (4.43) above. And by means of (4.42) as well as lower semicontinuity of
E\varepsilon and \widetilde H with respect to narrow convergence, we can pass to the limit also on the
left-hand side. This gives (4.5) with datum (\^u, \^v).

Proof of Proposition 4.2. Fix \zeta \in C\infty 
c (\BbbR d). Since (4.3) holds under the hypothesis

(4.10), we have\int 
\BbbR d

u\ast R  - \^uR
\tau 

\zeta dx=

\int 
\BbbR d

u\ast R\nabla 
\bigl[ 
F \prime (u\ast R) + \varepsilon \partial uh(u

\ast 
R, v

\ast 
R) +\Phi 

\bigr] 
\cdot \nabla \zeta dx+Ru.

We can pass to the limit R\rightarrow \infty on the left-hand side by narrow and L1-convergence
of u\ast R and \^uR, respectively. For the integral on the right-hand side, notice that
u\ast R\nabla \zeta \rightarrow u\ast \nabla \zeta in L2(\BbbR d) and that\nabla F \prime (u\ast R)\rightharpoonup \nabla F \prime (u\ast ), thanks to (4.42). To conclude
that also \nabla \partial uh(u\ast R, v\ast R)\rightharpoonup \nabla \partial uh(u\ast , v\ast ) in L2(\BbbR d), observe that

\nabla \partial uh(u\ast R, v\ast R) = \partial \rho \theta u
\bigl( 
F \prime (u\ast R),G

\prime (v\ast R)
\bigr) 
\nabla F \prime (u\ast R) + \partial \eta \theta u

\bigl( 
F \prime (u\ast R),G

\prime (v\ast R)
\bigr) 
\nabla G\prime (v\ast R).

For both products on the right-hand side, weak convergence in L2(\BbbR d) is easily con-
cluded from weak convergence of \nabla F \prime (u\ast R) and of \nabla G\prime (v\ast R), and from convergence
in measure of the bounded functions \partial \rho \theta u(F

\prime (u\ast R),G
\prime (v\ast R)) and \partial \eta \theta u(F

\prime (u\ast R),G
\prime (v\ast R)),

again thanks to (4.42), and to the 2-boundedness of (F,G,h).
In a completely analogous way, we can pass to the limit R\rightarrow \infty in the v-equation

in (4.10). The bound on | Ru| + | Rv| is preserved thanks to (4.41) and lower semicon-
tinuity of E\varepsilon and \widetilde H with respect to narrow convergence.

5. Existence of weak solutions. The Yosida-regularized energy functional
E\varepsilon ,\tau is now used to obtain a time-discrete approximation (un\tau , v

n
\tau )n\in \BbbN 0

of the solution
to (1.1) for given initial data u(0) = u0, v(0) = v0 with finite energy E\varepsilon (u0, v0)<\infty by
means of the minimizing movement scheme . Inductively, define (u0\tau , v

0
\tau ) := (u0, v0),

and for each n \in \BbbN let (un\tau , v
n
\tau ) be the minimizer---which exists and is unique by

Lemma 4.1---of the functional

[\scrP r
2 (\BbbR d)]2 \ni (u, v) \mapsto \rightarrow E\varepsilon ,\tau 

\bigl( 
(u, v)

\bigm| \bigm| (un - 1
\tau , vn - 1

\tau )
\bigr) 
.

Further, define the piecewise constant ``interpolations"" \~u\tau , \~v\tau : [0,\infty ) \rightarrow \scrP r
2 (\BbbR d) (de-

pending of course on \varepsilon ) in the usual way:

\~u\tau (0) = u0, \~v\tau (0) = v0, and \~u\tau (t) = un\tau , \~v\tau (t) = vn\tau for (n - 1)\tau < t\leq n\tau with n\in \BbbN .

The result of this section is the following convergence.

Proposition 5.1. For every \varepsilon \in [0, \varepsilon \ast ], the interpolations \~u\tau , \~v\tau converge, for
a suitable sequence \tau \downarrow 0, to H\"older-continuous limit curves u\ast , v\ast : [0,\infty ) \rightarrow \scrP r

2 (\BbbR d),
weakly in L1(\BbbR d) at every t\geq 0. Moreover, F \prime (\~u\tau ),G

\prime (\~v\tau ) converge to the respective
limits F \prime (u\ast ),G

\prime (v\ast ), weakly in L2(0, T ;H1(\BbbR d)) and strongly in L2((0, T )\times \BbbR d), for
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EXPONENTIAL CONVERGENCE FOR COUPLED SYSTEMS 1799

any T > 0. Furthermore, the limits are weak solutions to (1.1), i.e., they satisfy (1.25)
for arbitrary test functions \xi \in C\infty 

c ((0,\infty )\times \BbbR d).

With the solution u\ast , v\ast : [0,\infty ) \rightarrow \scrP r
2 (\BbbR d) from Proposition 5.1 we have shown

the existence of a transient weak solution to the initial value problem for (1.1), as
stated in Theorem 1.4.

5.1. Multistep estimates. We next prove several \tau -independent estimates for
(\~u\tau , \~v\tau ), which in the subsequent section then allows us to establish convergence for a
sequence \tau \downarrow 0. We start by recalling the classical estimate that follows directly from
the variational construction.

Lemma 5.2. For each n\in \BbbN , we have

(5.1) E\varepsilon (u
n
\tau , v

n
\tau ) +

1

2\tau 

\bigl( 
W2(u

n
\tau , u

n - 1
\tau )2 +W2(v

n
\tau , v

n - 1
\tau )2

\bigr) 
\leq E\varepsilon (u

n - 1
\tau , vn - 1

\tau )

and for each N \in \BbbN 

E\varepsilon (u
N
\tau , v

N
\tau ) +

1

2\tau 

N\sum 
n=1

\bigl( 
W2(u

n
\tau , u

n - 1
\tau )2 +W2(v

n
\tau , v

n - 1
\tau )2

\bigr) 
\leq E\varepsilon (u0, v0).(5.2)

Proof. The first inequality (5.1) rephrases (4.2). Summing these inequalities for
n= 1,2, . . . ,N , we then end up with the second inequality (5.2).

The following three conclusions of Lemma 5.2 are important in the following:
\bullet The values of E\varepsilon (u

n
\tau , v

n
\tau ) are monotonically decreasing in n, and in particular,

bounded by E\varepsilon (u0, v0). For \varepsilon \in [0, \varepsilon \ast ], the hypothesis (1.15) then implies a
uniform bound on F (un\tau ) and G(v

n
\tau ) in L

1(\BbbR d),\int 
\BbbR d

\bigl[ 
F (un\tau ) +G(vn\tau )

\bigr] 
dx\leq 2E\varepsilon (u0, v0).(5.3)

\bullet Another consequence of energy monotonicity: for \varepsilon \in [0, \varepsilon \ast ] we obtain, thanks
to nonnegativity of H\varepsilon , and to the lower bounds on \Phi and \Psi by quadratic
functions (see (1.18)), a uniform bound on the second moments of un\tau and vn\tau ,

\int 
\BbbR d

| x| 2
\bigl( 
un\tau + vn\tau 

\bigr) 
dx\leq 2| x\Phi | 2 + 2| x\Psi | 2 +

4

\Lambda 
E\varepsilon (u0, v0).(5.4)

\bullet By nonnegativity of E\varepsilon , one can pass for \varepsilon \in [0, \varepsilon \ast ] to the limit N \rightarrow \infty in
(5.2) to obtain

1

\tau 

\infty \sum 
n=1

\bigl( 
W2(u

n
\tau , u

n - 1
\tau )2 +W2(v

n
\tau , v

n - 1
\tau )2

\bigr) 
\leq 2E\varepsilon (u0, v0).(5.5)

This gives rise to the following uniform estimate on the modulus of quasi-
continuity.

Lemma 5.3. There is a \tau -independent constant C such that for any s, t\geq 0,

W2

\bigl( 
\~u\tau (t), \~u\tau (s)

\bigr) 
\leq C

\sqrt{} 
| t - s| + \tau , W2

\bigl( 
\~v\tau (t), \~v\tau (s)

\bigr) 
\leq C

\sqrt{} 
| t - s| + \tau .(5.6)
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1800 LISA BECK, DANIEL MATTHES, AND MARTINA ZIZZA

Proof. Assume 0 \leq s < t, and let n,n \in \BbbN 0 be such that (n - 1)\tau < s \leq n\tau and
(n - 1)\tau < t\leq n\tau , i.e., \~u\tau (t) = un\tau and \~u\tau (s) = u

n
\tau , with (n - n)\tau \leq (t - s)+\tau . If n= n,

then (5.6) trivially holds. Otherwise, it follows from (5.5) via the triangle inequality
for W2 and H\"older's inequality for sums that

W2

\bigl( 
\~u\tau (t), \~u\tau (s)

\bigr) 
\leq 

n\sum 
n=n+1

W2(u
n
\tau , u

n - 1
\tau )

\leq 
\biggl( 
1

\tau 

\infty \sum 
n=1

\bigl( 
W2(u

n
\tau , u

n - 1
\tau ))2

\biggr) 1/2\biggl( n\sum 
n=n+1

\tau 

\biggr) 1/2

\leq 
\sqrt{} 
2E\varepsilon (u0, v0)

\sqrt{} 
(t - s) + \tau .

This proves the first inequality in (5.6), the second follows in the analogous way.

Lemma 5.4. There is a \tau -independent constant C such that, for each T > 0,\int T

0

\int 
\BbbR d

\bigl( 
| \nabla F \prime (\~u\tau )| 2 + | \nabla G\prime (\~v\tau )| 2

\bigr) 
dx\leq C(1 + T +E\varepsilon (u0, v0)).(5.7)

Proof. Assume T =N\tau for simplicity. Apply estimate (4.5) to (\^u, \^v) = (un - 1
\tau , vn - 1

\tau )
and ((u\ast , v\ast ) = (un\tau , v

n
\tau )), and sum over n= 1, . . . ,N . This yields

\tau 

N\sum 
n=1

\int 
\BbbR d

\bigl[ 
| \nabla F \prime (un\tau )| 2 + | \nabla G\prime (vn\tau )| 2

\bigr] 
dx

\leq CN\tau 
\bigl( 
1 +E\varepsilon (u0, v0)

\bigr) 
+C

\bigl[ 
E\varepsilon (u0, v0) - E\varepsilon (u

N
\tau , v

N
\tau ) + \widetilde H(u0, v0) - \widetilde H(uN\tau , v

N
\tau )
\bigr] 
.

The left-hand side of this inequality coincides with the left-hand side of (5.7). On the
right-hand side, first observe that CN\tau = CT , and that E\varepsilon (u

N
\tau , v

N
\tau ) is positive and

thus negligible. To arrive at (5.7), it suffices to show that

 - C
\bigl( 
1 +E\varepsilon (u, v)

\bigr) 
\leq \widetilde H(u, v)\leq C

\bigl( 
1 +E\varepsilon (u, v)

\bigr) 
.

The lower bound is easily obtained by combination of Lemma B.1 from Appendix A
with the following estimate, that is a consequence of (1.18) and (4.28):

\Lambda 

2

\int 
\BbbR d

\bigl[ 
| x - x\Phi | 2u+ | x - x\Psi | 2v

\bigr] 
dx\leq 

\int 
\BbbR d

\bigl[ 
\Phi u+\Psi v

\bigr] 
dx\leq C +H\varepsilon (u, v).

The control of \widetilde H from above is a simple consequence of u logu \leq C(1 + F (u)) and
v log v \leq C(1 +G(v)) thanks to the at-least-quadratic growth of F and G, combined
with (1.15).

Lemma 5.5. Let p, q > 1 be such that

(d - 2)p < 2d and
q

p\prime 
< 1 +

2

d
.(5.8)

For each T > 0, there is a \tau -independent constant CT such that\int T

0

\| F \prime (\~u\tau )\| qLp dt\leq CT .(5.9)
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EXPONENTIAL CONVERGENCE FOR COUPLED SYSTEMS 1801

Proof. Thanks to (5.8), we have that

\theta : =
2d

d+ 2

1

p\prime 
< 1 and q\theta < 2.

Therefore, by the Gagliardo--Nirenberg interpolation inequality,\int T

0

\| F \prime (\~u\tau )\| qLp dt\leq CT 1 - q\theta /2 sup
0<t<T

\| F \prime (\~u\tau (t))\| q(1 - \theta )
L1

\biggl( \int T

0

\| \nabla F \prime (\~u\tau )\| 2L2 dt

\biggr) q\theta /2

.

From (5.7) the \tau -uniform boundedness of the term with \nabla F \prime (\~u\tau ) follows. For the
other term, we first observe that F \prime (s) \leq C(s + F (s)) which for s \geq 1 is a direct
consequence of (1.20), while for s \leq 1, it is obtained from (1.9) in combination with
the uniform boundedness of F \prime \prime (t) for t\in (0,1]. Since \~u\tau is of unit mass, and because
of the uniform bound (5.3) on F (\~u\tau ) in L1(\BbbR d), also F \prime (\~u\tau ) is bounded in L1(\BbbR d),
uniformly in t\in [0, T ] and in \tau .

5.2. Convergence proofs. The statements of Proposition 5.1 are proven in
Lemmas 5.6, 5.7, and 5.8 below.

Lemma 5.6. For every \varepsilon \in [0, \varepsilon \ast ], there are curves u\ast , v\ast : [0,\infty ) \rightarrow \scrP r
2 (\BbbR d),

H\"older continuous in W2, such that, along a suitable sequence \tau \downarrow 0, the interpo-
lations \~u\tau (t) and \~v\tau (t) converge to u\ast (t) and v\ast (t), respectively, weakly in L1(\BbbR d), at
every t\geq 0.

Proof. This lemma is a consequence of the generalized Arzel\`a--Ascoli theorem [3,
Proposition 3.3.1]. Lemma 5.3 above provides a uniform modulus of (quasi-)continuity
for \~u\tau and \~v\tau in W2; the topology induced by W2 is stronger than the narrow one.
Further, the values of \~u\tau and \~v\tau belong to a narrowly compact set thanks to the
uniform boundedness of second moments (5.4). The aforementioned proposition yields
the narrow convergence along a sequence \tau \downarrow 0 of \~u\tau (t) and \~v\tau (t) to respective limits
u\ast (t) and v\ast (t) for each t \geq 0, and u\ast , v\ast are continuous with respect to W2. By
lower semicontinuity of W2 under narrow convergence, the estimate (5.6) is inherited
by the limits u\ast , v\ast in the form

W2

\bigl( 
u\ast (t), u\ast (s)

\bigr) 
\leq C| t - s| 1/2, W2

\bigl( 
v\ast (t), v\ast (s)

\bigr) 
\leq C| t - s| 1/2,

which is the claimed H\"older continuity of u\ast , v\ast with respect to W2. Finally, the
upgrade from narrow convergence of \~u\tau (t) and \~v\tau (t) to weak convergence in L1(\BbbR d)
after passage to a suitable subsequence \tau \downarrow 0 is obtained from the boundedness of
F (\~u\tau (t)) and G(\~v\tau (t)) in L

1(\BbbR d); see (5.3). Indeed, since F and G are superlinear at
infinity in view of (1.8), the Dunford--Pettis criterion applies.

Lemma 5.7. For every \varepsilon \in [0, \varepsilon \ast ] and every T > 0, we have along a suitable
sequence \tau \downarrow 0,

\~u\tau \rightarrow u\ast strongly in L2([0, T ]\times \BbbR d),(5.10)

F \prime (\~u\tau )\rightarrow F \prime (u\ast ) strongly in L2
loc([0, T ]\times \BbbR d),(5.11)

\nabla F \prime (\~u\tau )\rightharpoonup \nabla F \prime (u\ast ) weakly in L2([0, T ]\times \BbbR d).(5.12)

Proof. For the proof of (5.10), we apply the generalized version [38, Theorem 2]
of the Aubin--Lions lemma. On the Banach space L2(\BbbR d), define the normal coercive
integrand by

\scrF (u) = \| F \prime (u)\| 2H1 +

\int 
\BbbR d

| x| 2udx,
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1802 LISA BECK, DANIEL MATTHES, AND MARTINA ZIZZA

and the compatible map g :L2(\BbbR d)\times L2(\BbbR d)\rightarrow [0,\infty ] by

g(u,u\prime ) : =W2(u,u
\prime ),

with the conventions that \scrF (u) = \infty unless u \in \scrP r
2 (\BbbR d) with F \prime (u) \in H1(\BbbR d), and

that g(u,u\prime ) = \infty unless u,u\prime \in \scrP r
2 (\BbbR d). Below, we verify lower semicontinuity of \scrF 

and compactness of sublevel sets; we further show that\int T - h

0

g
\bigl( 
\~u\tau (t+ h), \~u\tau (t)

\bigr) 
dt\rightarrow 0 uniformly in \tau as h \downarrow 0,(5.13)

and that \int T

0

\scrF (\~u\tau (t))dt\leq CT(5.14)

with some constant CT depending only on T > 0. In the language of [38], the family
(\~u\tau )\tau >0 is called tight because of the uniform bound (5.14) with the normal coercive
integrand \scrF . In conclusion, [38, Theorem 2] yields that \~u(t) converges in L2(\BbbR d), in
measure with respect to t \in (0, T ), along a sequence \tau \downarrow 0. That limit necessarily
coincides with u\ast obtained in the proof of Lemma 5.6 above.

To prove lower semicontinuity of \scrF , consider a sequence (un) converging to u\ast 
in L2(\BbbR d) such that (\scrF (un)) has a finite limit. Without loss of generality, we may
assume that un even converges pointwise a.e. in \BbbR d. Fatou's lemma directly yields\int 

\BbbR d

| x| 2udx\leq lim inf
n\rightarrow \infty 

\int 
\BbbR d

| x| 2un dx.(5.15)

Further, by boundedness of the sequence (F \prime (un)) in the reflexive space H1(\BbbR d)
and Rellich's theorem, a suitable subsequence converges to some limit \nu \ast , weakly
in H1(\BbbR d), strongly in L2

loc(\BbbR d), and pointwise a.e. in \BbbR d. By a.e. pointwise con-
vergence of (un) and the continuity of F \prime , we conclude \nu \ast = F \prime (u\ast ). Weak lower
semicontinuity of norms implies

\| F \prime (u\ast )\| 2H1 = \| \nu \ast \| 2H1 \leq lim inf
n\rightarrow \infty 

\| F \prime (un)\| 2H1 ,

and thus with (5.15) we conclude that

\scrF (u\ast )\leq lim
n\rightarrow \infty 

\scrF (un).

Concerning compactness, consider the \=\scrF -sublevel set S of \scrF . By boundedness of the
H1-norm of F \prime (u) for all u\in S, there is a sequence (un) in S for which F \prime (un) converges
strongly in L2

loc(\BbbR d). Since F \prime has at least linear growth, (un) itself also converges
strongly in L2

loc(\BbbR d). To show that this convergence is not just locally, observe that
by interpolation there is a p > 2 such that F \prime (u) is uniformly bounded in Lp(\BbbR d) for
all u in the sublevel S. Using that sp \leq C(s+F \prime (s)p) for a suitable constant C thanks
to the at-least-linear growth of F \prime , it follows that there is a Lp-uniform bound for the
un \in S as well. H\"older's inequality yields\int 

\BbbR d

| x| 2(p - 2)/(p - 1)u2n dx\leq \| un\| p/(p - 1)
Lp

\biggl( \int 
\BbbR d

| x| 2un dx
\biggr) (p - 2)/(p - 1)

,

and thus (un) is tight and converges in L2(\BbbR d). This proves compactness.
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EXPONENTIAL CONVERGENCE FOR COUPLED SYSTEMS 1803

The property (5.13) follows from (5.6). More precisely, we have\int T - h

0

g
\bigl( 
\~u\tau (t+ h), \~u\tau (t)

\bigr) 
dt\leq CT

\bigl( \surd 
h+

\surd 
\tau 
\bigr) 
.

Next, the estimate (5.14) is a consequence of the a priori bound (5.7) on \nabla F \prime (\~u\tau ),
estimate (5.9) with p = q = 2, and the moment control (5.4). By means of [38,
Theorem 2], we obtain convergence of \~u\tau (t) to u\ast (t) in L2(\BbbR d), in measure with
respect to t \in [0, T ], along a sequence \tau \downarrow 0. Estimate (5.9) with 2 = p < q < 2 + 4/d
further yields a \tau -uniform control on \| \~u\tau (t)\| L2 in Lq(0, T ), since F \prime has at least
linear growth, and thus uniform integrability to exponent two in time. This finishes
the proof of (5.10).

Next, we show the convergence (5.11) of (F \prime (\~u\tau )) to F
\prime (u\ast ) locally in L2([0, T ]\times 

\BbbR d). By (5.10), we may assume without loss of generality that the chosen sequence
(\~u\tau ) converges pointwise to u\ast a.e. on [0, T ]\times \BbbR d. By continuity of F \prime , the sequence
(F \prime (\~u\tau )) converges to F

\prime (u\ast ) pointwise almost everywhere. Moreover, estimate (5.9)
with 2 < p= q < 2 + 2/d provides \tau -uniform integrability of F \prime (\~u\tau ) on [0, T ]\times \BbbR d to
exponent two. Hence, by Vitali's convergence theorem, we get convergence of (F \prime (\~u\tau ))
to F \prime (u\ast ) in L

2
loc([0, T ]\times \BbbR d).

It remains to verify (5.12), i.e., the weak convergence of (\nabla F \prime (\~u\tau )) to \nabla F \prime (u\ast ) in
L2([0, T ]\times \BbbR d). In fact, weak L2-convergence to some limit \nabla \zeta follows immediately
from the boundedness (5.7) and the local convergence (5.11) via Alaoglu's theorem.
Using once again the local convergence of (F \prime (\~u\tau )) to F

\prime (u\ast ) we can identify the limit
\zeta as F \prime (u\ast ).

Lemma 5.8. The limits (u\ast , v\ast ) obtained in Lemmas 5.6 and 5.7 satisfy the weak
formulations (1.25) for every test function \xi \in C\infty 

c ((0,\infty )\times \BbbR d).

Proof. By abuse of notation, \tau will always denote an element of the sequence \tau \downarrow 0
along which (\~u\tau , \~v\tau ) converges to (u\ast , v\ast ) in the sense of Lemmas 5.6 and 5.7.

Assume that the support of \xi lies in (0, T )\times \Omega , for some bounded open set \Omega \subset \BbbR d.
For each t \in (\tau ,T ), let n be such that (n - 1)\tau < t \leq n\tau , and use \zeta : = \xi (t; \cdot ) as test
function in the first equation of (4.3) for that n. Integrate these equations in t\in (\tau ,T ).
The result can be written as

\int T

\tau 

\int 
\BbbR d

\~u\tau (t) - \~u\tau (t - \tau )

\tau 
\xi (t)dxdt

=

\int T

\tau 

\int 
\BbbR d

\~u\tau (t)\nabla 
\bigl[ 
F \prime (\~u\tau (t)) +\Phi + \varepsilon \partial uh(\~u\tau (t), \~v\tau (t))

\bigr] 
\cdot \nabla \xi (t)dxdt+

\int T

\tau 

Ru(t)dt,

(5.16)

where, thanks to (4.4),\bigm| \bigm| \bigm| \bigm| \int T

\tau 

Ru(t)dt

\bigm| \bigm| \bigm| \bigm| \leq \tau 

\infty \sum 
n=1

sup
0<t<T

\| \xi (t; \cdot )\| C2

\bigl( 
E\varepsilon (u

n - 1
\tau , vn - 1

\tau ) - E\varepsilon (u
n
\tau , v

n
\tau )
\bigr) 

\leq \tau sup
0<t<T

\| \xi (t; \cdot )\| C2E\varepsilon (u0, v0),

and so
\int T

0
Ru(t)dt\rightarrow 0 as \tau \downarrow 0. For the integral on the left-hand side of (5.16), we

obtain \int T

\tau 

\int 
\BbbR d

\~u\tau (t) - \~u\tau (t - \tau )

\tau 
\xi (t)dxdt=

\int T

0

\int 
\BbbR d

\~u\tau (t)
\xi (t+ \tau ) - \xi (t)

\tau 
dxdt
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1804 LISA BECK, DANIEL MATTHES, AND MARTINA ZIZZA

for \tau > 0 sufficiently small (recall that the support of \xi is contained in (0, T ) \times \Omega ),
which, in turn, implies\int T

\tau 

\int 
\BbbR d

\~u\tau (t) - \~u\tau (t - \tau )

\tau 
\xi (t)dxdt\rightarrow 

\int T

0

\int 
\BbbR d

u\ast (t)\partial t\xi (t)dxdt,

thanks to the convergence of \~u\tau to u\ast in L1((0, T )\times \Omega ), and the uniform convergence
of difference quotients of \xi .

It remains to verify the convergence of the integral on the right-hand side of
(5.16). By the strong L2-convergence (5.10) of \~u\tau to u\ast , and since \nabla \xi is smooth and
has compact support inside (0, T )\times \Omega , it suffices to verify weak convergence of

\nabla 
\bigl[ 
F \prime (\~u\tau ) + \varepsilon \partial uh(\~u\tau , \~v\tau )

\bigr] 
\rightharpoonup \nabla 

\bigl[ 
F \prime (u\ast ) + \varepsilon \partial uh(u\ast , v\ast )

\bigr] 
in L2((0, T ) \times \Omega ). But this is clear: on the one hand, F \prime (\~u\tau ) and G\prime (\~v\tau ) con-
verge weakly in L2(0, T ;H1(\BbbR d)); see (5.12). On the other hand, recalling the 2-
boundedness of (F,G,h), the local L2-convergence (5.11) of F \prime (\~u\tau ) and G\prime (\~v\tau ) im-
plies convergence in measure of \partial \rho \theta u(F

\prime (\~u\tau ),G
\prime (\~v\tau )) and of \partial \eta \theta u(F

\prime (\~u\tau ),G
\prime (\~v\tau )). By

boundedness and continuity of the derivatives of \theta u, the weak convergence of \nabla F \prime (\~u\tau )
and \nabla G\prime (\~v\tau ) in [L2((0, T )\times \BbbR d)]d is inherited by

\nabla \partial uh(\~u\tau , \~v\tau ) = \partial \rho \theta u
\bigl( 
F \prime (\~u\tau ),G

\prime (\~v\tau )
\bigr) 
\nabla F \prime (\~u\tau ) + \partial \eta \theta u

\bigl( 
F \prime (\~u\tau ),G

\prime (\~v\tau )
\bigr) 
\nabla G\prime (\~v\tau ).

6. Convergence to equilibrium. In preparation of the proof of Theorem 1.5,
we provide an adapted version of the Csiszar--Kullback inequality for L.

Lemma 6.1. There is a constant C, independent of \varepsilon \in [0, \=\varepsilon ], such that for all
u, v \in \scrP r

2 (\BbbR d) with L1(u)<\infty and L2(v)<\infty , there hold

\| u - \=u\varepsilon \| 2L1 \leq CL1(u), \| v - \=v\varepsilon \| 2L1 \leq CL2(v).(6.1)

Proof. It suffices to prove the first inequality in (6.1). The point of departure is
that both u and \=u\varepsilon have unit mass, and therefore,

\| u - \=u\varepsilon \| L1 = 2

\int 
\{ u<\=u\varepsilon \} 

(\=u\varepsilon  - u)dx.(6.2)

It is thus sufficient to estimate the integral of \=u\varepsilon  - u on \{ u< \=u\varepsilon \} , which is a subset of
\Omega u

\varepsilon . Let \=U be an upper bound on \=u\varepsilon , uniformly in \varepsilon \in [0, \=\varepsilon ]; see Proposition 3.2. By
hypothesis (1.10) there is a constant c0 > 0 such that F \prime \prime (r) \geq c0r

m - 2 for all r \leq \=U ,
and thus we have that

dF (u| \=u\varepsilon ) =
\int \=u\varepsilon 

u

(r - u)F \prime \prime (r)dr\geq c0

\int \=u\varepsilon 

u+\=u\varepsilon 
2

(r - u)rm - 2 dr

\geq c0
2m - 2

\=um - 2
\varepsilon 

\int \=u\varepsilon 

u+\=u\varepsilon 
2

(r - u)dr

=
3c0
2m+1

\=um - 2
\varepsilon (u - \=u\varepsilon )

2.

This implies, by means of the Cauchy--Schwarz inequality, that\int 
\{ u<\=u\varepsilon \} 

(u - \=u\varepsilon )dx\leq 
\biggl( \int 

\{ u<\=u\varepsilon \} 
\=u - (m - 2)
\varepsilon dx

\biggr) 1/2\biggl( \int 
\{ u<\=u\varepsilon \} 

\=um - 2
\varepsilon (u - \=u\varepsilon )

2 dx

\biggr) 1/2

\leq 
\sqrt{} 
2m+1/(3c0)

\biggl( \int 
\Omega u

\varepsilon 

\=u - (m - 2)
\varepsilon dx

\biggr) 1/2\biggl( \int 
\BbbR d

dF (u| \=u\varepsilon )dx
\biggr) 1/2

.(6.3)
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EXPONENTIAL CONVERGENCE FOR COUPLED SYSTEMS 1805

It remains to be shown that the integral of \=u
 - (m - 2)
\varepsilon over \Omega u

\varepsilon is finite. For the estima-
tion of the integrand, we obtain thanks to (1.21),

\partial uh(\=u\varepsilon , \=v\varepsilon ) = \theta u
\bigl( 
F \prime (\=u\varepsilon ),G

\prime (\=v\varepsilon )
\bigr) 
\leq AF \prime (\=u\varepsilon ),

and therefore, the first Euler--Lagrange equation in (1.24) implies that

(1 +A\=\varepsilon )F \prime (\=u\varepsilon )\geq (U\varepsilon  - \Phi )+ .

Using further that F \prime (\=u\varepsilon ) \leq K\=um - 1
\varepsilon , again thanks to (1.9) and (1.10), we conclude

that on \Omega u
\varepsilon ,

\=u\varepsilon \geq c(U\varepsilon  - \Phi )1/(m - 1) with c :=
\bigl( 
K(1 +A\=\varepsilon )

\bigr)  - 1/(m - 1)
.

We can now estimate the integral of \=u
 - (m - 2)
\varepsilon by means of the coarea formula. Two

observations: first, | \nabla 
\surd 
\Phi | \geq 

\sqrt{} 
2\Lambda /M by (1.19), and second, the diameter of \Omega u

\varepsilon is
bounded uniformly in \varepsilon \in [0, \=\varepsilon ]; see Proposition 3.2. Hence, the (d - 1)-dimensional
Hausdorff measures \scrH d - 1 of the surfaces of the convex sets \{ \Phi < r2\} are uniformly
bounded by some S for every r with r2 \leq U\varepsilon . Now we estimate\int 

\Omega u
\varepsilon 

\=u - (m - 2)
\varepsilon dx\leq M1/2

(2\Lambda )1/2cm - 2

\int 
\{ 
\surd 
\Phi <

\surd 
U\varepsilon \} 

(U\varepsilon  - \Phi ) - (m - 2)/(m - 1)| \nabla 
\surd 
\Phi | dx

\leq M1/2

(2\Lambda )1/2cm - 2

\int \surd 
U\varepsilon 

0

(U\varepsilon  - r2) - (m - 2)/(m - 1)\scrH d - 1
\bigl( 
\partial 
\bigl\{ \surd 

\Phi < r
\bigr\} \bigr) 

dr

\leq M1/2S

(2\Lambda )1/2cm - 2

\int \surd 
U\varepsilon 

0

(U\varepsilon  - r2) - (m - 2)/(m - 1) dr,

and this integral has a finite value since (m  - 2)/(m  - 1) < 1, which is bounded
independently of \varepsilon \in [0, \=\varepsilon ]. Combining this with (6.3) and (6.2), we obtain

\| u - \=u\varepsilon \| L1 \leq C

\biggl( \int 
\BbbR d

dF (u| \=u\varepsilon )dx
\biggr) 1/2

for some constant C, which is uniform in \varepsilon \in [0, \=\varepsilon ]. With the definition of L1(u) from
(4.7), the proof of the first claim in (6.1) is complete.

Proof of Theorem 1.5. Apply Proposition 4.4 with (u\ast , v\ast ) = (un\tau , v
n
\tau ) and (\^u, \^v) =

(un - 1
\tau , vn - 1

\tau ), i.e.,

L(un - 1
\tau , vn - 1

\tau )\geq 
\bigl( 
1 + 2\Lambda \varepsilon \tau 

\bigr) 
L(un\tau , v

n
\tau )

with \Lambda \varepsilon = \Lambda  - K\varepsilon , and then, after iteration on n = 1,2, . . . ,N and for \tau sufficiently
small,

L(un\tau , v
n
\tau )\leq 

\bigl( 
1 + 2\Lambda \varepsilon \tau 

\bigr)  - n
L(u0, v0).

Since L is a convex functional and thus lower semicontinuous with respect to conver-
gence in W2, it follows in the limit \tau \downarrow 0 for the limiting curve from Theorem 1.4
that

L(ut, vt)\leq exp
\bigl( 
 - 2\Lambda \varepsilon t

\bigr) 
L(u0, v0).

The L(u0, v0) on the right-hand side is easily estimated in terms of E\varepsilon (u0, v0); see
(4.29). Thanks to (6.1), the left-hand side controls the L1-norms of ut  - \=u\varepsilon and
vt  - \=v\varepsilon .
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1806 LISA BECK, DANIEL MATTHES, AND MARTINA ZIZZA

Appendix A. Verification of Example 1.2. The properties (1.8)--(1.12) for
the nonlinearities F and G are immediately checked. With

\partial u\~u= u - 1\~u(1 - \~u), \partial v\~u= v - 1\~u\~v,(A.1)

and similar formulas for \partial u\~v, \partial v\~v, we find for i, j = 0,1,2, . . . , that

\partial iu\partial 
j
vh(u, v) = up - ivq - j \~u\alpha \~v\beta P (\~u, \~v),

where here and below, P is some polynomial in two variables that may change from
line to line. For later reference, note that an expression of the form

up
\prime 
vq

\prime 
\~u\alpha \~v\beta P (\~u, \~v) = \~up

\prime 
+\alpha \~vq

\prime 
+\beta (1 + u+ v)p

\prime 
+q

\prime 
P (\~u, \~v)(A.2)

with arbitrary p\prime , q\prime \in \BbbR is uniformly bounded for (u, v)\in \BbbR 2
>0 if

p\prime + q\prime \leq 0 and p\prime + \alpha \geq 0, q\prime + \beta \geq 0,(A.3)

and vanishes for (u, v)\in \partial \BbbR 2
\geq 0 if

p\prime + \alpha > 0, q\prime + \beta > 0.(A.4)

We verify the hypotheses for the coupling h. Concerning (1.13), criterion (A.4)
yields the vanishing of h on \partial \BbbR 2

\geq 0 since \alpha >  - p and \beta >  - q thanks to hypotheses
(1.22), and similarly the vanishing of \partial uh and of \partial vh follows from \alpha > 1  - p and
\beta > 1 - q, respectively.

Concerning the convexity condition (1.14), we denote by W (u, v) the Hessian of
F (u)+G(v)---that is, the diagonal matrix with entries (m - 1)um - 2 and (n - 1)vn - 2---
and then we need to verify that W (u, v) + 2\varepsilon \ast \nabla 2h(u, v) \geq 0 for a small \varepsilon \ast > 0. A
sufficient criterion is the uniform boundedness of the matrix

W (u, v) - 1/2\nabla 2h(u, v)W (u, v) - 1/2 =

\left(  \partial uuh(u,v)
(m - 1)um - 2

\partial uvh(u,v)\surd 
(m - 1)(n - 1)um - 2vn - 2

\partial uvh(u,v)\surd 
(m - 1)(n - 1)um - 2vn - 2

\partial vvh(u,v)
(n - 1)un - 2

\right)  
in u, v \in \BbbR >0. The top-left entry of this matrix has the form

\partial uuh(u, v)

(m - 1)um - 2
= u - (m - p)vq\~u\alpha \~v\beta P (\~u, \~v).

Criterion (A.3) for boundedness is satisfied since p+ q \leq m and \alpha \geq m - p, \beta \geq  - q
by hypotheses (1.22). The corresponding conditions for the bottom right entry are
p+ q\leq n and \alpha \geq  - p, \beta \geq n - q. For the off-diagonal entries, we find

\partial uvh(u, v)\sqrt{} 
(m - 1)(n - 1)um - 2vn - 2

= up - m/2vq - n/2\~u\alpha \~v\beta P (\~u, \~v),

and this is bounded since thanks to (1.22) we have p+q\leq (m+n)/2, and \alpha \geq m/2 - p,
\beta \geq n/2 - q.

For the verification of hypothesis (1.15), we show uniform boundedness of

h(u, v)

F (u) +G(v)
\leq max(m,n) up - m/2\~u\alpha vq - n/2\~v\beta 
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EXPONENTIAL CONVERGENCE FOR COUPLED SYSTEMS 1807

in u, v \in \BbbR >0. Indeed, according to (A.3), p+q\leq (m+n)/2 and \alpha \geq m/2 - p,\beta \geq n/2 - q
suffice, which is again implied by hypotheses (1.22).

We turn to the swap condition (1.17) that we reformulate directly in terms of h
as \bigm| \bigm| \bigm| \bigm| \surd u\partial uvh(u, v)\surd 

vG\prime \prime (v)

\bigm| \bigm| \bigm| \bigm| \leq W,

\bigm| \bigm| \bigm| \bigm| \surd v\partial uvh(u, v)\surd 
uF \prime \prime (u)

\bigm| \bigm| \bigm| \bigm| \leq W.

For the first expression, we obtain
\surd 
u\partial uvh(u, v)\surd 
vG\prime \prime (v)

= up - 1/2vq - n+1/2\~u\alpha \~v\beta P (\~u, \~v),

and this is bounded according to (A.3) since p+q\leq n and \alpha \geq 1/2 - p, \beta \geq n - 1/2 - q
hold by (1.22). Boundedness of the second term is shown in an analogous way.

To discuss k-boundedness and k-degeneracy, first note that since F \prime (u) = um - 1

and G\prime (v) = vn - 1,

\theta u(\rho , \eta ) = \rho (p - 1)/(m - 1)\eta q/(n - 1)\~\rho \alpha \~\eta \beta P (\~\rho , \~\eta ),

\theta v(\rho , \eta ) = \rho p/(m - 1)\eta (q - 1)/(n - 1)\~\rho \alpha \~\eta \beta P (\~\rho , \~\eta ),

where the quotients

\~\rho =
\rho 1/(m - 1)

1 + \rho 1/(m - 1) + \eta 1/(n - 1)
and \~\eta =

\eta 1/(n - 1)

1 + \rho 1/(m - 1) + \eta 1/(n - 1)

are still positive and globally bounded by 1. Combining (A.1) with the chain rule, we
obtain for the partial derivatives

\partial \rho \~\rho =
\~\rho (1 - \~\rho )

(m - 1)\rho 
, \partial \eta \~\rho =

\~\rho \~\eta 

(n - 1)\eta 
,

and similarly for \partial \rho \~\rho , \partial \eta \~\eta , so that we arrive at

\partial i\rho \partial 
j
\eta \theta u(\rho , \eta ) = \rho (p - 1)/(m - 1) - i\eta q/(n - 1) - j \~\rho \alpha \~\eta \beta P (\~\rho , \~\eta ),

and similarly for \partial i\rho \partial 
j
\eta \theta v. Applying (A.3), we find that all of \theta u's partial derivatives

of total order \ell \geq 1 are bounded if

p - 1

m - 1
+

q

n - 1
\leq \ell and \alpha +

p - 1

m - 1
\geq \ell , \beta +

q

n - 1
\geq \ell .

It is easily checked that the first condition is implied by p + q \leq min(m,n), for all
\ell \geq 1, while the second condition follows---for all \ell = 1,2, . . . , k---from the hypotheses
\alpha > k  - (p - 1)/(m - 1) and \beta > k  - (q  - 1)/(n - 1). Actually, these hypotheses also
imply vanishing of \partial i\rho \partial 

j
\eta \theta u on \partial \BbbR 2

\geq 0 via (A.4). The discussion of the partial derivatives
of \theta v is analogous. We thus have verified k-boundedness and k-degeneracy of the triple
(F,G,h) under the hypotheses (1.23).

Appendix B. A lower bound on the entropy. The following has been ob-
tained, e.g., in [26]; we recall the proof for convenience.

Lemma B.1. For any u\in \scrP r
2 (\BbbR d), any \beta > 0, and any x\in \BbbR d,

Hu(u) =

\int 
u logu\geq 1 - 

\bigl( 
\pi /\beta )d/2  - \beta 

\int 
\BbbR d

| x - x| 2udx(B.1)

(with z log z interpreted as zero for z = 0). In particular, Hu is nowhere  - \infty on
\scrP r
2 (\BbbR d).
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1808 LISA BECK, DANIEL MATTHES, AND MARTINA ZIZZA

Proof. By Legendre duality, zv \leq z log z  - z + ev for all z \geq 0 and v \in \BbbR . With
the choices z := u(x) and v := - \beta | x - x| 2 this gives

 - \beta 
\int 
\BbbR d

| x - x| 2udx\leq 
\int 
\BbbR d

u logudx - 
\int 
\BbbR d

udx+

\int 
\BbbR d

e - \beta | x - x| 2 dx,

which is just (B.1).

Acknowledgment. The authors thank Filippo Santambrogio for significant help
on the rigorous justification of the Euler--Lagrange equations.
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