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Abstract— This study explores the use of deep learning-based
methods for the automatic detection of COVID-19. Specifically,
we aim to investigate the involvement of the virus in the
respiratory system by analysing breathing and coughing sounds.
Our hypothesis resides in the complementarity of both data
types for the task at hand. Therefore, we focus on the analysis
of fusion mechanisms to enrich the information available for
the diagnosis. In this work, we introduce a novel injection
fusion mechanism that considers the embedded representations
learned from one data type to extract the embedded represen-
tations of the other data type. Our experiments are performed
on a crowdsourced database with breathing and coughing
sounds recorded using both a web-based application, and a
smartphone app. The results obtained support the feasibility of
the injection fusion mechanism presented, as the models trained
with this mechanism outperform single-type models and multi-
type models using conventional fusion mechanisms.

I. INTRODUCTION

At the time of writing, more than 125.1 M cases of the
Coronavirus Disease 2019 (COVID-19) have been confirmed
worldwide, according to the World Health Organization
(WHO). Despite the vaccines, massive population screenings
will still play an important role to control the spread of
COVID-19. The current medical instruments used for the
detection of the virus are expensive, and burden public
expenditures. Thus, there is a need to develop new digital,
cost-efficient tools to diagnose and monitor this disease.

The symptomatology of COVID-19 includes serious in-
volvements in the respiratory system. As a consequence,
researchers have investigated the automatic detection of
COVID-19 analysing chest x-ray images [1], chest CT
scans [2], or signals produced by the respiratory system, such
as breathing, coughing, or even the human voice [3], [4], [5],
[6], [7]. Imran et al. [8] proposed an AI-powered smartphone
app to detect COVID-19 from coughing information. In their
solution, the recorded audio samples are transferred to an
engine, which implements a cough detector followed by a
COVID-19 diagnosis component. Faezipour and Abuzneid [9]
motivated the study of the time and frequency components
of the breathing sounds to detect the presence of the virus.

In this work, we aim at investigating the complementarity
between breathing and coughing signals for the automatic
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detection of COVID-19. As baselines, we train single-type
neural networks exploiting information from either breathing
or coughing samples. The focus of this study resides in the
comparison of four different methods to fuse breathing and
coughing information when training multi-type models for
the task at hand. Specifically, we propose a novel injection
fusion mechanism, which considers the embedded feature
representations learned from one data type to extract the
embedded feature representations from the other data type.

The rest of the paper is laid out as follows: Section II
describes the dataset analysed in this work, while Section III
details the methodology followed. Section IV compiles and
analyses the results obtained from the experiments performed,
and Section V concludes the paper, and suggests potential
directions for future works.

II. DATASET

We use the crowdsourced breathing and coughing recordings
in [10], which were collected using both a web-based app,
and an Android app. The participants were asked to cough
three times, and to take three to five deep breaths to the app.
Both apps additionally prompted users to report whether they
tested positive for COVID-19, so this information can be used
as the ground truth. A subset of the overall data collected
has been released, so the research community can investigate
the use of digital health-oriented systems for the automatic
diagnosis of patients with COVID-19. This subset contains 62
COVID-positive patients, and 220 healthy patients, providing
a total of 141 and 298 audio samples, respectively, including
breathing and coughing samples.

As part of this work, we carefully listened to the audio
samples available from this subset. We identified some
healthy participants who submitted silent audio samples, or
samples with a single respiratory sound. The participants
who did not submit suitable recordings were excluded from
our experiments with the aim to improve the quality of
the data itself, and the models to be trained. Consequently,
210 healthy patients providing a total of 288 audio samples
are considered in our experiments. The audio samples are
split into participant-independent training, validation, and test
partitions, containing 70 %, 10 % and 20 % of the total number
of participants, respectively. In addition, we balance the
COVID positive and negative patients in both the validation
and test partitions (cf. Table I) to assess the models under
similar conditions. For reproducibility purposes, the samples
used, and the data partitioning are publicly available1.

1https://github.com/EIHW/MultiTypeFusionForCOVID19Detection
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TABLE I: Summary with the distribution of the data available
over the training, validation, and test partitions. In this table,
we depict the number of patients populating each partition,
the total number of breathing (B) and coughing (C) frames
available, and the total number of breathing-coughing frames
pairs (B+C) combined. The information from each partition is
provided independently for both COVID-19 (Pos) and healthy
(Neg) patients.

Train Validation Test Total

COVID-19 Pos Neg Pos Neg Pos Neg Pos Neg

Patients 22 170 13 13 27 27 62 210

B 464 938 162 52 260 304 886 1294

C 207 410 55 27 109 165 371 602

B+C 1337 2047 370 126 678 695 2385 2868

Previous works use the whole audio recordings with
variable lengths to train their models. We aim to train deep
learning-based models using a supervised learning framework
end-to-end. To achieve this, we truncate each breathing and
coughing sample into frames of a fixed length to ensure
a common format for the samples to feed into the model.
The truncation is performed without overlapping information
between consecutive frames, and we discard the recording
tails with insufficient length.

From preliminary experiments not reported in this work, we
empirically determined that the optimal length to analyse the
coughing samples is 2 seconds, and to analyse the breathing
samples, 2.5 seconds. The optimal length determined for the
breathing samples guarantees the presence of at least one
inhalation or exhalation process. Some coughing frames may
include the preparation period before the actual cough, and
therefore contain, for instance, a deep inhale.

This work aims to investigate the impact of fusing breathing
and coughing information for the detection of COVID-19.
To achieve this, we combine each breathing and coughing
frame belonging to the same patient into a breathing-coughing
frames pair. This strategy leads to an increase of the data
available to train and evaluate our models. The distribution of
the breathing frames, the coughing frames, and the breathing-
coughing frames pairs available for each data partition is
detailed in Table I. For each breathing and coughing frame, the
first 40 Mel-Frequency Cepstral Coefficients (MFCCs) [11]
extracted from their short-term power spectrum are used as
input to our models.

III. METHODOLOGY

In this section, we first describe the Convolutional Neural
Network (CNN) [12] implemented to detect COVID-19 from
single-type information from a patient, using either a breathing
frame or a coughing frame. Additionally, we detail the multi-
type neural networks implemented, so both breathing and
coughing frames can be modelled together, and discuss two
conventional methods to fuse the features learned from the
involved data types. For a better exploitation of the salient
information from both breathing and coughing frames, in this

avg.pool

fc1

pool1

relu
bn

conv1

relu
bn

conv2

pool2

fc2

3 × 3
1

2 × 2
16

16
3 × 3

2 × 2
32

32

32

100

2

fc1

pool1

relu
bn

conv1

relu
bn

conv2

pool2

fc2

3 × 3
1

2 × 2
16

16
3 × 3

2 × 2
32

32

64

100

2

pool1

relu
bn

conv1

relu
bn

conv2

pool2

3 × 3
1

2 × 2
16

16
7 × 7

2 × 2
32

32

feature fusion

avg.pool avg.pool

(a) (b)

Fig. 1: Block diagram illustrating (a) the single-type model
and (b) the multi-type fusion model implemented. The kernel
size of each convolutional and max-pooling layer is given
next to each block. The channel change is provided next to
each transition arrow between adjacent blocks. (a) Single-
type model in which either breathing or coughing frames are
used as input. (b) Multi-type fusion model in which both
breathing and coughing frames are simultaneously used as
input. The feature fusion mechanisms applied to this network
are either direct concatenation or 1× 1 convolution.

paper we propose an injection fusion approach to replace
conventional data fusion methods.

A. Single-Type Model

The single-type model to process either breathing or coughing
frames implements a CNN with two convolutional layers
followed by two dense layers (cf. Figure 1(a)). While the goal
of the former is to learn salient feature maps from the input
data, the latter aims to project these embedded representations
into a two-dimensional space. The output can then be used to
infer whether patients have COVID-19 or not. The embedding
features learned at the output of the convolutional block can
be seen as deep-learned representations of the input data type.

Between the convolutional and the dense layers, the
network utilises average pooling to squeeze the learned
feature maps into embedding feature vectors. Batch normali-
sation [13] in each convolutional layer is also applied for a
stable convergence. All layers in the network use the Rectified
Linear Unit (ReLU) [14] as the activation function, with the
exception of the last dense layer, which applies a Softmax
activation function. The use of the Softmax activation function
at the output of the network allows the interpretation of its
outputs as the confidence scores with which the network
classifies the current input sample into each possible class.

B. Multi-Type Fusion Model

To assess the performance of multi-type models exploiting
both breathing and coughing frames simultaneously, we
explore two widely used information fusion methods based
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Fig. 2: Block diagram illustrating the multi-type injection
fusion model proposed. (a) Multi-type injection fusion model,
which feeds breathing and coughing samples separately in
each branch of the network. (b) Injection fusion mechanism,
which projects the learned embedding features to match the
channel-dimension of the convolutional layer, and adds them
to the feature map obtained at the output of the convolution.

on the embedding feature representations learned from the
two data types. The multi-type network implemented consists
of two branches, one processing the breathing frames and
the other, the coughing frames (cf. Figure 1(b)).

The embedding feature vectors learned at the output of
the convolutional blocks are fused together, and fed into the
dense layers for the detection of COVID-19. Specifically, we
consider two conventional information fusion approaches. The
first approach concatenates the two embedding feature vectors
learned into a single-channel representation. The second
approach concatenates the two embedding feature vectors
learned into a two-channel representation, and then applies a
1× 1 convolution to project the two-channel representation
into a single-channel representation.

C. Multi-Type Injection Fusion Model

The model we propose presents a novel fusion schema
in a CNN-based architecture composed of two branches
(cf. Figure 2(a)). The first branch learns embedding feature
representations from the audio frames of one data type. The
deep representations learned are then injected to all the
convolutional layers of the second branch, which learns the
embedding feature representations from the audio frames of
the other data type, and performs the actual detection.

The fusion schema proposed is illustrated in Figure 2(b).
The embedding feature vector learned from the first branch is
projected to match the channel-dimension of the convolutional
layer in the second branch, and added to the output of the
convolution. This way, the learned features of one data type
consider the information of the other data type, resulting in
a more thorough multi-type information fusion.

TABLE II: Performance comparison [µ±CI in %] of the mod-
els trained on the test set, when considering the audio frames
as individual samples. B and C correspond to the single-
type models trained using breathing and coughing samples,
respectively. B+C corresponds to the multi-type models. The
performance of the multi-type models is differentiated in terms
of the fusion method they use. B2C/C2B indicate the models
that inject the deep representations learned from the breathing
audio frames into the convolutional layers responsible for
learning the deep representations of the coughing audio
frames, and vice versa.

Model ACC UAR UAP UF1
B 71.1± 2.2 70.0± 3.5 74.0± 2.9 69.2± 2.7
C 74.1± 2.3 72.7± 3.2 73.6± 3.3 72.9± 2.6
B+C – Concat 74.2± 2.1 75.0± 3.3 74.7± 3.0 74.2± 2.5
B+C – Conv 74.4± 2.2 75.1± 3.2 75.6± 3.0 75.1± 2.4
B+C – B2C 83.1± 2.3 83.7± 3.4 83.9± 3.4 83.8± 2.7
B+C – C2B 81.4± 3.5 81.9± 3.3 83.1± 2.8 81.9± 2.3

IV. EXPERIMENTAL RESULTS

All the models reported in this section are trained using
the cross-entropy between the COVID-19 predictions and
the ground truth as the loss to optimise. We use Adam as
the optimiser with a learning rate of 1e−4. The models are
trained using a batch size of 32 samples. To assess the overall
performance of the trained models, we consider the evaluation
metrics: Accuracy (ACC), Unweighted Average Recall (UAR),
Unweighted Average Precision (UAP), and Unweighted F1
(UF1) score. We report the evaluation metrics including their
95% Confidence Interval (CI) computed from the different
executions. To compute the CI, we use 100x bootstraping for
test (random selection with replacement), and compute each
evaluation metric.

Section IV-A presents the results obtained when considering
each audio frame as an independent sample. Section IV-
B summarises the results obtained when considering each
original audio sample as a whole. For this, all the audio
frames segmented from the original audio sample are fed
into the model, and the individual predictions are combined
to determine the final prediction for the overall sample.

A. Performance comparison based on audio frames

As shown in Table II, multi-type models outperform the
single-type ones. The two conventional fusion approaches
investigated achieve a similar performance in terms of
both accuracy and UAR. Nonetheless, when analysing the
UAP and UF1 metrics, the model trained with channel
convolution obtains a better result than the model applying
direct concatenation. The most notorious results from these
experiments are the performances of the multi-type injection
fusion models. Their performance surpass all the previous
models in terms of all the evaluation metrics considered.

Injecting cough information into the convolutional layers re-
sponsible for learning deep representations from the breathing
frames achieves more discriminative representations for the
detection of COVID-19, in comparison with the conventional
information fusion methods. The performance of the injection
fusion model is even better when the breathing information is

1842

                                                                                                                                               



TABLE III: Performance comparison [µ ± CI in %] of
the models trained on the test set, when considering each
audio sample as a whole. B+C indicate the performance
of the multi-type models. The performance of the multi-
type models is differentiated in terms of the fusion method
they use. B2C/C2B indicate the models that inject the deep
representations learned from the breathing audio frames into
the convolutional layers responsible for learning the deep
representations of the coughing audio frames, and vice versa.

ACC UAR UAP UF1
B 71.2± 2.4 72.1± 3.7 73.5± 3.6 71.6± 3.1
C 73.3± 2.3 73.8± 3.7 73.1± 3.5 72.8± 3.0
B+C – Concat 74.6± 2.4 73.8± 2.9 69.2± 3.4 70.2± 3.7
B+C – Conv 76.7± 2.2 76.9± 3.4 71.3± 3.3 72.4± 2.8
B+C – B2C 78.4± 2.4 78.3± 3.5 77.6± 3.6 78.0± 2.7
B+C – C2B 78.4± 2.0 77.6± 3.1 79.7± 2.9 78.0± 2.6

injected into the convolutional layers responsible for learning
deep representations from the coughing frames. Thus, these
results support the hypothesis that injection fusion performs
a more thorough coupling between the two data types, and
achieves better detection results.

B. Performance comparison based on audio samples

In this section we compare the performance of the multi-type
injection fusion models when considering each audio sample
as a whole. For those recordings segmented into more than one
audio frame, our models produce a sequence of COVID-19
predictions, one for each individual frame. If the majority of
the individual predictions is positive or negative, we consider
the whole audio sample to correspond to a COVID-19 or to
a healthy patient, respectively.

The performance of our proposed models using injection
fusion surpass the single-type models, and the multi-type
fusion models in terms of all the metrics assessed. However,
we can observe that the variances among the results obtained
are higher for most of the metrics. The two injection strategies
achieve a similar accuracy and UF1 scores. Nonetheless, the
injection of breathing information to learn embedded features
from the coughing information scores a higher UAR. In terms
of UAP, the reverse fusion provides better results.

The performance of our models cannot be fairly compared
with the baseline performance reported by the authors of the
dataset [10], as different validation strategies and data splits
are chosen to assess the performance of the models trained.

V. CONCLUSIONS

In this work, we presented a novel multi-type feature fusion
method in a CNN-based architecture. We validated the sug-
gested approach for the first time in the context of COVID-19
detection by fusing breathing and coughing information from
the same patient. The results obtained from the models trained
indicate that the proposed method outperforms those using
either single-type information or conventional approaches
to fuse multi-type information. Hence, the injection fusion
approach proposed seems to be effective for the task at hand.

Future works will focus on the validation of the proposed
approach using other COVID-19 related datasets containing
breathing and coughing sounds. The fusion mechanism

selected impacts the performance of the overall model. Hence,
further investigation could target at the development of new
information-fusion mechanisms that can better exploit the
complementarity between both data types.
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