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Abstract— Face masks alter the speakers’ voice, as their
intrinsic properties provide them with acoustic absorption
capabilities. Hence, face masks act as filters to the human
voice. This work focuses on the automatic detection of face
masks from speech signals, emphasising on a previous work
claiming that face masks attenuate frequencies above 1 kHz.
We compare a paralinguistics-based and a spectrograms-based
approach for the task at hand. While the former extracts
paralinguistic features from filtered versions of the original
speech samples, the latter exploits the spectrogram repre-
sentations of the speech samples containing specific ranges
of frequencies. The machine learning techniques investigated
for the paralinguistics-based approach include Support Vector
Machines (SVM), and a Multi-Layer Perceptron (MLP). For the
spectrograms-based approach, we use a Convolutional Neural
Network (CNN). Our experiments are conducted on the Mask
Augsburg Speech Corpus (MASC), released for the Interspeech
2020 Computational Paralinguistics Challenge (COMPARE).
The best performances on the test set from the paralinguistic
analysis are obtained using the high-pass filtered versions of the
original speech samples. Nonetheless, the highest Unweighted
Average Recall (UAR) on the test set is obtained when exploiting
the spectrograms with frequency content below 1 kHz.

I. INTRODUCTION

Respiratory viruses, such as the Coronavirus Disease 2019
(COVID-19), are transmitted via direct contact with an
infected person or a contaminated surface, and through
respiratory droplets containing the virus, which can be
suspended in the air for a long time and over a long
distance [1]. According to the World Health Organisation
(WHO), current evidences support the hypothesis that COVID-
19 mainly spreads by respiratory droplets among people in
close contact when coughing, sneezing, speaking, singing or
breathing heavily. As a consequence, Governments worldwide
have ruled on the obligatoriness of wearing face masks in
public transports, public spaces, frequented streets, shops,
and even in workplaces to control the spread of COVID-19.

The need to check the compliance with this precaution
measure has motivated the use of new digital solutions for
the automatic detection of face masks from both visual and
acoustic signals. Analysing the information embedded in the
visual modality, hybrid models combining deep and classical
machine learning techniques [2], and transfer learning-based
approaches [3], [4] have been proposed. Focusing on the
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acoustic modality, the speech changes produced by wearing a
mask [5], the use of deep convolutional neural networks from
the spectrograms of the audio signals [6], and solutions based
on transfer learning [7], [8] have also been investigated.

The materials used to produce face masks give them
specific properties in terms of thickness and porosity. These
properties cause the absorption of frequency content [9] when
placing the mask in front of a sound source. This phenomenon
explains the changes produced in our voice when wearing a
face mask, as it behaves as a filter. A recent study claims that
face masks attenuate frequencies above 1 kHz [10]. In the
problem of face mask detection from speech, our hypothesis
is that the exploitation of the frequency content above this
cut-off frequency should be more discriminative. For this,
we compare the performance of face mask detection models
trained with the paralinguistic information extracted from
filtered versions of the original speech signals. Furthermore,
as the filtering effect can also be observed in the frequency
domain, we investigate the performance of models based
on a Convolutional Neural Network (CNN) to exploit the
spectrograms of the original audio signals.

The rest of the paper is laid out as follows: Section II
describes the dataset analysed in this work, while Section III
details the methodology followed. Section IV summarises
and interprets the performance of the models trained, and Sec-
tion V concludes the paper and suggests potential directions
for future works.

II. DATASET

The Mask Augsburg Speech Corpus (MASC), released for the
Mask Sub-Challenge of the Interspeech 2020 Computational
Paralinguistics Challenge (COMPARE) [11], is explored in
this work. This corpus contains speech samples from 32
German native speakers (16 f, 16 m) performing different
tasks with and without wearing the Sentinex Lite surgical
mask from Lohmann and Rauscher. The tasks proposed
included answering some questions, reading specific words,
describing pictures, and drawing a picture and talking about
it. The total duration of the dataset is 10 h 9 min 14 sec. The
audio files released were sampled at 16 kHz, and segmented
into frames of 1 second length without overlap. The total
number of samples available per class and partition are
summarised in Table I.

The main hypothesis of this work is based on the filtering
effect to the human voice caused by face masks. As a
preliminary investigation into this corpus, we computed the
spectrograms of different audio frames to visually analyse
whether face masks absorb the high frequencies in the speech
samples available. A selection of the spectrograms computed
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(a) Spectrograms computed from a female participant while speaking
without (left) and with (right) a surgical face mask.
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(b) Spectrograms computed from a male participant while speaking
without (left) and with (right) a surgical face mask.

Fig. 1: Visualisation of the spectrograms extracted from the original audio samples available in the Mask Augsburg Speech
Corpus (MASC) from a female (Figure 1a) and a male (Figure 1b) participant.

TABLE I: Summary of the total number of audio samples
available in the Mask Augsburg Speech Corpus (MASC) per
class and partition.

Train Devel Test
∑

No-mask 5 353 6 666 5 553 17 572
Mask 5 542 7 981 5 459 18 982∑

10 895 14 647 11 012 36 554

is depicted in Figure 1. The spectrograms computed belong to
a female (cf. Figure 1a) and a male (cf. Figure 1b) participant
with and without wearing a surgical face mask while speaking.
Comparing the spectrograms from each participant, less
energy in the frequencies about 1 kHz can be observed in the
spectrograms corresponding to the samples recorded while
wearing a face mask. Hence, the cut-off frequency of 1 kHz
seems a suitable threshold for our experiments.

III. METHODOLOGY

This section describes the methodology followed in this work.
Sections III-A and III-B detail the approaches followed when
analysing the paralinguistic information extracted, and the
spectrograms computed from the audio signals, respectively.
Section III-C synthesises the parameters and procedures used
to train our neural network-based models.

A. Paralinguistics-based Approach

To investigate the filtering effect from a paralinguistic
perspective, we first create filtered versions of the original
audio signals. We opt for a Butterworth filter [12], because of
its flat magnitude of the frequency response in the pass-band.
For the purposes of this study, we design a low-pass and a
high-pass filter with a cut-off frequency at 1 kHz. Different
order Butterworth filters are considered during the design
phase, and their magnitude of the frequency response is
depicted in Figure 2. Because of their quicker roll off and
their shorter transition between the pass-band and the stop-
band, we select the low-pass and the high-pass 20th-order
Butterworth filters.

The next step is the extraction of the paralinguistic features
from the original, low-pass, and high-pass versions of the
audio samples. We extract the 6 373 features available from
the COMPARE feature set [13], [14] using the 3.0 public

0.00 0.05 0.10 0.15 0.20 0.25 0.30

Normalized frequency (1.0 = Nyquist)

−100

−80

−60

−40

−20

0

A
m

p
li

tu
d

e
[d

B
]

H(z) – Butterworth low-pass filters

10th order

15th order

20th order

0.00 0.05 0.10 0.15 0.20 0.25 0.30

Normalized frequency (1.0 = Nyquist)

−100

−80

−60

−40

−20

0

A
m

p
li

tu
d

e
[d

B
]

H(z) – Butterworth high-pass filters

10th order

15th order

20th order

Fig. 2: Magnitude of the frequency response of the low-
pass (left) and high-pass (right) 10th-, 15th- and 20th-order
Butterworth filters with a cut-off frequency at 1 kHz.

release of OPENSMILE [15], [16]. We apply standardisation
to the training features, so they are zero-mean and unit-
variance. To reduce the dimensionality of the features while
preserving the information that contributes the most, we
apply dimensionality reduction with Principal Component
Analysis (PCA), keeping 90 % of the variance. The number of
components kept depends on the version of the audio sample
used. Both the standardisation and the PCA parameters are
only computed on the training features, and stored, so these
can be applied to the testing features off-line.

We compare two different techniques to model the paralin-
guistic features: the first one uses a Support Vector Machines
(SVM), and the second one, a Multi-Layer Perceptron (MLP).
The SVM uses a linear kernel with a regularisation parameter
C ∈ [10−5, 10−4, 10−3, 10−2], optimised on the development
partition of the dataset. The MLP implements three-stacked
Fully Connected (FC) layers with 64, 16, and 1 neurons,
respectively. While the first two FC layers use the Rectified
Linear Unit (ReLU) as the activation function, the last layer
uses the Sigmoid function as the activation, so the output
of the network belongs to the range [0, 1]. If the output is
greater than .5, we consider the input sample to be recorded
while wearing a face mask.

B. Spectrograms-based Approach

The starting point of this approach is the computation of
the Short-Time Fourier Transform (STFT) of the original
audio samples. We compute the STFT using the librosa
library [17], with a window length and a hope size of 2 048
and 256 samples, respectively. The magnitude of the STFT
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TABLE II: Summary of the UAR scores (in percentage)
computed from the SVM and the MLP models trained
following the paralinguistics-based approach. The 6 373
features of the COMPARE feature set are extracted from
the original audio samples, and their low-pass and high-
pass filtered versions, which are obtained using a low-pass
and high-pass 20th-order Butterworth filter, respectively.
The extracted features are standardised, and dimensionality
reduction is applied using PCA, keeping 90 % of the variance.

Models SVM-based MLP-based

Partition Devel Test Devel Test

Original signals 62.67 67.03 62.87 67.13
LP signals 58.45 61.70 58.23 61.40
HP signals 63.13 67.22 62.49 67.74

is computed and normalised, so it ranges between 0 and 1
before generating the spectrograms. In our experiments, we
treat the spectrogram representations of the original audio
files as images, so these can be exploited using a CNN.
In this regard, the frequency scale selected to display the
spectrograms modifies their visual appearance. Thus, we
aim to compare the performance of networks exploiting
spectrogram representations using a linear and a logarithmic
frequency scale. Furthermore, to investigate the filtering
effect in the spectrograms, we focus our analysis on specific
frequency ranges. Our experiments compare the use of
spectrograms with frequency content over all the range
available (i. e. , from 0 kHz to 8 kHz), with spectrograms
containing only the frequencies below 1 kHz (i. e. , from 0 kHz
to 1 kHz), and above 1 kHz (i. e. , from 1 kHz to 8 kHz). The
spectrograms generated are saved as images of 256 × 256
pixels for further processing.

The CNN-based network implemented to exploit the
information available from the spectrograms of the audio
samples has two main blocks. The first block extracts deep-
learnt feature representations of the input spectrograms, while
the second block is responsible for the actual classification.
The first part of the network is composed of two convolutional
blocks with 6 and 16 channels, respectively, with a square
kernel of 5 × 5, and a stride of 2. The output of both
convolutions is forwarded to a ReLU activation function,
and a 2 × 2 max-pooling layer. Analogously to the MLP
implemented in Section III-A, the classification block of
our network has three-stacked FC layers with 64, 16, and
1 neurons, respectively. The first two FC layers use ReLU
as the activation function, while the last FC layer uses a
Sigmoid function as the activation. This way, the output of
the network belongs to the range [0, 1]. If the output is greater
than .5, we consider the input sample to be recorded while
wearing a face mask.

C. Networks Training

The MLP and the CNN-based network described in
Sections III-A and III-B, respectively, are trained under
the exact same conditions. Both networks use the Mean
Squared Error (MSE) as the loss to optimise, and Adam

TABLE III: Summary of the UAR scores (in percentage)
computed from the CNN-based networks trained with the
spectrograms generated using a linear or a logarithmic fre-
quency scale following the spectrograms-based approach. The
scenario in which the input spectrograms contain frequency
content over all the range available (i. e. , from 0 kHz to
8 kHz) is referred as Original spectrograms in the table.
The scenarios in which the input spectrograms only contain
frequency content below 1 kHz (i. e. , from 0 kHz to 1 kHz),
and above 1 kHz (i. e. , from 1 kHz to 8 kHz) are referred as
LF spectrograms and HF spectrograms, respectively.

Frequency Scale Linear Logarithmic

Partition Devel Test Devel Test

Original spectrograms 60.49 58.28 67.05 69.15
LF spectrograms 60.76 66.42 65.83 70.70
HF spectrograms 60.18 59.22 60.02 57.99

as the optimiser, which implements a fixed learning rate
of 10−3. The network parameters are updated every 256
samples, and trained during a maximum of 100 epochs.
An early stopping mechanism is also implemented to stop
training when the validation loss does not improve for 10
consecutive epochs. This allows determining the number of
epochs required for the network to be trained while preventing
overfitting. Consequently, this parameter defines the amount
of training required for the networks at the testing stage, when
considering samples from both the training and development
partitions as training material.

IV. EXPERIMENTAL RESULTS

For a fair comparison with related works in the literature,
we assess the performance of our models by computing
the Unweighted Average Recall (UAR) between the labels
inferred and the ground truth. The results obtained following
the paralinguistics-based approach (cf. Section III-A) and the
spectrograms-based approach (cf. Section III-B) are synthe-
sised in Tables II and III, respectively. The performance of our
models is comparable with the model performances reported
in the baseline paper of the COMPARE 2020 Challenge [11],
although their best model on the test set scored a UAR of
71.8 % using a fusion of best approach.

Analysing the results obtained with the paralinguistics-
based approach (cf. Table II), we can state that the perfor-
mance of both SVM- and MLP-based models is similar.
Regardless of the technique, we observe that the best UAR
scores are obtained when exploiting the paralinguistic features
extracted from the high-pass filtered versions of the original
speech signals, while the worst UAR scores, from the low-
pass filtered versions. The former scored a UAR of 67.22 %
and 67.74 %, while the latter achieved a UAR of 61.70 % and
61.40 % with the SVM- and MLP-based models, respectively.
These results support the filtering effect of face masks,
as the speech signals with frequency content above 1 kHz
contain more discriminative information for the task at hand.
The results obtained show a small performance difference
when using the original speech signals, and their high-pass
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filtered versions. We hypothesise this can be attributed to the
combination of applying PCA on the paralinguistic features,
preserving the features with the highest variance only, and
the capabilities of the model, which might have learnt to
downsize the effect of the low frequency-related features.

When exploiting the salient information from the spec-
trogram representations of the speech signals (cf. Table III),
we observe that the best performances are obtained with the
spectrograms containing only the frequencies below 1 kHz,
scoring a UAR of 66.42 % and 70.70 % when using the
linear and the logarithmic frequency scales, respectively.
As the fundamental frequency of average male and fe-
male speakers lies below 500 Hz, the highest energies in
the spectrogram can be expected at the low frequencies.
Consequently, spectrograms with frequency content below
1 kHz might contain richer information to be extracted by
the network. Furthermore, this result can be interpreted as
follows: the filtering effect of face masks impacts the energy
of the spectrogram representations of the speech signals, in
such a way that is detectable by CNNs. In line with these
observations, our experiments support the use of spectrograms
with the logarithmic frequency scale, in which low-frequency
bins cover a narrow range of frequencies, while the high-
frequency bins, a wider range.

V. CONCLUSIONS

This work investigated the automatic detection of face masks
from speech signals, emphasising on the filtering effect caused
by face masks to the frequencies above 1 kHz. The MASC
dataset released for the Interspeech COMPARE 2020 edition
was used to test our hypothesis, and to assess the performance
of our models. When focusing the analysis on the use of
paralinguistic features, the results obtained indicated that high-
pass filtered versions of the speech signals contained more
salient information for the task at hand. This supported our
hypothesis, as the features of the speech samples containing
only frequencies above 1 kHz were more discriminative.
Nevertheless, when exploring the use of the spectrogram
representations of the speech signals, spectrograms containing
frequencies below 1 kHz achieved the highest UAR scores.
This result suggested that face masks impacted the energy of
the spectrogram representations of the speech signals.

One of the limitations of the dataset used in this work is
that the speech samples were only recorded using surgical face
masks. The different types of face masks are made of different
materials, and, therefore, have different absorption properties.
As future work, the collection of a similar dataset using FFP2
masks could be considered with the aim to assess how the
filtering effect of this type of masks impacts their automatic
detection from speech. Further research could explore transfer
learning techniques in this problem, using state-of-the-art pre-
trained CNNs to extract deep-learnt representations of the
spectrograms. Work in this direction could help to assess
the benefits of using pre-trained or specific CNNs when
training face mask detection models from speech signals, and
to determine the optimal approach.
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Robert Stöter, Vincent Lostanlen, Siddhartha Kumar, Simon Waloschek,
Seth Kranzler, Rimvydas Naktinis, Douglas Repetto, Curtis “Fjord”
Hawthorne, CJ Carr, Waldir Pimenta, Petr Viktorin, Paul Brossier,
João Felipe Santos, Jackie Wu, Erik Peterson, and Adrian Holovaty,
“librosa/librosa: 0.8.0,” 2020.

2082

                                                                                                                                               


