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Abstract

In this thesis we demonstrate a universal property of symmetric L-theory as a
space-valued functor from the category of Waldhausen categories with Spanier
Whitehead products in the sense of [WW98]. Specifically, we characterise
symmetric L-Theory as the target of the “universal bordism characteristic of
symmetric Poincaré objects”. Furthermore, we show that the construction of
Quinn’s bordism spaces of ad theories in the sense of [LM14] satisfies an analo-
gous characterisation. The main novel ingredient of our work is the development
of a simple abstract setting for universality that unifies both examples.

There are two parts to this thesis: Part I establishes the abstract founda-
tions and describes applications. Part II is a technical extension of the first part,
based on a further analysis of sufficient conditions for universal bordism char-
acteristics and the problem of how to extend their targets to spectrum-valued
functors in a natural way. We introduce a second more specialised framework
for this investigation and illustrate the theory in two explicit examples; namely,
Quinn’s Bordism machine of ad theories and symmetric L-theory in the setting
of additive categories with chain duality introduced by A. A. Ranicki.
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Introduction

Algebraic L-theory was developed by C. T. C. Wall, A. A. Ranicki and A.
S. Mishchenko (see [Wal99, Ran92, Mis71]) as a receptacle for signature-type
invariants of closed manifolds and, most notably, surgery obstructions. It is
defined in terms of semi-simplicial spaces whose n-simplices are algebraic models
of compact ∆n-manifold-ads, i.e., manifolds with n + 1 many boundary pieces
intersecting transversely and with empty total intersection; for example, a ∆0-
manifold is just a manifold without boundary and a ∆1-manifold is a manifold
with boundary in the usual sense.

L-theory should be regarded as a cousin of algebraicK-theory, which geomet-
rically serves as a receptacle for Euler-characteristic-type invariants. However,
in contrast to the feature of additivity of Euler-characteristic-type invariants
with respect to decompositions of the underlying space, the most important
property of signature-type invariants is bordism invariance.

Recent research ([Bar16, BGT13]; see [Ste17] in particular, for an elementary
and 1-categorical account) aimed at describing algebraic K-theory not only via
its construction, but rather by characterising it via a universal property, briefly
summarised as being “the universal additive characteristic”.

One of the two motivations of this work was to find a similar description of
algebraic L-theory via a universal property. The other motivation of this work
is based on the idea, popularised by Frank Quinn in his work on the surgery
exact sequence [Qui70, Qui95] and much further pursued by Gerd Laures and
James E. McClure [LM14, LM13], that the construction of L-theory only relies
on having a suitable notion of ∆n-ads available, and so generalises to other
contexts. In this generality the simplicial construction is often referred to as
Quinn’s bordism machine; in the case of manifolds, for instance, the machine
gives rise to a geometric model for Thom spectra underlying bordism theory.
One may then wonder to what extent Quinn’s machine, in general, possesses a
universal property.

In this thesis we show that indeed both algebraic L-theory and Quinn’s bor-
dism machine satisfy a universal property, briefly summarised as being “the
universal bordism characteristic”. We formalise an abstraction of both con-
structions, called parametric realisation, in order to unify the proofs, and then
analyse two specific examples in detail, based on the availability of relevant
results in the literature: First, the case of Waldhausen categories with duality
in analogy to [Ste17] wherein parametric realisation corresponds to algebraic
L-theory; and second, the case of ad theories and Quinn’s bordism machine in
the sense of Laures-McClure.

Let us now explain the results of this work in more detail: We start by
placing ourselves into a minimalistic setting to describe parametric realisation
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and its universal property. A complete introduction is given in Chapter 1.
Let C be a category and denote by ∆op the opposite of the category of non-

empty finite ordered total sets [n] = {0 < · · · < n}, where n is a natural number,
and order-preserving injective maps. By a parametrisation structure on C, we
will mean a functor

p : C ×∆op → C
(c, [n]) 7→ c[n]

together with a natural transformation µc : c ∼= c[0]. We call the functor p the
parametrisation operator on C and µ the unit.

Denote by Top∗ the category of pointed spaces and pointed continous maps.
In anticipation of our applications, one should regard a space-valued functor
Z : C → Top∗ on C as specifying the “closed objects” of C, or the abstract
analogues of closed manifolds, and the spaces Z(c[n]) as the space of n-parameter
bordisms in Z(c). For any functor Z : C → Top∗ we then define its parametric
realisation to be the functor PZ : C → Top∗ determined by taking geometric
realisation of the semi-simplicial spaces [n] 7→ Z(c[n]), for all objects c in C, i.e.,

PZ(c) := ‖[n] 7→ Z(c[n])‖.

Note that the construction PZ comes with a canonical natural transformation

ιZ(c) : Z(c) ↪→ PZ(c),

given by the composition of the natural transformation Z(µc) : Z(c) ∼= Z(c[0])
and the inclusion of the 0-skeleton Z(c[0]) ↪→ PZ(c).

Definition 0.0.1. Let Z : C → Top∗ be a functor. A bordism characteristic of
Z is a pair (F, σ) consisting of a functor F : C → Top∗ and a natural transfor-
mation σ : Z ⇒ F such that the functor F satisfies the following condition called
bordism invariance: all face maps of the semi-simplicial space [n] 7→ F (c[n]) are
weak equivalences, for all objects c in C and all natural numbers n ≥ 1.

Bordism characteristics of any given Z : C → Top∗ assemble into a cate-
gory, which we denote by Brd(Z); a morphism (F, σ) → (F ′, σ′) is a natural
transformation η : F ⇒ F ′ such that η ◦ σ = σ′. We call a morphism η in
Brd(Z) a weak equivalence if it is an objectwise weak equivalence and denote
the corresponding category obtained by formally inverting weak equivalences by
hBrd(Z).

It is evident from the definition that the operation of parametric realisation
on a given functor Z defines a bordism characteristic (PZ, ιZ) of Z precisely
if PZ is bordism invariant. This latter assumption may not hold in general,
though. We defer a counterexample to Example 1.3.2.

Nevertheless, under a mild symmetry assumption on the parametrisation
operator, we show that whenever the pair (PZ, ιZ) is a bordism characteristic
of Z, then it is the universal one in the following homotopical sense:

Theorem 0.0.2. Let (C, p, µ) be a category with symmetric parametrisation
structure. Furthermore, let Z : C → Top∗ be a functor such that its parametric
realisation PZ is bordism invariant. Then the pair (PZ, ιZ) is an initial object
in hBrd(Z).
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Theorem 0.0.2 will serve as a template for applications. Its proof depends on
the theory of semi-simplicial spaces and reasoning analogous to that of [Ste17].

Let us next outline our two main applications of Theorem 0.0.2. Chapters
2 and 3 are dedicated to thorough discussions.

First, we consider xWald, the category of Waldhausen categories with a
Spanier Whitehead product, alias Waldhausen categories with duality, as de-
veloped by Michael Weiss and Bruce Williams in [WW98]. The setting xWald
was introduced in the work of Weiss-Williams on automorphisms of manifolds
(see [WW88, WW89, WW14, WW01, WW98, WW00]) as a generalisation of
the category of rings with involution, and should be viewed as a counterpart to
the setting of Waldhausen categories for algebraic K-theory.

As closed objects of xWald, we consider the symmetric Poincaré objects,
which satisfy a self-duality property in analogy to the Poincaré duality of man-
ifolds. We will denote the corresponding functor by sp : xWald → Top∗. A
parametrisation structure on the category xWald was essentially described in
[WW98] and symmetric L-theory L(C) of a Waldhausen category with duality
C is defined as the parametric realisation of the functor sp applied to C, i.e.,

L(C) := P sp(C).

It was observed in [WW00] that symmetric L-theory satisfies the bordism in-
variance condition, or in other words, that the pair (L, ιsp : sp⇒ L) is a bordism
characteristic of sp. We combine this observation with Theorem 0.0.2 to deduce
that the pair (L, ιsp) is in fact a universal bordism characteristic of sp, and,
thus, satisfies a universal property:

Theorem 0.0.3. The pair (L, ιsp) is initial in hBrd(sp).

To elaborate, Theorem 0.0.3 states that symmetric L-theory of Waldhausen
categories with duality is the universal target of bordism characteristics of sym-
metric Poincaré objects, in the sense that every natural transformation sp⇒ F
to a bordism invariant functor F extends along ιsp : sp ⇒ L to a natural
transformation L ⇒ F , up to inverting weak equivalences. Furthermore, the
extension is uniquely defined up to inverting weak equivalences.

As a demonstration of Theorem 0.0.3 we give the following application: One
of the main achievements of [WW98] was to establish a relationship between
algebraic L- and K-theory to explain the existence of Rothenburg sequences.
The authors achieve this by constructing a natural transformation

Ξ : L⇒ KthZ2

from symmetric L-theory to the Z2-Tate cohomology of K-theory.
We prove that the natural transformation Ξ of Weiss-Williams can be charac-

terised as a morphism of bordism characteristics of symmetric Poincaré objects,
up to weak equivalence, as a consequence of the universal property of L-theory
stated in Theorem 0.0.3.

In our second application of Theorem 0.0.2 we examine the category of ad
theories introduced by Laures-McClure [LM14]. Ad theories are a modern re-
formulation of Quinn’s “bordism-type theories” (cf. [Qui95]), serving as input
for Quinn’s bordism machine, and giving rise to highly structured models of
bordism-type spectra, such as L-theory spectra and Thom spectra. They are
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defined as integer-graded (by dimension) categories A with involution together
with an integer-graded set of diagrams in A, called “ads”, indexed by the face
posets of ball complex pairs.

Let Ad denote the category of ad theories. A parametrisation operator on
Ad is described in [LM14], yet the proof that the construction is well-defined
was not presented there. We provide comprehensive details here to fill the gap,
and, moreover, show that the parametrisation operator extends over the whole
category of ball complex pairs.

We denote by Ball2 the category of ball complex pairs and let cl0(A) (cl for
closed) denote the set of ∆0-ads of grading 0 of an ad theory A. (The grading is
chosen in order that the functor Q corresponds to the taking the zeroeth space
of Quinn’s bordism-spectra.) Quinn’s bordism-space machine Q is defined as
the parametric realisation of the closed objects functor cl0, i.e.,

Q := P cl0 .

It turns out that results of [LM14] directly imply that the pair (Q, ιcl0) is a
bordism characteristic. We furthermore prove that this pair defines a universal
bordism characteristic of the closed-object functor:

Theorem 0.0.4. The pair (Q, ιcl0) is initial in hBrd(cl0).

The results described so far constitute the content of the first part of this
work. Part II of this work serves as a technical extension and elaboration of Part
I, based on a further investigation of parametric realisation and the conditions
of Theorem 0.0.2. Our research is motivated by the following specific questions
inspired by [Ste17]:

Let (C, p, µ) be a category with parametrisation structure and Z : C → Top∗
be a given space-valued functor on C. Under which conditions on the functor Z
and parametrisation operator p, can one deduce that:

1. The parametric realisation of Z is bordism invariant?

2. The parametric realisation of Z extends to an Ω-spectrum functor?

The motivating aim behind the first question is to understand better the
role of the input functor Z in Theorem 0.0.2, and in particular, to find sufficient
conditions on the functor Z itself, rather than on its parametric realisation, so
that the pair (PZ, ιZ) is universal. The second question is motivated by the
fact that our main examples of parametric realisation are not just space-valued
but in fact take values in the category of infinite loop spaces, i.e., they appear
as zeroeth terms of Ω-spectrum-valued functors. It is then desirable to find a
setting for parametric realisation in which the extension to spectra would be
described naturally.

In this work, we do not examine Questions (1.) and (2.) in full generality but
rather in the special situation that the parametrisation operator extends over
the category of ball complex pairs, motivated by the example of ad theories
and, furthermore, by the recent description of Tibor Macko and Spirou Adams-
Florou in [AFM18] of additive categories with chain duality parametrised over
ball complexes.

More specifically, we introduce an axiomatisation of the extended features of
parametrisation in the category of ad theories called extended parametrisation
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structures: These are parametrisation structures (p, µ) such that the parametri-
sation operator p is given by a functor p : C × Ballop2 → C, together with the
data of natural isomorphisms

α(K,L),(M,N)
c : (c[M,N ])[K,L] ∼= c[(K,L)× (M,N)]

expressing associativity of the parametrisation operator with respect to the
product ’×’ of ball complexes (as CW complexes) and satisfying compatibil-
ity conditions with the unit µc : c ∼= c[0]. A formal introduction is presented in
Chapter 4. We then establish the following specialisation of Theorem 0.0.2 in
the setting of extended parametrisation structures, as a demonstrative answer
to Questions (1.) and (2.):

Theorem 0.0.5. Let (C, p, µ, α) be a category with extended parametrisation
structure and Z : C → Set∗ be a functor. Suppose that p is combinatorial and
deloopable and that Z is local and surjective on expansions. Then the paramet-
ric realisation PZ is bordism invariant and extends to an Ω-spectrum-valued
functor. In particular, the pair (PZ, ιZ) is initial in hBrd(Z).

The details and proof of Theorem 0.0.5 are described in Chapter 4.
For an illustration of the setting of extended parametrisation structures and

Theorem 0.0.5, we discuss two examples in Chapters 5 and 6: First, we demon-
strate that Theorem 0.0.5 applies in the case of the category of ad theories
and the closed-objects functor cl0, thereby obtaining an alternative and second
proof of Theorem 0.0.4. This second proof highlights the special properties of
the closed objects functor which imply universality of Quinn’s bordism machine
and, moreover, it recovers the extension of Quinn’s bordism machine to spectra.

Second, we examine the setting of additive categories with chain duality
for algebraic L-theory in the sense of Ranicki [Ran92]. This setting generalises
that of rings with involution but is more specialised than that of Waldhausen
categories with duality.

We prove that one may assemble additive categories with chain duality into a
category with extended parametrisation structure such that symmetric L-theory
is given as the parametric realisation of the symmetric-Poincaré-complexes func-
tor. The definition of an extended parametrisation structure was partially de-
scribed in [AFM18], in the sense that the authors construct additive categories
with duality, for every pair (A, X) consisting of an additive category with dual-
ity A and ball complex X, but functoriality of the construction is not described
there. Our work aims to provide the details, and, in particular extend the es-
tablished functoriality, due to Ranicki [Ran92], over the category of simplicial
complexes and simplicial inclusions to the category of ball complex pairs. As a
consequence, we are able to formulate a universal property of L-theory in this
setting.

In the course of editing the final drafts of this paper, the series of preprints
[CDH+20a, CDH+20b, CDH+20c] appeared in which a new variant of L-theory
in an ∞-categorical setting is defined, and furthermore, shown to possess a
universal property. The universal property described there is similar in spirit to
the one demonstrated here but is not directly comparable, due to the difference
of setups; in addition, we note that our setup also applies in non-algebraic
situations.
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Part I

Universality and Main
Results
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Chapter 1

An Abstract Universality
Theorem

In this chapter we develop a minimalistic framework for the study of universal-
ity of certain space-valued functors, motivated by applications to L-theory and
Quinn’s bordism machine. The central feature introduced is a semi-simplicial
construction on space-valued functors called Parametric Realisation (see Defini-
tion 1.1.7) that serves to abstract the definitions of both L-theory and Quinn’s
bordism machine. The aim of the framework is to establish a universal property
for the parametric realisation of a given functor, as a blueprint for applications.

We introduce the notion of categories with parametrisation structures (Def-
inition 1.1.3) to serve as minimal settings for parametric realisation. Roughly
speaking, a parametrisation structure equips a category with an internal rule
for determining “objects parametrised over an n-simplex”, for every natural
number n ≥ 0. The exact definitions of parametrisation structures and para-
metric realisation are described in Subsection 1.1.1, assuming familiarity with
the fundamentals of semi-simplicial theory. We refer the reader to [ERW19] for
a concise reference on the latter.

The notions of bordism invariant functors and bordism characteristics are
introduced in Subsection 1.1.2 in order to describe a universal property of para-
metric realisation. The precise statement of this universal property is recorded
as the “Abstract Universality Theorem” (Theorem 1.2.1) and we have devoted
Section 1.2 to its statement and proof.

The proof of the Abstract Universality Theorem is heavily inspired by the
proof of a universal property of algebraic K-theory described in [Ste17]. In
particular, we rely on two facts about the geometric realisation of semi-simplicial
spaces that we record in Propositions 1.2.4 and 1.2.7. We expect these facts to
be well known, although we did not find precise statements or accompanying
proofs in the literature; we provide them here for completeness.

It turns out that the concept of Parametric Realisation has a broader scope
than our main applications. In Section 1.3, we illustrate a few simple exam-
ples, including the singular construction of topological spaces and the classifying
space construction for small categories.
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1.1 Definitions

The following two subsections serve to collect preliminary definitions for the
Abstract Universality Theorem.

1.1.1 Parametrisation Structures and Parametric Realisa-
tion

Definition 1.1.1. Let ∆ denote the category with

� objects: the non-empty ordered sets [n] := {0 < 1 < · · · < n}, where
n ≥ 0, and

� morphisms: the injective order-preserving maps [n]→ [m].

Furthermore, denote its opposite category by ∆op.

Remark 1.1.2. Note that our notation is nonstandard; the category ∆ is
usually denoted by ∆inj in the literature (e.g., cf. [ERW19, §1.2]), and should
not be confused by the usual simplex category consisting of the same objects
as ∆ but with all order-preserving maps as morphisms. We employ the simpler
notation ∆ as we will primarily deal with semi-simplicial objects without any
specific degeneracy maps.

Definition 1.1.3. A category with parametrisation structure consists of a triple
(C, p, µ) where:

� C is a category,

� p : C ×∆op → C is a functor, called the parametrisation operator, and

� µ : idC ⇒ p(−, [0]) is a natural isomorphism of functors C → C, called the
unit.

We will write c[n] and f [n] as shorthand for the notations p(c, [n]) and p(f, id[n]),
respectively.

Remark 1.1.4. For intuition, it is helpful to regard the objects c[1] and c[n]
as the objects of bordisms and n-parameter bordisms of elements in c[0] ∼= c,
respectively. This viewpoint is motivated by our main examples which arise
from bordism theory and will be described in the upcoming chapters.

The main relevance of categories with parametrisation structures is that they
serve as input for a simplicial construction on space-valued functors. Before
coming to the definition, we first introduce preliminary notation.

Notation 1.1.5.

1. For any two given categories A,B, we denote by Fun(A,B) the category of
functors from A to B where morphisms are natural transformations. Fur-
thermore, we employ the notation ssB in the case A = ∆op, corresponding
to the category of of semi-simplicial objects in B.
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2. We denote by Top∗ the category of pointed compactly generated spaces
and pointed continuous maps. Moreover, we let pt and ∗ denote a fixed
terminal object of the categories Top∗ and ssTop∗, respectively.

3. We let || − || : ssTop∗ → Top∗ denote geometric realisation (see Remark
1.1.6).

Remark 1.1.6. Geometric realisation || − || : ssTop∗ → Top∗ is defined by
assigning to a semi-simplicial pointed space X : [n] 7→ (Xn, xn) the pointed
space (||X||, ||x0||), where ||X|| is the quotient space given by

||X|| :=

(⊔
n≥0

Xn × |∆n|

)/
∼ .

Here |∆n| denotes the standard topological n-simplex and ∼ is the equivalence
relation generated by

(φ∗x, t) ∼ (x, φ∗t), for all morphisms φ ∈ Mor(∆).

For more comprehensive details about geometric realisation of semi-simplicial
spaces, we refer the reader to [ERW19, §1.2].

Definition 1.1.7. Let (C, p, µ) be a category with parametrisation structure.

1. Let P• : Fun(C,Top∗) → Fun(C,Top∗) be the functor given by precom-
position with the parametrisation operator p and currying variables, i.e.,

P• : Fun(C,Top∗)
◦p−→ Fun(C ×∆op,Top∗)

∼= Fun(C, ssTop∗).

We define an endofunctor P : Fun(C,Top∗)→ Fun(C,Top∗), called Para-
metric Realisation on C, as the following composition:

P : Fun(C,Top∗) Fun(C, ssTop∗) Fun(C,Top∗).
P• ||−||◦

2. We furthermore define a canonical natural transformation ι : id ⇒ P as
follows: For any given functor F : C → Top∗, let ιF : F ⇒ PF be the
natural transformation whose component at an object c in C is given by
the composition

ιF (c) : F (c)
F (µc)∼= F (c[0])) ↪→ PF (c),

where the hooked morphism F (c[0]) ↪→ PF (c) denotes the inclusion of the
0-skeleton.

For every natural number n ≥ 0 and functor F : C → Top∗, we will denote by

PnF : C → Top∗, c 7→ F (c[n])

the composition of P•F with the evaluation functor ssTop∗ → Top∗, X• 7→ Xn

in degree n. Moreover we denote by F (c[•]) the image of P•F on an object c in
C.

9



1.1.2 Bordism Characteristics

We are interested in finding a characterisation of the pairs (PZ, ιZ) for a given
category with parametrisation structure (C, p, µ) and space-valued functor Z
depending upon conditions on the functor PZ and parametrisation operator
p. In the subsequent definition, we introduce a special category of pairs (F, σ)
consisting of a space-valued functor F from C and natural transformation σ :
Z ⇒ F , called the category of bordism characteristics, as the most basic yet
interesting setting for this characterisation.

For precision, note that by a weak equivalence in Top∗, indicated by the
notation ‘'’, we will mean the standard notion of a map f : X → Y of pointed
spaces inducing an bijection on the set of path components and an isomorphism
on all pointed homotopy groups.

Definition 1.1.8. Let (C, p, µ) be a category with parametrisation structure.

1. A functor F : C → Top∗ is said to be bordism invariant if, for every
object c in C, all face maps of the semi-simplicial space F (c[•]) are weak
equivalences, i.e.,

F (di) : F (c[n])
'→ F (c[n− 1])

for all objects c in C, n ≥ 0 and 0 ≤ i ≤ n.

2. Let Z : C → Top∗ be a functor. A bordism characteristic of Z is a pair
(F, σ) consisting of

� a bordism invariant functor F : C → Top∗, and

� a natural transformation σ : Z ⇒ F of functors C → Top∗.

The natural transformation σ is called a characteristic.

3. We assemble bordism characteristics of Z into a category Brd(Z), whose
morphisms η : (F, σ) → (F ′, σ′) are natural transformations η : F ⇒ F ′

which commute with the bordism characteristics, i.e., such that η◦σ = σ′.

4. A natural transformation of Top∗-valued functors on C, η : F ⇒ F , is
called a weak equivalence if, each component ηc : F (c) → F ′(c) is a weak
equivalence of spaces, for all objects c of C. A morphism η : (F, σ) →
(F ′, σ′) of bordism characteristics of Z is called a weak equivalence if
η : F ⇒ F is a weak equivalence of functors C → Top∗.

5. We define the homotopy category of bordism characteristics of Z, denoted
hBrd(Z), to be the category obtained by formally inverting weak equiv-
alences (see [DHKS04, §26.5] for the construction).

6. An initial object in the category hBrd(Z) is called a universal bordism
characteristic of Z.

Remark 1.1.9. The term bordism invariant issuggested by our main exam-
ples in which case the objects c[n], where n ≥ 0, describe the “n-parameter
bordisms” in c. The condition that all face maps of the semi-simplicial functor
P•F are weak equivalences may then be interpreted to mean that the functor
F is invariant under bordisms and all higher bordisms.
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Remark 1.1.10. The definition of the category of bordism characteristics of Z
is inspired by the definition of the category of global Euler characterstics given
in [Ste17].

Finally, we introduce a symmetry condition on parametrisation structures
that asserts that the operation of parametrisation is commutative up to natural
isomorphisms:

Definition 1.1.11. Let (C, p, µ) be a category with parametrisation structure.
We say the parametrisation structure (p, µ) is symmetric, if there are natural
isomorphisms of functors C ×∆op ×∆op → C,

sn,mc : (c[n])[m] ∼= (c[m])[n],

such that the following properties hold:

1. sn,mc ◦ sm,nc = idc, for all c ∈ ob(C) and m,n ≥ 0.

2. The symmetry morphisms sn,mc are compatible with the unit µ in the sense
that the following trianges commutes, for all c ∈ ob(C) and k ≥ 0:

c[k]

(c[0])[k] (c[k])[0]

µc[k] µc[k]

s0,kc

c[k]

(c[k])[0] (c[0])[k].

µc[k] µc[k]

sk,0c

We call the morphisms sn,mc symmetry morphisms.

1.2 The Universality Theorem

In this section we will show that parametric realisation yields universal bordism
characteristics under suitable conditions. Precisely, we will prove the following
theorem:

Theorem 1.2.1. (Abstract Universality Theorem)
Let (C, p, µ) be a category with symmetric parametrisation structure and let Z :
C → Top∗ be a functor such that its parametric realisation PZ is bordism
invariant. Then the pair (PZ, ιZ) is a universal bordism characteristic of Z

The proof of Theorem 1.2.1 relies on three preliminary lemmas, recorded as
Lemmas 1.2.6, 1.2.10 and 1.2.11 below.

In preparation for the first preliminary lemma, we recall the notion of a
homotopy cartesian square and a key result about the homotopy type of semi-
simplicial spaces.

Definition 1.2.2. Let C ×hD B denote the homotopy pullback alias homotopy
limit of the diagram of spaces (C → D ← B) . A strictly commutative diagram
of spaces

A B

C D

11



is called a homotopy cartesian square or homotopy pullback square if the canon-
ical map A→ C ×hD B is a weak equivalence.

Remark 1.2.3. We refer the reader to the book [MV15] for a comprehensive
reference on homotopy limits. The previous definition is based on Definitions
3.2.4 and 3.3.1 therein.

Proposition 1.2.4. Let X• be a semi-simplicial space such that all of its face
maps are weak equivalences. Then the inclusion of the 0-skeleton

X0 ↪→ ‖X•‖

is a weak equivalence.

Proof. A map of semi-simplicial spaces f• : X• → Y• is called homotopy carte-
sian ([ERW19, Definition 2.9]) if the squares

Xn Xn−1

Yn Yn−1

fn

di

fi−1

di

are homotopy cartesian for all n ≥ 1 and 0 ≤ i ≤ n.
The assumption that all face maps of X are weak equivalences may thus be

translated to the statement that the unique map X → ∗ to the terminal semi-
simplicial space ∗ is homotopy cartesian. The result then follows from [ERW19,
Theorem 2.12], which states that for a homotopy cartesian map of semisimpicial
spaces f• : X• → Y•, the following square is homotopy cartesian:

X0 ‖X•‖

Y0 ‖Y•‖.

f0 ‖f‖

Remark 1.2.5. The analogous statement with homotopy equivalences in place
of weak equivalences goes back to Segal; see [Seg74, Proposition 1.6].

The first preliminary lemma is now immediate and highlights a crucial con-
sequence of bordism invariance condition:

Lemma 1.2.6. Let (C, p, µ) be a category with parametrisation structure and
F : C → Top∗ be a bordism invariant functor. Then the natural transformation
ιF : F ⇒ PF is a weak equivalence.

Proof. The result is obtained by applying Proposition 1.2.4 objectwise, i.e., to
the semi-simplicial spaces F (c[•]), for all c ∈ ob(C).

By a pointed bi-semi-simplicial space we will mean a functor

X : (∆×∆)op → Top∗ .

12



Our second preliminary lemma depends crucially on the fact that different ways
of realising bi-semi-simplicial spaces are equivalent. We formulate this precisely
in the following proposition:

Proposition 1.2.7. Let X•,• be a bi-semi-simplicial space. Then there are
canonical homeomorphisms

‖X•,•‖ ∼= ‖[n] 7→ ‖[m] 7→ Xm,n‖‖ ∼= ‖[m] 7→ ‖[n] 7→ Xn,m‖‖.

Proof. We demonstrate the first homeomorphism. The second one is analogous.
Observe that

‖X•,•‖ :=

 ⊔
m,n≥0

Xm,n × |∆m| × |∆n|

 / ∼m,n

∼=

⊔
n≥0

 ⊔
m≥0

Xm,n × |∆m| × |∆n|

 / ∼′m

 / ∼′n

∼=

⊔
n≥0

 ⊔
m≥0

Xm,n × |∆m|

 / ∼m ×|∆n|

 / ∼n

=

⊔
n≥0

‖[m] 7→ Xm,n‖ × |∆n|

 / ∼n

= ‖[n] 7→ ‖[m] 7→ Xm,n‖‖,

where:

� ∼m,n denotes the bi-semi-simplicial face relations generated by

((φ× ψ)∗x, s, t) ∼ (x, φ∗s, ψ∗t),

where φ× ψ ∈ Mor(∆×∆).

� ∼′m,∼′n denote the equivalence relations generated by

(x, s, t) ∼ ((φ× id)∗x, φ∗s, t) and

(x, s, t) ∼ ((id×ψ)∗x, s, ψ∗t),

respectively, where φ, ψ ∈ Mor(∆).

� ∼m,∼n denote the simplicial relations in the p, q coordinates, respectively.

The first isomorphism is obtained from formal manipulation of colimits. The
second isomorphism follows from the fact that |∆m| is compact, for all m ≥ 0,
and hence the product and quotient commute here.

Remark 1.2.8. The result of the previous proposition is stated in [ERW19,
p. 5] for the setting of compactly generated spaces. The proof above serves to
complete the details, and also to demonstrate that the assumption of the setting
of compactly generated space is not in fact necessary.
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Remark 1.2.9. The analogous result in the simplicial case is well known; e.g.,
see [Qui73, pp. 10-11].

We are ready for the second preliminary lemma:

Lemma 1.2.10. Let (C, p, µ) be a category with symmetric parametrisation
structure. Then, for every functor F : C → Top∗, the two canonical natural
transformations

ιPF , P ιF : PF ⇒ P 2F

differ by an automorphism of P 2F .

Proof. Fix an object c in C. By the previous proposition, the space P 2F (c) is
homeomorphic to the realisation of the pointed bi-semi-simplicial space given
by ([m], [n]) 7→ F ((c[m])[n]), for all m,n ≥ 0.

Let τn,m : |∆n|× |∆m| → |∆m|× |∆n| denote the homeomorphism exchang-
ing factors and sn,mc denote the symmetry isomorphisms corresponding to c, for
all n,m ≥ 0 . Then, the homeomorphisms

F ((c[n])[m])× |∆n| × |∆m| F ((c[m])[n]))× |∆m| × |∆n|,
F (sn,mc )×τn,m

for all n,m ≥ 0, assemble to a homeomorphism⊔
n,m≥0

F ((c[n])[m])× |∆n| × |∆m| ∼=
⊔

n,m≥0

F ((c[m])[n]))× |∆m| × |∆n|.

Naturality of the symmetry morphisms sn,mc in the n and m variables implies
that the homeomorphism above descends to a well-defined self-homemorphism

Ψ(c) : P 2F (c) ∼= P 2F (c).

Furthermore, naturality of the morphisms sn,mc in the variable c implies that
the homeomorphisms Ψ(c), where c ∈ ob(C), form the components of a natural
isomorphisms Ψ : P 2F ⇒ P 2F .

Now, observe that the natural isomorphism Ψ restricts to a natural isomor-
phism ψ : P (P0F )⇒ P0(PF ) of the 0-skeleta of P 2F , and consider the following
diagram of space-valued functors:

PF

P (P0F ) P0(PF )

P 2F P 2F.

P (F (µ)) PF (µ)

h

∼=
ψ

v

∼=
Ψ

The arrows h and v in the diagram label the inclusion of the horizontal and
vertical 0-skeleton of P 2F , respectively. By definition of the maps Ψ and ψ,
the lower square commutes. Furthermore, the upper triangle commutes by
the assumption that the symmetry morphisms are compatible with the unit
µ. The desired result of this lemma now follows from the observation that the
natural transformations ιPF and PιF correspond to the composites v ◦ PF (µ)
and h ◦ P (F (µ)), respectively.
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The final preliminary lemma asserts that the category hBrd(Z) is closed
under parametric realisation in the following sense:

Lemma 1.2.11. Let (C, p, µ) be a category with parametrisation structure. The
endofunctor P : Fun(C,Top∗) → Fun(C,Top∗) and the natural transformation
ι : id ⇒ P : Fun(C,Top∗) → Fun(C,Top∗) extend to hBrd(Z) for any given
Z : C → Top∗.

Proof. For any bordism characteristic (F, σ) of Z, set P (F, σ) := (PF, ιF ◦ σ).
In order for this to be well-defined, we must show that PF is bordism invariant.
Let c be an object in C, di : c[n] → c[n − 1] be a face map, and consider the
following commutative diagram:

F (c[n]) F (c[n− 1])

PF (c[n]) PF (c[n− 1]).

ιF (c[n])

F (di)

ιF (c[n−1])

PF (di)

By assumption, the map F (di) is a weak equivalence, and hence by Lemma
1.2.6 the vertical arrows are too. It follows immediately then that the face map
PF (di) is also weak equivalence. Thus, P (F, σ) is a bordism characteristic.

Next, let η : (F, σ)→ (F ′, σ′) be a weak equivalence in Brd(Z) and consider
the following commutative diagram:

F F ′

PF PF ′.

ιF '

η

'
ιF ′'

Pη

The map Pη : PF ⇒ PF ′ is a weak equivalence by the 2-out-of-3 property
for weak equivalences. Hence, the functor P preserves weak equivalences, and
therefore descends to the homotopy category hBrd(Z).

Lastly, observe that for any given bordism characteristic (F, σ), the natural
transformation ιF : F ⇒ PF determines a well-defined morphism of bordism
characteristics ι(F, σ) : (F, σ)→ P (F, σ).

We finally come to the proof of the Abstract Universality Theorem 1.2.1.

Proof. Let Z : C → Top∗ be given and (F, σ) a bordism characteristic of Z.
Consider the following commutative diagram of functors C → Top∗:

Z PZ F

PZ P 2Z PF.

ιZ

ιZ

σ

ιPZ

η

ιF

PιZ

Pσ

Pη

(1.1)

We claim there exists a unique morphism (PZ, ιZ)→ (F, σ) in hBrd(Z).
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� Proof of Existence:
Since F is bordism invariant, it follows from Lemma 1.2.11 that the pair
P (F, σ) is a bordism characteristic. Thus, we may consider the zigzag

(PZ, ιZ)
Pσ→ P (F, σ)

ιF← (F, σ)

of bordism characteristics of Z. We claim that the previous zigzag repre-
sents a well-defined morphism (PZ, ιZ)→ (F, σ) in hBrd(Z): Indeed, this
is true since the map ιF is a weak equivalence by Lemma 1.2.6, and more-
over, the outer square of Diagram 1.1 commutes, i.e., (ιF )−1 ◦Pσ◦ιZ = σ,
by Lemma 1.2.11 and functoriality of P .

� Proof of Uniqueness:
Note that, by assumption, the parametric realisation PZ of Z is bordism
invariant. It follows from Lemma 1.2.6 that the natural transformation
ιPZ is a weak equivalence. Hence, by Lemma 1.2.10, the natural trans-
formation PιZ is a weak equivalence too. Consider now the following
zigzag:

σ̃ : (PZ, ιZ)
ιPZ→ P (PZ, ιZ)

PιZ← (PZ, ιZ)
Pσ→ P (F, σ)

ιF← (F, σ).

Lemma 1.2.11, and the commutativity of the outer square and left hand
square of Diagram 1.1 imply that σ̃ represents a well-defined morphism
(PZ, ιZ)→ (F, σ) in hBrd(Z). On the other hand, suppose we are given
a morphism in hBrd(Z), η : (PZ, ιZ)→ (F, σ). Then, by commutativity
of the right hand square and lower triangle of Diagram 1.1, the morphism
η must also be represented by σ̃.

Remark 1.2.12. The Abstract Universality Theorem 1.2.1 and its proof were
inspired by the universality theorem [Ste17, Theorem 0.2] for algebraic K-theory
of Waldhausen categories.

Remark 1.2.13. The assumption in Theorem 1.2.1 that PZ is bordism invari-
ant is clearly necessary but non-trivial; we present a counterexample in Example
1.3.2 in the next section.

Remark 1.2.14. The proof of Theorem 1.2.1 does not rely on any special
features about pointed spaces. In fact, the evident analogue of our results
hold for the category, Top, of unpointed spaces and continuous maps in place
of Top∗, and may be proven by completely analogously. Our emphasis on
pointed spaces here is rather intended to prepare for our work in Part II and
the discussion of spectrum-valued functors.

1.3 First Examples

This section is dedicated to illustrating some simple examples of categories with
parametrisation structures.

We start with a trivial example to show that the bordism invariance condi-
tion may be empty.
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Example 1.3.1. Every category C admits a trivial parametrisation operator
p : C ×∆op → C given by projection onto the first factor and unit given by the
identity µ = idC on C. In this case, every space-valued functor from C is bordism
invariant and weakly equivalent to its parametric realisation. In particular, the
identity transformation id : F ⇒ F serves as a universal bordism characteristic
of F for every space-valued functor from C.

In our next example, we will demonstrate the opposite extreme case in
which bordism invariant functors are those that are homotopically constant,
i.e., weakly equivalent to a constant functor. This example also serves to high-
light the fact that parametric realisation does not automatically yield bordism
invariant functors and therefore the assumption of bordism invariance in Theo-
rem 1.2.1 is non-trivial.

Example 1.3.2. Consider the category Top of compactly generated spaces.
Every space X determines a semi-simplicial space [n] 7→ X[n] with empty higher
simplices given by X[0] = X and X[n] = ∅, for all n ≥ 1. It is clear that bordism
invariant functors F : Top → Top∗ are precisely the homotopically constant
functors and are determined by the value F (∅). However, the parametric reali-
sation of a functor F : Top→ Top∗ is not homotopically constant in general.

As an example, consider the embedding of the category of spaces into pointed
spaces given by adding a disjoint basepoint denoted by

id+ : Top→ Top∗, X 7→ X+.

The functor id+ itself is evidently not homotopically constant, yet

id+(X) ' P id+(X)

is a natural weak equivalence since the geometric realisation of the terminal
semi-simplicial set ∗ is contractible: Indeed, a nullhomotopy from the identity
map id||∗|| on || ∗ || to the constant map c||∗0|| at the point || ∗0 || is given by

H : || ∗ || × |∆1| → || ∗ ||
(||∗n, t||, s) 7→ ||∗n+1, ((1− s)t, s)||.

Nevertheless, note that a universal bordism characteristic exists for every func-
tor F : Top → Top∗, and is given by the unique natural transformation from
F to the constant functor at a point.

Our next two examples will show that the singular construction of topolog-
ical spaces and the construction of classifying space of categories yield exam-
ples of universal bordism characteristics. In these examples bordism invariance
translates to a homotopy invariance condition.

Example 1.3.3. Consider the category Top∗. Let X |∆
n| denote the pointed

space of continuous maps from the topological n-simplex |∆n| to X, based at the
constant map onto the baspoint in X. A symmetric parametrisation structure
on Top∗ is given by

X[n] := X |∆
n|,

together with the evident unit µX : X ∼= X |∆
0|. In this case, bordism invariance

of a functor F : Top∗ → Top∗ is equivalent to homotopy invariance, in the sense
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that the functor F , maps pointed homotopy equivalences to weak equivalences.
Indeed, a functor with the latter property is clearly bordism invariant. For the
converse, observe that the face maps

F (d0), F (d1) : F
(
X |∆

1|)→ F
(
X |∆

0|)
admit a common section F (s0) : F (X)→ F

(
X |∆

1|) induced by the degeneracy

map s0 : X → X |∆
1| that takes a point in X to the constant map at that point.

Hence, if F is bordism invariant, the maps F (d0) and F (d1) are equal in the
homotopy category hTop∗ obtained from Top∗ by inverting weak equivalences.
It follows that for any homotopy equivalence f : X → Y with homotopy inverse
g : Y → X, the following diagram commutes in hTop∗:

F (X) F (Y ) F (X) F (Y )
F (f)

id

id

F (g) F (f)

The 2-out-of-6 property for isomorphisms in hTop∗ then implies that F (f) is
a weak equivalence, and hence F is homotopy invariant since f was chosen
arbitrarily.

Consider now the forgetful functor U : Top∗ → Set∗ which takes a space to
its underlying set. By definition, for any space X,

P•U(X) = U
(
X |∆

•|) = Sing•(X)

where Sing• denotes the usual singular construction on X, and hence,

PU(X) = ‖Sing•(X)‖

for any space X. It is well known that there is a natural weak equivalence,

‖Sing•(X)‖ ' X,

given by evaluation (for the simplicial case, see [Mil57, Theorem 4]. Moreover,
the semi-simplicial case is a consequence of [RS71, Proposition 2.1].) In fact
the canonical characteristic ιU : U(X) ↪→ ‖Sing•(X)‖ is weakly equivalent to
the inclusion of points inc : U(X) → X. Since the identity functor idTop∗ is
clearly bordism invariant, the Abstract Universality Theorem then implies that
both ιU and inc define universal bordism characteristics. In particular, every
natural transformation σ : U(X) ⇒ F (X) from U to a homotopy invariant
functor F : Top∗ → Top∗ automatically extends to a natural transformation
σ̃ : X ⇒ F (X), uniquely up to weak equivalence.

Example 1.3.4. Let Cat denote the category of small categories. A symmetric
parametrisation structure on Cat is given by

C[n] := Fun([n], C),

coupled with the obvious unit µC : C ∼= Fun([0], C).
We call a functor F : C → C′ a lax weak equivalence if there exists a functor

G : C′ → C such that the two compositions, GF and FG, agree up to a zigzag of
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natural transformations with the identity functors idC and idC′ , respectively. It
can be shown in analogy with the reasoning in Example 1.3.3 that the class of
bordism invariant functors from Cat are those which take lax weak equivalences
to weak equivalences.

Now consider the object functor ob+ : Cat→ Set∗, C 7→ ob+(C) that assigns
to a category C its set of objects together with an additional basepoint. The
parametric realisation of the functor ob+ is easily seen to be weakly equivalent to
the usual classifying space construction on C equipped with a disjoint basepoint,
denoted by B+C, i.e.,

P ob+(C) ' B+C.

It is a standard exercise to prove that a natural transformation between any two
functors induces a homotopy equivalence on classifying spaces (e.g., see [Seg74,
Proposition 2.1]), whence it follows that the functor B+ is bordism invariant.
By Theorem 1.2.1 we deduce that the natural transformation ob+ ⇒ B+ is
universal among natural transformations from ob+ whose target converts lax
weak equivalences to weak equivalences.

Remark 1.3.5. For comparison, we would like to mention a number of other
examples that we found in the literature, which closely resemble parametric
realisation and the concept of bordism invariance, though do not fit into our
framework immediately. These include the operation of homotopisation in the
context of a homotopy invariant K-theory of rings discussed in [Wei13, Ch. IV,
§§11-12]; an auxiliary simplicial construction used by Waldhausen in relating A-
theory with the Whitehead space (see [Wal85, §3]; in particular p. 402); and the
construction of “concordance invariant” sheaves on the site of smooth manifolds
described in [EBBdBP19].
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Chapter 2

Application I: A Universal
Property of Symmetric
L-Theory

The theory developed in the previous chapter was primarily motivated by an
investigation into whether algebraic L-theory satisfies a universal property. In
this chapter we will now consider L-theory in a setting for which the theory
is directly applicable. Namely, we will examine universality of symmetric L-
Theory of Waldhausen categories with duality as developed by Michael Weiss
and Bruce Williams in [WW98].

Our work in this chapter should be regarded as a complement to [WW98].
The setting of Waldhausen categories with duality was introduced there to serve
as a common input category for algebraic L- and K-theory of Waldhausen cat-
egories, and we recall the necessary background definitions in Section 2.1. Note
that we assume familiarity with the fundamentals of Waldhausen’s algebraic K-
theory throughout this chapter and recommend the foundational article [Wal85]
as a reference.

A construction of a parametrisation operator on the category of Waldhausen
categories with duality has been already described in [WW98]; however, not all
the details about its functorial properties were presented there. We review and
clarify these details in Section 2.2. Furthermore, we prove that the parametri-
sation operator is part of a symmetric parametrisation structure.

One advantage of equipping Waldhausen categories with a notion of duality is
that it allows for the notion of symmetric Poincaré objects. Symmetric L-theory
can then be defined as the parametric realisation of the functor of symmetric
Poincaré objects. It turns out that the bordism invariance of symmetric L-
theory had already been considered, and proven in [WW98]. We recall the
details in Section 2.3, and deduce from this observation a universal property of
L-theory (see Theorem 2.3.6): It states that symmetric L-theory of Waldhausen
categories with duality is the universal target for bordism characteristics of the
functor of symmetric Poincaré objects.

Our last Section 2.4 is devoted to an application of this universal property
which may be briefly summarised as follows: The main construction in [WW98]
(see also [WW89] for the more classical case of rings with involution) describes a

20



natural transformation, denoted by “ Ξ ”, between symmetric L-Theory and the
Z2-Tate cohomology of K-Theory. It was observed in [WW00] that the Z2-Tate
cohomology of K-Theory is bordism invariant. We apply this observation and
the universal property of symmetric L-theory to obtain a characterisation of Ξ
as a morphism of bordism characteristics.

2.1 Waldhausen Categories with Duality

We start by recalling the setting of [WW98]. The most important feature is the
notion of a SW product defined as follows (cf. [WW98, Definition 1.1]):

Definition 2.1.1. Let C be a Waldhausen category and 0 denote its zero
object. A SW product on C is a functor

� : C × C → Top∗,

(C,D) 7→ C �D,

satisfying the following conditions:

� w-invariance: The functor � takes pairs of weak equivalences to homotopy
equivalences.

� Symmetry : The functor � comes with a natural isomorphism τ : C�D ∼=
D � C, whose square is the identity on C �D.

� Bilinearity : For fixed but arbitrary D, the functor C 7→ C �D takes any
cofibre square in C to a homotopy pullback square of spaces. (A cofibre
square is a commutative pushout square in which either the horizontal or
the vertical arrows are cofibrations.) Bilinearity also means that 0�D is
contractible.

The isomorphisms τ : C �D ∼= D � C are called symmetry operators.

Definition 2.1.2. We denote by xWald the category defined as follows:

� The objects of xWald are pairs (C,�) consisting of a Waldhausen category
C and a Spanier Whitehead Product � : C ×C → Top∗, satisfying certain
axioms (see [WW98, §2, Axioms 1-5]). We call such a pair a Waldhausen
category with duality (WCD).

� A morphism of WCDs (E,ψ) : (C,�C)→ (D,�D) consists of

– an exact functor E : C → D, and

– a natural transformation H : A�C B → E(A)�D E(B), which com-
mutes with the symmetry operators of the products �C and �D,
and maps nondegenerate components (see [WW98, Definition 3.6])
to nondegenerate components.

Remark 2.1.3. The category xWald originally appears in [WW98] (see Def-
initions 7.1, 9.2 and §12 therein).
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Remark 2.1.4. We have introduced the terminology “Waldhausen category
with duality” to emphasise that the SW product prescribes a notion of duality
on the underlying Waldhausen category, allowing for a description of L-theory
and an involution on K-theory.

Moreover, the notation ‘xWald’ is based on the ubiquitous x-prefix in the
paper [WW98].

2.2 The Parametrisation Structure

The construction of a parametrisation structure on the category xWald has
essentially been carried out in [WW98]. This section is dedicated to giving a
precise description and defining corresponding unit and symmetry operators.
We start by recalling the definition of a Waldhausen category with duality
parametrised over a given finite simplicial complex X as described in [WW98,
Definition 1.5].

Notation 2.2.1. Let sub(X) denote the poset of simplicial subcomplexes of
X ordered by inclusion and let F(X) denote the subposet on non-empty faces
of X.

Definition 2.2.2. Let (C,�) be a WCD and X a simplicial complex. We
define a WCD

(C[X],�X)

as follows:

� C[X] is the category whose objects are the functors sub(X) → C, which
take all morphisms to cofibrations, take ∅ to the zero object 0 and unions
to pushouts. The morphisms of C[X] are natural transformations of such
functors.

� A cofibration in C[X] is a morphism η : F → F ′ such that F (A)→ F ′(A)
is a cofibration, for all simplicial subcomplexes A ⊂ X, and such that for
each pair of subcomplexes A ⊂ B of X, the evident morphism

colim
(
F ′(A)← F (A)→ F (B)

)
→ F ′(B)

is a cofibration.

� A weak equivalence in C[X] is a morphism η : F → F ′ such that the
morphisms F (A) → F ′(A) are weak equivalences, for all simplicial sub-
complexes A ⊂ X.

� The SW product �X on C[X] is given by

F �X F ′ := holimσ∈F(X) F (σ)� F ′(σ),

where the homotopy limit is taken over the poset F(X).

Remark 2.2.3. Homotopy limit is understood here in the Bousfield-Kan sense
(cf. [WW98, §0.1]). In our calculations, we use the formula given in [MV15,
Definition 8.2.1].
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Remark 2.2.4. Note that the symmetry operators

τX : C �X D ∼= D �X C

of the SW product �X are those induced from the symmetry operators
(τ : C(σ)�D(σ) ∼= D(σ)� C(σ))σ∈F(X) of the product �.

It is proven in [WW98, §8] that every such pair (C[X],�X) is a WCD, and
also, that the construction is functorial with respect to inclusions of simplicial
complexes A ↪→ X: Indeed, a simplicial inclusion f : A ↪→ X induces an exact
functor f∗ : C[X]→ C[A] and a natural transformation

C �X D → f∗C �A f∗D

by restriction of parameters.
The functoriality of the parametrisation construction with respect to mor-

phism of WCDs is implicit from [WW98, §12], but the details are not explicitly
described. Proposition 2.2.7 below serves to fill this gap. Its proof relies on
the following characterisation of nondegenerate components of the product �X
demonstrated in [WW98, Proposition 8.8]:

Proposition 2.2.5. For any objects B,C in C[X] and any path component
[η] ∈ π0(B �X C), the following are equivalent:

1. [η] is nondegenerate.

2. For each face s ⊂ X, the image of [η] under the specialisation map

π0(B �X C)→ π|s|(B(s)� C(s/∂s))

is nondegenerate.

Remark 2.2.6. The notation C(s/∂s) was introduced in [WW98, p. 565] and
denotes the cofibre of the map C(∂s) → C(s). Moreover, the notation |s|
denotes the dimension of a face s ⊂ X.

To elaborate, the specialisation map in Proposition 2.2.5 is induced from a
map of spaces

C �X D → Ω|s|(C(s)�D(s/∂s))

defined (cf. [WW98, p. 566]) as the composition of the map

C �X D = holimσ∈F(X) C(σ)�D(σ)→ holimτ∈F(s) C(τ)�D(τ/τ ∩ ∂s)

with a homotopy inverse of the inclusion

Ω|s|(C(s)�D(s/∂s)) ∼= holimτ∈F(s)G(s) ↪→ holimτ∈F(s) C(τ)�D(τ/τ ∩ ∂s),

where G denotes the functor G : sub(s)→ C given by: G(τ) = pt, if τ 6= s, and
G(s) = C(s)�D(s/∂s).

Proposition 2.2.7. A morphism (E,ψ) : (C,�) → (C′,�′) of WCDs induces
a morphism (E∗, ψ∗) : (C[X],�X)→ (C′[X], (�′)X) of WCDs.
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Proof. We define the pair (E∗, ψ∗) by applying the functor E and the natural
transformation ψ pointwise. It is clear from definitions that the functor E∗ is
exact and that ψ∗ respects the symmetry operators. What is perhaps not im-
mediate is that the natural transformation ψ∗ maps nondegenerate components
to nondegenerate components. To see this, consider the following diagram:

π0(B �X C) π|s|(B(s)� C(s/∂s))

π0(E∗(B)(�′)XE∗(C)) π|s|(E(B(s))�′ E(C(s/∂s))).

The horizontal rows are specialisation maps and the left and right vertical map
are induced by the natural transformations ψ∗ and ψ, respectively. The diagram
can be seen to commute, by the naturality of ψ, the definition of the specialisa-
tion maps, and the assumption that E is exact. It then follows from Proposition
2.2.5 and the assumption that ψ preserves nondegenerate components that the
natural transformation ψX preserves nondegenerate components.

It is straightforward to check that the previous constructions of induced
morphism commute, in the sense that they define an unambiguous morphism of
WCDs

(C[X],�X)→ (C′[A],�A),

for all pairs (f,E) consisting of a simplicial inclusion f : A ↪→ X and morphism
E : (C,�)→ (C′,�′) of WCDs. In summary, we obtain a functor

p̂ : xWald×Simpop → xWald

(X, (C,�)) 7→ (C[X],�X),

where Simp denotes the category of finite simplicial complexes and simplicial
inclusions. Since the category ∆ embeds into Simp (cf. [Lan78, VII.5]) by
associating the set [n] to the standard topological n-simplex, for all natural
numbers n ≥ 0, we may define a parametrisation operator p : xWald×∆op →
xWald on xWald to be the corresponding restriction of the functor p̂ to the
subcategory xWald×∆op ⊂ xWald×Simpop.

Proposition 2.2.8. The parametrisation operator p admits a unit, i.e., there
is a natural isomorphism

µC : C ∼= C[0]

of WCDs.

Proof. Observe that an object F : sub(∆0) → C in C[0] and natural transfor-
mation of functors F1 ⇒ F2 in C[0] are uniquely defined by their value on the
non-empty cell σ. A natural transformation µ = (µ, φ) may now be defined as
follows:

� Let µC : C ∼= C[0] be the isomorphism of Waldhausen categories which
takes an object c of C to the object µC(c) in C[0] given by µC(c)(σ) = c,

and a morphism a
f→ b in C to the natural transformation µC(f) : µC(a)⇒

µC(b) given by µC(f)(σ) := µC(a)(σ)
f→ µC(b)(σ).
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� Let Map(pt, C�D) denotes the space of maps from the point to the space
C �D with compact open topology. Then, clearly

µC(C)�∆0

µC(D) = holimµC(C)(σ)� µC(D)(σ) = Map(pt, C �D)

for all C,D ∈ ob(C). We now define φC : C �D ∼= Map(pt, C �D) to be
the natural homeomorphism given by x 7→ (fx : pt 7→ x).

The inverse to (µC , φC) is given by (µ−1
C , φ−1

C ) where µ−1
C : C[0] → C evaluates

at the cell σ.

Proposition 2.2.9. The parametrisation structure (p, µ) on xWald is sym-
metric.

Proof. Let (C,�) be a WCD and X and Y be simplicial complexes. We define
a natural morphism of WCDs

(sX,YC , ψX,YC ) : (C[X])[Y ]→ (C[Y ])[X]

as follows: The morphism sX,YC : (C[X])[Y ]→ (C[Y ])[X] exchanges the order of

evaluation on subcomplexes of X and Y . More precisely, sX,YC sends an object
F of (C[X])[Y ] to the object s(F ) in (C[Y ])[X] that satisfies

s(F )(A)(B) = F (B)(A),

s(F )(A)(B ⊂ B′) = F (B ⊂ B′)(A), and

s(F )(A ⊂ A′)(B) = F (B)(A ⊂ A′),

for all A,A′ ∈ sub(X) and B,B′ ∈ sub(Y ).

Furthermore, sX,YC is defined to take a natural transformation η : F1 ⇒ F2

to the natural transformation s(η) : s(F1)⇒ s(F2) given by

s(η)(A)(B) = η(B)(A),

for all A ∈ sub(X) and B ∈ sub(Y ).

It is routine to check that the functor sX,YC is exact and has inverse sY,XC .
Next, observe that for every pair C,D of objects in C, we have equivalences

of pointed spaces:

C(�X)YD := holimσ∈F(Y ) C(σ)�X D(σ)

= holimσ∈F(Y ) holimτ∈F(X) C(σ)(τ)�D(σ)(τ)
∼= holimτ∈F(X) holimσ∈F(Y ) C(σ)(τ)�D(σ)(τ)

= holimτ∈F(X) holimσ∈F(Y ) s(C)(τ)(σ)� s(D)(τ)(σ)

= holimτ∈F (X) s(C)(τ)�Y s(D)(τ)

=: s(C)(�Y )Xs(D),

where the isomorphism comes from the natural isomorphism commuting ho-
motopy limits (cf. [MV15, Proposition 8.5.5]). We therefore obtain a natural
isomorphism

ψX,YC : C(�X)YD ∼= s(C)(�Y )Xs(D).
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A straightforward inspection shows that the morphisms ψX,YC are compatible

with the symmetry operators. Moreover, the fact that ψX,YC maps nondegen-
erate components to nondegenerate components can be seen using the charac-
terisation of nondegenerate components in Proposition 2.2.5. More precisely, it
may be verified that, for all σ ∈ F(Y ) and τ ∈ F(X), the following diagram
commutes:

π0(C(�X)YD) π|σ|+|τ |(C(σ)(τ)�D(σ/∂σ)(τ/∂τ))

π0(s(C)(�Y )Xs(D)) π|σ|+|τ |(s(C)(τ)(σ)� s(D)(τ/∂τ)(σ/∂σ)),

π0(ψX,YC ) =

where the horizontal arrows are specialisation maps.
Finally, a direct computation shows that the triangle of Waldhausen cate-

gories and exact functors

C[n]

(C[n])[0] (C[0])[n]

µC[n] µC [n]

sn,0C

commutes for all n ≥ 0 and Waldhausen categories C, and that the triangle of
spaces

C �∆n

D

C(�∆n

)∆0

D C(�∆0

)∆n

D

φC[n] φC [n]

ψn,0C

also commutes for all pairs of objects C,D of any given WCD (C,�). Thus, the
symmetry morphisms are compatible with the unit µ.

2.3 Symmetric Poincaré objects and L-Theory

We next turn to the description of the symmetric Poincaré objects and sym-
metric L-Theory of WCDs following [WW98, §9].

Notation 2.3.1. 1. Let Z2 denote the cyclic group of order 2 and EZ2 be
a contractible space with a free Z2-action.

2. For an object C of a WCD (C,�), let (C � C)hZ2 denote the homotopy
fixed point space of C �C with respect to the Z2-action coming from the
symmetry morphisms, i.e., the space of all Z2-maps φ : EZ2 → C � C.
Furthermore, for any homotopy fixed point φ : EZ2 → C � C, let φ0 ∈
C � C denote the value of φ on the basepoint.

Definition 2.3.2. Let (C,�) be a WCD. A symmetric Poincaré object in C
is an object C in C together with a point φ ∈ (C � C)hZ2 whose image φ0 in
C�C is in a nondegenerate component. The set of symmetric Poincaré objects
in C is denoted by sp(C) and regarded as a pointed space equipped with the
discrete topology, where the basepoint is given by the zero object 0 of C and
the homotopy fixed point φ0 ∈ (0�0)hZ2 determined by the basepoint of 0�0.
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Remark 2.3.3. Note, we have dropped the usual prefix “0-dimensional” in
the definition of a symmetric Poincaré object from [WW98], for simplicity.

Functoriality of sp is defined as follows: For every morphism of WCDs
(E,ψ) : (C,�C)→ (D,�D), the induced map of sets sp(C)→ sp(D) is given by
the assignment (C, φ) → (E(C), ψ(φ)). We denote the corresponding functor
by

sp : xWald→ Top∗ .

Definition 2.3.4. Symmetric L-theory L : xWald → Top∗ is defined as the
parametric realisation of the symmetric-Poincaré-objects functor sp, i.e.,

L := P sp .

Proposition 2.3.5. The functor L : xWald→ Top∗ is bordism invariant.

Proof. By definition, bordism invariance of the functor L means that all face
maps of the semi-simplicial spaces L(C[•]) are weak equivalences for all Wald-
hausen categories with duality (C,�). This fact was stated in [WW00, p. 695] as
part of the proof that the spaces L(C) admit a bi-semi-simplicial model given by
the rule ([m], [n]) 7→ L((C[m])[n]). We note that the proof strategy for bordism
invariance is to study the induced maps on homotopy groups directly, using
the fact that the semi-simplicial sets sp(C[•]) are Kan for all C (see [WW98,
p. 570]).

Propositions 2.2.9 and 2.3.5 imply that the conditions of Theorem 1.2.1 are
satisfied. Thus, we deduce that symmetric L-theory of Waldhausen categories
with duality is the universal target for bordism characteristics of symmetric
Poincaré-objects:

Theorem 2.3.6. The pair (L, ιsp) is a universal bordism characteristic of sp.

Remark 2.3.7. One may view Theorem 2.3.6 as a formalisation of the idea
presented in [WW98, p. 536, Example 2] of symmetric L-theory as the bordism
theory of symmetric Poincaré objects.

2.4 Characterisation of the Weiss-Williams map

The purpose of this section is to demonstrate how the universal property of
symmetric L-theory can be used to characterise the Weiss-Williams Ξ-map
from symmetric L-Theory to Z2-Tate cohomology of K-theory constructed in
[WW98]. We start with a recollection of the description of Tate K-theory given
in [WW98].

Notation 2.4.1. 1. Let Spectra denote the category of CW-spectra and
maps in the sense of Adams (see [Ada74, §III.2]; and also [Swi02, Ch. 8] for
another account). Moreover, denote by Z2- Spectra the category whose
objects are CW-spectra X equipped with a celluar automorphism X→ X
and morphisms are maps of CW-spectra compatible with the involutions.

2. Let Ω∞ : Spectra → Top∗ denote the functor taking a spectrum to its
infinite loop space given by Ω∞X = hocolimn ΩnXn, where n ∈ N.
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3. Let (−)thZ2 : Z2- Spectra → Spectra denote the Tate construction (see
[WW98, §9.10]).

4. Let K : xWald → Z2- Spectra denote the K-theory functor of Weiss-
Williams (see [WW98, §7]) and K : xWald→ Top∗ its composition with
Ω∞.

Definition 2.4.2. The Z2-Tate cohomology of K is defined as the composition
Ω∞ ◦(−)thZ2 ◦K : xWald→ Top∗ and will be denoted by KthZ2 .

Remark 2.4.3. The functor K is defined in a similar way to Waldhausen’s
K-theory functor (see [Wal85]). In fact, it is shown in [WW98, §7] that there
is a natural equivalence between them, obtained by forgetting the Z2-action.

Remark 2.4.4. The Tate construction on a Z2-spectrum XthZ2 can be de-
scribed (see [WW98, Properties 9.11]) as the cofibre of a certain norm map

N : XhZ2
→ XhZ2

from the homotopy orbit spectrum XhZ2
of X to the homotopy fixed point

spectrum XhZ2 of X. See also [WW89, §2] for another description.

Our interest in the Z2-Tate cohomology of K-theory is its bordism invariance
property. The following proposition records this result:

Proposition 2.4.5. The functor KthZ2 : xWald → Top∗ is bordism invari-
ant.

Proof. The property that the face maps of the semi-simplicial space KthZ2(C[•])
are homotopy equivalences, for arbitrary C, is proven in [WW00, p. 696] and
obtained from the analogous statement on the level of spectra given in [WW98,
Theorem 9.12]. For the convenience of the reader we sketch the argument for
the proof of the latter here:

Central to the proof is the notion of an induced spectrum which is defined as
follows: a spectrum X with an action of a discrete group G is said to be induced
if there exists a spectrum Y and an equivariant map X ∧ G+ → Y from the
smash product X ∧ G+ to Y which is an ordinary homotopy equivalence (cf.
[WW98, p. 572]). It turns out to be a formal property of the Tate construction
that it vanishes on induced spectra (see [WW98, Properties 9.11])

Consider now the semi-simplicial spectrum [m] 7→ K(C[m]), for any given
Waldhausen category with duality C. It is shown in [WW98, Lemma 9.4]) that
the homotopy fibres of the last vertex maps K(C[m])→ K(C[0]) are induced as
Z2-spectra, for arbitrary m. The result then follows by the vanishing property
of the Tate construction.

We next recall the construction of the Weiss-Williams map Ξ : L ⇒ KthZ2

relating L-theory to Z2-Tate cohomology of K-theory. The map Ξ is induced
from a certain natural transformation ξ : sp ⇒ KthZ2 defined on [WW00,
p. 571]. Before coming to the definition, we introduce more notation following
[WW98, Remark 4.4].

Notation 2.4.6. For any WCD (C,�), let xwC denote the topological category
whose objects are triples (B,D, z) where B,D are objects in the category of
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weak equivalences wC of C and z ∈ B �D is nondegenerate. A morphism from
(B1, D1, z1) to (B2, D2, z2) is a pair of weak equivalences B1 → B2, D1 → D2

such that the induced map B1 �D1 → B2 �D2 takes z1 to z2. Furthermore,
let |xwC| denote the classifying space of xwC.

It is a part of their construction (see [WW98, §7] for details) that the spaces
K(C), where C denotes an arbitrary WCD, come with a natural transformation

χ : |xwC| ⇒ K(C)

that is compatible with the Z2-actions. Hence, there is an induced map on
homotopy fixed points,

χhZ2 : |xwC|hZ2 ⇒ K(C)hZ2 .

Furthermore, observe that there is a natural tranformation

ν : sp(C)⇒ |xwC|hZ2

defined by assigning to a symmetric Poincaré object (C, φ) of the given Wald-
hausen category with duality (C,�) the point

|(C,C, φ0)| ∈ |xwC|hZ2 .

Finally, let ε : KhZ2 ⇒ KthZ2 be the canonical inclusion. The natural transfor-
mation ξ : sp⇒ KthZ2 is then defined by the following composition:

ξ : sp(C) ν⇒ |xwC|hZ2
χhZ2

=⇒ KhZ2(C) ε⇒ KthZ2(C).

By Proposition 2.4.5, we know that the functor KthZ2 is bordism invariant. It
follows that (KthZ2 , ξ) is a bordism characteristic of the symmetric-Poincaré-
objects functor, i.e., (KthZ2 , ξ) ∈ Brd(sp).

Remark 2.4.7. In contrast, note that the functor KhZ2 does not yield a bor-
dism characteristic of sp, since it is not bordism invariant. In fact, the para-
metric realisation of KhZ2 is related to KthZ2 by a chain of weak equivalences.
This fact is proven as [WW98, Theorem 9.14] and is the main reason that the
functor KthZ2 was considered there (cf. [WW89, §0]).

By the universality property of symmetric L-theory (Theorem 2.3.6), we
deduce immediately that the natural transformation ξ : sp⇒ KthZ2 extends to
a natural transformation Ξ : L⇒ KthZ2 along ιsp : sp⇒ L, which is unique up
to homotopy:

Corollary 2.4.8. There exists a unique morphism

Ξ : (L, ιsp)→ (KthZ2 , ξ)

in hBrd(sp), the homotopy category of bordism characteristics of sp.

Corollary 2.4.8 thus gives a simple characterisation of the morphism Ξ be-
tween symmetric L-theory and Z2-Tate cohomology of K-theory as a morphism
of bordism characteristics of the functor sp.
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Remark 2.4.9. Note that the original natural transformation L ⇒ KthZ2

defined in [WW98, Theorem 9.14] has in fact the same definition as the natural
transformation constructed in Theorem 1.2.1 as part of the existence proof;
namely, Ξ is represented by the composite:

Ξ : L PKthZ2 KthZ2 .
Pξ

'
ι
KthZ2
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Chapter 3

Application II: A Universal
Property of Quinn’s
Bordism Machine

This chapter is devoted to our second main application of the Abstract Univer-
sality Theorem 1.2.1. We examine Quinn’s bordism machine in the setting of
ad theories as developed by Laures-McClure in [LM14], and show it is charac-
terised as the universal target for bordism characteristics of a suitable functor
of “closed objects”. In fact, we regard Quinn’s bordism machine as yielding
the prototypical example of a universal bordism characteristic because of the
generality of the setting of ad theories.

Our results are dependent and supplementary to those of [LM14]. Therein
(see [LM14, p. 1170]), it was stated that one can define ad theories, for any ball
complex and any ad theory. However, the details about the functorial nature
of the construction were not given. Our aim is to provide those details here
and, in addition, show that the construction yields a symmetric parametrisation
structure on the category of ad theories. Section 3.2 is dedicated to these tasks
and constitutes the main technical contribution of this chapter.

We will not define the parametrisation structure on the category of ad the-
ories directly but rather present an extended definition to allow ball complex
pairs as input, in preparation for our work in Part II. The extension of the
parametrisation structure to ball complex pairs requires a slight restriction of
the axioms of an ad theory. For accuracy, we will make a thorough review of
the foundations and axioms in Section 3.1.

In subsection 3.3.1, we recall the definition of Quinn’s bordism-space machine
from [LM14] and identify it as the parametric realisation of the closed-objects
functor. Thereafter in subsection 3.3.2, we show how the bordism invariance
property of Quinn’s bordism machine follows from results of [LM14] and thereby
admits a universal property by Theorem 3.3.9.

We note that the definitions related to ad theories are based on the foun-
dational paper [LM14] and the more recent articles [BL17] and [BLM19]. We
refer the reader to these sources for comparison and examples.
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3.1 The Setting of Ad Theories

This section is devoted to the description of the category of ad theories. Our
exposition is based on [LM14, §§2-3], and also influenced by [BL17, §2] and
[BLM19, §3].

A description of the category of ad theories requires introducing certain di-
agram categories indexed over certain posets of ball complex pairs. The main
relevance of ball complex pairs is that they form a convenient category of com-
binatorial spaces closed under forming products.

We have organised our exposition as follows: Section 3.1.1 records the basic
definitions pertaining to ball complexes and their associated posets. Section
3.1.2 introduces certain diagram categories indexed over such posets. Finally,
Section 3.1.3 presents the definition of the category of ad theories.

Note, we assume familiarity with basic notions from Piecewise-Linear (PL)
topology and the incidence theory of regular CW complexes; we refer the reader
to [RS72] for an introduction to the former, and to [Whi78, Ch. II., §6] or
[Mas91, Ch. 4., §5-7] for details about the latter.

3.1.1 Ball Complexes and Associated Cell Posets

We start by collecting the necessary background about ball complexes from
[LM14, §2] and [BRS76, pp. 4-5].

The category of ball complexes

Definition 3.1.1. 1. Let K be a finite collection of PL balls in some Eu-
clidean space, and write |K| for the union ∪σ∈Kσ. We say that K is a ball
complex if the interiors of the balls of K are disjoint and the boundary
of each ball of K is a union of balls of K. The balls of K will be called
(closed) cells of K.

2. An isomorphism of ball complexes K → L is a PL homeomorphism
|K| → |L| which takes closed cells of K to closed cells of L.

3. A subcomplex of a ball complex K is a subset of K which is itself a ball
complex with the inherited cell structure.

4. A morphism of ball complexes K → L is the composite of an isomorphism
with an inclusion of a subcomplex.

We denote the category of ball complexes by Ball.

Definition 3.1.2. 1. A ball complex pair (K,L) is a pair of ball complexes
such that L ⊂ K is a subcomplex.

2. A morphism of ball complex pairs (K,L)→ (K ′, L′) is a morphism of ball
complexes f : K → K ′ such that f(L) ⊆ L′.

We denote the category of ball complex pairs by Ball2. Furthermore, we let
K denote the ball complex pair (K, ∅).

A technically useful feature of the category of ball complexes, in contrast to
the category of simplicial complexes, is that it is closed under the formation of
products. These are defined as follows:
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Definition 3.1.3. 1. Let K and M be ball complexes. The product of K
and M is the ball complex denoted by K ×M whose closed cells are the
products of closed cells in K and M .

2. Let (K,L) and (M,N) be ball complex pairs. The product of (K,L) and
(M,N) is the ball complex pair (K ×M,L×N ∪K ×N).

Another important feature of ball complexes is that the cells of a ball complex
K induce a regular CW structure on its underlying space. Thus, we may speak
about the incidence number (see [Whi78, p. 82]), denoted by [(σ, o), (σ′, o′)] ∈
{0,±1}, of a pair of oriented cells ((σ, o), (σ′, o′)) of K, where |σ| = |σ′|+1. For
reference in later calculations, we will record here the canonical orientations on
products of ball complexes following [Whi78, p. 88]:

Given two oriented ball complexes (X, oX) and (Y, oY ), we denote by oX×oY
the orientation on X × Y defined by the following incidence relations, where
τ ⊆ τ ′ and σ ⊆ σ′ are oriented cells of X and Y , respectively:

[σ′ × τ, σ × τ ] = [σ′, σ]

[σ × τ ′, σ × τ ] = (−1)|σ|[τ ′, τ ].
(3.1)

Next, we define the notion of subdivision and residual complex in accordance
with [LM14, Definition 2.2].

Definition 3.1.4. A subdivision of a ball complex K is a ball complex K ′ with
the following two properties:

� |K| = |K ′|, and

� each closed cell of K ′ is contained in a closed cell of K.

A subdivision of a ball complex pair (K,L) as a ball complex pair (K ′, L′) such
that K ′ and L′ are subdivisions of K and L, respectively.

We call a subcomplex of K which is also a subcomplex of K ′ a residual
subcomplex.

Finally, we record that the category of ball complexes receives a faithful func-
tor ∆ ↪→ Ball2 taking the set [n] to the standard n-simplex with its standard
PL-structure, for all n ≥ 0. We denote the image of [n] under this embedding
by ∆n.

Cell Posets

A fundamental property about ball complexes is that they naturally yield posets
via cell inclusion. We make this precise in the following definition:

Definition 3.1.5. For any ball complex pair (X,Y ), we define its face poset,
denoted F(X,Y ), to be the poset consisting of the closed cells σ in X not in Y
under the relation of face inclusion i.e., σ ≤ σ′ in F(X,Y ) if and only if σ ⊆ σ′.

Remark 3.1.6. Our notation for face posets is based on that of [BVS+93,
Appendix 4.7].
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We will also need to work with an inflated version of these posets as defined
in [LM14, Example 3.6]. Preliminary to the definition is the notion of a Z-graded
category defined as follows:

Definition 3.1.7.

1. An involution i on a category A is an endofunctor i : C → C such that its
square is strictly equal to the identity functor on C.

2. A Z-graded category is a quadruple (A, i,dim, ∅), consisting of a small
category A with involution i, an involution preserving functor dim : A →
Z into the poset of integers Z (equipped with trivial involution), and an
involution preserving section ∅ : Z → A to dim : A → Z, such that the
objects ∅(n)n∈Z (called basepoints) are initial in the following sense:

For all n ∈ Z, there is a unique morphism ∅(n)→ a, whenever
dim(a) ≥ n.

We call dim the dimension function of A and set ∅n := ∅(n), for all n ∈ Z.

3. A morphism between Z-graded categories (A, i,dim, ∅) and (A′, i′,dim′, ∅)
is a functor F : A → A′ of the underlying categories which decreases the
dimension of objects by an integer k, preserves the basepoints and strictly
commutes with the involutions, i.e.,

� dim(F (a)) = dim(a)− k, for all a ∈ obA,

� F (∅n) = ∅n−k, for all n ∈ Z, and

� F ◦ i = i′ ◦ F : A → A′.

The integer k is called the degree of the morphism and a morphism F :
A → A′ of degree k is called a k-morphism. We denote the corresponding
category of Z-graded categories by CatZ.

Remark 3.1.8. Definition 3.1.7 is based on [LM14, Definition 3.3]. However,
note that we additionally demand the existence of unique morphisms from base-
points to any other object in A. This assumption is innocuous though necessary
for our formulation of the axioms (see Remark 3.1.15). We note that it is trivially
satisfied in the standard examples of ad theories (see [LM14, §§6,7,9 and 11]).

Remark 3.1.9. Note in particular that 0-morphisms of Z-graded categories
are dimension preserving.

Definition 3.1.10. For any ball complex pair (K,L) let cell(K,L) be the Z-
graded category whose underlying category has object set:

ob(cell(K,L)) := {(σ, o) |σ ∈ F(K,L), o an orientation of σ} t {∅n}n∈Z.

The objects of cell(K,L) are called oriented cells and the empty cells {∅n}n∈Z
serve as basepoints. In addition to the identity morphisms, there are unique
morphisms:

� (σ, o)→ (σ, o′), if σ � σ′, and o, o′ are arbitrary,
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� ∅n → (σ, o), if n ≤ |σ′|, and

� ∅n → ∅m, if n ≤ m.

The involution swaps orientations of cells and acts trivially on the basepoints.
The dimension function is defined by taking the dimension of cells and the index
of basepoints.

τ+ τ+
0 σ+ τ+

0 σ+ τ+
1

τ− τ−0 σ− τ−0 σ− τ−1

Figure 3.1: A schematic of the posets cell(∆0), cell(∆1, {1}) and cell(∆1) (from
left to right) with basepoints suppressed. The cells labelled by τ ε, and τ εi , for
ε = ± and i = 1, 2, denote the 0-dimensional cells of ∆0, and ∆1, respectively.
The cells labelled by σε denote the 1-dimensional cells of ∆1. The superscripts
ε = ± refer to the two possible orientations and the arrows indicate the relations
between the cells.

Some examples of cell posets are illustrated in Figure 3.1. It was remarked
in [BL17, p. 2] that the assignment

(K,L) 7→ cell(K,L)

is functorial. We describe the induced maps explicitly here, for completeness:
A morphism of ball complexes f : (K,L)→ (M,N) induces a 0-morphism of

Z-graded categories cell(K,L)→ cell(M,N) determined by the following rules:

(σ, o) 7→ (f(σ), f∗o), if σ /∈ L, o arbitrary

(σ, o) 7→ ∅|σ|, if σ ∈ L, o arbitrary,

where the notation f∗o denotes the induced orientation of the cell f(σ), given
by pushforward of the orientation class o. We will not distinguish between a
morphism of ball complex and its induced map on posets.

It will be important to deal with morphisms of cell posets not necessarily
induced by a map of ball complex pairs. We introduce the following category
as a setting for such abstract morphisms between ball complexes:

Definition 3.1.11. The category CBall2 has object and morphism sets de-
fined by

ob CBall2 := ob Ball2

MorCBall2((K,L), (M,N)) := MorCatZ(cell(K,L), cell(M,N)).

For all k ∈ Z, we call a k-morphism (resp. k-isomorphism) θ : (K,L)→ (M,N)
in CBall2 a k-morphism (resp. k-isomorphism) of ball complexes.

The most important class of abstract morphisms of ball complexes are those
which are incidence compatible. We define this condition in agreeance with
[LM14, Definition 3.7(i)]:
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Definition 3.1.12. Let θ : (K,L) → (K ′, L′) be a k-morphism, where k ∈ Z.
We say θ is incidence compatible if

[(σ, o), (σ′, o′)] = (−1)k[θ(σ, o), θ(σ′, o′)],

for all pairs of oriented cells ((σ, o), (σ′, o′)) in cell(K,L) such that |σ| = |σ′|+1.

3.1.2 Categories Parametrised over Ball Complexes

For any Z-graded category A and ball complex pair (K,L), we introduce func-
tor categories denoted A[K,L] as a generalisation of the construction of the
categories A[K] from [LM14, p. 1170] to pairs.

Definition 3.1.13. We define a functor

CatZ×Ballop2 → CatZ,

(A, (K,L)) 7→ A[K,L],

as follows: Let (K,L) be a ball complex pair and (A,dim, i, ∅) be a Z-graded
category. The underlying category of A[K,L] is defined to have object set

preA(K,L) := MorCatZ(cell(K,L),A),

and morphisms given by natural transformations. An element of preA(K,L)
is called a (K,L)-pread in A. We say a pread has dimension k if it is a −k-
morphism of Z-graded categories. The set of k-dimensional preads is denoted
by pre−kA (K,L).

The unique (K,L)-pread of dimension k which takes values in the base-
points of A is defined to be the k-dimensional basepoint of A[K,L] and will be
called the trivial k-dimensional (K,L)-pread in A. The involution on A[K,L]
postcomposes a diagram X with the involution i of A.

We declare a morphism f : (K,L)→ (K ′, L′) of ball complexes to induce a
morphism of Z-graded categories

f∗ : A[K ′, L′]→ A[K,L],

for every Z-graded category A, by precomposition. Furthermore, a k-morphism
F : A → A′ of Z-graded categories induces a k-morphism

F∗ : A[K,L]→ A′[K,L],

for all ball complex pairs (K,L), by postcomposition. More generally, a pair
(f, F ) with f and F as above, induces a morphism of Z-graded categories

(f∗, F∗) : A[K ′, L′]→ A′[K,L]

X 7→ F ◦X ◦ f.

Remark 3.1.14. The terminology “pread” and the notation “prekA(K,L)” are
based on [LM14, Definition 3.8].

Remark 3.1.15. The sets preA(K,L) were originally defined as certain subsets
of the sets preA(K) (cf. [LM14, Definition 3.8(iii)]). In the defintion above
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we have followed the conventions of [BL17, BLM19]. The equivalence of both
definitions was remarked in [LM14, Remark 3.9]. For the convenience of the
reader, we demonstrate the comparison here: For any ball complex pair (K,L),
let ε∗(K,L) : preA(K,L)→ preA(K) be the map of sets induced by the inclusion

ε(K,L) : K ↪→ (K,L), i.e., the map ε∗(K,L) is given by extending a (K,L)-ad to a
K-ad by evaluating to the basepoint over the subcomplex L.

Then for any Z-graded category A, the maps ε∗(K,L) : preA(K,L)→ preA(K)

identify preA(K,L) with the subset of preA(K) whose elements are those K-
preads in A that restrict to the trivial L-pread in A via the inclusion L ↪→ K.
Indeed, an inverse to ε∗ is given by the map η∗(K,L) : preA(K) → preA(K,L)

induced from the inclusion of posets η(K,L) : cell(K,L) ↪→ cell(K). Note, in
particular, that in order for the composite ε∗(K,L) ◦ η

∗
(K,L) to be the identity,

we require the additional assumption that the basepoints in A are initial (see
Definition 3.1.7) to exclude the existence of non-trivial maps from basepoints.

More generally, abstract morphisms of ball complexes induce morphisms
on categories of preads. The following definition serves to explain this and
generalises [LM14, Definition 3.7(ii)]:

Definition 3.1.16. Let A be a Z-graded category with involution i. For any
k-morphism

θ : cell(K,L)→ cell(K ′, L′),

in CBall2, we define a k-morphism of Z-graded categories

θ∗ : A[K ′, L′]→ A[K,L],

by assigning to each l-dimensional (K ′, L′)-pread X in A, the (l−k)-dimensional
(K ′, L′)-pread in A,

θ∗X := ikl ◦X ◦ θ.

Moreover, each natural transformation η : X ⇒ X ′ of l-dimensional (K ′, L′)-
pread X,X ′ in A is assigned the natural transformation θ∗η : θ∗X ⇒ θ∗X ′

defined by
θ∗η(σ) = ikl(η(θ(σ))),

for all (σ, o) ∈ cell(K,L).

Remark 3.1.17. Definition 3.1.16 should be regarded as a partial exten-
sion of Definition 3.1.13. Indeed, the definition of the induced morphisms
θ∗ : A[K ′, L′] → A[K,L] of the former agree with the latter in the case that
θ : (K,L)→ (K ′, L′) comes from a map of ball complexes, as those morphisms
are 0-morphisms. Furthermore, the morphisms θ∗ are natural in the variable A.

The reader should be aware, though, that the assignment θ 7→ θ∗ is not
strictly functorial, but rather satisfies (θ ◦ ψ)∗ = iklψ∗ ◦ θ∗ for all k-morphisms
θ and l-morphisms ψ in CBall2.

Remark 3.1.18. The involution terms ikl do not play an essential role in this
chapter and the reader may choose to ignore them for now. However, they will
be needed later in Chapter 5 in order to get signs correct.
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3.1.3 Ad Theories

Let SetZ denote the category of Z-graded sets.

Definition 3.1.19. An ad theory consists of a quintuple

(A, i, ∅,dim, adA : Ballop2 → SetZ)

where the quadruple (A, i, ∅,dim) is a Z-graded category and adA is an i-
invariant subfunctor of preA satisfying the axioms below. The elements of
adA(K,L) are called (K,L)-ads in A.

� absolute: A (K,L)-pread is a (K,L)-ad if and only if it extends to a K-ad
(see Remark 3.1.15).

� pointed: The trivial K-preads in A are K-ads.

� local: A K-pread is an K-ad if it restricts to a σ-ad for each closed cell σ
of K.

� cylinder: There is a natural transformation JA : adA(−)⇒ adA(−×∆1)
of functors Ball→ SetZ with the following properties:

– J maps trivial ads to trivial ads.

– For every K-ad X, the restrictions of JA(X) to K×{0} and K×{1}
coincide with X, i.e.,

j∗0X = X = j∗1X,

where jk denotes the composition of the evident isomorphism of ball
complexes K ∼= K × {k} and inclusion K × {k} ↪→ K × ∆1, for
k = 0, 1.

� gluing: For each subdivision (K ′, L′) of (K,L), and each (K ′, L′)-ad X,
there is a (K,L)-ad which agrees with X on each residual subcomplex.

� reindexing: For every incidence compatible k-isomorphism

θ : (K,L)→ (M,N)

in CBall2, the induced k-isomorphism of sets,

θ∗ : preA(M,N)→ preA(K,L)

maps ads isomorphically to ads, i.e, restricts to a k-isomorphism

θ∗ : adA(M,N)
∼=→ adA(K,L).

The functor adA is called the ad structure of A. We will denote the quintuples
(A, i, ∅,dim, adA : Ballop2 → SetZ) more simply by (A, adA), or by A, when the
ad structure is clear from context.

A morphism of ad theories (A, adA)→ (A′, adA′) is a 0-morphism F : A →
A′ of Z-graded categories such that, for all ball complex pairs (K,L), the induced
map of sets

preF (K,L) : preA(K,L)→ preA′(K,L)

maps ads to ads.
We denote the corresponding category of ad theories by Ad.
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Remark 3.1.20. The definition of the axioms above is a partially restricted
version of [LM14, Definition 3.10] and also influenced by [BL17, Definition 2.1].
We have imposed the following restrictions:

1. Our gluing axiom is a relative version of that given in [LM14]. We need
the relative version so that the functor category A[M,N ] inherits an ad
structure from the ad theory A for any ball complex pair (see Proposition
3.2.3 below). The point being that we need to ensure that trivial ads are
glued to trivial ads.

2. A morphisms of ad theories must be dimension preserving. The reason is
that we want certain shift functors (see Section 3.3) to define non-trivial
automorphisms on Ad.

3.2 Parametrisation in the Category of Ad the-
ories

The aim of this section is to demonstrate that the category of ad theories admits
a symmetric parametrisation structure.

3.2.1 The Ad Structure on Categories of Preads

We begin by showing how the Z-graded categoriesA[M,N ] can be equipped with
an ad structure, for all ball complex pairs (M,N) and ad theories (A, adA). The
absolute case, (M,N) = (M, ∅), was described in [LM14, p. 1170]. The idea of
the construction is to transfer the ad structure from A to the functor categories
A[M ] using the product-hom adjunction

(A[M ])[K] ∼= A[K ×M ],

natural in all variables (see [BL17, Lemma 3.3]). Explicitly, one identifies every
arbitrary k-dimensional pread in (A[M ])[K],

X : cell(K)→ A[M ]

(σ, o) 7→ X[σ, o],

with the corresponding k-dimensional pread in A[K ×M ] given by

α(X) : cell(K ×M)→ A
(σ × τ, o× o′) 7→ X[σ, o](τ, o′).

The same idea applies in the case of ball complex pairs, yielding the following
proposition:

Proposition 3.2.1. There are natural isomorphisms

α
(M,N),(K,L)
A : (A[M,N ])[K,L] ∼= A[(K,L)× (M,N)]

of functors CatZ×Ballop2 ×Ballop2 → CatZ.

The morphisms α
(M,N),(K,L)
A from Proposition 3.2.1 will be called associa-

tivity morphisms. We defer to Section 4.1 for an explanation of the terminology.
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Definition 3.2.2. Fix an ad theory (A, adA) and ball complex pair (M,N).
We define an ad structure adA[M,N ] on A[M,N ] as follows:

Let n ∈ Z. The n-dimensional (K,L)-ads in the category A[M,N ] are
the n-dimensional (K,L)-preads in A[M,N ] which are adjoint to n-dimensional
(K ×M,K × N ∪ L ×M)-ads in A via the adjunction α given in Proposition
3.2.1, i.e.,

X ∈ adnA[M,N ](K,L) if and only if α(X) ∈ adnA((K,L)× (M,N)).

Proposition 3.2.3. The pair (A[M.N ], adA[M.N ]) is an ad theory, for all ad
theories A and ball complex pairs (M,N).

Proof. Checking the axioms is straightforward from the definitions. The main
idea is to use the adjunction α to transfer the problem to A and work with the
axioms there. We record the details here for completeness. Fix a ball complex
pair (K,L).

� absolute:
Let X be a (K,L)-pread in A[M,N ]. We must prove that X is a (K,L)-ad
in A[M,N ] if and only if ε∗(K,L)(X) is a K-ad in A[M,N ].

Observe that by the definition of the ad structure onA[M,N ], the previous
statement is equivalent to proving that α(X) is a (K,L)× (M,N)-ad in A
if and only if α(ε∗(K,L)(X)) is a K×(M,N)-ad in A. By the absolute axiom

for the ad theory A, this corresponds to showing that ε∗(K,L)×(M,N)α(X)

is a K×M -ad in A if and only if ε∗K×(M,N)(α(ε∗(K,L)X)) is a K×M -ad in
in A. The latter statement follows from the fact that there is an equality
of K ×M -ads in A:

ε∗K×(M,N)(α(ε∗(K,L)X)) = ε∗(K,L)×(M,N)α(X)

Indeed, the equality can be seen considering the following diagram, whose
top square commutes by naturality of α and lower triangle commutes by
functoriality of preA:

preA[M,N ](K,L) preA[M,N ](K)

preA((K,L)× (M,N)) preA(K × (M,N))

preA(K ×M).

α

ε∗(K,L)

α

ε∗(K,L)×(M,N)

(ε(K,L)×id)∗

ε∗K×(M,N)

� pointed:
The trivial K-pread in A[M,N ] corresponds under the bijection α to the
trivial (K × M,K × N)-pread in A. The latter is an ad in A by the
absolute axiom since it extends to the trivial K ×M -ad in A.

� local:
Let X be a K-pread in A[M,N ], which restricts to a σ-ad, for each closed
cell σ of K. We need to show that X is an ad, i.e., that α(X) is an ad
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in A, or equivalently that its extension ε∗K×(M,N)α(X) is a K ×M -ad in
A. By the locality axiom for the ad theory A, it suffices to show that
ε∗K×(M,N)α(X) restricts to a σ × σ′-ad, for every pair of closed cells σ, σ′

of K and of M , respectively.

Let σ, σ′ be given. By naturality of α and the definition of the ad structure
adA[M,N ], we know that the restriction of α(X) to σ × (M,N) is a σ ×
(M,N)-ad in A. Now, consider the commutative diagram

preA(K × (M,N)) preA(K ×M)

preA(σ × (M,N)) preA(σ ×M) preA(σ × σ′),

induced from the diagram of inclusions of ball complexes

K × (M,N) K ×M

σ × (M,N) σ ×M σ × σ′.

The fact that ε∗K×(M,N)α(X) restricts to a σ×σ′-ad then follows from an
easy diagram chase.

� cylinder:
We define the required natural transformation, JA[M,N ], by the formula

JA[M,N ](X) := α−1
(
ε∗(K×∆1×(M,N))

)−1
T ∗JAε

∗
K×(M,N)α(X),

where X is a K-ad in A[M,N ], and

T ∗ : adA(K ×M ×∆1)→ adA(K ×∆1 ×M)

is induced from the isomorphism of ball complexes,

T : K ×∆1 ×M ∼= K ×M ×∆1,

given by interchanging factors. In other words, JA[M,N ] fits into the fol-
lowing commutative diagram:

adA[M,N ](K) adA[M,N ](K ×∆1)

adA(K × (M,N)) adA(K ×∆1 × (M,N))

adA(K ×∆1 ×M)

adA(K ×M) adA(K ×M ×∆1).

α∼=

JA[M,N]

α∼=

ε∗K×(M,N)

ε∗
K×∆1×(M,N)

JA

∼= T∗

We claim that JA[M,N ] is well-defined. First, we will show that it is well-
defined as a map of sets: Let X be a K-ad inA[M,N ]. Then, by definition,
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α(X) is a K × (M,N)-ad in A, and hence, the extension ε∗K×(M,N)α(X)
restricts to the trivial K×N -ad in A. Now, since JA preserves trivial ads,
the ad JAε

∗
K×(M,N)α(X) restricts to the trivial K ×N ×∆1-ad, and thus

the composition
(
ε∗K×∆1×(M,N)

)−1 ◦ (T ∗JAε
∗
K×(M,N)α) is well-defined.

Next, note that naturality of JA[M,N ] follows directly from the naturality
of α and JA, and functoriality of adA. Furthermore JA[M,N ] maps trivial
ads to trivial ads since it is a composition of maps with this property.

Finally, let X be a given K-ad and k ∈ {0, 1}. Then, the following com-
putation is obtained by naturality of α, functoriality of adA and the defi-
nitions of T ∗ and JA:

j∗kJA[M,N ](X) = j∗kα
−1
(
ε∗(K×∆1×(M,N))

)−1
T ∗JAε

∗
K×(M,N)α(X)

= α−1j∗k
(
ε∗K×∆1×(M,N)

)−1
T ∗JAε

∗
K×(M,N)α(X)

= α−1
(
ε∗K×(M,N)

)−1
j∗kT

∗JAε
∗
K×(M,N)α(X)

= α−1
(
ε∗K×(M,N)

)−1
j∗kJAε

∗
K×(M,N)α(X)

= α−1
(
ε∗K×(M,N)

)−1
ε∗K×(M,N)α(X)

= X.

� gluing
Let (K ′, L′) be a subdivision of (K,L) and let X ′ be a given (K ′, L′)-ad
in A[M,N ]. Our aim is to glue X ′ to a (K,L)-ad X in A[M,N ], which
agrees with X ′ on every residual subcomplex.

Observe that the ball complex pair (K ′, L′) × (M,N) is a subdivision of
(K,L) × (M,N). Hence, by the gluing axiom for A, we find a (K,L) ×
(M,N)-ad in A which agrees with α(X ′) on every residual subcomplex.
Denote this ad by Y and set X := α−1(Y ).

� reindexing:
Let θ : (K,L) → (K ′, L′) be an incidence compatible k-morphism in
CBall2. Then the k-morphism of cell posets

θ × id : (K,L)× (M,N)→ (K ′, L′)× (M,N)

given by
θ × id((σ, o)× (σ′, o′)) := (θ(σ, o)× (σ, o′)),

where (σ, o)×(σ′, o′) ∈ cell((K,L)×(M,N)), is also incidence compatible.
Furthermore, the following diagram can be seen to commute by inspection:

preA[M,N ](K
′, L′) preA[M,N ](K,L)

preA((K ′, L′)× (M,N)) preA((K,L)× (M,N)).

α

θ∗

α

(θ×id)∗

The result now follows from the reindexing axiom for A.

This completes the proof that (A[M,N ], adA[M,N ]) is an ad theory.

Remark 3.2.4. We mention that analogous arguments using the adjunction
α had also been given in the proof of [BL17, Proposition 3.4].
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3.2.2 Functoriality of Parametrisation

We turn to proving functoriality of the assignment

(A, (M,N)) 7→ (A[M,N ], adA[M,N ]).

We will write A[M,N ] for (A[M,N ], adA[M,N ]) from now on, if it does not lead
to confusion.

Proposition 3.2.5. Let θ : (K,L) → (K ′, L′) be a morphism of ball com-
plex pairs and F : A → A′ be a morphism of ad theories. Then, the induced
morphism of Z-graded categories

(θ∗, F∗) : A[K ′, L′]→ A′[K,L]

defines a morphism of ad theories.

Proof. To ease readability, we only illustrate the proof of the case L = L′ = ∅;
the general case being analogous. We need to show that, for all ball complex
pairs (M,N), the induced map on (M,N)-preads

pre(θ∗,F∗)(M,N) : preA[K′](M,N)→ preA′[K](M,N)

maps ads to ads. Let X be a (M,N)-ad in A[K ′]. Observe that pre(θ∗,F∗)(M,N)
is equal to the composition preθ∗(M,N)◦preF∗(M,N) and consider the following
diagram:

preA[K′](M,N) preA′[K′](M,N) preA′[K,L](M,N)

preA((M,N)×K ′) preA′((M,N)×K ′) preA′((M,N)×K ′).

α

preF∗ preθ∗

α α

preF (id×θ)∗

The diagram commutes, by naturality of α, so it suffices to show that the pread
(id×θ)∗(preF (α(X))) is an ad in A′. By assumption, preF maps ads to ads.
Thus, preF (α(X)) is an ad in A′. Functoriality of the ad structure adA then
implies that (id×θ)∗(preF (α(X))) is also an ad in A′.

Propositions 3.2.3 and 3.2.5 taken together show that there is a well-defined
functor:

p̂ : Ad×Ballop2 → Ad .

(A, (M,N)) 7→ A[M,N ].

We let p denote the restriction of p̂ to the subcategory Ad×∆op ⊂ Ad×Ballop2 .

3.2.3 Properties of Parametrisation

Our goal in this subsection is to show that the parametrisation operator p on Ad
extends to a symmetric parametrisation structure. We begin by constructing a
unit:

For an ad theoryA, let µA : A[0]→ A denote the functor given by evaluation
at the cell ({0},+1) in cell(∆0), where +1 denotes the canonical orientation on
{0}.
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Proposition 3.2.6. The evaluation maps µA define a natural isomorphism

A[0]
∼=→ A

of functors Ad → Ad, i.e., the parametrisation operator p on Ad admits a
unit.

Proof. Clearly the collection µA define a natural isomorphism of the underlying
Z-graded categories. We must show that preµA maps ads isomorphically to ads
for all ad theories A. Fix an ad theory A and arbitrary ball complex pair (K,L).
Now, let u denote the isomorphism of ball complexes

u : (K,L)
∼=→ (K,L)×∆0

x 7→ (x, {0}).

and consider the following triangle:

preA[0](K,L)

preA((K,L)×∆0) preA(K,L).

α preµA

u∗

It is straightforward to check from definitions that the triangle commutes. Since
both α and u∗ map ads isomorphically to ads, it follows from commutativity
that the map preµA must preserve ads too.

Next, we construct symmetry morphisms for the parametrisation structure
(p, µ) using the associativity isomorphisms α. The first observation is that the
associativity morphisms α define morphisms of ad theories, not just of Z-graded
categories:

Proposition 3.2.7. For all ball complex pairs (K,L) and (M,N), and each
ad theory A, the natural isomorphism

α
(M,N),(K,L)
A : (A[M,N ])[K,L] ∼= A[(K,L)× (M,N)]

maps ads isomorphically to ads.

Proof. For readability, we only present the proof for the absolute case; the
relative case is completely analogous. Let A be an ad theory and K and M
be ball complexes. Furthermore, let (U, V ) be a ball complex pair, and set
B = A[M ], C = (A[M ])[K] and D = A[K ×M ]. Now consider the following
diagram of sets:

preC(U, V ) preD(U, V )

preB((U, V )×K) preA((U, V )×K ×M).

α
K,(U,V )
B

pre
α
K,M
A

(U,V )

α
K×M,(U,V )
A

α
M,(U,V )×K
A

The diagram commutes by associativity of the product of ball complexes. Fur-
thermore, the definition of the ad structure on categories of preads implies that

the maps, α
K×M,(U,V )
A , α

M,(U,V )×K
A and α

K,(U,V )
D preserve ads. It immediately

follows that the map preαK,MA
(U, V ) preserves ads.
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Proposition 3.2.8. The parametrisation structure (p, µ) on Ad is symmetric.

Proof. Let A be an ad theory. For any ball complexes K and M , denote by
τM,K : M × K ∼= K × M the isomorphism of ball complexes given by in-

terchanging factors, and define symmetry isomorphism sM,K
A by the following

composition:

sM,K
A : (A[M ])[K]

αK,M∼= A[K ×M ]
τ∗M,K∼= A[M ×K]

(αM,K)−1

∼= (A[K])[M ].

Notice that the relation τ2
M,K = 1 implies that

sM,K
A ◦ sK,MA = id,

for all ball complexes K and M .
Next, for a given n ≥ 0, let u1 : ∆n ∼= ∆0 × ∆n and u2 : ∆n ∼= ∆n × ∆0

denote the canonical isomorphisms, and consider the following diagram of ad
theories:

(A[n])[0] A[∆0 ×∆n] A[∆n ×∆0] (A[0])[n]

A[n].

µA[n]

α0,n

u∗1

τ∗n,0

u∗2

αn,0

µA[n]

The outer triangles commute by inspection, and the inner triangle commutes
by functoriality of the parametrisation operator. Therefore, the symmetry mor-
phisms sn,0A , where n ≥ 0, are compatible with µ.

3.3 Closed Objects and Quinn’s bordism ma-
chine

In this section we introduce Quinn’s bordism machine and show it defines a
universal bordism characteristic.

3.3.1 Definitions

Definition 3.3.1. Let (A, adA) be an ad theory. We define the pointed graded
set cl(A) of closed objects of the ad theory A to be the set of ∆0-ads in A, i.e.,

cl(A) := adA(∆0),

where the trivial ∆0-ads in A serve as basepoints. The pointed set of closed
objects of A of dimension −k will be denoted by clk(A).

Remark 3.3.2. The terminology is motivated by the ad theory of (oriented
topological) manifolds (see [LM14, §6]), in which case closed objects correspond
to closed manifolds.

Since morphisms of ad theories preserve ads by definition, taking closed
objects of fixed grading k defines a functor clk : Ad → Set∗ on the category
of ad theories. We introduce automorphisms Σk : Ad → Ad that shift the
dimension of objects by an arbitrary integer k to relate the different gradings:
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Definition 3.3.3. Let (A, i,dim, ∅, adA) be an ad theory and k ∈ Z. We define
ΣkA, the kth shift of A, to be the ad theory (A, i,dimΣkA, ∅ΣkA, adΣkA), where

dimΣkA(a) := dim(a)− k,
∅ΣkA(n) := ∅(n− k),

adnΣkA(K,L) := adn+k
A (K,L),

for all objects a of A, ball complexes (K,L) and integers n ∈ Z.

The construction is evidently functorial. Moreover, it is clear that we have an
equality of functors, clk = cl0 ◦Σ−k for all k ∈ Z. For simplicity, we distinguish
the functor cl0 and call it the closed-objects functor.

Definition 3.3.4. Quinn’s bordism-space machine Q : Ad→ Top∗ is defined
to be the parametric realisation of the closed-objects functor cl0, i.e.,

Q := P cl0 .

Our definition of Quinn’s bordism machine is different but equivalent to the
one given in [LM14, §15]. There, Quinn’s bordism machine is described in terms
of the individual spaces of the Quinn spectrum associated to an ad theory. We
recall how these were defined, following [LM14, Definition 15.4].

Definition 3.3.5. Let A be an ad theory.

1. For k ≥ 0, let Pk(A) denote the pointed semi-simplicial set with

� n-simplices given by

Pk(A)n := adkA(∆n),

� face maps induced by functoriality of the ad structure, and

� n-dimensional basepoint defined to be the trivial ∆n-ad in A, for all
n ≥ 0.

2. Let Qk(A) denote the geometric realisation of the semi-simplicial set
Pk(A).

The comparison of Q with the assignments A 7→ Qk(A) may be now stated
as follows:

Proposition 3.3.6. There are natural isomorphisms

Q(ΣkA) ∼= Qk(A)

of functors Ad→ Top∗ for every k ≥ 0.

Proof. Let k ≥ 0 be given and A be an arbitrary ad theory. We define a natural
isomorphism of pointed semi-simplicial sets

cl0((ΣkA)[•]) ∼= Pk(A) (3.2)
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with components cl0((ΣkA)[n]) ∼= Pk(A)n, for n ≥ 0, given by

cl0((ΣkA)[n]) = ad0
(ΣkA)[n](∆

0)
α∼= ad0

ΣkA(∆0 ×∆n)
u∗∼= ad0

ΣkA(∆n) = adkA(∆n),

where u∗2 is induced from the evident isomorphism u2 : ∆n ∼= ∆0×∆n. Compos-
ing the isomorphisms (3.2) with geometric realisation then yields the required
natural isomorphisms.

Remark 3.3.7. The shift functors Σk in fact commute with the parametri-
sation operator on Ad. We will prove this later in Lemma 5.1.5 of Chapter
5.

3.3.2 Universality of Quinn’s machine

The final ingredient in the proof of universality of Quinn’s bordism machine is
the verification of bordism invariance:

Proposition 3.3.8. Quinn’s bordism machine Q : Ad → Top∗ is bordism
invariant.

Proof. This is essentially a special case of [LM14, Lemma 17.10(i)], though
obscured by notation. We clarify this here for the benefit of the reader:

Fix an ad theory A. By definition, the semi-simplicial space |R2
2[•]| in the

statement of that lemma has pth space R2
2[p] (where p ≥ 0) given by

R2
2[p] := ‖[q] 7→ ad2

A(∆p ×∆q)‖.

Now, observe that for all p, q ≥ 0 the composition of natural isomorphisms

ad2
A(∆p ×∆q) ∼= ad2

A(∆q ×∆p) ∼= ad2
A[p](∆

q)

given by functoriality of adA and the definition of the ad structure on A[p] yield
an isomorphism of topological spaces

R2
2[p] ∼= Q2(A[p]).

Part (i) of [LM14, Lemma 17.10] may then be translated as the claim that the
face maps of the semi-simplicial space given by

[p] 7→ Q2(A[p])

are all homotopy equivalences. Its proof, as described there, is obtained by direct
comparison of homotopy groups (which is sufficient since all spaces involved are
CW complexes). It follows from the natural identification Q(Σ2A) ∼= Q2(A)
described in Proposition 3.3.6 and invertibility of the shift functor Σ2 that the
functor Q must be bordism invariant, as required.

In summary, the combination of Propositions 3.2.8, 3.3.8 and Theorem 1.2.1
yields a characterisation of Quinn’s bordism machine Q as the universal target
for bordism characteristics of the closed-object functor:

Theorem 3.3.9. The pair (Q, ιcl0) is a universal bordism characteristic of cl0.
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Part II

A Study of Extended
Parametrisation
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Chapter 4

The Abstract Universality
Theorem Revisited

In Chapter 1 we introduced the setting of categories with parametrisation struc-
tures to study the universality of parametric realisation, motivated by our appli-
cations to L-theory and Quinn’s bordism machine. Our main result established
there, the Abstract Universality Theorem, describes minimal conditions such
that parametric realisation yields universal bordism characteristics.

Although the Abstract Universality Theorem was entirely sufficient for our
purposes in Part I, it has two conceptual shortcomings: Firstly, it does not give
intuition for the circumstances under which the bordism invariance condition
is satisfied. Secondly, the theorem has no apparent connection to the stable
nature of our examples, in the sense that they, in fact, take values in infinite
loop spaces. Our desire for this latter connection is inspired by analogy with
[Ste17] on the properties of global Euler characteristics.

The intent of this chapter is to demonstrate an example of a more structured
setting for parametric realisation which addresses these shortcomings. Specifi-
cally, our objectives are to establish a setting for parametric realisation wherein
natural sufficient conditions for bordism invariance exist and to formulate a
refined version of the Abstract Universality Theorem that gives conditions for
both bordism invariance and stability of the parametric realisation of a given
functor.

The new setting is based on special features of the example of ad theories.
Recall that the parametrisation operator on the category of ad theories extended
over the category of ball complex pairs. Such an extension turns out to be
technically convenient due to several formal properties of the category of ball
complex pairs: namely, the combinatorial nature of its objects and the existence
of a symmetric monoidal product ‘×’ and of relative objects (i.e. pairs). We
abstract the properties of the parametrisation structure on ad theories with
the notion of extended parametrisation structures. The details are described in
Section 4.1.

A significant benefit of working in the setting of extended parametrisation
structures is that there exist a rich variety of natural conditions on space-valued
functors related to bordism invariance. We have devoted Sections 4.2, 4.3, 4.3
and 4.4 to introduce and compare these conditions.
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In detail, section 4.2 describes two sufficient conditions for bordism invari-
ance of a space-valued functor. The first condition is a formal strengthening
of the bordism invariance condition, resembling a natural notion of homotopy
invariance in this setting, inspired by the theory of homotopy invariant functors
from the category of ball complex pairs to spaces from [BRS76]. The second
condition is a combination of a reduction of the bordism invariance condition
with a strong invariance property with respect to subdivisions (see Definition
4.2.7).

Section 4.3 introduces two important classes of space-valued functors for
our reassessment of the Abstract Universality Theorem that we call stable and
linear. Stable functors naturally extend to spectrum-valued functors under a
certain invertibility assumption on the parametrisation operator (see Definition
4.3.1) and serve to conceptualise and abstract the delooping of Quinn’s bordism
machine Q to a spectrum-valued functor. It turns out that the condition of sta-
bility is related to bordism invariance under certain assumptions. We introduce
the class of linear functors, inspired by the analogous notion from the theory
of calculus of functors, as a convenient subclass of functors satisfying both of
these conditions. In addition to being bordism invariant and stable, they also
satisfy homotopy invariance and certain locality properties.

In Section 4.4 we show that the condition of linearity can be significantly
reduced under a certain combinatorial assumption on an extended parametrisa-
tion structure (see Definition 4.4.1). The result is a key ingredient in the proof
of a refinement of the Abstract Universality Theorem and is described precisely
in Lemma 4.4.9.

Our final Section 4.5 is devoted to the establishment of the specialised Ab-
stract Universality Theorem (Theorem 4.5.9) which gives conditions on an ex-
tended parametrisation structure and a discrete (i.e. set-valued) functor such
that its parametric realisation is both bordism invariant and stable. As a
byproduct we also formulate conditions such that the parametric realisation of
a discrete functor is even linear (Theorem 4.5.7). We note that our analysis is
restricted to discrete functors, motivated by the examples treated in subsequent
chapters.

4.1 Extended Parametrisation Structures

Definition 4.1.1. A category with extended parametrisation structure consists
of a quadruple (C, p, µ, α) where

� C is a category,

� p : C ×Ballop2 → C is a covariant functor,

� µ : idC ⇒ p(−,∆0) is a natural isomorphism of functors C → C, and

� α =
{
α

(K,L),(M,N)
c

}
is a natural isomorphism

α(K,L),(M,N)
c : (c[M,N ])[K,L] ∼= c[(K,L)× (M,N)]

of functors C × Ballop2 × Ballop2 → C that is compatible with µ in the
following sense: For every object X of Ball2 and every object c ∈ ob(C),
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the following two triangles commute:

c[X] c[X]

(c[∆0])[X] c[X ×∆0] (c[X])[∆0] c[∆0 × (X)]

µc[X] π∗1 µc[X] π∗2

αX,∆
0

c α∆0,X
c

where the morphisms π∗1 and π∗2 are induced from the projection isomor-

phisms π1 : X × ∆0
∼=→ X and π2 : ∆0 × X

∼=→ X, respectively. The
morphisms of α are called associativity morphisms.

We will use the shorthand c[K,L] and f [K,L] for p(c, (K,L)) and p(f, id(K,L)),
respectively. Moreover, we denote the morphims p(idc, j) by j∗c , or simply j∗,
whenever c ∈ ob(C) is fixed.

Remark 4.1.2. The data µ and α of a category with extended parametrisa-
tion structure may be interpreted to express unit and associativity laws of the
operator p in analogy with the notion of a category C with monoidal action (see
[Lan78, p. 174]) by the monoidal category of ball complex pairs (Ball2,×,∆0).
However, note that we do not assume the usual coherence relations here so that
a category with extended parametrisation structure need not necessarily come
from an action.

Remark 4.1.3. Our notation j∗ for the induced morphisms p(idc, j) in C, with
c a fixed object, is chosen in order to be consistent with the notation used in
the example of ad theories (see Chapter 3) and those relating to L-theory (see
Chapters 2 and 6).

Example 4.1.4. Consider the category Ballop2 . The product × on Ballop2
induces a parametrisation operator on Ballop2 given by

(X,Y )[K,L] := (K,L)× (X,Y ),

for every pair of ball complex pairs (X,Y ) and (K,L). The unit isomorphism
µX : X ∼= X ×∆0 is defined by inverse to the projection π1 : X ×∆0 ∼= X; the
associativity morphisms α are given by identity morphisms.

Example 4.1.5. Let C = Top∗. For any ball complex pair (K,L) and pointed
space (X,x), let p(X, (K,L)) := X(|K|,|L|) be the space of continous maps of
pairs (|K|, |L|) → (X,x), based at the constant map at the basepoint x of X.

Furthermore, let µ : X ∼= X |∆
0| be the canonical natural homeomorphism. The

exponential law for pairs of spaces induces natural homemomorphisms

α
(K,L),(M,N)
X :

(
X(|M |,|N |))(|K|,|L|)∼= X(|K×M |,|K×N∪L×M |).

It is not hard to show that the parametrisation structure of an extended
parametrisation structure admits natural symmetry morphisms. We record this
fact in the following proposition:

Proposition 4.1.6. Let (C, p, µ, α) be a category with extended parametrisation
structure and let p|∆op denote the restriction of p to ∆op ⊂ Ballop2 . Then, there
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are natural isomophisms of functors C ×Ballop2 ×Ballop2 → C,

s(K,L),(M,N)
c : (c[K,L])[M,N ] ∼= (c[M,N ])[K,L],

such that (p|∆op , µ) defines a symmetric parametrisation structure on C.

Proof. An analogous argument is presented in the proof of Proposition 3.2.8
and the details are omitted. The idea is to use the symmetry of the product
× of Ball2 together with the additional data α, and its compatibility with the
unit µ.

The symmetry assumption for the parametrisation structure in the Abstract
Universality Theorem 1.2.1 is thus automatically satisfied in this setting. We
therefore obtain the following reformulation of the Abstract Universality Theo-
rem in the context of extended parametrisations structures:

Theorem 4.1.7. Let (C, p, µ, α) be a category with extended parametrisation
structure and Z : C → Top∗ be a functor. Suppose that parametric realisa-
tion of Z is bordism invariant. Then the pair (PZ, ιZ) is universal bordism
characteristic of Z.

4.2 Two Sufficient Conditions for Bordism In-
variance

In this section, we present two natural sufficient conditions for bordism invari-
ance, under the assumption that the parametrisation structure is extended.

We first recall the notion of an elementary expansion of ball complexes (cf.
[LM14, Definition 14.6]) in preparation for the first condition.

Definition 4.2.1. An inclusion of ball complex pairs (K0, L0) ↪→ (K,L) is
called an elementary expansion if the following properties are satisfied:

1. L0 = L ∩K0.

2. K has exactly two cells, say A and a, that are not in K0, such that a is a
codimension-one face of A (cf. Figure 4.1).

3. A and a are either both in L or both not in L.

Furthermore, a morphism in Ball2 is called an expansion, if it is a composition
of elementary expansions.

aA

Figure 4.1: An elementary expansion with additional cells labelled A and a.
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Definition 4.2.2. Let (C, p, µ, α) be a category with extended parametrisation
structure and let F : C → Top∗ be a functor. We say F is homotopy invariant
if it takes expansions of ball complexes to weak equivalences, i.e., if for every
object c in C and expansion of ball complex pairs e : (K,L) → (K ′, L′), the
induced map F (e∗c) : F (c[K ′, L])→ F (c[K,L]) is a weak equivalence.

Remark 4.2.3. The term “homotopy invariant” is inspired by the notion of
homotopy invariant functors from the category of ball complex pairs to spaces
from [BRS76] and based on the classical result (see [BRS76, Theorem 3.2]) that
the homotopy category of ball complexes, i.e., the category whose objects are
ball complexes and morphisms are homotopy classes of continuous maps of ball
complex pairs, may be obtained by localising with respect to expansions.

Proposition 4.2.4. Let (C, p, µ, α) be a category with extended parametrisation
structure. If F : C → Top∗ is homotopy invariant, then it is bordism invariant.

Proof. This is immediate from the observation that the inclusion

δi : ∆n
i ↪→ ∆n+1

of the ith face ∆n
i of ∆n+1 is an expansion for all n ≥ 0 and i ∈ {0, . . . , n+ 1}.

To prove this observation, let such n and i be given and choose j ∈ {0, . . . , n+
1} \ {i}. We expand inductively over cells containing the vertices i and j of
increasing dimension (cf. Figure 4.2).

Figure 4.2: The inclusion δi : ∆p ↪→ ∆p+1 for p = 2 decomposed into elementary
expansions; in the first step we adjoin a 1-cell. In the second and third step, a
2-cell. In the final step, we adjoin a 3-cell. The shading in the final figure is
meant to indicate that the simplex and bottom face are filled.

Precisely, we first adjoin the pair of cells (〈i, j〉, 〈i〉) to the face ∆n
i , then all

pairs (〈i, j, k〉, 〈i, k〉), where k ∈ {0, . . . , n+ 1} \ {i, j}, to the union ∆n
i ∪ 〈i, j〉,

and so on until we have adjoined the pair (〈0, . . . , n+ 1〉, 〈0, . . . , ĵ, . . . , n+ 1〉),
consisting of the unique n+ 1 dimensional cell of ∆n+1 and its jth face, to the
horn Λn+1

j ⊂ ∆n+1.

Remark 4.2.5. Alternatively, one may deduce the result of the above Propo-
sition from [BRS76, Theorem 3.2] and the observation that any face inclusion
δi : ∆n

i ↪→ ∆n+1 is a homotopy equivalence.

We turn to our second sufficient condition for bordism invariance. It is
based on the following condition that resembles a weaker form of the bordism
invariance condition:

Definition 4.2.6. Let (C, p, µ, α) be a category with extended parametrisation
structure and F : C → Top∗ be a functor. We say F is weakly bordism invariant
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if the face maps
F (d0), F (d1) : F (c[∆1]) ⇒ F (c[∆0])

are weak equivalences and homotopic, for all objects c in C.

In our next lemma, we show that weak bordism invariance implies bordism
invariance whenever the functor in question is invariant under subdivisions as
described in the following definition:

Definition 4.2.7. We say F is invariant under subdivisions if, for every ball
complex K and subdivision K ′ thereof, the inclusions of the ends

K ↪→ (K ×∆1) ∪
K×{1}

K ′ ←↩ K ′

induce weak equivalences

F (c[K])
'← F (c[(K ×∆1) ∪

K×{1}
K ′])

'→ F (c[K ′]).

Lemma 4.2.8. Let (C, p, µ, α) be category with extended parametrisation struc-
ture and F : C → Top∗ be a functor. If F is weakly bordism invariant and
invariant under subdivisions, then F is bordism invariant.

Proof. Let c be an object in C and let p ≥ 2 and 0 ≤ k ≤ p be given. Observe
that the ball complex ∆1×∆p−1 is isomorphic to a subdivision of ∆p, such that
the kth face ∆p

k of ∆p is identified with the subcomplex {0}×∆p−1 ⊂ ∆1×∆p−1

(cf. Figure 4.3).

∼= ∼=

Figure 4.3: Identifications of the prisms (∆1 ×∆p−1) with subdivisions of the
(p+ 1)-simplex ∆p for p = 2 and p = 3.

Now, denote by Mp the ball complex obtained by gluing ∆1 ×∆p−1 to the
face {1} ×∆p ⊂ ∆1 ×∆p, and let Np denote the subcomplex ∆1 ×∆p

k ⊂ Mp.
Moreover, let i0 : ∆p ↪→Mp and i1 : ∆1×∆p−1 ↪→Mp denote the face inclusions
and i′0 : ∆p−1 ↪→ Np and i′1 : {0} ×∆p−1 → Np denote their restrictions to the
subcomplexes ∆p

k ⊂ ∆p and {0} ×∆p−1 ⊂ ∆1 ×∆p−1, respectively (cf. Figure
4.4) .

M2i0 i1

Figure 4.4: The ball complexes M2 and N2, and the inclusions i0 and i1; the
subcomplex N2 ⊂M2 is indicated by the shading.
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By assumption, F is invariant under subdivisions, and hence the maps i0
and i1 induce weak equivalences

F (c[∆p])
'←−

F (i∗0)
F (c[Mp])

'−→
F (i∗1)

F ((c[∆1 ×∆p−1]).

Similarly, the face inclusion j0 : ∆p−1 ∼= {0} × ∆p−1 ↪→ ∆1 × ∆p−1 induces a
weak equivalence

F (j∗0 ) : F (c[∆1 ×∆p−1])→ F (c[∆p−1]).

Now let jN : Np ↪→ Mp denote the inclusion and consider the following
diagram of spaces:

F (c[Mp])

F (c[∆p]) F (c[Np]) F (c[∆1 ×∆p−1])

F (c[∆p−1])

F (j∗N )'
F (i∗0) F (i∗1)

'

F (dk)
F (i′∗1 )F (i′∗0 )

F (j∗0 )

'

(4.1)

In order to show that the face map F (dk) is a weak equivalence, it suffices to
show that the outer square of Diagram 4.1 commutes up to homotopy. Func-
toriality of F implies that the inner squares of Diagram 4.1 commute, i.e., the
composites,

F (dk) ◦ F (i∗0), F (j∗0 ) ◦ F (i∗1) : F (c[Mp])→ F (c[∆p−1])

are equal to the composition of the restriction map

F (j∗N ) : F (c[Mp])→ F (c[Np])

with the restriction maps

F (i′∗0 ), F (i′∗1 ) : F (c[Np])→ F (c[∆p−1]),

respectively. The latter maps are in fact homotopic by the assumption that F
is weakly bordism invariant. Indeed, this may be seen using associativity of the
parametrisation operator. It thus follows that the composites F (dk)◦F (i∗0) and
F (j∗0 ) ◦ F (i∗1) are also homotopic.

4.3 Stable and Linear functors

In this section we introduce two special classes of space-valued functors from
a category with extended parametrisation structure. We begin by introduc-
ing a condition on parametrisation structures essential to the construction of
deloopings of space-valued functors:

Definition 4.3.1. Let (C, p, µ, α) be a category with extended parametrisa-
tion structure and denote by [Ω] the functor p(−, (∆1, ∂∆1)) : C → C. The
parametrisation operator p is called deloopable, if the functor [Ω] is an equiva-
lence of categories. We will write c[Ω] for [Ω]c.
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Remark 4.3.2. The terminology is based on the example of ad theories: For
an ad theory A, the object A[Ω] describes the ad theory of (∆1, ∂∆1)-ads, or
‘bordisms with empty boundary’ of A. It is suggestive to think of such bordisms
as ‘loops’, or endomorphisms from and to the empty set, motivated by the theory
of cobordism categories of manifolds wherein bordisms of manifolds are regarded
as morphisms between manifolds. The assumption that the parametrisation
operator p on a category C is deloopable may be then interpreted to mean that
any object c in C itself describes the theory of loops of some other object, or
admits a “delooping” in this sense.

We furthermore mention that the square bracket notation [Ω] is employed
to emphasise that the operation of looping comes from the parametrisation
operator itself.

Definition 4.3.3. Let (C, p, µ, α) be a category with extended parametrisation
structure such that p is deloopable and let F : C → Top∗ be a functor. Denote
by [∂] and by {0} the functor p(−, (∆1, {1})) : C → C and the ball complex pair
({0}, {0}), respectively. We say F is stable if the following conditions hold:

1. F is reduced, i.e., F (c[K,K]) ' pt, for every ball complex K.

2. F vanishes on null bordisms, i.e., for all objects c in C,

F (c[∂]) ' pt.

3. F is additive, i.e., for every object c in C, the square

F (c[Ω]) F (c[∂])

F (c[{0}]) F (c)

induced from the commutative square of ball complex pairs

(∆1, ∂∆1) (∆1, {1})

({0}, {0}) {0}

and the natural identification µ−1
c : c[∆0] ∼= c, is homotopy cartesian.

Remark 4.3.4. The term “vanishes on null bordisms” is also based on the
example of ad theories, wherein the objects c[∂] describe the theory of null
bordisms in c (cf. Remark 4.3.2). We will relate this vanishing condition to
bordism invariance in the next section.

The additivity condition is inspired by the additivity theorem for cobordism
categories of manifolds described in [Ste18].

The main importance of the class of stable functors is that they automatically
extend to Ω-spectrum-valued-functors. By an “Ω-spectrum” we mean a slightly
more general notion than the usual one (cf. [Swi02, Definition 8.41]) that admits
more flexbility in defining structure maps.
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Definition 4.3.5. 1. An Ω-spectrum consists of a pair (X,κ) where:

� X = (Xi)i∈N is a sequence of homotopy cartesian squares of pointed
spaces,

Xi =


Xi

00 Xi
01

Xi
10 Xi

11


such that the spaces Xi

10 and Xi
01 are contractible for all i ∈ N.

� κ = (κi)i∈N is a sequence of homeomorphisms of pointed spaces,

κi : Xi
11
∼= Xi+1

00 .

We denote the spaces Xi
11 and Xi

10×hXi11
Xi

01 by Xi and ΩXi, respectively,

for all i ∈ N, and call the morphisms κi connecting homomorphisms.

2. A map of Ω-spectra f : (X,κ) → (Y, η) is a sequence (f i : Xi → Y i)i∈N
of maps of homotopy cartesian squares compatible with the connecting
homomorphisms, i.e., f consists of a collection of morphisms of pointed
spaces f ikl : Xi

kl → Ykl, where k, l ∈ {0, 1}, such that the following cubes
and squares are strictly commutative, for all i ∈ N:

Xi
00 Xi

01

Y i00 Y i01

Xi
10 Xi

11

Y i10 Y i11

fi00

fi01

fi10

g

fi11

Xi
11 Y i11

Xi
00 Y i00.

κi

fi11

ηi

fi00

We denote the category of Ω-spectra by ΩSpec.

Remark 4.3.6. The usual data of an Ω-spectrum, i.e., a sequence of pointed
spaces Xi and weak equivalences si : Xi → ΩXi+1 for i ∈ N, can be seen to
define an Ω-spectrum (X,κ) in the sense above, by considering the squares

Xi =


Xi−1 ΛXi

pt Xi

s′i−1


and maps κi = idXi , where ΛXi here denotes the based path space of Xi and

the maps s′i−1 denote the composites Xi−1
si−1→ ΩXi ⊂ ΛXi.

Proposition 4.3.7. Let (C, p, µ, α) be a category with extended parametrisation
structure such that the parametrisation operator is deloopable. Furthermore, let

57



F : C → Top∗ be a stable functor. Then F extends to a functor F : C → ΩSpec
such that the 0th component of F is equal to F .

Furthermore, every natural transformation η : F ⇒ G of stable functors on
C extends to a natural transformation η : F ⇒ G of spectrum-valued functors.

Proof. Choose an inverse Σ to [Ω] and a natural isomorphism ν : idC ⇒ [Ω] ◦Σ.
For i ∈ N, denote the ith iterate of Σ by Σi and moreover denote the objects
([Ω] ◦Σi)c and ([∂] ◦Σi)c by Σic[Ω] and Σic[∂], respectively. For a given object
c in C, we define an Ω-spectrum i 7→ (F (c)i, κ

c
i ) by

F (c)i :=


F (Σic[Ω]) F (Σic[∂])

F (Σic[{0}]) F (Σic)


and

κci := F (νΣic) : F (Σic) ∼= F (Σi+1c[Ω]),

for all i ∈ N. A morphism c 7→ c′ in C clearly induces a map of Ω-spectra
(F (c), κc) → (F (c′), κc

′
) by functoriality of the parametrisation operator on C

and the functors Σ and F . The second statement of the proposition is immediate
from definitions.

Remark 4.3.8. The notation Σic[Ω] and Σic[∂] in the definition above is jus-
tified since the functors Σi commute with the parametrisation operator p in the
sense that there are natural isomorphisms of functors C → C,

κK,L : Σi ◦ p((K,L),−) ∼= p((K,L),−) ◦ Σi,

for all i ∈ N. Indeed, the existence of the natural isomorphisms κK,L follows
formally from the existence of symmetry morphisms for the parametrisation
operator p as in Proposition 4.1.6.

Remark 4.3.9. The choice of inverse Σ to [Ω] is not necessarily unique, al-
though any two choices are naturally isomorphic. In the examples described
in subsequent chapters, there is a natural choice for Σ given by “shifting the
grading”.

Definition 4.3.10. Let (C, p, µ, α) be a category with extended parametrisa-
tion structure. We call a functor F : C → Top∗ absolute, if F is reduced and
if, for every ball complex pair (K,L) and object c in C, the following square
induced by functoriality is homotopy cartesian:

F (c[K,L]) F (c[K])

F (c[L,L]) F (c[L]).

If, in addition, F takes every pushout diagram of ball complexes

X ∩ Y X

Y X ∪ Y
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to a homotopy pullback square

F (c[X ∪ Y ]) F (c[X])

F (c[Y ]) F (c[X ∩ Y ]),

we say F is local.

Definition 4.3.11. Let (C, p, µ, α) be a category with extended parametrisa-
tion structure such that the parametrisation operator p is deloopable. We call
a functor F : C → Top∗ linear if it is homotopy invariant, stable and local.

Remark 4.3.12. The term linear is inspired by the notion of “linear” functors
from the theory of functor calculus. We refer the reader to [MV15, §10.1] for
further details about the latter theory.

We are primarily interested in linear functors since they form a convenient
class of stable and bordism invariant functors. Observe that bordism invariance
follows immediately from Proposition 4.2.4. We note this statement in the
following proposition for future reference:

Proposition 4.3.13. Let (C, p, µ, α) be a category with extended parametrisa-
tion structure such that the parametrisation operator p is deloopable, and let
F : C → Top∗ be a linear functor. Then F is bordism invariant.

4.4 A Criterium For Linearity

Our goal in this section is to establish a reduced criterium for linearity of a
space-valued functor from a category with extended parametrisation structure
C. Notice that linear functors are, by definition, necessarily absolute and vanish
on null bordisms. The reduced criterium states that these latter conditions are
in fact also sufficient under certain assumptions on the parametrisation operator.
One of these assumptions is the following extended functoriality condition on
the parametrisation operator that suggests that parametrisation only depends
on the underlying posets of ball complexes:

Definition 4.4.1. Let (C, p, µ, α) be a category with extended parametrisation
structure. We call the parametrisation operator p combinatorial if, for every
incidence compatible 0-isomorphism of ball complexes in CBall2

θ : (K,L) ∼= (K ′, L′),

there is an isomorphism

θ∗ : c[K ′, L′] ∼= c[K,L],

natural in the variable c and such that the following conditions are satisfied:

1. θ∗ agrees with the induced maps given by the parametrisation operator
whenever θ comes from a map of ball complexes.
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2. (θ ◦ ψ)∗ = ψ∗ ◦ θ∗, for all incidence compatible 0-isomorphisms of ball
complexes θ and ψ.

3. For any pair of morphisms of ball complexes (f, f ′) and any pair of inci-
dence compatible 0-isomorphisms (θ, θ′) such that the following diagram:

(K,L) (K ′, L′)

(M,N) (M ′, L′)

θ

f f ′

θ′

commutes in CBall2, the induced square

c[M ′, L′] c[M,N ]

c[K,L] c[K,L]

θ′∗

f ′∗ f∗

θ∗

commutes in C.

Remark 4.4.2. Definition 4.4.1 is motivated by the reindexing axiom for ad
theories and the extended functoriality of the construction of categories of preads
(see Remark 3.1.17). Note that the axiom only stipulates the existence of addi-
tional morphisms for any dimension preserving maps into or from ball complex
pairs since every incidence compatible 0-isomorphism of absolute ball complexes
K → L already comes from a map of ball complexes. Indeed, this is easily seen
from the fact that a morphism of ball complexes is determined by its induced
map on face posets (see [BVS+93, Corollary 4.7.9]).

Remark 4.4.3. Condition (2.) of Definition 4.4.1 is not critical to our work,
but is rather included because of its naturality.

We will build up to a criterium for linearity by establishing the conditions
of stability, locality and homotopy invariance in turn. First, we record that un-
der the combinatorial assumption on the parametrisation operator the absolute
conditon described in Definition 4.3.10 can be strengthened to pairs:

Proposition 4.4.4. Let (C, p, µ, α) be a category with extended parametrisation
structure such that p is combinatorial. Let F : C → Top∗ be an absolute functor.
Then, for every ball complex K and pair of subcomplexes K0 and L thereof, the
square of spaces

F (c[K,K0 ∪ L]) F (c[K,L])

F (c[K0,K0]) F (c[K0,K0 ∩ L])

induced from the commutative square of ball complex pairs

(K0,K0 ∩ L) (K,L)

(K0,K0) (K,K0 ∪ L)
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is homotopy cartesian.

Proof. Observe that the inclusion maps

(K0,K0 ∩ L) ↪→ (K0 ∪ L,L) and (K0,K0) ↪→ (K0 ∪ L,K0 ∪ L)

induce 0-isomorphisms of posets

cell(K0,K0 ∩ L) ∼= cell(K0 ∪ L,L) and cell(K0,K0) ∼= cell(K0 ∪ L,K0 ∪ L).

Since p is combinatorial, it therefore suffices to show that the left hand square
in the following commutative diagram is homotopy cartesian:

F (c[K,K0 ∪ L]) F (c[K,L]) F (c[K])

F (c[K0 ∪ L,K0 ∪ L]) F (c[K0 ∪ L,L]) F (c[K0 ∪ L])

F (c[L,L]) F (c[L]).

The result now follows immediately from the assumption that F is absolute
and the pasting lemma for homotopy cartesian squares (see [MV15, Proposi-
tion 3.3.20]).

As a corollary of Proposition 4.4.4 we deduce that, in the presence of a
deloopable and combinatorial parametrisation operator, absolute functors which
vanish on null bordisms are automatically additive, and hence stable:

Corollary 4.4.5. Let (C, p, µ, α) be a category with extended parametrisation
structure such that p is deloopable and combinatorial. Let F : C → Top∗ be an
absolute functor which vanishes on null bordisms. Then F is stable.

Proof. The functor F is reduced and vanishes on null bordism by assumption.
Additivity of F follows from the previous proposition applied to the case K =
∆1, K0 = {0} and L = {1}.

Our next proposition states that, in the restricted setup of a combinatorial
and deloopable parametrisation operator, an absolute and stable functor is in
fact local.

Proposition 4.4.6. Let (C, p, µ, α) be a category with extended parametrisation
structure such that p is deloopable and combinatorial. Let F : C → Top∗ be an
absolute and stable functor. Then F is local.

Proof. Let X,Y be ball complexes, and c be an object in C. By the assump-
tion that the parametrisation operator p is combinatorial, the inclusion of ball
complex pairs

(X,X ∩ Y ) ↪→ (X ∪ Y, Y )

induces a homeomorphism

F (c[X ∪ Y, Y ]) ∼= F (c[X,X ∩ Y ]),
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for all objects c in C. Hence, since F is absolute, the vertical homotopy fibres
with respect to the basepoint components of the square

F (c[X ∪ Y ]) F (c[X])

F (c[Y ]) F (c[X ∩ Y ])

are weakly equivalent. By the assumption that F is stable, we furthermore
deduce that the square is homotopy cartesian since all spaces and maps involved
are loop spaces and maps thereof. To see the latter observation, let Σ denote an
inverse to [Ω]. Then, stability of F implies that there exists a zigzag of natural
weak equivalences between the spaces F (c[K]) and the spaces ΩF (Σc[K]), for
an arbitrary object c in C and ball complex K, where ΩF (Σc[K]) denotes the
space of based loops of the pointed space F (Σc[K]).

It remains to establish homotopy invariance. The following proposition is
a critical component in the proof and shows the main technical advantage of
working with stable functors:

Proposition 4.4.7. Let (C, p, µ, α) be a category with extended parametrisation
structure such that p is deloopable and combinatorial, and let F : C → Top∗ be
an absolute functor which vanishes on null bordisms. Moreover, let K be a ball
complex, K0 and L be two subcomplexes thereof, and j : (K0,K0 ∩L) ↪→ (K,L)
denote the inclusion.

Then, the induced map F (j∗c ) : F (c[K,L]) → F (c[K0,K0 ∩ L]) is a weak
equivalence for all objects c in C if and only if the space F (c[K,K0 ∪ L]) is
contractible for all objects c in C.

Proof. Let c ∈ ob(C) be given. Since F is absolute, it follows from Propositon
4.4.4 that the space F (c[K,K0 ∪L]) is a model for the homotopy fibre of F (j∗c )
over the basepoint component. Hence, F (c[K,K0∪L]) is contractible whenever
F (j∗c ) is a weak equivalence.

Conversely, assume that F (c[K,L]) is contractible, for all objects c in C. By
assumption, we also know that F is absolute and vanishes on null bordisms. It
then follows from Corollary 4.4.5 that F is stable. Furthermore, Proposition
4.3.7 implies that the map F (j∗c ) comes from a map of Ω-spectra. In particular,
we may form the following commutative diagram:

F (c[K,L]) F (c[K0,K0 ∩ L])

F (Σc[K,L][Ω]) F (Σc[K0,K0 ∩ L][Ω])

ΩF (Σc[K,L]) ΩF (Σc[K0,K0 ∩ L]),

F (j∗c )

∼= ∼=

'

F (Σ(j∗c [Ω]))

'
ΩF (j∗Σc)

where the vertical equivalences come from the structure maps of the Ω-spectra
F (c[K,K0 ∪ L]) and F (c[K0,K0 ∩ L]), and Σ denotes a fixed choice of inverse
to [Ω].
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From the diagram, it is clear that the map F (j∗c ) is a weak equivalence if and
only if the map ΩF (j∗Σc) is a weak equivalence. To prove the latter statement
it is sufficient to show that the map

F (j∗Σc) : F (Σc[K,L])→ F (Σc[K0,K0 ∩ L])

induces an isomorphism on homotopy groups πk over the basepoint compo-
nent for all k ≥ 1, yet this is a direct consequence of Proposition 4.4.4 since
the homotopy fibre of F (j∗Σc) over the basepoint is homotopic to the space
F (Σc[K,K0 ∪ L]), and is thus contractible by assumption.

Proposition 4.4.8. Let (C, p, µ, α) be a category with extended parametrisation
structure such that p is combinatorial and deloopable. Furthermore, let F :
C → Top∗ be absolute and vanishing on null bordisms. Then F is homotopy
invariant.

Proof. It suffices to show that F takes elementary expansions to weak equiv-
alences. Let c be an object of C and e : (K0, L0) → (K,L) be an elementary
expansion. Moreover, denote by A, a the cells that do not belong to K0.

If A ∈ L, then F (e∗c) is an isomorphism since e induces a 0-isomorphism of
posets

cell(K0, L0) ∼= cell(K,L).

Next, let n denote the dimension of K and X denote the ball complex
(∆1, ∂∆1)n−1. If A 6∈ L, then there is an incidence compatible 0-isomorphism
of posets

θ : cell((∆1, {1})×X) ∼= cell(K,K0 ∪ L),

which identifies the pair of cells (〈0, 1〉n,{0} × 〈0, 1〉n−1) with the pair (A, a).
Furthermore, since p is combinatorial and associative we deduce that

F (c[K,K0 ∪ L])
F (θ∗)∼= F (c[(∆1, {1})×X])

α∼= F ((c[X])[∂]).

By assumption, the latter space is contractible, and hence the former is too. It
now follows from Proposition 4.4.7 that the map F (e∗) is a weak equivalence.

From the combination of Corollary 4.4.5 and Propositions 4.4.6 and 4.4.8,
we immediately deduce the following criterium for linearity:

Lemma 4.4.9. Let (C, p, µ, α) be a category with extended parametrisation
structure such that the parametrisation operator p is deloopable and combinato-
rial. Furthermore, let F : C → Top∗ be an absolute functor which vanishes on
null bordisms. Then F is linear.

Lemma 4.4.9 serves as a tool in proof of the specialised universality theorem,
described in the next section. We also note the following corollary that gives a
number of reformulations of the bordism invariance condition in the context of
a combinatorial and deloopable parametrisation operator:

Corollary 4.4.10. Let (C, p, µ, α) be a category with extended parametrisation
such that p is combinatorial and deloopable. Let F : C → Top∗ be an absolute
functor. Then the following three conditions are equivalent:
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1. F is homotopy invariant.

2. F is bordism invariant

3. F vanishes on null bordisms

Proof. The implication of Conditions (1) to (2) and (3) to (1) follow directly
from Propositions 4.2.4 and 4.4.8, respectively. Furthermore, the implication
(2) to (3) can be easily seen by considering the following homotopy cartesian
square:

F (c[∆1, {1}]) F (c[∆1])

pt ' F (c[{1}, {1}]) F (c[∆0]).

' F (d0)

Remark 4.4.11. The idea to deduce bordism invariance from the vanishing on
null bordism condition was inspired by a similar idea used in the proof for the
bordism invariance of Z2-Tate cohomology of K-theory described in [WW98,
Theorem 9.12]).

4.5 A Specialised Universality Theorem

The aim of this section is to demonstrate a specialised version of the Abstract
Universality Theorem in the case of a category with extended parametrisation
structure C. To simplify the analysis we will only consider functors Z : C →
Top∗ such that the spaces Z(c) are equipped with the discrete topology. We
call such functors discrete and employ the notation Z : C → Set∗.

Recall that an ordered simplicial complex defines a semi-simplicial set with
the same sets of simplices, and face maps induced by the ordering of the vertices
(e.g., see [Ran92, Example 11.1]). Our first result serves as a key preliminary
observation and states that, under the assumption of locality, the parametric
realisation of Z at an object c of C represents the assignment K 7→ Z(c[K]) over
the category of finite ordered simplicial complexes:

Proposition 4.5.1. Let (C, p, µ, α) be a category with extended parametrisation
structure and K be a finite ordered simplicial complex. If Z : C → Set∗ is
local, then the set of semi-simplicial maps K → Z(c[•]) is isomorphic to the set
Z(c[K]), for all objects c in C. Furthermore, the isomorphism is natural with
respect to inclusions L ⊂ K of finite ordered simplicial complexes.

Proof. For any finite simplicial complex K, we call a simplex σ ∈ F(K) maximal
if for any τ ∈ F(K), τ ≥ σ implies that τ = σ. We view K as the union of
its maximal simplices {σi}i=1,...,n, where σj 6= σi for all i 6= j, and define the
rank of K to be the number of maximal simplices. The proof will be obtained
by induction on the rank of K. Let c denote a fixed object of C.

Case rk(K) = 0: This case corresponds to K = ∅ and is true by the assump-
tion that Z is absolute since Z(c[∅]) = Z(c[∅, ∅]) ∼= pt.

Case rk(K) = 1: Without loss of generality, we may assume K = ∆n, for
some n ≥ 0. A semi-simplicial map ∆n → Z(c[•]) is determined uniquely by
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its value on the unique maximal simplex of ∆n, i.e. by a choice of n-simplex in
Z(c[•]). Moreover, the n-simplices of Z(c[•]) are just the elements of Z(c[∆n]),
by definition. The correspondence is thus clear.

To see that the correspondence is natural, let Map
(
−, Z(c[•])

)
denote the

functor which takes an ordered simplicial complex K to the set of semi-simplicial
mapsK → Z(c[•]). We must show that, for any inclusion i : L ↪→ K of simplicial
complexes of rank at most 1, the diagram of pointed sets

Map
(
K,Z(c[•])

)
Z(c[K])

Map
(
L,Z(c[•])

)
Z(c[L])

Map(i,Z(c[•]) Z(i∗)

commutes, where the horizontal functions denote the correspondence just de-
scribed. The cases where K = ∅ or L = ∅ are trivial and the case where both
K and L have rank 1 is immediate from the definition of the face maps of the
semi-simplicial set Z(c[•]).

Next, let K be a given ordered simplicial complex with rk(K) = n ≥ 2, and
suppose that the statement of the proposition holds for all simplicial complexes
with rank less than n. Denote by K ′ ⊂ K the simplicial subcomplex of K given
by the union ∪i=1,...,n−1σi. Furthermore, set σ := σn and K ′′ := σ ∩K ′.

Then, by the universal property of the pushout a map K → Z(c[•]) is
equivalent to a pair of maps

(
K ′ → Z(c[•]), σ → Z(c[•])

)
which agree over K ′′.

Since K ′′ is equal to the union of simplices ∪i=1,...,n−1σ ∩ σi, it clearly follows
that rk(K ′′) ≤ n − 1. By the induction hypothesis we deduce that every map
K → Z(c[•]) corresponds to a pair (x, y) ∈ Z(c[K ′]) × Z(c[σ]) such that the
elements x and y restrict to the same element in Z(c[K ′′]). Note that such
a pair (x, y) corresponds uniquely to an element in Z(c[K ′ ∪ σ]) = Z(c[K]),
by the assumption that Z is discrete and local. Analogous reasoning, using
locality of Z to reduce to the inductive case, shows that the construction is
independent of the choice of maximal simplex σn and natural with respect to
simplicial inclusions.

Remark 4.5.2. Proposition 4.5.1 is based on similar observations [LM14, Re-
mark 15.4], [Ran92, p. 142] in the case of the closed-objects functor of ad theories
and algebraic L-theory, respectively.

Definition 4.5.3. Let (C, p, µ, α) be a category with extended parametrisation
structure and Z : C → Set∗ be a functor.

1. We say Z is surjective on expansions if, for all objects c in C and elementary
expansions B → E of ball complexes, the induced map of sets

Z(c[E])→ Z(c[B])

is surjective.

2. We say Z is a Kan functor if, for every object c ∈ C, the semi-simplicial
set Z(c[•]) is Kan (see [RS71, p. 329]).

We will now apply Proposition 4.5.1 to formulate conditions on a category
with extended parametrisation structure C and discrete functor Z from C which
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imply that Z satisfies the Kan condition and, moreover, that its parametric
realisation is absolute.

Lemma 4.5.4. Let (C, p, µ, α) be a category with extended parametrisation
structure and Z : C → Set∗ be a functor. Suppose that Z is local and sur-
jective on expansions. Then, Z is a Kan functor and its parametric realisation
PZ is absolute.

Proof. We first prove that Z is a Kan functor. Let c be an object in C. By the
previous Proposition 4.5.1, the Kan condition for the semi-simplicial set Z(c[•])
is equivalent to the statement that, for all n, k, where n > 0 and 0 ≤ k ≤ n, the
restriction map

Z(c[∆n])→ Z(c[Λnk ])

is surjective, where Λnk denotes the kth horn of ∆n (see [RS71, p. 323]). The lat-
ter statement follows directly from the fact that the inclusions Λnk ↪→ ∆n are all
elementary expansions, and the assumption that Z is surjective on expansions.

We next claim that the functor PZ is reduced. Let c be an object in C
and K be a ball complex. By associativity of the parametrisation, there are
homeomorphisms

Z((c[K,K])[∆n]) Z(c[K ×∆n,K ×∆n]),
∼=

α(K,K),∆n

c

for every n ≥ 0. Since Z is discrete and reduced, the latter spaces must be
singeltons. Hence, the semi-simplicial set Z(c[K,K][•]) is isomorphic to the
terminal semi-simplicial set ∗, and thus, upon applying geometric realisation,
we obtain a homeomorphism PZ(c[K,K]) ∼= || ∗ ||. The claim is now immediate
since the geometric realisation of ∗ is contractible (cf. Example 1.3.2).

We now turn to proving that the functor PZ is absolute. Let i : A ↪→ X be
an inclusion of ball complexes and c be a given object of C. We must show that
the square

PZ(c[X,A]) PZ(c[X])

PZ(c[A,A]) PZ(c[A])

PZ(i∗) (4.2)

is a homotopy pullback. First note that, by the assumption that Z is absolute
and discrete, the underlying square of pointed semi-simplicial sets

Z(c[X,A][•]) Z(c[X][•])

Z(c[A,A][•]) ∼= ∗ Z(c[A][•])

⊆

PZ(i∗)

⊆

is a pullback square. Moreover, the horizontal arrows are inclusions, up to
isomorphism. Since the geometric realisation preserves inclusions, it follows
that Square (4.2) is a strict pullback square of pointed spaces. It therefore
suffices to show (cf. [MV15, Proposition 3.2.13]) that the map PZ(i∗) is a
Serre-fibration. We will prove that the underlying map of semi-simplicial sets

Z(i∗[•]) : Z(c[X][•])→ Z(c[A][•])
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of PZ(i∗) is a Kan fibration, whence the result follows since Kan fibrations
geometrically realise to Serre-fibrations by a well known result of Quillen (see
[Qui67]).

For fixed n ≥ 0 and 1 ≤ k ≤ n, consider the following commutative diagram:

Z((c[X])[∆n]) Z((c[X])[Λnk ]×Z((c[A])[Λnk ] Z((c[A])[∆n])

Z(c[X ×∆n]) Z(c[X × Λnk ])×Z(c[A×Λnk ]) Z(c[A×∆n])

Z(c[X × Λnk ∪A×Λnk
A×∆n]).

α∼=

rn,k

α∼=

r′n,k
∼= π

(4.3)

The horizontal arrows and the arrows labelled by α in Diagram 4.3 are induced
by functoriality of Z and the associativity morphisms of the parametrisation,
respectively. Furthermore, the map π is induced by functoriality of Z. Note
that π is a homeomorphism by locality of the discrete functor Z. From Lemma
4.5.1 we see that the Kan condition for the map Z(i∗[•]) is equivalent to the
statement that the maps rk,n are surjective. By commutativity of Diagram 4.3,
it thus suffices to show that the maps r′n,k are surjective for all ball complex
pairs (X,A). We may reduce the proof via cellular induction to checking just
two cases:

Case I: X = A t σ, where σ ∼= ∆0 is a 0-dimensional ball. In this case,
X ×∆n = A×∆n t σ ×∆n and X × Λnk ∪A×Λnk

A×∆n = A×∆n t σ × Λnk .
Then, by locality of Z, the maps rk,n are surjective if and only if the maps

Z(c[σ ×∆n])→ Z(c[σ × Λnk ])

are surjective, for all n and k. However, the latter lifting problem is equivalent
to the statement that Z(c[σ][•]) is a Kan semi-simplicial set, by associativity of
the parametrisation operator on C, and thus the claim follows.

Case II: X = A ∪ σ and A ∩ σ = ∂σ for a ball σ of dimension greater than
0. Observe that in this case the inclusion map

(X × Λnk ) ∪(A×Λnk ) (A×∆n) ↪→ X ×∆n

is an elementary expansion of ball complexes. The result is then immediate
from the assumption that Z is surjective on expansions.

Remark 4.5.5. The proof of the Kan property for the functor Z given in
the previous proposition is based on a similar argument the case of ad theories
described in the proof of [LM14, Lemma 15.12].

In our next lemma, we give conditions on a category with parametrisation
structure and discrete functor such that parametric realisation yields a stable
functor.

Lemma 4.5.6. Let (C, p, µ, α) be a category with extended parametrisation
structure whose parametrisation operator p is combinatorial and deloopable. Let
Z : C → Set∗ be an absolute and Kan functor. Then the parametric realisation
PZ of Z is stable. In particular PZ vanishes on null bordisms.
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Proof. We have already shown that PZ is reduced in the previous proposition.
We must then show that, for every object c in C, the following square is homo-
topy cartesian:

PZ(c[Ω]) PZ(c[∂])

PZ(c[{0}]) PZ(c),

(4.4)

and moreover that the space PZ(c[∂]) is contractible.
The proof strategy is to construct a commutative cube of semi-simplicial

sets:
Z(c[Ω][•]) Z(c[∂][•])

ΩZ(c[•]) ΛZ(c[•])

Z(c[{0}][•]) Z(c[•])

∗ Z(c[•])

∼=
φ

∼=
ψ

∼=
=

where ΩZ(c[•]) and ΛZ(c[•]) denote the semi-simplicial loop and path space
of the semi-simplicial set Z(c[•]) (see [Nic82, p. 13] for definitions). The maps
ΩZ(c[•]) ↪→ ΛZ(c[•]) and ΛZ(c[•])→ Z(c[•]) in the cube are the inclusion and
path evaluation map, respectively.

The existence of such a cube suffices since the realisation of the back face
yields Square 4.4, and the realisation of the front face is homotopy cartesian by
the assumption that Z(c[•]) is a Kan semi-simplicial set (cf. [Nic82, Proposi-
tion 1.3.5]).

We turn to constructing the isomorphisms of semi-simplicial sets φ and ψ:
For any n ∈ N, let SΩ

n and TΩ
n denote the ball complex pairs (∆n+1, dn+1∆n+1∪

{n+1}) and (∆n×∆1,∆n×∂∆1), respectively; moreover, let S∂n and T ∂n denote
the ball complex pairs (∆n+1, {n+ 1}) and (∆n ×∆1,∆n × {1}), respectively.
Note that we have inclusions S∂n ↪→ SΩ

n and T ∂n ↪→ TΩ
n for all n ∈ N. The

nth components of the semi-simplicial maps φ and ψ are then defined as the
compositions,

φn : Z(c[Ω][•])n = Z((c[Ω])[∆n])
α∼= Z(c[TΩ

n ])
Z(φ̃∗n)∼= Z(c[SΩ

n ])
πn∼= ΩZ(c[•])n,

ψn : Z(c[∂][•])n = Z((c[∂])[∆n])
α′∼= Z(c[T ∂n ])

Z(ψ̃∗n)∼= Z(c[S∂n ])
π′n∼= ΛZ(c[•])n,

for arbitrary n ∈ N, where:

� α and α′ denote the corresponding associativity morphisms.

� The isomorphisms πn and π′n are determined by the assumption that Z is
absolute and discrete. To be more precise, note that for all ball complex
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pairs (K,L), the diagram of pointed sets

Z(c[K,L]) Z(c[K])

pt = Z(c[L,L]) Z(c[L])

is a pullback diagram. Considering the cases (K,L) = SΩ
n and (K,L) = S∂n

yield the isomorphisms πn and π′n, respectively.

� The isomorphisms φ̃∗n and ψ̃∗n are induced by the incidence compatible
0-isomorphisms of cell posets

φ̃n : cell(SΩ
n ) ∼= cell(TΩ

n )

ψ̃n : cell(S∂n) ∼= cell(T ∂n ),

suggested by the homeomorphisms of topological spaces:

∆n ×∆1/∆n × {1} ∼= ∆n+1

(u, s)→ ((1− s)u, s).

We present an explicit formula for precision. Let o denote the orientation
of ∆n defined via the standard incidence numbers

[〈v0, . . . vk〉, 〈v0, . . . , v̂i, . . . , vk〉] = (−1)i,

for all pairs (〈v0, . . . vk〉, 〈v0, . . . , v̂i, . . . , vk〉) consisting of a k-dimensional
face 〈v0, . . . vk〉 and its ith subface 〈v0, . . . , v̂i, . . . , vk〉.
Then the isomorphism of cell posets ψ̃n : cell(S∂n) ∼= cell(T ∂n ) is given by

(〈v0, . . . , vk〉, o) 7→
{

(〈v0, . . . , vk−1〉 × 〈0, 1〉, o× o), if vk = n+ 1
(〈v0, . . . , vk〉 × 〈0〉, o× o), if vk 6= n+ 1,

where 〈v0, . . . vk〉 is a k-dimensional face of ∆n+1. Furthermore, the re-
striction of ψ̃n along the evident inclusion of posets cell(SΩ

n ) ↪→ cell(S∂n)
determines the isomorphism φ̃n.

The fact that the maps φn and ψn indeed assemble to maps of semi-simplicial
sets follows from the naturality of the associativity morphisms α together with
Condition (3) of combinatoriality (see Definition 4.4.1) of the parametrisation
operator p.

Combining the results of Lemmas 4.5.4, 4.5.6 and 4.4.9 yields our main result
regarding properties of parametric realisation of a discrete functor:

Theorem 4.5.7. Let (C, p, µ, α) be a category with extended parametrisation
structure and Z : C → Set∗ be a functor. Suppose that the parametrisation
operator p is combinatorial and deloopable, and that the functor Z is local and
surjective on expansions. Then the parametric realisation PZ of Z is linear,
i.e., stable, local and homotopy invariant.
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Proof. By assumption, the category with extended parametrisation structure
(C, p, µ, α) and functor Z satisfy the conditions of both Lemmas 4.5.4 and 4.5.6.
Hence, the parametric realisation of Z must be absolute and stable. Since
stable functors also vanish on null bordisms by definition, the result follows
immediately from the criterium for linearity described in Lemma 4.4.9.

Remark 4.5.8. Theorem 4.5.7 is inspired by work of S. Buoncristiano, C. P.
Rourke and B. J. Sanderson on the construction of homotopy invariant functors
Ball2 → Set (see [BRS76, §§6-7]). In particular, the conditions of locality
and surjectivity on expansions are based on the glueing and extension axioms
(Axioms E and G) defined there.

As a corollary of Theorem 4.5.7, we obtain a specialised version of the Ab-
stract Universality Theorem in the case of discrete functors defined on a category
with extended parametrisation structure:

Theorem 4.5.9. Let (C, p, µ, α) be a category with extended parametrisation
structure and Z : C → Set∗ a functor. Suppose that the parametrisation op-
erator p is combinatorial and deloopable and that the functor Z is local and
surjective on expansions. Then the pair (PZ, ιZ) is a universal bordism charac-
teristic of Z.

Moreover, every natural transformation η : PZ ⇒ F to a stable functor
F : C → Top∗ extends to a natural transformation η : PZ ⇒ F of Ω-spectrum-
valued functors.

Proof. By Theorem 4.5.7 we deduce that the parametric realisation of Z is
linear. In particular, Proposition 4.3.13 implies that PZ must be bordism in-
variant. Universality of the pair (PZ, ιZ) now follows directly from Theorem
4.1.7.

The second statement of the theorem is an immediate consequence of Propo-
sition 4.3.7 and the fact that linear functors are stable, by definition.

Theorem 4.5.9 should be regarded as an exemplar of a result describing
conditions directly on a given functor Z and the parametrisation structure such
that parametric realisation of Z yields a universal bordism characteristic whose
target naturally takes values in infinite loop spaces, and, moreover, such that
maps from the target to stable functors respect the delooping.
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Chapter 5

Example I: Properties of
Quinn’s Bordism Machine

In this chapter we review the example of ad theories and Quinn’s bordism
machine from Chapter 3 in terms of the theory of extended parametrisation
structures.

Our main goal is to show that the conditions of the specialised universality
Theorem 4.5.9 are satisfied in the case of the closed-objects functor Z = cl0,
thereby highlighting properties of cl0 that lead to universality of Quinn’s bor-
dism machine Q. In parallel, we additionally deduce that Quinn’s bordism
machine Q is a linear functor in the sense of Definition 4.3.11. Our results
turn out to provide an alternative interpretation of Quinn’s bordism machine
and properties of bordism groups of ad theories established in [LM14]. The
comparison is given at the end of the chapter.

We have divided our analysis into two sections: In Section 5.1, we establish
the special properties of the parametrisation structure on the category of ad
theories Ad. More precisely, we verify that the parametrisation structure is in
fact extended, and then prove that the parametrisation operator is combinatorial
and deloopable in the sense of Definitions 4.3.1 and 4.4.1, respectively. In Section
5.2, we prove that the closed-objects functor cl0 is both local and surjective on
expansions, and then verify Theorem 4.5.9.

5.1 Further Properties of Parametrisation

Recall from Section 3.2.2, Section 3.2.3, and Proposition 3.2.1, the definitions of
the parametrisation operator p̂ : Ballop2 ×Ad → Ad, unit µ : A[∆0] ∼= A, and
associativity morphisms α : (A[K,L])[M,N ] ∼= A[(M,N)×(K,L)], respectively.

Proposition 5.1.1. The quadruple (Ad, p̂, µ−1, α) defines a category with ex-
tended parametrisation structure.

Proof. The proof is a straightforward inspection. In particular, the argument
for compatibility of α with the unit µ is analogous to the one given at the end
of the proof of Proposition 3.2.8.
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Our next goal is to show that the parametrisation operator p̂ on Ad is de-
loopable and combinatorial. The proofs depend on the observation, described
below in Lemma 5.1.3, that the reindexing axiom for ad theories admits a
stronger reformulation. We introduce the notion of a k-morphism in the cat-
egory of ad theories to formulate the result. Recall the definition of the shift
functors Σ from Definition 3.3.3.

Definition 5.1.2. Let k ∈ Z. A morphism of ad theories A → ΣkB, equiva-
lently, Σ−kA → B, is called a k-morphism of ad theories A → B.

Lemma 5.1.3. Let A be an ad theory. Then, for every incidence compatible
k-isomorphism θ : (K,L)→ (K ′, L′) in CBall2, the induced k-isomorphism

θ∗ : A[K ′, L′]→ A[K,L]

maps ads isomorphically to ads, and thus defines a morphism of ad theories.
Moreover, the isomorphisms θ∗ are natural in the variable A.

Proof. Let (M,N) be a ball complex and θ : (K,L) → (K ′, L′) be an inci-
dence compatible k-isomorphism. Then θ induces an incidence compatible k-
isomorphism

id×θ :(M,N)× (K,L)→ (M,N)× (K ′, L′)

(σ, o)× (σ′, o′) 7→ ik|σ|((σ, o)× θ(σ, o′)).

Moreover, the following diagram can be checked to commute by inspecting def-
initions (the signs of Definition 3.1.16 are needed here):

preA[K′,L′](M,N) preA[K,L](M,N)

preA((M,N)× (K ′, L′)) preA((M,N)× (K,L)).

α

preθ∗ (M,N)

α

(id×θ)∗

The statement of the lemma would follow if the map preθ∗(M,N) preserves ads,
but this is immediate from the reindexing axiom for the ad theory A.

Corollary 5.1.4. The parametrisation operator p̂ on Ad is combinatorial.

Proof. By the previous lemma, each 0-morphism θ : (K,L) ∼= (K ′, L′) of ball
complexes induces a natural isomorphism θ∗ : A[K,L] ∼= A[K ′, L′] of ad the-
ories. It is straightforward to check that the conditions of Definition 4.4.1 are
satisfied.

Lemma 5.1.5. The parametrisation operator p̂ on Ad is deloopable, i.e., the
functor

Ad→ Ad,

A 7→ A[Ω],

is an equivalence of categories. An inverse is given by the shift functor
Σ : Ad→ Ad.
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Proof. We define an incidence compatible (−1)-isomorphism of cell posets:

s : cell(∆0)→ cell(∆1, ∂∆1)

(〈0〉, o) 7→ (〈0, 1〉, o).

a ∅0 ∅0

s(a)

Figure 5.1: A partial diagram of cell(∆0) and cell(∆1, ∂∆1), showing the cell
a := (〈0〉, o) ∈ cell(∆0) and its image s(a) in cell(∆1, ∂∆1) under s. The
basepoint ∅0 and arrow ∅0 → s(a) in cell(∆1, ∂∆1) are drawn doubled and
underneath s(a) to indicate the dimension shift and to suggest the interpration
of s(a) as a ’bordism with empty boundary’.

See Figure 5.1 for a geometric illustration. By Lemma 5.1.3, we obtain a
natural isomorphism

Σ(A[Ω])
s∗∼= A[∆0]

µ∼= A.

The result now follows from the observation that the shift functors commute
with the parametrisation operator p̂ in the sense that

(ΣkA)[K,L] = Σk(A[K,L])

as ad theories, for every ad theory A, ball complex pair (K,L) and integer k.
We will make this observation explicit for completeness. Let A be an ad

theory, (K,L) a ball complex pair and k ∈ Z. Notice that the underlying Z-
graded categories of (ΣkA)[K,L] and Σk(A[K,L]) are equal. Indeed, for each
n ∈ Z, we have equalites of sets:

obn
(
(ΣkA)[K,L]

)
= {(K,L)-preads in ΣkA of dimension n}
= {(K,L)-preads in A of dimension n− k}
= obn−k

(
A[K,L]

)
= obn

(
Σk(A[K,L])

)
.

Moreover, the morphisms sets in both cases are just the natural transformations.
Finally, for any ball complex (M,N), observe that:

adn(ΣkA)[K,L](M,N)
α∼= adnΣkA((M,N)× (K,L))

def
= adn+k

A ((M,N)× (K,L))
α∼= adn+k

A[K,L](M,N)

def
= adnΣk(A[K,L])(M,N).

Hence, the ad structures, adn(ΣkA)[K,L] and adnΣk(A[K,L]), agree.
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5.2 Properties of Closed Objects and Quinn’s
Machine

We next study properties of the closed-objects functor cl0.

Lemma 5.2.1. The functor cl0 is local.

Proof. Let A be an ad theory and consider a ball complex K. The inclusion
∅ ↪→ (K,K) evidently induces an isomorphism of cell posets cell(K,K) ∼= cell(∅).
Hence, the ad structure of the categories A[K,K] is trivial. It follows that the
set cl0(A[K,K]) consists of a point, and thus the functor cl0 is reduced.

Next, let j : L → K be an inclusion of ball complexes and consider the
following square:

cl0(A[K,L]) cl0(A[K])

cl0(A[L,L]) cl0(A[L]).

cl0(ε∗(K,L))

cl0(∗)

It follows from the absolute axiom for the ad theory A and the assumption that
basepoints in A are initial that the square is a pullback square. In particular,
the square is homotopy cartesian since all spaces involved are discrete.

Finally, let X and Y be ball complexes. We claim that the restriction map

r : cl0(A[X ∪ Y ])→ cl0(A[X])×cl0(A[X∩Y ]) cl0(A[Y ])

is an isomorphism. First, note that the map r is injective since any functor

F : cell(X ∪ Y )→ A

is evidently determined by its restriction to the subposets cell(X) and cell(Y ).
For surjectivity, let (x, y) be a given element of cl0(A[X])×cl0(A[X∩Y ]) cl0(A[Y ]),
and let

z : cell(X ∪ Y )→ A

be the (X ∪ Y )-pread defined by:

z(σ, o) = x(σ, o), if (σ, o) ∈ cell(X),

z(σ, o) = y(σ, o), if (σ, o) ∈ cell(Y ),

z(f) = x(f), if f ∈ Mor(cell(X)),

z(f) = y(f), if f ∈ Mor(cell(Y )).

Observe that the pread z is an ad inA, by the locality axiom for the ad theoryA.
A preimage of (x, y) under r may now be obtained from z via the identification
ad0
A(X ∪ Y ) ∼= cl0(A[X ∪ Y ]) given by the following composition:

ad0
A(X ∪ Y ) ∼= ad0

A(∆0 × (X ∪ Y ))
α∼= ad0

A[X∪Y ](∆
0) = cl0(A[X ∪ Y ]),

where the first isomorphism is induced by the projection ∆0 × (X ∪ Y )) ∼=
X ∪ Y .
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It was proven in [LM14, Lemma 14.7] that, for every ad theory A and every
elementary expansion (K1, L1)→ (K,L), the restriction of sets of ads

adk(K,L)→ adk(K1, L1)

is surjective, for every integer k ∈ Z . As a direct corollary, we obtain the
following lemma:

Lemma 5.2.2. The functor cl0 is surjective on expansions.

Corollary 5.1.4, Lemmas 5.2.1 and 5.2.2, and Proposition 5.1.5 imply that
the conditions of Theorem 4.5.7 and Theorem 4.5.9 are satisfied for the category
with extended parametrisation (Ad, p̂, µ−1, α) and the closed-objects functor
cl0. The following results are thus immediate consequences:

Theorem 5.2.3. The pair (Q, ιcl0) is a universal bordism characteristic of
cl0. Moreover, every natural transformation η : Q ⇒ F to a stable functor
F : Ad → Top∗ extends to a natural transformation η : Q ⇒ F of spectrum-
valued functors.

Theorem 5.2.4. Quinn’s bordism machine Q is linear, i.e., local, stable and
homotopy invariant.

Theorem 5.2.3 should be regarded as an extension of Theorem 3.3.9 with
the extra property that maps from Quinn’s bordism machine to a stable functor
extend to maps of their associated spectra. In the following remarks, we explain
how Theorem 5.2.4 compares to results already established in [LM14]:

Remark 5.2.5. It is proven in [LM14, Proposition 15.9] that the functor Q
extends to an Ω-spectrum-valued functor via a direct construction. Theorem
5.2.4 reinforces this result and, in addition, shows that the stability of the functor
Q can be deduced as a consequence of formal properties of the functor cl0 and
the parametrisation structure on Ad.

Remark 5.2.6. Associated to any ad theory are abelian groups, called bordism
groups and denoted by T k(K,L), for any ball complex pairs (K,L) and integer
k (see [LM14, §14]). These were shown to form a cohomology theory on the
category of finite CW pairs (see [LM14, Theorem 14.11]).

It is not hard to see that the homotopy groups of the spaces Q(A[K,L]) are
naturally isomorphic to the bordism groups of an ad theory A; an argument in
the case (K,L) = (∆0, ∅) is illustrated in [BLM19, Remark 3.1], and the general
case is similar. The idea is to exploit the Kan description of homotopy groups
(e.g., see [Nic82, p. 11]) and the combinatorial axiom for ad theories. We may
therefore translate the condition of homotopy invariance of the functor Q as the
homotopy invariance of the bordism groups T ∗(K,L). The latter statement had
been proven in [LM14, Proposition 14.2] and Theorem 5.2.4 recovers this fact.

Remark 5.2.7. The property that Q is local, in particular absolute, im-
plies the existence of a long exact sequence of bordism groups for an arbi-
trary ball complex pair (K,L). A direct construction of such a sequence was
given in [LM14, Definition 14.10]. The additional insight made here is that
the existence of the sequence comes from a fibre square and that the maps
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Q(A[K])→ Q(A[L]) are fibrations with fibre Q(A[K,L]) (compare the proof of
Lemma 4.5.4).
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Chapter 6

Example II: Symmetric
L-Theory of Additive
Categories with Chain
Duality

This final chapter is devoted to a second illustration of the theory of extended
parametrisation structures. Specifically, we return to consider symmetric L-
theory, but now our analysis takes place in the algebraic setting of additive
categories with chain duality (ACCDs) introduced by A. A. Ranicki. For back-
ground material, we refer the reader to [Ran92] and [AFM18]. We note that our
exposition has also benefited from [Wei09], [RW12], [KMM13] and [CLM21].

The setting of ACCDs has two advantages over the more general setting
of Waldhausen categories with duality considered in Chapter 2: Firstly, it is
more concrete in the sense that every ACCD is an example of a WCD (see
[WW98, Example 1.A.1]). Secondly, a description of an extended parametrisa-
tion structure on the category of ACCDs has already been partially developed
in [AFM18]. Our analysis is intended to be complementary to [AFM18], and
consists of a summary of partial results aimed toward showing that symmet-
ric L-theory of additive categories with chain duality is the universal bordism
characteristic of symmetric Poincaré complexes.

We have organised the chapter as follows: Section 6.1 describes the setting
of additive categories with chain dualities and the notion of symmetric Poincaré
complexes based on [Ran92].

Section 6.2 is dedicated to the development of an extended parametrisation
structure on the category of ACCDs and its properties. We build on results of
[AFM18]. Therein, a construction of ACCDs parametrised over any oriented
ball complex X is given. However, functoriality of the construction is not dis-
cussed. We show the construction is functorial and record the result in Theorem
6.2.17. The proof requires careful attention to orientations and is the main tech-
nical part of this chapter. We have devoted Subsections 6.2.1 and 6.2.2 to the
setup and proof. In addition to establishing the existence of a parametrisation
operator on the category of ACCDs, we will also show that it yields an extended
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parametrisation structure such that the parametrisation operator is deloopable
(Theorem 6.2.28). This latter result is the subject of Section 6.2.3 and should
be regarded as the main result of this chapter.

In the final Section 6.3, we prove that the functor taking symmetric Poincaré
complexes of an additive category with chain duality is absolute in the sense
of Definition 4.3.10. In addition, we provide an outlook on the universality of
symmetric L-theory in the context of ACCDs.

6.1 Chain Dualitites and Symmetric Poincaré
Complexes

We define a category of additive categories with duality based on [Ran92, Defi-
nitions 3.2 and 3.7].

Notation 6.1.1. For an additive category A, we denote by B(A) the addi-
tive category of bounded chain complexes in A together with chain maps. In
addition, we let ζA : A→ B(A) denote inclusion into degree 0.

Definition 6.1.2.

1. An additive category with chain duality (ACCD) is a triple (A, T, e) where:

� A is an additive category,

� T : A→ B(A) is a contravariant additive functor, and

� e : T 2 ⇒ ζA : A→ B(A) is a natural transformation

such that the following conditions hold for all objects M of A:

(a) e(T (M)) ◦ T (e(M)) = idT (M) : T (M)→ T 2(T (M))→ T (M).

(b) e : T 2(M)→M is a chain equivalence.

The pair (T, e) is called a chain duality on A. Furthermore, the chain
complex T (C) is called the dual of the chain complex C for any chain
complex C ∈ B(A).

2. A morphism (A, T, e)→ (A′, T ′, e′) of additive categories with chain dual-
ity consists of a pair (F,G), where

� F : A→ A′ is an additive functor, and

� G : T ′F ⇒ FT : A→ B(A′) is a natural transformation,

such that for all objects M in A,

(a) the chain map

G(M) : T ′F (M)
'→ FT (M)

is a chain equivalence, and

(b) the following diagram commutes in B(A′):

T ′FT (M) FT 2(M)

T ′2F (M) F (M).

T ′G(M)

GT (M)

Fe(M)

e′F (M)
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The composition of two morphisms (F1, G1) : (A, T, e) → (A′, T ′, e′) and
(F2, G2) : (A′, T ′, e′)→ (A′′, T ′′, e′′) is defined as the pair (F3, G3) where

� F3 = F2 ◦ F1 : A→ A′′ and

� G3(M) = F2G1(M) ◦G2F1(M) : T ′′F3(M) ⇒ F3T (M), for all M ∈
ob(A).

We denote the category of additive categories with chain duality by ACCD.

Remark 6.1.3. To keep notation simple, we use the same notation for a func-
tor T : A → B(A) and its extension T : B(A) → B(A) (as defined on [Ran92,
p. 25]); likewise for natural transformations thereof (cf. [AFM18, Proposi-
tion 3.1]).

Remark 6.1.4. Morphisms between ACCDs are usually considered in the
more general context of algebraic bordism categories (see [Ran92, Ch. 3]). We
only consider ACCDs here for simplicity.

Note also that, in contrast to [Ran92], we include the natural transformation
G as data in a morphism of ACCDs. This is necessary in order to define a functor
of symmetric Poincaré complexes (see Proposition 6.1.10 below).

Proposition 6.1.5. The composition of morphisms in ACCD is well defined.

Proof. Consider two arbitrary morphisms (F1, G1) : (A, T, e)→ (A′, T ′, e′) and
(F2, G2) : (A′, T ′, e′) → (A′′, T ′′, e′′). Property 2(a) for the composite (F3, G3)
is clearly satisfied. To establish Property 2(b) we must show that, for any fixed
M ∈ ob(A), the outer square of the following diagram commutes:

T ′′F2F1T (M) F2T
′F1T (M) F2F1T

2(M)

T ′′F2T
′F1(M) F2(T ′)2F1(M)

(T ′′)2F2F1(M) F2F1(M).

T ′′F2G1(M)

G2F1T (M)

F2T
′G(M)

F2G1T (M)

F2F1e(M)

T ′′G2F1(M)

G2T
′F1(M)

F2e
′F1(M)

e′′F2F1(M)

Indeed, the top-left square commutes by naturality of G2, and the other inner
squares commute as applications of Property 2(b) to the morphisms (F1, G2)
and (F2, G2).

The concept of chain duality in an additive category gives rise to the notion
of symmetric Poincaré complexes in an additive category A. We briefly recall
the construction here and refer to [AFM18, pp. 6-8] and [Ran92, pp. 27-30] for
more details.

Let (A, T, e) be an ACCD and let Ab denote the additive category of abelian
groups. The functor T induces a pairing

−⊗A − : B(A)× B(A)→ B(Ab)

given by
C ⊗A D := HomA(T (C), D),
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where the chain complex of abelian groups HomA(T (C), D) is defined as in
[Ran92, p. 26]. Furthermore, the pair (T, e) yields natural switch isomorphisms

τC,D : C ⊗A D → D ⊗A C

given by the composition of natural isomorphisms

C ⊗D T−→ D ⊗ T 2(C)
idD⊗e(C)−→ D ⊗ C.

The switch isomorphisms satisfy τ−1
C,D = τD,C , for every chain complexes C,D

in A. In particular, there are canonical involutions τC,C on the chain complexes
of abelian groups C ⊗ C, for every bounded chain complex C in A.

Notation 6.1.6.

1. Let Z2 = {1, t} denote the cyclic group of order 2 and Z[Z2] denote the
group ring of Z2 over the ring of integers Z. Furthermore, let W denote
the standard free Z[Z2]-module resolution of Z, i.e.,

W : · · · → Z[Z2]
1−t→ Z[Z2]

1+t→ Z[Z2]
1−t→ Z[Z2].

2. Let φ0 : T (C) → C denote the underlying chain map of a 0-cycle φ ∈
HomZ[Z2](W,C ⊗A C), i.e,

φ0 := φ(1) ∈ Hom(T (C), C)0,

where 1 ∈W0 = Z[Z2] is the unit.

Definition 6.1.7. A symmetric complex in an additive category with chain
duality (A, T, e) is a pair (C, φ) consisting of:

� a finite chain complex C in A, and

� a 0-cycle φ ∈ HomZ[Z2](W,C⊗AC)0, called the symmetric structure on C.

If the underlying chain map of φ is a chain equivalence φ0 : T (C)
'→ C, we call

the pair (C, φ) a symmetric Poincaré complex.

Remark 6.1.8. A symmetric Poincaré complex in the sense of the definition
above is usually called a 0-dimensional symmetric Poincaré complex in the liter-
ature (e.g., see [Ran92, Definition 1.6]). We have dropped the dimension prefix
for simplicity as it does not play role in our work.

Definition 6.1.9. Let (A, T, e) be an additive category with chain duality.
We denote the pointed set of symmetric Poincaré complexes in A by sp(A),
where the basepoint is given by the zero object in B(A) together with its unique
symmetric structure.

In the next proposition, we show that the construction of the sets sp(A) are
functorial with respect to morphisms of ACCDs. This fact was proven as part of
the proof of [Ran92, Proposition 3.8]. More precisely, it was shown there that
a morphism of algebraic bordism categories induces a map on L-groups. We
recall the proof in order to demonstrate the need of the natural transformation
G as data in a morphism (F,G) of ACCDs.
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Proposition 6.1.10. The assignment

(A, T, e) 7→ sp(A)

induces a functor
ACCD→ Set∗ .

Proof. Let (F,G) : (A, T, e)→ (A′, T ′, e′) be a morphism of ACCDs. The map

sp(F,G) : sp(A)→ sp(A′)

of pointed sets is induced by a natural transformation

(F∗G
∗)C,D : C ⊗A D → F (C)⊗A′ F (D) : B(A)× B(A)→ B(Ab)

defined as follows: For every objects M,N in A, let

(F∗G
∗)M,N : M ⊗A N → F (M)⊗A′ F (N)

be the map of abelian group chain complexes given by

(F∗G
∗)M,N : M ⊗A N → F (M)⊗A′ F (N)

(φ : T (M)→ N) 7→ (F (φ) ◦G(M) : T ′F (M)→ FT (M)→ F (N)).

It can be seen that the natural transformation F∗G
∗ commutes with the switch

isomorphisms so that the morphism (F∗G
∗)C,C induces a well-defined morphism

of chain complexes

(F∗G
∗)C,C : HomZ[Z2](W,C ⊗A C)→ HomZ[Z2](W,F (C)⊗A′ F (C))

for any chain complex C in B(A). The map sp(F,G) is now given by sending
a symmetric Poincaré complex (C, φ) in A to the symmetric Poincaré complex
(F (C), (F∗G

∗)C,C(φ)).

6.2 The Extended Parametrisation Structure

The main goal of this section is to prove that there exists an extended parametri-
saion operator on the category ACCD. Our results expand upon the construc-
tion of ACCDs parametrised over oriented ball complexes given in [AFM18].
The role of orientations is suppressed in [AFM18], however it is clear that dif-
ferent choices of orientation lead to isomorphic definitions. On the contrary, we
will take orientation into account in order to give a careful proof of functoriality
of the parametrisation construction.

We have divided this section into three parts: In Section 6.2.1, we recall the
description of ACCDs parametrised over a ball complex, highlighting the depen-
dancy on orientations. Then, we extend the construction to ball complex pairs.
In Section 6.2.2, we prove that the construction is functorial. Lastly in Section
6.2.3, we show that the operation of parametrisation equips the category ACCD
with an extended parametrisation structure, whose parametrisation operator is
deloopable.

81



6.2.1 ACCDs Parametrised over a Ball Complex

Recall (see Definition 3.1.5) the notation F(X) for the face poset of a ball
complex X. We define additive categories parametrised over a ball complex
following [AFM18, Definitions 4.5 and 4.2]:

Definition 6.2.1. Let X be a ball complex and A an additive category.

1. An object M in A is X-based if it is expressed as a direct sum

M =
⊕

σ∈F(X)

M(σ)

of objects M(σ) in A.

2. We define A∗(X) (resp. A∗(X)) to be the additive categories of X-based
objectsM in A, where a morphism f : M → N is a collection of morphisms

f = {fτ,σ : M(σ)→ N(τ) : τ, σ ∈ F(X)}

in A, such that fτ,σ : M(σ) → N(τ) is zero unless τ ≤ σ (resp. τ ≥
σ). The composition of two morphisms f : L → M, g : M → N is the
morphism g ◦ f : L→ N defined by

(g ◦ f)ρ,σ :=
⊕

τ∈F(X)

gρ,τfτ,σ : L(σ)→ N(ρ).

Remark 6.2.2. The morphisms in A∗(X) (resp. A∗(X)) can be regarded
as upper (resp. lower) triangular matrices with composition given by matrix
multiplication.

Definition 6.2.3. Let A be an additive category and X be a ball complex
pair. We let A∗[X] (resp. A∗[X]) denote the additive category whose objects
are covariant (resp. contravariant) functors

M : F(X)→ A,

and morphisms are natural transformations of such functors.

Fix an ACCD (A, T, e) and oriented ball complex (X, o). The duality functor
T(X,o) : A∗(X)→ B(A∗(X)) on A∗(X) is defined in [AFM18, Definition 5.1] as
a composition of functors:

T(X,o) : A∗(X)
[−]−→ A∗[X]

T∗−→ B(A)∗[X]
sh(X,o)−→ B(A∗(X)).

We will recall the definition of each of these functors following [AFM18, Defini-
tions 4.3, 4.14 and 4.25].

Definition 6.2.4. Let A be an additive category and X a ball complex. The
covariant functor

[−] : A∗(X)→ A∗[X]
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assigns to an object M of A∗(X) the functor [M ] : F(X)→ A given by

[M ](σ) :=
⊕
τ≤σ

M(τ),

[M ](σ → σ′) := [M ](σ) ↪→ [M ](σ′),

for all σ ∈ F(X) and σ ≤ σ′ ∈ F(X).
Moreover, [−] assigns to a morphism f : M → N in A∗(X) the natural

transformation
[f ] : [M ]⇒ [N ]

given by

[f ](σ) =
⊕

ρ≤τ≤σ

fτ,ρ :
⊕
ρ≤σ

M(ρ)→
⊕
τ≤σ

N(τ)

for all σ ∈ F(X).

Remark 6.2.5. The functor [−] is denoted IX,A in [AFM18]. We prefer to
use the square bracket notation from [Ran92].

Definition 6.2.6. Let (A, T, e) be an ACCD and X be a ball complex. Define
T∗ : A∗[X] → B(A)∗[X] to be the contravariant functor given by postcomposi-
tion with T .

The definition of the functor sh(X,o) involves the cellular chain complex with
Z-coefficients C(X;Z) of an oriented ball complex (X, o). We define the latter
first in terms of the suspension functor on chain complexes.

Notation 6.2.7. Let Sk denote the signed suspension functor of Ranicki (cf.
[Ran92, p. 25]) defined by assigning to a chain complex (C, d) in an arbitrary
additive category A the chain complex given by (SkC)n := Cn−k and dnSkC =
(−1)kdn−k, for all n ∈ Z.

We regard C(X;Z) as an object in B(Ab∗(X)) with C(X;Z)(σ) = S|σ|Z,
for all σ ∈ F(X), and differentials given by incidence numbers with respect to
the given orientation on X.

Definition 6.2.8. (cf. [AFM18, Example 4.26]) Let (X, o) be an oriented ball
complex. The corresponding shift functor

sh(X,o) : B(A)∗[X]→ B(A∗(X))

assigns to a given contravariant functor C : F(X) → B(A) the chain complex
sh(X,o)(C) in B(A∗(X)) with components given by

sh(X,o)(C)n(σ) := C(σ)n−|σ|,

for all n ∈ Z and σ ∈ F(X), and differentials (dsh(X,o)(C))
n
τ,σ equal to

(dC(X;Z)))
|σ|
τ,σ ⊗Z C(τ → σ)n−|σ| + (−1)|σ|(idC(X,Z))

|σ|
τ,σ ⊗Z d

n−|σ|
C(σ) ,

for all n ∈ Z and τ ≤ σ ∈ F(X).
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Furthermore, the functor sh(X,o) assigns to every morphism f : C → D in
B(A)∗[X] the morphism

sh(X,o)(f) : sh(X,o)(C)→ sh(X,o)(D)

with components

(sh(X,o)(f))nτ,σ := (idC(X,Z))
|σ|
τ,σ ⊗Z f(σ)n−|σ|,

for all n ∈ Z and τ ≤ σ ∈ F(X).

Remark 6.2.9. The tensor product ⊗Z is defined in [AFM18, Definition 4.21]
and depends on a choice of basis for the Z-modules C(X;Z)n(σ). This is the
reason we work with explicit orientations of X. It is well known (e.g., see
[CF67, p. 54, Theorem 5.4]) that other choices of orientation of X lead to
isomorphic cellular chain complexes. From this fact, it can be easily seen that
the corresponding shift functors are isomorphic (cf. [AFM18, Proposition 4.22]).

The duality functors T(X,o) yield pairings

−⊗A∗(X) − : B(A∗(X))× B(A∗(X))→ B(Ab∗(X))

and corresponding switch isomorphisms

τM,T(X,o)(M) : M ⊗A∗(X) T(X,o)(M)→ T(X,o)(M)⊗A∗(X) M,

where M ∈ A∗(X) and (X, o) is an arbitrary oriented ball complex. We refer
to Definition 4.5 and Proposition 5.7 of [AFM18], respectively, for the explicit
constructions.

Definition 6.2.10. Let (A, T, e) be an ACCD and let (X, o) be an oriented ball
complex. The ACCD of X-based objects in A with respect to the orientation o
is defined as the triple (A∗(X), T(X,o), e(X,o)), where the natural transformation
e(X,o) : T 2

(X,o) ⇒ ιA∗(X) is given by

e(X,o)(M) = τM,T(X,o)(M)(idT(X,o)(M)), for all M ∈ ob(A∗(X)).

Remark 6.2.11. The definition of the natural transformation e(X,o) in the
previous definition is based on [AFM18, Propostion 5.8]

In [AFM18, §5], it is shown that the triples (A∗(X), T(X,o), e(X,o)) do indeed
define additive categories with chain duality, for every ACCD A and oriented
ball complex (X, o).

We will now extend the previous definition to pairs, in analogy to the case of
ordered simplicial complex pairs described in [Ran92, Definition 13.3]. Note, by
an orientation of a ball complex pair (X,A), we will simply mean an orientation
on the ball complex X.

Definition 6.2.12. Let (A, T, e) be an additive category with chain duality
and let (X,A, o) be an oriented ball complex pair. The ACCD of (X,A)-based
objects in A is defined to be the triple (A∗(X,A), T(X,A,o), e(X,A,o)) where:
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� A∗(X,A) ⊂ A∗(X) is the full subcategory of A∗(X) generated on objects
M such that

M(σ) = 0, if σ ∈ F(A),

and

� T(X,A,o) and e(X,A,o) are the restrictions of T(X,o) and e(X,o), respectively,
to A∗(X,A).

We will employ the more compact notation A∗(X,A, o) to denote the triples
(A∗(X), T(X,A,o), e(X,A,o)).

We will next present explicit formulas for the chain duality (T(X,o), e(X,o))
of A∗(X, o), for any fixed ACCD (A, T, e) and oriented ball complex (X, o), in
preparation for computations in the proceeding section.

The following formula for T(X,o) can be immediately obtained from its defi-
nition: For an object M = ⊕σM(σ) in A∗(X), the r-chains of the chain complex
T(X,o)(M) in B(A∗(X)) are given by

T(X,o)(M)n :=
⊕

σ∈F(X)

T(X,o)(M)n(σ),

where

T(X,o)(M)n(σ) := T

( ⊕
σ′≤σ

M(σ′)

)
n−|σ|

.

Moreover, the differentials

(dT(X,o)(M))
n
τ,σ : TX(M)n(σ)→ T(X,o)(M)n−1(τ),

with respect to the cells τ, σ in F(X), are given by

(dT(X,o)(M))
n
τ,σ = (−1)|σ|

⊕
σ′≤σ

d
n−|σ|
TM(σ′), if τ = σ,

(dT(X,o)(M))
n
τ,σ = [σ, τ ]T

(
[M ](τ) ↪→ [M ](σ)

)
n−|σ|, if τ < σ, |τ | = |σ| − 1,

(dT(X,o)(M))
n
τ,σ = 0, else,

where [σ, τ ] denotes the incidence number of the oriented cells σ and τ of X.
The components of the map of chain complexes in B(A∗(X)),

e(X,o)(M) : T 2
X(M)→M,

for a given object M in A∗(X), may be obtained by examing expression (5.1)
in the proof of [AFM18, Proposition 5.9] for the case C = M , and by using
additivity of e. To state the result, denote by

π(X,o)(M)τ,σ : T 2
(X,o)(M)0(σ) � T 2(M(τ))0 (6.1)

for arbitrary τ ≤ σ ∈ F(X), the signed projection map in A⊕
k,l∈Z

π(M)klτ,σ :
⊕
k∈Z

T(X,o)(T(X,o)(M)k(σ))k �
⊕
l∈Z

T (T (M(τ))l)l
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whose components are given by

π(M)klτ,σ :=

{
ε(σ, k)T (j(M)kσ,τ )k−|σ|, if l = k − |σ|,
0 otherwise,

where
ε(σ, k) = (−1)|σ|(k−|σ|)+

1
2 |σ|(|σ|−1) (6.2)

and j(M)kσ,τ denotes the composite inclusion

j(M)kσ,τ : T (M(τ))k−|σ| ↪→ T(X,o)(M)k(σ) ↪→ [T(X,o)(M)](σ)k. (6.3)

Then, the chain map e(X,o)(M) : T 2
X(M)→M has components

e(X,o)(M)nτ,σ = e(M(τ))0 ◦ π(X,o)(M)τ,σ : T 2
(X,o)(M)0(σ)→M(τ), (6.4)

if n = 0 and τ ≤ σ ∈ F(X), and e(X,o)(M)nτ,σ = 0, otherwise.

Remark 6.2.13. Note that the formulas for e(X,o)(M) do not depend on the
differentials of T(X,o)(M), and thus are independent of the orientation o.

6.2.2 Functoriality of Parametrisation

In this section we will show that the assignment

(X,A, o) 7→ A∗(X, o)

is functorial with respect to morphisms of ball complex pairs. In order to take
into account the orientations we introduce the following category equivalent to
Ball2 whose objects are oriented ball complex pairs.

Definition 6.2.14.

1. Let oBall2 be the category whose objects are oriented ball complex pairs
(X,A, o) and morphism sets are given by

MoroBall2

(
(X,A, oX), (Y,B, oY )

)
= MorBall2

(
(X,A), (Y,B)

)
.

Also, let oBall ⊂ oBall2 denote the full subcategory on absolute objects
i.e., on objects of the form (X, ∅, o).

2. A morphism (X,A, oX) → (Y,B, oY ) is called an inclusion in oBall2, if
the underlying map of ball complexes is an inclusion (X,A) ↪→ (Y,B) of
ball complex pairs, and the orientation oY on Y agrees with oX over the
subcomplex X.

Recall that every morphism in Ball2 factors as the composition of an iso-
morphism followed by an inclusion. Similarly, note that we may factor every
morphism f : (X,A, oX)→ (Y,B, oY ) in oBall2 uniquely as a composition

(X,A, o)
∼=→̄
f

(f(X), f(A), of(X)) ↪→
j

(Y,B, oY ),

where f̄ is an isomorphism and j is an inclusion in oBall2.
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The proof of functoriality of the construction (A, (X,A, o)) 7→ A∗(X,A, o)
with respect to morphisms of ball complexes relies crucially on the fact that the
assignment of cellular chain complexes

(X, o) 7→ C(X;Z)

is functorial with respect to morphisms of ball complexes. The analogous state-
ment for arbitrary CW complexes is well known (e.g., see [Geo08, Proposi-
tion 2.3.4]); the point being that cellular chain complexes admit a description
independent of orientations in terms of singular homology (e.g., see [Geo08,
§2.3]).

We will denote the chain map induced from a morphism of oriented ball
complex pairs f : (X, oX)→ (Y, oY ) by

f# : C(X;Z)→ C(Y ;Z).

Moreover, we denote by [f : σ, τ ] the integer components of the linear maps

(f#)n : C(X;Z)n → C(Y ;Z)n (n ∈ Z)

with respect to any oriented n-cells σ and τ of X and Y , respectively, and call
them mapping degrees in accordance with the literature (e.g., see [LW69, p. 165,
Definition 3.7])

Remark 6.2.15. Note that mapping degrees are fully determined in the case
of a map of ball complexes (e.g., see [LW69, p. 172, Theorem 4.7]).

We require the following proposition about mapping degrees of morphisms
in oBall2, as preparation for the proof of functoriality:

Proposition 6.2.16. Let f : (X, oX)→ (Y, oY ) be a map of oriented ball com-
plexes and denote by f = j ◦ f̄ its canonical factorisation into an isomorphism
followed by an inclusion of ball complexes. Then

[f : σ, τ ] = δτf(σ)[f̄ : σ, f̄(σ)],

for all oriented n-cells σ and τ of X and Y , respectively, where δτf(σ) denotes
the Kronecker delta function.

Proof. Since f maps every n-cell σ isomorphically onto the n-cell f(σ), the map-
ping degrees [f : σ, τ ] vanish, for all τ 6= f(σ) (cf. [LW69, p. 166, Corollary 3.9]).
Furthermore, the equality f# = j# ◦ f̄# implies that

[f : σ, τ ] =
∑
τ ′

[j : τ ′, τ ][f̄ : σ, τ ′],

for all oriented n-cells σ and τ of X and Y , respectively, where the sum runs
over all n-cells τ ′ of f(X). It is clear the mapping degrees of an inclusion j
satisfy

[j : τ ′, τ ] = δτ ′τ ,

for all oriented n-cells τ of f(X) and τ ′ of Y . Hence, it follows that

[f : σ, f(σ)] = [f̄ : σ, f̄(σ)]

for all oriented n-cells σ of X, completing the proof.
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Lemma 6.2.17. The assignment

((A, T, e), (X,A, o))→ A∗(X,A, o)

induces a functor
p̂ : ACCD× oBallop2 → ACCD.

Proof. We will demonstrate functoriality of p̂ over the full subcategory ACCD×
oBall ⊂ ACCD×oBall2. The extension to ball complex pairs follows trivially
by restriction.

First consider an ACCD (A, T, e) and a morphism of oriented ball complexes
f : (X, oX)→ (Y, oY ). We define an additive functor

f∗ : A∗(Y )→ A∗(X)

to be given by

f∗

 ⊕
σ∈F(Y )

M(σ′)

 :=
⊕

σ∈F(X)

M(f(σ))

f∗(φ)τ,σ : = φf(τ),f(σ),

for all M ∈ ob(A∗(Y )), φ ∈ Mor(A∗(Y )) and τ, σ ∈ F(X).
We also let f�A : A∗[Y ] → A∗[X] and f�B(A) : B(A)∗[Y ] → B(A)∗[X] de-

note the additive functors induced by precomposition with the map of posets
F(f) : F(X) → F(Y ) determined by f . Now, consider the following diagram
of additive categories:

A∗(Y ) A∗[Y ] B(A)∗[Y ] B(A∗(Y ))

A∗(X) A∗[X] B(A)∗[X] B(A∗(X)).

[−]

f∗

T∗

f�
A

sh(Y,oY )

f�
B(A) f∗

[−] T∗ sh(X,oX )

(6.5)

It is easy to see that the left and middle square in Diagram 6.5 commute. We
claim that the right square commutes up to natural isomorphism.

First, consider the case that f is an inclusion. Then the right square in
Diagram 6.5 commutes on the nose, and, hence, we have an equality of functors:

G(f) : TXf
∗ = f∗TY : A∗(Y )→ B(A∗(X)).

More generally, the map f may be factored uniquely as a composition of an
isomorphism f̄ : (X, oX)→ (Z, oZ) and an inclusion j : (Z, oZ) ↪→ (Y, oY ). The
chain isomorphism f̄# : C(X;Z) ∼= C(Z;Z) of Z-modules is used to define a
chain isomorphism H(f̄)(C) : sh(X,oX)f̄

∗(C) ∼= f̄∗sh(Z,oZ)(C) in B(A∗(X)), for
all C in B(A)∗[Z], as follows: The components of H(f̄)(C) are given by

H(f̄)(C)nτ,σ = δτσ[f̄ : σ, f(σ)] id
n−|σ|
C(f(σ)),

for all n ∈ Z and σ ∈ F(X). Let j�B(A) : B(A)∗[Y ] → B(A)∗[Z] be defined in

analogy to f�B(A). We then define G(f) : TXf
∗ ∼= f∗TY : A∗(Y )→ B(A∗(X)) to

be the natural transformation with components for all M ∈ ob(A∗(Y )) given by

G(f)(M) := H(f̄)(j�B(A)T∗[M ]) : TXf
∗(M) ∼= f∗TY (M).
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We claim that the pair (f∗, G(f)) is a well-defined morphism of ACCDs. To
ease readability, we will suppress the orientation of ball complexes from notation
in the following calculations. Using Formula 6.4 for the components of eX and
eY , we compute that

f∗eY (M)0
τ,σ = eY (M)0

f(τ),f(σ)

= e(M(f(τ))0 ◦ πY (M)f(τ),f(σ)

= e(f∗M(τ))0 ◦ πX(f∗M)τ,σ

= eX(f∗(M))0
f(τ),f(σ)

for all M ∈ ob(A∗(Y )) and τ ≤ σ ∈ F(X). Moreover, a straightforward com-
putation shows that

πY (M)f(τ),f(σ) ◦G(f)(TY (M))0
σ,σ = πX(f∗M)τ,σ ◦ TX(G(f)(M))0

σ,σ,

as morphisms TXf
∗TY (M)0(σ) → T 2(M(f(τ))0 in A for all M ∈ ob(A∗(Y ))

and τ ≤ σ ∈ F(X). It follows that the following diagram commutes in B(A∗(X))
for all M ∈ ob(A∗(Y )):

TXf
∗TY (M) f∗T 2

Y (M)

T 2
Xf
∗(M) f∗(M).

TX(G(M))

G(TY (M))

f∗eY (M)

eX(f∗(M))

Finally, we claim that composition of the induced morphisms is well-defined.
Let g : (Y, oY ) → (Z, oZ) be a morphism of oriented ball complexes and let
h : (X, oX) → (Z, oZ) denote its composition with f . In order to see that the
composite of the maps (f∗, G(f)) and (g∗, G(g)) of ACCDs is equal to the map
(h∗, G(h)), observe that, for all M ∈ ob(A∗(Z)), n ∈ Z, and τ, σ ∈ F(X), the
components of the chain map G(h) : T(Z,oZ)h

∗ → h∗T(X,oX) are given by

G(h)(M)nτ,σ = [h̄ : σ, h̄(σ)] id
n−|σ|
T ([M ](h(σ)) .

Similarly, one may compute that

(f∗G(g)(M) ◦G(f)(g∗M))nτ,σ = [ḡ : f(σ), ḡ(f(σ))][f̄ : σ, f̄(σ)] id
n−|σ|
T ([M ](g(f(σ)) .

The claim then follows from the relation of mapping degrees

[ḡ : f(σ), ḡ(f(σ))][f̄ : σ, f̄(σ)] = [h̄ : σ, h̄(σ)], for all σ ∈ F(X),

which can be seen to hold by Proposition 6.2.16 and the equality of chain maps
h# = g# ◦ f#.

Next, we consider functoriality of p̂ with respect to morphisms of ACCDs.
We will again suppress orientation from notation; a fixed orientation on any
given ball complex being implicit. Let (F,G) : (A, T, e) → (A′, T ′, e′) be a
morphism of ACCDs and X be an oriented ball complex. Since F is additive,
it restricts to a well-defined additive functor

F : A∗(X)→ (A′)∗(X).
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Consider now the following diagram of additive categories:

A∗(X) A∗[X] B(A)∗[X] B(A∗(X))

(A′)∗(X) (A′)∗[X] B(A′)∗[X] B((A′)∗(X)).

[−]

F

T∗

F∗

shX

F∗ F

[−] T ′∗ shX

(6.6)

The left and right hand squares in Diagram 6.6 can be seen to commute using
additivity of F , and the middle square commutes up to the natural transforma-
tion

G� : T ′∗F∗ ⇒ F∗T∗ : A∗[X]→ B(A′)∗[X],

obtained by applying G pointwise. Hence, there is a natural transformation

GX : T ′XF ⇒ FTX : A∗(X)→ B((A′)∗(X))

given by
GX(M) := shX(G�([M ])) : T ′XF (M)→ FTX(M),

for all M ∈ ob(A∗(X)).
We claim that the pair (F,GX) is a morphism of ACCDs. First, notice that

the maps GX(M) : T ′XF (M)→ FTX(M) are chain equivalences for every M ∈
ob(A∗(X)) since all the diagonal components GX(M)σ,σ are chain equivalences
(cf. [AFM18, Proposition 4.13]). It remains to check Property (b) of Definition
6.1.2.

Let M ∈ ob(A∗(X)), τ ≤ σ ∈ F(X) be given, and consider the following
diagram in A:

T ′XFTX(M)0(σ) FT 2
X(M)0(σ)

T ′FT (M(τ))0 FT 2(M(τ))0

(T ′X)2F (M)0(σ) (T ′)2F (M(τ))0 F (M(τ)).

T ′X(GX(M))0
σ,σ

q(M)τ,σ

GX(TX(M))0
σ,σ

F (π(M)τ,σ)

T ′G(M(τ))0

G(T (M(τ)))0

Fe(M(τ))0

π(F (M))τ,σ e′F (M(τ))0

(6.7)

The projection map

q(M)τ,σ =
⊕
k,l∈Z

q(M)kl :
⊕
k∈Z

T ′X(FTX(M)k(σ))k →
⊕
l∈Z

T ′(FT (M(τ))l)l

in Diagram 6.7 is given by

q(M)kl :=

{
ε(σ, k)T ′F (j(M)kτ,σ)k−|σ|, if l = k − |σ|
0, otherwise,

where the sign a(σ, k) and morphisms j(M)kτ,σ are defined as in Equations 6.2
and 6.3, respectively. The lower right inner square of Diagram 6.7 then com-
mutes by the assumption that (F,G) is a morphism of ACCDs. Moreover, the
other inner squares can be seen to commute using the additivity of G and T ′.
Thus, the outer square of Diagram 6.7 commutes implying that the pair (F,GX)
is well-defined morphism of ACCDs.
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The final assertions that the assignment (F,G) 7→ (F,GX) is compatible
with composition, and that it commutes with the assignment f 7→ (f∗, G(f))
are straightforward.

Remark 6.2.18. Functoriality of the construction of the ACCDs A∗(X) with
respect to inclusions of simplicial complexes was proven in [Ran92, Proposi-
tion 5.6]. The argument given there inspired our construction of the induced
maps f∗ for an inclusion of ball complexes. Note that functoriality with respect
to morphisms of ACCDs has not, to the author’s knowledge, been thoroughly
examined in the literature.

A direct consequence of Lemma 6.2.17 is that there exists a functor

p̂(ω) : ACCD×Ballop2 → ACCD

for every choice of section ω : Ball2 → oBall2. For the purposes of demon-
stration, we will work with a fixed section ω in the rest of this chapter. We
denote the corresponding parametrisation operator simply by p. Moreover, we
introduce the convention that the additive categories A∗(X,A) are assumed to
be equipped with the chain duality prescribed by the fixed section ω unless
otherwise specified. Lastly, for convenience, we will also make the following
assumptions on the section ω:

1. ω is absolute: For every ball complex pair (X,A), the map ω(X) →
ω(X,A) is an inclusion of oriented ball complexes, i.e., the orientation
on ω(X,A) agrees with the orientation on ω(X).

2. ω is simplicial : If X is a simplicial complex, then the orientation on ω(X)
is given by the standard simplicial incidence numbers:

[〈v0, . . . , vk〉, 〈v0, . . . , v̂i, . . . , vk〉] = (−1)i,

for all k-cells 〈v0, . . . , vk〉 of X and their ith subfaces 〈v0, . . . , v̂i, . . . , vk〉.

Remark 6.2.19. The first assumption ensures that the chain duality of the
ACCD A∗(ω(X,A)) is precisely the restriction of that of A∗(ω(X)); not just up
to isomorphism. The second convention ensures compatibility with [Ran92].

6.2.3 Properties of Parametrisation

In this subsection we will show that the parametrisation operator p is part of
an extended parametrisation structure (p, µ, α) on the category ACCD, and,
moreover, that it is deloopable.

The construction of the unit µ is straightforward. Denote by

µA : A ∼= A∗(∆0)

the natural isomorphism of additive categories given by considering objects as
sums over the singleton set F(∆0). It is then routine to see that we have an
equality of functors

T∆0µA = µAT : A→ B(A∗(∆0)).

and moreover, that the following proposition holds:
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Proposition 6.2.20. The collection of morphisms

µ := {(µA, id) : (A, T, e) ∼= (A∗(∆0), T∆0 , e∆0)},

where the index runs over all ACCD (A, T, e), assemble to a natural isomorphism
of functors.

The more difficult task is the construction of associativity morphisms. Our
strategy makes use of an auxiliary construction that is independent of any choice
of preferred section ω : Ball2 → oBall2 and described in Lemma 6.2.22. The
construction relies crucially on the existence of a canonical choice of orientation
on products of oriented ball complexes (recall Formula 3.1) and the subsequent
facts about mapping degrees of morphisms of ball complexes, whose proof can
be easily checked using the characterising properties of mapping degrees (e.g.,
see [LW69, p. 172, Theorem 4.7]).

Proposition 6.2.21. In the following statements, we assume that products of
ball complexes are equipped with the canonical product orientation.

1. Let f : X → X ′ be a map of oriented ball complexes and Y be an oriented
ball complex. The mapping degrees of the induced maps f × id : X × Y →
X ′ × Y and id×f : Y ×X → Y ×X ′ satisfy

[f × id : σ × τ, σ′ × τ ′] = δσ′f(σ)δττ ′ [f : σ, σ′] = [id×f : τ × σ, τ ′ × σ′]

for all oriented n-cells σ of X, σ′ of X ′ and τ and τ ′ of Y .

2. Let X be an oriented ball complex. The mapping degrees of the projections
π1 : X ×∆0 → X and π2 : ∆0 ×X → X satisfy

[π1 : ρ, ρ′] = δρ′π1(ρ)

[π2 : ν, ν′] = δν′π2(ν)

for all oriented n-cells ρ of (X ×∆0), ν of (∆0 ×X) and ρ′ and ν′ of X.

Lemma 6.2.22. There are natural isomorphisms

α̃
(X,A,oX),(Y,B,oY )
A : (A∗(Y,B, oY ))∗(X,A, oX)→ A∗((X,A)× (Y,B), oX × oY )

of functors ACCD× oBallop2 × oBallop2 → ACCD that are compatible with µ.

Proof. Let (X, oX) and (Y, oY ) be oriented ball complexes and denote the prod-
uct X×Y equipped with the product orientation by (W, oW ). The isomorphism
of face posets

F(W )→ F(X)×F(Y )

(σ × τ) 7→ (σ, τ)

induces a natural isomorphism of additive categories

α̃X,YA : (A∗(Y ))∗(X)→ A∗(W )
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given by

α̃X,YA

 ⊕
σ∈F(X)

⊕
τ∈F(Y )

M(σ)(τ)

 :=

 ⊕
σ×τ∈F(W )

M(σ)(τ)

 ,

α̃X,YA (φ)σ×τ,σ′×τ ′ := ((φ)σ,σ′)τ,τ ′

for all M ∈ ob((A∗(Y ))∗(X)), φ ∈ Mor((A∗(Y ))∗(X)), τ, τ ′ ∈ F(Y ), and σ, σ′ ∈
F(X).

A straightforward calculation using the incidence relations 3.1 shows that,
for all M ∈ ob((A∗(Y ))∗(X)), the following equality of chain complexes in
B(A∗(W )) holds:

T(W,oW )α̃
X,Y
A (M) = α̃X,YA (T(Y,oY ))(X,oX)(M).

Furthermore, it can be seen using Formula 6.4 that the triangle

T 2
(W,oW )(α̃

X,Y
A (M)) α̃X,YA (T(Y,oY ))

2
(X,oX)(M)

α̃X,YA (M)

e(W,oW )(α̃
X,Y
A (M))

=

α̃X,YA (e(Y,oY ))(X,oX )(M)

commutes in B(A∗(X × Y )), for every M ∈ ob((A∗(Y ))∗(X)). Hence, the

pair (α̃X,YA , id) defines a morphism of ACCDs. We claim that the collection

α = {(α̃X,YA , id)} defines a natural transformation of functors ACCD×oBall×
oBall→ ACCD.

Naturality in the variable A is immediate from definitions and additivity of
F . Moreover, naturality α̃X,YA in the variables X and Y , and its compatibility
with µ can be checked with the aid of Propositions 6.2.16 and 6.2.21.

Lastly, we define the morphisms α̃
(X,A,oX),(Y,B,oY )
A , for arbitrary ball complex

pairs ((X,A, oX) and (Y,B, oY )), by restriction of the morphisms α̃X,YA along the
inclusions (A∗(Y,B))∗(X,A) ⊂ (A∗(Y ))∗(X). It may be seen that these are well-

defined and extend the naturality of α, by using the additivity of α̃X,YA and the
functoriality of the extended functor p̂ of Proposition 6.2.17, respectively.

Corollary 6.2.23. There are natural isomorphisms

α
(X,A),(Y,B)
A : (A∗(Y,B))∗(X,A))→ A∗((X,A)× (Y,B))

of functors ACCD×Ballop2 ×Ballop2 → ACCD, compatible with the unit µ.

Proof. Recall we have fixed a section ω : Ball2 → oBall2. For a given pair of
ball complex pairs (X,A) and (Y,B), let oX , oY and oX×Y denote the orien-
tations of ω(X,A), ω(Y,B) and ω((X,A) × (Y,B)), respectively. The isomor-

phisms α
(X,A),(Y,B)
A are then defined as the composition of the isomorphisms

α̃
(X,A,oX),(Y,B,oY )
A described in Lemma 6.2.22 with the isomorphism of ACCDs

(id∗, G(id)) : A∗((X,A)× (Y,B), oX × oY ) ∼= A∗((X,A)× (Y,B)),

induced from the morphism of oriented ball complex pairs

id : ((X,A)× (Y,B), oX × oY ) ∼= ((X,A)× (Y,B), oX×Y ).
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The conditions of naturality of α and compatibility with µ hold by the corre-
sponding properties of α̃ and the functoriality of the parametrisation operator
p̂.

Lastly, we will prove that the parametrisation operator p is deloopable. In
analogy with the example of ad theories, it will be helpful to introduce auto-
morphisms Σk : ACCD→ ACCD on the category of additive categories with
chain duality that shift the grading in chain duality by an integer k.

Definition 6.2.24. Let (A, T, e) be an additive category with chain duality.
For k ∈ Z, we let ΣkA be the additive category with chain duality (A, Tk, e),
where

Tk := S−k ◦ T : A→ B(A).

Moreover, Σk assigns to a morphism of ACCDs (F,G) : (A, T, e) → (A′, T ′, e′)
the morphism (F, S−kG) : ΣkA→ ΣkA′.

Remark 6.2.25. The minus sign in the definition Tk = S−kT is introduced in
order that the notation Σ agrees with that of Chapter 4; cf. Remark 4.3.9.

Proposition 6.2.26. The functors

Σk : ACCD→ ACCD

are well defined.

Proof. We will begin by showing that the triple (A, Tk, e) defined above is indeed
an additive category with duality, for any given additive category with duality
(A, T, e) and k ∈ Z. Only property (a) of Definition 6.1.2 is not immediately
clear. Let M be an object of A. Then, by definition of the chain duality (T, e),

e(T (M)) ◦ T (e(M)) = idT (M)

is an equality in of morphisms in B(A). Applying the chain suspension functor
S−k to the previous equation yields

S−k
(
e(T (M)) ◦ T (e(M))

)
= S−k

(
idT (M)

)
.

Moreover, functoriality of S−k implies that

S−ke(T (M)) ◦ S−kT (e(M)) = idS−kT (M) .

It is easy to see that S−k commutes with e. Hence, by associativity of compo-
sition, we deduce that

e(Tk(M)) ◦ Tk(e(M)) = idTk(M),

as required.
Next, we consider functoriality of Σk. Let (F,G) : (A, T, e)→ (A′, T ′, e′) be

a morphism of ACCDs. For any object M in A, the chain map

S−kG(M) : S−kTF (M)⇒ S−kFT (M) = FS−kT (M)

is a weak equivalence since S−k preserves weak equivalences.
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Moreover, by the assumption that (T, e) is a chain duality, and the observa-
tion that the functor S−k anticommutes with contravariant functors and natural
transformations thereof (cf. [AFM18, p. 22]), it follows that the following square
commutes in B(A), for every M ∈ ob(A):

S−kT ′S−kFT (A) FT 2(M)

T ′2F (M) F (M).

S−kT ′G(M)

S−kGS−kT (M)

Fe(M)

e′F (M)

We come to the proof of deloopability of the parametrisation operator p on
ACCD.

Proposition 6.2.27. There is a natural isomorphism

(K,κ) : Σ−1A
∼=→
(
A∗(∆1, ∂∆1), T(∆1,∂∆1), e(∆1,∂∆1)

)
of functors ACCD→ ACCD. In particular, the parametrisation operator p is
deloopable.

Proof. Fix an ACCD (A, T, e). Let E denote the unique 1-dimensional cell of
∆1. We define an isomorphism of additive categories

K : A
∼=→ A∗(∆1, ∂∆1)

by formal “suspension”, i.e., K is given by

� K(a) = ⊕σ∈F(∆1)F (a)(σ) where

K(a)(σ) := a, if, σ = E,

K(a)(σ) := 0, else

for all a ∈ ob(A).

� K(f) : K(a)→ K(a′), where

K(f)(τ, τ ′) := f if τ = τ ′ = E,

K(f)(τ, τ ′) := 0, else

for all morphisms f : a→ a′ in A.

Now, for all M ∈ ob(A), let

κ(M) : T(∆1,∂∆1)K(M) ∼= KT−1(M)

be the isomorphism of chain complexes in A∗(∆1, ∂∆1), whose components are
given by

κ(M)nE,E = (−1)n(n−1)/2 idST (M)n−1
,
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for all n ∈ Z. A straightforward inspection then shows that the following
diagram:

T∆1KT−1(M) KT 2
−1(M)

T 2
∆1K(M) K(M)

T∆1κ(M)

κT−1(M)

Ke(M)

e∆1K(M)

commutes in B(A∗(∆1, ∂∆1)), for all M ∈ ob(A).

In summary, Lemmas 6.2.17, 6.2.27, Proposition 6.2.20 and Corollary 6.2.23
together imply that the category ACCD admits the structure of a category
with extended parametrisation structure. We record the result in the following
theorem:

Theorem 6.2.28. The quadruple (ACCD, p, µ, α) defines a category with ex-
tended parametrisation structure with deloopable parametrisation operator.

6.3 Outlook on Symmetric L-Theory of ACCDs

We define symmetric L-theory of additive categories with chain duality in anal-
ogy to Definition 2.3.4 for the case of Waldhausen categories with duality. Note
that this definition agrees with the geometric realisation of Ranicki’s symmet-
ric L-theory functor L0 defined in [Ran92, Definition 13.2] over the category
ACCD.

Definition 6.3.1. Symmetric L-theory of additive categories with chain du-
ality L : ACCD → Top∗ is defined as the parametric realisation of the
symmetric-Poincaré-complexes functor sp, i.e.,

L := P sp .

Remark 6.3.2. We expect that the pair (L, ιsp) is a universal bordism char-
acteristic, and indeed this would follow from [Ran92, Proposition 13.7] which
states that the assignment K 7→ L(A∗(K)), for any fixed ACCD A, is a co-
homology theory over the category of ordered simplicial complexes; bordism
invariance of L is immediate from the homotopy invariance of L.

However, the proof of [Ran92, Proposition 13.7] appears to have a gap: In
[Ran92, Errata p. 140] Ranicki cites [LM14, Remark 16.2] as an ingredient in
the proof. The latter depends on the application of [LM14, Theorem 16.1]
to suitable ad theories of symmetric Poincaré complexes, yet only the case of
additive categories of R-modules for a ring R is considered in [LM14] leaving
the statement of [Ran92, Proposition 13.7] for the general case, i.e., arbitrary
A, open.

In closing, we summarise a number of formal properties of the symmetric-
Poincaré-complexes functor sp towards a proof of universality of the pair (L, ιsp)
following the strategy developed in Chapter 4.

Proposition 6.3.3. The functor sp : ACCD→ Set∗ is absolute.
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Proof. LetK be a ball complex and (A, T, e) be an ACCD. The additive category
A∗(K,K) is by definition trivial, implying that sp(A∗(K,K)) is a point. Hence,
the functor sp is reduced.

Next, consider the following commutative square of pointed sets for a given
inclusion j : A ↪→ X of ball complexes:

sp(A∗(X,A)) sp(A∗(X))

pt = sp(A∗(A,A)) sp(A∗(A)).

sp(j∗)

We claim that the square is a homotopy pullback square. Since the spaces in
the square are discrete and sp(A∗(A,A)) = pt, all we need to show is that
sp(A∗(X,A)) is equal to the fibre of the restriction map

sp(j∗) : sp(A∗(X))→ sp(A∗(A)).

Firstly, notice that sp(A∗(X,A)) ⊆ sp(A∗(X)) because the chain duality on
A∗(X,A) is defined to be the restriction of the chain duality on A∗(X). Secondly,
a chain complex C ∈ B(A∗(X)) satisfies j∗C = 0 as chain complexes in A∗(A),
precisely when C ∈ B(A∗(X,A)). It follows that (C, φ) maps to the basepoint
in sp(A∗(A)) if and only if (C, φ) ∈ sp(A∗(X,A)).

It is well known that the functor sp is Kan (e.g., see [Ran92, Prop. 13.4]).
The proof of the Kan condition of the semi-simplicial sets [n] 7→ sp(A∗(∆n))
for a given ACCD A is verified there by observing that its set of n-simplices,
sp(A∗(∆n)), is isomorphic to the set of semi-simplicial maps ∆n → sp(A∗(∆•)),
for all n ∈ N (cf. Proposition 4.5.1), and by showing that the restriction maps

sp(A∗(∆n))→ sp(A∗(Λnk ))

induced by the elementary expansions Λnk → ∆n are surjective, for all n ≥ 0
and 0 ≤ k ≤ n.

Based on this observation and the previous proposition, we expect that the
symmetric-Poincaré-complexes functor sp is both local and surjective on expan-
sions.
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[KMM13] P. Kühl, T. Macko, and A. Mole. The total surgery obstruction
revisited. Münster Journal of Mathematics, 6:181–269, 2013.

[Lan78] S. Mac Lane. Categories for the Working Mathematician, vol-
ume 5 of Graduate Texts in Mathematics. Springer-Verlag New
York, second edition, 1978.

[LM13] G. Laures and J. E. McClure. Commutativity properties of Quinn
spectra, 2013. arXiv:1304.4759.

[LM14] G. Laures and J. E. McClure. Multiplicative properties of Quinn
Spectra. Forum Mathematicum, 26(4):1117–1185, 2014.

[LW69] A. T. Lundell and S. Weingram. The Topology of CW Com-
plexes. The University Series in Higher Mathematics. Springer,
New York, NY, 1969.

[Mas91] W. S. Massey. Singular Homology Theory. Graduate Texts in
Mathematics. Springer-Verlag, 1991.

[Mil57] J. Milnor. The Geometric Realisation Of A Semi-Simplicial Com-
plex. Annals of Mathematics, 65(2):357–362, March 1957.

[Mis71] A. S. Mishchenko. Homotopy invariants of multiply connected
manifolds. III. Higher signatures. Izv. Akad Nauk SSSR Ser. Mat.,
35(6):1316–1355, 1971.

[MV15] B. Munson and I. Volic. Cubical Homotopy Theory. New Math-
ematical Monographs (25). Cambridge University Press, Cam-
bridge, 2015.

[Nic82] A. J. Nicas. Induction Theorems for Group of Homotopy Manifold
Structures. Mem. Amer. Math. Soc., 39(267):vi+108, 1982.

99

http://www.mat.savba.sk/~macko/surgery-book.html
https://arxiv.org/abs/1912.10544
https://arxiv.org/abs/1304.4759


[Qui67] D. Quillen. The Geometric Realisation of Kan Fibrations are Serre
Fibrations. Proc. Am. Math. Soc., 1967.

[Qui70] F. Quinn. A geometric formulation of surgery. In Topology of Man-
ifolds (Proc. Inst., Univ. of Georgia, Athens, Ga., 1969), pages
500–511. Markham, Chicago, Ill., 1970.

[Qui73] D. Quillen. Higher algebraic K-theories: I. In Higher K-Theories,
volume 341 of Lecture Notes in Mathematics. Springer-Verlag
Berlin-Heidelberg, 1973.

[Qui95] F. Quinn. Assembly maps in bordism-type theories. In Ferry,
Ranicki, and Rosenberg, editors, Novikov Conjectures, Index The-
orems and Rigidity, Vol. 1 (Oberwolfach, 1993), volume 226 of
London Math. Soc. Lecture Notes Ser., pages 201–271. Cambridge
Univ. Press, Cambridge, 1995.

[Ran92] A. A. Ranicki. Algebraic L-Theory and Topological Manifolds, vol-
ume 102 of Cambridge Tracts in Mathematics. Cambridge Uni-
versity Press, 1992.

[RS71] C. P. Rourke and B. J. Sanderson. ∆-Sets I: Homotopy Theory.
The Quarterly Journal of Mathematics, 22(3):321–338, September
1971.

[RS72] C. P. Rourke and B. J. Sanderson. Introduction to Piecewise-
Linear Topology. Springer-Verlag, 1972.

[RW12] A. A. Ranicki and M. Weiss. On the Algebraic L-theory of ∆-sets.
Pure and Applied Mathematics Quarterly, 8(1), 2012.

[Seg74] G. Segal. Categories and Cohomology Theories. Topology, 13:293–
312, 1974.

[Ste17] W. Steimle. On The Universal Property of Waldhausen’s K-
Theory, 2017. arXiv:1703.01865.

[Ste18] W. Steimle. An Additivity Theorem For Cobordism Categories,
2018. arXiv:1805.04100.

[Swi02] R. M. Switzer. Algebraic Topology-Homotopy and Homology, vol-
ume 212 of Classics in Mathematics. Springer-Verlag Berlin Hei-
delberg, 2002.

[Wal85] F. Waldhausen. Algebraic K-Theory of Spaces. Algebraic and
Geometric Topology, pages 318–419, 1985.

[Wal99] C. T. C. Wall. Surgery on compact manifolds, volume 69 of Math-
ematical Surveys and Monographs. American Mathematical So-
ciety, Providence, RI, second edition, 1999. Edited and with a
foreword by A. A. Ranicki.

[Wei09] M. Weiss. Visible L-Theory. Forum Mathematicum, 4:465–498,
2009.

100

https://arxiv.org/abs/1703.01865
https://arxiv.org/abs/1805.04100


[Wei13] C. A. Weibel. The K-Book: An Introduction to Algebraic K-
Theory, volume 145 of Graduate Studies in Mathematics. Ameri-
can Mathematical Society, Providence, RI, 2013.

[Whi78] G. W. Whitehead. Elements of Homotopy Theory, volume 61
of Graduate Texts in Mathematics. Springer-Verlag, New York,
1978.

[WW88] M. Weiss and B. Williams. Automorphisms of manifolds and al-
gebraic K-theory. I. K-Theory, 1(6):575–626, 1988.

[WW89] M. Weiss and B. Williams. Automorphisms of manifolds and al-
gebraic K-theory. II. J. Pure Appl. Algebra, 62(1):47–107, 1989.

[WW98] M. Weiss and B. Williams. Duality in Waldhausen Categories.
Forum Mathematicum, 10(5):533–603, 1998.

[WW00] M. Weiss and B. Williams. Products and Duality in Waldhausen
Categories. Transactions of the American Mathematical Society,
352(2):689–709, 2000.

[WW01] M. Weiss and B. Williams. Automorphisms of manifolds. In
Surveys on surgery theory, Vol. 2, volume 149, pages 165–220.
Princeton Univ. Press, Princeton, NJ, 2001.

[WW14] M. Weiss and B. Williams. Automorphisms of manifolds and alge-
braic K-theory: Part III. Memoirs of the American Mathematical
Society, 231(1084):vi+110, 2014.

101


	Introduction
	I Universality and Main Results
	An Abstract Universality Theorem
	Definitions
	Parametrisation Structures and Parametric Realisation
	Bordism Characteristics

	The Universality Theorem
	First Examples

	Application I: A Universal Property of Symmetric L-Theory
	Waldhausen Categories with Duality
	The Parametrisation Structure
	Symmetric Poincaré objects and L-Theory
	Characterisation of the Weiss-Williams map

	Application II: A Universal Property of Quinn's Bordism Machine
	The Setting of Ad Theories
	Ball Complexes and Associated Cell Posets
	Categories Parametrised over Ball Complexes
	Ad Theories

	Parametrisation in the Category of Ad theories
	The Ad Structure on Categories of Preads
	Functoriality of Parametrisation
	Properties of Parametrisation

	Closed Objects and Quinn's bordism machine
	Definitions
	Universality of Quinn's machine



	II A Study of Extended Parametrisation
	The Abstract Universality Theorem Revisited
	Extended Parametrisation Structures
	Two Sufficient Conditions for Bordism Invariance
	Stable and Linear functors
	A Criterium For Linearity
	A Specialised Universality Theorem

	Example I: Properties of Quinn's Bordism Machine
	Further Properties of Parametrisation
	Properties of Closed Objects and Quinn's Machine

	Example II: Symmetric L-Theory of Additive Categories with Chain Duality
	Chain Dualitites and Symmetric Poincaré Complexes
	The Extended Parametrisation Structure
	ACCDs Parametrised over a Ball Complex
	Functoriality of Parametrisation
	Properties of Parametrisation

	Outlook on Symmetric L-Theory of ACCDs

	Bibliography


