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1. Introduction 

The stock market is characterised by nonlinearities, discontinuities, 
and multi-polynomial components because it continuously interacts 
with many factors such as an individual company’s news, political 
events, macro economic conditions, and general supply and demand, 
etc. (Göçken, Özçalıcı, Boru, & Dosdoğru, 2016). The non-stationary 
nature of the stock market is supported by a widely accepted, but still 
hotly contested economic theory Efficient Market Hypothesis (Fama, 
1970Fama, 1991) which states that asset prices fully reflect all available 
information and the market only moves by reacting to new information. 
Such a theory implies that the stock market behaves like a martingale 
and knowledge of all past prices is not informative regarding the 
expectation of future prices. 

Ball and Brown (Ball & Brown, 1968) were the first to note that after 

earnings are announced, estimated cumulative abnormal returns 
continue to drift up for firms that are perceived to have reported good 
financial results for the preceding quarter and drift down for firms 
whose results have turned out worse than the market had expected. The 
discovery of Post Earnings Announcement Drift (PEAD), which is a 
violation of a semi-strong Efficient Market Hypothesis, seems to suggest 
that while stock markets are generally efficient, there may be informa-
tion leakages around the announcement dates, coupled with post- 
earnings drift, resulting in price movement anomalies. It also seems to 
suggest that past stock price information or other past economic or 
financial information can potentially be used to predict price movement 
following a significant economic event such as an earnings 
announcement. 

Research on Post Earnings Announcement Drift proliferated in the 
late 1980s and 1990s. Fama and French (Fama & French, 1993) show 
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that average stock returns co-vary with three factors, namely, the mar-
ket risk factor, the book-to-market factor, and the size factor. Bhushan 
suggests that the existence of sophisticated and unsophisticated in-
vestors, transaction costs, and economies of scale in managing money 
can explain the market’s delayed response to earnings (Bhushan, 1994). 
We notice a lot of previous research would pool companies with nega-
tive or positive earnings surprises when measuring its effect on 
abnormal returns and regress the absolute value of earnings surprise as 
well as other factors against the absolute value of abnormal return (Qiu, 
2014). However, we have found that stock markets do not just react 
symmetrically to negative and positive earnings surprises and there are a 
lot more factors in play that drive the near term risk adjusted returns of a 
stock following an earnings release. 

Rather than trying to analyse the link between PEAD and economic 
and accounting factors as commonly seen in the literature, we manage to 
leap straight to the more important goal of predicting the direction of 
PEAD by using machine learning models. In this process we have 
overcome several constraints commonly seen in the previous research: 
we are including a much wider range of factors including both funda-
mental and technical/momentum factors; we achieve a higher level of 
generality without having to pre-group companies by the value of their 
earnings surprises or other attributes prior to the analysis or prediction 
(subsample analysis) which is common in the literature (Baker, Ni, Saadi, 
& Zhu, 2016). Additionally we have chosen 1106 stocks that are or once 
existed as components of the Russell 1000 index (which tracks 
approximately the 1000 largest public companies in the US) during the 
chosen time period between 1997 and 2018. Our selection includes 
companies that either went bankrupt or dropped out of Russell 1000, 
significantly reducing survivorship bias in our training data. This test 
population is larger than most earlier studies of similar nature. For 
example, Beyaz and colleagues only chose 140 stocks from S&P500 
when they attempted to forecast stock prices both six months and a year 
out based on fundamental analysis and technical analysis (Beyaz, 
Tekiner, Zeng, & Keane, 2018), and Bradbury used a sample of only 172 
firms to research the relationships among voluntary semi-annual earn-
ings disclosures, earnings volatility, unexpected earnings, and firm size 
(Bradbury, 1992). Our results generalise better with the universe of 
stocks on the US markets. 

Recognising the highly nonlinear nature of stock price movements, 
we have chosen to run our experiments using XGBoost which is a state- 
of-the-art supervised learning model. We divide the training data into in- 
sample and out-of-sample periods of varying lengths and use part of the 
in-sample data set to optimise the model’s hyperparameters before 
training it. Our earlier experiments show that grid search (Liashchynskyi 
& Liashchynskyi, 2019) as a traditional way of finding an optimal 
parameter set is inexhaustive and can be very slow. Instead we have 
chosen to use the highly adaptable Genetic Algorithm (GA) (Deng, 
Yoshiyama, Mitsubuchi, & Sakurai, 2015) to optimise our models. We 
recognise hyperparameter optimisation is a delicate step and searching 
with a limited set of parameters will result in a non-optimal model which 
will not able to fit the essential structure of the training data set. To 
avoid this potential problem, we have chosen to use a broad value range 
and a small granular step for each of the hyperparameters. A 5-fold cross 
validation (CV) is employed within each GA iteration during the 
optimisation. 

Our machine learning-based approach is in direct contrast to most 
earlier financial research work in the literature as typified by (Kim & 
Kim, 2003), which sought to devise different portfolios a priori by 
different factor characteristics and tried to analyse and make sense of the 
link between portfolio returns and the corresponding economic factors 
that segregated the portfolios. Instead, our model directly learns the 
intrinsic link between the input feature space and stock price returns. 
We find that stocks that belong to different industrial sectors can have 
their PEAD movements driven by different primary factors and such 
factors can also change from quarter to quarter. Despite such differences 
and changes in the driving factors, a GA optimised XGBoost model is 

able to pick up the underlying signals embedded in our engineered 
features and forecast the 30-day post earnings drift direction with 
reasonable accuracies. We also study the possibility of grouping stocks 
into portfolios according to their predicted levels of Cumulative 
Abnormal Return (CAR). We have found that ranking the out-of-sample 
stocks by their predicted 30-day abnormal returns could help form 
portfolios which consistently offer higher positive returns and lower 
negative returns, a result that could potentially form the basis of further 
usage in market neutral long-short trading strategies. In the end, we also 
look at the challenges of applying predictive models in real life markets 
due to ever changing market prices and asymmetrical level of infor-
mation access by certain market participants. We share a tactic that can 
turn a model’s forecasts into actionable signals. 

2. Related work 

Since the discovery of Post Earnings Announcement Drift as a stock 
market anomaly by Ball and Brown (Ball & Brown, 1968) who docu-
mented the return predictability for up to two months after the annual 
earnings announcements, extensive research has been carried out in the 
literature though with varying results. For example, Foster, Olsen, and 
Shevlin (Foster, Olsen, & Shevlin, 1984) found that systematic post- 
announcement drifts in security returns are only observed for a subset 
of earnings expectations models when testing drifts in the [+1, +60] 
trading day period. In recent years, the literature has become less 
limited to the specific study of PEAD and instead put more focus on the 
direct predictions of stock price movement using stocks’ fundamental 
and/or technical information, again with varying rates of success. 
Malkiel studied the impact of price/earnings (P/E) ratios and dividend 
yields on stock prices using the Campbell-Shiller model. He conceded his 
work demonstrating that exploitable arbitrage did not exist for investors 
to earn excess risk-adjusted returns and he could not find a market 
timing strategy capable of producing returns exceeding a buy-and-hold 
on a broad market index (Malkiel, 2004). Olson and Mossman on the 
other hand not only showed that an artificial neural network (ANN) 
outperforms traditional regression based methods when forecasting 12- 
month returns by examining 61 financial ratios for 2352 Canadian 
stocks, but, more importantly, shows that by using fundamental metrics 
sourced from earning reports, they were able to achieve excessive risk- 
adjusted returns (Olson & Mossman, 2003). 

Other authors went beyond metrics from earnings reports and 
attempted stock forecast using both fundamental and technical analysis. 
Sheta et al. explored the use of ANNs, Support Vector Machines (SVMs), 
and Multiple Linear Regression for prediction of S&P500 market index. 
They selected 27 technical indicators as well as macro economic in-
dicators and reported that SVM contributed to better predictions than 
the other models tested (Sheta, Ahmed, & Faris, 2015). Hafezi et al. 
considered both fundamental and technical analyses in a novel model 
called Bat-neural Network Multi-agent System when forecasting stock 
returns. The resulted mean absolute percentage error showed that the 
new model performed better than a typical Neural Network coupled 
with a GA (Hafezi, Shahrabi, & Hadavandi, 2015). Alternative data are 
becoming popular, too. Solberg and Karlsen investigated the possibility 
to predict the direction of stock prices using scripts of earnings confer-
ence calls. By analysing 29330 different earnings call scripts between 
2014 and 2017 using four different machine learning algorithms they 
managed to achieve a classification error rate of 43.8% using logistic 
regression and beat the S&P500 benchmark using both logistic regres-
sion and gradient boosting. Their results showed that earnings calls 
contain predictive power for the next day’s stock price direction post 
earnings release (Solberg & Karlsen, 2018). 

Researchers also studied how machine learning would directly 
benefit financial trading. Through a series of applications involving 
hundreds of predictors and stocks, Huck looked at how to apply some of 
the state-of-the-art machine learning techniques to manage a long-short 
portfolio. In that process he also explored a series of practical questions 
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with regard to the predictor data and was able to show that the tech-
niques he examined generated useful trading signals for portfolios with 
short holding periods (Huck, 2019). Sant’Anna and Caldeira applied 
Lasso regression for index tracking and long-short investing strategies. 
They used stocks from three benchmarks, S&P100, Russell 1000, and the 
Ibovespa Index from Brazil from 2010 to 2017 to assess the quality of 
Lasso-based tracking portfolios. By using co-integration as a benchmark 
method to solve the same problems, they demonstrated that the Lasso 
regression based approach was able to form portfolios that produced 
similar returns compared to using co-integration, but incurred signifi-
cantly less transaction costs (Sant’anna, Caldeira, & Filomena, 2020). 

As a model that has only recently burst on the scene, there is limited 
study of XGBoost in financial applications. Chatzis et al. (Chatzis, Sia-
koulis, Petropoulos, Stavroulakis, & Vlachogiannakis, 2018) evaluate 
the possibility of a market crash over a 1-day and 20-day horizon across 
the global markets. By using a vast set of data from global stock markets, 
bond markets and FX markets, the paper explores a large set of super-
vised learning models including Logistic Regression, Decision Trees, 
Random Forest, Support Vector Machines, Deep Neural Networks, and 
XGBoost. The paper draws conclusions by declaring the superiority of 
XGBoost over others by examining the forecast results on stock returns 
through a list of statistical measurement metrics. Li and Zhang (Jidong & 
Ran, 2018) use XGBoost to dynamically predict the value of a set of 
seven factors that contribute a stock selection process. Dynamically 
generated factors are then used to select a portfolio of different stocks 
whose return is measured over a multiple year period. Portfolios of 
dynamically selected stocks are shown to perform better than bench-
mark portfolios. 

The only machine learning-based study on PEAD known to the au-
thors was carried out by Schnaubelt et al. (Schnaubelt & Seifert, 2020) 
which used Random Forecast, another decision tree-based supervised 
learning model. While presenting a similar approach in selecting port-
folios through ranking stocks by their model-predicted risk adjusted 
returns, the paper didn’t delve much on benchmarking the model’s 
general classification prowess in such an application context nor 
showing great details in model hyperparameter optimization which is a 
key step in model setup. On the other hand, we justify the suitability of 
taking the machine learning approach in PEAD studies by showcasing a 
detailed system/model setup as well as granular forecasting results at 
both the single stock and portfolio levels, accompanied by analysis on 
sector-specific driving factors. We hope to use this paper to define a 
benchmark approach in carrying out post earnings stock movement 
studies using machine learning. 

3. Model features generation 

We have chosen to use 1106 US companies in the Russell-1000 index 
in total. The data time frame is between the first financial quarter of 
1997 (1997 Q1) and the fourth financial quarter of 2018 (2018 Q4). The 
model output is the 30 day Cumulative Abnormal Return post earnings 
release of each individual stock and the input space consists of the 
following set of unadjusted data which we have sourced from 
Bloomberg: 

• Financial statements data 
• Earnings Surprise data 
• Momentum indicator data 
• Short interest data 

In total, we have sourced 97901 quarterly financial statements from 
our chosen companies over the test time frame. The final population of 
valid data points used for training and testing whose input features 
include both financial statement metrics and other economic metrics 
stands close to 50,000, depending on the test cases. There are a number 
of reasons for the reduced population: (a) there are no Earnings data, 
Short interest data or other input feature data on Bloomberg for a good 

number of historical financial quarters within the test time frame; (b) we 
have discarded companies in certain historical quarters when the 
earnings reports suffered badly from missing data; (c) We have been 
very careful with whether an earnings report was released before market 
opened, after market closed or during trading hours as such a difference 
is significant as we would need to alter the forecast starting point 
accordingly. Bloomberg is missing the release time of day for some 
financial quarters in earlier years, and we have discarded those quarters. 

3.1. Financial statements data 

As shown in Table 1, twenty-nine metrics from earnings reports have 
been chosen to create training data. 

Based on the reported value of these metrics, we have engineered 
new features as quarterly change and yearly change of each of these 
financial metrics. 

3.2. Earnings Surprise data 

Earnings Surprise represents how much a company’s actual reported 
Earnings Per Share (EPS) is more (or less) than the average of a selected 
group of stock analysts’ estimates on the same quarter’s EPS. We are not 
calculating Earnings Surprise as a %change between the reported EPS 
and market estimated EPS because (a) %change is very volatile when a 
EPS level is close to zero and a small change can lead to a misleadingly 
large %change, and (b) we would like to avoid the change-of-signs 
problem. 

We have subsequently engineered the following three features 
related to Earnings Surprise: 

• Current quarter’s Earnings Surprise (reported EPS minus market 
estimated EPS); 

• Difference between current quarter’s Earnings Surprise and that of 
the previous quarter; 

• Difference between current quarter’s Earnings Surprise and the 
average Earnings surprise of the preceding three quarters; 

3.3. Momentum indicators 

We have chosen the following technical/momentum indicator values 
calculated on the same day an individual company’s quarterly earnings 
data was released: 

• 9-day Relative Strength Index (RSI) 
• 30-day Relative Strength Index 
• 5-day Moving Average/50-day Moving Average 
• 5-day Moving Average/200-day Moving Average 
• 50-day Moving Average/ 200-day Moving Average 

Table 1 
Earnings report metrics chosen as input features. 

Cash Operating Margin 
Cash from Operating Activities Price to Book Ratios 
Cost of Revenue Price to Cashflow Ratios 
Current Ratio Price to Sales Ratios 
Dividend Payout Ratio Quick Ratio 
Dividend Yield Return On Assets 
Free Cash Flow Return On Common Equity 
Gross Profit Revenue 
Income from Continued Operations Short Term Debt 
Inventory Turnover Total Asset 
Net Debt to EBIT Total Asset 
Net Income Total Debt to Total Assets 
Operating Expenses Total Debt to Total Equity 
Operating Income Total Inventory 

Total Liabilities 
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We believe all these indicators should in a way measure how a stock’s 
recent short term movements compare to its historical movements 
further back in time. The inclusion of momentum indicators is motivated 
by the intention to allow the prediction process of future stock move-
ments to take into account a stock’s recent movement trend as infor-
mation leakage does happen prior to financial reportings. We have 
engineered the three ratios of short term moving averages to near or 
long term moving averages as proxies to the golden cross indicators. 

3.4. Short interest data 

Short interest ratio is released for most companies twice a month and 
is calculated by dividing the number of shares short in a stock by the 
stock’s average daily trading volume. The short interest ratio is a good 
gauge on how heavily shorted a stock may be versus its trading volume. 
The most recent short interest ratio for each company prior to its 
earnings release is sourced as an input feature to the model for that 
company. 

4. Data pre-processing 

With totally 1106 companies involved over 21 years, there is a lot of 
data representing input features for each company at each quarter. In 
order for them to be understood by the model, we put them into a 
matrix-like data structure A ∈ Mm×n(R), where each of the m rows rep-
resents a n dimensional training data point, indexed by the pairing of a 
company name and a historical quarter, and each column holds data of 
the same feature from all the data points. 

Before we put the data of all the companies and of all the quarters 
into a matrix, we pre-process each company’s data to deal with outliers 
and to standardise data of every company. Firstly, we employ Winsor-
isation (Duan & Dunlap, 1998) to reduce the number of outliers present 
in the input features. This is carried out on the feature data of each in-
dividual company. Secondly, we standardise a selective group of fea-
tures of each company. Every company’s standardised features will then 
be stacked back into a full training data set. The pre-processing process 
is illustrated in Fig. 1. 

5. Models and methods 

5.1. Extreme Gradient Boosting 

Extreme Gradient Boosting (XGBoost) is a scalable machine learning 
system for tree boosting invented by Tianqi Chen (Chen & Guestrin, 
2016), which has gained much prominence in recent years. It distin-
guishes itself from other existing tree boosting methods (Tyree, Wein-
berger, Agrawal, & Paykin, 2011; Ye, Chow, Chen, & Zheng, 2009) by 
having cache-aware and sparsity-aware learnings. The former technol-
ogy gives the system twice the speed against running a non-cache-aware 
but otherwise identical greedy tree splitting algorithm, and the latter 
gives an amazing 50 times speed boosting against a naive implementa-
tion handling an Allstate-10k dataset (Chen & Guestrin, 2016). More 
importantly, XGBoost has achieved algorithmic optimisations by intro-
ducing a regularised learning objective within a tree structure which 
helps achieve smart tree splitting and branch pruning. 

For a data set in matrix form A ∈ Mm×n(R) with m data points and n 
features, a tree ensemble model uses K base leaner functions to predict 
the output: 

ỹi = ϕ

(

xi

)

=
∑K

k=1
fk

(

xi

)

, fk ∈ F, (1) 

where F is the space of regression trees. Each hypothesis fk corresponds 
to an independent tree structure q with leaf scores ω. XGBoost utilises 
regression trees each of which contains a score on each of its leaves. 
These scores help form the decision rules in the trees to classify each set 
of inputs into leaves and calculate the final predicted output by summing 
up the scores in the related leaves. Unlike other standard gradient 
boosting models such as AdaBoost and GBM which do not intrinsically 
perform regularisation, XGBoost minimises a regularised loss function in 
order to learn the set of functions: 

L

(

ϕ

)

=
∑

i
ℓ
(

ŷi , yi

)

+
∑

k
Ω

(

fk

)

. (2) 

Here, ℓ is a differentiable convex loss function for the model output 

Fig. 1. Steps of Data Pre-processing. 
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and the regularisation term is defined as (though not limited to) Ω (f) =

γT + 1
2 λ
⃒
⃒
⃒
⃒

⃒
⃒
⃒
⃒ω
⃒
⃒
⃒
⃒|

2, which reduces the chance of overfitting. As in a typical 

gradient tree boosting model, a new base learner regression tree fi which 
most minimises the loss function in Eq. (2) is greedily and iteratively 
added to the final loss function. Let ŷi,t be the model output of the i-th 
instance at the t-th iteration the loss function can be re-written as 

Lt

(

ϕ

)

=
∑

i,k
ℓ
(

yi, ŷi,t−1 + ft

(

xi

))

+
∑

k
Ω

(

fk,t

)

. (3) 

By taking the Taylor expansion on this loss function up to the second 
order and removing the constant terms as a result of the expansion the 
loss function can be simplified to: 

Lt

(

ϕ

)

=
∑T

j=1

[

Gjωj +
1
2

(

Hj + λ

)

ω2
j

]

+ λT , (4) 

where 

Gj =
∑

i∈Ij

gi

Hj =
∑

i∈Ij

hi

Ij = {i|q(xi) = j}

gi = ∂̂yi,t−1
ℓ
(
yi, ŷi,t−1

)
hi = ∂

ŷi,t−1
2
ℓ
(
yi, ŷi,t−1

)
.

Here, T is the number of leaves in the tree. With ωj being independent 
with respect to others, Tianqi (Chen & Guestrin, 2016) has proven that 
the best ωj for a given tree structure q(x) should be 

ω*
j = −

Gj

Hj + λ
, (5) 

which in turn makes the objective function come to its final form: 

L*
j = −

1
2
∑T

j=1

G2
j

Hj + λ
+ γT. (6) 

Lsplit =
1
2

[
(∑

i∈IL

gi
)2

∑

i∈IL

hi + λ
+

(∑

i∈IR

gi
)2

∑

i∈IR

hi + λ
+

(∑

i∈I
gi
)2

∑

i∈I
hi + λ

]

−γ

(7) 

Ideally, the model would enumerate all possible tree structures with 
a quality score and pick the best one to be added iteratively. In reality, 
this is intractable and optimisation has to be executed one tree level at a 
time. This is made available by the final form of the loss function, as the 
model uses it as a scoring function to decide on the optimal leaf splitting 
point. Assume that IL and IR are the instance sets of left and right nodes 
after the split. Letting I = IL ∪ IR, the scoring function for leaf splitting is 
Eq. (7). 

These scores are then used by a method called the exact greedy al-
gorithm to enumerate all the possible splits for continuous features, 
allowing each level of a tree to be optimised and the overall loss function 
to be minimised in the process. When deployed on a distributed platform 
XGBoost employs approximate algorithms instead to alleviate the huge 
memory consumption demanded by the exact greedy algorithm 
although this is not needed in our experiments which run on a single 
machine. 

5.2. Hyperparameter optimisation 

Model optimisation is one of the most important steps in ensuring the 

model output can meaningfully capture the underlying dynamics of the 
dependent variable. In search of optimal hyperparameter sets, we 
initially experimented a more straightforward approach of grid search 
but found it less effective in its performance and inexhuastive in the 
search results. GA as an adaptable and easily extensible heuristic opti-
misation method is chosen instead to carry out this task. Table 2 gives 
the list of model hyperparameters we have put through GA. Before we 
start the optimisation process, we first split the population of data into 
training data and test data. Selection of the out-of-sample test data 
varies and depends on the nature of a test which will be explained in 
subsequent sections. It is the training data that we use to optimise the 
model. We use 5-fold cross validation to calculate the fitness value on a 
particular set of hyperparameters examined by the GA. To do that we 
split the training data into five equal groups, use four groups to train the 
model and calculate the fitness value using the last group (validation). 
This process is repeated five times iteratively on each of the five groups 
and the final fitness value is the averaged fitness of the five iterations. 

To optimise the model, each hyperparameter is randomly initialised 
according to its own valid range of values. This initialisation is repeated 
40 times so that we have 40 sets of randomly initialised hyper-
parameters to start the GA process with. Each set is called a population, 
and each hyperparameter within a set is called a chromosome. All of the 
40 populations are considered to be part of the current generation. The 
GA process carries out a 5-fold cross-validation on a model using each of 
the 40 populations of parameters and when finished, keeps the 20 
populations that have produced the smallest fitness values in the cross 
validation step. These 20 sets or populations of hyperparameters are 
considered to have performed better in forecasting post-announcement 
drifts with the current model than the 20 discarded ones. The 20 bet-
ter populations are then used to cross-breed into 20 new populations and 
in this process mutation is allowed to happen to the cross-bred pop-
ulations, i.e., chromosomes in the 20 newly created populations are 
allowed to randomly change value following a predefined level of 
probability. At the end of this process, we have produced a new and 
potentially better set of 40 populations of hyperparameters and we call 
them the new generation. The new generation are then fed through a 
second iteration of the GA process until eventually the minimum fitness 
value produced by the cross-validation step no longer changes its value 
within tolerance and at this point we have arrived at the optimal set of 
hyperparameters which produces the smallest fitness value when being 
used in the current model. Fig. 2 shows how GA and Cross Validation 
work together to produce the set of hyperparameters of each model 
which result in the highest prediction accuracy (smallest fitness value) 
on the validation set. 

6. Results and analysis 

All of our experiments centre around the 30 day post-earnings Cu-
mulative Abnormal Return (CAR) as a measure of risk adjusted stock 
price return. An abnormal return is how much the actual return of a 
security is above its expected rate of return. 

ARi(t) = ri(t) −E(ri(t)) (8) 

where ARi(t) is the one-day abnormal return for company i on day t, ri(t)
is the actual one-day stock return and E(ri(t)) is the expected one-day 
return of stock i. As explored by Kim (Kim & Kim, 2003), there is a 

Table 2 
XGBoost hyperparameters optimised by GA  + CV. 

Hyper Parameters 

Gamma 
Max depth 
Sub sample 

Learning Rate 
Minimum child weight 
Column sample by tree 
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variety of ways of evaluating the expected return including using 
quantitative models such as the one-factor CAPM model (Sharpe, 1964) 
and the Fama French three-factor model (Fama & French, 1993). In our 
experiments, we choose to use the CAPM model to calculate each stock’s 
expected return which is defined as: 

E
(
ri
)
= rf + βi

(
E
(
rm
)
− rf

)
(9) 

where rf is the risk free rate and E(rm) is the expected return of the 
market. We source historical 10Y U.S. Treasury Yields and return of the 
S&P500 index SPX from Bloomberg at the time of each earning event 
and use them to estimate rf and E(rm) respectively. The betai of each 
company, which measures a company’s systematic risk in comparison to 
the market as a whole, is also sourced from Bloomberg on each historic 
earnings reporting date. 

Consequently, our model output for stock i at time t (one of the many 
earnings release dates), which is the cumulative abnormal return from 
T1 to Tn, is defined below. Throughout our experiments we’ve fixed n to 
30 although other values of n could be chosen to conduct more analysis. 
We assume a company’s beta and the 10Y Treasury yield remain static 
during the 30-day holding period over which period of time the CAR is 
calculated. 

CARi

(

T1,Tn

)

=
∑Tn

t=T1

(

ARi

(

t

))

=
∑Tn

t=T1

(

ri

(

t

)

−E

(

ri

(

t

)))

(10) 

6.1. Single Stock Forecast 

In this experiment, we have chosen stocks that filed for earnings with 
SEC in the four quarters in each financial year from 2015 to 2018 as our 
out-of-sample test population. That means, we first run a forecast on 

movement direction of all the stocks that reported earnings in 2015 
while using all the data prior to 2015 as training data. Once done, we 
move on to repeat the same exercise on stocks that reported in 2016, etc. 
It should be noted that a company that filed in each of the 4 quarters of a 
financial year is considered as four independent data points since the 
only input data consumed by the XGBoost  + GA model at any quarter 
are the near term financial signals as well as financial statement data of 
this stock in that particular quarter. 

Separately, the same test as described above is also repeated on 
stocks belonging to a particular industrial sector. Bloomberg categorises 
US-listed companies into nine sectors: Industrial, Basic Materials, Con-
sumer Cyclical, Consumer Non-Cyclical, Financial, Technology, Communi-
cations, Energy, and Utilities. Our chosen companies and their data are 
divided up into 9 groups by industrial sector so that we can run the same 
tests per industrial group. 

Each test whether on all the stocks or stocks belonging to a particular 
industrial sector are run 100 times. In each run, the same set of training 
data are used to train the XGBoost model whose performance is verified 
using the same set of out-of-sample test data. This generates 100 sets of 
results for each test from which the averaged classification accuracy on 
the drift direction (up or down) are calculated. Separately, a Multilayer 
perceptron (MLP) network, as one of the most commonly seen super-
vised learning models, has been chosen as our benchmark network and 
the same training and test process is repeated on the MLP network. The 
MLP’s hyperparameters including the learning rate, number of hidden 
neurons, number of hidden layers, and number of epoches have all been 
tuned in the same Genetic Algorithm optimizer in the same way the 
XGBoost model is optimized. 

Fig. 3 presents the averaged classification success rate of 100 runs 
from each experiment using GA optimized XGBoost and MLP. The suc-
cess rate is based on the accuracy of a model correctly predicting the 

Fig. 2. Hyperparameter Optimisation using GA  + CV. 

Table 3 
Averaged classification success rates of 100 runs from 2015 to 2018 using GA optimized XGBoost and MLP. The success rate is based on the accuracy of a model 
correctly predicting the movement direction (up or down) of a stock’s 30-day PEAD following an earning event. 
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movement direction (up or down) of a stock’s 30-day PEAD following an 
earning event. Our results clearly suggest that the XGBoost-GA model 
has strong prediction power overall and performs better than the 
benchmark MLP model (also optimized by GA). Our model is able to pick 
up the patterns in the input data space when there is clear driver in it. It 
is particularly interesting to see the model performs with a varying de-
gree of success going from sector to sector. Given that the same set of 
input features is used across the board, there is clear evidence that our 
data is more impactful to some sectors than others. There are probably 
two reasons that can explain this observation. First, there are other data 
that are not included in our feature space that does affect stock move-
ments following earnings release. Second, stocks from different sectors 
are subject to different drivers, i. e., investment personnel/computer 
trading algorithms look for signals in different financial metrics for 
different sectors. Even when the same driving features are examined, the 
implicit feature weighting must be different for different sectors. 

The first reason is true, as there are impactful data that have yet to be 
included in our research, such as management’s guidance, recent re-
visions of analysts’ price forecast, other text information carried in 
financial reports, and meeting minutes with analysts, etc. It is entirely 
possible that certain stocks, or stocks from certain sectors are more 
susceptible to those data and their absence reduces the model’s pre-
diction accuracy on such stocks’ reaction to their earning events. 

We have taken a closer look at the second possible cause and we find 
indeed stocks from different sectors are driven by different factors. With 
the 100 tests carried out on each individual sector in each financial year 
from 2015 to 2018, we have counted the appearance of those factors 
that appear most often as the top five driving forces as determined by 
XGBoost. The results are recorded in the Appendix section of this paper 
and present some very interesting findings. First, most of the time, it is 
the three EPS related metrics that feature heavily on the top five spots of 
most influential factors. This finding is consistent with market practice 
and Earning Per Share surprise/disappointment is indeed one of the 
most important factors that investors examine. We need to point out that 
two of these features are engineered by us, which represent how the 
current quarter’s reported EPS compares to those at the preceding 
quarters. The fact that these two factors also dominate shows that in-
vestors look for more complex movements in financial metrics than 
simply the reported numbers. Second, over the years, we consistently see 

important albeit less strong features appearing on the top five list for 
some of the sectors. For instance, the quarterly change in Return On 
Assets, Price-to-Sales Ratio, and Dividend Payout Ratio are consistently 
making up the top five spots driving PEAD of stocks from the Industrial, 
Financial, and Basic Materials sectors respectively. Separately, we carried 
out specific forecasting experiments using the three EPS features only 
but did not obtain good results which shows that the model cannot be 
driven purely by a handful of key features and other, less strong, but also 
impactful features must not be omitted. Third, in the years when our 
model produces better prediction results for a particular sector, we are 
frequently seeing features that are more consistently dominant. This is 
represented by higher occurrence counts observed for the dominant 
features. This can be observed in the results for the Industrial, Consumer 
Cyclical, and Consumer Non-Cyclical sectors. 

The opposite is also true. With Energy and Utilities being the most 
difficult sectors to predict, the model is returning an inconsistent set of 
top drivers from the 4 yearly tests among which the occurrence counts 
are also comparatively lower. Without strong and consistent drivers 
among our feature data for such sectors, the prediction result is unsur-
prisingly poorer. 

The results of our experiments in this section help us conclude that 
Post Earnings-Announcement Drift is not merely a market anomaly, but 
a characteristics of the markets whose direction can be materially pre-
dicted. The strength of signal may vary in time and from sector to sector, 
but machine learning models – especially an XGBoost well optimised by 
GA – are able to pick up on them. However, the fact that the model 
performs well with stocks from certain sectors but not on others suggest 
that there may be limitations in our input feature space or the way the 
special features have been engineered. This is may be more true with 
sectors such as Energy and Utilities. We acknowledge that, when a 
company makes an earnings announcement, information come out in 
many different forms such as in financial metric numbers, textual in-
formation embedded in the documents filed with SEC, earnings calls 
with a selected group of equity analysts, let alone information leakage 
prior to announcement or even insider trading. Trying to capture and 
take advantage of more forms of drivers on Post Earnings Announce-
ment Drifts is a future research topic. 

Fig. 3. 2018 Q4 test result. Actual returns of moving portfolios consisting of 100 stocks that reported earnings in this quarter. All stocks have been pre-ranked by the 
model-predicted stock returns from high to low. 
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6.2. PEAD analysis on a portfolio of stocks 

We believe it is meaningful to evaluate the dynamics of post-earnings 
drift in the context of portfolios. In the subsequent series of tests, we use 
the model to forecast the actual level of 30-day post earning cumulative 
abnormal returns (regression) instead of only the movement direction. 
In this case, we rank out-of-sample stocks by each stock’s model-predicted 
returns from high to low, group stocks from the same quantile into small 
portfolios and empirically examine the actual returns of the portfolios. 

6.2.1. Stocks that reported earnings in the same financial quarter 
We examine stocks that reported earnings in the same financial 

quarter in the years between 2015 and 2018. In each test we use all the 
data prior to the test quarter for training and carry out stock return 
prediction on stocks in the test quarter. Once the stocks have been 
ranked by their model-predicted post earnings returns, we are consis-
tently observing that portfolios which include stocks from top quantiles 
of the ranked list are producing higher positive returns, whereas port-
folios which include stocks from bottom quantiles are producing lower 
negative returns. Theoretically, a long-short market neutral strategy 
(Solberg & Karlsen, 2017) could be formed through longing the top 

Fig. 4. 2018 Q3 test result. Actual returns of moving portfolios consisting of 100 stocks. All stocks have been pre-ranked by the model-predicted stock returns from 
high to low. 

Fig. 5. 02 Aug 2018. Actual returns of moving portfolios consisting of 50 stocks from all sectors that reported earnings on this date. All stocks have been pre-ranked 
by the model-predicted stock returns from high to low. Portfolio returns are empirically calculated. 
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quantile portfolios and shorting the bottom ones. 
We’ve selected the Q3 2018 and Q4 2018 earning seasons to 

demonstrate our findings. One of the reasons for choosing these two 
quarters is that the US stock market went through two polar opposite 
phases of development in these two quarters with the S&P500 shedding 
20% in the last quarter of 2018 (around the time most Q3 2018 earnings 
were reported in the US) amid fear of Fed rate rises and US-China trade 
war escalation among other things but gaining a major rebound in the 
first quarter of 2019 (when most US companies reported Q4 2018 
earnings). Our intention is to evaluate if our model can successfully 
capture those very different PEAD dynamics given very different macro 
conditions and different company specific accounts. 

Each point on Figs. 3 and 4 corresponds to the empirically calculated 
return of a portfolio consisting of 100 stocks when we move down the 
list of out-of-sample stocks which have now been ranked by their pre-
dicted 30-day risk-adjusted returns following earnings releases. For 
instance, the first point is the actual 30-day Cumulative Abnormal Re-
turn of a portfolio consisting of the 1st to the 100th stocks and the 
second point is the actual return of a portfolio including the 2nd to the 
101st stocks, etc. We consistently produce similar figures with a 
downward slope when we run the same tests over many times. We 
conclude that our model has captured an unseen collective trend of 
movement in such groups of stocks as triggered by their earnings release 
and other relevant economic factors. 

6.2.2. Stocks that reported earnings on the same date 
If we were to construct market neutral portfolios, practically 

speaking it would only make sense if we could execute the buying and 
short-selling of model-chosen stocks within a short time frame, such as 
within a day or ideally less. Therefore, we run the same portfolio test on 
stocks which filed for earnings with SEC on the same date. Two dates in 
2018 with busy earnings release activities were chosen for demonstra-
tion. Figs. 5 and 6 are plots of portfolio returns on 02 Aug 2018 and 25 
Oct 2018 respectively. The stocks have been ranked by their model- 
predicted 30-day post earning CAR before being grouped into quantile 
portfolios. The same as shown in Figs. 3 and 4, the combination of the 
XGBoost-GA model and our engineered input features is producing the 
kind of results which can be used to rank stocks and construct portfolios, 
which would produce higher positive returns or lower negative returns. 

Table 4 gives the stats on how top quantile portfolios and bottom 
quantile portfolios are performing compared against the average return 
of all the out-of-sample stocks. In some cases, returns from portfolios 
consisting of top/bottom quantile stocks are considerably higher/lower 
than the out-of-sample stock population’s average. Such patterns of 
portfolio returns could have theoretically made them good candidates 
for a long-short strategy capitalising on the events of earnings release. 
This, however, is made difficult in reality, as we will discuss more about 
the timeliness of the signals. 

6.3. Trading on Earning Event Signals 

In the aforementioned experiments we have chosen the last publicly 
available tradable stock price before an earnings release as the starting 
point of a 30 day holding period. This is an intuitive choice and 
commonly seen in the literature. For instance, Erlien (Erlien, 2011) uses 
the end point of her training window as the beginning of a calculation 
window for cumulative abnormal returns. Similarly, when examining 
how numerous factors drives the revision of analysts’ consensus forecast 
on a company’s EPS, Ahmed and Irfan (Ahmed & Safdar, 2018) collect 
the final consensus available prior to earnings announcement to start the 
forecast period. 

Fig. 6. 25 Oct 2018. Actual returns of moving portfolios consisting of 50 stocks from all sectors that reported earnings on this date. All stocks have been pre-ranked 
by the model-predicted stock returns from high to low. Portfolio returns are empirically calculated. 

Table 4 
Here we present the averaged 30-day Cumulative Abnormal Return of full 
portfolios under test, as well as the return of portfolios consisting of only the top/ 
bottom quantile group of 100 stocks. Returns from such quantile groups are 
consistently higher/lower than the whole portfolio’s average. All returns listed 
here are empirically calculated. Stocks have been ranked by their model- 
predicted returns so as to produce the quantile groups. 

Out-of- 
sample 
Time 
Frame 

Industries Forecast 
Holding 
Period 

Average 
Return of 
all out-of- 

sample 
stocks 

Return of 
Top 

Quantile 
Portfolio 

Return of 
Bottom 

Quantile 
Portfolio 

Q4 2018 All 30 days 0.45% 3.94% −3.91% 
Q3 2018 All 30 days 1.09% 4.00% −4.01% 
02-Aug- 

18 
All 30 days 1.94% 5.81% −10.01% 

25-Oct- 
18 

All 30 days 1.15% 5.94% −3.85% 
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However in reality a company’s stock price moves on receipt of the 
first trickle of news. Information is never symmetrical, and some parties 
always possess greater material knowledge than others. They can and 
will act on such material information driving the stock price away from 
the last tradable price before the wider market gains access to the same 
level of information. Also, the incorporation of earnings information 
into the latest price is hugely accelerated by the presence of algorithmic 
trading systems as verified by Frino et al. who studied a unique dataset 
obtained from the Australian Securities Exchange (Frino, Prodromou, 
Wang, Westerholm, & Zheng, 2017). Correct forecasting of stock 
movements upon financial events is not practically useful unless they 
can be acted upon. 

With this in mind, we have attempted to forecast cumulative 
abnormal returns from 1 day after the announcement of news to 30 day 
after, i. e., CAR from t1 to t30. Our results show that the forecasting is 
inferior with accuracy of around 50% and sometimes less and cannot be 
relied upon. This is not at all surprising, because, as per the efficient 
market hypothesis any granular earnings information embedded in the 
financial statements and management’s guidance, coupled with the 
market’s own interpretations, will have been mostly consumed by the 
markets and reflected in the latest stock prices not too long after the 
announcement. A similar observation was already seen by Allen and 
Karjalainen (Allen & Karjalainen, 1999) that introducing a one-day 
delay to trading signals removes most of the forecasting ability when 
they used GAs to find technical trading rules. 

Since we are not able to accurately forecast the direction of CAR from 
tt+Δt to tt+T (with Δt being non-negligible) using newly released financial 
statements data and a stock’s momentum signals prior to announce-
ment, we have devised a tactic to infer a stock’s forward movement 
direction from a delayed-starting position, such as 1 day after an earning 
event. It is important to point out that since we intend to trade on a 
stock’s movement from t1 to t30, our standpoint is now 1 day after the 
earnings announcement, and we are already in possession of the 
knowledge of how a stock has moved from t0 to t1. Standing near the 
market close 1 day after announcement, we have devised the steps 
below to infer a stock’s movement from t1 to t30: 

1. Stock Exclusion: Exclude all the stocks whose actual movement from 
t0 to t1 are within the interval of [−0.05%, 0.05%] (obtained through 
empirical analysis) so as to eliminate stocks with weak immediate 
response to their earnings announcements; 

2. Train the model using the remaining stocks in the training set and 
include in the model input space each stock’s known movement di-
rection from t0 to t1. Use the trained model to forecast PEAD direc-
tion from t0 to t30 on stocks in the test set. The overall up/down 
classification accuracy has increased to around 70% due to addi-
tional inputs to the model as well as having more responsive stocks in 
the population; 

3. Filtering: Select stocks whose real movement from t0 to t1 is in 
opposite direction compared with the model-predicted movement 
from t0 to t30, i. e., select stocks which have in reality gone up (down) 
in the first day despite being forecasted to go down (up) from t0 to 
t30; 

4. For all the remaining stocks, deduce a stock’s movement direction 
from t1 to t30 to be the same as the predicted movement direction 
from t0 to t30. 

We test this tactic using data from 2016, 2017, and 2018, respec-
tively. Data from preceding years are used for training. As noted in an 
earlier section, a company that filed in each of the four quarters of a 
financial year is considered as four independent data points. Table 5 
gives the results of applying this tactic on the three test years. After stock 
exclusion and filtering the number of eligible stocks have come down to 
lower hundreds. With the remaining stocks we observe that we are 
consistently achieving close to 60% classification accuracy in inferring a 
stock’s movement direction (up or down) from t1 to t30 through 

empirical study. The crucial thing is that, since this tactic is meant to be 
exercised by a trader at or near the close of market 1 day after an 
earnings announcement, this is a signal that can genuinely be acted 
upon. We also expect the overall accuracy of inferring a stock price’s 
drift direction from tt+Δt to tt+T to increase once we are able to further 
increase the prediction accuracy by the model on the direction of post- 
earnings announcement drift. We believe this is very likely, as there 
are other sources of impactful information that have yet to be included 
in the feature space, such as management’s guidance, equity analyst’s 
price revisions, other text data carried in financial reports, and meeting 
minutes with analysts, etc. This is another potential future research 
direction. 

7. Conclusion 

Post-earnings announcement drift is a well known and well studied 
stock market anomaly when a stock’s risk adjusted price can continue in 
the direction of an earnings surprise in the near to mid term following an 
earnings release. Past research was, however, often limited in using 
simpler regression based methods to explain this phenomenon, and was 
often confined to using a limited set of explaining factors. Even fewer 
research was carried out on how to potentially take advantage of this 
known anomaly and conduct actionable forecasting on stock price 
movements following such a significant economic event. Attempting to 
fill this gap in the literature, our experiment is including a much bigger 
set of carefully selected input factors of various types with some being 
specifically engineered, sourcing the data over a longer historical time 
frame and attempting to forecast both the level (regression) and the 
direction (classification) of Cumulative Abnormal Returns (CAR) with a 
machine learning approach. We have adopted the state-of-the-art 
XGBoost and put it through a rigorous optimisation process. We not 
only looked at specific success rate of forecasting drift direction, but also 
examined if there is a collective trend of movement enjoyed by a group of 
stocks following their individual earnings release. 

First, our results show that when properly configured using a Generic 
Algorithm, XGBoost produces meaningful prediction accuracy on the 
direction of PEAD. We demonstrated that our selected input features 
were genuinely driving PEAD with a classification success rate going up 
to 63% depending on the test scenarios. In a further breakdown, we 
observed that stocks from different industrial sectors and at a different 
time can have their PEADs driven by different primary factors. The 
strengths of the driving factors are well understood by our model with 
stocks from certain sectors producing excellent/poor forecast results 
when the underlying factor dominance is more/less pronounced. 

Second, guided by the model’s forecast outputs we found that it is 
possible to build portfolios which consistently offer higher positive 
returns and lower negative returns and such an observation could 
potentially form the basis of market neutral long-short trading strategy. 

Third, we studied the challenges of applying earning event signals in 
real trading. Market participants with information advantage can drive 
the price away before the rest of the markets have an opportunity to act 
on the signals. Instead of trying to buy in as soon as event data comes 

Table 5 
Accuracy of inferring a stock’s movement direction (up or down) from t1 to t30 

using (a) predicted movement direction from t0 to t30 by the model and (b) the 
known stock movement from t0 to t1. The accuracy is empirically calculated by 
comparing the inferred movement direction against the actual movement di-
rection of each out-of-sample stock under test, from t1 to t30. 

Year 
Tested 

No. of initial 
out-of- 
sample 
points 

No. of points 
after stock 
exclusion 

No. of 
points after 

filtering 

Classification accuracy 
on the remaining points 

through inferring 

2016 3635 3231 254 58.57% 
2017 3715 3377 151 60.86% 
2018 3728 3387 261 57.53% 
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out, we have devised a tactic to create opportunities to delay-buy into 
the market at a later time using the same prediction results by the 
models as well as public knowledge of market movements immediately 
following the release of earnings data. 

Lastly, future efforts will need to also investigate recent methods of 
deep learning, which, in our preliminary experiments were inferior to 
the considered approach. However, their partial or combined usage such 
as with representation learning (Xie, Gao, Nijkamp, Zhu, & Wu, 2020) or 
data augmentation appears promising. 
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Appendix A 

We are reporting the most significant driving factors as calculated by 

Table 6 
Top five driving factors for all stocks in each financial reporting year from 2015 to 2018 as estimated in 100 runs. Each factor’s occurrence count and normalized 
importance score are given. 

2018 Highest Occurance Count Scores 2018 Second Highest Occurance Count Scores 

F1 EPS_Earnings_Surprise_Backward_Ave_Diff 90 21% F1 EPS_EarningsSurprise 4 23% 
F2 EPS_EarningsSurprise 62 14% F2 EPS_Earnings_Surprise_Backward_Diff 24 14% 
F3 Total_Liabilities_Q_Change 38 10% F3 EPS_EarningsSurprise 24 11% 
F4 Total_Liabilities_Q_Change 38 10% F4 Return_On_Common_Equity 26 10% 
F5 Operating_Income_Y_Change 26 9% F5 Return_On_Common_Equity 24 9% 

2017 Highest Occurance Count Scores 2017 Second Highest Occurance Count Scores 
F1 EPS_Earnings_Surprise_Backward_Ave_Diff 90 23% F1 EPS_EarningsSurprise 8 16% 
F2 EPS_EarningsSurprise 86 14% F2 EPS_Earnings_Surprise_Backward_Diff 8 15% 
F3 EPS_Earnings_Surprise_Backward_Diff 60 11% F3 Total_Liabilities_Q_Change 20 10% 
F4 Total_Liabilities_Q_Change 38 10% F4 Return_On_Common_Equity 26 9% 
F5 Operating_Income_Y_Change 28 9% F5 Total_Liabilities_Q_Change 26 8% 

2016 Highest Occurance Count Scores 2016 Second Highest Occurance Count Scores 
F1 EPS_Earnings_Surprise_Backward_Ave_Diff 72 21% F1 EPS_EarningsSurprise 26 21% 
F2 EPS_EarningsSurprise 64 15% F2 EPS_Earnings_Surprise_Backward_Ave_Diff 28 16% 
F3 EPS_Earnings_Surprise_Backward_Diff 48 11% F3 Total_Liabilities_Q_Change 28 10% 
F4 Total_Liabilities_Q_Change 46 9% F4 Return_On_Common_Equity 16 9% 
F5 Operating_Income_Y_Change 34 8% F5 Return_On_Common_Equity 20 8% 

2015 Highest Occurance Count Scores 2015 Second Highest Occurance Count Scores 
F1 EPS_Earnings_Surprise_Backward_Ave_Diff 54 17% F1 EPS_EarningsSurprise 36 17% 
F2 EPS_EarningsSurprise 58 17% F2 EPS_Earnings_Surprise_Backward_Ave_Diff 18 17% 
F3 Total_Liabilities_Q_Change 56 11% F3 EPS_Earnings_Surprise_Backward_Diff 20 12% 
F4 Total_Liabilities_Q_Change 34 10% F4 EPS_Earnings_Surprise_Backward_Diff 32 9% 
F5 Operating_Income_Y_Change 50 8% F5 EPS_Earnings_Surprise_Backward_Diff 12 8% 

Table 7 
Top five driving factors for stocks in the Financial sector in each financial reporting year from 2015 to 2018 as estimated in 100 runs. Each factor’s occurrence count 
and normalized importance score are given. 

2018 Highest Occurance Count Scores 2018 Second Highest Occurance Count Scores 

F1 EPS_Earnings_Surprise_Backward_Ave_Diff 95 20% F1 EPS_Earnings_Surprise_Backward_Diff 5 23% 
F2 EPS_Earnings_Surprise_Backward_Diff 62 13% F2 EPS_EarningsSurprise 11 13% 
F3 EPS_EarningsSurprise 28 11% F3 EPS_EarningsSurprise 28 11% 
F4 PS_Ratios 29 9% F4 EPS_EarningsSurprise 22 9% 
F5 PS_Ratios 19 8% F5 PS_Ratios_Y_Change 14 9% 

2017 Highest Occurance Count Scores 2017 Second Highest Occurance Count Scores 
F1 EPS_Earnings_Surprise_Backward_Diff 52 18% F1 EPS_Earnings_Surprise_Backward_Ave_Diff 46 19% 
F2 EPS_Earnings_Surprise_Backward_Ave_Diff 47 14% F2 EPS_Earnings_Surprise_Backward_Diff 34 14% 
F3 PS_Ratios 31 10% F3 EPS_EarningsSurprise 27 11% 
F4 PS_Ratios 37 10% F4 PS_Ratios_Y_Change 13 10% 
F5 EPS_EarningsSurprise 13 9% F5 PS_Ratios 11 9% 

2016 Highest Occurance Count Scores 2016 Second Highest Occurance Count Scores 
F1 EPS_Earnings_Surprise_Backward_Diff 50 21% F1 EPS_Earnings_Surprise_Backward_Ave_Diff 47 18% 
F2 EPS_Earnings_Surprise_Backward_Diff 43 15% F2 EPS_Earnings_Surprise_Backward_Ave_Diff 35 13% 
F3 PS_Ratios 33 9% F3 EPS_EarningsSurprise 27 10% 
F4 PS_Ratios 38 9% F4 EPS_EarningsSurprise 18 9% 
F5 EPS_EarningsSurprise 15 9% F5 PS_Ratios 11 9% 

2015 Highest Occurance Count Scores 2015 Second Highest Occurance Count Scores 
F1 EPS_Earnings_Surprise_Backward_Ave_Diff 92 21% F1 EPS_Earnings_Surprise_Backward_Diff 6 18% 
F2 EPS_Earnings_Surprise_Backward_Diff 78 14% F2 EPS_Earnings_Surprise_Backward_Ave_Diff 8 15% 
F3 EPS_EarningsSurprise 49 10% F3 PS_Ratios_Y_Change 19 9% 
F4 PS_Ratios 31 9% F4 PS_Ratios_Y_Change 24 9% 
F5 PS_Ratios_Y_Change 28 8% F5 PS_Ratios 21 9% 
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Table 8 
Top five driving factors for stocks in the Industrial sector in each financial reporting year from 2015 to 2018 as estimated in 100 runs. Each factor’s occurrence count 
and normalized importance score are given. 

2018 Highest Occurance Count Scores 2018 Second Highest Occurance Count Scores 

F1 EPS_Earnings_Surprise_Backward_Ave_Diff 94 20% F1 EPS_Earnings_Surprise_Backward_Diff 6 25% 
F2 EPS_Earnings_Surprise_Backward_Diff 67 14% F2 EPS_EarningsSurprise 20 12% 
F3 EPS_EarningsSurprise 64 11% F3 EPS_Earnings_Surprise_Backward_Diff 19 11% 
F4 Free_Cash_Flow_Q_Change 55 9% F4 Return_On_Assets_Q_Change 9 9% 
F5 Return_On_Assets_Q_Change 20 8% F5 Return_On_Assets_Y_Change 12 8% 

2017 Highest Occurance Count Scores 2017 Second Highest Occurance Count Scores 
F1 EPS_Earnings_Surprise_Backward_Ave_Diff 52 22% F1 EPS_Earnings_Surprise_Backward_Diff 39 20% 
F2 EPS_Earnings_Surprise_Backward_Diff 52 16% F2 EPS_Earnings_Surprise_Backward_Ave_Diff 34 16% 
F3 EPS_EarningsSurprise 66 12% F3 EPS_Earnings_Surprise_Backward_Ave_Diff 9 12% 
F4 Return_On_Assets_Q_Change 36 9% F4 PC_Ratios_Y_Change 16 9% 
F5 Return_On_Assets_Q_Change 24 8% F5 RSI-30D 11 8% 

2016 Highest Occurance Count Scores 2016 Second Highest Occurance Count Scores 
F1 EPS_Earnings_Surprise_Backward_Ave_Diff 64 24% F1 EPS_Earnings_Surprise_Backward_Diff 24 20% 
F2 EPS_Earnings_Surprise_Backward_Diff 51 14% F2 EPS_Earnings_Surprise_Backward_Ave_Diff 22 15% 
F3 EPS_EarningsSurprise 46 11% F3 Return_On_Assets_Q_Change 18 10% 
F4 Return_On_Assets_Q_Change 27 9% F4 EPS_EarningsSurprise 14 9% 
F5 Return_On_Assets_Q_Change 23 8% F5 Free_Cash_Flow_Q_Change 20 8% 

2015 Highest Occurance Count Scores 2015 Second Highest Occurance Count Scores 
F1 EPS_Earnings_Surprise_Backward_Ave_Diff 72 19% F1 EPS_Earnings_Surprise_Backward_Diff 15 17% 
F2 EPS_Earnings_Surprise_Backward_Diff 39 14% F2 EPS_EarningsSurprise 36 13% 
F3 EPS_EarningsSurprise 46 12% F3 EPS_Earnings_Surprise_Backward_Diff 31 11% 
F4 Free_Cash_Flow_Q_Change 27 9% F4 Return_On_Assets_Y_Change 14 9% 
F5 Return_On_Assets_Y_Change 19 8% F5 PC_Ratios_Y_Change 15 9% 

Table 9 
Top five driving factors for stocks in the Basic Materials sector in each financial reporting year from 2015 to 2018 as estimated in 100 runs. Each factor’s occurrence 
count and normalized importance score are given. 

2018 Highest Occurance Count Scores 2018 Second Highest Occurance Count Scores 

F1 EPS_Earnings_Surprise_Backward_Ave_Diff 36 13% F1 Total_Liabilities_Q_Change 11 15% 
F2 EPS_Earnings_Surprise_Backward_Ave_Diff 17 12% F2 Dividend_Payout_Ratio 12 11% 
F3 EPS_Earnings_Surprise_Backward_Ave_Diff 10 11% F3 DMA_50D/200D 9 11% 
F4 EPS_EarningsSurprise 9 10% F4 EPS_EarningsSurprise 9 10% 
F5 EPS_EarningsSurprise 8 10% F5 PC_Ratios 6 10% 

2017 Highest Occurance Count Scores 2017 Second Highest Occurance Count Scores 
F1 Dividend_Payout_Ratio 31 13% F1 DMA_50D/200D 9 12% 
F2 Dividend_Payout_Ratio 14 11% F2 EPS_Earnings_Surprise_Backward_Ave_Diff 8 12% 
F3 DMA_50D/200D 11 10% F3 Dividend_Payout_Ratio 10 11% 
F4 EPS_Earnings_Surprise_Backward_Ave_Diff 10 10% F4 DMA_50D/200D 6 10% 
F5 PE_Ratios_Q_Change 8 10% F5 EPS_Earnings_Surprise_Backward_Ave_Diff 6 10% 

2016 Highest Occurance Count Scores 2016 Second Highest Occurance Count Scores 
F1 EPS_EarningsSurprise 15 14% F1 EPS_EarningsSurprise 15 14% 
F2 EPS_Earnings_Surprise_Backward_Diff 13 12% F2 Cost_Of_Revenue_Q_Change 10 12% 
F3 Inventory_Turnover 8 11% F3 Cost_Of_Revenue_Q_Change 7 11% 
F4 EPS_Earnings_Surprise_Backward_Diff 7 10% F4 EPS_Earnings_Surprise_Backward_Diff 7 10% 
F5 EPS_Earnings_Surprise_Backward_Diff 10 10% F5 EPS_Earnings_Surprise_Backward_Ave_Diff 7 10% 

2015 Highest Occurance Count Scores 2015 Second Highest Occurance Count Scores 
F1 EPS_Earnings_Surprise_Backward_Ave_Diff 41 13% F1 EPS_Earnings_Surprise_Backward_Diff 6 12% 
F2 EPS_Earnings_Surprise_Backward_Diff 16 12% F2 EPS_Earnings_Surprise_Backward_Ave_Diff 13 11% 
F3 EPS_Earnings_Surprise_Backward_Diff 10 11% F3 Dividend_Payout_Ratio 7 11% 
F4 EPS_Earnings_Surprise_Backward_Diff 14 10% F4 Dividend_Payout_Ratio 9 10% 
F5 Dividend_Payout_Ratio 11 10% F5 Total_Liabilities_Q_Change 7 10% 
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Table 10 
Top five driving factors for stocks in the Cyclical sector in each financial reporting year from 2015 to 2018 as estimated in 100 runs. Each factor’s occurrence count and 
normalized importance score are given. 

2018 Highest Occurance Count Scores 2018 Second Highest Occurance Count Scores 

F1 EPS_EarningsSurprise 65 16% F1 EPS_Earnings_Surprise_Backward_Ave_Diff 21 18% 
F2 EPS_Earnings_Surprise_Backward_Ave_Diff 41 13% F2 EPS_EarningsSurprise 20 14% 
F3 Return_On_Common_Equity 29 12% F3 Return_On_Common_Equity 29 12% 
F4 Return_On_Common_Equity 31 10% F4 EPS_Earnings_Surprise_Backward_Diff 26 10% 
F5 Net_Income_Y_Change 35 9% F5 Return_On_Common_Equity 14 9% 

2017 Highest Occurance Count Scores 2017 Second Highest Occurance Count Scores 
F1 EPS_Earnings_Surprise_Backward_Ave_Diff 70 16% F1 EPS_EarningsSurprise 19 15% 
F2 EPS_EarningsSurprise 36 12% F2 EPS_Earnings_Surprise_Backward_Ave_Diff 22 13% 
F3 Return_On_Common_Equity 30 11% F3 EPS_Earnings_Surprise_Backward_Diff 21 11% 
F4 Return_On_Common_Equity 32 10% F4 EPS_Earnings_Surprise_Backward_Diff 11 10% 
F5 Total_Liabilities_Q_Change 11 10% F5 Net_Income_Y_Change 10 9% 

2016 Highest Occurance Count Scores 2016 Second Highest Occurance Count Scores 
F1 EPS_EarningsSurprise 47 16% F1 EPS_Earnings_Surprise_Backward_Diff 25 16% 
F2 EPS_Earnings_Surprise_Backward_Diff 35 13% F2 EPS_EarningsSurprise 33 14% 
F3 EPS_Earnings_Surprise_Backward_Diff 25 12% F3 EPS_Earnings_Surprise_Backward_Ave_Diff 21 12% 
F4 Return_On_Common_Equity 40 10% F4 Net_Income_Y_Change 11 10% 
F5 Net_Income_Y_Change 19 9% F5 Return_On_Common_Equity 12 10% 

2015 Highest Occurance Count Scores 2015 Second Highest Occurance Count Scores 
F1 EPS_EarningsSurprise 61 15% F1 EPS_Earnings_Surprise_Backward_Ave_Diff 16 16% 
F2 Return_On_Common_Equity 38 12% F2 EPS_EarningsSurprise 20 14% 
F3 EPS_Earnings_Surprise_Backward_Diff 29 12% F3 Return_On_Common_Equity 21 12% 
F4 Net_Income_Y_Change 27 10% F4 Return_On_Common_Equity 19 11% 
F5 Net_Income_Y_Change 32 9% F5 PE_Ratios 12 9% 

Table 11 
Top five driving factors for stocks in the Non Cyclical sector in each financial reporting year from 2015 to 2018 as estimated in 100 runs. Each factor’s occurrence 
count and normalized importance score are given. 

2018 Highest Occurance Count Scores 2018 Second Highest Occurance Count Scores 

F1 EPS_Earnings_Surprise_Backward_Diff 41 16% F1 EPS_Earnings_Surprise_Backward_Ave_Diff 28 16% 
F2 EPS_Earnings_Surprise_Backward_Ave_Diff 27 13% F2 EPS_EarningsSurprise 26 13% 
F3 EPS_EarningsSurprise 32 11% F3 EPS_Earnings_Surprise_Backward_Ave_Diff 15 12% 
F4 Return_On_Common_Equity 19 10% F4 EPS_EarningsSurprise 10 10% 
F5 Return_On_Common_Equity 12 9% F5 Operating_Margin_Y_Change 7 9% 

2017 Highest Occurance Count Scores 2017 Second Highest Occurance Count Scores 
F1 EPS_Earnings_Surprise_Backward_Ave_Diff 51 17% F1 EPS_Earnings_Surprise_Backward_Diff 34 18% 
F2 EPS_Earnings_Surprise_Backward_Diff 35 15% F2 EPS_Earnings_Surprise_Backward_Ave_Diff 34 15% 
F3 EPS_EarningsSurprise 53 12% F3 EPS_Earnings_Surprise_Backward_Diff 17 11% 
F4 Operating_Income_Y_Change 22 10% F4 EPS_EarningsSurprise 9 10% 
F5 Operating_Income_Y_Change 14 9% F5 Return_On_Common_Equity 13 8% 

2016 Highest Occurance Count Scores 2016 Second Highest Occurance Count Scores 
F1 EPS_Earnings_Surprise_Backward_Ave_Diff 52 18% F1 EPS_Earnings_Surprise_Backward_Diff 35 19% 
F2 EPS_Earnings_Surprise_Backward_Diff 45 15% F2 EPS_Earnings_Surprise_Backward_Ave_Diff 34 15% 
F3 EPS_EarningsSurprise 46 11% F3 EPS_Earnings_Surprise_Backward_Ave_Diff 10 12% 
F4 Return_On_Common_Equity 21 9% F4 EPS_EarningsSurprise 7 9% 
F5 Return_On_Common_Equity 15 9% F5 Gross_Profit_Y_Change 13 8% 

2015 Highest Occurance Count Scores 2015 Second Highest Occurance Count Scores 
F1 EPS_EarningsSurprise 67 15% F1 EPS_Earnings_Surprise_Backward_Ave_Diff 23 17% 
F2 EPS_Earnings_Surprise_Backward_Ave_Diff 37 13% F2 EPS_EarningsSurprise 22 13% 
F3 EPS_Earnings_Surprise_Backward_Diff 47 11% F3 EPS_Earnings_Surprise_Backward_Ave_Diff 10 11% 
F4 Return_On_Common_Equity 12 9% F4 Total_Liabilities_Q_Change 9 9% 
F5 EPS_Earnings_Surprise_Backward_Ave_Diff 8 10% F5 EPS_Earnings_Surprise_Backward_Ave_Diff 8 10% 
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Table 12 
Top five driving factors for stocks in the Technology sector in each financial reporting year from 2015 to 2018 as estimated in 100 runs. Each factor’s occurrence count 
and normalized importance score are given. 

2018 Highest Occurance Count Scores 2018 Second Highest Occurance Count Scores 

F1 EPS_Earnings_Surprise_Backward_Ave_Diff 57 14% F1 EPS_Earnings_Surprise_Backward_Diff 14 14% 
F2 EPS_EarningsSurprise 26 11% F2 EPS_Earnings_Surprise_Backward_Ave_Diff 18 12% 
F3 Return_On_Assets_Q_Change 24 11% F3 EPS_Earnings_Surprise_Backward_Diff 16 11% 
F4 Return_On_Assets_Q_Change 18 10% F4 EPS_Earnings_Surprise_Backward_Diff 11 10% 
F5 Return_On_Assets_Q_Change 12 10% F5 EPS_EarningsSurprise 11 10% 

2017 Highest Occurance Count Scores 2017 Second Highest Occurance Count Scores 
F1 EPS_Earnings_Surprise_Backward_Ave_Diff 53 13% F1 EPS_Earnings_Surprise_Backward_Diff 15 16% 
F2 EPS_EarningsSurprise 37 11% F2 EPS_Earnings_Surprise_Backward_Ave_Diff 17 12% 
F3 Return_On_Assets_Q_Change 13 10% F3 EPS_EarningsSurprise 11 11% 
F4 Return_On_Assets_Q_Change 18 10% F4 EPS_EarningsSurprise 12 10% 
F5 Dividend_Payout_Ratio_Y_Change 9 10% F5 Return_On_Assets_Q_Change 7 10% 

2016 Highest Occurance Count Scores 2016 Second Highest Occurance Count Scores 
F1 EPS_EarningsSurprise 31 13% F1 EPS_Earnings_Surprise_Backward_Ave_Diff 21 12% 
F2 EPS_EarningsSurprise 22 11% F2 EPS_Earnings_Surprise_Backward_Ave_Diff 14 11% 
F3 EPS_EarningsSurprise 18 11% F3 EPS_Earnings_Surprise_Backward_Diff 11 11% 
F4 Operating_Income_Y_Change 11 10% F4 Short_Term_Debt_Q_Change 10 10% 
F5 Operating_Income_Y_Change 15 10% F5 EPS_Earnings_Surprise_Backward_Diff 8 10% 

2015 Highest Occurance Count Scores 2015 Second Highest Occurance Count Scores 
F1 EPS_Earnings_Surprise_Backward_Ave_Diff 61 14% F1 EPS_EarningsSurprise 11 14% 
F2 EPS_EarningsSurprise 18 11% F2 EPS_Earnings_Surprise_Backward_Diff 16 11% 
F3 EPS_EarningsSurprise 19 11% F3 EPS_Earnings_Surprise_Backward_Diff 11 11% 
F4 EPS_EarningsSurprise 12 10% F4 EPS_EarningsSurprise 12 10% 
F5 EPS_EarningsSurprise 9 10% F5 EPS_EarningsSurprise 9 10% 

Table 13 
Top five driving factors for stocks in the Communications sector in each financial reporting year from 2015 to 2018 as estimated in 100 runs. Each factor’s occurrence 
count and normalized importance score are given. 

2018 Highest Occurance Count Scores 2018 Second Highest Occurance Count Scores 

F1 Total_Liabilities_Q_Change 27 12% F1 Net_Income_Y_Change 18 12% 
F2 Total_Liabilities_Q_Change 26 11% F2 Net_Income_Y_Change 18 11% 
F3 Operating_Income_Y_Change 15 11% F3 Total_Liabilities_Q_Change 13 11% 
F4 EPS_Earnings_Surprise_Backward_Ave_Diff 11 10% F4 PC_Ratios 6 10% 
F5 Net_Income_Y_Change 13 10% F5 Operating_Income_Y_Change 9 10% 

2017 Highest Occurance Count Scores 2017 Second Highest Occurance Count Scores 
F1 PE_Ratios 37 12% F1 PB_Ratios_Y_Change 8 13% 
F2 Net_Income_Y_Change 17 11% F2 PE_Ratios 14 11% 
F3 PB_Ratios_Y_Change 12 11% F3 PB_Ratios_Y_Change 12 11% 
F4 Net_Income_Y_Change 17 10% F4 Cost_Of_Revenue_Y_Change 9 10% 
F5 Total_Liabilities_Q_Change 9 10% F5 EPS_Earnings_Surprise_Backward_Ave_Diff 8 10% 

2016 Highest Occurance Count Scores 2016 Second Highest Occurance Count Scores 
F1 Total_Liabilities_Q_Change 21 12% F1 PS_Ratios_Y_Change 12 12% 
F2 Total_Liabilities_Q_Change 11 11% F2 PS_Ratios_Y_Change 10 11% 
F3 Total_Liabilities_Q_Change 12 11% F3 EPS_Earnings_Surprise_Backward_Ave_Diff 10 11% 
F4 Total_Liabilities_Q_Change 8 10% F4 PS_Ratios_Y_Change 7 10% 
F5 Total_Liabilities_Q_Change 13 10% F5 EPS_Earnings_Surprise_Backward_Ave_Diff 8 10% 

2015 Highest Occurance Count Scores 2015 Second Highest Occurance Count Scores 
F1 Total_Liabilities_Q_Change 18 12% F1 PE_Ratios 12 12% 
F2 Total_Liabilities_Q_Change 14 11% F2 EPS_Earnings_Surprise_Backward_Ave_Diff 11 11% 
F3 Operating_Income_Y_Change 10 11% F3 PE_Ratios 8 11% 
F4 Total_Liabilities_Q_Change 11 10% F4 EPS_Earnings_Surprise_Backward_Ave_Diff 8 10% 
F5 Total_Liabilities_Q_Change 14 10% F5 PE_Ratios 5 10% 
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our XGBoost + GA model for all stocks that reported quarterly earnings 
during the 2015–2018 period. This reporting is also done on stocks from 
each of the seven industrial sectors. The results are created after running 
100 tests on each group of stocks. The occurrence of dominant features 
has been counted and results are given in Tables 6–15. The features that 
most frequently appear as the top five driving factors are listed along 
with their occurrence counts. We use labels F1 to F5 represent the top 
five most impactful features. Features whose name starts with the name 
of a financial variable and ends with “Q_Change” or “Y_Change” repre-
sents the quarterly change or yearly change of the same variable. 

During each forecasting exercise, XGBoost calculates and feedbacks 
the top n features which have contributed most in the prediction process. 

At the end of the 100 runs, we count which feature has appeared most 
often as the F1 feature (most dominant feature). We do the same 
counting for the F2 to F5 features. As an example, Table 6 shows that 
EPS_Eearnings_Surprise_Backward_Av_Diff appears 90 times out of 100 as 
the top dominant feature F1 with an average normalized importance 
score of 21% for the 2018 test. Another feature EPS_EarningsSurprise also 
appears as the top dominant factor but this only happens 4 times. On the 
other hand, this feature appears 62 times as the second most dominant 
feature F2 with a score of 14%. 

Table 14 
Top five driving factors for stocks in the Energy sector in each financial reporting year from 2015 to 2018 as estimated in 100 runs. Each factor’s occurrence count and 
normalized importance score are given. 

2018 Highest Occurance Count Scores 2018 Second Highest Occurance Count Scores 

F1 EPS_EarningsSurprise 33 13% F1 DMA_50D/200D 15 12% 
F2 PS_Ratios 15 11% F2 EPS_EarningsSurprise 13 11% 
F3 EPS_EarningsSurprise 12 10% F3 DMA_50D/200D 8 10% 
F4 DMA_50D/200D 9 10% F4 PC_Ratios_Q_Change 8 10% 
F5 EPS_EarningsSurprise 6 10% F5 EPS_EarningsSurprise 6 10% 

2017 Highest Occurance Count Scores 2017 Second Highest Occurance Count Scores 
F1 EPS_EarningsSurprise 34 12% F1 DMA_5D/200D 8 11% 
F2 EPS_EarningsSurprise 12 11% F2 EPS_EarningsSurprise 12 11% 
F3 Current_Ratio 12 11% F3 Return_On_Assets_Y_Change 10 10% 
F4 Return_On_Assets_Y_Change 7 10% F4 EPS_EarningsSurprise 6 10% 
F5 DMA_50D/200D 9 10% F5 Current_Ratio 8 10% 

2016 Highest Occurance Count Scores 2016 Second Highest Occurance Count Scores 
F1 DMA_50D/200D 24 11% F1 DMA_5D/200D 13 12% 
F2 DMA_50D/200D 15 11% F2 PS_Ratios 14 11% 
F3 DMA_50D/200D 13 11% F3 DMA_50D/200D 13 11% 
F4 EPS_Earnings_Surprise_Backward_Ave_Diff 18 10% F4 DMA_50D/200D 12 10% 
F5 DMA_50D/200D 11 10% F5 PS_Ratios 9 10% 

2015 Highest Occurance Count Scores 2015 Second Highest Occurance Count Scores 
F1 EPS_Earnings_Surprise_Backward_Ave_Diff 69 12% F1 Gross_Profit_Q_Change 5 12% 
F2 DMA_5D/200D 16 11% F2 EPS_Earnings_Surprise_Backward_Ave_Diff 11 11% 
F3 PS_Ratios 14 10% F3 EPS_Earnings_Surprise_Backward_Ave_Diff 11 11% 
F4 DMA_5D/200D 9 10% F4 PS_Ratios 7 10% 
F5 DMA_5D/200D 12 10% F5 PS_Ratios 11 10% 

Table 15 
Top five driving factors for stocks in the Utilities sector in each financial reporting year from 2015 to 2018 as estimated in 100 runs. Each factor’s occurrence count and 
normalized importance score are given. 

2018 Highest Occurance Count Scores 2018 Second Highest Occurance Count Scores 

F1 Short_Term_Debt_Q_Change 38 12% F1 Return_On_Assets_Y_Change 12 12% 
F2 Return_On_Assets_Y_Change 19 11% F2 Short_Term_Debt_Q_Change 18 11% 
F3 Return_On_Assets_Y_Change 10 10% F3 Net_Debt_to_EBIT_Y_Change 6 10% 
F4 Short_Term_Debt_Y_Change 8 10% F4 Return_On_Assets_Y_Change 7 10% 
F5 Short_Term_Debt_Y_Change 7 10% F5 Return_On_Assets_Y_Change 6 10% 

2017 Highest Occurance Count Scores 2017 Second Highest Occurance Count Scores 
F1 Return_On_Assets_Y_Change 36 13% F1 Dividend_Yield_Y_Change 28 14% 
F2 Dividend_Yield_Y_Change 24 13% F2 Return_On_Assets_Y_Change 18 12% 
F3 Short_Term_Debt_Q_Change 20 11% F3 Return_On_Assets_Y_Change 11 11% 
F4 Short_Term_Debt_Q_Change 11 10% F4 Dividend_Yield_Y_Change 7 10% 
F5 Free_Cash_Flow_Q_Change 11 9% F5 Short_Term_Debt_Q_Change 9 10% 

2016 Highest Occurance Count Scores 2016 Second Highest Occurance Count Scores 
F1 Short_Term_Debt_Q_Change 20 12% F1 Operating_Margin_Y_Change 18 12% 
F2 Return_On_Assets_Y_Change 18 11% F2 Operating_Margin_Y_Change 10 11% 
F3 Return_On_Assets_Y_Change 13 10% F3 Operating_Margin_Y_Change 8 11% 
F4 Operating_Margin_Y_Change 10 10% F4 Operating_Margin_Y_Change 10 10% 
F5 Short_Term_Debt_Q_Change 6 10% F5 Short_Term_Debt_Q_Change 6 10% 

2015 Highest Occurance Count Scores 2015 Second Highest Occurance Count Scores 
F1 Short_Term_Debt_Q_Change 21 12% F1 Return_On_Assets_Y_Change 13 12% 
F2 Short_Term_Debt_Q_Change 19 11% F2 Return_On_Assets_Y_Change 12 11% 
F3 Return_On_Assets_Y_Change 13 10% F3 DMA_5D/50D 9 10% 
F4 DMA_5D/50D 12 10% F4 Short_Term_Debt_Q_Change 7 10% 
F5 PC_Ratios 6 10% F5 PC_Ratios 6 10% 
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