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Abstract
Emotional Voice Conversion (EVC) aims to convert the emo-
tional style of a source speech signal to a target style while
preserving its content and speaker identity information. Previ-
ous emotional conversion studies do not disentangle emotional
information from emotion-independent information that should
be preserved, thus transforming it all in a monolithic manner and
generating audio of low quality, with linguistic distortions. To
address this distortion problem, we propose a novel StarGAN
framework along with a two-stage training process that separates
emotional features from those independent of emotion by using
an autoencoder with two encoders as the generator of the Gener-
ative Adversarial Network (GAN). The proposed model achieves
favourable results in both the objective evaluation and the sub-
jective evaluation in terms of distortion, which reveals that the
proposed model can effectively reduce distortion. Furthermore,
in data augmentation experiments for end-to-end speech emotion
recognition, the proposed StarGAN model achieves an increase
of 2 % in Micro-F1 and 5 % in Macro-F1 compared to the base-
line StarGAN model, which indicates that the proposed model is
more valuable for data augmentation.
Index Terms: emotional voice conversion, generative adversar-
ial network, data augmentation

1. Introduction
Emotional Voice Conversion (EVC) aims to alter the emotional
style of a source speech signal to a target style while preserving
other emotion-independent information. A major problem of
this task is that high-quality parallel data is hard to collect due to
substantial labor costs [1]. Recent work proposed to utilise gener-
ative adversarial network (GAN) frameworks [2, 3, 4] to convert
the spectrum features of a source audio signal to the features
of the target [5, 6, 7, 8, 9], thus eliminating the need for paral-
lel data. In addition, evidence shows that the GAN-generated
audio signals, as a source of augmenting data, are valuable for
improving the predictive performance of speech emotion recog-
nition (SER) models [6, 10], which not only indicates that the
GAN-generated audio signals indeed carry effective emotional
information, but also provides a promising data augmentation
solution for the SER task [11, 12, 13, 14].

However, comparing the source audio signal waveform with
the waveform of the audio signal converted using the existing
StarGAN-based EVC model [6], we observe that some silent
frames in the original waveform were given very high ampli-
tude values in the converted waveform. An example is shown
in Figure 1. Since these silent frames represent silence between
discrete words or sentences, excessive amplitude values should
not be given to these frames in any conversion between emotions.

Figure 1: Example waveforms of source and converted audio
signals (Ses03F script02 2 F043.wav in the IEMOCAP dataset).
Our proposed StarGAN model introduces fewer artefacts in silent
frames compared to the model proposed in [6].

This indicates that the existing StarGAN framework is prone to
generating artefacts; we believe that this is because it transforms
the input clip in a monolithic manner, instead of focusing on the
emotional indices, as desired. This monolithic conversion man-
ner tends to cause the distortion of the linguistic characteristics
(e. g., cracked voices, or jitter) and damages the overall audio
quality. Experimental results of existing EVC models also show
that the mean opinion scores (MOS) for audio quality before and
after conversion suffer from a significant drop [8].

We believe that a means to address this problem is to sepa-
rate emotional features from emotion-independent features. Au-
toencoder (AE)- or variational autoencoder (VAE)-based feature
disentanglement methods provide a possible solution and have
been successfully applied to the voice conversion (VC) task
[15, 16, 17, 18, 19, 20]. In [17], by providing the speaker iden-
tity features as a condition to the decoder, the encoder learns
to encode only the speaker-independent information in the pro-
cess of minimising the reconstruction loss. Experimental results
from [20] show that the degree of disentanglement is positively
correlated with the performance of the VC model and can be
enhanced by both GANs and the speaker classifier. Inspired by
these feature disentanglement methods, we propose to utilise an
autoencoder with two encoders as the generator of the StarGAN
as well as a two stage training process for the model.

Unlike the existing StarGAN-based EVC model [6], we ex-
plicitly separate emotion-independent features from emotional
features during conversion. When providing the target emo-
tion label to StarGAN, we use continuous emotional features
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Figure 2: The model structure used in the first (left) and the second (right) stage of training.

extracted by a pre-trained emotion classifier rather than using
one-hot vectors to represent each emotion. Similar continuous
emotional features have also been used in [8]. However, their
model is based on VAW-GAN in the context of one-to-many
emotional conversion, while our model is based on StarGAN
and able to complete the many-to-many emotional conversion.
Besides, their model simply reconstructs the source spectral
envelope without attempting to convert it during the whole train-
ing process. The authors only consider the emotion conversion
when testing, which causes a mismatch between training and
testing. Our model eliminates this mismatch by using a proposed
two-stage training process.

The main contributions of this paper are: 1) We propose
a novel model structure as well as a two-stage training pro-
cess based on StarGAN, which explicitly separate emotion-
independent features from emotional features during conver-
sion1; 2) we perform both the objective evaluation using Mel-
cepstral distortion (MCD) [21] and the subjective evaluation
in terms of distortion to ascertain whether this separation of
features can indeed reduce the distortion of generated audio sig-
nals and improve their overall quality; 3) we replicate the data
augmentation experiments of an existing StarGAN-based EVC
model [6] to showcase that our audio quality improvements are
not at the expense of emotional conversion performance.

2. Improved StarGAN
Since the harmonic spectral envelope (SP) and the fundamental
frequency (F0) contour contain emotion-related cues [22, 23], we
use the WORLD vocoder [24] to decompose the raw audio signal
into SP, F0, and aperiodicity parameters (AP) before converting.
We then apply the proposed StarGAN framework to generate
the SP with target emotion. We next introduce the two training
stages, the model architecture and the final conversion process.

2.1. Training Stage1: Autoencoder training

In the first training stage, we propose to utilise an autoencoder
with two encoders as the GAN generator G, which aims to learn
an emotion-independent encoder capable of separating emotional
features from emotion-independent features.

As shown in the left part of Figure 2, the autoencoder is
trained by simply reconstructing the source spectral envelope
SPC1 with emotion C1 without attempting to convert it, which
means that the target emotion is not provided in this stage. The
emotion encoder aims to encode emotional information, where
its latent code E(SPC1) is provided by a pre-trained emotion
classifier (fixed during training stage 1) shown in Figure 3. By

1Our code is publicly available at: https://github.com/
xianghenghe/Improved_StarGAN_Emotional_Voice_
Conversion.

Figure 3: The structure of the pre-trained emotion classifier (left)
used as the emotion encoder in the improved StarGAN and the
SER model (right) used in the data augmentation experiments.

providing the emotion features of the source SPC1 as a condi-
tion, the emotion-independent encoder learns to eliminate emo-
tional information from the input, thus making its latent code
I(SPC1) emotion independent. The decoder learns to recon-
struct SPC1 using the concatenated latent codes, which can be
formulated as:

SP ′C1 = G(I(SPC1), E(SPC1)). (1)

To make the reconstructed SP ′C1 more realistic, we train the
autoencoder based on adversarial learning.

2.2. Training Stage2: StarGAN training

In the second training stage, the typical StarGAN training is
implemented to eliminate the training-testing mismatch in [8]
and enable the many-to-many emotion conversion.

As shown in the right part of Figure 2, the emotion-
independent encoder and the decoder are the generator of the
StarGAN, denoted as G. We extract the emotion features of
audio signals with the same emotion by using the pre-trained
emotion classifier and average them as the feature representations
of target emotion labels. We denoteEC2 as the representation of
target emotion C2. The generator G first reconstructs the SP ′C2

from EC2 and I(SPC1) and then reconstructs the SP ′′C1 from
EC1 and I(SP ′C2):

SP ′C2 = G(I(SPC1), EC2), (2)
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Figure 4: Results of audio preference test.

SP ′′C1 = G(I(SP ′C2), EC1). (3)

The generator G tries to minimise the reconstruction loss and
fool the discriminator D by generating a more realistic SP. The
D tries to maximise the loss between the real SP and the fake
SP. The domain classifier C learns to predict the emotion label
and helps to enable the many-to-many emotion conversion.

2.3. Conversion Process at Test Time

We follow the relative logarithm Gaussian normalised transfor-
mation (LGNT) [25] proposed by [6] to convert the F0 contour
of an audio signal from emotion C1 to the target emotion C2.

log(F0′) = ((log(F0) − µ(F0))
σ(F0) + ∆σC1, C2

σ(F0)

+µ(F0) + ∆µC1, C2 ,

(4)

where µ(F0) and σ(F0) are the mean and variance of log(F0).
∆µC1, C2 and ∆σC1, C2 are the average difference in the mean
log(F0) and the average change in the variance of log(F0)
between emotion C1 and C2.

At test time, with the spectral envelope converted by our
improved StarGAN model and the F0 contour converted by the
relative LGNT, we synthesise the audio signal with the target
emotion via the WORLD vocoder.

2.4. Dataset and Training Details

We use the Interactive Emotional Dyadic Motion Capture
(IEMOCAP) Database [26] for all our experiments. This dataset
has been recorded from ten actors in sessions 1-5, including
emotional scripts and improvised hypothetical scenarios. It con-
tains approximately 12 hours of recordings with 9 emotions.
The sampling rate of all recordings is 16 kHz. We utilise three
emotions including angry, sad, and happy from both scripted and
improvised patterns which contains 2 435 recordings in totally.

For more details of our improved StarGAN framework, we
use the same discriminator and the domain classifier structures
as the existing StarGAN-based model [6, 27]. The architecture
of our emotion-independent encoder and decoder is the same as
the generator in [6, 27]. The pre-trained classifier used in the
first training stage is shown in the left part of Figure 3. It has the
same structure as the domain classifier in the second stage. We
extract 36 cepstral coefficients as an approximation to the whole
spectral envelope for each training sample. In both the first and
the second training stages, we set the batch size to 4 and use the
Adam optimiser [28] with the learning rate (forG, D and C), β1
and β2 set to 1 × 10−4, 0.5, and 0.999. We perform 1 generator
update after 5 discriminator and domain classifier updates in the
StarGAN training stage as in [29]. The first training stage lasts
for 400 epochs, and we manually stop the second training stage
when the loss reaches a plateau (approximately 380 epochs).

Table 1: Explanation of MOS Scores.

Rating Quality Distortion

5 Excellent Imperceptible
4 Good Just perceptible, but not annoying
3 Fair Perceptible and slightly annoying
2 Poor Annoying, but not objectionable
1 Bad Very annoying and objectionable

Table 2: Results of the MOS test with 95 % confidence interval.

Models MOS

baseline-StarGAN-EVC 1.952 ± 0.121
improved-StarGAN-EVC 2.355 ± 0.084

3. Audio Distortion Evaluation
To ascertain whether the separation of emotional features from
emotion-independent features can indeed reduce the distortion of
the generated audio signals and improve their overall quality, we
perform an objective evaluation using the MCD and a subjective
evaluation via the human preference test and the mean opinion
scores (MOS) test in terms of distortion.

3.1. Subjective Evaluation Experimental Design

We conduct two listening tests for our human perception exper-
iments, the human preference test and the MOS test in audio
distortion. 26 fluent English-speaking subjects participated in
all experiments. Each of them was asked to evaluate 60 audio
samples (30 pairs), which contains 30 audio samples generated
by the three-class StarGAN-based EVC model [6] (denoted as
baseline-StarGAN-EVC) and 30 audio samples generated by
our proposed StarGAN-based EVC model (denoted as StarGAN-
based EVC). Both models were trained on the IEMOCAP dataset
with the same train/validation/test split. Two audio samples of
each pair were generated from one source sample in IEMOCAP
to a randomly selected target emotion.

3.2. Subjective Evaluation Results and Discussion

For the MOS test in terms of distortion, participants were shown
a pair of samples for each question and were asked to rate each
sample on the MOS scale shown in Table 1. The MOS test
results in terms of distortion with 95 % confidence interval are
shown in Table 2. We observe that the improved-StarGAN-EVC
model outperforms the baseline-StarGAN-EVC model with a
higher MOS score with no confidence interval overlap.

For the audio preference test, participants were asked to
compare samples from each pair and choose the one they believe
in having less perceived distortion (e. g., cracked voices, or jitter).
The audio preference test results are summarised in Figure 4. We
observe that our proposed model obtained a preference of up to
58.21 %, which is almost three times the figure for the baseline-
StarGAN-EVC model, indicating that humans clearly favored
samples converted by our improved-StarGAN-EVC model.

3.3. Objective Evaluation Experimental Design

We also perform an objective evaluation using MCD, which
measures the distortion between two sequences of Mel-cepstral
coefficients. It is a commonly used metric for assessing the
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Table 3: Results of the MCD for source-target emotion pairs and overall converted audio signals regardless of emotions.

MCD(dB) angry-sad angry-happy sad-angry sad-happy happy-angry happy-sad overall

baseline-StarGAN-EVC 4.330 4.291 6.018 5.291 5.312 4.112 4.777
improved-StarGAN-EVC 4.265 4.046 4.826 3.916 4.719 3.879 4.183

Table 4: Results of data augmentation experiments. Standard deviations for 10 trials are indicated in parentheses.

Train on Micro-F1 (%) Macro-F1 (%)

sessions1-3 59.87 (0.3889) 56.64 (0.3761)
sessions1-3+baseline-StarGAN 60.37 (0.7502) 55.41 (0.7933)

sessions1-3+improved-StarGAN 62.62 (1.1956) 60.34 (0.4701)

quality of generated speech signals in VC [30, 31, 32, 33] and
EVC. We calculate the MCD between the mel cepstra of refer-
ence audio signals and that of audio signals converted by both
the baseline-StarGAN-EVC and the improved-StarGAN-EVC
model for all six source-to-target emotion pairs.

3.4. Objective Evaluation Results and Discussion

Table 3 reports the MCD values of source-target emotion pairs
and the overall MCD values for all converted audio signals
regardless of emotions. We note that our proposed improved-
StarGAN-EVC model outperforms the baseline-StarGAN-EVC
model in MCD for all terms, revealing that our proposed model
can effectively reduce distortion. Besides, for the sad-happy and
sad-angry emotion conversion, our model achieves a distortion
reduction of up to 1.375 and 1.192, which indicates that the pro-
posed feature separation method has a much better suppression
effect on distortion when the targets are high arousal emotions.

4. Data Augmentation Evaluation
Although the audio distortion evaluation experiments show that
our proposed feature separation method can effectively reduce
distortion, we still need to determine whether or not this improve-
ment in audio quality is at the expense of our model’s emotional
conversion performance. We perform the data augmentation
experiments to validate its emotional conversion performance.

4.1. Experimental Design

We use an end-to-end speech emotion recognition (SER) model
[34], which directly takes the waveform as its input to accom-
plish the data augmentation experiments. The architecture is
shown in the right part of Figure 3. We first standardised the
raw audio signal by using the mean and standard deviation from
the training set. The raw signal was then sampled at an interval
of 40 ms with a step size of 10 ms. Given the 16 kHz sampling
rate of raw signals, the waveform for each frame is of dimension
640. We randomly selected 16 continuous frames for each au-
dio signal and got the fixed-size input waveform of dimension
16 × 640. Note that the SER model here is entirely different
from the pre-trained SER model used in our improved StarGAN
training. Also, note that the SER model here is slightly different
from the model used in [6] in terms of kernel sizes and filter
numbers; that is why the data augmentation results we report for
the baseline-StarGAN-EVC are different from the results shown
in [6]. Our SER model was trained using the Adam optimiser
with the learning rate, β1 and β2 set to 1 × 10−5, 0.5, and
0.999. The batch size was set to 4. We employ sessions 1-3 of

the IEMOCAP dataset as the original training set, session 4 as
the validation set, and session 5 as the testing set. We consider
Micro-F1 and Macro-F1 scores to report the performance of the
SER model on the testing set. All results are averaged across 10
trials to reduce the effect of initialisation biases.

4.2. Results and Discussion

We report the data augmentation results in Table 4. We trained
the SER model on three datasets, namely the IEMOCAP dataset
of sessions 1-3, IEMOCAP sessions 1-3 augmented with au-
dio signals generated by our proposed improved-StarGAN-EVC
model, and IEMOCAP sessions 1-3 augmented with audio sig-
nals generated by the baseline-StarGAN-EVC model. We refer
to them as sessions1-3, sessions1-3+improved-StarGAN, and
sessions1-3+baseline-StarGAN, respectively. We observe that
the model trained on sessions1-3+improved-StarGAN achieves
higher Micro-F1 and Macro-F1 scores than the model trained
only on sessions1-3, which indicates that the audio signals
converted by our proposed model indeed carry effective emo-
tional information and are valuable for data augmentation. We
also note that the model trained on sessions1-3+improved-
StarGAN achieves an absolute increase of 2 % in Micro-F1 and
5 % in Macro-F1 compared to the model trained on sessions1-
3+baseline-StarGAN, which indicates that our model’s improve-
ment in audio quality is not at the expense of its emotional
conversion performance; on the contrary, the audio signals gen-
erated by our proposed model are more consistent with the dis-
tribution of the original dataset and are more valuable for data
augmentation.

5. Conclusion
We proposed a novel StarGAN-based framework and a two-stage
training process that explicitly separates the emotional features
from emotion-independent features to reduce the audio distortion
and improve the emotion conversion performance. Experimental
results in the objective evaluation and the subjective evaluation in
terms of audio distortion validated that the proposed model can
effectively reduce the distortion and improve the voice quality,
especially when the targets are high arousal emotions. Results
of data augmentation experiments for end-to-end SER indicated
that the improvement in audio quality obtained by the proposed
model is not at the expense of its emotional conversion perfor-
mance. The proposed model is more valuable for data augmen-
tation. Future approaches should also consider verification of
pertained speech intelligibility subsequent to conversion, such
as by ASR similar to the here shown SER.
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