
                                                                                                                                                                                                                  

                                                                                                                                                                                                                        
                          

                                                   

Exploring Zero-Shot Emotion Recognition
in Speech Using Semantic-Embedding Prototypes

Xinzhou Xu, Jun Deng, Nicholas Cummins, Member, IEEE, Zixing Zhang, Member, IEEE, Li Zhao,

and Björn W. Schuller, Fellow, IEEE

Abstract—Speech Emotion Recognition (SER) makes it possi-
ble for machines to perceive affective information. Our previous
research differed from conventional SER endeavours in that it
focused on recognising unseen emotions in speech autonomously
through machine learning. Such a step would enable the au-
tomatic leaning of unknown emerging emotional states. This
type of learning framework, however, still relied on manual
annotations to obtain multiple samples of each emotion. In order
to reduce this additional workload, herein, we propose a zero-shot
SER framework employing a per-emotion semantic-embedding
paradigm to describe emotions in zero-shot SER, instead of using
the sample-wise descriptors. Aiming to optimise the relationship
between emotions, prototypes, and speech samples, this frame-
work includes two types of learning strategies: Sample-wise learn-
ing and emotion-wise learning. These strategies apply a novel
learning process to speech samples and emotions, respectively, via
specifically designed semantic-embedding prototypes. We verify
the utility of these approaches by performing an extensive exper-
imental evaluation on two corpora on three aspects, namely the
influence of different types of learning strategies, emotional-pair
comparison, and the selections of semantic-embedding prototypes
and paralinguistic features. The experimental results indicate
that it is applicable to use semantic-embedding prototypes for
zero-shot emotion recognition in speech, despite the influence of
choosing optimal strategies and prototypes.

Index Terms—Speech emotion recognition, paralinguistics,
zero-shot learning, semantic-embedding prototypes

I. INTRODUCTION

PARALINGUISTICS include the field of Speech Emo-
tion Recognition (SER) for affective computing regarding

speech signals [1]–[3]. Current SER research focuses, mainly,

on the search for suitable features, approaches, and models,
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which can result in close to ideal performances [4]–[7].

Apart from SER’s basic learning object, various other learning

cases have been investigated. These include semi-supervised

learning [8], cross-domain transfer [9]–[12] based on domain

adaptation [13], [14], cross-modal transfer [15], and multi-task

learning [16]–[19].

What these techniques have in common is that they all fail

to learn an emotion which is unfamiliar or even never seen

in training examples. Examples for unfamiliar or unknown

emotions are not uncommon; they may appear in mining

mixed emotions [20], defining new emotions [21], and learning

minor emotions [22], where it is difficult to provide well-

coordinated examples for these sorts of emotions (referred

to as ‘unseen emotions’). As a typical example in human-

machine interaction, a machine may expect to decide on

whether a speaker is trustable, friendly, aggressive, or violent

when receiving an utterance. However, it will be unable to

perform this task if it has not been taught how to estimate

the speaker’s complex implicit intention. A small number of

existing works have made attempts to address this, e. g., [23].

In order to deal with recognising unseen-emotional speech

samples, we propose an autonomous learning strategy based on

zero-shot emotion recognition [24]. Zero-Shot Learning (ZSL)

has demonstrated high utility in image processing [25]–[28]

and affective computing [29]–[31]. We have also demonstrated

a zero-shot framework for SER [24]. However, this framework

required a high number of fully labelled emotional descriptors

or attributes (i.e., emotional dimensions) which construct the

label-learning models for seen-emotional samples. This type of

per-sample annotation often leads to heavy workload and high

cost for annotators to make the emotional descriptors [26].

Further, when employing the annotations to learn emotional

labels, it requires additional computational steps to construct

the associated label-learning models.

In overcoming these limitations, our framework employs

per-emotion semantic-embedding prototypes, instead of the

standard per-sample annotation for emotional descriptors.

Our framework includes joint learning for acoustic features,

emotional labels (for seen-emotional samples), and semantic-

embedding prototypes (for seen and unseen emotions) [32]–

[34].

Within the proposed framework using semantic-embedding

prototypes, the ZSL strategies are categorised into two types of

sample-wise learning and emotion-wise learning. The sample-

wise learning opts to perform learning on each sample using

their paralinguistic features and the duplication of the cor-

responding per-emotion prototypes. In contrast, emotion-wise

learning transforms the samples into emotion-wise forms and

constructs the relationship between the form and the prototype

on each emotional state.

                                                                                                                                               



                                                                                                                                                                                                                  

                                                                                                                                                                                                                        
                          

                                                   

On defining the prototypes, the semantic-embedding sources

make it more convenient to extract latent sentiment represen-

tations from textual data for emotional words. This semantic-

embedding prototype-based setup should be efficient in gen-

erating connections between seen and unseen emotional states

through replacing the sample-wise manual annotation into

automatic emotion-to-vector transformation by learning the

corresponding semantic-embedding prototypes.

Our main contributions can be summarised as follows:

• We propose a framework of using semantic-embedding

prototypes in zero-shot emotion recognition in speech,

and demonstrate the effectiveness of the framework.

• We divide the learning strategies in the framework into

sample-wise learning and emotion-wise learning, and

explore feasible strategies for zero-shot SER.

• We also explore the influence of different learning

strategies, inter-emotion information transfer, semantic-

embedding prototypes, and paralinguistic features.

The remainder of this paper is organised as follows. Sec-

tion II presents brief theoretical preliminaries for this paper.

Then, the zero-shot speech emotion recognition framework is

shown in Section III. Finally, Section IV and V present the

experiments, the analysis, and the summarisation.

II. PRELIMINARIES

Within this section, we present preliminary knowledge, in-

cluding related works in previous research and basic notations.

A. Related works

Zero-Shot Learning [26], [28], [35]: ZSL aims to recog-

nise unseen-class samples, using only seen-class samples in

learning. In this case, unseen classes refer to the classes

without any samples in the training material [36], [37]. The

learning procedures rely on transferring related information

from seen to unseen emotions, both through the represen-

tations of features from samples and the latent description

from their labels or prototypes in different modalities. We

investigate the typical setting of ZSL in this paper, where the

test set only includes unseen-emotional samples [28]. Noting

that Generalised ZSL (GZSL) is a more difficult recognition

task, as the test set includes more labels for decision [38]–

[40]. Considering the intersection between emotions [20], we

perform non-generalised ZSL in this paper [28], [41]. This is

due to different tasks on perceiving basic and complex unseen

emotions in application [42]. In addition, it is also applicable to

simulate the generalised case based on making an assumption

of multi-label activation for seen and unseen emotions [43].

Semantic-Embedding Prototypes: A prototype refers to

the most typical and representative example of its correspond-

ing category. Prototypes can be used instead of learning a

group of samples from this category [44]. Each semantic-

embedding prototype, in this case, represents a class (an

emotional state) in the form of a vector lying in a semantic em-

bedding space [35], [45], through learning latent information

on cross-modality sources [46]–[48]. The semantic-embedding

prototype in this paper employs a semantic source generated

through textual embedding transformed from its original one-

hot representations [47], [49].

Zero-Shot Speech Emotion Recognition: A basic frame-

work for zero-shot learning in SER, containing two phases of

attribute learning and label learning, is presented in [24]. The

attribute-learning phase constructs the relationship between

paralinguistic features and emotional descriptors or attributes,

through the procedure of regression on seen-emotional sam-

ples using Support Vector Regression (SVR) or Deep Neural
Networks (DNNs). Then, employing empirical knowledge of

attributes, the label-learning phase trains classifiers which link

each emotion to its corresponding attribute samples. These

two phases provide a possibility to recognise an arbitrary

unseen-emotional speech sample without knowing any sam-

ple from its domain. As mentioned in the introduction, this

framework relies on manual annotations for the descriptors on

seen-emotional samples and the empirical judgements on the

descriptors for each seen and unseen emotion.

We extend the previous research [24] by using semantic-

embedding prototypes [35], [45] instead of the per-sample

emotional descriptors. In SER, conventional approaches focus

on raising accuracies in fully supervised or semi-supervised

learning [6], [7], [50], [51], without considering the zero-shot

cases. The current works of transfer learning [10], [12] and

domain adaptation [9], [11], [13], [14] in SER investigate the

inter-corpus information transfer, differing from our emotion-

transfer research. Multi-task learning in SER is designed using

auxiliary information to improve accuracies [16]–[19], while

this work makes use of the semantic-embedding informa-

tion to achieve the zero-shot SER. ZSL works in affective

computing of image emotion [29], [31] and affective video

recognition [30] shed light on zero-shot emotion recognition

for visual cases. The research on typical ZSL approaches can

provide various basic algorithms for our zero-shot SER re-

search [32], [33], [41], [47], [52]–[54]. On learning strategies,

this work also proposes a novel framework including sample-

wise and emotion-wise learning compared with the existing

research [26], [28], [55].

B. Notations

For the non-generalised ZSL, the seen-emotional and

unseen-emotional label sets are denoted as D(S) =
{d(S)

1 , d
(S)
2 , . . . , d

(S)

c(S)} and D(U) = {d(U)
1 , d

(U)
2 , . . . , d

(U)

c(U)}.

They contain c(S) and c(U) emotions respectively, where

D(S)∩D(U) = ∅. The semantic-embedding prototypes of D(S)

and D(U) are denoted as A(S) = [a
(S)
1 , a

(S)
2 , . . . , a

(S)

c(S) ] ∈
�nA×c(S)

and A(U) = [a
(U)
1 , a

(U)
2 , . . . , a

(U)

c(U) ] ∈ �nA×c(U)

respectively, where nA represents the dimensionality of the

prototypes. The N (S) seen-emotional samples with nF -

dimensional paralinguistic features are denoted as X(S) =

[x
(S)
1 , x

(S)
2 , . . . , x

(S)

N(S) ] ∈ �nF×N(S)

with their correspond-

ing emotional labels as Y(S) = {y(S)
1 , y

(S)
2 , . . . , y

(S)

N(S)}
and the corresponding sample-wise prototypes Z(S) =

[z
(S)
1 , z

(S)
2 , . . . , z

(S)

N(S) ] ∈ �nA×N(S)

with each column equal to

the prototypes in the A(S) corresponding to the sample’s label,

while for an arbitrary unseen-emotional sample, the features

are x(U) ∈ �nF×1, with the sample’s predicted label ŷ(U).

                                                                                                                                               



                                                                                                                                                                                                                  

                                                                                                                                                                                                                        
                          

                                                   

Seen- & Unseen- Emotional States

Semantic-Embedding Prototypes

Sample-wise 
Prototypes

Seen-Emotional Utterances

Paralinguistic Features

Output: 

Supervised 
Seen-Emotional Samples

Seen-Emotional Labels

Features
Labels

Sample-wise 
Learning

Emotion-wise 
Learning

Predicted Emotional Labels

Paralinguistic Features

Unseen-Emotional Utterances

Preprocessing / Training

Emotion-wise 
Prototypes

Predicted Emotional Labels

Figure 1: A diagrammatic overview of the proposed zero-shot SER framework using semantic-embedding prototypes and paralinguistic
features. Note that the learning step appears in constructing the zero-shot emotion recognition model, while the prediction step consists of
using the unseen-emotional utterances to achieve their predicted emotional labels.

The emotional labels y
(S)
i ∈ D(S) and ŷ(U) ∈ D(U), where

i = 1, 2, . . . N (S).

III. METHODOLOGY

A. Proposed framework

The proposed framework contains two steps of learning

and prediction (inference). The learning step trains a zero-

shot emotion recognition model, using semantic-embedding

prototypes, emotional labels (from seen emotions), and par-

alinguistic features of speech utterances (from seen emotions),

as presented in Figure 1. The prediction step employs the

learnt model to predict the emotional state of an arbitrary

sample of an emotion representation not present in the training

step, herein referred to as an unseen emotional state.

First, semantic-embedding prototypes of seen and unseen

emotional states are generated as A(S) and A(U), respectively.

This generation is achieved via learnt text-to-vector models

on the emotional label sets D(S) and D(U). The raw speech

utterances are also processed to obtain paralinguistic features

X(S) for the supervised samples from seen-emotional states.

Then, we learn the zero-shot emotion recognition model

using the semantic-embedding prototypes A(S), the seen-

emotional paralinguistic features X(S), and the emotional

labels Y(S) of the samples, through using either of two types

of learning strategies. We define the two types as sample-

wise learning and emotion-wise learning, making use of A(S),

X(S), and Y(S) in different forms, as shown in Figure 2; this

division differs from similar previous related research [28],

[55]. We introduce these two types of learning in the learning

step using the objective function f(·) as follows.

Sample-wise Learning: The sample-wise learning strate-

gies perform learning on sample-wise pairs of prototypical

duplication and seen-emotional samples. This step initialises

with the set of {A(S),Y(S)}, leading to the sample-wise

intermediation seen in Figure 2 which provides intermediate

variables for the further learning on seen-emotional samples.

The intermediation consists of the sample-wise duplication of

prototypes as {Z(S)}, which also includes the label informa-

tion Y(S) implicitly.

Thus, the learning step of sample-wise learning can be

represented as estimating f(·)’s optimal parameter set:

Ψ̂ = argmax
Ψ

P
(
A(S),Y(S)|X(S); Ψ

)
= argmax

Ψ
P
(
Z(S)|X(S); Ψ

)
,

(1)

with the optimisation objective function f(X(S),Φ(S); Ψ), in

which the Φ(S) can be {A(S),Y(S)}, or equally be {Z(S)}.

The representation of the sample-wise Z(S) is equivalent to

using the emotion-wise prototypes A(S) and the emotional la-

bels Y(S). We employ the representation of f(X(S), Z(S); Ψ)
in introducing the sample-wise learning strategies since one of

the most attractive characteristics for this type is the sample-

wise intermediation of Z(S).

Emotion-wise Learning: The emotion-wise learning strate-

gies focus on learning between the ground-truth or gener-

ated prototypes A(S) and predicted emotional models for

the seen-emotional states. These transformed models can be

generalised to the form of emotion-wise intermediation, as

seen in Figure 2. This intermediation can be learnt through

discriminative or generative emotional classifiers, using the

supervised information of {X(S),Y(S)} for seen-emotional

samples. Further, this type of learning can be iterative or

reversible, indicating that the learning on emotions can be

performed in advance of generating the intermediation. It is

also applicable to include an additional Z(S) in generating the

emotion-wise intermediation implicitly, without affecting the

essence of emotion-wise learning.

In emotion-wise learning, we represent the optimised pa-

rameter set of the object f(·) as

Ψ̂ = argmax
Ψ

P
(
X(S),Y(S)|A(S); Ψ

)
, (2)

with the objective function f(X(S), A(S),Y(S); Ψ), specifi-

cally for emotion-wise learning due to its respective learning

on the the seen-emotional samples’ labels Y(S) and the seen-

emotional prototypes A(S).

In the prediction step, we input the paralinguistic features

extracted from unseen-emotional samples into the model to

predict their labels ŷ(U)s. The predicted index of emotions in

the label set can be

ĵ = argmax
j

P
(
d
(U)
j , A(U)|x(U); Ψ̂

)
s.t. j = 1, 2, . . . , c(U), (3)

from which the predicted unseen-emotional label ŷ(U) = d
(U)

ĵ
.

Section III-B introduces the strategies of sample-wise learn-

ing, which directly employ the Z(S) in the fitting of the

seen-emotional samples X(S) and the duplicated sample-wise

prototypes Z(S). In Section III-C, we investigate the emotion-

wise learning strategies, employing the information of A(S)

                                                                                                                                               



                                                                                                                                                                                                                  

                                                                                                                                                                                                                        
                          

                                                   

Sample-wise 
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Z (S),  (  (S) )
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{ A (S),  (S) }

Emotion-wise 
Intermediation

A (S)

{ X (S),  (S) }

Sample-wise 
Learning

Emotion-wise 
Learning

Initialising：

Learning：

Transforming：

(Predicting)

Figure 2: A block diagram of the proposed strategic categories of
sample-wise and emotion-wise learning.

and Y(S) separately through intra-emotion generative or inter-

emotion discriminative modelling. Finally in Section III-D, we

highlight applicable selections of semantic-embedding proto-

types appearing in Figure 1.

B. Applicable strategies: Sample-wise learning

The sample-wise learning strategies are characterised by the

direct use of per-sample prototypes Z(S), leading to optimising

the form of objective function as f(X(S), Z(S); Ψ).
SAE: The Semantic AutoEncoder (SAE) [33] represents the

sample-wise prototypes as the encoded layer in an autoen-

coder, with the parameter set Ψ = {W(SAE)} representing the

linear encoder. Thus, the optimal encoder

Ŵ(SAE) = arg min
W(SAE)

f(SAE)(X
(S), Z(S);W(SAE))

= arg min
W(SAE)

||X(S) −WT
(SAE)Z

(S)||2F + λ||W(SAE)X
(S) − Z(S)||2F ,

(4)

which is solved by the Bartels-Stewart algorithm [33], where

the W(SAE) ∈ �nA×nF . The parameter λ > 0 refers to the

weight between the terms of data reconstruction and sample-

wise prototype fitting. The estimated label index of x(U) can

be drawn through the encoder or decoder as

ĵ =

⎧⎪⎨
⎪⎩

argmin
j

Dis(Ŵ(SAE)x
(U), a

(U)
j ),

argmin
j

Dis(x(U), ŴT
(SAE)a

(U)
j ),

(5)

through calculating the distance operator Dis(·, ·).
DEM: The Deep Embedding Model (DEM) [47] strategy

employs deep structures in the regression on the paralinguistic

features of training samples with the sample-wise prototypes

as the target in fitting. This leads to optimising the parameters

Ψ = {W1,W2} of the basic deep structures as

Ŵ(DEM),1, Ŵ(DEM),2 = arg min
W1,W2

f(DEM)(X
(S), Z(S);W1,W2)

= arg min
W1,W2

1

N(S)

N(S)∑
i=1

∣∣∣∣∣∣x(S)
i − g(W2g(W1z

(S)
i ))

∣∣∣∣∣∣2 +R(W1,W2),

(6)

where the connections W1 ∈ �nH×nA and W2 ∈ �nF×nH

with the nH -size hidden layer. The g(·) represents the nonlin-

earity mapping using a Rectified Linear Unit (ReLU), and the

regularisation term of R(W1,W2) can be λ(||W1||2F+||W2||2F )
with the weight constant λ. The estimated unseen-emotional

label index is

ĵ = argmin
j

Dis
(
x(U), g(Ŵ(DEM),2 g(Ŵ(DEM),1 a

(U)
j )

)
. (7)

LatEm: The Latent Embeddings (LatEm) [54] strategy

utilises the optimisation between the columns of X(S) and

Z(S), by calculating the cost function for each pair of x
(S)
i

and z
(S)
l , using the parameter set Ψ = W(LE), where i, l =

1, 2, . . . , N (S). The optimal parameters

Ŵ(LE) = arg min
W(LE)

f(LE)(X
(S)

, Z
(S)

;W(LE)) = arg min
W(LE)

N(S)∑
i=1

L(x
(S)
i , z

(S)
i )

N(S)

s.t. L(x
(S)
i , z

(S)
i ) =

N(S)∑
l=1

max{0, G(x
(S)
i , z

(S)
i , z

(S)
l )},

G(x
(S)
i , z

(S)
i , z

(S)
l ) = Δ(z

(S)
i , z

(S)
l ) + F (x

(S)
i , z

(S)
l ) − F (x

(S)
i , z

(S)
i ),

F (x
(S)
i , z

(S)
l ) = max

m=1,2,...,M
(x

(S)
i

T
W(LE),mz

(S)
l ),

(8)

where ̂W(LE) = {̂W(LE),1,̂W(LE),2, . . . ,̂W(LE),M} and W(LE) =
{W(LE),1,W(LE),2, . . . ,W(LE),M} ⊂ �nF×nA . This optimisa-

tion form includes a discriminative term of Δ(zi, zl), equal to

0 for zi = zl and 1 for zi �= zl. This makes LatEm be a mixture

of the sample-wise and emotion-wise learning implicitly, as

the discriminative term only requires the labels Y(S). The

optimisation can be solved using Stochastic Gradient Descent
(SGD) [54], obtaining x(U)’s predicted index

ĵ = argmax
j

(
max

m=1,2,...,M
(x(U)T Ŵ(LE),ma

(U)
j )

)
. (9)

C. Applicable strategies: Emotion-wise learning

The emotion-wise learning strategies make use of Y(S)}
and A(S) separately, with the objective function represented

by f(X(S), A(S),Y(S); Ψ).
ESZSL: The Embarrassingly Simple Zero-Shot Learning

(ESZSL) [52] methodology induces the emotion-wise pro-

totypes A(S) utilising linear discrimination for the seen-

emotional samples, in order to transfer knowledge from seen

to unseen emotions. We define the parameter set as Ψ =
{W(LES)} for the linear case, while Ψ = {W(KES)} for the

corresponding kernelised case. The optimal W(LES) is

Ŵ(LES) = arg min
W(LES)

f(LES)(X
(S), A(S),Y(S);W(LES))

= arg min
W(LES)

(
L0(X

(S)TW(LES)A
(S),Y(S)) +R1(W(LES))

)
,

(10)

where the linear mapping matrix W(LES) ∈ �nF×nA and

L0(·, ·) is a loss function to measure the dissimilarity, using

Frobenius norm between the transformed features and the

labels Y(S) in the one-hot form as a matrix. R1(W(LES))
represents the regularisation for W(LES). Thus, the predicted

index
ĵ = argmax

j

(
x(U)T Ŵ(LES)a

(U)
j

)
. (11)

The kerenlised form of ESZSL includes learning linear com-

bination of Reproducing Kernel Hilbert Space (RKHS) [6], [7]

vectors from W(KES) ∈ �N(S)×nA , as

Ŵ(KES) = arg min
W(KES)

f(KES)(X
(S), A(S),Y(S);W(KES))

= arg min
W(KES)

(
L0(K(X(S), X(S))W(KES)A

(S),Y(S)) +R2(W(KES))
)
,

(12)

where K(X(S), X(S)) = φT (X(S))φ(X(S)) represents the

inner products between RKHS vectors, in which φ(·) is

                                                                                                                                               



                                                                                                                                                                                                                  

                                                                                                                                                                                                                        
                          

                                                   

the RKHS mapping for each column of X(S). R2(W(KES))
represents the regularisation for W(KES). The predicted index

ĵ = argmax
j

(
K(X(S), x(U))T Ŵ(KES)a

(U)
j

)
, (13)

where K(X(S), x(U)) = φT (X(S))φ(x(U)).
SYNC: The fast SYNthesised Classifiers (SYNC) [53], [56]

strategy makes use of seen-emotional labels Y(S) to generate

linear discriminative mappings, while A(S) is employed to

generate c(P ) phantom classifiers connecting seen and unseen

emotions. Defining the parameters as Ψ = {V(SYNC)}, we have

the optimal parameters

V̂(SYNC) = arg min
V(SYNC)

f(SYNC)(X
(S)

, A
(S)

,Y(S)
;V(SYNC))

= arg min
V(SYNC)

(
J(X

(S)
,Y(S)

,W ) +
τ

2
tr(W

T
W )

)
s.t. W = V(SYNC)S,

(14)

where the weight τ > 0. The phantom linear classi-

fiers V(SYNC) ∈ �nF×c(P )

and the seen classifiers W =

[w1, w2, . . . , wc(S) ] ∈ �nF×c(S)

. The loss function of J aims

to optimise the discrimination between X(S) and Y(S). For

the One-Versus-Other (OVO) case (noted as ‘SYNC-OVO’),

J(X
(S)

,Y(S)
,W ) =

c(S)∑
c=1

N(S)∑
i=1

(
max(0, 1 − Δ0(y

(S)
i , d

(S)
c )w

T
c x

(S)
i )

)2
,

(15)

where Δ0(y
(S)
i , d

(S)
c ) is equal to 1 for y

(S)
i = d

(S)
c and

−1 for y
(S)
i �= d

(S)
c . The similarity matrix S ∈ �c(P )×c(S)

contains its cP th-row and cS th-column element as ScP cS =

e
−Dis(a

(S)
cS

,bcP
)

∑c(P )

cP =1 e
−Dis(a

(S)
cS

,bcP
)
, using the phantom prototypes B =

[b1, b2, . . . , bc(P ) ] ∈ �nA×c(P )

. The simplified form of the

distance operator Dis(a
(S)
cS , bcP ) = σ2||a(S)

cS − bcP ||2.

We can also yield the J to standard Crammer-Singer (CS)

multi-class Support Vector Machine (SVM) loss (noted as

‘SYNC-CS’) or the CS loss with l2 distance of prototypes

(noted as ‘SYNC-struct’). The l2-distance CS loss implies

a mixture of the sample-wise learning, due to the inclusion

of Z(S). With the sj representing the jth column of S, the

predicted emotional-state index

ĵ = argmax
j

(
(V̂(SYNC)sj)

T x(U)
)
. (16)

EXEM: The EXEMplar synthesis (EXEM) [37], [53] strat-

egy utilises a one dimensionality-reduced exemplar for each

emotional state, optimising the alignment as the parameter set

Ψ = {ψ(EXEM)}, between each exemplar and its corresponding

emotional prototype. This leads to the optimal mapping for the

alignment as

ψ̂(EXEM) = arg min
ψ(EXEM)

f(EXEM)(X
(S), A(S),Y(S);ψ(EXEM))

= arg min
ψ(EXEM)

Sim(ψ(EXEM)(A
(S)), U) s.t. uc =

ΩX
(S)
c Γc

N
(S)
c

,

(17)

where Sim(·, ·) is a similarity measurement. The exemplar

matrix U = [u1, u2, . . . , uc(S) ] ∈ �nDR×c(S)

with the reduced

dimensionality equal to nDR using the linear mapping matrix

Ω ∈ �nDR×nF of the Principal Component Analysis (PCA).

In order to draw the mapped prototypes ψ(EXEM)(A
(S)) ∈

�nDR×c(S)

, ν- Support Vector Regression (ν-SVR) can be

Table I: The best UAs (%; corresponding to the corpora ‘GEMEP
/ DEMoS’) among multiple prototypes averaging on each pair of
unseen emotions for different learning strategies.

Strategies \ Data Forms Z(S) A(S) Y(S)

SAE [33]
√

DEM [47]
√

LatEm [54]
√ √

(*)

SSE [32]
√ √ √

ESZSL [52]
√ √

EXEM (1NNS) [37], [53]
√ √

SYNC (-OVO, -CS) [53], [56]
√ √

SYNC (-struct) [53], [56]
√ √ √

GNN-ZSL (GCNZ [57], DGP [58])
√ √

* Implicitly using the discriminative label information for seen emotions.

employed in this optimisation. N
(S)
c represents the number

of samples belonging to d
(S)
c . All of the elements of Γc ∈

�N(S)
c ×1 are equal to 1. Then, we have x(U)’s predicted index

ĵ = argmin
j

Dis(Ωx(U), ψ̂(EXEM)(a
(U)
j ). (18)

Similar to SYNC-struct, some strategies use sample-wise

prototypes Z(S), jointly with A(S) and Y(S) during learning.

We, therefore, consider these a special case of emotion-wise

learning, such as the SSE strategy, since they include learning

procedures for A(S).

SSE: The Semantic Similarity Embedding (SSE) [32] strat-

egy projects both of features and prototypes into an emotional-

contribution space represented by seen-emotional prototypes,

optimising the parameter set Ψ = {w(SSE),V(SSE), ϕ(SSE)}.

First, the optimal mapping ϕ(SSE)(·) for each prototype from

the prototype domain to contribution weights can be drawn

through sparse coding as

ϕ̂(SSE) = arg min
ϕ(SSE)

f(SSE),1(A
(S);ϕ(SSE)), (19)

where the f(SSE),1 refers to a reconstruction function for seen-

emotional prototypes. The linear mapping w(SSE) ∈ �nF×1

and the emotion-wise nonlinearisation parameter set V(SSE) =
{v(SSE),1, v(SSE),2, . . . , v(SSE),c(S)} ⊂ �nF×1. Thus, the optimal

w(SSE) and V(SSE) are obtained through a discriminative form

with the ϕ̂(SSE), as

ŵ(SSE), V̂(SSE) = arg min
w(SSE),V(SSE)

f(SSE),2(X
(S),Y(S), Z(S);w(SSE),V(SSE))

= arg min
w(SSE),V(SSE)

fMM ({wT
(SSE) ψ(SSE)(x

(S)
i ,V(SSE)) ϕ̂(SSE)(z

(S)
i )}),

(20)

considering the minimisation of the max-margin formula-

tion fMM [32], with arbitrary i = 1, 2, . . . , N (S), which

can be solved alternatively using SVM and ConCave-
Convex Procedure (CCCP) [32]. The nonlinearisation mapping

ψ(SSE)(x
(S)
i ,V(SSE)) ∈ �nF×c(S)

can be INTersction (INT)

or ReLU functions [32], while the ϕ̂(SSE)(z
(S)
i ) ∈ �c(S)×1

represents the corresponding sparsely coded unseen-emotional

prototype. The predicted label index

ĵ = argmax
j

(
ŵT

(SSE) ψ(SSE)(x
(U), V̂(SSE)) ϕ̂(SSE)(a

(U)
j )

)
. (21)

Note that the Graph Neural Network (GNN) based ZSL

strategies, including GCNZ [57] and Dense Graph Propa-
gation (DGP) [58] can also be sorted as the emotion-wise

learning by replacing the prototypes A(S) and a(U) into

                                                                                                                                               



                                                                                                                                                                                                                  

                                                                                                                                                                                                                        
                          

                                                   

Table II: The description of the GEMEP and DEMoS corpora, including the dimensional arousal-valence polarity for the emotional states.

Properties \ Corpora GEMEP (12 emotions) DEMoS (excluding neutral)

Polarity

Arousal (Pos.) & Valence (Pos.) amusement, pride, elation happiness, surprise
Arousal (Neg.) & Valence (Pos.) relief, interest, pleasure -
Arousal (Pos.) & Valence (Neg.) hot anger (rage), panic fear, despair anger, sadness, fear, disgust, guilt
Arousal (Neg.) & Valence (Neg.) cold anger (irritation), anxiety, sadness (depression) -

Languages / # Speakers / # Samples French / 10 (5 female) / 1 080 Italian / 68 (23 female) / 9 697

learning on knowledge graphs consisting of concept entities.

This step, however, requires well-designed concept structures

for the specific case of affective computing. We summarise

different usages on the data forms of Z(S), A(S), and Y(S)

for the applicable strategies in Table I. Thus for the sample-
wise learning strategies, we unify the forms of optimisation as

f(X(S), Z(S); Ψ), while the emotion-wise learning strategies

employ the form of f(X(S), A(S),Y(S); Ψ). Note that the

boundary of the two categories of the learning strategies is

not clear since the data forms are interconvertible.

D. Semantic-embedding prototypes for emotions

A common method for prototype selection when performing

sentiment analysis is to employ a pre-trained word-vector

model to build the semantic-prototype generators. Applicable

generators include word2vec [49], [59], GloVe [60], and fast-
Text [61], [62].

Based on the continuous skip-gram model, the word2vec
model generates word representations by using several ex-

tensions on sub-sampling of frequent words and a simplified

variant of Noise Contrastive Estimation (NCE) [31], [49]. The

GloVe model differs from word2vec in that it is built using a

weighted least-squares model, trained on global word-word co-

occurrence counts [60]. It is also possible to use pre-trained

word vectors based on multiple text data. Similar to word2vec,

the fastText generator extends the continuous skip-gram model,

through considering subword information [61].

Built on the research of SenticNet [63], [64], SenticNet
5 [65] aims to identify sentiment information from textual

commonsense concepts. It employs a Long Short-Term Mem-
ory (LSTM) based Recurrent Neural Network (RNN) [65] to

aid the construction of a SenticNet concept’s values in multiple

sentiment dimensions, related moods and polarities, and 5
highly related semantic words or phrases.

In our framework, we propose two categories of prototypes.

The first category employs the raw word vectors to form

the semantic-embedding prototypes directly, while the other

category utilises the SenticNet 5 to obtain an emotional state’s

neighbouring textual phrases. We also replace the raw word

vectors into the averaging word vectors of the corresponding

concepts’ neighbours, which may reduce the error probability

compared with a single word’s representations.

IV. EXPERIMENTS

A. Preparation

Corpora and Features
We use the GEneva Multimodal Emotion Portrayals

(GEMEP) [6], [66], [67] and Database of Elicited Mood
in Speech (DEMoS) [68] corpora in our experiments. For

Table III: Brief introduction of the features of the eGeMAPS set
(with Mel-Frequency Cepstral Coefficients (MFCC)). ‘〈·〉’ represents
the extensive features compared with the GeMAPS set.

Feature Types and Description of eGeMAPS (with # dimensions)

Within Voiced Regions (42〈+14〉 dim.):

• Frequency (18〈+4〉 dim.):
Pitch (10 func.‡); Jitter (2 func.†);
Formant 1 to 3 frequency & Formant 1 bandwidth (2 func.†);
〈Formant 2 & 3 bandwidth (2 func.†)〉;

• Energy/Amplitude (4 dim.):
Shimmer (2 func.†); Harmonics-to-Noise Ratio (HNR) (2 func.†);

• Spectral (18〈+10〉 dim.):
Alpha Ratio (2 func.†); Hammarberg Index (2 func.†);
Spectral Slope 0-500 Hz & 500-1500 Hz (2 func.†);
Formant 1 to 3 relative energy (2 func.†);
Harmonic Difference H1-H2 and H1-A3 (2 func.†);
〈Spectral Flux (2 func.†)〉; 〈MFCC 1 to 4 (2 func.†)〉;

Within Unvoiced Regions (4〈+1〉 dim.):

Alpha Ratio (1 func.�); Hammarberg Index (1 func.�);
Spectral Slope 0-500 Hz & 500-1500 Hz (1 func.�);
〈Spectral Flux (1 func.�)〉;

Within Global Regions (Voiced & Unvoiced) (16〈+11〉 dim.):

Loudness (10 func.‡); rate of loudness peaks;
# continuous voiced regions per second;
mean length & standard deviation of continuous voiced regions;
mean length & standard deviation of continuous unvoiced regions;
〈Spectral Flux (2 func.†)〉; 〈MFCC 1-4 (2 func.†)〉;
〈equivalent sound level〉.

� 1 func.: Only applying the functional of arithmetic mean.
† 2 func.: Applying the functionals of ‘1 func.’ and coefficient of variation.
‡ 10 func.: Applying the functionals of {20, 50, 80}th percentile, the range of 20th to
80th percentile, and the mean and standard deviation of the slope of rising & falling
parts, in addition to ‘2 func.’.

both corpora, we set the learning-data partition as Leave-
Two-Emotions-Out (LTEO). This strategy results in leaving

the samples from two emotion categories as the test set,

while using the other samples in training and validating. This

step enables us to investigate the knowledge transfer between

emotional samples in the zero-shot SER.

GEMEP: The GEMEP corpus includes 1 260 French ut-

terance samples with a sampling rate of 44.1 kHz, belonging

to 18 emotions from 10 speakers (5 female). As in [6], [7],

we choose 1 080 samples from 12 emotions (90 samples per

emotion), without considering the additional emotions. This

leads to the emotional inclusion of amusement, anxiety, cold
anger (or irritation), despair, elation, hot anger (or rage),

interest, panic fear, pleasure, pride, relief, and sadness (or

depression).

DEMoS: In order to investigate the small-size emotion

cases with more utterance samples, we further employ the

DEMoS corpus, which includes 9 697 Italian utterances from 8
categories (including 7 emotional states and the neutral state).

The categories of anger, sadness, happiness, fear, disgust,
guilt, surprise, and neutral contain 1 447, 1 530, 1 395, 1 156,

1 678, 1 129, 1 000, and 332 samples respectively, with the

sampling rate of 44.1 kHz. Produced by 68 native Italian

speakers (23 female), the utterances are elicited by combina-

tions of Mood Induction Procedures (MIP). Table II provides a

                                                                                                                                               



                                                                                                                                                                                                                  

                                                                                                                                                                                                                        
                          

                                                   

Table IV: Unweighted Accuracies (UAs; %), corresponding to the corpora of ‘GEMEP / DEMoS’, using the eGeMAPS feature set and
different strategies, when employing the 8 sorts of semantic-embedding prototypes. We omit the insignificant results on UAs compared with
the chance level.

GEMEP / DEMoS Corpora: w/o SenticNet 5 w/ SenticNet 5
Strategies \ Prototypes word2vec GloVe fastText-crawl fastText-wiki word2vec GloVe fastText-crawl fastText-wiki

SAE 51.5 / − 52.6 / − 51.9 / 50.7 53.9 / − 51.1 / 50.5 53.0 / − 52.5 / − 52.7 / 50.6
DEM 51.9 / − 54.5 / − 53.1 / − 54.0 / − − / − − / 51.3 − / − − / 50.7
LatEm (M = 2) 56.5 / 51.5 55.3 / 51.1 54.7 / 51.5 57.5 / 51.0 51.5 / 53.8 − / 51.3 51.1 / 52.0 − / 52.6
LatEm (M = 4) 55.8 / 50.8 53.5 / 51.6 55.7 / 51.0 54.6 / 50.7 51.4 / 52.0 51.4 / 52.8 52.2 / 50.9 52.1 / 51.3
SSE (INT) − / 50.5 51.7 / − 54.0 / − 53.5 / − − / − − / − 53.9 / − − / −
SSE (ReLU) 51.3 / − 52.8 / 51.1 54.4 / − 54.6 / − − / 51.9 51.7 / 52.1 55.0 / 51.8 − / 52.2
Linear ESZSL 58.2 / − 56.5 / − 59.2 / − 58.2 / − 51.5 / − 54.1 / − 54.5 / − 53.9 / −
Kernel ESZSL 59.3 / − 57.6 / − 59.3 / 52.0 59.5 / − 52.9 / 53.8 54.2 / 53.2 54.9 / 52.0 53.4 / 52.4
EXEM (1NNS) 57.3 / 53.1 52.3 / 52.1 55.9 / 53.4 56.1 / 52.7 54.0 / 56.2 52.6 / 55.4 56.5 / 54.3 53.5 / 54.7
SYNC-OVO 59.2 / 51.3 57.2 / 51.2 58.5 / 52.0 59.0 / 52.3 53.0 / 56.6 53.8 / 54.9 56.0 / 54.6 52.8 / 55.3
SYNC-CS 59.0 / 52.7 55.6 / 52.5 57.4 / 53.8 56.9 / 52.5 50.9 / 56.8 52.8 / 56.1 55.1 / 53.0 53.8 / 53.7
SYNC-struct 57.0 / 50.6 55.6 / 51.9 56.9 / 52.1 57.0 / 51.5 51.9 / 55.8 53.2 / 55.2 55.0 / 54.1 52.9 / 54.8

brief introduction for the GEMEP (12 emotions) and DEMoS

corpora, including the dimensional arousal-valence polarity

for the emotional states.

The OPENSMILE toolkit is utilised for extracting paralin-

guistic features [69], [70]. We employ the 88-dimensional

extended Geneva Minimalistic Acoustic Parameter Set
(eGeMAPS) in the experiments (from functionals on 25 time-

smoothed Low-Level Descriptors (LLDs), temporal features,

and equivalent sound level) [70], which has been proven effec-

tive in SER when using SVMs. In supplementary experiments,

we also use GeMAPS (from functionals on 18 LLDs and

temporal features) [70] and ComParE (from functionals on

65 LLDs and temporal features) [2], [3], [7] sets, containing

62 and 6 373 features respectively. Min-max normalisation

is employed for feature pre-processing. We present a brief

introduction for the mainly used eGeMAPS feature set (in-

cluding GeMAPS) in Table III, for the extraction within

voiced, unvoiced, and global regions in an arbitrary speech

sample [70].

Semantic-Embedding Prototypes
The experiments employed 300-dimensional English word-

vector representations as the selections of semantic-embedding

prototypes, based on pre-trained models from word2vec (1
model), GloVe (1 model), and fastText (2 models), all with

and without using SenticNet 5. The SenticNet 5 extends the

4 models through presenting an average combination for each

word vector of a corresponding emotion’s 5 neighbours (if

their word vectors exist), leading to 8 selections of prototypes.

We utilise the conventional word2vec model trained on the

Google News corpus containing 3 million words (100 billion

tokens) [31], [49]. The GloVe model in the experiments

employs Wikipedia 2014 plus Gigaword 5 as its training data,

containing 0.4 million vocabularies (6 billion tokens) [60].

For the fastText models, we employ the training data of the

pre-trained representations respectively including: 1) 2 million

word vectors (600 billion tokens) trained on Common Crawl

(noted as ‘fastText-crawl’); 2) 1 million word vectors trained

on Wikipedia 2017, UMBC webbase corpus and the statmt.org
news dataset (noted as ‘fastText-wiki’) [61], [62].

The 12 emotional categories in the GEMEP corpus can

be used to generate semantic-embedding prototypes into two

folds. For the emotions of anxiety, cold anger, hot anger,

panic fear, and sadness, the prototype generator utilises the

Table V: Pair-wise comparisons of UAs (mean difference and
significance, noted as ‘MD’ and ‘Signif.’ respectively) on the factor
of strategy using post-hoc Tukey’s HSD, between the 3 strategies
(including Kernel ESZSL, EXEM (1NNS), and SYNC-OVO) and the
7 strategies (including SAE, DEM, LatEm, SSE (ReLU), in addition
to the 3 ones).

Strategies \ Corpora GEMEP corpus DEMoS corpus

Str. 1 Str. 2
MD Signif. MD Signif.

(Str. 1-2) (p value) (Str. 1-2) (p value)

SAE 0.0397 < .005* 0.0142 < .005*
DEM 0.0582 < .005* 0.0163 < .005*

Kernel LatEm 0.0307 < .005* −0.0016 > .05
ESZSL SSE (ReLU) 0.0475 < .005* 0.0041 > .05

EXEM (1NNS) 0.0161 > .05 −0.0229 < .005*
SYNC-OVO 0.0022 > .05 −0.0183 < .005*

SAE 0.0236 > .05 0.0371 < .005*
DEM 0.0421 < .005* 0.0392 < .005*

EXEM LatEm 0.0146 > .05 0.0213 < .005*
(1NNS) SSE (ReLU) 0.0314 < .005* 0.0270 < .005*

Kernel ESZSL −0.0161 > .05 0.0229 < .005*
SYNC-OVO −0.0139 > .05 0.0046 > .05
SAE 0.0375 < .005* 0.0325 < .005*
DEM 0.0560 < .005* 0.0346 < .005*

SYNC LatEm 0.0285 < .01* 0.0167 < .005*
-OVO SSE (ReLU) 0.0453 < .005* 0.0224 < .005*

Kernel ESZSL −0.0022 > .05 0.0183 < .005*
EXEM (1NNS) 0.0139 > .05 −0.0046 > .05

* Significant at the level of 0.05 for post-hoc Tukey’s HSD.

emotions’ average word-vector representations of emotional

pairs as anxiety-worry, irritation-anger, rage-anger, panic-

fear, and sadness-depression respectively, in accordance with

the emotional-label description for the GEMEP corpus [66].

The emotions in DEMoS and the other emotions in GEMEP

are used to obtain their semantic-embedding prototypes di-

rectly through the word-vector models.

Experimental Setup for Learning Strategies
As mentioned above, the LTEO data partition implies pair-

wise emotion recognition in the experiments. To select optimal

parameters for each strategies, we utilise emotion-independent

5-fold and 3-fold Cross-Validation (CV) in grid-searching on

the GEMEP and DEMoS corpora, respectively, which makes

the validation set include samples from two emotions in each

CV round. The measurement of Unweighted Accuracy (UA)

is chosen in the CV rounds as the standard, calculated through

averaging recalls [7], [16], [71].

In the proposed zero-shot SER framework, we employ

the ZSL approaches of SAE [33], DEM [47], LatEm [54],

SSE [32], ESZSL [52], EXEM [37], [53], and SYNC [53], [56]

                                                                                                                                               



                                                                                                                                                                                                                  

                                                                                                                                                                                                                        
                          

                                                   

in the experiments. For the SAE strategy, the parameters λ =
{10−1, 100, 101, 103, 105, 107, . . . , 1027}. The DEM employs

the learning rates of {10−5, 10−4, 10−3, 10−2}, the weight

decays of {10−3, 10−2}, and the intermediate-layer node num-

bers of {100, 300, 500, 700, 900}, within 3 000 epochs using

the Adaptive moment estimation (Adam) optimiser [47]. The

LatEm considers two cases of Ms for the numbers of the linear

mapping matrices, equal to 2 and 4, while the learning rates of

SGD are {10−5, 10−4, 10−3, 10−2}, within 150 epochs. The

SSE retains the experimental setup as in [32], considering both

of INT and ReLU cases. For the linear and kernelised ESZSL

strategies, we choose both of the regulariser weights for

samples and prototypes (cf. [52]) as {10−3, 10−2, . . . , 103},

while for the kernelised ESZSL, we employ Gaussian ker-

nels with the scaling parameters of {10−1nF , nF , 10nF }.

The EXEM considers the ν-SVR parameters of the regu-

larisation coefficients, the ν values, and the kernel-scaling

parameters as {2−3, 2−2, . . . , 23}, {2−8, 2−7, . . . , 20}, and

{2−4, 2−3, . . . , 24} respectively, while the reduced dimen-

sions in PCA are {40, 60, 80}. We set the distance func-

tion in EXEM as a 1-nearest neighbour classifier with stan-

dard Euclidean distance (noted as EXEM (1NNS)). The

SYNC strategies (SYNC-OVO, SYNC-CS, and SYNC-struct)

utilise semantic-embedding prototypes of seen emotions as

the phantom prototypes, using the regularisation weights

τs and the distance-scaling parameters σ2s chosen from

{2−24, 2−23, . . . , 2−9} and {2−5, 2−4, . . . , 25}, respectively.

B. Experimental results: Strategic comparison

Our experiments contain three modules. For the first module

of strategic comparison (Section IV-B), we aim to verify

the applicability of the proposed framework and make a

comparison between the learning strategies. The module of

emotional pair-wise analysis (Section IV-C) allows to inves-

tigate emotion transfer between different types of emotional

states due to the needs of application. Afterwards, the influ-
ence of semantic-embedding prototypes and paralinguistic
features (Section IV-D) focuses on exploring the influence

from different critical settings and parameters.

First, we perform the experiments on both the GEMEP and

DEMoS corpora comparing the different semantic-embedding

prototypes word2vec, GloVe, and fastText, with and without

SenticNet 5, using UA as the performance-evaluation met-

ric [7]. As shown in Table IV, we calculate the average

value of all the pair-wise emotion recognition results (UAs) in

different selections of specific semantic-embedding prototypes

and learning strategies, where we omit the insignificant UA

results in the table compared to the chance level, using a one-

tailed z-test at the significance level of 0.05 [6], [72]. Thus,

the UAs present imply that it is feasible to use semantic-

embedding prototypes in zero-shot SER instead of the sample-

wise annotation as used in [24], at least for recognising some

specific pairs of emotions.

As observed in Table IV, different learning strategies and

semantic-embedding prototypes can result in diverse perfor-

mances on UA and F1. Most of the best results appears among

the learning strategies of ESZSL, SYNC, and EXEM, all

Table VI: The best UAs (%; corresponding to the corpora of
‘GEMEP / DEMoS’) among multiple prototypes averaging on each
pair of unseen emotions for different learning strategies.

Strategies \ Prototypes w/o SenticNet 5 w/ SenticNet 5 both

SAE 57.2 / 51.1 57.0 / 51.7 60.4 / 52.3
DEM 59.3 / 50.3 54.4 / 52.1 64.5 / 52.1
LatEm (M = 2) 64.2 / 54.2 58.0 / 55.5 66.8 / 56.5
LatEm (M = 4) 63.5 / 54.2 59.3 / 54.7 66.6 / 56.0
SSE (INT) 58.3 / 50.8 56.9 / 50.1 61.6 / 51.6
SSE (ReLU) 58.6 / 51.4 57.8 / 53.6 62.5 / 53.9
Linear ESZSL 63.2 / 50.0 60.2 / 50.6 66.9 / 50.6
Kernel ESZSL 64.6 / 52.8 61.4 / 55.6 68.8 / 56.0
EXEM (1NNS) 62.3 / 55.6 60.3 / 58.7 64.2 / 59.3
SYNC-OVO 64.4 / 54.7 59.7 / 58.3 66.9 / 58.7
SYNC-CS 63.4 / 54.9 58.8 / 57.8 66.2 / 58.4
SYNC-struct 62.9 / 53.8 58.8 / 57.4 66.0 / 57.7

SYNC-OVO (rand)
65.0 ± 0.9 / 60.9 ± 1.1 / 67.7 ± 0.5 /
55.2 ± 0.4 58.2 ± 0.5 58.9 ± 0.4

included in the form of emotion-wise learning. We can infer

that the fitting procedures in sample-wise learning may make

it difficult to coordinate valuable information for emotion

recognition due to the limited number of speech samples.

Further, for the strategies of kernelised ESZSL, EXEM, and

SYNC-OVO, the highest average UAs (among the 8 categories

of prototypes) for the GEMEP corpus outperform the results

on the DEMoS corpus. This may be due to the small number

of emotional states in the DEMoS corpus, which provides

insufficient information transfer from seen to unseen emotions.

In order to compare inter-strategy performances, we employ

a two-way ANalysis Of VAriance (ANOVA) [7] for the UAs

across all the emotional pairs (66 for GEMEP corpus and 28
for DEMoS corpus) on the two corpora respectively, with its

factors strategy (including 7 categories of SAE, DEM, LatEm

(M = 2), SSE (ReLU), Kernel ESZSL, EXEM (1NNS),

and SYNC-OVO) and prototype (including 8 categories as in

Section IV-A). For the strategy factor, we obtain its significant

effect with (F (6, 3640) = 15.59, p < 0.0001) (on the

GEMEP corpus) and (F (6, 1512) = 31.52, p < 0.0001)
(on the DEMoS corpus). We also perform a post-hoc Tukey’s
Honest Significant Difference (Tukey’s HSD) test [7] with

respect to the strategy, focusing on comparing the strategies

of Kernel ESZSL, EXEM (1NNS), and SYNC-OVO, with the

remaining ones among the 7 categories for strategy, as shown

in Table V. The results in Table V show the best UA per-

formance appearing in employing Kernel ESZSL and SYNC-

OVO for the GEMEP corpus, while the DEMoS corpus makes

EXEM (1NNS) and SYNC-OVO perform significantly better.

This implies that using SYNC strategies results in the most

balanced performance, in accordance with the experimental

results of conventional ZSL research [28].

Afterwards, we investigate the best UAs for each emotional

pair among the prototypes (Table VI). This analysis includes

the best UA results among the 4 prototypes with and without

SenticNet 5 respectively, and all the 8 prototypes, averaging

on each pair of unseen emotions. In view of the most balanced

UA results for SYNC-OVO presented above, we propose the

‘SYNC-OVO (rand)’ strategy based on SYNC-OVO using

randomised phantom prototypes, with the elements ranging

from 0 to 1 following a uniform distribution. We set the

number of the phantom prototypes c(P ) as 1 000, repeating

                                                                                                                                               



                                                                                                                                                                                                                  

                                                                                                                                                                                                                        
                          

                                                   

(a)

(b)

Figure 3: Bar charts of the average UAs among all the 8 sorts of
prototypes for each pair of emotions with eGeMAPS paralinguistic
features, when using the algorithms SAE, DEM, LatEm (M = 2),
SSE (ReLU), Kernel ESZSL, EXEM (1NNS), SYNC-OVO, and
SYNC-OVO (rand), on the (a) GEMEP and (b) DEMoS corpora.

the experiments for 15 times. The results indicate that Kernel

ESZSL and SYNC-OVO / SYNC-OVO (rand) perform well on

the GEMEP corpus, while EXEM (1NNS) and SYNC-OVO /

SYNC-OVO (rand) achieve better performance on the DEMoS

corpus (Figure 3). As an additional investigation, we present

the UA and macro F1-score (calculated through averaging

recalls and precision-recall integration) [71], [73] results of the

strategies of Kernel ESZSL, EXEM (1NNS), SYNC-OVO, and

SYNC-OVO (rand). The F1-score results obey the tendency of

the UAs (Table VII), indicating that the analysis on the UAs in

this work is possible to be transferred onto the joint precision-

accuracy measurement.

C. Experimental results: Emotional pair-wise analysis

We start an analysis between emotional states as only

it is required to recognise very few numbers of emotional

states in most application scenarios. We present the pair-wise

emotional matrices on the corpora GEMEP (Figure 4a) and

DEMoS (Figure 4b), using the average UA results for the

SAE, DEM, LatEm (M = 2), SSE (ReLU), Kernel ESZSL,

EXEM (1NNS), and SYNC-OVO strategies, considering the

best results among the 8 prototypes. Each row or column with

quite different UAs in Figure 4 implies that the information

Table VII: The best UAs and F1-scores (%) on the GEMEP and
DEMoS corpora among the 8 prototypes averaging on each pair of
unseen emotions for different learning strategies. We consider the
best and average results for SYNC-OVO (rand).

Strategies \ Measurements
GEMEP Corpus DEMoS Corpus
UA F1-score UA F1-score

Kernel ESZSL 68.8 68.0 56.0 54.8
EXEM (1NNS) 64.2 63.6 59.3 57.1
SYNC-OVO 66.9 66.1 58.7 56.7
SYNC-OVO (rand) Avg. 67.7 66.8 58.9 56.4
SYNC-OVO (rand) Best 68.3 67.5 59.5 57.2

transfer for zero-shot SER jointly depends on the source

domain for seen emotions and the target domain for unseen

emotions. It is also learnt from Figure 4 that the pair-wise

zero-shot recognition on the GEMEP corpus performs better

compared to the DEMoS corpus. We set a one-way ANOVA on

these UAs between the two corpora [7], showing significantly

better performance for the GEMEP corpus. This may be

partially due to the variety of seen emotions in the target

domain.

On the GEMEP corpus in Figure 4a, the UA results

(> 75.0%) of emotional pairs indicate that the dimension of

arousal is a key factor in zero-shot SER, since all the top

UAs appear in the emotional pairs with different polarities

of arousal. This is in accordance with the previous SER re-

search [18], [74], [75], showing better performance on arousal-
polarity separation. We also jointly investigate the influence

from the dimensions arousal and valence, in view that the

emotional states of the GEMEP corpus were chosen evenly

based on the level of arousal and valence. Figure 5 presents

the average UAs of the emotional pairs with the same arousal-
valence polarity (noted as ‘Same Polarity’), with the different

arousal polarity (noted as ‘Diff. Arousal’), with the different

valence polarity (noted as ‘Diff. Valence’), and with different

polarities on both dimensions (noted as ‘Diff. Ar.-Val.’). We

calculate the average UAs of 7 strategies (noted as ‘7 Str.’;

including the strategies in Figure 3) and 3 strategies (noted as

‘3 Str.’; including Kernel ESZSL, EXEM (1NNS), and SYNC-

OVO).

The results in Figure 5 indicate that the inter-polarity zero-

shot recognition outperforms the intra-emotion setups (see the

UAs between ‘Same Polarity’ and other bars in Figure 5).

Thus, we can infer that the dimension valence still plays an

effective role in zero-shot SER, despite of the dominant effect

from arousal. However, the UAs of the different-arousal-
valence cases are lower than the different-arousal cases (see

the UAs between ‘Diff. Ar.-Val.’ and ‘Diff. Arousal’), which

are 67.0% / 68.0% and 70.2% / 71.1% for the ‘7 Str. / 3
Str.’ UAs. This is different from the experimental analysis

in [6], where for conventional SER, the emotions with different

polarities on both of arousal and valence lead to a better

recognition performance compared with the other cases. In

view of this difference, we analyse the average UAs for the two

cases of positive-arousal / positive-valence versus negative-

arousal / negative-valence and positive-arousal / negative-

valence versus negative-arousal / positive-valence, which are

58.1% / 60.5% and 75.9% / 75.4% respectively (in the form

of ‘7 Str. / 3 Str.’). Thus, the zero-shot-SER case of positive-
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Figure 4: Average UA matrices of emotional pairs considering
the strategies of SAE, DEM, LatEm (M = 2), SSE (ReLU),
Kernel ESZSL, EXEM (1NNS), and SYNC-OVO, on the corpora
(a) GEMEP and (b) DEMoS, choosing the best UAs among 8 sorts
of prototypes using eGeMAPS features.

arousal / negative-valence versus negative-arousal / positive-

valence is in line with the analysis of conventional SER

methods, while it is difficult to classify the emotional pairs for

the case of positive-arousal / positive-valence versus negative-

arousal / negative-valence.

On the DEMoS corpus in Figure 4b, we are interested in

the performance on recognising the categories of guilt and

neutral, since the investigation of the two categories results

from the rarely-appeared emotion of guilt [68] in the research

on emotion detection in speech [76]. The results are shown in

Table VIII by presenting the UAs between the two categories

and the remaining emotions when considering the ‘7 Str.’ and

‘3 Str.’ averaging UAs. The left column of Table VIII provides

the UAs of zero-shot recognition for the emotion of guilt. The

best UAs appear in classifying guilt from surprise (positive

valence) and fear (negative valence), which implies that the

valence polarity does not determine the recognition perfor-

mance for guilt, directly. The right column for recognising

neutral achieves the best UAs when classifying sadness. This

may provide evidence and motivation for detecting depressive

factors in speech [77], [78], for the zero-shot case without

providing the speech samples of depression.

In view of the possibility in solving zero-shot depression

detection, we then perform comparisons between sadness and

the other emotional states on DEMoS corpus using different

strategies, as shown in Table IX. In addition to conventional

ZSL strategies, we employ the Feature Generating Network
(FGN) strategy based on Generative Adversarial Networks

Figure 5: Row charts of the UAs among all the 8 sorts of prototypes
for recognising the emotional pairs with the same arousal-valence
polarity (noted as ‘Same Polarity’), with the different arousal polarity
(noted as ‘Diff. Arousal’), with the different valence polarity (noted
as ‘Diff. Valence’), and with different polarities on both dimensions
(noted as ‘Diff. Ar.-Val.’), using the averaging of ‘7 Str.’ and ‘3 Str.’.

Table VIII: The best UAs (%) among all the 8 sorts of prototypes,
averaging across the cases of ‘7 Str.’ and ‘3 Str.’, for recognising
guilt and neutral from the other emotional categories on the DEMoS
corpus.

Target Emo. (Val.): guilt (Neg.) neutral (-)

Emo. (Val.)\Avg. 7 Str. 3 Str. 7 Str. 3 Str.

happiness (Pos.) 54.9 58.8 53.9 56.2
surprise (Pos.) 60.4 64.1 54.6 55.3
anger (Neg.) 58.1 62.2 57.7 60.3
sadness (Neg.) 57.1 61.7 60.7 65.2
fear (Neg.) 59.7 65.5 55.4 55.6
disgust (Neg.) 56.6 57.0 54.4 54.9
neutral (-) 58.5 62.4 − −

(GANs) [79], [80], using 600 synthesised samples for each

unseen emotion with the classification-loss weight of 0.01. It

is observed from Table IX that the strategies achieve their best

UAs on detecting depression from different emotions, where

FGN performs better for happiness and disgust.

D. Experimental results: Influence of semantic-embedding
prototypes and paralinguistic features

When investigating the influence of semantic-prototype se-

lections, it can be observed that the best performance corre-

sponds to different choices of semantic-embedding prototypes

as in Table VI. Thus, we continue to analyse the factor

of prototype with 8 categories, for the two-way ANOVA in

Section IV-B.

We investigate the factor of prototype, obtaining a signifi-

cant effect with (F (7, 3640) = 12.45, p < 0.0001) (on the

GEMEP corpus) and (F (7, 1512) = 12.85, p < 0.0001) (on

the DEMoS corpus), which indicates the factor of prototype
affects the UAs significantly. Afterwards, a post-hoc Tukey’s

HSD is performed to further examine the pair-wise comparison

between prototypes. First, we present the pair-wise compar-

isons of UAs (calculating mean difference and significance) on

the factor of prototype, between the cases of with and without

employing SenticNet 5 on the prototypes, when using the 4
models of word2vec, GloVe, fastText-crawl, and fastText-wiki
respectively, as shown in Table X. The results of Table X

show the significance between with and without SenticNet

                                                                                                                                               



                                                                                                                                                                                                                  

                                                                                                                                                                                                                        
                          

                                                    

Table IX: The best UAs (%) among the prototypes on DEMoS
corpus, for recognising ‘sadness’ from the other emotions using
different strategies.

Emo. (Val.) \ Strategies
Kernel EXEM SYNC FGN
ESZSL (1NNS) -OVO (GANs)

happiness (Pos.) 52.8 60.4 55.2 62.9
surprise (Pos.) 60.9 66.5 62.8 65.2
guilt (Neg.) 61.8 61.0 62.4 59.3
disgust (Neg.) 52.2 51.4 53.5 60.0
fear (Neg.) 57.8 61.1 58.9 58.2
anger (Neg.) 59.3 58.9 58.5 59.4
neutral (-) 54.7 71.7 69.3 65.8

Table X: Pair-wise comparisons of UAs (mean difference and
significance, noted as ‘MD’ and ‘Signif.’ respectively) on the factor of
prototype using Tukey’s HSD, between the cases of with and without
employing SenticNet 5 (noted as ‘SN’) on the prototypes (noted as
‘Prot.’), when using word2vec, GloVe, fastText-crawl, and fastText-
wiki respectively.

Prototypes\Corpora GEMEP corpus DEMoS corpus

Prot. 1 Prot. 2 MD Signif. MD Signif.
(w/o SN) (w/ SN) (Prot.1-2) (p value) (Prot.1-2) (p value)

word2vec 0.0488 < .005* −0.0257 < .005*
GloVe 0.0269 < .05* −0.0196 < .005*

fastText-crawl 0.0194 > .05 −0.0083 > .05
fastText-wiki 0.0488 < .005* −0.0177 < .005*

* Significant at the level of 0.05 for post-hoc Tukey’s HSD.

5 cases, when using the models of word2vec, GloVe, and

fastText-wiki. This verifies that the usage of SenticNet 5 can

affect the performance of zero-shot SER, where the DEMoS

corpus achieves better UAs, while the GEMEP corpus prefers

to perform zero-shot SER without the tool of SenticNet 5.

In addition, we perform the post-hoc comparison within the

4 models for the GEMEP corpus (without SenticNet 5) and

the DEMoS corpus (with SenticNet 5), due to the significance

above on these two corpora in relation to SenticNet 5. The

results reveal insignificant differences between these models,

which suggests that different word-vector models do not affect

UA performance significantly. However, different processing

on these models may lead to distinct results.

Finally, we explore the performance for the proposed selec-

tions of paralinguistic features. Considering the performance

of SYNC-OVO, we illustrate, in Figure 6, the UAs for SYNC-

OVO when using the state-of-the-art paralinguistic feature

sets GeMAPS (62 dimensions), eGeMAPS (88 dimensions),

and ComParE ({10, 30, 50, 100, 300} dimensions). We choose

the ComParE features with these dimensions through a PCA

trained on the training / validation set from the seen-emotional

samples in ZSL, in order to present a fair comparison using

similar numbers of features. The results suggest that UAs for

different feature sets depended on setups of data sets (see

the contrast between GeMAPS and eGeMAPS in Figure 6).

Furthermore, the ComParE set achieves the best performance

in a low dimensionality of 50, which might be caused by the

highly related samples from seen and unseen domains.

V. CONCLUSIONS

Within this paper, an exploration into zero-shot learn-

ing for emotion recognition in speech using semantic per-

emotion prototypes was presented. First, we analysed the
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Figure 6: Comparison of the best UAs among the 8 sorts of proto-
types for each emotional pair of the SYNC-OVO strategy, when using
the paralinguistic features of ComParE (with PCA dimensionality of
10, 30, 50, 100, and 300 components), GeMAPS, and eGeMAPS,
on the corpora (a) GEMEP and (b) DEMoS.

applicable approaches for zero-shot emotion recognition in

speech, considering the two types of learning strategies:

sample-wise and emotion-wise learning. Then, experiments

on the corpora GEMEP and DEMoS allowed us to draw

three conclusions: 1) It was applicable to employ the per-

sample semantic-embedding prototypes in recognising zero-

shot emotional states, typically for some target emotions with

application background; 2) Different learning strategies might

lead to different performances, where the strategies of Em-
barrassingly Simple Zero-Shot Learning (ESZSL), EXEMplar
synthesis (EXEM), and SYNthesized Classifiers (SYNC) could

result in better performance; 3) The target emotions, selected

prototypes, and paralinguistic features were able to affect the

zero-shot recognition performance, which could be specifically

designed.
Despite of these conclusions on performing Zero-Shot

Learning (ZSL) when processing emotional factors in audio

signals, it remains some challenges.
First, one should investigate the relationship between ar-

tificially annotated attributes and the semantic-embedding

prototypes, and further research on the modalities of the

prototypes. It would also be helpful to investigate emotional-

speech augmentation for unseen emotions using improved

Generative Adversarial Networks (GANs) based ZSL strate-

gies [38], [40], [80]. Furthermore, the research on Graph
Neural Networks (GNNs) [57] can be a powerful tool in

addition to the semantic-embedding prototypes, in order to

better represent the prototypes. It appears also applicable to

specifically design the emotional states for the training and

test sets in zero-shot emotion recognition in speech. Finally,

Generalised ZSL (GZSL) can be further investigated in order

to adapt to complex cases.
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