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Abstract—The COVID-19 pandemic has affected the world
unevenly; while industrial economies have been able to produce
the tests necessary to track the spread of the virus and mostly
avoided complete lockdowns, developing countries have faced
issues with testing capacity. In this paper, we explore the usage
of deep learning models as a ubiquitous, low-cost, pre-testing
method for detecting COVID-19 from audio recordings of
breathing or coughing taken with mobile devices or via
the web. We adapt an ensemble of Convolutional Neural
Networks that utilise raw breathing and coughing audio and
spectrograms to classify if a speaker is infected with COVID-19
or not. The different models are obtained via automatic
hyperparameter tuning using Bayesian Optimisation combined
with HyperBand. The proposed method outperforms a traditional
baseline approach by a large margin. Ultimately, it achieves an
Unweighted Average Recall (UAR) of 74.9 %, or an Area Under
ROC Curve (AUC) of 80.7 % by ensembling neural networks,
considering the best test set result across breathing and coughing
in a strictly subject independent manner. In isolation, breathing
sounds thereby appear slightly better suited than coughing ones
(76.1 % vs 73.7 % UAR).
Index Terms—COVID-19, Speech Analysis, Deep Learning,
Ensemble Models, Convolutional Neural Networks

I. INTRODUCTION

The COVID-19 pandemic has forced the global community

to recon with a shortage of adequate testing capacity all over

the globe [1]. The Foundation for Innovative New Diagnostics

(FIND) tracker [2] shows that the pandemic has exacerbated

global economic inequalities. Developed countries have mature

industries available with which testing equipment and materials

can be produced locally or the funds to procure the necessary

materials from abroad. Meanwhile, developing countries face

a distinct lack of testing equipment and materials, having even

during the second wave of the pandemic the capacity to only

conduct less than 5 000 daily tests per capita, or even 1 000 tests

per capita for some developing countries. This lack of access

to testing capacity forces countries to grapple with two options:

either push through hard or complete lockdown measures in

bids to slow down or break the spread of the virus, placing

excessive strain on local economies for those workers whose

jobs can not be done in a Work from Home (WfH) fashion [3],

or allow the virus to pass undetected through their populations

in trying to shore up the economies, but while placing further

pressure on already under-equipped health systems.

§Equal Contribution

Artificial intelligence (AI) and in particular, Deep Neural

Networks (DNNs), started to grow in popularity ever since

amongst others [4] used them to surpass – by a large margin

– previous classical machine learning approaches on the

ImageNet Large Scale Visual Recognition Challenge (ILSVRC)

[5]. Since then, they have come to set the state of the art in

a number of different fields and challenges. Among these

fields where AI has been finding usage is that of medicine

in general [6]–[8], where it has been shown to be effective

for cancer screening [9]–[11] and for COVID-19 screening as

well [12]–[14]. Of particular interest here, is the usage of AI

to help in combating the COVID-19 pandemic, as researchers

have already made use of AI to analyse different signals for

signs of COVID-19 [15, 16].

It is in this context that it becomes important to consider the

usage of everyday tools such as internet-connected mobile

phones [17], together with artificial intelligence as tools to

detect the infection with COVID-19 as a way of mitigating

the necessity for everybody to take tests, or to quarantine at

home. In this paper, we introduce a machine learning model

that detects, by way of coughing or breathing samples, whether

the audio contains traces of COVID-19 or not, which could be

used, e. g., as pre-selection filter for more reliable, but more

expensive testing methods. The audio stems from a public

database of coughing and breathing sounds collected from

mobile phones and over the Internet crowd-sourced by the

University of Cambridge.

For an overview on the current state-of-play in COVID-19

detection from audio, a short overview is given in [18].

In Section III we introduce our approach, including how

we represent the audio as input to the models, the model

architecture and construction, the training technique we used,

as well as the hyperparameter optimisation process undertaken;

we finish the section by introducing the baseline with which

we compare our results. In Section IV, we showcase our

experiments, beginning by introducing the dataset that serves

as the basis for our experiments, the evaluation metrics that

we consider, and the results of our approach, as well as finish

the section with a discussion of the results. We conclude the

paper in Section V.
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II. RELATED WORK

[19] developed models that can classify COVID-19 according

to cough sounds, however, they report limited results of Area

Under ROC Curve (AUC) 72 %. [20] developed a similar

approach with much better results, however, their data size

is quite limited (80 different speakers); they collected three

different samples from each person, without mentioning that

they split the data speaker independently, which might put their

results in jeopardy if the there is a speaker in both training

and test data. [21] used audio data of relatively low quality

(collected from YouTube), with phoneme features and SVM

models to classify if a person have COVID or not from speech,

instead of coughing or breathing sounds.

III. APPROACH

Our approach utilises raw audio in combination with different

spectrogram variations. We implement an independent branch

in our model for each of the input formats, where each branch

consists of a Convolutional Neural Network (CNN). In the end,

we combine the learnt representations from each branch by

concatenation and use fully-connected layers to output a final

classification label.

A. Audio representations

Spectrograms are visual representations of audio [22], which

are computed by calculating the Short-Time Fourier Transform

(STFT). This is done by cutting the audio into (not necessarily

overlapping-) chunks and then computing the Discrete Fourier

Transform (DFT) for each chunk. The difference between

each chunk and the next is defined as the hop length S. The

output of the DFT is a decomposition of all the frequency

bands contained within an audio chunk, this is either shown

on a linear-scale or gets transformed to a log-mel scale. One

of the various aspects that are considered when constructing

spectrograms is whether they are narrowband or wideband.

Spectrograms can display a high resolution in either the

frequency dimension or the time dimension, but not both. Given

these spectrogram variations, we make use of a combination of

eight different spectrograms that differ in terms of three main

parameters:

1) The hop length S of the spectrogram chunks: 64 or 128.

2) The chunk length of either 2S, or 4S.

3) Mel-scale (128 bins, NFFT= 1024) or Linear-scale.

B. Models

Our models make use of two building blocks. We will introduce

each of the building blocks first, followed by an explanation of

the general architecture of the models. We refer to a temporal
feature map as a real-valued 2-dimensional tensor of dimensions

T × F , where T is the length of time dimension and F
is the number of features. According to this definition, the

spectrograms and raw audio are both temporal feature maps.

The first building block is a convolution block, which consists of

a 1D convolution layer with C output channels and a Rectified

Linear Unit (ReLU) activation function, followed by a max

pooling layer, then a dropout layer [23]. The dropout layer has

the aim of reducing overfitting; we adopt a dropout rate of 0.2.

Additionally, a convolution branch is a stack of N convolution

blocks. A convolution branch will map a temporal feature map

into another temporal feature map, which is more condensed

in the time dimension. In other words, the features at the end

have high representations, while the time dimension is reduced

several times via the the pooling layers in the convolution

blocks.

The second building block is a reduction of the time dimension

of a temporal feature map, using global pooling layers. We

make use of global average pooling and global maximum

pooling; then, we concatenate the resulting features from both.

For the model, we make use of several representations of

the input, inspired by [24] which utilised multi-channel

spectrograms. The spectrograms are grouped by their

hop-length, because different hop-lengths result in different

lengths of the time dimension of the spectrograms. Each

group of spectrograms is concatenated along the channels

(frequencies) axis, which results in a total of two groups

of spectrograms in addition to the raw audio. For each of

those three, we construct separate but identical convolution

branches, followed by global pooling. After that, the outputs

from the different branches are concatenated, and followed by F
fully-connected layers, which include the last layer the outputs

the classification labels. The resulting model architectures is

shown in Figure 1.

C. Training and hyperparameter optimisation

We train several variants of the model architecture described

in Subsection III-B while splitting the data using nested k-fold

cross validation [25] on the mixture of train and development

parts of the data. The variants differ in at least one of two

aspects; they are either trained using a different fold or

constructed having different hyperparameters. We utilise an

ensemble of the variants to reach best results, as ensembling

tends to reduce overfitting and hence reaches the best results

[26]. We use averaging of the prediction probabilities to

ensemble the different models. For all the variants, we employ

the Adam optimiser [27] using a mini-batch size of 16 for

100 epochs, then the model with the best validation score on

the corresponding hold-out set is saved. The learning rate of

Adam α is considered as a hyperparameter to be tuned. Since

the database consists of audio tracks of varying lengths, we

pad the examples with 0 values to match the longest example

in a given batch. The network parameter optimisation is done

by minimising the binary crossentropy loss function, while

giving a different weight λ to the positive class. This will direct

the model to focus more on getting the positive cases correct,

which is helpful in case the positive cases are underrepresented

in the data. The final equation of the loss function is given by:

L(y, ŷ) = − 1

N

N∑

i=1

(λyi log ŷi + (1− yi) log(1− ŷi))

For hyperparameter tuning, we use Bayesian Optimisation

HyperBand (BOHB) [28] by instructing it to reach the best
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Fig. 1: An illustration of the model’s architecture. Three input formats are used: raw audio, a mixture of spectrograms of hop length S = 8ms,
and S = 16ms respectively. For each of those, N convolution blocks are used, followed by a time reduction block, concatenation of features
then Ffully-connected layers for classification.

Condition Platform Symptom # files
COVID Android no cough 128
COVID Android cough 92
COVID Web no cough 46
COVID Web cough 16

Total COVID-19 positive 283

Asthma Android cough 26
Asthma Web cough 16
Healthy Android no symptom 282
Healthy Android cough 16
Healthy Web no symptom 362
Healthy Web cough 50

Total COVID-19 negative 752

TABLE I: Unaugmented database file statistics.

Unweighted Average Recall (UAR) (explained further in

Subsection IV-B) on the validation data, namely by maximising

the average of the UAR across the hold out folds in the

cross-validation.

D. Baseline

We compare our approach against a baseline linear Support

Vector Machine (SVM) classifier [29], which is trained on

audio functionals extracted with openSMILE [30]. We choose

the large feature configuration (6 373 functionals) as introduced

in the Interspeech 2016 ComParE challenge [31], which

has been the configuration of choice for the Interspeech

ComParE challenges ever since. On that, we perform

Principal Component Analysis (PCA) [29] to reduce the

number of features to 100 in a standard manner. The SVM

classifier’s complexity parameter is optimised on a logarithmic

scale between [10−5, 1], based on the achieved UAR on a

development partition. The optimisation yielded a value 10−5.

Afterwards, the SVM is fit on the combined training and

development data with the optimised complexity value and

finally used for inference on the test partition of the data.

IV. EXPERIMENTS

A. Database

The experiments were performed on a crowdsourced database

[32] that was collected via the “COVID-19 sounds” Android

app, as well as through a web form (an iOS app also exists,

though it did not contribute to the database used here) by the

University of Cambridge [32]. The participants are asked to

fill a survey about their demographic information (such as

age and location), medical history, as well as symptoms (if

any). The app instructed the participants to “breathe deeply

five times, cough three times, and read three times a short

sentence appearing on screen” [32]. 1

The present database is an excerpt of the total data collected

via the app. The database includes the coughing and breathing

audio samples, their associated medical condition (COVID,

Asthma, or Healthy), whether the submitter suffered from

coughing as a symptom or not, and finally which platform the

samples were collected through (Android or Web).

The database consists of a total of 1 427 audio files that total

3.93 hours. Of these 1 427 files, 1 034 are original audio samples

that total two hours, while the rest are the result of data

augmentation [33]. The mean file length for the dataset is

9.96 seconds with a standard deviation of 6.02 seconds. The

audio files have a sample rate 16 kHz and 16 bit quantisation.

In total, 174 unique participants are included in the database.

For the purposes of our experiments, only the non-augmented

files are used. The audio files are downsampled to 8 kHz and the

different database labels resembling telephone speech quality in

this respect and are collapsed into two sets of experiment labels:

covid positive, which includes all the COVID-19 labels, while

all the other label categories are classified as covid negative.

The summary statistics of the labels of the unaugmented audio

files can be found in Table I.

1Please refer to https://www.covid-19-sounds.org/en/app/ for more details.
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Model description Valid. UAR AUC ACC ACC+ ACC−
Baseline (openSMILE ComParE features + SVM) - 59.3 61.0 56.6 67.2 51.3

index N C F λ α Fold

1 5 77 2 1.582 4.8× 10−5 1 65.8 71.4 76.0 72.6 68.1 74.8
2 2 308 2 2.093 5.9× 10−6 1 61.4 66.0 74.8 59.4 85.3 46.6
3 2 235 2 1.805 2.6× 10−5 1 60.7 64.6 72.8 62.3 71.6 57.7
4 3 466 2 1.859 7.1× 10−6 1 60.6 63.4 71.1 59.7 74.1 52.6

5 4 73 2 1.917 9.7× 10−6 2 63.8 53.4 59.6 52.3 56.9 50.0
6 5 151 1 2.176 1.8× 10−6 2 62.1 57.7 73.1 44.9 95.7 19.7
7 3 486 1 1.678 8.8× 10−6 2 61.4 60.5 65.3 58.6 66.4 54.7
8 5 435 1 1.351 3.7× 10−5 2 59.9 69.1 72.9 68.3 71.6 66.7

9 4 445 2 0.748 2.3× 10−5 3 63.2 58.5 64.8 50.9 81.0 35.9
10 2 215 2 1.218 7.3× 10−6 3 63.2 52.4 60.4 52.3 52.6 52.1
11 3 486 1 0.882 4.3× 10−6 3 61.3 52.9 59.3 61.4 27.6 78.2
12 6 424 1 1.328 2.3× 10−5 3 60.6 70.4 74.8 68.9 75.0 65.8

Ensemble description Ensembled group
Best test UAR 1,2,6,7,8,11 - 74.9 80.5 73.1 80.2 69.7
Best test AUC 1,2,6,7,8,11,12 - 74.5 80.7 72.9 79.3 69.7
Best model per fold 1,5,9 - 70.8 77.3 68.3 78.4 63.2
All 1-12 - 70.2 77.6 67.7 77.6 62.8

TABLE II: Results of the different models using the introduced performance measures in percentages: validation UAR on hold out set,
followed by test set UAR, AUC, ACC, and class-wise (+/-) ACC (recall/sensitivity), respectively. The models are the baseline, several CNNs
with different hyperparameters or training folds, and ensembled models. N,C, F are model hyperparameters (Subsection III-B), and λ, α are
training hyperparameters (Subsection III-C). The models used for the ensemble groups are specified by the index column. The best model per
fold is specified by the best validation UAR on the hold out set.

Ensemble UAR breath UAR cough UAR

1 71.4 ± 4.9 72.2 ± 7.0 70.9 ± 6.7
8 69.1 ± 4.8 70.6 ± 7.5 67.8 ± 6.8
12 70.6 ± 5.4 68.1 ± 7.2 72.6 ± 6.9

1,2,6,7,8,11 74.9 ± 4.5 76.1 ± 6.4 73.7 ± 7.2
1,2,6,7,8,11,12 74.5 ± 4.4 75.7 ± 6.5 73.2 ± 6.7

1,5,9 70.8 ± 4.8 71.0 ± 6.9 70.7 ± 6.4
1-12 70.2 ± 4.8 71.4 ± 6.5 69.0 ± 7.6

TABLE III: An overview of the 95% confidence intervals of a
selection of models for the UAR metric: for the whole dataset and for
each modality separately. The selected models consist of the ensemble
models and the best test UAR individual models from each fold.

We split the data in a stratified, strictly subject-independent

manner into three roughly balanced sets: train, dev(elopment),

and test. The train set consists of 464 samples, the dev set

consists of 220 samples, and the test set consists of 350

examples. The models in our experiments are trained using

k-fold nested cross validation [25], with k = 3, wherein each

model is trained on two thirds of the mixture of the train

and dev sets, with its performance during training evaluated

on the remaining hold out part2. We saved models with best

Unweighted Average Recall (UAR) on the hold out set.

In other words, we merge the train and development sets, and

then split the resulting set in a speaker independent manner

into three folds. Then, we train different models on different

folds, and we test them at the end on the overall ‘final’ test

set, which is always strictly held out, also in the case of model

fusions. During training, we validate on the hold out fold and

never look at the test set. Likewise, all four parts: Fold1, Fold2,

Fold3, and the test set are pairwise mutually exclusive in terms

of speakers, so an individual speaker appears only in one of

these four. Fold1 is what we declare as the dev(elopment)

2The split indices are available by the authors for reproducibility.

part for the baseline. Note that, as the splits are generated in

a stratified manner, in all splits, the COVID-19/total ratio is

close to the 27 % of the COVID-19/total ratio of the whole

dataset.

Also, one can see that on some folds, high validation set UAR

yields bad test set UAR and vice versa, which shows we are

not biasing our training in order to get good test set results.

B. Evaluation metrics

We adapt several classification metrics:

• Recall COVID-19 positive (ACC+), also known as sensitivity,

which is the true positive rate.

• Recall COVID-19 negative (ACC−), also known as

specificity, which is the true negative rate.

• Unweighted Average Recall (UAR): Also known as

Unweighted Average Accuracy, is the average of sensitivity

and specificity – the standard competition measure in the

Interspeech ComParE challenge series. Chance level for two

classes resembles 50.0 % UAR.

• Area Under ROC Curve (AUC): The ROC curve plots the

true-positive rates against the false-positive rates with varying

classification thresholds, and measures the area under the

drawn curve. This measures how well a model can distinguish

between the positive and negative classes, where a random

baseline classifier will get a value of 50.0 %.

• Accuracy (ACC): The ratio of examples that are answered

correctly in the evaluation set.

UAR is the preferred measure when compared to Accuracy,

as Accuracy will reward trivial classifiers on unbalanced data,

where the classifier always just predicts the more frequent class

(here, the negative class).
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C. Results and discussion

In Table II, we showcase the following models: The baseline

model, trained using openSMILE ComParE features (introduced

in Subsection III-D), individually trained models (introduced

in Subsection III-B), whose hyperparameters are tuned using

BOHB. The range for the parameters examined is N in [2,6],

C in [64,512], F in [1,2] (number of fully connected layers at

the end, including the final classification layer), α log sampled

from [10−7,10−3], and λ in [0.5,2.2]. Note that, if lambda

is less than one, the model will focus on the negative class,

which non-intuitively yielded good results in few cases. Finally,

we present the ensemble models (introduced in Subsection

III-C). The performance of the models is shown using the

metrics introduced in Subsection IV-B. The metrics themselves

indicate performance on the test set, while the validation

column indicates the performance of the individual models on

the hold-out set of their particular fold.

As can be seen in Table II, all the variations of ensembled

models outperform the baseline by a wide margin on all metrics.

The same cannot be said for the individual models trained on

one of the three total folds: while all of the models trained

on the first fold outperform the baseline for all the metrics,

only two to three of the models trained on folds two and

three surpass the baseline, depending on the metric. That being

said: model six produces the best overall positive class recall

score of 95.7%, while model eleven does the same for the

negative class recall, with a score of 78.2%, with both of them

surpassing the respective metric scores of any of the ensembles,

yet, at the cost of the respective other class. Still, these results

probably justify why both models were included in both of the

best performing ensembles.

In terms of ensembles, we show the following configurations:

An ensemble that provides the best test set UAR, an ensemble

that provides the best test set AUC, an ensemble of the best

model per fold (based on the UAR metric) and finally, an

ensemble of all the trained models. For UAR, the highest

result is 74.9%, while for AUC, the highest result is 80.7%.

Selecting only the best model per fold and ensembling those

together results in performances of 70.8% UAR and 77.3%
AUC. Finally, ensembling all models together reaches the

results of 70.2% UAR, and 77.6% AUC.

In order to provide an insight into uncertainty of the results,

in Table III, we calculate the 95% confidence intervals of the

UAR metric for deeper inspection for the ensembled models

and the best test UAR individual model from each fold. The

table shows that breathing modality seems generally better

to detect COVID-19 as compared to the coughing modality.

However, the results are not significant. Table II shows that the

models trained on fold 1 are on average much more capable

than their equivalents trained on folds 2 and 3, for UAR, AUC

And ACC metrics. The reason for this discrepancy is not clear,

it could be due to some random factors related to the model

structure or parameter initialisation. Another possible reason

is that, the validation scores on the holdout portions for folds

2 and 3, unlike fold 1, are not representative of the test data,

as the models of better validation UAR tend to get worse test

UAR and vice versa.

From Table II, it can seen that it appears indeed possible to

use cough and breathing audio samples, fed to neural network

models to predict whether a patient has COVID-19 or not, e. g.,

for a pre-diagnosis to pre-select candidates for more reliable,

yet more effort and cost requiring testing. The results shown

above should be considered as initial results, given the limited

size of the data set of two hours of original samples, which

prevents us from using larger, more complex neural networks.

The effects of the small size of the dataset can be seen in Table

II, which shows that the specific selection of which fold a

model is trained on impacts the average predictive strength of

the model. This is factor that can be reduced by increasing the

data size, and thus allowing for fold splits with more uniform

information content. Table III shows that the UAR performances

for the breath modality are consistently higher, suggesting that

breath audio samples contain more COVID-19 information, or

at the very least information that is easier to extract. These

results would suggest that future data collection efforts should

place a particular focus on collecting more breathing audio

recordings, in addition to more validated COVID-19 test results,

as well as a more diverse range of control group samples from

other respiratory diseases.

V. CONCLUSION

In this paper, we explored the usage of deep learning models as

a way to predict whether someone is infected with COVID-19

based on an audio sample of either their breathing or their

coughing. The need for this usage arose from issues with

lacking COVID-19 testing capacity in developing countries

across the world, as opposed to the abundance of mobile phone

quality microphones, but also the general opportunities coming

with real-time low cost pre-scanning for selective testing with

more reliable approaches. Accordingly, the aim of the models

would be to function as a ubiquitous, low-cost pre-testing

mechanisms that could help mitigate the demand for COVID-19

lab tests, which are relatively expensive to conduct, as they

require access to materials, equipment and manpower that are

not equally available around the world.

To this end, we used a subset of a crowdsourced database

collected via the University of Cambridge’s COVID-19 Speech

Android app and web interface. The database contained samples

of breathing and coughing recordings, as well as associated

demographic information, medical history, and COVID-19

testing status. We illustrated how we pre-processed the

database, splitting it in a stratified, strictly subject-independent

manner into 3-fold train and development sets, as well as

an independent test set. We then showed how we trained a

number of individual Convolutional Neural Networks (CNNs),

which we then ensembled together in order to produce our

predictions. Our proposed models achieved at best a UAR

score of 74.9% and an AUC score of 80.7% on the held-out

speaker independent test partition.

The achieved results suggest that it is indeed possible to detect

COVID-19 by way of either breath or cough samples with
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an accuracy relevant to use-cases such as pre-selection for

more reliable testing, and also possible to use deep learning

models to perform this detection. However, the current results

are limited by amount of available data, which might prevent

the usage of even larger models, which is where deep learning

models tend to produce their best results. A future direction for

this research would be to collect a larger database with highly

validated and more varied control data, including a plethora

of other respiratory and further related diseases, which would

open the door to even better, but also more tangible results.
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