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Deep neural speech and audio processing systems have a large number of trainable

parameters, a relatively complex architecture, and require a vast amount of training

data and computational power. These constraints make it more challenging to

integrate such systems into embedded devices and utilize them for real-time, real-

world applications. We tackle these limitations by introducing DeepSpectrumLite,

an open-source, lightweight transfer learning framework for on-device speech and

audio recognition using pre-trained image Convolutional Neural Networks (CNNs). The

framework creates and augmentsMel spectrogram plots on the fly from raw audio signals

which are then used to finetune specific pre-trained CNNs for the target classification

task. Subsequently, the whole pipeline can be run in real-time with a mean inference

lag of 242.0ms when a DenseNet121 model is used on a consumer-grade Motorola

moto e7 plus smartphone. DeepSpectrumLite operates decentralized, eliminating the

need for data upload for further processing. We demonstrate the suitability of the

proposed transfer learning approach for embedded audio signal processing by obtaining

state-of-the-art results on a set of paralinguistic and general audio tasks, including

speech and music emotion recognition, social signal processing, COVID-19 cough and

COVID-19 speech analysis, and snore sound classification. We provide an extensive

command-line interface for users and developers which is comprehensively documented

and publicly available at https://github.com/DeepSpectrum/DeepSpectrumLite.

Keywords: computational paralinguistics, audio processing, transfer learning, embedded devices, deep spectrum

1. INTRODUCTION

Over the past decade, the number of wearable devices such as fitness trackers, smartphones, and
smartwatches has increased remarkably (van Berkel et al., 2015). With a rising amount of sensors,
these devices are capable of gathering a vast amount of users’ personal information, such as
state of health (Ko et al., 2010), speech, or physiological signals including skin conductance, skin
temperature, and heart rate (Schuller et al., 2013). In order to automatically process such data and
obtain robust data-driven features, deep representation learning approaches (Amiriparian et al.,
2017b; Freitag et al., 2017) and end-to-end learning methodologies (Tzirakis et al., 2018) can be
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applied. These networks, however, have a large number of
trainable parameters (correlated with the large model size)
and need a high amount of data to achieve a good degree
of generalization (Zhao et al., 2019). These factors increase
the energy consumption of the trained models (Yang et al.,
2017) and confine their real-time capability. Furthermore, whilst
personal data in unprecedented volumes is “in transit” or
being synchronized with the cloud for further processing,
it is susceptible to eavesdropping (Cilliers, 2020), and this
issue raises privacy and security concerns for the user (e.g.,
discriminatory profiling, manipulative marketing; Montgomery
et al., 2018). Such restrictions emerged the need for novel neural
architectures and collaborative machine learning techniques
without centralized training data (Li et al., 2020). Recent
advancements include “squeezed” neural architectures (Iandola
et al., 2016) and the federated learning paradigms (Li et al.,
2020). Iandola et al. (2016) have introduced SQUEEZENET, a
“pruned” Convolutional Neural Network (CNN) architecture
with 50× fewer trainable parameters than ALEXNET (Krizhevsky
et al., 2012) with an ALEXNET-level accuracy. A more squeezed
architecture, SQUEEZENEXT, with 112× fewer parameters than
ALEXNET (with similar accuracy) was introduced by Gholami
et al. (2018). Mehta et al. (2019) have proposed ESPNETV2, a
lightweight general-purpose CNN with point-wise and depth-
wise dilated separable convolutions for representation learning
from large receptive fields with fewer parameters. Further energy-
efficient CNN architectures have been proposed and applied for
traffic sign classification (Zhang et al., 2020) and optical flow
estimation (Hui et al., 2018).

For effective utilization of deep CNNs and to cope with data
scarcity in the field of audio signal processing, we have introduced
the DEEP SPECTRUM system1 (Amiriparian et al., 2017c) at
INTERSPEECH 2017. In Amiriparian et al. (2017c), we have
forwarded (Mel) spectrogram plots of audio signals with different
color mappings through pre-trained CNNs and extracted the
activations of the penultimate fully connected layer of these
networks as a feature set. For the effect of different color maps
on the representations, please refer to Amiriparian et al. (2017c,
2019, 2020). DEEP SPECTRUM features have shown to be effective
for a variety of paralinguistic and general audio recognition
tasks, including Speech Emotion Recognition (SER) (Ottl et al.,
2020), sentiment analysis (Amiriparian et al., 2017a), and
acoustic surveillance (Amiriparian et al., 2018). Furthermore,
the DEEP SPECTRUM system has been proved to be a competitive
baseline system for the 2018–2021 editions of the Computational
Paralinguistics Challenge (ComParE) (Schuller et al., 2019, 2021).
In this article, we propose DEEPSPECTRUMLITE, an extension of
the DEEP SPECTRUM framework for embedded speech and audio
processing. Whereas, the DEEP SPECTRUM framework extracts
features from pre-trained CNNs, DEEPSPECTRUMLITE goes
one step ahead. First, it adds a lightweight Multilayer
Perceptron (MLP) to the neural network pipeline which is
responsible for either classification or regression. Second, the
DEEPSPECTRUMLITE offers support for efficient on-device
computation of the audio signal processing including the

1https://github.com/DeepSpectrum/DeepSpectrum

generation and on-the-fly augmentation of spectrogram image
plots. Further, it allows fine-tuning of the image CNNs for each
audio recognition task. The proposed system implements a
model and inference structure that is focused on mobile usage,
thereby computationally expensive audio signals processing can
be performed efficiently on embedded devices. We make our
DEEPSPECTRUMLITE framework publicly available for users and
developers on GitHub2 and PyPI.

The remainder of this article is organized as follows:
in Section 2, we describe the architecture of the proposed
system. Subsequently, we introduce the datasets applied for our
experiments, outline the experimental settings and results, and
analyse the explainability challenges in Section 3. Afterwards,
in Section 4, we discuss the performance of the trained
models and their inference time on embedded devices. Finally,
concluding remarks and our future work plans are given
in Section 5.

2. PROPOSED SYSTEM

Our framework is composed of two main parts: (i) task-
specific, transfer learning-based model training (cf. Section 2.1),
and (ii) decentralized audio processing using the trained
model (cf. Section 2.2). For the first component of
DEEPSPECTRUMLITE, we make use of pre-trained neural
networks (instead of training a new network from scratch) to
achieve a better generalization for audio recognition tasks in
which the data of the target class is scarce (Shie et al., 2015;
Hutchinson et al., 2017; Amiriparian, 2019). In the second
component of the framework, the pre-trained (and fine-tuned)
model is adapted to be run on embedded devices. In the
developed architecture, both components perform in synchrony
facilitating low-resource signal processing for a variety of speech
and audio tasks.

2.1. Task-Specific Transfer Learning
The input of our system consists of raw audio signals with a
sample rate of 16 kHz. For simplicity, our system reads only
one audio channel. Subsequently, we apply a sliding window
function to split the audio signals into smaller fixed-width
chunks. For each chunk, we apply a signal normalization and
then a Short-Time Fourier Transform (STFT) with Hanning
windows of 32ms and 50.0% hop length. The spectrograms are
then transformed into Mel spectrograms with 128 Mel bins. We
further compute the power spectral density on the dB power
scale and apply a min-max normalization which is linearly
scaled between [0, 255]. Subsequently, each value in the rescaled
spectrogram matrix is mapped according to the viridis color
definition. Since we use image CNNs that were pre-trained on
ImageNet (Deng et al., 2009; Huang et al., 2017), we resize
the spectrogram image plot to 224 × 224 pixels with bi-linear
interpolation andmean normalize the image color channel values
according to the original ImageNet dataset. Afterwards, we use
the deep CNN model DENSENET121 (Huang et al., 2017) as
a convolutional feature extractor for the generated audio plot

2https://github.com/DeepSpectrum/DeepSpectrumLite
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FIGURE 1 | A general overview of a DEEPSPECTRUMLITE model deployed on a target device for inference. Raw audio (from the device’s microphone) is first converted

to a spectrogram representation and the values are mapped to the red-green-blue (RGB) color space according to a certain color mapping definition. These

spectrogram plots are then forwarded through the TFLite version of a trained CNN model, and an MLP classifier head generates predictions for the task at hand.

images and attach an MLP classifier containing a single hidden
layer with Attention-based Rectified Linear Unit (AReLU) (Chen
et al., 2020) activation on top of this base. To reduce the effect
of overfitting, we further apply the regularization technique
dropout (Srivastava et al., 2014).

We have used DENSENET121 with weights pre-trained on
ImageNet data as the feature extractor for two main reasons.
First, we want to directly compare our results for the COVID-19
Cough (CCS), COVID-19 Speech (CSS), Escalation at Service-
desks and in Trains (ESS), and Interactive Emotional Dyadic
Motion Capture (IEMOCAP) corpora to the official evaluation
setting of the ComParE 2021 Challenge (Schuller et al., 2021).
Second, Amiriparian et al. (2020) has shown that an image
pre-trained DENSENET121 is superior to other CNNs (in
particular RESNET50, VGG16, VGG19) with pre-trained and
random weights.

The training of our transfer learning models then proceeds
in two phases. In the first phase, we freeze the CNN model
structure and only train the classifier head. In the second phase,
we unfreeze a part of the CNN’s layers and continue training
with a reduced learning rate. Furthermore, we apply different
data augmentation techniques to the spectrogram plots on the
fly during training. Data augmentation helps to reduce the
effect of overfitting, especially when only a small number of
training samples is available (Perez andWang, 2017; Shorten and
Khoshgoftaar, 2019).

DEEPSPECTRUMLITE has implemented an adapted version of
the SapAugment data augmentation policy (Hu et al., 2021). The
policy decides for every training sample its portion of applied
data augmentation. We apply both CutMix (Yun et al., 2019) and
SpecAugment (Park et al., 2019) data augmentations relatively
to the loss value of all samples within a batch. The basic idea
of SapAugment is that a training sample with a comparably
low loss value is easy to understand using the current weights
of a neural network, therefore, more data augmentation can
be applied. Whereas, when a sample has a comparably high
loss, SapAugment argues that less data augmentation should be
applied until the sample reaches a low loss value. For further
details on how the portion of applied data augmentation relative
to the loss value is computed, the interested reader is referred
to Yun et al. (2019).

2.2. Decentralized Audio Processing
After centralized training of a task-specific model, its network
structure and weights are saved into a Hierarchical Data

Format (HDF) version 5. The saved model is then converted
to TENSORFLOW (TF) Lite3 format for compatibility on
embedded devices.

Since our framework applies all necessary preprocessing
steps within the data pipeline structure, there is no device-
specific implementation required. A schematic overview of
DEEPSPECTRUMLITE deployed on a target mobile device is
depicted in Figure 1. From the input raw audio signals (e.g.,
signals captured from a microphone) Mel spectrogram plots are
created which are then forwarded through a TF Lite version of the
model trained as described in Section 2.1. It consists of a (fine-
tuned) image CNN, here a DENSENET121, and a lightweight
MLP head that classifies the deep representations obtained from
a specific layer of the CNN.

The whole audio processing steps during inference, including
reading the raw audio signals (e.g., from the microphone
of an embedded device), extraction of the features, and the
classification are conducted in a decentralized way, i.e., removing
the need to send the data to a server for processing and
evaluation. By doing so, all users’ data will remain on their smart
devices. Therefore, we have refrained from utilizing methods
such as federated learning formodel training.

3. EXPERIMENTS

We perform experiments regarding the general learning
capabilities of DEEPSPECTRUMLITE by evaluating its efficacy
on eight databases which are described briefly in Section
3.1. Our framework has a set of hyperparameters that are
fine-tuned for each audio task (cf. Section 3.2). We further
compare the performance of DEEPSPECTRUMLITE with the
original DEEP SPECTRUM system which showed state-of-the-art
results for various audio recognition tasks (Zhao et al., 2018;
Amiriparian et al., 2020). An MLP is used as the classifier in
our experiments. Utilized hyperparameters for each experiment
are provided in Table 2. We then investigate the suitability
of the trained DEEPSPECTRUMLITE models for real-time audio
classification on an embedded device (cf. Section 3.3).

3.1. Datasets and Partitions
We utilize a diverse set of datasets to cover a range of audio
processing tasks from paralinguistics to digital health. For the
task of SER and social signal processing, the Database of

3https://www.tensorflow.org/lite
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TABLE 1 | Statistics of the databases utilized in our experiments in terms of number of samples (#), number of speakers (Sp.), number of classes (C.), total duration (Dur.)

in minutes, and mean and standard deviation of the duration (Mean & Std dur.) in seconds.

Name # C. Sp. Dur. [min.] Mean dur. [s] Std dur. [s]

CCS: COVID-19 cough 725 2 397 97.8 6.34 2.2679

CSS: COVID-19 speech 893 2 366 194.4 13.16 5.4784

DEMoS: Elicited mood in speech 9,365 7 65 445.6 2.86 1.2564

ESS: Escalation in speech 914 3 21 58.7 3.86 1.6418

IEMOCAP: Emotional speech 5,531 4 10 746.2 4.46 3.0645

MPSSC: Snoring sounds 828 4 219 20.8 1.51 0.3464

RAVDESS: Emotional song 1,012 6 23 78.4 4.65 0.4213

SLEEP: Sleepiness prediction from speech 16,462 2 915 1059.8 3.86 0.6399

Elicited Mood in Speech (DEMoS) (Parada-Cabaleiro et al.,
2020), IEMOCAP (Busso et al., 2008), and ESS (Schuller
et al., 2021) are used. The datasets CCS, CSS, Munich-
Passau Snore Sound Corpus (MPSSC), and DÃijsseldorf Sleepy
Language Corpus (SLEEP) are applied for the audio-based
digital health tasks. We further analyse the performance of
our framework for music emotion recognition by using the
Ryerson Audio-Visual Database of Emotional Speech and Song
(RAVDESS) (Livingstone and Russo, 2018) dataset. All datasets
are speaker-independently split into training, validation, and
test partitions. This partitioning strategy is maintained for all
experiments on all datasets in this manuscript. Detailed statistics
about each dataset are provided in Table 1.

3.1.1. CCS and CSS

The CCS and CSS datasets both deal with voice-based COVID-19
detection and were introduced as part of ComParE 2021 (Schuller
et al., 2021). The CCS dataset consists of crowd-sourced audio
samples of coughing, recorded from 397 subjects resulting in
725 audio clips. The CSS dataset contains 893 audio samples
from 366 subjects. A preceding COVID-19 test of the subjects
was positive for one part and negative for the rest. The result of
this test should be predicted by the challenge participants based
on the audio content. We use the official challenge partitions in
our experiments.

3.1.2. DEMoS

DEMoS is a corpus of induced emotional speech in
Italian (Parada-Cabaleiro et al., 2020), including 9, 365 emotional
and 332 neutral speech samples produced by 68 native speakers
(23 females, 45 males) in seven emotional states (anger, disgust,
fear, guilt, happiness, sadness, and surprise). The emotional
speech in the dataset is elicited by combinations of Mood
Induction Proceduress (MIPss) in order to obtain more realistic
speech production in comparison to acted speech. A detailed
description of DEMoS is given in Parada-Cabaleiro et al. (2020).

3.1.3. ESS

The ESS corpus combines the dataset of aggression in
trains (Lefter et al., 2013) and the stress at service desk
dataset (Lefter et al., 2014). In total, 21 subjects were exposed
to different scenarios that were recorded in 914 audio files. The

original labels are mapped onto a 3-point scale, low,medium, and
high escalation. The language in the clips is Dutch.

3.1.4. IEMOCAP

The IEMOCAP dataset (Busso et al., 2008) is an English emotion
dataset containing audio of (scripted and improvised) dialogues
between 5 female and 5 male speakers, adding up to 5, 531
utterances. The chosen emotion classes are happiness (fused
with excitement), sadness, anger, and neutral. The dataset is
split into sessions 1–3 for training, session 4 for validation, and
session 5 for testing. The splits’ selection for the partitions is
motivated by the EMONET paper (Gerczuk et al., 2021) which
thoroughly addresses the multi-corpus SER from a deep transfer
learning perspective.

3.1.5. MPSSC

TheMPSSC (Janott et al., 2018) dataset includes audio recordings
of 828 snore events from 219 subjects. These events are annotated
in terms of the VOTE classification (V, velum; O, oropharyngeal
lateral walls; T, tongue base; and E, epiglottis; Kezirian et al., 2011)
for the location of snoring noise by experts. We use the official
partitioning provided by the authors in the INTERSPEECH
ComParE 2017 challenge (Schuller et al., 2017).

3.1.6. RAVDESS

RAVDESS (Livingstone and Russo, 2018) is an audio-visual
database containing emotional displays of both speech and
song. For our experiments, we exclusively use the emotional
song portion with 1, 012 samples recorded from 23 actors. The
portrayed emotions are angry, calm, fearful, happy, and sad.
The corpus has been extensively validated by 247 individuals,
producing 10 ratings for every sample.

3.1.7. SLEEP

We use a subset of the SLEEP Corpus created at the
Institute of Psychophysiology, Düsseldorf that served as a
ComParE challenge task for continuous sleepiness prediction
in 2019 (Schuller et al., 2019). The set contains 16, 462
recordings, including reading passages, speaking tasks, and
elicited spontaneous speech from 915 subjects (364 females,
551 males, between the ages of 12 and 84). The recordings
are annotated in terms of the Karolinska Sleepiness Scale

Frontiers in Artificial Intelligence | www.frontiersin.org 4 March 2022 | Volume 5 | Article 856232

https://www.frontiersin.org/journals/artificial-intelligence
https://www.frontiersin.org
https://www.frontiersin.org/journals/artificial-intelligence#articles


Amiriparian et al. DeepSpectrumLite

TABLE 2 | This table shows the configuration of the different hyperparameters for each of the datasets used in our experiments.

Hyperparameter CCS CSS DEMoS ESS IEMOCAP MPSSC RAVDESS SLEEP

Classifier units 512 700 512 512 512 512 128 512

Dropout rate 0.25 0.4 0.25 0.25 0.25 0.25 0.5 0.25

Initial learning rate 0.001 0.01 0.001 0.001 0.001 0.001 0.001 0.001

Epochs of first phase 40 20 40 40 40 40 40 40

Epochs of second phase 200 – 120 200 200 120 80 80

Fine-tuned layers 298 0 128 298 128 85 42 128

Audio chunk length [s] 3.0 – 3.0 3.0 4.0 1.0 4.0 4.0

(KSS) (Shahid et al., 2011) (range 0 − 9) by averaging self-
assessments and post-hoc observer ratings. For our experiments,
we perform a binary discretization of our labels into not sleepy
[0− 7.5] and sleepy (7.5− 9].

3.2. Hyperparameters
We train our models with the AdaDelta optimizer (Zeiler, 2012)
on the cross-entropy loss function in batches of 32 samples.
After training the classifier head for a certain number of initial
epochs only, we reduce the learning rate 10-fold and continue
training with some of the layers of the DENSENET121 unfrozen.
As the datasets have different sizes and numbers of classes,
we slightly adapt our hyperparameter configuration to each of
them. All important details on the hyperparameters for each
dataset are provided in Table 2. Furthermore, we evaluate four
data augmentation configurations: (1) no augmentation, (2)
only CutMix, (3) only SpecAugment, and (4) a combination of
CutMix and SpecAugment.

In our experiments, we use SapAugment with the
configuration values a = 0.5, s = 10. Our CutMix algorithm
hyperparameters are set to cut and paste squared patches
between sizes of [0 px, 56 px] among the training samples.
The ground truth labels are proportionally mixed according
to the pasted patch size. Moreover, the SpecAugment data
augmentation creates a one-time mask and one frequency mask
for every training sample. The size of every mask is between
[0.0 px, 67 px]. The actual patch sizes and mask sizes depend on
the samples’ loss value (cf. Section 2.1). Because the number of
available training samples is limited, we expect the problem of
underfitting when applying data augmentation for every single
training sample. Therefore, we throttle down the usage of all
data augmentations by adding an execution probability between
[10.0, 25.0%] dependent on the sample’s loss value.

3.3. Results
We evaluate the performance on the test partitions using the
Unweighted Average Recall (UAR) metric which is equivalent to
balanced accuracy and provides more meaningful information
when a dataset has an unbalanced class ratio. In Tables 3,
4, all results obtained via our framework with and without
various augmentation techniques are provided. In Table 3,
we show that our framework constantly outperforms the
DEEP SPECTRUM baselines of the ComParE 2021 Challenge by

16.1, 5.8, 9.4, and 6.0% relative improvement on the unseen test
set for the CCS, CSS, ESS, and IEMOCAP (not part of ComParE)
tasks, respectively. Furthermore, in order to be consistent with
the ComParE methodology, for all datasets, we initially find
the best set of hyperparameters by validating the trained model
on the development set. Afterwards, we train a final model
on the combined training and development partitions before
evaluation on the test set. By doing so, we provide more data
to our Deep Neural Networks (DNNs) and aim for better
generalization capabilities.

For the other four datasets (cf. Table 4), a direct comparison
with ComParE Challenges or similar baseline systems was not
possible. However, for the sake of consistency, we follow the same
partitioning and evaluation strategy across all experiments. For
all eight datasets, it can be seen that the applied augmentation
methods improve the overall performance compared to the
experiments without any augmentation. This effect is more
prominent when datasets are small (e.g., for CCS, CSS, ESS,
and MPSSC). The highest impact can be seen for the MPSSC
dataset for which the augmentation with CutMix+SpecAugment
lead to a 37.6% relative improvement on the test set compared
to the model without any augmentation. In five out of eight
datasets, the fusion of the CutMix and SpecAugment method
was demonstrated to be superior to using these augmentation
methods individually.We additionally provide 95.0%Confidence
Intervals (CIs) on the test partitions. They were obtained by
1, 000× bootstrapping. In each iteration, a random selection of
test samples is replaced and the UAR is computed. Moreover,
the unweighted chance level for each dataset is given in each
result table.

3.4. Computational Performance
The number of Floating Point Operations (FLOPs) is used here
as a measure of the efficiency of the introduced framework.
The more FLOPs an algorithm needs to finish, the longer it
takes to run and the more power it consumes. Embedded
devices typically have a limited power capacity, as they have a
battery and no continuous power supply. Therefore, we take the
DEEPSPECTRUMLITE framework’s power efficiency into account.
This subsection examines the models’ FLOPs, mean execution
time, mean of requested memory, and the model size. Our
analysis is split into the audio signal preprocessing step, i. e., the
spectrogram plot creation, and the final model inference. Both
the TensorFlow (TF) model, and the spectrogram creation were
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TABLE 3 | Results of the transfer learning experiments with DeepSpectrumLite (DS Lite) on three of the ComParE 2021 Challenge tasks (CCS, CSS, and ESS) and

IEMOCAP compared against Deep Spectrum feature extraction + SVM.

CCS CSS ESS IEMOCAP

[UAR %] Dev Test CI on test Dev Test CI on test Dev Test CI on test Dev Test CI on test

Deep Spectrum + SVM (Schuller et al., 2021) 63.3 64.1 55.7−72.8 56.0 60.4 55.9−64.9 64.2 56.4 51.5−61.3 53.0 56.3 54.2−58.2

DS Lite (no augmentation) 56.5 71.1 62.2−79.5 61.6 61.2 55.1−66.8 43.1 60.0 54.3−66.1 55.1 56.4 55.2−63.9

DS Lite (CutMix) 57.1 71.4 62.5−79.4 62.2 62.3 56.4−68.4 43.1 59.9 54.1−65.7 55.5 59.7 55.6−64.0

DS Lite (SpecAugment) 58.4 72.7 63.9−80.9 60.7 63.6 58.1−69.0 48.1 61.3 55.4−67.2 55.2 59.3 54.9−63.5

DS Lite (CutMix+SpecAugment) 59.0 74.4 66.3−82.4 60.7 63.9 55.1−66.8 47.2 61.7 55.8−67.3 53.9 59.2 54.9−63.5

For the ComParE tasks, we evaluate against the official Deep Spectrum results presented in Schuller et al. (2021) while for IEMOCAP, we run the Deep Spectrum challenge baseline

with the same settings ourselves. CCS, COVID-19 cough; CSS, COVID-19 speech; ESS, escalation in speech; IEMOCAP, emotional speech; UAR, unweighted average recall; CI,

95.0% confidence interval. Chance level in UAR: 50.0, 50.0, 33.3, and 25.0% for CCS, CSS, ESS, and IEMOCAP, respectively. For each dataset, the best result on the test partition is

highlighted in boldface.

TABLE 4 | Results of the transfer learning experiments with DeepSpectrumLite (DS Lite) on four datasets, the ComParE 2018 Snore Sub-Challenge tasks Snore, the

ComParE 2019 Continuous Sleepiness Sub-Challenge SLEEP, RAVDESS emotional song and DEMoS.

MPSSC SLEEP RAVDESS DEMoS

[UAR %] Dev Test CI on test Dev Test CI on test Dev Test CI on test Dev Test CI on test

DS Lite (no augmentation) 33.5 39.4 33.4−45.7 66.0 65.7 62.9−68.5 84.7 76.6 72.7−84.5 59.1 58.5 55.8−61.4

DS Lite (CutMix) 43.7 50.0 43.7−55.6 71.7 69.1 66.5−71.6 84.0 78.6 72.6−84.1 65.0 62.1 59.1−65.1

DS Lite (SpecAugment) 44.4 52.0 46.3−57.9 66.3 66.8 65.1−68.7 77.4 81.3 74.6−87.1 69.5 69.7 67.1−72.3

DS Lite (CutMix+SpecAugment) 39.2 54.2 49.4−58.4 67.6 67.6 64.9−70.4 71.8 75.0 68.9−80.5 73.8 72.5 70.1−75.0

For the Sleep task, we discretize the label into two classes, while for the DEMoS task, we recreate the dataset partitioning used in Baird et al. (2019). SLEEP, sleepiness; MPSSC, snore

sound; RAVDESS, emotional song; DEMoS, emotional speech; UAR, unweighted average recall; CI, 95.0% confidence interval; Chance level in UAR, 25.0, 50.0, 20.0, and 14.3% for

MPSSC, SLEEP, RAVDESS, and DEMoS, respectively. For each dataset, the best result on the test partition is highlighted in boldface.

executed 50 times on a 2.3GHz Quad-Core Intel Core i5 CPU
with 4 threads. To investigate the difference to the TF Lite model,
we tested both models on the same system. Furthermore, we
examined an on-device test on a consumer-grade smartphone
Motorola moto e7 pluswhich comes with a 4×1.8GHz Kryo 240,
a 4×1.6GHzKryo 240, and anAdreno 610GPU. Every on-device
test was repeated 50 times. Table 5 shows the performance results
of our spectrogram image creation and the DENSENET121 model
which includes the classification layers as well. The spectrogram
creation has a model size of 150.0 kB, a mean execution time
of 7.1ms, and it consumes 4.5MB memory. Because the plot
generation is not a TF model, we cannot measure the FLOPs
nor are there any parameters. However, the number of FLOPs
is expected to be small based on the measured execution time.
During the transformation from the TF HDF file format to
the TF Lite model, the model size is reduced by the factor
of 2.7. Although the TF Lite model consumes more memory
than the regular TF model, the mean inference time is reduced
by 150.3ms measured on the same CPU setup. The TF Lite
model has a mean inference time of 242.0ms on our embedded
device.

3.5. Explainability Challenges
The explainability of deep learning models is a well-
known challenge that we would like to briefly mention
in this part of our manuscript. For each component

TABLE 5 | This table shows the mean execution time, the number of parameters,

the mean requested memory, and the model size of our preprocessing (prepr.), the

DenseNet121 TensorFlow (TF), and TF Lite model.

Prepr. TF model TF lite model

Mean time [ms] 7.1 240.0 89.7/242.0

FLOPs – 3.1G –

Parameters – 7.6M 7.6 M

Mean memory [MB] 4.5 116.5 185.4/292.8

Model size 150.0 kb 82.1MB 30.0MB

In the TF Lite Model column, the values before the slash are from the test on the CPU

system, whereas the values after the slash are from the on-device test. Details regarding

the test setup are described in the text. FLOPs, floating point operations.

(audio processing, feature extraction, classification) of
the DEEPSPECTRUMLITE framework, a different degree of
explainability can be achieved. It should be mentioned that due
to the complexity of the applied DNNs for deep feature extraction
and classification, the obtained results and the behavior of the
models cannot be thoroughly explained. However, we try to
approximately explain the framework’s decision-making process
in a threefold manner. First, we provide Mel spectrogram plots
for negative and positive classes of both CSS and CCS datasets
as case examples and analyse them. Second, we discuss the
DNN models’ outputs with the help of SHAP (Lundberg and
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FIGURE 2 | Visualization of the SHAP outputs for sample Mel spectrograms from negative and positive classes of CSS and CCS datasets. The x-axis of the

spectrograms represents time [0–5 s] and the y-axis represents the frequency [0–4,096Hz]. The range of the SHAP values for each model’s output is given in the color

bar below each image. Areas that increase the probability of the class are colored in red, and blue areas decrease the probability. A detailed account of the

spectrogram and SHAP values analysis is given in Section 3.5. (A) SHAP outputs from the COVID-19 speech (CSS) model. (B) SHAP outputs from the COVID-19

cough (CCS) model.

Lee, 2017) method. Third, we provide confusion matrices of the
classification results and compare the confusion between class
predictions.

For the first two parts of our explainability approach, we
analyse sample Mel spectrograms from the negative and positive
classes of the COVID-19 cough and speech datasets w. r. t.
strength of the audio signals over time at a waveform’s various
frequencies. Further, we provide the outputs of SHAP (Lundberg
and Lee, 2017), a game-theoretic approach to explain the output
of machine learning models. SHAP assigns each feature—in our
article, regions of the Mel spectrogram plots—an importance
value for each particular class prediction (cf. right side of
the Figure 2). The sample spectrograms of the negative class
of both datasets show a harmonic broad-band pattern with a
quite similar width. Contrarily, the positive class is characterized
by disruptions in the amplitude for distinct frequency ranges,
indicating discontinuities in the pulmonic airstream during
phonation in COVID-19 positive participants (Bartl-Pokorny
et al., 2021). The impact of each segment of theMel spectrograms
on the output of the DNN model is visualized with help
of SHAP values. Areas of the audio plots that increase the
probability of the class are colored in red, and blue areas
decrease the probability. For example, for the given negative

class sample of the CSS dataset, F0 or fundamental frequency
(marked as blue squares on the bottom of the SHAP output)
pushes the prediction for the negative class lower, whilst
higher frequencies (marked as red squares on the top of the
SHAP output) do the opposite. For the positive class sample
of CSS, an almost reverse pattern can be seen. The more
prominent the red squares, the higher the model’s confidence
in predicting the target class. For the COVID-19 cough
samples, we see that the model is quite confident in predicting
the positive COVID-19 cough, whilst for the negative class,
mainly the F0 and top frequencies at the beginning and the
end of the non-COVID-19 cough cause it to be classified
as negative.

For the last part of our explainability approach, we analyse
the confusion matrices of the classification results on the test
partitions of CSS and CCS corpora.With the help of Figure 3, the
True Positive Rate (TPR) (sensitivity), True Negative Rate (TNR)
(specificity) and the class-wise performance of the DNN models
for each task can be obtained. The specificity of the CSS model
(72.5%) is much higher than its sensitivity (55.3%), indicating
the model’s ability to correctly reject healthy patients without
COVID-19 and its challenges to correctly detect ill patients who
do have COVID-19. On the contrary, the low confusion between
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FIGURE 3 | Confusion matrices for the test results obtained by the best CSS (A) and CCS (B) models. In the cells, the absolute number of cases is given, and the

percentage of “classified as” of the class is provided in the respective row. The percentage values are also indicated by a color scale: the darker, the higher the

prediction. A detailed account of the confusion matrices analysis is given in Section 3.5.

the CCS classes compared to CSS implies the superiority of
the ‘cough-based’ model over the “speech-based” one for the
recognition of COVID-19.

4. DISCUSSION

The results achieved with DEEPSPECTRUMLITE (described
in Section 3.3) on all eight tasks show the system’s efficacy, in
particular, compared to the traditional DEEP SPECTRUM feature
extraction. Furthermore, the applied state-of-the-art
CutMix (Yun et al., 2019) and SpecAugment (Park et al.,
2019) techniques in combination with an adapted version of
the SapAugment (Hu et al., 2021) policy proved themselves to
be useful for all datasets, especially for the smaller ones. For
the IEMOCAP dataset, our best performing model achieves
comparable results with the recently published EmoNet paper
which uses the same partitioning strategy (Gerczuk et al.,
2021).

A gap can be seen between the performance of the trained
models on the development and test partitions. This could
partially be explained by the lack of training materials for the
MLP classifier while optimizing it on the development partition.
On the other hand, the better performance on the test set
could be a result of training the final model on the combined
train and development sets before evaluating on the test
partition. Further, the effect of dataset imbalance and suboptimal
distribution of audio samples in each partition should not be
neglected here.

Considering embedded devices, such as consumer-grade
smartphones, as deployment targets, DEEPSPECTRUMLITE is
further suitable for real-time speech recognition tasks. With a
total inference time of only a quarter of a second for a 3-s long raw
audio chunk, time-continuous analysis from raw microphone

input can be performed directly on-device. The measured
performance, both in terms of recognition accuracies on the
datasets as well as inference times, make DEEPSPECTRUMLITE a
powerful framework for many paralinguistic and general audio
recognition tasks where data is often scarce.

5. CONCLUSION

In this article, we presented a framework for training and
deploying power-efficient deep learning models for embedded
speech and audio processing. By making use of transfer learning
from ImageNet pre-trained deep CNNs with spectrogram
inputs and state-of-the-art data-augmentation techniques,
DEEPSPECTRUMLITE can produce powerful speech and
audio analysis models with high accuracy that can then
be easily deployed to embedded devices as an end-to-
end prediction pipeline from raw microphone input. Our
framework showed high performance for general speech-
based paralinguistic tasks, music emotion recognition,
and a range of speech and audio-based health monitoring
tasks.

We have publicly released the framework including a
flexible command-line interface on GitHub, such that interested
researchers can use it in their own research for a variety of low-
resource, real-time speech and audio recognition tasks, train their
own models and apply them on embedded devices. Using the
provided repository and the given parameters it is possible to
reproduce all experiments conducted in this manuscript.

In Section 3.5, we have discussed the subject of explainability
for our framework and given more insight into the decision
making process of the DNN models by analysing the generated
audio plots, DNN models’ predictions, and confusion matrices.
A quantitative study comparing DEEP SPECTRUM against both
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audio pre-trained models and untrained CNNs has been
undertaken in Amiriparian et al. (2020) demonstrating the
efficacy of using image pre-trained CNNs for audio tasks.
Motivated by the findings in Amiriparian et al. (2020), we have
decided to use pre-trained image CNNs as deep feature extractors
in our framework.

For future work, further reductions in model size can be
pursued. From an efficiency standpoint of view, networks
specifically designed with smaller memory and computation
footprints than DENSENET121, such as Mobilenets (Howard
et al., 2017) or SqueezeNet (Iandola et al., 2016) can be a
better choice for the targeted applications and thus should be
evaluated as feature extractors in DEEPSPECTRUMLITE . Using
our framework, it is possible to select between 14 base models,
including the above-mentioned CNNs. Furthermore, techniques
such as pruning and quantization (Han et al., 2015; Lin et al.,
2019; Zhou et al., 2019) can be explored together with their
impacts on speed and model accuracy. Finally, future iterations
of our framework could also be enhanced with explainability
methods like those mentioned above to make the model
predictions more interpretable.
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