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ABSTRACT
Background Since the emergence of COVID-19 
in December 2019, multidisciplinary research 
teams have wrestled with how best to control 
the pandemic in light of its considerable 
physical, psychological and economic damage. 
Mass testing has been advocated as a potential 
remedy; however, mass testing using physical 
tests is a costly and hard- to- scale solution.
Methods This study demonstrates the 
feasibility of an alternative form of COVID-19 
detection, harnessing digital technology 
through the use of audio biomarkers and deep 
learning. Specifically, we show that a deep 
neural network based model can be trained 
to detect symptomatic and asymptomatic 
COVID-19 cases using breath and cough audio 
recordings.
Results Our model, a custom convolutional 
neural network, demonstrates strong empirical 
performance on a data set consisting of 355 
crowdsourced participants, achieving an area 
under the curve of the receiver operating 
characteristics of 0.846 on the task of 
COVID-19 classification.
Conclusion This study offers a proof of 
concept for diagnosing COVID-19 using 
cough and breath audio signals and motivates 
a comprehensive follow- up research study 
on a wider data sample, given the evident 
advantages of a low- cost, highly scalable 
digital COVID-19 diagnostic tool.

INTRODUCTION
COVID-19, caused by the severe- acute- 
respiratory-  syndrome- coronavirus 
2 (SARS- CoV-2), is the first global 
pandemic of the 21st century. Since its 
emergence in December 2019, it has 

led to over 75 million confirmed cases 
and more than 1.6 million deaths in 
over 200 countries (WHO) (https://
www. who. int/ emergencies/ diseases/ 
novel- coronavirus- 2019). SARS- CoV-2 
causes either asymptomatic infection or 
clinical disease, which ranges from mild 
to life threatening.1 Developing a swift 
and accurate test, able to identify both 
symptomatic and asymptomatic cases, is 
therefore essential for pandemic control.

Vocal biomarkers of SARS- CoV-2 
infection have been described, thought 

Summary box

What are the new findings?
 ► We demonstrate the first attempt to 
diagnose COVID-19 using end- to- end 
deep learning from a crowdsourced data 
set of audio samples, achieving an area 
under the curve of the receiver operating 
characteristics of 0.846.

 ► We introduce a novel modelling strategy 
using a custom deep neural network to 
diagnose COVID-19 from a joint breath 
and cough representation.

 ► We release our four stratified folds 
for cross- parameter optimisation and 
validation on a standard public corpus and 
details on the models for reproducibility 
and future reference.

How might it impact on healthcare in the 
future?

 ► Our model, the COVID-19 Identification 
ResNet, has potential for rapid scalability, 
minimal cost and improving performance 
as more data becomes available. This 
could enable regular COVID-19 testing at 
a population scale
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to relate to the clinical and subclinical effects of the 
virus on the lower respiratory tract, neuromuscular 
function, senses of taste and smell and on proprio-
ceptive feedback. Together, these produce a reduction 
in complexity of the coordination of respiratory and 
laryngeal motion in both symptomatic and asymptom-
atic individuals.2

We postulate that end- to- end deep learning using 
convolutional neural networks (CNNs) could be 
successfully applied to this assessment task. This article 
describes a proof- of- concept study of automatic symp-
tomatic and asymptomatic COVID-19 recognition 
using combined breathing and coughing information 
from audio recordings using an end- to- end CNN 
design. The code for our experiments and all details 
for reproduction of findings can be found at https:// 
github. com/ glam- imperial/ CIdeR.

RELATED WORK
Throughout the COVID-19 pandemic there have 
been numerous efforts to compile data sets of breath 
and cough audio recordings, including ‘Coughvid’,3 
‘Breathe for Science’ (https://www. breatheforscience. 
com), ‘Coswara’4 and ‘CoughAgainstCovid’.5 With 
their release, several studies have been published that 
leverage audio signals alongside machine learning to 
detect the virus.6–12 Each data set presents different 
challenges and so the results are often not directly 
comparable. Here we summarise the most relevant 
studies.

Brown et al6 achieved an area under the curve of the 
receiver operating characteristics (AUC- ROC) of 80% 
when classifying between COVID- positive and asymp-
tomatic COVID- negative individuals. This was on the 
same data set as this study, although they did not eval-
uate their method on the most pertinent task of clas-
sifying all COVID- positive versus all COVID- negative 
cases (Task 4 in the Experiments and Results section).

On the task of classifying between COVID- positive, 
COVID- negative, bronchitis and pertussis cases, Imran 
et al12 attained 90% sensitivity from cough recordings 
using an ensemble of machine learning models. This 
was using a data set of 70 COVID- positive individ-
uals, 226 individuals with bronchitis or pertussis and a 
group of 247 disease- free individuals.

Pinkas et al11 classified voice audio clips through a 
three- stage process of embedding the audio clips with 
pretrained transformers, passing these through a recur-
rent neural network and classifying the outputs using a 
support vector machine (SVM). This model had 78% 
sensitivity when detecting COVID- positive partici-
pants. The data set comprised 29 COVID- positive and 
59 COVID- negative individuals, with recordings taken 
on the participants’ phones.

In a well- publicised study, Laguarta et al10 achieved 
96% sensitivity on a data set of 5320 individuals, 
of which 2660 reportedly had COVID-19. They 
initialised a CNN- based model using transfer learning 

from other larger medical audio data sets and trained 
it to detect COVID-19 from extracted audio features. 
They achieved impressive results (notably including a 
suspiciously high 100% sensitivity for asymptomatic 
COVID- positive detection). Their results and data set 
have since been questioned as many of the COVID- 
positive participants in the data set were diagnosed 
based on participants’ ‘self- assessment’ of whether 
they had the disease.

We note that ref 10–12 have not made their code or 
data set publicly available, limiting the scope for repro-
ducibility. We emphasise the importance of reproduc-
ibility, so our code and data set splits are released 
alongside this article.

METHODS
The objective is supervised learning binary classifica-
tion for diagnosing COVID-19 as positive or negative 
using audio signals. Our implementation, displayed 
in figure 1, has two distinct stages which are outlined 
below:

1. Spectrogram extraction. As shown in figure 1, each 
participant in the study carried out by the University of 
Cambridge6 could submit waveform audio (WAV) files 
including a breath sample and a cough sample (Please 
see below and at https://www. covid- 19- sounds. org/ en/ 
app/ for further details). We first compute the spec-
trogram of each of these WAV files to obtain a visual 
representation of the spectrum of audio frequencies 
against time. Next, we perform a log transformation, 
converting the spectrogram from an amplitude repre-
sentation to a decibel representation. These transfor-
mations are implemented using the librosa13 python 
package.

Each WAV file lasts between 1 and 48 s with a mean 
of 10 s. As uniform duration is required for CNN 
input, we chunk the whole WAV file into s- second 
segments using right padding for files shorter than 
s- seconds. This creates an image of size {F,W}, where 
F ∝ fft

n
 and W ∝ sr ∗ s and fft

n
 and sr are parameters 

used when computing the spectrogram. During model 
training, we only process one WAV segment (sampled 
uniformly). At inference time, we perform majority 
voting, whereby each chunk is processed in parallel, 
and the output label becomes the modal classification 
from each of the chunks (The mean of the output logits 
is taken in the case of a tied vote).

2. CNN. COVID-19 Identification ResNet (CIdeR) 
is based on ResNets,14 a variant of the CNN archi-
tecture, which uses residual blocks. As shown in 
figure 1, a residual block consists of two convolutions, 
batch normalisation15 and a rectified linear unit non- 
linearity. These blocks use ‘skip’ connections which 
add the output from these operations to the input 
activations for this layer. This alleviates the vanishing 
gradient problem, facilitating deeper architectures with 
more layers, thereby permitting richer hierarchical 
learnt representations. The number of convolutional 
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channels for each of CIdeR’s nine layers is annotated 
in figure 1.

We concatenate the log spectrograms of the breath 
and cough samples depth- wise, creating an {F,W,2} 
tensor as the model input. The CNN outputs a single 
logit which is then passed through a sigmoid layer to 
obtain a (0,1) score, representing the probability of 
a COVID- positive sample. A weighted binary cross- 
entropy loss function16 is used during training to 
address the class imbalance in the data set.

Training strategy
Prior work6 used ‘10- fold- like’ cross- validation during 
training (see the paper for details). In contrast, we 
implement a stratified threefold cross- optimisation and 
additional validation partitioning using 2/1 (rotating 
development+train)/1 (always held- out fixed test) 
folds, respectively. This is to best optimise parameters 
independently of the test set with a small data set while 
ensuring that the test set remains (A) fixed for easier 
comparison with other work, and (B) truly blind, elim-
inating the possibility of CIdeR overfitting to the test 
set. Our stratified sampling methodology ensures that 
our folds represent disjoint sets of participants and each 
of the strata (next section) is approximately uniformly 
distributed across each fold. To enable reproducibility, 
the folds are fully released in the accompanying code.

Baseline
Our approach is not directly comparable with the 
study from Brown et al6 as they do not explicitly 
provide their folds and discard some audio samples. 
To this purpose, to create a performance reference for 
CIdeR, we implement a linear kernel SVM17 baseline. 
We extract openSMILE features18 for each WAV file 
following the Interspeech 2016 ComParE challenge 
format19 and perform principal component analysis,20 

selecting the top 100 components by highest explained 
variance. We follow the cross- optimisation procedure 
outlined above using the development set to optimise 
the complexity parameter (Values between 1e−5 and 1 
on a logarithmic scale) and reporting final results using 
the held- out test set.

DATA SET
The data set consists of 517 crowdsourced coughing 
and breathing audio recordings from 355 participants. 
Of these, 62 had tested positive for COVID-19 within 
14 days of the recording (The data set used in this 
study is a small subset of the full data set that has been 
collected by the University of Cambridge, which has 
yet to be made fully public. As of July 2020, the full 
data set totalled 30 000 samples from roughly 16 000 
participants). The samples were collected via Android 
and web apps developed by Brown et al6 and can be 
found at https://www. covid- 19- sounds. org. To be clas-
sified as COVID negative, participants had to meet 
several stringent criteria described in ref 6.

The COVID- negative participants were divided into 
three categories: those without a cough (healthy- no- 
symptoms), those with a cough (healthy- with- cough) 
and those who had asthma (asthma- with- cough). 
The COVID- positive class consists of the 62 COVID- 
positive participants. This is further divided into the 
subclasses COVID- no- cough and COVID- cough, repre-
senting 39 COVID- positive participants without a 
cough and 23 participants with a cough, respectively.

Regarding the demographics of the data set, the 
gender split was 38.5% female and 61.0% male (The 
remaining 0.5% selected Other or Prefer Not to Say). 
The distribution over participants’ ages is presented in 
figure 2. Note the positive skew and relative absence 
of older participants. Data regarding participants’ 

Figure 1 A schematic of the COVID-19 Identification ResNet (CIdeR). The figure shows a blow- up of a residual block, consisting of 
convolutional, batch normalisation and rectified linear unit (ReLU) layers.

https://www.covid-19-sounds.org.
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nationalities were also recorded and indicate that 
participants originate from a range of locations around 
the globe, including the UK, Greece, Iran and the USA. 
However, these data were only recorded for approxi-
mately 30% of the data set as most participants opted 
out of providing their geographical location, hence we 
do not present the international demographics here.

Figure 3 shows the prevalence of particular symp-
toms (if any) participants were experiencing at the 
time of audio recording. A higher proportion of the 
COVID- positive group were experiencing some form 
of symptom compared with the COVID- negative 
group, most commonly a sore throat. Notably, 
however, the second most common symptoms for 
COVID- positive participants were a dry cough and 
muscle ache, and the frequency of these two tied with 
that for being asymptomatic. More than half of the 
COVID- negative group were asymptomatic, and their 
most common symptom was a dry cough.

EXPERIMENTS AND RESULTS
As indicated in the Methods section, we perform a 
threefold cross- optimisation using the rotating devel-
opment plus train folds. Recall that the test set is fixed 
and always held out during optimisation. For evalua-
tion metrics, we use the AUC- ROC and unweighted 
average recall (UAR), both of which are robust to 
imbalanced data sets. AUC- ROC maps the relationship 
between sensitivity and the false- positive rate as the 
classification threshold is varied, and UAR computes 
the mean recall per class. The models’ performance is 
sensitive to initialisation parameters, so we report the 
mean and SD from three training runs. Table 1 details 
our hyperparameter search and optimal values used 
for the final model.

Our model performs the three tasks described in the 
data set publication,6 and an additional fourth task. 
Tasks 1–4 are as follows:

 ► Task 1. Distinguishing between COVID positive and the 
stratum healthy- no- symptoms (62 vs 245 participants).

 ► Task 2. Distinguishing between COVID- positive partic-
ipants with a cough (COVID- cough) and the stratum 
healthy- with- cough (23 vs 30 participants).

 ► Task 3. Distinguishing between COVID- positive partic-
ipants with a cough (COVID- cough) and the stratum 
asthma- with- cough (23 vs 19 participants).

 ► Task 4. Distinguishing between COVID positive and 
COVID negative (62 vs 293 participants).

Note that the number of participants deviates from ref 
6, as we also use those audio clips shorter than 2 s 
resulting in partially more participants considered.

Results obtained for each task are shown in table 2, 
alongside the baseline. CIdeR outperforms the base-
line on all tasks bar task 2 with high margin on both 
metrics. The results for tasks 1, 3 and 4 are statisti-
cally significant with a level of significance of 0.05 in 
a two- sided, two- sample t- test for difference in sample 
means.

DISCUSSION
The results in table 2 demonstrate two key points: (1) 
diagnosis of COVID-19 using a CNN- based model 
trained on crowdsourced data is possible; (2) CIdeR 
obtained a high AUC- ROC of 0.846 on task 4, the 

Figure 2 Participant age distribution.

Figure 3 Symptoms selected by participants when providing 
audio recordings. All provided options to the participants are 
displayed in the plot. Note that the bar plots do not add up to 
100%. This is due to participants being able to select more than 
one symptom.

Table 1 Overview of the hyperparameter search detailing 
the interval, step size and optimal parameters (used to obtain 
the reported figures in this article—for details, see the above 
named GitHub repository). Hyperparameters were optimised for 
task 4 and subsequently used on all tasks. Adam32 was used for 
optimisation.

Parameter Min Max Step Optimal

Learning rate 5e−5 5e−4 5e−5 1e−4

Batch size 8 32 2* 16
Audio segment length (s) 1 8 2* 8
Spectral bands (ƒƒt

n
) (n) 512 2048 2* 1024

Sample rate sr (kHz) 24 48 2* 24
*Interval constructed using a logarithmic scale.

http://innovations.bmj.com/
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task using the entire sample and hence represents the 
most pertinent task (symptomatic and asymptomatic 
COVID positive vs COVID negative). These results 
support the suggestion that jointly processing breath 
and cough audio signals using a CNN- based classi-
fier could act as an effective and scalable method for 
COVID-19 detection.

The only task where CIdeR failed to outperform 
the baseline in our experiments was task 2. We posit 
this is jointly due to the small number of samples 
and the similarity of audio patterns between healthy 
participants with a cough and those with COVID-19, 
creating a challenging task. It is interesting that CIdeR 
was better able to distinguish the 19 participants with 
asthma and a cough from the 23 who were COVID 
positive with a cough (AUC- ROC 0.909). We leave 
further analysis for future work.

Limitations
A key limitation of this study is the size of the data 
set.6 We are limited to 62 COVID- positive participants 
and as detailed in table 2, this results in relatively 
wide confidence intervals for the reported metrics. 
One should also consider the data set demographics 
when analysing our results. As detailed in the Data 
set section, there is an under- representation of older 
participants, particularly 70+.

Importantly, our cohort of COVID- free partici-
pants is not a random sample, as the COVID- negative 
criteria required that the subject lived in a country 
with low COVID-19 rates, among other requirements. 
Hence, COVID-19 status and nationality/country of 
residence are correlated in the data set. This makes 
interpreting our results more challenging as it creates 
an opportunity for bias in the model. For example, 
we cannot conclude that CIdeR is detecting true 
COVID-19 features in the audio samples as opposed 
to, say, differences in the acoustic characteristics of 
breathing and coughing across nationalities, which 
could act as a proxy for COVID-19 status given the 
correlation between nationality/country of residence 
in the data set.

We can conclude that CIdeR has identified audio 
biomarkers which enable it to distinguish between the 
COVID- positive and COVID- negative cases for the 
provided data. Whether these representations would 
be as useful for COVID-19 status classification in the 
general public is still an open question. Before such a 
technology could be deployed, collection and evalua-
tion on a larger, more representative data set is neces-
sary. Conversely, since deep learning- based methods 
benefit from larger data set sizes, it is possible that 
CIdeR’s diagnostic capability could improve when 
used on a larger data set.

Particular attention should also be paid to ensuring 
that the ground truth of the data set is as close to the 
true classification as possible. This means demanding a 
reverse transcription PCR test result for the categorisa-
tion into COVID positive or COVID negative, as other 
forms of testing such as the lateral flow test (LFT) 
have high error rates.21 We note that this standard of 
requiring a PCR test for both positive and negative cate-
gorisations has yet to be fully adopted by the machine 
learning community. Some prominent studies such as 
Laguarta et al’s10 study have accepted ‘self- assessment’ 
as a ground truth diagnostic method. The time frame 
between the audio recording and the PCR test being 
conducted should also be reduced to the lowest prac-
tical period. Progress on these points is being made, 
with Bartl- Pokorny et al8 now collecting audio record-
ings at test centres. PCR tests also provide additional 
information to COVID-19 classification, crucially the 
cycle threshold which is correlated with viral load.22 
Knowing the viral load of the patients at the time of 
recording would allow for the artificial intelligence 
(AI) models’ sensitivity to the level of virus to be deter-
mined, an important metric to consider when assessing 
the effectiveness of a mass testing scheme.23 24

Importance of asymptomatic diagnosis
While one machine learning- based approach25 has 
achieved an AUC- ROC of 0.862 based on demo-
graphics and symptomatology alone, this model 
evidently could not detect asymptomatic and 

Table 2 Results of the models on tasks 1–4 for threefold optimisation of the number of training epochs based on the rotated 
development sets using the frozen optimal model parameters from table 1. Train+development/test sample counts are displayed alongside 
the task. Testing is performed on the held- out test fold, each. The mean area under the curve of the receiver operating characteristics 
curve (AUC- ROC) and the unweighted average recall (UAR) are displayed. A 95% CI is also shown following ref 33 and the normal 
approximation method for AUC- ROC and UAR, respectively. Scores in bold indicate significant results with α=0.05 using a two- sample 
t- test for no difference in means between the baseline and CIdeR based on the SD from the 3- threefold cross- optimisation.

TASK

CIdeR Baseline

AUC UAR AUC UAR

1 (688/238) 0.827±0.051 0.770±0.053 0.697±0.066 0.677±0.059
2 (146/28)* 0.570±0.216 0.535±0.185 0.677±0.059 0.583±0.183
3 (118/32)* 0.909±0.130 0.774±0.145 0.559±0.220 0.506±0.173
4 (684/350) 0.846±0.040 0.765±0.044 0.721±0.053 0.654±0.050
*It is questionable whether the normality assumption holds at these small sample sizes. The CI estimates should therefore be taken lightly.
CIdeR, COVID-19 Identification ResNet.

http://innovations.bmj.com/
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presymptomatic infections. In contrast, we demon-
strate that CIdeR has the potential to detect asymp-
tomatic and presymptomatic cases, a desirable feature 
for COVID-19 diagnostics as a substantial proportion 
of virus transmission is understood to occur during 
the presymptomatic phase.26 Recall from figure 3 that 
over 25% of the COVID- positive participants in our 
data set were asymptomatic.

Mass testing considerations
It is also important to acknowledge the current lack 
of empirical evidence that mass testing (testing all 
members of the public independent of whether they 
have symptoms or not) is of benefit, with many 
arguing that it could have a negative effect.27 28 The 
antiscreening arguments are that mass testing would 
divert valuable resources from other more effective 
schemes to combat the disease and that the diag-
nostic accuracy of mass testing kits has not yet been 
adequately established.21 For example, the LFT has a 
poor sensitivity of 58%29 when the test is conducted 
by a member of the public. Particular harm can arise 
from false- negative results causing falsely reassured, 
disease- carrying individuals to reintegrate into society 
and propagate the disease further, perhaps to a greater 
degree than if they had not taken the test.

One advantage digital tests have over physical 
test systems is that they require relatively minimal 
resources and therefore would have a less adverse 
effect on resources available for key services. In addi-
tion, this proof- of- concept study suggests that the 
diagnostic accuracy could exceed that of conventional 
mass testing systems such as the LFT. Additionally, as 
the data set was collected via crowdsourcing, CIdeR 
should not experience a corresponding decline in 
performance as seen in the LFT as a result of the public 
taking the tests rather than medical professionals.29

While a minimal- cost method for testing for a disease 
seems a very attractive possibility, the effectiveness of 
a screening programme does not solely depend on the 
testing method.30 Testing the general public without 
the educational material and financial support to allow 
subjects to act appropriately following a positive test 
result would yield little benefit.

As alluded to in ref 31, pandemics have historically 
driven innovation in healthcare. But for AI- driven 
screening to be one of these breakthroughs from the 
COVID-19 pandemic, a more comprehensive data set 
and further research is required.

CONCLUSION
Wholesale testing of the population is a promising 
avenue for identifying and controlling the spread of 
COVID-19. A digital audio collection and diagnostic 
system could be deployed to the majority of the popu-
lation and performed daily at a minimal cost, for 
example, as preselection for more reliable diagnoses 
or monitoring of spread. This study introduces the 

CIdeR, which demonstrates a strong proof of concept 
for applying end- to- end deep learning to jointly learn 
representations from breath and cough audio samples. 
Access to a larger, more representative data set could 
potentially enable further learning for this model and 
therefore, it is plausible that CIdeR’s diagnostic capa-
bilities could significantly increase. This potential will 
be explored in future research.
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