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End-to-end multimodal affect recognition in real-world environments
anagiotis Tzirakis ∗,1, Jiaxin Chen1, Stefanos Zafeiriou, Björn Schuller
LAM — Group on Language, Audio & Music, Imperial College London, UK
. Introduction

Automatic affect recognition is a fundamental component towards
complete interaction between human and machine. Currently, intel-

igent systems, such as robots and virtual humans, try to use emotion
ecognition models to make the interaction with humans more natural.
o this end, such systems should automatically sense and adapt their
esponses according to the human behavior. One application can be
ound in an automatic tutoring system, where the system adjusts the
evel of the tutorial depending on the user’s affective state, such as
xcitement or boredom [1].

The task of recognizing human affect is very challenging as the
uration of human emotions vary significantly and depends on the
erson and the situation. In addition, emotions are expressed differ-
ntly among different individuals [2] and cultures. The difficulty of
ffect recognition is further escalated in real-world environments where
ncontrolled conditions are entailed. Although most of the current
esearch on emotion recognition is focused on exploiting a unimodal
tream, it is important to consider multiple channels as complementary
nformation exists among them [3].

In this paper, we study the automatic continuous affect recogni-
ion task using text, audio and visual information in an end-to-end
anner. We develop a transformer-based [4] architecture to extract

∗ Corresponding author.
E-mail address: panagiotis.tzirakis12@imperial.ac.uk (P. Tzirakis).

1 Equal contribution.

information from the text channel, use an audio network for audio
feature extraction, and develop a variant of a high resolution network
(HRNet) architecture [5] with three stages to extract information from
the visual channel. To fuse the unimodal features to a single unified
representation, we propose novel attention-based methods. The fused
feature vector is then fed into a Long Short-Term Memory (LSTM) [6]
before the prediction of the affective state of individuals. The training
and evaluation of our models are based on the concordance correlation
coefficient (𝜌𝑐). To test the effectiveness of our model, we utilize the
Sentiment Analysis in the Wild (SEWA) dataset, which was used in the
Audio/Visual Emotion Challenge (AVEC) in 2017 [7] and compare with
the three best papers of the competition.

The contributions of our paper can be summarized as follows:

• develop a transformer-based architecture in our text model and
capture the semantics of a sentence by extracting context-aware
features. To the best of our knowledge, this is the first time a
transformer mechanism has been used in the sentiment analysis
domain.

• propose three novel attention-based fusion strategies to com-
bine the features extracted from the raw speech, text and visual
modalities.

mailto:panagiotis.tzirakis12@imperial.ac.uk
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• visualize (i) the attention mechanism in our text model and
indicate the words that contribute the most to the final prediction,
and (ii) the attention-based fusion strategies that can indicate
which modality has the highest contribution to each frame.

• provide state-of-the-art results for the visual, text and multimodal
modalities, and the second highest performing model in the audio
modality, when comparing with the winning papers from the
challenge that use several hand-crafted and deep features. On
top of that, we perform an extensive experimentation of cur-
rent state-of-the-art unimodal architectures in visual, and audio
modalities.

The rest of the paper is organized as follows. Section 2 presents
elated studies on unimodal and multimodal emotion recognition. After
efining the notation in Section 3, Section 4 describes the unimodal
etworks, the attention mechanism methods used to fuse the uni-
odal features, and the multimodal network. Finally, experimental

tudies and results are presented and discussed in Section 5, along with
isualisation of the proposed attention methods.

. Related work

Deep neural networks have been widely used by the speech commu-
ity [8–10], and several affect recognition models have been proposed.
or example, Neumann et al. [11] proposed an attentive convolu-
ional neural network (ACNN) that combines CNNs with attention. Xu
t al. [12] proposed head fusion, a multi-head self-attention method.
ther studies use the raw waveform to model affect. For example,
zirakis et al. [13] proposed a deeper architecture with a longer input
ize along with a strategy to compute kernel size and max-pooling size.
n a more recent study, Li et al. [14] proposed the use of self-attention
nd global windowing in the transformer model for the task at hand.

Visual information has also been exploited to predict the emo-
ional state of individuals. For example, Yang et al. [15] proposed
e-expression Residue Learning (DeRL) where a generative model is
sed to extract the neutral face image, and then the method learns
he residue (emotion) that remains in the generative model. In an-
ther study, [16] propose a deep learning approach based on atten-
ional convolutional network. In a similar study, [17] uses a feature
xtractor based on VGG-Face [18] and a 2-layer Recurrent Neural
etwork (RNN) to account for the temporal information in the data,
efore getting the final prediction. For more affect recognition studies
hat exploit the visual information, the interested reader is referenced
o Li et al. [19].

Affect recognition via textual information has been a very pop-
lar research area in natural language processing. Kim et al. [20]
roposed a character-aware neural language model that first learns
ord representations at character-level using a CNN, and then mod-
ls language tasks at word-level utilizing LSTM. In another example,
ngelidis et al. [21] proposed a multiple instance learning method

o utilize segment-level sentiment predictions to formulate document-
evel analysis. Sarma et al. [22] proposed a domain adapted word
mbedding model to facilitate the performance of sentiment recogni-
ion in specific domains/fields. In a more recent study, Park et al. [23]
roposed emotion embedding model to classify story text emotions. A
omprehensive review for the text classification task has been published
y Minaee et al. [24].

Emotion recognition systems can be benefited by exploiting multiple
odalities such as audio, visual and text [25–36]. Some approaches
tilize multitask learning [27], others sentic blending [25], and few
ave been proposed for real-time analysis [34,37]. In a recent study,
sai et al. [30], proposed an end-to-end multimodal transformer model
o align variable sampling rates modalities. In another study, Mai
t al. [38] proposed ‘‘divide, conquer and combine’’ multimodal fu-
ion strategy that investigates local and global interactions between
47

nimodal features in an hierarchical manner. Chaturvedi et al. [33] t
roposed convolutional fuzzy sentiment classifier that combines deep
earning models with fuzzy logic classifier to predict the emotional state
f individuals.

The importance of predicting emotion in real-world environments
ed the AVEC 2017 emotion sub-challenge [7] to use the SEWA dataset
hich is comprised by three modalities: text, audio, and visual. The
aseline model [7] used hand-crafted features in all of the modalities
nd a Support Vector Regressor (SVR) for the final prediction. The
inning model of the challenge was proposed by Chen et al. [39] and
sed a multi-task learning method exploiting both deep neural network,
nd hand-crafted, features. Their final model comprised of passing all
he unimodal extracted features to a LSTM network before the final
rediction. In a similar study, Huang et al. [40] utilized pre-train deep
odels and hand-crafted features on all modalities. Another interesting

tudy was submitted by Dang et al. [41] where they proposed a
usion strategy using probabilistic predictions by utilizing hand-crafted
eatures in all the modalities.

. Notation

Before describing our model we define our notation. Matrices are
efined as uppercase bold letters as 𝐗, vectors as lowercase bold letters
s 𝐳, and scalars as non-bold letters. The 𝑖th row of a matrix is defined
s 𝐗[𝑖, ∶], the 𝑗th column as 𝐗[∶, 𝑗], and the element at position [𝑖, 𝑗] as
[𝑖, 𝑗]. The 𝑘th element of a vector is specified as 𝐳[𝑘]. The row-wise
oncatenation of the vectors {𝐳1, 𝐳2,… , 𝐳𝑚} is denoted as [𝐳1, 𝐳2,… , 𝐳𝑚].

. Proposed model

We introduce a multimodal system that is comprised of three DNNs
tilized to extract features from text, audio and visual modalities.
he features are combined to form a universal representation using
ttention mechanism. Temporal information is vital in our task and as
uch we utilize LSTM networks to process the extracted features before
he final prediction.

.1. Unimodal networks

.1.1. Text network
Our proposed text network is depicted in Fig. 1 and it is comprised

f six different parts, which are summarized below, along with the
nput representation.

Input. For our word-level representation, we adopt the pre-trained
LNet [42] of 768 dimensions with enriched subword information such

hat a sentence is represented as the matrix 𝐒 ∈ R768×𝐿, where 𝐿 is the
aximum words in a sentence of our corpus.

Position-wise N-Grams. We use a CNN to capture position-wise N-
rams of the input matrix 𝐒 for each frame. In particular, each word
ector 𝐒[∶, 𝑙] is processed by several convolutional layers and depending
n their filter width, i.e. 𝑁 = 2, 3, 4,… , 𝑇 , they are used to capture
-grams producing a feature map as follows:

𝐟 [𝑙] = 𝑔(�̃�[∶, 𝑙 ∶ 𝑙 +𝑁 − 1]◦𝐇 + 𝑏) (1)

here �̃� is the matrix 𝐒 padded, 𝑔(⋅) is an activation function (in our
ase 𝑡𝑎𝑛ℎ), 𝑁 is the width of the filter 𝐇 ∈ R768×𝑁 , and ◦ denotes the
adamard multiplication. We concatenate the original feature matrix
with the 𝑁𝑘 feature maps extracted from the convolution layers to

orm a new matrix 𝐂 = [𝐒, 𝐟1,… , 𝐟𝑁𝑘 ] ∈ R𝐷𝑒×𝐿 where 𝐷𝑒 = 768 +𝑁𝑘.
Multihead Linear Projection. To improve the diversity of the input

eatures and inspired by [4], we propose to use an attention mechanism
o enable each frame to discover multiple representative features in
ifferent context spaces. More particularly, given the input matrix 𝐂,
e first apply different linear projections on 𝐂 to explore different
erspective of context for the current frame, i.e. 𝐕𝑝 = 𝐖𝑝𝐂, where 𝐖𝑝 ∈
𝐷𝑝×𝐷𝑒 is the 𝑝-th linear projection matrix and 𝐷𝑝 is the dimension of
he 𝑝-th context space.
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Recurrent Context Generator. To capture semantic information in the
ifferent context spaces we utilize a 2-layer Bi-LSTM with hidden state

𝐡𝑙𝑝 at position 𝑙.
Selector. The semantic-aware hidden states 𝐡𝑙𝑝 of the Bi-LSTM are

rocessed by an attention mechanism 𝐬𝑝 to enable the model to select
he most useful context-aware features in each context space 𝑝.

Context Feature Concatenation. In this step we concatenate the
context-aware features obtained in each projection space to form a
ingle feature representation, i.e. 𝐳 = [𝐬1, 𝐬2,… , 𝐬𝑝] ∈ R𝑝𝐷𝑙 .

Highway Networks. Highway networks [43] are proven to have a
strong empirical performance especially for deep networks. To this end
we adopt highway networks by feeding them our frame-level feature 𝐳,
.e.,

̃ = 𝐨◦𝑔(𝐖𝑧𝐳 + 𝑏𝑧) + (𝟏 − 𝐨)◦𝐳 (2)

here 𝐨 = 𝜎(𝐖𝑜𝐳 + 𝑏𝑜) acts as a transformation gate which allows
shortcut from input to output directly, and 𝑔(⋅) is an activation function
(in our case 𝑡𝑎𝑛ℎ).

4.1.2. Audio network
Extracting features from the audio signal is an important step in

the field of paralinguistics. For our purposes we utilise the network
rchitecture proposed by Tzirakis et al. [13]. The network architecture
s comprised of 3 blocks, each containing one convolution and one max-
ooling layer. The convolution layers have 50, 125, and 250 number
f channels with kernel sizes 8, 6, 6 with stride 1, respectively, and the
ax-pooling layers 10, 5, 5 kernel size and same stride size, respectively.

The input to the network is the raw waveform, segmented into 160 s
ong sequences. At a sampling rate of 22050Hz this corresponds to a
, 528, 000-dimensional vector. In addition, we utilize the interlocutor
nformation provided with the SEWA dataset by using an additional
ector in each frame so that we can distinguish the target from the chat-
ing partner in the contained dyadic conversations. More particularly,
alf of the entries of this vector are zeros depending on the speaker
urn, and the other half is filled with the extracted features. The final
nput to the network is a (2 ∗ 3, 528, 000)-dimensional vector.

.1.3. Visual network
Our visual feature extractor is a High-Resolution network (HR-

et) [44] of 3 stages. HRNets maintain high-resolution representations
f the input by performing multiscale and fusion across parallel con-
olution. They have shown superior results in a number of computer
ision problems, such as semantic segmentation and object detection.

Studies in the literature have shown the beneficial properties of
sing an attentional pooling layer [45] instead of the last average one
n deep convolution networks. To this end, we adopt an hierarchical
ttention scheme, where we replace the last average pooling layer with
n attention mechanism following the low-rank second-order pooling
top-down attention) [45]. On top of that, we use another attention
etween the feature maps. Utilizing this attention scheme speeds up
he training of the network and increases its performance on the
evelopment set.

.2. Attentional fusion strategies

Before feeding the features extracted from text (𝐱𝑡 ∈ R𝐷𝑡 ), audio
𝐱𝑎 ∈ R𝐷𝑎 ) and visual (𝐱𝑣 ∈ R𝐷𝑣 ) modality to the recurrent network,
e consider five different strategies to fuse them together.

Concatenation. The first approach is a concatenation of the unimodal
eatures, i. e., 𝐱𝑓𝑢𝑠𝑖𝑜𝑛 = [𝐱𝑡, 𝐱𝑎, 𝐱𝑣]. This is a standard feature-level fusion
pproach that has been used extensively in the literature.

Hierarchical Attention. We propose to perform hierarchical attention
o the unimodal features so as to maximize the relevant information
hat is propagated forward to the network. More particularly, we first
erform attention to all paired unimodal features, i.e. audio-text, audio-
48

isual, and visual-text, before using a higher level attention to the
Fig. 1. Text network architecture. The input is a word-embedding matrix that is passed
o a N-gram feature extractor (padding is not shown), before being concatenated with
he N-gram features. Then linear projections are applied such that different contexts are
xtracted. Each context-matrix is processed by a 2-layer Bi-LSTM to get the semantics
n the sentence before the selector that weights the outputs. Finally, the outputs of
ach recurrent network is concatenated and passed by a highway network to get
he semantic-aware feature vector. (Best viewed in color). (For interpretation of the
eferences to color in this figure legend, the reader is referred to the web version of
his article.)

aired outputs. More formally, given the features extracted from text 𝐱𝑡,
udio 𝐱𝑎 and visual 𝐱𝑣 modalities, we first perform a linear projection
o each of these features such that they are projected to the same vector
pace (with the same number of dimensions 𝐷𝑢), namely,

�̃�𝑡 = 𝐖𝑡𝐱𝑡 + 𝑏𝑡

�̃�𝑎 = 𝐖𝑎𝐱𝑎 + 𝑏𝑎

�̃�𝑣 = 𝐖𝑣𝐱𝑣 + 𝑏𝑣
(3)

where 𝐖𝑡 ∈ R𝐷𝑢×𝐷𝑡 , 𝐖𝑎 ∈ R𝐷𝑢×𝐷𝑎 , 𝐖𝑣 ∈ R𝐷𝑢×𝐷𝑣 are projection
matrices for text, audio and visual modalities, respectively, with di-
mension 𝐷𝑢. The projected features are combined pair-wise, and then
are passed through a selective attention mechanism to obtain the final
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fusion feature, i.e.,

𝛼𝑖 = 𝑠𝑜𝑓𝑡𝑚𝑎𝑥(
�̃�𝑖𝐪𝑖
√

𝐷𝑢
)

𝐴𝑡𝑡𝑒𝑛𝑡𝑖𝑜𝑛(𝐱1 ⋯ 𝐱𝑀 ) =
𝑀
∑

𝑖=1
𝛼𝑖�̃�𝑖

(4)

where 𝐪𝑖 ∈ R𝐷𝑢 is a learnable vector that attends to different modality
features, and 𝑖 ∈ [1,𝑀] is an index denoting the 𝑀 − 𝑡ℎ modality. We
btain final attentive fusion feature 𝐱𝑓𝑢𝑠𝑖𝑜𝑛 as follows:

𝐱𝑣𝑡 = 𝐴𝑡𝑡𝑒𝑛𝑡𝑖𝑜𝑛(�̃�𝑣, �̃�𝑡)
𝐱𝑣𝑎 = 𝐴𝑡𝑡𝑒𝑛𝑡𝑖𝑜𝑛(�̃�𝑣, �̃�𝑎)
𝐱𝑡𝑎 = 𝐴𝑡𝑡𝑒𝑛𝑡𝑖𝑜𝑛(�̃�𝑡, �̃�𝑎)
𝐱𝑓𝑢𝑠𝑖𝑜𝑛 = 𝐴𝑡𝑡𝑒𝑛𝑡𝑖𝑜𝑛(𝐱𝑣𝑡, 𝐱𝑣𝑎, 𝐱𝑡𝑎)

(5)

Self-Attention. We also propose to apply self-attention fusion strategy
y enabling the extracted features to attend to each other. To do so we
irst apply a linear projection on the unimodal features 𝐱𝑡, 𝐱𝑎 and 𝐱𝑣
ike in Eq. (3).

After we concatenate the three vectors together, i. e., 𝐗𝑐 = [�̃�𝑡, �̃�𝑎,
̃𝑣]𝑇 ∈ R3×𝐷𝑢 , we apply a multi-head 3-way linear projection of the

atrix [4], i. e., 𝐙𝑗
𝑖 = 𝐗𝑐𝐖𝑗

𝑖 ∈ R
3×𝐷𝑠 for 𝑗 = 1, 2, 3, where 𝐖𝑗

𝑖 ∈ R
𝐷𝑢×𝐷𝑠 ,

𝑠 is the dimension of each projection space, and 𝑖 ∈ N+ is an index for
perations in different projection space. Then, we utilize self-attention
o explore complementary relationships among the different modalities.
he attention is applied as follows:

𝐴𝐴𝐴𝑖 = 𝑠𝑜𝑓𝑡𝑚𝑎𝑥(
𝐙1
𝑖 (𝐙

2
𝑖 )

𝑇

√

𝐷𝑠
)𝐙3

𝑖

𝛼𝛼𝛼𝑖 = 𝐴𝐴𝐴𝑖𝐪𝑖

𝐯𝑖 =
3
∑

𝑘=1
𝛼𝛼𝛼𝑖[𝑘]𝐴𝐴𝐴𝑖[𝑘, ∶]

(6)

where 𝐪𝑖 ∈ 𝐷𝑠 here is again a learnable variable for self-attentive
features and the subscript 𝑖 denotes the 𝑖th linear projection. The final
fusion feature vector is the concatenation of all the projected features,
.e., 𝐱𝑓𝑢𝑠𝑖𝑜𝑛 = [𝐯1,… , 𝐯𝑝] where 𝑝 is the number of projections applied.

Residual Self-Attention. Inspired by the work on non-local neural
etworks [46] we extend the self-attention fusion strategy by incorpo-
ating a residual connection. To this end, the residual self-attention can
e defined as follows:

𝐳𝑖 = 𝐖𝑧𝐯𝑖 + 𝐗𝑐 , (7)

here 𝑖 represents the 𝑖-th linear projection (see Eq. (6)), ‘‘+𝐗𝑐 ’’ denotes
he residual connection, and 𝐯𝑖 is defined in Eq. (6). The final fusion
epresentation is computed by concatenating the projected features 𝐳𝑖,
. e., 𝐱𝑓𝑢𝑠𝑖𝑜𝑛 = [𝐳1,… , 𝐳𝑝] where 𝑝 is the number of projections applied.

Cross-modal Hierarchical Self-Attention. We also propose a cross-
odal hierarchical self-attention fusion, where each modality is com-

ined with the rest using self-attention, and then the features per
odality are fused in an attentional manner. Mathematically, we define

he cross-modal attention as follows:

𝑚,𝑐 = 𝐱1𝑚𝑠𝑜𝑓𝑡𝑚𝑎𝑥(
𝐱2𝑚(�̃�𝑐1)

𝑇

√

𝐷𝑠
), (8)

where the modality 𝑚 is fused with modality 𝑐, �̃�𝑚𝑖 is the 𝑖-th linear
rojection with dimensions 𝐷𝑠 of modality 𝐱𝑚𝑖 , as defined in Eq. (3).
he cross-modal attentional representation of modality 𝑚 with the rest
odalities 𝑐𝑖 is defined as 𝐯𝑚𝑓 = 𝐴𝑡𝑡𝑒𝑛𝑡𝑖𝑜𝑛(𝐚𝑚,𝑐1 , 𝐚𝑚,𝑐2 ,… 𝐚𝑚,𝑐𝑖 ). Finally,

we fuse the 𝑀 (one per modality) cross-modal representations using
nother attention, i. e.,

𝑓𝑢𝑠𝑖𝑜𝑛 = 𝐴𝑡𝑡𝑒𝑛𝑡𝑖𝑜𝑛(𝐯𝑚1
𝑓 , 𝐯𝑚2

𝑓 ,… , 𝐯𝑚𝑀
𝑓 ). (9)
49

r

Fig. 2. The multimodal network is comprised of the features extracted from the
ext (𝐱𝑡), audio (𝐱𝑎), and visual (𝐱𝑣) modalities, the attentional layer that fuses the
xtracted features (𝐱𝑓𝑢𝑠𝑖𝑜𝑛) using a weighted vector, and 1-layer LSTM that capture the
ontextual dynamics in the data before the final prediction. (Best viewed in color). (For
nterpretation of the references to color in this figure legend, the reader is referred to
he web version of this article.)

.3. Multimodal model

Our multimodal model is comprised of all the unimodal networks,
he attention layer that performs our fusion strategies, and 1-layer
STM network. Fig. 2 depicts the overall architecture.

. Experiments

.1. Dataset

To test the effectiveness of our model on time-continuous predic-
ions in real-world environments, we utilize the Sentiment Analysis

in the Wild (SEWA) dataset that was used in the AVEC 2017 chal-
lenge. It consists of audio-visual recordings that were collected from
web-cameras and microphones, and captured spontaneous and natural
motions (arousal and valence). In total, 64 subjects (age from 18 to
0 years old) are paired (i. e., 32 pairs) to watch a 90 s commercial
ideo, and their task was to discuss the content with their partner

for maximum 3 min. The dataset provides three modalities, namely,
text, audio and visual, and it is split into 3 partitions: training (17
pairs), development (7 pairs), and test (8 pairs). In total, the training,
development and test sets contain 54,813, 22,556, and 27,950 audiovi-
sual frames, and 1,329, 604, and 629 sentences, respectively. Finally, 6

erman-speaking annotators (3 female, 3 male) were used to annotate
he dataset in continuous arousal and valence.

.2. Objective function

As our objective function we utilize the Concordance Correlation
oefficient (𝜌𝑐) that was also used in the AVEC 2017 challenge. 𝜌𝑐
valuates the agreement level between the predictions and the gold

standard by scaling their correlation coefficient with their mean square
difference. More particularly, we define the concordance loss 𝐽𝑐 as
follows:

𝐽𝑐 = 1 − 𝜌𝑐 = 1 −
2𝜎2𝑥𝑦

𝜎2𝑥 + 𝜎2𝑦 + (𝜇𝑥 − 𝜇𝑦)2
, (10)

where 𝜇𝑥 = E(𝐱), 𝜇𝑦 = E(𝐲), 𝜎2𝑥 = var(𝐱), 𝜎2𝑦 = var(𝐲) and 𝜎2𝑥𝑦 = cov(𝐱, 𝐲).
For our purposes we train our networks to predict both arousal and

valence, and as such we define the loss function as: 𝐽 = (𝐽 𝑎
𝑐 + 𝐽 𝑣

𝑐 )∕2,
where 𝐽 𝑎

𝑐 and 𝐽 𝑣
𝑐 are the concordance loss of the arousal and valence,

espectively.
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Table 1
Range of values for hyper-parameter tuning.
Hyper-parameter Range

Learning rate [10−3 − 10−6]
Batch size (Text/audio) [10, 20, 30]
Batch size (Visual/multimodal) [2, 3]
Dropout [0.1 − 0.6]
Sequence length [75, 100, 200]
Hidden units (LSTM) [64, 128, 256, 512]
Num layers (LSTM) [1, 2, 3]

5.3. Training process

The first step in our training process is to train individually each
unimodal network. To this end, we stack on top of each network a 1-
ayer LSTM of 256 hidden units before the predictions of the arousal
nd valence.

The weights of each trained unimodal network are used to initialize
he weights in the multimodal network. As in the unimodal cases, we
se 1-layer LSTM of 256 hidden units to capture the temporal dynamics
n the data, which was initialized by the Glorot based method [47].

.4. Experimental setup

Our networks have a number of parameters that need to be tuned.
or our purposes, we consider tuning the following hyper-parameters:
earning rate, batch size, dropout, and number of hidden units and
umber layers for the LSTM. The range of the values for each hyper-
arameter is shown in Table 1. We should point out that due to memory
onstrains the batch size for the visual and multimodal models is in the
ange [2, 3], whereas for the text and audio modalities was set in the
ange [10, 20, 30].

Due to the high number of configurations, we adopt the Hyperband
lgorithm [48] to tune the hyper-parameters. This is an iterative algo-
ithm that starts by randomly sampling a number of hyper-parameter
onfigurations in the search space, and discards some of them (in our
ase a 25%) during the training of the model.

For training the models, we use Adam optimizer [49], with initial
earning rate of 5 × 10−4 throughout all experiments. The length of a
equence in a batch is set to 100. The batch size for training the visual
nd multimodal networks was set to 3, while for the text and audio
odels it was set to 20. Additionally, we apply dropout [50] to the text

nd audio models so that our model would not overfit on the training
ata. In particular, for the audio model dropout is performed with a
robability of 0.5 after each convolution layer. For the text model,
e apply dropout of 0.1 for original word representations, 0.3 for the
utput hidden states of context feature generator, and 0.2 for the output
f the multi-linear projection matrices. Finally, each LSTM network we
se in the training phase is trained with a dropout of 0.5.

.5. Ablation study

We experiment with different state-of-the-art networks for each
odality in order to choose the best performing one per modality.
ll models were trained using 1-layer LSTM on top of the extracted

eatures such that the temporal dynamics in the data are captured.
sing the visual modality we experiment with VGG [18], ResNet-
0 [5], DenseNet [51], MobileNet [52], and HRNet [44]. Using the text
odality we experiment with Fasttext [53], BERT [54], AlBert [55],
LNet [42], RoBerta [56], ULMFit [57] as our word embedding repre-
entation. Finally, we experiment with three end-to-end models using
he audio modality, i. e, Trigeorgis et al. [58], Tzirakis et al. [13], and
i et al. [14]. Table 2 depicts the results for all modalities. From the
esults we conclude that on average the highest performing model for
he visual modality is HRNet, for the text modality is the XLNet, and
or the audio is Tzirakis et al. model. We utilize these models in our
50

ultimodal network.
Table 2
SEWA dataset development results (in terms of 𝜌𝑐 ) for the visual, text,
and audio modalities, for the prediction of arousal and valence.
Modality Network Arousal Valence Avg

Visual

Resnet-50 [5] .641 .689 .665
VGG-16 [18] .624 .668 .646
DenseNet [51] .617 .672 .645
MobileNet [52] .621 .689 .655
HRNet [44] .647 .695 .671

Text

Fasttext [53] .508 .554 .531
BERT [54] .537 .578 .558
AlBert [55] .532 .577 .555
RoBerta [56] .523 .561 .542
ULMFit [57] .527 .559 .543
XLNet [42] .544 .581 .563

Audio
Trigeorgis et al. [58] .541 .488 .513
Li et al. [14] .552 .534 .543
Tzirakis et al. [13] .563 .532 .545

Table 3
SEWA dataset test results (in terms of 𝜌𝑐 ) for the text modality,
and for the prediction of arousal and valence. In parenthesis are the
performances obtained on the development set.
Predictor Arousal Valence

Baseline [7] .375 (.373) .425 (.390)
Dang et al. [41] .320 (.441) .394 (.499)
Huang et al. [40] .483 (.489) .520 (.523)
Chen et al. [39] .463 (.478) .515 (.532)

Proposed .532 (.544) .568 (.581)

Table 4
SEWA dataset test results (in terms of 𝜌𝑐 ) for the audio modality,
and for the prediction of arousal and valence. In parenthesis are the
performances obtained on the development set.
Predictor Arousal Valence

Baseline [7] .225 (.344) .244 (.351)
Dang et al. [41] .344 (.494) .346 (.507)
Huang et al. [40] .583 (.584) .487 (.585)
Chen et al. [39] .422 (.524) .405 (.504)

Proposed .456 (.563) .428 (.532)

5.6. Unimodal results

We compare each of our unimodal networks to the baseline paper of
he AVEC 2017 challenge along with the results of the best performing

models of that year.

5.6.1. Text modality
Most of the studies in the AVEC 2017 challenge use BoTW to extract

eatures from the text. Only Chen et al. [39] uses word2vec features.
able 3 depicts the results in the test and development sets. Our model

outperforms all the other methods in predicting both the arousal and
valence dimensions with high margin.

5.6.2. Audio modality
The audio modality is more effective at predicting the arousal

dimension. Table 4 shows the results of our model and the rest of the
AVEC challenge papers. Our model has the second highest performance
behind the Huang et al.’s [40] method. We should note, however, that
the network they use was pretrained on 300hours of a spontaneous
English speech recognition corpus before fine-tuning it to the SEWA
dataset. In addition to the features of the network, they also utilize
several hand-engineered features.

5.6.3. Visual modality
The visual information can efficiently predict the valence dimen-
sion rather than the arousal. Table 5 depicts the results. Our model
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Table 5
SEWA dataset test results (in terms of 𝜌𝑐 ) for the visual modality,
and for the prediction of arousal and valence. In parenthesis are the
performances obtained on the development set. A dash is inserted if the
results could not be obtained.
Predictor Arousal Valence

Baseline [7] .308 (.466) .455 (.400)
Dang et al. [41] .390 (.518) .496 (.583)
Huang et al. [40] .531 (.682) .670 (.720)
Chen et al. [39] — (.675) — (.693)

Proposed .608 (.647) .675 (.695)

Table 6
Results (in terms of 𝜌𝑐 ) on the development set of the SEWA dataset
for the prediction of arousal and valence using five different fusion
strategies, namely, concatenation, hierarchical attention, self-attention,
residual self-attention, and cross-modal self-attention.
Method Arousal Valence

Concatenation .698 .737
Self-attention .729 .751
Hierarchical attention .785 .808
Residual self-attention .748 .767
Cross-modal hierarchical self-attention .797 .818

outperforms all the other models. In addition, looking at the develop-
ent results we can conclude that the generalization capability of our
odel is higher than the other models. We believe this is due to the
ierarchical attentional pooling layer we used.

.7. Fusion strategy results

In this subsection we show the results of our different fusion
trategies, namely, concatenation, hierarchical attention, self-attention,
esidual self-attention, and cross-modal hierarchical self-attention.
able 6 shows the results on the development set. As expected the sim-
le concatenation method produces the worst results. The hierarchical
ttention outperforms, in both arousal and valence, the self-attention
nd residual self-attention, but not the cross-modal hierarchical self-
ttention. We believe that the bottom-up approach of the hierarchical
ttention provides the network the capability to more efficiently attend
o one of the modalities before combining them together.

.8. Multimodal results

To have a fair comparison with the models used in the AVEC 2017
hallenge, and the Singh et al. [59]. and Khorram et al. [35] studies, our
odel was trained utilizing all the modalities of the dataset, namely,

ext, audio, and visual, for the final predictions. The results are shown
n Table 7. Our model is the highest performing model compared
ith the other models. We should note that Chen et al.’s [39] model
tilizes several hand-engineered and deep features, while our model
perates on the raw signal. For example, the visual features they use
re extracted from the DenseNet [51] and the VGG [18], while for the
udio the features are the IS10 [60] and the features extracted from the
oundNet [61]. Finally, we run the Wilcox statistical test and found that
he results are statistically significant with level of significance 0.05.

.9. Hyper-parameter optimization

Each hyper-parameter has a different effect on the final multimodal
etwork. In Table 8 we show, in terms of the average 𝜌𝑐 , the effect of
ach hyper-parameter on the development set of the SEWA database.
esults indicate that dropout has the highest effect on the model’s
erformance with the highest value of standard deviation on both
rousal and valence. On the other hand, the batch size has the lowest
51

ffect with 0.01 standard deviation.
Table 7
SEWA dataset results (in terms of 𝜌𝑐 ) for our multimodal network,
and for the prediction of arousal and valence. In parenthesis are the
performances obtained on the development set.
Predictor Arousal Valence

Baseline [7] .375 (.525) .466 (.507)
Singh et al. [59] .276 (.294) .365 (.346)
Khorram et al. [35] .412 (.530) .379 (.542)
Dang et al. [41] .523 (.657) .540 (.602)
Huang et al. [40] .599 (.721) .721 (.728)
Chen et al. [39] .672 (.823) .756 (.796)

Proposed .690 (.797) .783 (.818)

Table 8
SEWA dataset results (in terms of 𝜌𝑐 ) for the multimodal model on the
development set for different hyper-parameters of the model.
Hyper-parameter Arousal Valence

Learning rate .765 ± .03 .798 ± .02
Batch size .785 ± .01 .805 ± .01
Dropout .742 ± .05 .766 ± .04
Sequence length .783 ± .03 .796 ± .03
Hidden units (LSTM) .783 ± .02 .801 ± .02
Num layers (LSTM) .759 ± .03 .792 ± .03

Fig. 3. Visualization of 3 sentences of the attention mechanism (Selector) in the text
model. In the first sentence the highest weight is assigned to the word gut which means
ood, in the second sentence to the word beeindruckendsten which translates to the most
mpressive, and in the last sentence to the word langweilig which means boring. (Best
iewed in color). (For interpretation of the references to color in this figure legend,
he reader is referred to the web version of this article.)

.10. Attention visualization

One of the benefits of using attention mechanism is the inter-
retability of its results. To this end, we visualize the attentions used
n the text and multimodal networks.

.10.1. Text visualization
The text network utilizes an attention mechanism (Selector), which

e use to visualize the weights the network assigns to different words
n the sentence. Fig. 3 depicts 3 sentences from the development set

of the SEWA along with the weights the attention assigns to. As we
can observe the most attentive words of the network are the ones that
are the most meaningful. More particularly, in the first sentence the
highest weight is assigned to the word gut which means good, in the
second sentence to the word beeindruckendsten which translates to the
most impressive, and in the last sentence to the word langweilig which
means boring.

5.10.2. Multimodal visualization
We visualize the results of the hierarchical attention mechanism that

is utilized to fuse the unimodal features. Fig. 4 shows the weights (color
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Fig. 4. Visualizing the hierarchical attention fusion strategy in a frame where the
articipant is laughing. The model provides the highest scores in the audiovisual stream
n both the pair-wise attention (first layer) and in the higher layer. (Best viewed in
olor). (For interpretation of the references to color in this figure legend, the reader is
eferred to the web version of this article.)

ncoded) of a frame where the participant is laughing and there is no
ext transcriptions. As expected the network attends mostly to the audio
nd visual channels in the first layer, while the highest score in the
econd layer is provided by the audiovisual pair of the first layer.

. Conclusions

In this paper, we proposed a transformer-based text architecture
long with attention-based fusion strategies to combine the different
odality features to achieve better performance for affect recogni-

ion task. Our text model utilizes multi-linear projection and context-
ware feature generator that can capture the semantics of a sentence.
urthermore, the proposed fusion strategies can balance the relation-
hip among different modalities better than a simple concatenation
o achieve a higher recognition performance on the SEWA dataset.
ur text, visual and multimodal models outperform the state-of-the-art
ethods, while our audio network achieve the second best performance
hen compared with models that utilize several hand-crafted and deep

eatures. Finally, our model can provide a series of visualizations for
he text and the multimodal networks.
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