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Abstract Background Although frustration is a common emotional reaction while playing games, an

excessive level of frustration can negatively impact a user's experience, discouraging them from further

game interactions. The automatic detection of frustration can enable the development of adaptive systems

that can adapt a game to a user's specific needs through real-time difficulty adjustment, thereby optimizing

the player's experience and guaranteeing game success. To this end, we present a speech-based approach

for the automatic detection of frustration during game interactions, a specific task that remains under-

explored in research. Method The experiments were performed on the Multimodal Game Frustration

Database (MGFD), an audiovisual dataset—collected within the Wizard-of-Oz framework—that is

specially tailored to investigate verbal and facial expressions of frustration during game interactions. We

explored the performance of a variety of acoustic feature sets, including Mel-Spectrograms, Mel-

Frequency Cepstral Coefficients (MFCCs), and the low-dimensional knowledge-based acoustic feature set

eGeMAPS. Because of the continual improvements in speech recognition tasks achieved by the use of

convolutional neural networks (CNNs), unlike the MGFD baseline, which is based on the Long Short-

Term Memory (LSTM) architecture and Support Vector Machine (SVM) classifier—in the present work,

we consider typical CNNs, including ResNet, VGG, and AlexNet. Furthermore, given the unresolved

debate on the suitability of shallow and deep networks, we also examine the performance of two of the

latest deep CNNs: WideResNet and EfficientNet. Results Our best result, achieved with WideResNet

and Mel-Spectrogram features, increases the system performance from 58.8% unweighted average recall

(UAR) to 93.1% UAR for speech-based automatic frustration recognition.
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1 Introduction

Emotion-related theories define frustration as "the occurrence of an obstacle that prevents the satisfaction

of a need"[1]. Frustration is an emotional state that has been studied since the early years of the 20th

century[1] that is of special interest in the field of human behavior analysis. Because frustration is a common

reaction triggered while playing games[2], it has also been studied within the human-game interaction

paradigm. In this context, frustration is a negative emotional state that occurs in goal-oriented games when

a feeling of dissatisfaction arises from a player's unfulfilled needs[3]. Experiencing frustration while

interacting with a game can also trigger a variety of negative emotional responses, such as acute stress,

sadness, or rage. These emotions impact a user's opinion of the playing experience, which usually

negatively influences their evaluation of the game and therefore reduces their acceptance of it[4]. In this

regard, recent developments in computer game analysis have served as the main avenue to improve user

experience (UX) [5] through the elicitation, detection, and modelling of players' emotions while gaming.

Indeed, frustration has been identified as a common emotional reaction during game interactions[6] that

negatively impacts the UX[5]. Hence, the development of technology capable of effectively recognizing and

reducing users' frustration while playing games is expected to be highly beneficial for improving the UX.

Although affective computing[7] technologies have already been applied in the field of gaming research[5],

the automatic analysis of frustration during game play is still an underdeveloped area of investigation.

Indeed, due to the difficulties linked to the collection of suitable and realistic databases[8], existing datasets

that are adequate for the study of frustration during game interactions are rare. One exception is the

Multimodal Game Frustration Database (MGFD) [9], which includes spontaneous interactions by players

playing "Crazy Trophy, " a voice-controlled game in which frustration was elicited by creating usability

problems. The users' spoken and facial expressions were both recorded, and the interactions were labeled

in terms of the presence or absence of frustration. An initial work on the MGFD presented a baseline using

a Support Vector Machine (SVM) and Long Short-Term Memory Recurrent Neural Network (LSTM-

RNN) and applying Mel-Frequency Cepstral Coefficient (MFCC) acoustic features for the automatic

detection of frustration/non-frustration states from users' facial expressions and speech[9].

Beyond SVMs and LSTM-RNNs, which have been successfully employed in speech analysis tasks[10],

other neural network techniques such as Convolutional Neural Networks (CNNs) have also shown

promising results for such tasks[11]. Specifically, the research in [12] obtained superior performance with

CNNs as compared to RNNs. Previous work has provided some evidence that CNNs are more suitable

than LSTM-RNNs for the classification of long sentences in a natural language processing task[13].

Similarly, attention-based CNNs have also achieved better results than attention-based LSTM-RNNs for

answer selection using an open domain question-answer selection dataset[14]. These results may be due to

the fact that while RNNs[15] compute cyclic connections for the input features, CNNs use the invariance of

deep convolutions to overcome the diversity of the speech signals and multi-layer enriched features[16].

Considering this, we anticipate that CNNs will perform well for the recognition of users' frustration on the

MFGD. Research on CNNs has led to a series of breakthroughs in machine learning tasks, prompting the

exploration of 'very deep' models, which have become the current state-of-the-art research[17]. Nevertheless,

a 'degradation' problem may arise when deep networks start to converge, diminishing the accuracy[17]. For

instance, residual networks (ResNets[18]) have been shown to efficiently scale up to hundreds of layers

while maintaining improved performance[19]. However, each fraction of a percentage in improved accuracy

usually requires the number of layers to be nearly doubled. Likewise, training very deep residual networks

tends to lead to the problem of diminishing feature reuse. Further, the information shared among all blocks

is limited and does not provide a sufficient contribution[19]. To address this problem, WideResNet, which

randomly disables the residual blocks during training, was designed. Wide residual blocks can outperform

77



Virtual Reality & Intelligent Hardware 2021 Vol 3 Issue 1：76—86

their thin and deep counterparts[19].

In this work, our goal is to overcome the drawbacks of a limited feature set and of the machine learning

models considered in the MGFD baseline. We thus extract a larger variety of audio feature sets than those

considered in the baseline paper and apply state-of-the-art deep CNNs for the automatic identification of

user frustration during game interactions. We provide a comparison of a variety of CNNs, including

AlexNet, VGG, EfficientNet, ResNets, and WideResNets, and consider different feature sets: MFCCs, Mel-

Spectrograms, and eGeMAPS. Moreover, we determine the most efficient configuration for frustration

recognition on the MGFD.

2 Related work

Although emotional databases with a focus on frustration are rare[9], the interest in modeling this emotion

computationally is evident in the variety of databases introduced in the literature that contain frustration to

some extent. With regard to audio content, the UTDrive database contains recordings collected in real

conditions from people driving in urban areas[20,21]. In the ChIMP-Children's Interactive Multimedia Project-

database, which was collected during children-computer interactions, verbal expressions of frustration

were evaluated[22]. Datasets annotated in terms of frustration are relatively common in the literature,

especially for datasets containing other emotional states. For instance, DEAP, the Dataset for Emotion

Analysis using Physiological Signals[23], which was recorded while subjects were watching musical videos,

provides electroencephalogram (EEG) and peripheral physiological signals. Similarly, FEEDB, the Facial

Expressions and Emotions Database[24], contains synchronized facial colour videos and depth maps, both of

which contain annotations of frustration and other emotions. Finally, although the validity of acted

emotions has been criticized[25], audiovisual datasets containing acted expressions of frustration have also

been presented; examples include IEMOCAP, the Interactive EMOtional dyadic motion CAPture

database[26] and the Chen-Huang database[27]. Overall, despite the interest in frustration implied by existing

emotional databases, the lack of a corpus focusing on this emotion has limited the development of systems

capable of automatically recognising user frustration.

Recent advances in neural network-based research have shown that properly widening the residual

blocks, instead of increasing their depth, can lead to much more effective residual networks with improved

performance[28]. Recent research on image-based food recognition[29] has shown that wide residual blocks

with a sliced convolution can successfully capture specific information, thereby yielding better

performance than existing approaches. On the ILSVRC12 image classification task, that is, the ImageNet

Large Scale Visual Recognition Challenge, wide residual networks with smaller depths showed

comparable accuracy to that achieved by narrower and deeper ResNets[30]. Such 'WideResNets' have also

been used recently in the medical domain for lung cancer classification[31], achieving state-of-the-art

accuracy results in predicting the majority of referral and non-referral nodules. Similarly, in another

medical application, WideResNets have been considered for mitosis detection in breast histology images[32],

an approach that was ranked 2nd in the MICCAI TUPAC 2016 competition for mitosis detection. Aditi

presented the use of 3D WideResNets for disease diagnosis, specifically to obtain better quality denoised

brain magnetic resonance images than the state-of-the-art approach obtained[33].

3 Experimental set-up

In the following, the MGFD database is described, details of the considered feature sets are provided, and

the data partition and equipment setup are indicated.

3.1 MGFD

Level 6 interface of "Crazy Trophy": although the user has collected only 10 trophies, due to the
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(intentional) usability problem, the panel on the right indicates a doubled count, i. e., 20 trophies; this

makes it impossible to win the game.

The MGFD1 is a database that contains 5 hours of audiovisual recordings from 67 healthy individuals

(27 female and 40 male, with a mean age of 15 years) experiencing different levels of spontaneous

frustration elicited by a variety of (intentional) usability issues. The MGFD was collected through from

user interactions with the game "Crazy Trophy," a Wizard-of-Oz (WoZ)[34] voice-controlled game especially

designed to induce frustration in the participants. During their interactions with "CrazyTrophy, " users

perceive that the game avatar is controlled by their voice and they are able to use the spoken commands

'left, ' 'right, ' 'up, ' and 'down' to move the avatar. The goal of the game is to collect a specific number of

trophies—indicated to the user by a counter (cf. the right panel in Figure 1) —and subsequently deliver

them to a bear (cf. the right corner in the top of Figure 1). The target (i.e., the number of trophies to be

collected) varies for each of the six game levels, and the participants are only given one attempt to

complete each level; they must finish the task within a specific time in order to win. During levels 1-4,

there were no usability problems, and the participants generally exhibited neutral/positive emotions. In

contrast, in levels 5 and 6, the introduction of usability problems, such as intentional alteration of the

counter to prevent users from achieving the goal, led participants to show different levels of frustration.

The baseline provided with the database presents the results of a binary classification task, that is, of

discriminating between frustration and lack of frustration. With regard to the experimental settings: the

authors extracted MFCC acoustic features and applied SVM and LSTM to the audio channels. The best

baseline result was 58.8% of the unweighted average recall (UAR) for the considered speech channel.

3.2 Feature sets

A wealth of different feature sets has been produced to perform analysis and recognition of speech. In

1 The MGFD dataset is freely accessible in:https://zenodo.org/record/3957238#.X4A0v3X7TmF.

Figure 1 Level 6 interface of“Crazy Trophy”: although the user has collected only 10 trophies, due to the

(intentional) usability problem, the panel on the right indicates a doubled count, i. e., 20 trophies; this makes it

impossible to win the game.
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supervised machine learning, performance is often compared across different benchmark feature sets,

which enables feature comparison for specific tasks. With this in mind, along with the MFCC features

already considered for the baseline, we also evaluated the performance of the Mel-Spectrograms and

eGeMAPS feature sets since they have been successfully used in the recognition of emotional speech in

previous research[35,36].

3.2.1 Mel-Spectrogram

Mel-Spectrograms are generated by applying a Mel filter bank to spectrograms, which are extracted from

audio signals via the short-term Fourier transform (STFT)[37]. The window length was 2000. We used a hop

length of 800. The N-FFT value was 2000. The Mel filter bank converts spectrograms into the Mel scale,

which was considered because it emphasizes low frequencies over higher ones, mirroring the perceptual

capability of human ears. To compute the Mel-Spectrograms, we used the librosa Python package in our

experiment. In Figure 2, a sample frustration Mel-Spectrogram is shown.

3.2.2 MFCCs

MFCCs are a representation that is derived by computing the cepstrum of melodic frequencies[38]. Owing to

their high performance[39], MFCCs are one of the most commonly used filter bank-based feature types for

speech processing applications, such as speech recognition[39], speaker verification/identification[40], and

language identification[38]. Furthermore, MFCCs offer the advantages of low dimensionality and the

independence of the position of the partial narrow-band corruption across feature dimensions[41]. In this

work, we extracted a total of 39 dimensional MFCC features, including 13 MFCC coefficients and the first

and second delta regression coefficients (both the first and second deltas having 13 dimensions).

3.2.3 eGeMAPS

The extended Geneva Minimalistic Acoustic Parameter Set (eGeMAPS) [42,43] is a small (low dimensional)

knowledge-based acoustic feature set designed for the purpose of achieving a high level of robustness

when capturing emotion from speech[42]. It consists of 42 low-level descriptors (LLDs) and 2 functionals,

that is, the arithmetic mean and the coefficient of variation[42].The overall dimension of the eGeMAPS is 88.

3.3 Data partitioning

As in the baseline experimental setting, we applied the independent Leave-Three-Speakers-Out Cross

Validation method, meaning that the 67 participants (40 males, 27 females) were divided into two subsets.

One subset was employed as a fixed test set (10 males, 12 females), while the other (30 males, 15 females)

Figure 2 Sample Mel-spectrogram extracted from a clip of female frustration speech (seconds).
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was considered as training and development set for

cross validation and then subsequently partitioned

into 15 subsets, each including 2 males and 1

female. During the training process, one subset was

chosen as the development set, while the other 14

subsets were used as the training set. The fixed test

set was used to evaluate the model. The distributions

of speakers and instances in the subsets are given in Table 1.

3.4 Equipment set-up

High-performance computing systems increasingly incorporate the computational power provided by

accelerators, especially GPUs. Thus, to implement the experiments, we applied the NVidia GeForce GTX

Titan X as our GPU in order to increase the computational performance. Our deep learning models were

programmed using PyTorch with a MacBook2.

4 Deep learning approaches

Current state-of-the-art deep learning methods have explored the use of residual networks (ResNets) in

applications such as earthquake signal detection[44], infant crying recognition[45], and pediatric pneumonia

diagnosis[46]. These methods are characterized by the use of particularly deep networks. Model training is

especially time consuming when the depth of the ResNets increases, a problem that may be alleviated by

the use of WideResNets[19], as outlined above. One of the properties that WideResNets share with ResNets

is the inclusion of shortcut connections[31], that is, connections that skip one or more layers and which help

to reduce the vanishing gradient problem. The main difference between the ResNets and WideResNets is

the width of the networks.

In this work, the architectures of ResNets and WideRestNets are compared with three other widely used

CNNs: AlexNet, VGG, and EfficientNet. The AlexNet[47] model contains five convolutional layers, two

fully connected layers, and a softmax output layer. In contrast to previous shallow networks, rectified

linear units (ReLUs), overlap pooling, and dropout are used in this model[47]. The VGG-11 network consists

of eleven weight layers, eight convolutional layers, and three fully connected layers. It is classified by a

softmax classifier layer for its output. The promising EfficientNet[48] has been presented as a benchmark for

balancing network depth, width, and resolution. Indeed, convolutional neural networks have been widely

scaled up to improve network accuracy, one simple composite scaling method is based on a fixed set of

scaling coefficients, thus uniformly scaling the depth, width, and resolution parameters. This scaling

method can be used to efficiently avoid tedious fine-tuning processing[48].

An overview of the architectures of ResNets and WideResNets used in this work is illustrated in Figure

3. One of the critical parameters in WideResNets is the widening factor k. It is a coefficient that is

multiplied by the width of the residual blocks for transformation from ResNets to WideResNets. However,

before multiplication with the k factor, the best value cannot be deterministically defined. For this reason,

we decided to compare the performance of this architecture using k=2, k=3, and k=4. In Figure 3, the k

factor is set up in the residual blocks. Batch normalization[49] is used at the output of the convolutional

layer, and ReLU is employed as the activation function in all the residual blocks. Our network was trained

2 For reproducibility, the code to re-implement the experiments is freely accessible in : https://github.com/Meishu619/frustrationrecognition‐

fromspeech.

Table 1 Partitioning the dataset by participants and in‐

stances

Models

Speakers

Gender (M:F)

Frustration

Non-Frustration

Train & Dev

45

30:15

483

3763

Test

22

10:12

209

1991

Σ

67

40:27

692

5754

81
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with a batch size of 32 samples. It uses weighted cross-

entropy as the loss to be optimised with the Adam

optimizer. The learning rate in our experiments was

0.0001. In our architecture, the input sizes for the

networks are 1000×39 for MFCCs, 1000×900 for Mel-

Spectrograms, and 1000×88 for eGeMAPS.

5 Experimental results

The classification performance is measured using the

unweighted average recall (UAR), an evaluation metric

already used in previous work on the same dataset[9] and

broadly used in the field as it is well suited for the

commonly encountered class imbalance. Table 1

presents the results obtained using the frustration

recognition models that were trained using different

acoustic feature sets. From the evaluation of the results,

we observe that the WideResNets50-2 architecture

achieved the best performance using Mel-Spectrogram

acoustic features (UAR=93.1%; cf. test in Table 2); that

is, our best results outperformed the baseline by 34.3%.

Better results for MFCCs were also achieved with the

WideResNets50-2 architecture (UAR=92.9%; cf. test in

Table 2), and when using eGeMAPS as acoustic

features, WideResNets50-3 outperformed the other

architectures (UAR=85.7%; cf. test in Table 2). We

found that the best k value for Mel-Spectrograms and

MFCCs is 2, whereas for eGeMAPS, the optimal k is 3,

which indicates that the selection of k is input-dependent

and that k therefore needs to be fine-tuned for different input features. Note that we did not test other

values because we observed that higher k values yielded lower performance.

Overall, a comparison with the baseline results[9] shows that CNN-based architectures offer a significant

improvement (from 58.8% to 93.1% UAR), which is evident for all the evaluated CNN models—even the

worst result (UAR=73.5%), achieved by the VGG11 architecture using the eGeMAPS feature set,

outperformed the baseline. This may be partially attributable to the data collection procedure: in the "non-

frustration" clips, individuals pronounced the commands "left, " "right, " "up, " and "down" sequentially,

frequently and confidently. In contrast, in the "frustration" clips, long silences were introduced between the

commands. We hypothesize that although the MGFD dataset contains time-sequential data, the numerous

silences biased the performance of the LSTM architecture when modeling frustration in the MGFD dataset.

Another interesting outcome is that in most cases the WideResNets architectures outperform the ResNets-

based models, confirming that an increase in the width rather than the depth of the residual blocks leads to

better performance on our speech-based frustration detection task. Despite the remarkable performance of

EfficientNet in image classification tasks[48], this type of architecture obtained lower UAR values than the

ResNets and WideResNets architectures considered here, which may be because the resolution of the

Figure 3 Illustration of the WideResNets (blue)

and ResNets (green) model architectures.
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speech signals in the MGDF dataset is lower than

the image dimensions in image classification.

Another possible explanation is that in EfficientNet

there are no skip connections.

6 Conclusion

In the present research, following our work on

speech-based frustration recognition during game

interaction, we showed that the use of Mel-

Spectrogram acoustic features with a WideResNets

architecture yields a significant improvement

(34.3% greater UAR) over the baseline results.

Through a comparison of several models, our

results confirm that convolutional neural networks

(CNNs) in general, and Wide Residual Networks

(WideResNets) in particular, are suitable

architectures for successfully retrieving emotional

content from speech. Future work will need to re-

evaluate this finding on other datasets including

frustration and more general paralinguistic tasks to

provide additional evidence of the value of WideResNets architectures in the field.
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